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Abstract

In this research, a new lattice Boltzmann model, called the artificial interface lattice
Boltzmann model (AILB model), is proposed for the simulation of two-phase dynamics. The
model is based on the principle of free energy minimization and invokes the Gibbs-Duhem
equation in the formulation of non-ideal forcing function. Bulk regions of the two phases are
governed by a non-ideal equation of state (for example, the van der Waals equation of state),
whereas an artificial near-critical equation of state is applied in the interfacial region. The
interfacial equation of state is described by a double well density dependence of the free energy.
The continuity of chemical potential is enforced at the interface boundaries. Using the AILB
model, large density and viscosity ratios of the two phases can be simulated. The model is able
to quantitatively capture the coexistence curve for the van der Waals equation of state for
different temperatures. Moreover, spatially varying viscosities can be simulated by choosing the

relaxation time as a function of local density.

Suitable velocity and density (pressure) boundary conditions are also developed for the
particle distribution functions in the framework of the proposed model. Boundary conditions for
both the 2D as well as 3D domains are developed and relationships to evaluate unknown
distribution functions are explicitly provided. Based on the Cahn’s wetting theory, physics
governing the wall-fluid interactions is also developed in the framework of the AILB model.

Using it, any specified contact angle (ranging from 0° to 180°) can be simulated at the walls of
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the domain. The proposed AILB model and the Lee-Fischer LB model are evaluated on several
simple problems which involve interactions between two phases of a fluid and, between two
phases and solid walls. Some of these problems in the order of increasing complexity are: the
simulation of multi-fluid Poiseuille-Couette flow, specifying static bubbles/droplets in a periodic
domain, two-bubble or two-drop coalescence, single rising bubble, break-up of a drop/bubble
due to shearing walls, specifying different equilibrium contact angles on the surfaces, dynamics

of drop/bubble in contact with a surface, etc.

In addition, a simulation methodology based on the Peng-Robinson (P-R) equation of
state has been devised in the LB framework. The developed P-R model can accurately predict
phase-coexistence curve for water and steam at different system temperatures and allows

simulation of phases with varying density/viscosity ratios.

Thermal effects in the AILB model are simulated by employing a separate distribution
function responsible for tracking the temperature dynamics. A phenomenological model to
simulate evaporation and condensation is also developed in the framework of the proposed
model. The thermal model is able to qualitatively capture the bubble growth and shrinking

dynamics due to the variations in surrounding bulk temperatures.

For the numerical analyses using the LBM, a computer code is developed to solve
problems in both 2D and 3D. The code can run on a single processor PC as well as on a parallel
cluster. The code has been written in FORTRAN90 language and incorporates MPI paradigm for

parallelization.
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Chapter 1

Introduction

Dynamics of two-phase flows plays an important role in many fields of applied
science and engineering, including oil-water flow in porous media, boiling fluids, liquid
metal melting and solidification, and many more. Typically two-phase flows manifest a wide
variety of geometrical patterns (or flow regimes) of associated phases depending on the
system conditions. These patterns include, but are not limited to, bubbly, slug, churn and
annular flows. Most common two-phase patterns observed in a vertical tube flow-boiling
experiment are shown in Fig. 1.1. These multiple flow patterns significantly affect the overall

system hydrodynamics by varying the heat transfer and pressure drop characteristic of a
given flow.

Dispersed Bubbly Slug Churn Annular Mist
bubbles

Fig. 1.1: Typical two-phase flow patterns observed in a vertical tube flow-boiling experiment

(fluid: R134a, tube internal diameter: 4.34 mm, pressure: 10 bar) (Hua et al., 2004).

Due to the existence of different flow regimes and their temporal and spatial local
transitions (depending upon the local system conditions), predictive modeling becomes
difficult and a challenging task. Simulation and identification of these flow regimes by
resolving interfaces via traditional Navier-Stokes (N-S) based simulators are computationally
complex, extremely time consuming and often very inefficient partly due to the need for
extensive interface tracking. Moreover, since interfaces between the two-phases of a fluid are
results of unique thermodynamic effects, one also needs to know the governing equation of
state to incorporate a consistent thermodynamics that is usually unknown in the interfacial
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regions. Consequently, analyses of two-phase flow are still largely based on the empirical

correlations developed for different flow regimes.

In the following sections, motivation for studying the two-phase dynamics using a
lattice Boltzmann model (LBM) based approach is given. Some salient features of the LB
method are outlined and its benefits over the prevalent computational fluid dynamics (CFD)

approaches are highlighted.

1.1 Motivation

Advances in computational fluid dynamics over the last two decades or so have been
very impressive. Several fields of engineering—including aeronautical, automotive,
mechanical, chemical, etc.—have benefited from this progress. However, fruits of this
development have been more limited for applications that involve boiling and two-phase
flows, such as those in nuclear and some other branches of engineering. The reason may be
the slow progress in CFD to accurately model challenging problems of interest such as those

that involve boiling or multi-phase flows.

One specific example is a boiling water reactor (BWR) core, in which the coolant
enters the core as liquid, undergoes a phase change as it traverses the core and exits as a high-
quality two-phase mixture. Two-phase flows in BWRs typically manifest a wide variety of
geometrical patterns of the co-existing phases depending on the local thermodynamic

conditions (Tong & Tang, 1997).

The accuracy in modeling is vital for the safety and economy of a nuclear power
plant. However, modeling such flows — which involve bubble nucleation, bubble growth and
coalescence, and inter-phase surface topology transitions — using CFD type approaches
currently relies on empirical correlations and therefore, hinder the physics-based insightful
predictions. For example, several best estimate codes in nuclear industry, such as RETINA,
CATHRE still rely on the extrapolated results from some simple laboratory experiments. The

empiricism in the closure relations is a major source of error in them.



(c) Lateral bubble coalescence of two unequal sized bubbles

Fig. 1.2: Experimental observations to investigate two-phase dynamics for some simple

scenarios (figure adopted from Siedel et al., 2008).

To improve the accuracy, we must resolve the complexity of two-phase flow
structures either by gathering information from the physical experiments (at similar system
conditions) and/or from numerical/analytical methods. We should note that even now, the
physics of very simple two-phase scenarios (for example, the growth of a single bubble on a
heated surface and the coalescence of two bubbles) has not been fully understood. In an
attempt to grasp the physics using state-of-the-art technologies, several experimental studies
are currently being performed. In Fig. 1.2, photographic observations from one of such

experiments by Siedel et al. (2008) are shown.



Of course, one can not directly extrapolate results from the simple laboratory
experiments to the scale of a nuclear power plant, and full scale experiments may be needed
to verify and benchmark the predictions. However, conducting full scale experiments on a
nuclear reactor scale (such as, transients, loss of coolant or flow accident (LOCA/LOFA)
etc.) are sometimes not possible (due to safety concerns) and may not even be economically
feasible. Therefore, we should turn to numerical experiments in order to improve the
accuracy of closure relations. Considering the limitations (cost, parameter range, safety etc.)
of the physical experiments, numerical experimentation seems more promising (Hazi et al.,

2002).

1.2  Several computational approaches

There are several computational methodologies we can use to model two-phase
dynamics. Most conventional and popular approach is to use macroscopic Navier-Stokes (N-
S) equation (supplemented with the energy equation) and include surface tension, interfaces,
condensation / evaporation etc. effects by means of separate models. An excellent review of
early Navier-Stokes based two-phase approaches can be found in Stewart and Wendroff

(1984).

Usually in conventional best-estimate two-phase flow codes, two or more sets of
partial differential equations (PDEs) along with the closure relations are numerically solved.
Two phases are assumed to be distributed homogenously throughout the system. The phase
homogenization brings in a very crude approximation and is a large source of error. To relax
this assumption, closure relations need to be tuned to the specific flow regime (annular,
bubbly, slug etc.) under specific system conditions. However, it is difficult to find well
established and constitutive relations between the system’s thermodynamic conditions and
the observed flow regimes (Hazi et al., 2002). Therefore, only a few available correlations,

whose validity may still be in question, are commonly incorporated in the computer codes.

While some schemes, such as the level-set method and the volume-of-fluid (VOF)
method, have successfully been applied to model certain two-phase systems (Krishna & Van
Baten, 1999; Scardovelli & Zaleski, 1999; Esmaeeli & Tryggvason, 1998; Juric &

Tryggvason, 1998), there is still a need for alternative approaches to understand the
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connection between the two-phase macroscopic phenomena and their underlying micro-
dynamics at a much more fundamental level. Ideally, molecular dynamics (MD) simulations
can be the ‘key’ to predict these phenomena by setting up a model which describes the
microscopic interactions as accurate as possible. However, MD is not yet ready to be
exploited for large scale applications due to extremely high computational cost associated
with such close-to-reality simulations (Ceperley, 1999). Consequently, a methodology which
can bridge the gap between MD and CFD (sometimes referred to as the meso-scale approach)
may be more suitable for the present state of computational power (Yadigaroglu, 2005). The
Lattice Boltzmann Method (LBM) is a good candidate because of its coarse-grained approach
to simulate fluid flows. In LBM, the dynamics is evolved by movements of fictive clusters of
particles on a fixed lattice which do not follow Newtonian dynamics as in MD and thus are
computationally more affordable. Moreover, use of LBM may prove highly advantageous in
comparison to the continuum approaches because of its inherent ability to incorporate particle

interactions to yield phase segregation.

An overview of microscopic simulations in physics and the need for multi-scale
methods to interconnect phenomena occurring at different length and time scales are given in
Ceperley (1999). Microscopic approaches which can be applicable in simulating nuclear
reactor thermal-hydraulics are reviewed in Ninokata (1999). In Fig. 1.3, several
computational approaches for fluid simulations are compared on the scale of system size,
Knudsen number, computational efficiency and system complexity per unit volume.
Molecular dynamics (MD) approaches are the simplest representation of fluid flow in which
the Newtonian motion of all the particles composing the system are tracked in time.
Interactions among the particles are implemented via prescribing the inter-particle force
potential functions. Using MD-type approaches, very detailed information about the state of a
system can be obtained. Due to existence of large number of particles in any real system,
MD- approaches are extremely computer and time intensive even for the problems with very
small length and time scales. In order to simulate fluid flow on higher scales, one has to
coarsen over the real particles. In such a modeling scheme, pseudo-particles (a collection of
real particles) are considered which evolve either on a fixed lattice or off-lattice. Dissipative
particle dynamics and Direct Simulation Monte Carlo (DSMC) are off-lattice pseudo-particle
methods in which pseudo-particles move continuously in space. LBM approach is one of the

on-lattice pseudo-particle approach in which coarse-grained fictive particles travel on a fixed
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lattice and interact with other such particles. In Navier-Stokes (N-S) based approaches,
continuum-based partial differential equations are numerically solved for the macroscopic

observables (Rabbe, 2004).
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Fig. 1.3: Various approaches to simulate fluid flows at different scales. Applicability of a
certain method depends upon the system size and the Knudsen number. (Figure adopted from

Rabbe, 2004)

Navier-Stokes fluid dynamics is applicable at small Knudsen numbers and can be
regarded as a top-down approach to fluid simulation, whereas pseudo-particle based methods
and lattice Boltzmann models are a bottom-up strategy of fluid simulation which are
applicable at higher Knudsen numbers. In the Navier-Stokes world, one directly deals with
the variations in fluid observables i.e. density, velocity, pressure etc. and predicts the state of

the fluid in terms of these observables. In contrast to above, macroscopic observables in the



pseudo-particle based approaches are computed by local averaging of number densities and

momentum of the coarse-grained particles.

Several computational approaches discussed above are best suited at different
time/space scales for fluid simulations. Cross-scale interactions (back-and-forth feeding of
scale-specific solutions) are required at each level of scale hierarchy in order to gain better
predictive modeling. This multi-scale strategy (merging results at the micro-, meso- and
macro-scales) to simulate fluid flow may be able to better address the physics of complex
fluids. However, advances should be first made in developing the scale-specific approach and
strategies are required to merge the solutions at different scales in order to obtain reliable
results (Yadigaroglu, 2005). Because of its mesoscopic nature, lattice Boltzmann (LB)
methodologies are a good fit in the realm of multi-scale simulations and can address
problems that involve multiple levels of physical and mathematical descriptions (Succi et al.,

2001; Lantermann & Hanel, 2007).

1.3 An overview of lattice Boltzmann method (LBM)

Unlike conventional numerical schemes based on the discretizations of macroscopic
continuum equations, the LBM is a particle-based approach, in which collective behavior of
particles is represented by a single-particle probability distribution function. Roots of LBM
lie in the earlier lattice gas cellular automata (LGCA) models, in which, evolution of particles
on a fixed lattice simulate the overall macroscopic behavior. The uniqueness of LBM stems
from the fact that the macroscopic dynamics emerges from the simulation of very simple
kinetic models that incorporate the essential physics of the microscopic (or mesoscopic)
processes in the system. There underlies an artificial micro-world of particles ‘living’,
‘propagating’ and ‘colliding’ on a fixed lattice while conserving mass and momentum (Chen,

1993, Chen et al., 1994).

For hydrodynamic simulations, LBM models are much simpler and efficient to solve
on a computer compared to solving its macro-counterpart partial differential equations
(PDEs). Though LBM and its variations were proposed several decades ago, it is only with
the recent advances in computing power that their applications to realistic problems are

becoming a reality. This approach appears to be one of the most promising approaches due to
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its scalability with computing power and short as well as long term promises. Computing
power will no doubt continue to increase; and hence the LBM is likely to be applicable to

ever larger problems (Chen & Doolen, 1998).

1.4 Objectives

While the overall and long term goal of an LBM based simulation capability (of two
and even multi- phase flows) in nuclear engineering would be to accurately predict critical
heat flux (CHF) and flow regimes maps, it is recognized that this is a rather challenging goal.
Work reported here consists of several steps towards that goal. Challenges include the
development of capabilities in a LB model to address the following:

e Simulation of two coexisting phases in equilibrium
0 Open (such as, planar) interfaces
0 Closed (such as, circular or spherical) interfaces
e Tracking the temporal and spatial dynamics of interfacial evolution
e Modeling of surface-tension effects
e Modeling of walls in the computational domain
e Modeling of wall-fluid interaction to yield a prescribed contact angle in equilibrium
e Modeling of flow boundary conditions to be able to specify desired fluid velocities or
densities at the boundaries
e Modeling of all of the above physical effects in the presence of body forces, such as
gravity

e Modeling of all of the above with heat-transfer considerations

In addition, stable and efficient (parallel) numerical schemes must also be developed.
Only after adequately addressing these steps, one can expect to tackle the challenging

problem of predicting CHF and flow regime maps.

This report addresses the issues of development and testing of LB models for some of
the individual effects—namely high density ratios of the liquid and vapor phases; wall and

surface tension effects; and two phases with phase change.



1.5 Outline

This report has been divided into nine chapters. An outline of which is presented

below:

In Chapter 2, theoretical aspects of lattice Boltzmann models are discussed. A
consistent way to recover the lattice Boltzmann equation (LBE) from the continuous

Boltzmann transport equation (CBE) is presented.

In Chapter 3, the formulation of a non-ideal Enskog equation based LBE is presented.
Several existing techniques in the lattice Boltzmann framework to simulate two-phase flows

are scrutinized.

In Chapter 4, an artificial interface lattice Boltzmann model (AILB) is developed to
simulate two-phase dynamics. The model employs two equations of state, one for the bulk
region and another for the interfacial region. Based on the Cahn’s wetting theory, a model is

developed for simulating different wall contact angles.

In Chapter 5, velocity and density boundary conditions are developed for the Gibbs-
Duhem LB model. The formulation is presented for D,Qy (in two-dimensions) and D3Q9 (in

three-dimensions) lattice-types.

In Chapter 6, results for several two-phase simulations are presented and compared

with existing theoretical and experimental results.

In Chapter 7, a Peng-Robinson (P-R) equation of state based LB model is proposed.
Model based on P-R EOS is able to quantitatively reproduce the water-steam coexistence

curve in the LB simulations.

In Chapter 8, a thermal model is presented for the proposed AILB model. A
phenomenological model is developed for simulating qualitative effects of evaporation and

condensation.



In Chapter 9, a summary of the report is given.

In Appendix A, a derivation of incompressible Navier-Stokes (N-S) equation from the

LB equation is presented.

Parallelization techniques and the efficiency and scalability of LB algorithm are

discussed in Appendix B.

Details on the boundary conditions are presented in the Appendices C, D and E.

Appendix F discusses the Mathematica routine for the Maxwell construction

procedure in the context of a van der Waals equation of state.

In Appendix G, relations between lattice and physical units are discussed. Some

examples are given for illustrative purposes.

1.6 References

Stewart, H.B., Wendroff, B., 1984. Two-phase flow: Models and methods. Review article in
J. Comp. Phys. 56, 363-409.

Ceperley, D.M., 1999. Microscopic simulations in physics. Reviews of modern physics 71(2),
S438-S443.

Chen, H., 1993. Discrete Boltzmann systems and fluid flows. Computers in Physics 7(6),
632-637.

Chen, S., Doolen, G.D., Eggert, K.G., 1994. Lattice-Boltzmann fluid dynamics. Los Alamos
Science, 100-111.

Chen, S., Doolen, G.D., 1998. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid
Mech. 30, 329-364.

10



Esmaeeli, A., Tryggvason, G., 1998. Direct numerical simulations of bubbly flows. Part I.
Low Reynolds number arrays. J. Fluid Mech. 377, 313-345.

Hazi, G., Imre, A.R., Mayer, G., Farkas, 1., 2002. Lattice Boltzmann methods for two-phase
flow modeling. Annals of Nuclear Energy 29, 1421-1453.

Huo, X., Chen, L., Tian, Y.S., Karayiannis, T.G., 2004. Flow boiling and flow regimes in
small diameter tubes. Applied thermal engineering 24, 1225-1239.

Juric, D., Tryggvason, G., 1998. Computations of boiling flows. Int. J. Multiphase Flow
24(3), 387-410.

Krishna, R., Van Baten, J.M., 1999. Simulating the motion of gas bubbles in a liquid. Nature
398, doi:10.1038/18353.

Lantermann, U., Hanel, D., 2007. Particle Monte Carlo and lattice-Boltzmann methods for

simulations of gas-particle flows. Computers & Fluids 36, 407-422.

Ninokata, H., 1999. Microscopic approaches in nuclear reactor thermal hydraulics
computations. Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics

(NURETH-9), San Francisco, CA, October 3-8, 1999.

Rabbe, D., 2004. Overview of the lattice Boltzmann method for nano- and microscale fluid
dynamics in materials science and engineering. Topical review in Modeling Simul. Mater.

Sci. Eng. 12, R13-R46.

Scardovelli, R., Zaleski, S., 1999. Direct numerical simulation of free-surface and interfacial

flow. Annu. Rev. Fluid Mech. 31, 567-603.

Siedel, S., Cioulachtjian, S., Bonjour, J., 2008. Experimental analysis of bubble growth
departure and interactions during pool boiling on artificial nucleation sites. Experimental

Thermal and Fluid Sciences 32, 1504-1511.

11



Succi, S., Filippova, O., Smith, G., Kaxiras, E., 2001. Applying the lattice Boltzmann

equation to multiscale fluid problems. Computing in Science and Engineering, 26-37.

Tong, L.S., Tang, Y.S., 1997. Boiling heat transfer and two-phase flow. Second edition,
Taylor & Francis.

Yadigaroglu, G., 2005. Computational Fluid Dynamics for nuclear applications: from CFD to
multi-scale CMFD. Nuclear Engineering and Design 235, 153-164.

12



Chapter 2

Theoretical framework

Historically, the classical lattice Boltzmann equation (LBE) originated empirically
from its Boolean counterpart, the lattice-gas cellular automata (LGCA). In LGCA, the
physical space is divided into a regular lattice with each lattice point populated by discrete
particles. Particles “hop’ from one lattice point to another with discrete particle velocities and
‘collide’ when they meet others. Boolean collision rules are explicitly defined at each lattice
point. Though LGCA contributed significantly in LBE’s evolution, models based on LGCA
contained several defects (Wolf-Gladrow D.A., 2000; Rothman & Zaleski, 1997; Rivet &
Boon, 2001; Frish et al., 1986; Chopard & Droz, 1998) such as:

e Large noise due to Boolean variables

e Violation of the Galilean invariance due to Fermi-Dirac distribution

e Presence of spurious invariants due to regular lattices

o Inflexibility to adjust the viscosity, and

e An unphysical equation of state which has an explicit dependence of pressure

on velocity.

The lattice Boltzmann models (LBM) evolved from the LGCA models in order to
overcome the shortcomings discussed above. In LBM, sets of particle velocity distribution
functions are used instead of single pseudo-particles of LGCA. Furthermore, the streaming
and collision dynamics is applied over the velocity distribution functions in order to simulate

the fluid flow.

In order to develop the LBM for solving two-phase flow problems, it is first necessary
to understand the connection between the LBE and the continuous Boltzmann transport
equation (CBE) to identify the simplifying approximations and their impact on the simulated
flow physics. In the following sections, a detailed derivation of the LBE from the CBE is

presented.
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2.1 Continuous Boltzmann transport equation (CBE)

Lattice Boltzmann equation (LBE) is a specially discretized form of the Boltzmann
transport equation which is derived from the kinetic theory of gases. Primary variable of
interest in the Boltzmann transport equation is a single-particle probability distribution
function f(r,v,?) defined such that f(r,v,?)drdv is the number of particles in a phase-
space control element (drdv) about randv. Here, r represents a location in physical space
and v is microscopic velocity. Moreover, particles are assumed to be in a dilute state to have
large inter particle separations and therefore, all the interactions involving more than two-
particles may be neglected. With all these approximations in mind, the Boltzmann transport

equation (Cercignani, 1969; Harris, 1971) can be written as:
[§+ V.V, +F.ijf(r, v,0)=Q, . 2.1

Here, F is the acceleration experienced by a particle in the presence of an external force field
and the collision term Q, , accounts for the rate of gain '™ and loss T of particles from
the control element (drdv ) due to the collisions, and is equal to:

Q. =T =T = [dw, [ £,V 0) £ (6,¥],6) = £ (0,v,0 £ (1, V1) ] (2.2)
where v'and v; are after-collision velocities of the two colliding particles moving with the

velocities v and v,, respectively, before collision. Also, dp, is given by:

do
dp, =dv, |v1 —v|(%jda) (2.3)

where (Z—O-j is the differential cross-section of a particle and @ is the solid angle (Chapman
@

& Cowling, 1970; Huang, 1963; Koga, 1970; Liboff, 1969).

2.2 Simplification of Boltzmann collision integral Q,

Details of the two-body interactions in the collision integral €2, , do not significantly
influence the values of macroscopic hydrodynamic observables. Therefore, €2, , can be

simplified by assuming that, at any given time ¢, particles are in a state close to thermal

equilibrium and they relax to their local thermal equilibrium on a single time scale z . This
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approximation of single-time relaxation for the collision integral Q, . was first proposed by

Boltz
Bhatnagar, Gross and Krook in 1954. Using it, 3, , can be expressed in a form known as the

BGK collision term Q.. (Bhatnagar et al., 1954):

Q

o _ SV, )= f(r,v,0) 2.4)

Boltz — =“BGK —
T

where 7 is the single relaxation time, and f“/(r,v,?) is an equilibrium distribution function

given by the Maxwellian:

LUwv,0 = £ {v, p(r,D,u(r, 1)} = Wexp(—%j 2.5)

where d, R, T, p and u have the units of space, gas constant, temperature, macroscopic

density and macroscopic velocity, respectively. [Note that the Gas constant R has units of

(Joules/kg-K) and RT has units of (m*/sec?).]
g

We can now write the simplified Boltzmann transport equation with the BGK

collision approximation as:

LA T S Sl (2.6)
ot T

2.3 Explicit determination of the forcing term F.V_f

In order to explicitly determine the forcing term F.V_f , we can introduce an

approximation (He et al., 1998):

Vv = @)

Above approximation is valid since f is close to the equilibrium and therefore, f“ can be
regarded as the leading part of f. Applying the above approximation, our simplified

Boltzmann transport equation becomes:

Rt ML ) (2.8)
T

or RT
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2.4  Series expansion of equilibrium distribution function

Equilibrium distribution function f“ can be expanded in a series form, in the limit of

constant temperature 7" and small velocity u, up to terms of order O(u2 ) and gives:

2 2
vau 1( v u
4=y, (V)| 1+ —=+—=| — | - 2.9
! g ){ RT 2(RTJ 2RT} 9
where
2
P %

and wy (v) is called the Maxwell equilibrium distribution function for ‘fluid at rest” i.e. fluid

with u=0.
2.5 Links to hydrodynamics

The collision integral €, , in the Boltzmann transport equation possesses the

following properties:
f Qpdv =0 (2.11)

and
Q. vav=0 (2.12)

i.e. conservation of collision invariants (1, v and v*) atany r,¢.

Similar to Q, , , the BGK collision term €, must also satisfy the conservation of

collision invariants at any r,¢:
j Q, . dv = j [ SV, 0= 1@, v.0) |dv=0 (2.13)

j Q. vdv = j (S V.= f(r,v.0) [vadv =0 (2.14)

A link to hydrodynamics can be accomplished through the above equations.

Macroscopic density p(r,¢) and velocity u(r,?) are thus evaluated as:

o(r,t) = j f(r,v,t)dv= j £, v,t)dv 2.15)
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u(r,t)=

(1 t)jf“f(r,v,t)vdv (2.16)

2.6 Discretization in velocity space

In the simplified Boltzmann transport equation, the distribution function f depends on
space, velocity and time i.e. f(r,Vv,?). Discrete Boltzmann equation (DBE) is obtained by
discretization in the velocity space after introducing a finite set of velocities, v, and

associated distribution functions, f,(r,?). The DBE can be written as:

o, fo=fe F(v,-u) .
-4 4+v V f =—=t—4 4 : 4 2.17
S,V [ = e S @17)
where, the discrete BGK collision term Q.. i
_ fe
Q, pox =~ Jo /. (2.18)
T
Q, sox must satisfy the conservation of collision invariants at any r,? i.e.
PINACHED I AR (2.19)
a a
=p
D v i) =DV, [, 1) (2.20)

—u
A link to hydrodynamics is established through the above equations. Macroscopic

density p(r,?) and velocity u(r,z) are thus evaluated as:

=D [ =Y f(r,0) 2.21)

u(r,t)= ZV f(r,0)= Zv fe(r,t) (2.22)

(

p(

Here we should note that, in the multi-scale Chapman-Enskog expansion procedure
(see Appendix A for more details), certain fourth-order tensors made of lattice directions
must be isotropic in order to recover the rotational invariance of the momentum flux tensor at
the macroscopic level. The isotropy requirement limits the possible lattice structures that can

be used. This is the reason, for example, in two-dimensions (2D), a choice of rectangular
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spatial lattice requires nine velocities at each lattice point instead of a five-velocity lattice.
Out of these nine velocity directions, four are principal axes directions, four are diagonal
directions and one is rest state of zero velocity (see Fig. 2.1). It is called D,Qo, or more
generally D,Q, lattice structure with d and b representing number of spatial dimensions and
discrete velocities at each lattice point, respectively (Qian et al., 1992; Qian & Orszag, 1993).
[It should be noted that, in two-dimensions, a hexagonal lattice only requires seven velocities
and is isotropic. However, a hexagonal lattice is more difficult to work with than a regular
square lattice which is naturally implemented as an array of data on a computer.] In LB
simulations, physical symmetry (symmetry attached to the velocity space and the equilibrium
distribution for velocities) is necessary to obtain the correct macroscopic dynamics (Cao et
al., 1997). Derivation of the incompressible Navier-Stokes equation from the standard lattice

Boltzmann equation is given in Appendix A.

2.7 Discrete equilibrium distribution function: 7

Discrete equilibrium distribution function f;“can be written as:

2 2
‘ﬁq:%{uf?“+1£““j-” } (2.23)

RT 2RT

where w, are lattice constants which depend upon the chosen lattice structure (i.e. 2D or 3D,
rectangular or hexagonal lattice) and the number of finite velocities at any lattice point. w,
are evaluated such that the lattice-velocity moments (up to fourth order) over w, are identical
to the respective velocity moments over the Maxwell distribution w, (v) and given by the

following equations (Abe, 1997; Wolf-Gladrow D.A., 2000):

S, = [ v =p (.24)
ZMMFTm%MW=O (2.25)
Z VadVupWa = Tvavﬂwg (v)dv =pRTS5,,, (2.26)
Z VaaVapVayWa = Tvavﬂvwa(V)dV =0 (2.27)

—0
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0

D ViVasVuVaeWe = [ V0w (VA =p(RT) (8,48, + 8,85, +6,:8,)  (2.28)

—0

Note that the odd velocity moments vanish. In the above equations, J; is a Kronecker-delta

function given by:

(2.29)

L i e
5 = ifi=j
A U/ E

and v, denotes the i ™ -component (component in the i " spatial dimension) of v, .

vé=(-C, C) v>=(0, ¢) vs=(C, C)

Y
‘77:(_0’ -C) V4=(0, 'C) ‘78:(07 _C)

() (b)
Fig. 2.1: The D,Qy lattice. (a) Nine discrete velocities for the central lattice point are shown.
Principal direction of travel is numbered from 1 to 4, diagonal direction from 5 to 8 and the
rest state by 0. Also, velocities with the same magnitude are displayed by the same colored
arrows in the figure. The lattice employs three different speeds (0, ¢ and \/Ec) corresponding
to the rest, principal and diagonal directions of travel and therefore, has three different

weighting functions, w

rest >

w

i and w,, for the discrete equilibrium distribution function.
Here, a square lattice structure is assumed to give ¢ = Ax/At = Ay/At . (b) Discrete

distribution functions in the nine directions of travel are shown and labeled accordingly from

J, to f;. Their magnitudes are usually different in different directions and therefore, are

shown with different lengths of arrows in the figure.
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2.8 Determining 7 for a D,Q, lattice

The D,Qq lattice, as shown in Fig. 2.1(a), includes three different microscopic speeds
which are shown in the figure by different colored arrows. At any spatial point, discrete

velocities in nine directions of the two-dimensional square lattice are given by:

Vo= (VOx,VOy) = (O’O)

v, = (no,) = (c.0) Vo= (v )= ()

v = () = (0.c) = (vos,) = (cuc)
v, =(vaom,)=(-c.0) L =(vo,) = (cerc)
vo= (v, )=(0.¢) vo=(n.m,)=(e0)

where ¢ = Ax/At =Ay/At . Here, we have assumed a square lattice i.e. Ax=Ay.

D,Qq lattice involves three different speeds: 0, ¢ and J2¢. For reason of symmetry,

we can further assume that w, for directions with identical speeds are equal. Now, we can

calculate three different w,, called w,,,, w,,, and w,,, corresponding to the rest (direction

rest ? prin

0), the principal (directions 1, 2, 3 and 4) and the diagonal (directions 5, 6, 7 and 8) velocity

directions, respectively.

From equations (2.24) to (2.28), we obtain the following relations for a D,Qy square

lattice:
D W = Wiy AW, + AW = P (230)
ZVMWQ = Zvaywa =2c*w,,, +4c*w,,, = pRT (2.31)
ZVM w, Zva}wa =2c*w,, +4c*w,,, =3p(RT) (2.32)
ZVM viw, =4c'w,,, = p(RT) (2.33)

Solving above set of equations for the four unknowns, w

rest 2 prm 2

Wi and RT , we

get:

20



T (2.34)
9

prin _§p ( 35)
1

Wdiag ng (236)
cZ

RT =5 2.37)

Similar to the procedure above, the equilibrium distribution function may be
determined for lattices in three-dimensions, i.e. of type D3Q15 or D3Q;9 (Wolf-Gladrow,

2000).

2.9 Recovery of the LBE from the discrete Boltzmann equation (DBE)

The discrete Boltzmann equation (DBE) can be written in r = (x, v, z) space as

follows:

Py, Ky, Wy, O

+v, —L+v

o o “ 3
x O : (2.38)

e eq
:_%J{FX (Ver —ux)+Fy(vay —uy)+FZ(vaz —uz)}%

Left hand side of the above equation is composed of the Eulerian time derivative (

0/t ) and the advective space derivatives (v, 0/dx + Vay 0/0y +v,_0/0z). Together they

comprise the Lagrangian derivative, which gives the rate of change of the a-directional

distribution function f, (x, v,z, t) (index a can be between 0 and (b-7) depending upon the

chosen lattice structure D,Q;) in a frame of reference which moves with the particle’s

velocity v, =(v,.,v,,v,. ). Thus, by marching each of the b-directional populations in time

ax?® “ay? "az

along the characteristics (Ax, Ay, Az) = (vax,vay WV, ) At , the above equation yields the standard

lattice Boltzmann equation (LBE) (Chen & Doolen, 1998; He & Luo, 1997b,c):
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A
f,(x+v, At,y+v, At,z+v, Att+At) = £, (x,,z,t) A [fa(x,y,z,t) - £ (x,y,z,t)]
i T

+At[ﬁ; (vax_ux)-i_Fy (vay _u)f)+E(Vaz_”z)]M

RT
(2.39)
Here, we have used an explicit forward-difference scheme in time.
Note that, we can write the above LBE as a set of two equations:
e Collision
£ G320 =m0 = om0 - £ .20
w (2.40)
+At[Fx (vax —ux)+Fy (vay —uy)+FZ (vaz —u, )]%

e Streaming

Jo(x+v, At y+v, At,z+v, At 1+ At) = f(x,¥,2,0) (2.41)

Above splitting of the LBE into two equations clearly brings out the simple physical
interpretation of particles colliding and streaming, which results from the fully Lagrangian
character of the equation, for which the spacing between the two neighboring lattice points is
the distance traveled by the particles during the time step. In the collision step, the
distribution function is updated at regularly spaced lattice points. In the streaming step, the
updated distribution function is streamed in the direction of corresponding discrete velocities,
towards the neighboring lattice point. The simplicity of algorithm greatly facilitates
numerical evaluations; however, it couples space-time discretization and leaves no flexibility

in choosing the space-time grid-steps independently.

In a compact form, LBE can be written as:
A
S+ v, AL AD = £, (6,0 = 21 £ (50— £9(r,0) |+ B,AL (2.42)
T
where B, is the body force term given by:

B - F.(v,—u)

’ 2T 1 (2.43)

22



The kinetic nature of the lattice Boltzmann equation (LBE) offers the following
advantages:

e The convection operator (streaming step) in the LBE is linear, in contrast to
the nonlinear convection terms in the corresponding macroscopic PDEs.
Combining the simple convection with the collision operator allows the
recovery of nonlinear macroscopic advection through multi-scale expansions.

e Taking the nearly incompressible limit of the LBE yields the incompressible
Navier-Stokes (N-S) equations (see Appendix A). The pressure at any lattice
point in this approach is calculated using an equation of state, in contrast to
iteratively solving the pressure Poisson equation.

e Retaining only a minimal set of velocities and a few movement directions in
the phase space extensively simplifies the transformation between the

microscopic distribution function and macroscopic quantities.

2.10 Apriori derivation of the LBE from the CBE

In the absence of external forces, the continuous Boltzmann equation (CBE) can be

written as:
_ e
g+V.Vrf:—f / (2.44)
ot T
which essentially is:
eq
2/ il (2.45)
Dt t T

D 0 . : o S . . .
where — = o +v.V, is the Lagrangian derivative along direction of microscopic velocity v.
¢

Multiplying both sides of the above equation with integrating factor e'’*, we can

write:
D tlt 1 t/'t preq
—| fe'’ |=——e 2.46
A (2.46)
Now, integrating the above equation along the characteristic from time ¢ to ¢+ Az,
t+At 1 t+At
[ D[re]===[ & 1D (2.47)
T t

t
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we get:

t+At
Fe+vALv,t+ A — f(r,v,0) e’ _ 1 j ¢ [ Dt (2.48)
T

t

Assuming that Atz is very small and during a time-step (¢ to 1+ At ), f“/does not
vary significantly and thus, can be treated as a constant which is evaluated at time ¢ i.e.

f“(r,v,t), we can write:

t+At

Fr+vALv,t+ A = f(r,v, 1) e’ = 1 £ (r,v,0) j ¢'"Dt (2.49)
T t

which essentially is:
Fe+vALv,t+ A — f(x,v,0) €T == F(r, v, 1) [eMW - e”f] (2.50)

1+A1)/ T —-At/t

Dividing the above equation with ¢ and expanding e in a Taylor series up to term

of order O(At), we get:

f(r+vAt,v,t+At)—f(r,v,t)[1—£+..}:—f""(r,v,t)[l—£+...—l} (2.51)
T T
which can be written as:
F(r+ VALV, E+ A — f(r,v,1) = —ﬂ[ [V = [ v.0)] (2.52)
T
or,
At ,
SE+VALV,E+ AL = f(0,v,0) =] f(r,v.0) = f(r,v.1) ] (2.53)
T

which is the lattice Boltzmann equation (LBE) (He and Luo, 1997a; Luo, 1998; Lallemand
and Luo, 2000).

2.11 Summary

In this chapter, a formal description of the lattice Boltzmann models (LBM) is
provided. It is noted that the LB models are based on a rigorous theoretical foundation of
Boltzmann’s transport theory. Several approximations are made in order to simplify the
mathematical and computational complexity of the Boltzmann equation in the process of
retrieving the LB models. Since one of the significant assumptions of the Boltzmann theory is
to account for the rarefied (dilute) gases, the standard LB equation possesses an inherent ideal
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gas equation of state (which is evident after a Chapman-Enskog expansion on the LBE in
certain limits and shown in Appendix A). Due to the ideal gas nature of the standard LB
equation, it may not be directly applied to simulate complex fluid phenomena such as two-
phase flows. Therefore, certain modifications in the LB equation are necessary to model and
capture the necessary physics. In the next chapter, details are presented for an Enskog
equation — a modified Boltzmann equation which accounts for finite particle sizes — based
LB model in order to develop suitable models applicable for two-phase dynamics. Several

other prevalent two-phase flow models in the LB framework are also discussed.
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Chapter 3

Lattice Boltzmann equation for non-ideal fluids

The standard lattice Boltzmann equation (LBE) possesses an inherent ideal gas
equation of state and is not suitable for simulation of most of the real fluids which are denser
than the ideal gases. Inapplicability of LBE for non-ideal fluids results from the fact that the
LBE is based on the Boltzmann transport equation, which only describes dilute gases and is
not suitable to model dense fluids. In the Boltzmann transport equation, the size of a particle
is assumed to be very small compared to the average distance between particles, which is a
valid assumption only for a dilute gas. Also, only binary collisions are considered and other

higher order collisions are ignored.

In contrast to dilute gases, particles are closer in space in a dense fluid and their mean
free path is comparable to the molecular dimensions. Therefore, particles of finite size must
be taken into account. Because of the finite sizes, centers of colliding particles are not at the
same point as typically assumed in a dilute gas. At the instant of collision, if the center of

particle 4 is located at r in a frame of reference fixed to particle 4 (i.e. moving with the same

velocity as of particle A), then the center of the approaching particle, B, will be at (r -2, ﬁ)
where 7 is the radius of the particle (here, all the particles are assumed to be of the same size)

and K is a unit vector in the direction from the center of approaching particle (B) to particle
A (see Fig. 3.1(a)). Furthermore, we can assume that there exists an associated inverse

collision corresponding to each direct collision and from Fig. 3.1 (b), the centre of the inverse

collided particle will be at (r ~2r, (—12)) .

In addition, since each particle occupies a finite volume equals to (4/ 3)7zr03 , net
volume available for particles to move around is reduced and therefore, frequency of

collisions is increased by a factor g(r) , called the radial distribution function. The function

g (r) is evaluated at the point of contact of the two colliding particles just before and after

A

the collision i.e. at (r -7 ﬁ) and (r -7 (—k)) , respectively.
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Fig. 3.1: Binary collision of two hard-sphere particles of equal size (radius 7 ): (a) Direct

collision, and (b) Inverse collision. Red colored particle is particle 4 which is stationary, with
a position vector r in the reference frame fixed to 4 and is approached by the particle B

shown in green color.
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3.1 Modified Boltzmann equation: Enskog equation

By explicitly considering the volume exclusion effect of particles, Enskog proposed a

modified Boltzmann equation (also called the Enskog equation) for dense gases as follows

(Luo, 1998; Chapman & Cowling, 1970):

(%4— vV, +F.ijf(r, v,1) =QEm,mg 3.1

Notice that the left hand side of equation (3.1) is the same as in the Boltzmann transport

equation.

In Enskog equation, collision operator Q. is modified to include the effects of the

finite size of particles as:
glr+rk)f(r,v.0) fr+2nKk,v,¢
( ’ ) ( ) ( v ) (3.2)

QEnskog =jdu1 _g(r—roﬁ)f(r,vat)f(r_zroﬁ’vl’t)

where
dp, =a’v1|v1 —V|bdbd¢ (3.3)

Note that, even in the Enskog equation, only two-particle collisions are considered and all the

higher order collisions involving more than two particles are ignored.

For binary collision of hard spheres of radius 7,, the impact parameter b of scattering

is (see Fig. 3.2):
b=2r, sin(&) 3.4

where 6 is the azimuthal angle (0 < 6 < 7/2) between the relative velocity vector (v, —v)

and unit vector K , and ¢ is the polar angle (O <g< 27[) on the plane perpendicular to vector

(v,—v).
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Fig. 3.2: Binary collision of two rigid spherical particles of radius 7, whose centers are at C
and C;. The particle at C is assumed to be at rest with respect to the reference frame.
(2,)" do denotes a surface element, on the sphere of radius 2r, and centered at C, on which

C; must lie at the instant of collision. The differential area bdbd¢ is the projection of

(2r,)" do® on a plane normal to (v, -v) and 6 is the angle between (v, -v)and k..

3.1.1 Approximation of Enskog collision operator Q, ,

Assuming that the conditions in the dense gas are slowly varying in space, we can

expand g (r *7 ﬁ) andf(r +2r, K, v;,t) in a first order Taylor series as:

A

g(riro ﬁ)zg(r)iro k.Vg(r) (3.5)
f(re2nk,vi,t) = £ (6,v],0) £ 25 KVf (1, v},1) (3.6)

Substituting equations (3.5) and (3.6) in equation (3.2) and neglecting second order

derivatives, we get:

QEnskog = Qg)n)skog + Q(lzlr)rskog + Q(Ezn)skog (3 7)
where
Q. =2(r)[dn, [ 1~ 1 £1] (3.8)
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O e =1 [, [ £ £+ 1 £k Vg (r) (3.9)
and
Q) =2ng[du k[ f1Vf '+ £ V1] (3.10)

Note that, f = f(r,v,t), f,=f(r,v,t), /= f(r,v,t)and f/=f(r,v},1).

3.1.2 Evaluation of Q"

Enskog

Q(O)

Enskog ONLy differs from the Boltzmann collision integral by a factor g (r) and

thus, can be approximated by taking into account the BGK-collision approximation as:

_f@wﬁ—fﬂnwﬂ} 3.11)

T

Q(Eon?skog = g(r)QBoltz = g(r)QBGK = g(r)|:

where 7 is the single relaxation time and, f“(r,v,t) is the equilibrium distribution function

given by the Maxwellian:

eq P _(v-u).(v-u)
4 (r’v’t)_(ZﬂRT)M exp [ 2RT j (3.12)

3.1.3 Evaluation of Q"

Enskog

QY and QP

Enskog mskog CaN directly be evaluated by assuming f* to be close to

equilibrium, i.e. f =~ f“ and using the relation:

SR = [ (3.13)
which is applicable to the Maxwell-Boltzmann form of the equilibrium distribution function

(Chapman & Cowling, 1970). Note that, / = £ (r,v,t), f;“ = £ (r,v,,1),

feq' = feq (l‘, Vlat) and flf“!' Efeq (I', V;’t) :

From equations (3.9) and (3.13), we can write Q}), as:

Q) =21 [, [ £ £ ](Beos0) Vg (3.14)
where h is a unit vector in the direction of relative approach Velocity(v1 - V) . Now, from

equation (3.3), we can write:
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Oy, =25,/ [bdbcos O dg[dv, £ v, —v|h.vg (3.15)

which, using equation (3.4), becomes:

/2

2r
Qb =2, feq[ [ 47 sin O cos’ HdQ]( [ d¢]([ fdv,(vi-v)) Vg (3.16)
0 0

The above equation simplifies to:
Qe =B, p(V—u).Vg (3.17)
where B, is called the second virial coefficient in the virial equation of state, and is equal to:

B,= %ﬂ'rf (3.18)

3.1.4 Evaluation of Q¥

Enskog

After substituting f = f“ in equation (3.10), we can write:

QP =2n,g[du, (heos@).[ £V £ + £V ] (3.19)
which, using equations (3.3) and (3.4), can be written as:

Q). =2n,g[bdbeosO[dp[dv,|v,~v[h[ fUV £ + f V] (3.20)

Using equations (3.13) and (3.18), the above equation can be simplified to:

VAT VT e e
Q(Ezn).s'kog :BZgJ.dvl(Vl_v)'|:f—glq'+f—iq:|fq.flq (321)
1 1
and can be written as:
Qe = B[ £y, (v, =v) [ VIn £ £ ] (3.22)

The gradient term in equation (3.22), VIn £, £ can be written as:

, 2 )2 w(v, +v, 2
Vin £ =2vin| — £ |—v| L0 |,y s )| of e (3.23)
(27zRT) 2RT RT RT

which after substituting relations between v, and v, can be integrated (details of integrations

are given in Chapman and Cowling, 1970) and yields the following:
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_2(v—u)V1n,0+ (v =) (% =145 ) 0ty |
0 __p g, ' (d+2) RT
Enskog 2 1 (V—u)2 ) l d (V—u)2 ) )
{(d+2) o7 1}V.u+2{(d+2) o7 1}(v u).Vin(RT)

(3.24)

This equation for Q') can be simplified for incompressible (V.u =0 ) and isothermal (

Enskog

VT =0) fluids by setting the last two terms on the right hand side equal to zero. Moreover,

the term involving the derivative J,u, can also be neglected in order to have Qg]skog satisfy
mass conservationi.e. » QP =0. Above simplifications, in turn, yield:
QL. =—f“B,pg(v—u)Vin(p?) (3.25)
3.1.5 Evaluationof Q, ,
Now, from equations (3.7), (3.11), (3.17) and (3.25), we can write Q,, , ~as:
e e V
Qg = _é(f_f 11)_f “B, pg(v—u).|:?g+V1n(p2):| (3.26)
The above equation can be written as:
1 o
Qe = —T—(f — )+ (3.27)
g
where
T
T, =— (3.28)
g
and
J==f“B, pg(v—u)Vin(p’g) (3.29)

3.1.6 Lattice velocity moments of J,

The discrete velocity counterpart of the term J in equation (3.29) can be written as

follows:
J,=—1"B, pg(v,-u)Vn(p’g) (3.30)
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Zeroth lattice-velocity moment of the term J, is:

=pu =p
> J, =B, pg| Y v [ —uy £ |9, (In(p’g))=0 (3.31)

=0

First lattice-velocity moment of the term J, is:

D acla = B2 08| L VaaVup it 2v i [0, (n(g))

a

=pRT 6,5+ pugiy =pu,

(3.32)
=-B,RT6,, [(,02g)8r& (ln(ng))}
=-B,RT5,,]0, (p'g)|
--[o, (B, RTpg)]0,,
3.2 Enskog equation based lattice Boltzmann equation
The LBE equation for the dense gas is:
L. +v, ALE+AL) = f(r,1) —ﬂ[fa(r,z) — [0 [+(B, +J,) At (3.33)
T
4
which, following the Chapman-Enskog analysis, leads to:
H(O) 1
o,(u, ) +——"=vo,0, (u,)+F,-—0, (B,RTp’g)J,, (3.34)
p ! p
The above equation can be simplified to:
1
0, (ua ) +u (Q,ﬁua ) =v0,0, (ua ) +F, —;arup (3.35)
where
p=pRT(1+B2pg) (3.36)

is the non-ideal equation of state for the Enskog equation based LB model and the kinematic
viscosity is (Luo, 2000):

v=RT(rg —%} (3.37)
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After defining the governing equation of state in equation (3.36), the sound speed can

d d
c, :\/% :\/RT(HBz%(p g)] (3.38)

In the Enskog equation, the radial distribution function g only accommodates the

be evaluated as:

volume exclusion effects of a dense gas made of hard-spheres and has the following

asymptotic form (Chapman & Cowling, 1970):

g :1+§sz+0.2869(32p)2 +0.1103(B,p)’ +... (3.39)

To simulate a more realistic non-ideal behavior, g can be chosen based upon the
desired non-ideal equation of state. Moreover, g also provides freedom to alter the transport

coefficients, i.e. fluid viscosity (equation (3.37)) and the sound speed (equation (3.38)). For

example, the van der Waals equation of state is given by:
pszT( L _QJ (3.40)

A comparison of equations (3.36) and (3.40) gives:

1 b a

5 (1—5p)_ﬁ (3.41)

Similarly, various other non-ideal equations of state (McQuarrie & Simon, 1999) may be

simulated by defining radial distributions function g accordingly.

Furthermore, for a given equation of state, the Helmholtz free energy density ¢,

defined as (Luo, 1998):

_ 4 _,_pd(¢
p—pdp p=p dp(p] (3.42)

can be evaluated by the following integral:

¢= pf%dp (3.43)
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3.3 A survey of two-phase models in the LB framework

The lattice-Boltzmann approach for two-phase simulation is based on a type of diffuse
interface method, i.e. the phase interface spreads over several grid points. A review of diffuse

interface methods can be found in Anderson et al. (1998).

In most of the two-phase LB models, phase segregation is induced via the forcing
term of the standard lattice Boltzmann equation. The specifics of the forcing term, which
enables one to simulate multi-phase evolution, are either determined from the kinetic models
of dense fluids (for example, Enskog equation) (Luo, 1998) or by supplying a non-ideal
equation of state such as van der Waals EOS or more realistic equation of states (He et al.,
1998; Yuan & Schaefer, 2006) for the fluid. Some notable two-phase LB models resulted
from the work of Gustensen et al. (1991), Grunau et al. (1993), Rothman & Zaleski (1997).

Below, we discuss some of the prevalent two-phase flow models (Succi, 2001):
3.3.1 Shan-Chen (S-C) model

The model proposed by Shan and Chen is one of the older LBE models for two-phase
simulations. The non-ideal effects are produced via an attractive inter-particle force between

nearest-neighbors, defined as (Shan & Chen, 1993; 1994):
b
Fo =Gy (r,0)Y wp(r+v,ALt)v, (3.44)
a=0
where G (> O) is the strength of attraction and w, are the lattice-specific direction-dependent

weighting factors. In the above equation, y is called the interaction potential and is an

arbitrary function of density o, empirically assumed to have the following form:

y/(r,t)zl//(p(r,t))zt//o exp(—%] (3.45)

where y, and p, are arbitrary constants. This specific form of potential is designed to be a
monotonically increasing and bounded function of density o, which is essential to have a
large cohesive force for large density region (liquid) and relatively smaller cohesive force for

low density region (vapor) (Sukop & Thorne, 2006).
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In the S-C model, forcing effects are captured into the simulation by shifting the

macroscopic velocity distribution in the equilibrium distribution function by:

u'=u+r(hj (3.46)
Yo,

The equilibrium distribution function f“ is now evaluated as a function of u' at each time

step (replacing u by u' in the original f“ expression). It can easily be shown that the above
inclusion of forcing term into the equilibrium distribution function is accurate up to the order

O(u) and is equivalent to applying an external acceleration a,, =F,, /p at each spatial grid

attr

point.

We can expand y (r +v At z‘) in equation (3.44) in a Taylor series:

2 3
w(r+v,ALt)=y(r,t)+v,AVy+ (V“ﬁt) Vi + (VA1) Viy +..... (3.47)

to get (Hou et al., 1997):

a, = v[?m(wz +RTAP (y/ Vi —%(V W)zml (3.48)

Following the Chapman-Enskog expansion, in the corresponding incompressible Navier-

Stokes equation, the effect of a . can be combined in the pressure term as:

attr

p=pRT + W At (3.49)

to yield a non-ideal equation of state. Rest of the higher order derivative terms in equation

(3.48) are responsible for producing the inherent surface-tension of the S-C model.

Similar to the ideas represented above, wall-fluid forces are also captured by defining

a wall adhesion force as (Martys & Chen, 1996):

b

Fads :Gadx l//(r,z)ZWaS(r'i‘VaAt,l)Va (350)

a=0
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where G, is the magnitude of wall adhesion force. Varying G, results in different contact

A s

angles between the fluid and the wall. s is a Boolean vector identifying the walls in the

domain (1, if neighbor is a wall; 0 otherwise).

Benzi et al. (2006) proposed a methodology to simulate contact angles in the S-C
model. Huang et al. (2007) proposed a technique for simulating wall contact angles in the
framework of S-C multi-component model (Shan & Doolen, 1995). Markus & Hazi (2008)
very recently proposed a method to analytically determine suitable pseudo-potential gradient

to avoid numerical instabilities in the S-C model.

3.3.2 He-Shan-Doolen (HSD) model

To simulate a non-ideal fluid, this model combines: 1) the inter-particle attraction

F,.; 2) the hard-core repulsion F, ;and 3) the gravitational force F,, into the generic

attr 2 ep grav
forcing term of the approximate Boltzmann equation as (He et al., 1998; He et al., 1999a;

Zhang & Chen, 2000, 2003; He & Doolen, 2002; Tentner et al., 2006):

G Ay S ) (3.51)
Ot T c

5

+F,, +F ) is the acceleration (force per unit mass) of the particle.

attr grav

where F = l(F
P

In this model, F

attr

and F_ are defined as:
F,, =pV(2ap+&Vip) (3.52)
F,,=-B,p’RTgVin(p’g) (3.53)
where @ and K are constants related to the attraction term of the inter-particle potential. Here,

F

attr

represents the effective inter-particle attraction by mean-field approximation, and F,,

represents the Enskog’s exclusion volume effect.

Combining the F

attr >

F,and F . , we can write:

grav %

F=pV(2ip+&V’p)-B,p'RTgVin(p’g)+F,,, (3.54)
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The above equation can be simplified as:

F=-VU+F,_+F (3.55)

surf grav

where F, . represents the force associated with the surface tension, and is equal to:
F, . =kpVVip (3.56)
and, U is defined as:
U=B,p’RTg-ap’ (3.57)

Furthermore, a Chapman-Enskog analysis for this model yields the non-ideal equation of

state as:

p=pRT+U = pRT (1+ B,pg)-ap’ (3.58)
3.3.3 Free energy based model

Swift et al. (1995) developed a free energy based LB model to derive a more
thermodynamically consistent description. In their model, the equilibrium pressure tensor for
a non-ideal fluid was introduced directly into the collision operator and a connection is made
between the pressure tensor and the free energy. Thermodynamic equilibrium was enforced
via incorporating Cahn-Hillard and Ginzburg-Landau models using the concepts of free-
energy functional in the LB system. The model was demonstrated using the van der Waals
equation of state. The scheme was tested against verification of the Laplace law. Nourgaliev
et al. (1999) proposed novel numerical schemes to improve the stability of the numerics.
Palmer and Rector (2000) proposed algorithm to simulate thermal two-phase flows by
combining the Swift et al. (1995) model with the two-distribution model to treat the internal
energy as a separate conserved scalar. Inamuro (2004) coupled the free energy base LB
model with a projection method to simulate two-phase immiscible fluids with large density
differences. Zheng et al. (2005, 2006) proposed a similar model in which the interface

between two phases is captured by minimizing the free energy functional.
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3.3.4 Pressure evolution model

The theoretical models based on the Enskog’s equation and the HSD model are
reported to be unstable when used directly in a numerical simulation (Lee & Lin, 2003) due
to severe pressure fluctuations at the interfaces. These pressure fluctuations are claimed to be
associated with the non-ideal equation of state in which the derivative of pressure with
respect to density changes sign (Lee & Lin, 2003). In order to subdue these pressure
fluctuations, a transformed distribution function is introduced by He et al. (1999a,b) to
simulate non-ideal pressure, and the original distribution function was used to simulate an
order parameter representing density of the fluid. Despite including the transformation, the
model was only able to simulate very low density ratio (order O(1)) of the two-phases in a
Rayleigh-Taylor instability problem. In an attempt to stabilize the numerical simulation of
above mentioned theoretical models for larger density ratio and to make the models
practically useful, Lee & Lin (2003, 2005) and Lee & Fischer (2006) proposed stable
discretization schemes for the forcing terms (whose stiffness along with the use of an explicit
EOS were identified as being responsible for triggering the numerical instabilities). It is
claimed that using the transformation, as in He et al. (1999a,b) and the consistent
discretization, as in Lee & Lin (2005), one is able to avoid the numerical instabilities which
plague a large number of lattice Boltzmann simulations. Similar stabilization techniques have

been proposed by Nourgaliev et al. (2003) earlier.

3.4 Summary

In this chapter, derivation of a non-ideal lattice Boltzmann equation based on the
Enskog theory of dense gases is presented. Several of the two-phase models in the LB
framework are also introduced. Although LB simulations based on the Enskog equation are
reported to suffer from severe numerical instabilities, they are still very useful in
understanding the non-ideal physics of a complex fluid. Furthermore, several of the recent
two-phase LB models are proposed with an inherent Enskog component in the model, such as

in the He-Shan-Doolen (HSD) and the pressure evolution model.

In the next chapter, an artificial interface lattice Boltzmann (AILB) model is proposed

for the simulation of two-phase dynamics. AILB model is found to be more stable than its
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earlier counterparts and is able to simulate a larger density and viscosity ratios for different
phases. The wetting boundary conditions based on the Cahn’s theory is also developed for the
AILB model which allows simulation of different equilibrium contact angles on a wall

surface.
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Chapter 4
Artificial interface lattice Boltzmann (AILB) model

A thermodynamically consistent lattice Boltzmann (LB) model for the two-phase
simulations can be obtained if one treats the chemical potential as the driving force for the
phase separation. Incorporation of the Gibbs-Duhem equation, which imposes constraints on
thermodynamic variables of a given system at equilibrium, into the LB model can guarantee

the recovery of the equilibrium phase-thermodynamics (Wagner, 2006).

In this chapter, a new LB model, called the artificial interface lattice Boltzmann
(AILB) model is proposed for the two-phase simulations. The model incorporates the Gibbs-
Duhem equation in order to recover the equilibrium thermodynamics. In this model, a non
ideal equation of state, such as the van der Waals equation of state (vdW EOS), is employed
in the regions occupied by the bulk phases whereas an artificial equation of state is used in
the interfacial region. The advantage of using an artificial equation of state in the interfacial
regions is that the thickness of the interface can now be controlled in the two-phase
simulations. Numerical experiments show that the numerical stability is also enhanced if one
chooses a thicker interface which allows simulation of large density and viscosity ratios.
Moreover, it is proposed to choose a suitable scaling factor for the vdW EOS. After scaling
down the vdW EOS, one can simulate larger density/viscosity ratios without even making the

interface thicker.

In addition, a model for the fluid-solid interactions is proposed. The model is based on
the Cahn’s theory of wetting and can simulate different equilibrium contact angles— ranging

from 0° to 180°—on the wall surfaces.
In the following sections, the development of the proposed LB model is presented and

in the chapters that follow, thermodynamic consistency and suitability of the AILB model for

the general two-phase flow applications are examined.
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To test and numerically analyze the proposed model, a code in Fortran-90 is
developed. The code is parallelized to run on a cluster of processors. More details about the

code, parallelization technique and performance are given in Appendix B.

4.1 Discrete Boltzmann (DB) equation

The discrete Boltzmann (DB) equation in the presence of forcing F can be written in

the following form:

Dfy O, ¥ S £ (v.—u)F

. eq 4.1

Dt ot “ or T PRT z 1)
where f, (r,t) is a single-particle distribution function discretized in the microscopic velocity
space, v, is the microscopic velocity of the fluid particles, p(r,¢) is the fluid density, u(r,?)

is the fluid velocity, 7 is a relaxation time related to the kinematic fluid viscosity, R is the
ideal gas constant, 7' is the temperature, F is the force experienced by the fluid particles, r

is the position vector of the fluid particles and ¢ is time.

In the DB equation, £ is a single-particle equilibrium distribution function which is

derived from a Maxwell-Boltzmann distribution and can be approximated to (Chen &

Doolen, 1998):

2 2
vu l(v.a u
C=w |1+ 2=+ 2 - 4.2
/. { [RTJ 2RT} (4.2)

where w, (E t, p) are lattice constants which depend upon the chosen lattice type. For a D,Qy

lattice, shown in Fig. 4.1(a), we have:

4/9 a=0
1 =[1/9 a=1,2,3,4 (4.3)
1/36 a=5,6,7,8

For a D30 lattice, shown in Fig. 4.1(b), we have:

1/3 a=0
t, =|1/18 a=1t06 (4.4)
1/36 a=7t018

Lattice velocities in different directions are listed in Table 4.1 and 4.2 for the D,Qy and D309

lattices, respectively.
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Fig. 4.1: Lattice velocity directions in (a) D,Qy and (b) D30 lattice structures. Velocity

directions are numbered accordingly in the panels.

Table 4.1: Lattice velocities in different directions for the D2Q9 Iattice structure.

a vax Vay a Vll\‘ Vay
1 1 0 5 1 1
2 0 1 6 -1 1
3 -1 0 7 -1 -1
4 0 -1 8 1 -1

A relationship between the distribution function f,(r,#) and the macroscopic

hydrodynamics is established through the BGK collision term satisfying the conservation of

collision invariants at any r, and 7. Fluid density p(r,¢) and velocity u(r,z) are thus

evaluated as:

p(rt)= f.(c,0)=> f(x,0) 4.5)
1 1 o
ll(l‘,l)z p(r’t);‘,af;(r’t)_ ,O(I',l‘)za:vaf; (r,1) (46)

48



Table 4.2: Lattice velocities in different directions for the D3Q19 lattice structure.

a Vax Vay Vez a Vax Vay Vaz
1 1 0 0 10 1 -1 0
2 -1 0 0 11 1 0 1
3 0 1 0 12 1 0 -1
4 0 -1 0 13 -1 0 -1
5 0 0 1 14 -1 0 1
6 0 0 -1 15 0 1 1
7 1 1 0 16 0 1 -1
8 -1 1 0 17 0 -1 -1
9 -1 -1 0 18 0 -1 1

4.2 Lattice Boltzmann (LB) equation

The DB equation is solved by employing a Lagrangian based discretization which
essentially integrates it along the characteristics of the underlying lattice i.e.
(r,t) > (r+ v, At,t+ At) . In such an integration, steps in space and time are coupled with the
microscopic velocity along the characteristics such that, Ar = v ,Az. The resulting discretized

equation is called the lattice Boltzmann (LB) equation, which is:

) . TV, ALEAL di' u r+v”At,t+Atd '(Va_u).F eq
Lo+ V AL+ AL~ £ (1,) =~ jl T[fa—fa] + II tha

(4.7)
After applying a trapezoidal rule of integration to evaluate the above two integrals with

second-order accuracy, we get:

At . At .
fa(r+v0At,t+Az)—fa(r,z):-2_[]2_faq} __[fa_faq]
r (r,t) 2z (r+v, At t+At)
+£MJJ:‘1 +£(Vﬂ —ll).F f:q
2 ,DRT (r,0) 2 pRT (r+v, At t+At)

(4.8)
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Note that, in the LB framework, direct numerical implementation of the above
equation (as opposed to the physically more meaningful, collide-stream formulation) is
difficult due to the implicit nature of the BGK collision and the forcing terms. Moreover, the
direct implementation also hinders the simple physical interpretation of particles colliding
and streaming which in fact is a key feature of the LB algorithm. Therefore, a modified

distribution function g (r,#) is sought—in terms of the known distribution function f, (r,?)

and other quantities at time #—that transforms the LB equation (4.8) in a form solvable by the

collide-stream algorithm.

4.3 Modified distribution function g (r,?)

By defining the modified distribution function g (r,?) as:

At At (v,—u).F
I‘,f = I‘,t +— P ;q _—_\Na J :q 49
SO0 2T[f / ]W) 2 pRT I (1) 42
the LB equation (4.8) can be transformed to the following form:
At . 0.57 At(v —u).F
r+v At,t+At)=g (r,t)————| g, — [ + a eq
&l ‘ )=8., 0 7+ 0.5At [ga /i ](w‘) 7+ 0.5A¢ PRT /. (x.0)

(4.10)

Notice that the above transformed LB equation can be split into a set of two
equations, as shown below, which clearly brings out the collide-stream interpretation of the
LB algorithm.

e (ollision

At

A N 0.5c  At(v,—u)F
7+0.5A¢

0 7+05At  pRT

[g.- /] e @

(r.0)

g:(r:t) Zga(l‘,l)—

e Streaming
g, (r+Vv At t+At) =g (r,1) (4.12)

Notice that the streaming equation (4.12) is responsible for the time advancement.

From the transformation equation(4.9), we can write the modified equilibrium

distribution function g/’ (r,?) as:
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-u).F
g, (r,1) = qu(r,t)—%u

ORT 1 (4.13)

The modified distribution function g,(r,?) can be used to determine the macroscopic

hydrodynamics using the following relations:

p(r)=>f=>g, (4.14)

u(r,t)=%(Za:vaﬂJ=%KZalvagaj+%F} (4.15)

4.4 Forcing terms to simulate phase segregation

The LB equation, with a constant forcing term (can be zero) possesses an inherent
ideal gas equation of state and is not suitable for simulating the segregated phase dynamics
encountered in scenarios involving two coexisting phases. In order to model the non-ideal
behavior of phase segregation, inter-particle interactions have to be introduced into the

forcing term of LB equation by accounting for the long range attractions F,,, and short range

ir

repulsions F,,, in addition to the constant body force F;. Adding those, we can define the net

force F as:

F=F, +F_+F, (4.16)

attr rep

4.4.1 Long range attractive force F,

1tr

Using a mean-field approximation for intermolecular attractions, the effective long

range inter-particle forces are modeled by employing a mean field potential V, as:

F

attr

=pVV, =pV(2ap+xVp) (4.17)

where a and x are constants related to the intermolecular attractive potential and x is called

the capillary coefficient of the fluid.
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4.4.2 Short range repulsive force F,

Using the Enskog theory of dense gases which accounts for the exclusion volume

effect (due to the finite size of particles), the short range repulsive forces are modeled as:

F,, =-bp’RTyVin(p’y) (4.18)

where y is a density-dependent collision probability and & is a constant related to the Virial

equation of state.
4.4.3 Net force F

Adding the long range attractive forces F,,, , the short range repulsive forces F,, and
the constant body force F_, (which usually is the standard gravitational force pg ), we can
associate the net force F to the thermodynamic pressure F, as:

F=-V(P,—pRT)+xpVV’p+F, (4.19)
where F, follows a non-ideal equation of state:
P, = pRT(1+bpy)-ap’ (4.20)

Notice that all the microscopic constants except x in equations (4.19) and (4.20) are now

lumped together and contribute to the non-ideal thermodynamic pressure £, .

4.4.4 Gibbs-Duhem (G-D) equation

For two coexisting phases of a fluid to remain in equilibrium, both the mechanical as
well as the chemical equilibrium must be established. This constraint can be satisfied by
enforcing the Gibbs-Duhem equation for equilibrium, which states:

VE, = pVu, (4.21)
where 4, is the bulk chemical potential which is defined as the first derivative of bulk free
energy density £, with respect to the fluid density. Combining equations (4.19) and (4.21),
we get:

F=V(pRT)-pVu+F, (4.22)
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where p=pu, —xV’p.
4.5 Chemical potential 4 in the Lee-Fischer LB model

In the Lee-Fischer LB model (Lee & Fischer, 2006), the bulk free energy density E|
of a fluid is modeled to take the following double-well form (Iwamatsu, 1993):
E,=B(p-p1") (p-p") (4.23)
where £ is a constant related to the surface tension of the fluid, and p;“ and p;“ are

densities of the saturated liquid and vapor phases, respectively. E, is plotted against density

in Fig. 4.2(a). Since the above equation of state (EOS) is usually valid in the near-critical

state of a fluid, i.e. at low phase-density ratios, we will refer to it as an artificial EOS.

From equation (4.23), relationship between the bulk chemical potential, x, = 0E,/dp,
and the fluid density p can be derived as:

ty =4B(p=p" ) (o= P )(P=P") (4.24)

sat sat

where o) =0.5 ( P+ p) ) is the mean saturation density. , is plotted against density in

Fig. 4.2(b).

Using the bulk free energy density E|, and the bulk chemical potential 1, , we can
evaluate the thermodynamic pressure £, from the following thermodynamic identity
B, = pu, ~ E, (4.25)
to yield:
B=p(p-p")p-p") 4r(p- )~ (p-p")(p-r")] (4.26)
The above equation is the equation of state for the fluid being simulated in the Lee-Fischer

LB model. F, is plotted against density in Fig. 4.3.
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Fig. 4.2: Dependence of bulk free energy E, (a), and bulk chemical potential s, (b), on fluid

density p . The free energy is assumed to be in a double well form which has minimas at the

bulk liquid density p; and the bulk vapor p.* density. Following parameters are chosen in

1

equation (4.23) for the above plots: #=0.01, p =1.0 and p* =0.25.

Speed of sound for the double-well EOS ( ¢, ,,, ) can be obtained from the following

equation:

aP

2 0

c = —_——
s,dblW a

sat

(o2 )(p-p)")
=4pp| +(p-p")(P- )"
' +(p=p)(p- ")

s O’E,
- 2
r o Op
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Fig. 4.3: Dependence of the bulk pressure F, on fluid density p . Theoretical Maxwell

construction for the above pressure dependence on the density yields an equilibrium pressure

sat

equal to 0, and the equilibrium densities for the liquid and vapor phases equal to p;* and p*

v

, respectively. Parameters for the above plot are same as of Fig. 4.2.

Given the surface tension o of the fluid and the densities of saturated liquid and

sat

vapor phases (o, and p)“

"), we can evaluate the constants £ and x for an ideal one-

dimensional planar interface from the following relations (derived later in the sections 4.9.3

and 4.94):

P L A— (4.28)
2(p - p")

po— 120 (4.29)
D(p - p")

where D is the interface thickness (a numerical parameter). In the Lee-Fischer LB model, the
above artificial equation of state description is used in the whole computational domain. Both
the bulk as well as the interfacial regions are governed by the same density dependent free
energy (double-well form) given in equation (4.23). Because of the bulk regions following an
artificial EOS, Lee-Fischer model yields unphysical dynamics in the presence of body forces
(such as gravity). Since the LB method is inherently a quasi-compressible method, the
presence of body forces in the domain yields a very small density gradient in the direction of
the body force. With increasing time, this small density gradient is further enhanced in the
Lee-Fischer model due to the increased effective body force. The density gradient in the

direction of the body force effectively provides an artificial force, which is continuously
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being added to the body force as time progresses, making the system more and more
compressible. Because they are governed by the artificial EOS, bulk densities are unable to
correct this temporally increasing compressibility error, and the simulation ultimately
becomes numerically unstable because of the unusually large density ratios produced in the

simulations.

Nonetheless the Lee-Fischer LB model is proved to be thermodynamically superior
(Kikkinides, 2008) and able to effectively capture two-phase dynamics in the absence of
gravity. The model also works well for very low magnitudes of gravity and for body forces
applied over small regions, such as the buoyancy force in a small bubble. In Chapter 6,
results from both the Lee-Fisher LB model and the AILB model (proposed in the following

section) are presented for several two-phase scenarios.

4.6 Chemical potential 4, in the AILB model

4.6.1 Bulk equation of state

For the bulk liquid ( p(x, y) > p;e* ) and bulk vapor ( p(x,y) < p.)

wap ) TEGIONS, We can

choose a non-ideal equation of state, such as the van der Waals equation of state (vdW EOS),

which is (McQuarrie & Simon, 1999):

Pobulk — pRT('] _apz (4‘30)
1-bp

Bulk free energy density E,** for the above non-ideal pressure P is given by:

bulk
EM = pJR)—zdp: PRI, In| —2— |- ap’ (4.31)
P 1-bp
Bulk chemical potential z"" for the vdW EOS can be obtained from:

bulk
bulk __ aEVO

0 op

_RTn| —2— |+ R 5, (4.32)
1-bp ) 1-bp
bulk

Notice that the above bulk free energy density £, and the bulk chemical potential z,"* are

related via the following identity:

Pobulk — pﬂ(l)mlk _E(l)mlk (433)
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Speed of sound for the vdW EOS ( ¢, ) can be obtained from the following

S
equation:

bulk 2 pbulk
2 oh =,0a £y __ R, ~—2ap (4.34)

op |, " o0t | (1-bp)

cs,vd /4 =

Instead of using vdW EOS, more realistic equation of states such as the R-K or P-R
equation of states (Yuan and Schaefer, 2006) may also be used in the AILB model. Note that,
in this report, results are presented only for the vdW EOS in the context of AILB model.

More sophisticated equation of states may be employed in future studies.

4.6.2 Interfacial equation of state

The interfacial free energy density £;" of a fluid can be modeled to take the following
double well form:

" =plp=p*) (p-p") (4.35)

sat

where £ is a constant related to the surface tension of the fluid, and p;* and p}* are

densities of the saturated liquid and vapor phases, respectively.

A relation between the interfacial chemical potential and the fluid density p can be
derived as:
oE

' == 4B (p=rp" ) (=P )= A1) (4.36)

sat
v

where p)" =0.5 ( o+ p ) is the mean saturation density.

In order to ensure the continuity of the chemical potential at the interface boundaries,

sat sat

Le.at p=p," and p=p,, the interfacial chemical potential 4 is shifted by the value of
the bulk chemical potential at the interface boundary, i.e. #*| _ to give:
p=p
w =t 4B (e=p ) (p=p ) (o) (4.37)
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Both the bulk vdW and the interfacial equation of states are graphically compared in
Fig. 4.4 for the parameter values listed there. Note that the interfacial continuity of the

chemical potentials is necessary in order to avoid any unwanted numerical oscillations and

instabilities.
-0.36
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Fig. 4.4: Dependence of the chemical potential £, on fluid density p . Parameters are: Tg =

0.95,a=9/8,b=1/3, pi”=1.46173, p=0.579015, c=0.025, D=4, x|  =-

p=pi"

0.440966.

4.6.3 Proposed scaling for the van der Waals EOS in the AILB model

AILB model, as discussed in the previous section, can simulate two-phase dynamics
with large density ratios only when one chooses interface thickness to be large. A thick
interface spreads the interfacial gradients over a large number of lattice points and
consequently, stabilizes the numerical simulation. For a thin interface, the AILB model does
not converge for large density ratios. Having a thick interface impacts the computing time
since one now needs to have a large number of lattice points in the domain to yield similar

accuracy.
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Fig. 4.5: Dependence of the chemical potential £, on the fluid density p . Parameters are: Tr

=0.6,a=9/8,b=1/3, p/“=231156, p*=0.0597781, o =0.025, D=4, ;| =-

p=pi"

1.2005; (a) no scaling, (b) scaling factor S, = 0.05

In order to avoid choosing a thick interface while retaining the numerical stability, we
propose to scale down the vdW EOS, as shown in Fig. 4.5(b). Both the equations of state are
graphically compared with no scaling in Fig. 4.5(a) and with scaling in Fig. 4.5(b). Ata

reduced temperature Tz = 0.6 and a density ratio of ~ 40, a scaling factor of 0.05 was found
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appropriate for stable simulations with thin interface thicknesses. Simulations are found to be
stable for a range of scaling factors for the same system conditions. In this study we have
treated the scaling factor to be a “free” stabilization parameter, introduced simply to help

stabilize numerical simulations.

Below we present the governing equations for the scaled AILB model:

Bulk regions (saturated liquid or vapor)

RT,
mit | RT In| —2— |+ 20 245 |S 438
;LIO,Scaled |: 0 1 _ bp 1 _ bp p f ( )
Interfacial regions
Hivcaea = Foeaea| o +4B8(p=p1" ) (P =" )P £0") (4.39)

where S, is a “free” stability parameter chosen to stabilize the numerical simulations.

4.7 Numerical discretization schemes

Similar to use of an isotropic and compact discretization for evaluation of the
gradients in the forcing term of the Lee-Fischer model, the AILB model can also be made
numerically stable and applicable for large density ratios between the two phases. Numerical
tests show that a proper use of second order biased and central difference scheme in
evaluating gradients allows one to achieve a stable simulation while maintaining second-

order accuracy of the solution (Lee & Fischer, 2006).

We can rewrite equation (4.8) to reflect the different discretization schemes of the

forcing term as follows:

A

27 [fa _fae‘i]

fa(r+vaAt,t+At)—fa(r,t)z—ﬁ—;[fa —f;’"}

(r,t) (r+v, At t+At)

5 c
RO ST
(r.0) (r+v,ALE+AL)
(4.40)
where
F’=RTV’p-pV’u+F, (4.41)
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FC=RTV p—-pV u+F, (4.42)
and superscripts B and C indicate the biased and central difference scheme of gradient

evaluation, respectively.

The modified distribution function g, (r,?) in equation (4.9) can now be defined as:

At At (v, —u)F¢
r,t)=f (r,t)+—| f, — [ -t fu 443
g0 =fw0+ [/, n]m > oRT n(m (4.43)
After choosing the modified equilibrium distribution function g:“(r,¢) to be,
v,—u).F¢
g0 = - 2 WE (4.44)
PRT
(r.)
we can write equation (4.40) as:
v, —u)F’
g, (r+V, ALt + A1) = fa(r,t)—ﬂ[fa - f] +£Mf;‘f (4.45)
27 wn 2 PRT
’ (r.0)
The above equation can be written as,
At . _At(v,-u)FC
g+ vV ALE+A) =1 £+ f,— [ ] —fa"
27 5 PRT -
e s ’ (4.406)
At " At (v, —u).(F +F ) v
=[] = /,
T wn 2 PRT o
which essentially is:
v, —u).F"
g, (r+v ALt +A) =g, (r,z)—ﬂ[ f= 1] +Az@ fe (4.47)
T () PRT )

where F" :O.S(FB +Fc).

From equations (4.43) and (4.44), we can also evaluate ( | = qu) in terms of g, and g’ as:

f— 1= g, -g) (4.48)

7+ 0.5A¢ (
Now, we can write equation (4.47) in its final solvable form as:

At (2,2 +At(va—u).FM

r+v At,t+At)=g (r,t) —————
ga( a ) ga( ) +0.5A¢ o pRT

1. (4.49)
(r.0)
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The macroscopic density and velocity are now calculated from:

p(r.t)=> g, (4.50)

u(r,t)leZvaga]Jr%Fc} (4.51)

P

4.8 Numerical implementation

In this section, numerical implementation of the LB model is presented for a two-
dimensional D,Q, square lattice. The domain (0<x<L , 0<y <L )isdivided into a
square grid (Ax=Ay=1L, / (NX —1) )of N x N grid points. The terminal grid points lie on
the domain boundaries atx =0, L and aty =0, L, . For simplicity, Ax=Ay =Ar=1 1is

chosen in the present work. The LB solution algorithm may be divided into the following

steps:
4.8.1 Initialization (at time t = 0)

Both the macroscopic state—identified by the density p and the fluid velocity u, ,u,

—as well as the microscopic state—identified by the distribution function g,—of the LB

fluid need to be properly initialized before the time evolution can be studied.

In the LBM simulation of two-phase dynamics, initialization of the phase densities
plays an important role in governing the stability of the numerical evolution. An improper
initialization may lead to large numerical fluctuations across the interfaces, may induce large
spurious velocities and ultimately, turn the numerical scheme unstable. Below we present
expressions—which actually are the analytical results for the equilibrium density profile

across a planar interface—for initializing densities of two phases in the calculation domain.

A planar interface in the x-direction can be initialized as (illustrated in Fig. 4.6):

sat _ sat

p(x, y,t= O) = p;‘” +%taﬂh (%(x—xim)j (4.52)
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where x,, is the position of the interface, D is the parameter controlling the numerical

interface thickness and p*, p“and p.“ are saturated liquid, vapor and mean densities,
respectively. Note that there is no density variation in the y-direction. Moreover, at x = x

int °

the density is equal to the mean density of the saturated phases p," . The numerical interface
is stretched from x,, —0.5D? to x,, +0.5D? with densities p'* for 0 < x < (xim - O.SD%)

and o for(xint +0.5D7 ) <x<L,.Note that D is the numerical thickness of the interface

and is usually larger than the parameter D . Initialization for a planar interface in the y-
direction and other variations including sandwiched phase layers in either x, y or both

directions can be deduced from the above equation in a straightforward manner.

LEM Time =10 LEM Time =0

Ly

RHO

10 20 1] L1} a0 10 20

D=3,p=1.0,p,=0.1

Fig. 4.6: Initialization of the densities for a two-phase (liquid-vapor) planar interface.
Thickness of the density transition region is governed by a parameter D which is chosen to be
3 here. In the transition region, a continuous hyperbolic-tangent shaped variation is assumed
for the fluid density which asymptotically approaches bulk liquid and vapor densities at the
ends of the transition region. Red and blue color in the figure shows bulk liquid and vapor

states, respectively.

Circular interface of a two dimensional vapor bubble in a liquid environment (

0<x<L,0<y<L))can be initialized as (illustrated in Fig. 4.7):
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sat sat

p(x,yat=0)=pff’+%tanh(%(x/(x—xc)2+(y—yc)2—r)) (4.53)

where (x.,y.) are coordinates of the center of the bubble and r is the radius. The annular

interface is centered at (x., .. ) and is stretched from radius »—0.5D? to r+0.5D? with

sat

densities p)* inside and p; outside the bubble. One can initialize a 2D circular droplet in a

v

sat

vapor environment by swapping p,“ and p

sat
v

in the above equation.

sat

Note that, depending upon p;* and p;*

v

, the parameter D governing the (numerical)

interface thickness D?" has to be large enough to properly resolve the unstable region and to
avoid steep gradients of density. A suitable value of D for stable numerical simulations has

to be identified by conducting numerical experiments.

LBM Time=10

200

180

»=100

a0

a0 100 150 200
X

Fig. 4.7: Initialization of the densities for a two-phase (liquid-vapor) circular interface in

two-dimensions. The density profile is governed by equation (4.53).

Note that the macroscopic densities p(x, y,t= 0) , the macroscopic fluid velocities
u,(x,y,6=0), u,(x,y,t =0) as well as the distribution function g,(x,y,z=0) should be

initialized in a fashion consistent with the LB dynamics so as not to produce any large
fluctuations which then leads to unstable numerical evolution. One should avoid trivial
initializations of such variables. Of course, the choice of initialization may vary depending
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upon the problem being simulated; however, it is always recommended to specify an initial

condition which is closer to the equilibrium solution.

4.8.2 Time marching

A lattice Boltzmann solution algorithm involves implicit time marching which is

performed in two steps—collision and streaming at each time step fors > 0.

Collision step:

At timet, the distribution function at each grid point g (x,y,?) is modified using the

following equation to represent collision:

. 1
X, y,t) = X, Vot ) =7~ (X 1) — geq X, y,t
8., y.0)=g,(x, 1) (r+0.5At)[g( 0= £ p0) |
05 ©. (5, .1) (4.54)
DT X, ), e
e e (x, y, 1)
(T+O.5At) p(x,y,)RT
where
0, (x,y,t) = RT (v,AV" p+ v, AV  p) = p(v, AV 11+ v AV 11
(4.55)
(Vo Fgy + v, oy —u FP —u, FP ) At
Ff=RTVp=pVipu+Fy, (4.56)
Ff =RTV p—pVu+Fy (4.57)
F!=RTVp—pViu+F, (4.58)
F/ =RTVp—pV u+F, (4.59)

and, F,. and F; are components of the constant body force F, in the x and y directions,

respectively.

Note that, v,ArV”and v AV in equation (4.55) represent lattice directional
derivatives evaluated using their indicated difference schemes, whereas, Vf , Vf ,Vf and VS

in equations (4.56) to (4.59) represent space derivatives in x or y directions evaluated using

their indicated difference schemes.
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Lattice directional derivative of density p(x, y,t) in the ¢ direction is evaluated

using the second-order central and biased finite-difference schemes as follows (Lee & Lin,

2005; Lee & Fischer, 2006):
p(x +v At,y+ vayAt,t) - p(x -V, At,y—v, At t)

C —_—
VAVIPL T 5 (4.60)
v AV p B —p(x+ 2v, Aty +2vayAt,t)+4,0(x+vaxAt,y+vayAt,t)—Sp(x,y,t)
¢ ) P

(4.61)
Accounting for the symmetry requirements of a stable two phase LB simulation, the
space derivatives of density p(x, ¥, t) are calculated by taking velocity moments of the
corresponding finite-difference discretizations along the characteristics with appropriate
weights. Consequently, the derivatives in x and y directions are calculated using the following

equations based on the central and biased finite difference schemes (Lee & Lin, 2005; Lee &

Fischer, 2006):

. s [ p(x+vaxAt,y+vayAt,t)—p(x—vaxAt,y—vayAt,t)_
= 4.62
Pl ; FaVox 2RTAt (462)
. 3 i p(x+vaxAt,y+vayAt,t)—p(x—vaxAt,y—vayAt,t)_ 4
Pl _; faVey 2RTAt (463)
s [ —p(x+2v, AL y+2v, ALE)+4p(x+v, Aty +v, Att)=3p(x,y.t) ]
ol =S|in p(x+2v, AL y+2v, At t)+4p(x+v, AL, y+v, At,t)=3p(x,y,1)
(v e 2RTAt
(4.64)
. s [ —p(x+2vaxAt,y+2vayAt,t)+4p(x+vaxAt,y+vayAt,t)—3p(x,y,t)_
ViPlrr = 2 2RTAt
i a=0

(4.65)
where ¢, are the direction dependent weighting coefficients for the equilibrium distribution

function.

In 2D, for a D,Qy lattice, the above derivatives can be written as follows:

viol, =%[p(x+,y)—p(x,y)]+é[/?(xpy+)—ﬂ(x’y)P%[P(xwy)—/o(x%)]

(4.66)
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1
viel,, =3le(xr)-pler )]+ [p (xo0,)=p(xp) ]+ [P x,0.)=p(x,0)]

—A, 4.67)

Vf'o(x,y) o x
o :%[_p(x++’y)+4p(x+’y)‘3p(xay)]+%[—p(x++,yﬁ)+4p(x+,y+)—3p(x,y)]
+i[_p(x++’y)+4,0(X+,y)—3p(x,y)}
(4.68)
sz=%[—p(x,y)+4p( Sy)=3p(n) ]+ [ p(x_,y_)+4p(x.y)=3p(xy)]

21_4[_p(x,y++)+4p(x,y+)—3p(xay)}

(4.69)
=4, -4

(x,) b

B
vV.p

(4.70)

A, :é[—p(x,yH)+4p(x,y+)—3P(x,y)]+i[—/’(x++’y++)+4p(x+’y+)_3p(x’y)]
2_14[_p(x,y++)+4p(x,y+)—3,0(X,y)J
4.71)
Ay :%[—p(x,y__)+4p(x,y_)—3P(x,y)]+21_4[—/’(x——>y——)+4p(x—’y-)_3p(x’y)]
+21—4[—p(x++,y)+4P(X+J)‘3p(x’yﬂ

(4.72)

where x, =x+1, x =x-1, x,, =x+2 and x _=x—2 (same notation is also applicable for

> Mt
subscripts in y). Similarly, one can write the above derivatives for a 3D lattice (D30;9) as

well.

Note that the above equations are also valid for calculating the directional and space

derivatives of u after replacing the variable p with u in the above equations. However, the

scalar variable u still needs to be calculated from the bulk chemical potential z, , which

requires the evaluation of second derivative of density p(x, v, t) . Following a second-order
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central discretization along the characteristics and applying the appropriate weights, one can

evaluate the second derivative as

8
(x,p,t) - Z

a=0

Vi, =ViP

(o)

) p(x+vaxAt,y+vayAt,t)—2p(x,y,t)+p(x—vaxAt,y—vayAt,t)
‘ 2RTAP

4.73)

which gives:

Vip

=Vp

()

_ Zgllt p(x+vaxAt,y+vayAt,t)—2p(x,y,t)+,0(x—V,,xAtay—VayAtat)]

2
+V
(x,3.) P (x,3:1)

RTA?

a=0

(4.74)
Notice that, the evaluation of a biased difference based derivative at any grid point
needs information from a neighboring node located one and two grid points away in the
direction of the characteristics; however, a central difference based derivative only requires
information from its nearest neighbors in the direction of the characteristics. Therefore, for a

simulation in a periodic box, periodic boundary conditions (for p and u ) should be handled

in such a way that all the boundary nodes have access to the corresponding variables from as

far as two grid points away.

Streaming step:

In the streaming step, the post-collision distribution function g’ is propagated to its
neighboring node according to its directional index (similar to flowing g, on the
characteristics) and can be written as follows:

g, (x+v, At y+v, At t+Af) = g: (x,»,1) (4.75)
Periodic boundary conditions (for g: ) should be handled in such a way that each boundary
node has access to g, of its neighboring nodes in the direction of the characteristics. Post-

streaming values of g, at each grid point now corresponds to the time step ¢+ Af .

68



4.8.3 Calculation of macroscopic properties

At time 7+ At , the macroscopic density p and fluid velocities u,,u, at any grid point

(x,) can be calculated from:

p(x.pt+a1)= g, (x,y,0+At) (4.76)

U, (X,y,t +At) :m_(;vaxga (x,y,t + At))-{-%[?;c (x,y,t+At)_ (477)
1 I At |

lxly (X, y,t + At) = m_(? vayga (X, y,t+Al‘)J+?FyC (X’y’t +At)_ (478)

4.9 Simulation of equilibrium contact angles

In most engineering applications, liquid-vapor phase change (vaporization/
condensation) occurs by transferring energy through the solid surfaces in/out of the system,
for example, by heating or cooling the walls of a container. Therefore, the manner in which
the two phases interact with the solid surface becomes important in estimating the overall

heat transfer of the system.

4.9.1 Wettability and the contact angle 6,

The behavior of a liquid in contact with a solid surface usually varies from one liquid
to another and even from one surface to another. For example, liquid acetone on a flat
aluminum surface spreads out to form a thin film, while liquid water on the same surface
forms a bead shaped droplet. These different equilibrium shapes are due to the difference in
affinities between the liquids and the solid surfaces. Usually, if a liquid has weak affinity
with the solid surface, it collects itself into a bead form, whereas the liquid with strong
affinity forms a film on the surface to maximize the liquid-solid contact area. The affinity of
a liquid for a particular (solid) surface is called the wettability of that specific liquid-surface

pair.
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The wettability of a liquid is quantified by the contact angle (or wetting angle) &, ,

which is defined as the angle between the liquid-vapor interface and the solid surface,
measured inside the liquid (illustrated in Fig. 4.8). The basal circle of the liquid drop is called
the contact line where the three phases (solid, liquid and vapor) meet. As the contact angle

0, decreases, the same quantity of liquid spreads more over the surface and yields more
wetting. In the limitd  — 0, the liquid completely wets the surface by forming a film over it.
Liquids for which 0” <8 <90° are termed as wetting liquids and for 90° <8, <180, liquids

are called non-wetting liquids.

From Young’s law, when a liquid-vapor interface meets a solid wall, the equilibrium

contact angle @, can be calculated from the force balance at the contact line and written as:

0, =cos™ (QJ (4.79)
O-lv
where o,,, o, and o, are surface tensions at the solid-vapor, solid-liquid and liquid-vapor

sV S

contact lines, respectively (Young, 1805).

Vapor

Liquid

Fig. 4.8: Interfacial tensions acting on a contact line. o, o,

v

and o, are surface tensions

between the solid-liquid, liquid-vapor and solid-liquid interfaces. The solid surface is taken to
be locally flat and is idealized as perfectly smooth. The wettability is quantified by the

contact angle (or wetting angle) 4, .
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4.9.2 Several approaches to simulate ¢, in LBM

Contact angle between a fluid and the wall needs to be modeled accurately in order to
capture the necessary surface effects of the two-phase dynamics. Since there exist several
different LB approaches for two-phase simulations, the treatment of wall contact angles in
those approaches also differs significantly (Fan et al., 2001; Briant et al., 2004; Niu et al.,
2007; Takada et al., 2008; Lee & Liu, 2008). One of these is a model recently developed by
Benzi et al. (2006), who investigated the dependency of the contact angle on “free”
parameters of the Shan-Chen (S-C) two-phase model (Shan & Chen, 1993, 1994). By using
such a scheme, one may simulate conditions varying from perfect hydrophobicity to perfect
wettability on a wall surface. Needless to say, development and employment of a suitable

wettability model is essential for any LBM based treatment of two phases.

We have developed a methodology based on the Cahn’s wetting theory (Cahn, 1977)
to simulate equilibrium contact angles in the AILB model framework. Our aim is to define
LB boundary conditions in order to reproduce the pre-specified contact angle &, under

steady state conditions. In the following sections, Cahn’s theory of wetting dynamics is

presented and its connection to the AILB two-phase model is derived.
4.9.3 Cahn’s theory of wetting dynamics

In the Cahn’s wetting theory (Cahn, 1977), a one-dimensional two-phase problem
with planar interfaces is considered (illustrated in Fig. 4.9). The solid-liquid and the liquid-

vapor interfaces are assumed to exist in the direction perpendicular to the solid surface. The

fluid density p(z) is assumed to vary smoothly in the interfacial region as a function of the

distance z from the surface. [Note that the continuum assumption of density variation in the

interface region is most adequate when the fluid is in its near-critical state ( 7'[] 7 ), however,

it may still be used for the temperatures far from the critical point.]

For the semi-infinite fluid in Fig. 4.9, which is in contact with the solid surface at z =
0, we can write the total free energy of the system as the sum of free energy of the bulk fluid

7w @nd the free energy due to the presence of a surface atz=0, i.e. .
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j/net = ybulk + }/surf (480)

Using the mean-field theory, we can write the bulk free energy of the system y, , as

the “classical” gradient-square functional in the form below (Jacqmin, 1999):
° 1 (dpY
Y bulk i‘LdZ{EO(p)JFEK(Zj } (4.81)

where E, ( p) is the bulk free energy density of the fluid and the gradient term represents the

increase in system free energy due to the presence of a density gradient (Cahn, 1977).

z
Vapor
Liquid

Solid 7=0

Fig. 4.9: A planar liquid-vapor interface is in contact with the solid surface situated at z = 0.
Liquid is in direct contact with the solid surface. An equilibrium wetting model has been

developed by Cahn (1977) for this interfacial configuration.

Assuming that the forces between the solid surface and the fluid are of short range, we
can assume y, . to be a function of the fluid density at the surface, i.e. of p, = p(z = 0) .In
general, one can choose this functional dependence to be of any kind based on the chosen
material for the surface and the fluid, however, for simplicity, we choose a linear dependence.

Let us choose y,,, to be:

Vs = =P, (4.82)

where a negative sign indicates the attraction of the liquid by the solid and thereby favoring

of alarge p, (de Gennes, 1985).
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In order to construct the equilibrium density profile p(z) , we need to minimize the

bulk free energy of the system. From the calculus of variations, we know that the bulk free

energy function in the form below
Vo = Idz[EO( )+ x( } j dz| L(z p'(2))] (4.83)
0

attains a minimum if p(z) satisfies the following Euler-Lagrange equation (Sagan, 1969):

oL _dfa s
op dz\ op'

From equations (4.83) and(4.84),

L O e P L e T P

op op
or,
2
9, _dp (4.86)
dp dz
Integrating equation (4.86), we get:
2
kK(dp
) [ dz j (4-87)

By considering a point far into the bulk, where the fluid density p(z — )= p,,, (and p,,,

can be either p, or p, ), we have Ci—p =0 and E (p =p, or pv) =0, which yields C = 0.
Z Z—0
Therefore, we get:
K(dp 2
E,=—| — 4.88
0= ( i j (4.88)

Now, substituting the above equation in equation (4.81), we can write the minimum bulk free

energy as:

Phulk Phulk
Viiwin = | ( jdp j J2KE,dp (4.89)
Ps
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Notice that the density at the surface p; is still not determined, which can be ascertained by

minimizing the net free energy y,,, with respect to surface density p, .

Let us write the net free energy y,, by making use of y,,, .. to give:

Pulk

Vou = Yoy (P)+ | dpy2KE, (p) (4.90)
Ps

7. Will have a minima with respect to p, if
d}/ d d Pulk
net =0=— 3 +— d ,'2KE 491
dpS dps }/surf (Ios) dps [ ’J: p 0 (p)] ( )

Applying the Leibniz integral rule, we get:

(dy “”-‘”]a/zrch(ps) (4.92)

dp,

which from equation (4.82) gives,

—-A=\2kE,(p,) (4.93)

or,
12

Ey(p)=5= (4.94)

If —Z is smaller than the height of the function defined by /2xE, (p, ) , we can determine the

roots of the equation above (i.e. possible values for the surface density p, ).

Furthermore, from equations (4.88) and (4.92), we can write an equilibrium boundary
condition on the solid surface at z = 0 as (Briant et al., 2002, 2004; Briant & Yeomans, 2004;
Yan & Zu, 2007):

dﬂ/sur' d
( y ]:m:,(d_f (4.95)

dp,

or,

dj/surf _ —
A — atsurfacez = 0 (4.96)

knVp=
dp,

where 7 is a unit vector normal to the surface.
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4.9.4 Implementation of Cahn’s theory in the AILB model

Choosing the double-well form for E, ( p) (from equation (4.35)), we get:

sat 2 sat 2 _ 2’2
(o =p) (p-p") = > (4.97)
The above equation has four roots i.e. four possible values for p, which are:
sat + sat sat _ sat
D= P > Py _ M > Py ,1+|Q| (498)
sat + sat sat _ sat
Poy = P 210 _pl 2pv '1—|Q| (499)
sat sat sat __sat
=2t va N (4.100)
p;‘at + p:at sat sat

ps4=

P =P
St J1-[9 (4.101)

where Q is called the wetting potential, and is given by:

Q= 44 (4.102)

(= i) 2xp

The formulation can now be used to calculate the surface tension force between liquid
and vapor phase for an infinite one-dimensional system, in which the lower and upper parts
of the system are occupied by the liquid and vapor phases, respectively. The liquid-vapor
surface tension force is given by the minimum free energy (in equation (4.89), lower and

sat

upper bounds of the integral are substituted by p,* and p.“

v

e
o, = [ dp\2xE,(p) (4.103)
"

, respectively.).

"

0, =28 [ dp(p-p)(p-p)") (4.104)
Vot

o, = @(pf“’ ~py (4.105)

Surface tension between the solid surface and the fluid is given by:
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Pulk
o, =—Ap, + J. dp.|2kE, (p) (4.106)
p,X
For A4 >0, if the fluid in contact with the solid surface is vapor then the net free energy will

be a minimum for p = p_, and the surface tension for the solid-vapor pair can be written as:

_ p;‘”+pi‘” L% _Ohi_oy
o, =—Ap, + j dpy2xE, (p) =2 F—Fr -TH(1-Qp @107)
For 4 >0, if the fluid in contact with the solid surface is liquid then the net free energy will

be a minimum for p, = p, and the surface tension for the solid-liquid pair can be written as:

sat sat

3
- /1,0Y4+J‘dp,/2KE Y “’v 7 %(HQ)? (4.108)

For A <0, if the fluid in contact with the solid surface is liquid then the net free energy will

be a minimum for p, = p, and the surface tension for the solid-liquid pair can be written as:

sat sat

/1pv3+J'dp,/2lcE = PP “’v 7 %(HQ); (4.109)

And finally, for 4 <0, if the fluid in contact with the solid surface is vapor then the net free
energy will be a minimum for p, = p,, and the surface tension for the solid-vapor pair can be

written as:

sat

pl + IDV lv O-lv 2
-Ap,, + d 1/21(E = A4+ ——2(1-Q)2 4.110
The wetting angle 6, is determined by substituting equations (4.105), (4.107)-(4.108) into
equation (4.79),

(1+Q)p -(1-Q)

. 4.111)

cosd, =

For a given wetting angle 6, in the range of 0 <8, <7, we can write () as:

el olgfmls])

®=cos”' (sin2 HW) (4.113)
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and sgn (*) gives the sign of (*).

Note that a desired wetting angle @, can be chosen for the LBM simulations and

based on that the wetting potential Q can be calculated from equation (4.112). With the

wetting potential QO known, we can now evaluate the value of 4 using equation (4.102).

4.9.5 Simulation of & in the AILB model

Using the approach described in the previous section, we can simulate pre-specified
contact angles at the solid walls. We can simulate the specific equilibrium contact angle in
the simulation algorithm by modifying the second derivative of density at the wall lattice
points to include the appropriate wetting potential. Note that the second derivative of density
described by equation (4.74) is still valid in the bulk region (i.e. away from the walls). One
only needs to modify equation (4.74) for the lattice points at the wall sites where the specific
contact angle is simulated. Details of how to modify the second gradient of density at a wall

lattice point are given below.

For a two-dimensional D,y square lattice, the second gradient of density can be
evaluated in the bulk region (i.e. at the lattice points which are not part of a wall surface)

using the following equation, which is essentially the expanded form of the equation(4.74):

2

1[p(xsy )+ ey )+p(x.y,)+p(x.0) } (4.114)

p —_-—
@ 6| +4{p(x,, )+ p(xy)+p(x., )+ p(x,y.)} —20p(x, )

Imposing a boundary condition 7Vp =—1/x (where 7 is a unit outward normal vector)
while evaluating the second gradient of density on the wall lattice points for a D,y lattice,

we get:

1 p(x.,y.)+p(x,p,.1)
12{ +p(x,,y.t)+p(x,y 1)

A
Vip }—p(x,y)+—
K

:%[p(x+,y)+/’(x’y)]+

(x,»)

(4.115)
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1 1] o(x,p)+p(x,y.1) 2
Vz == s sV T - N +—
Pl S[p(x v )+p(xy )]+12[+p(x+,y_,t)+p(x_,y_,t) p(xy) K
(4.116)
Combining the above two equations gives:
2 o2 2
Ve (w)—pr <x,y>+v}’p (%)
1 p(x.y)+p(xy) | 1] p(x.r)+p(x,y.1) 22
= +— —2p(x,y)+—
3| +p(xy )+ p(xy )| 6|+p(x.,y.t)+p(x.,y 1) K
(4.117)
where
Q sat __ sat 2 I2
A= (P = pL") 24P (4.118)

4

and Q is calculated from

1

Q=2sgn (%— ij{cos (%j [1 —cos (%ﬂ}z , @®=cos” (sin2 HW) (4.119)

for a given contact angle 6, .

Similarly, for a three-dimensional D;Q) lattice, the second gradient of density in the

bulk region can be written as:

2

Vip

:%[251 +8,-24p(x,».2) ] (4.120)

(x,,2)

S, and S, are defined below in the equations (4.125) and (4.126).

Imposing the boundary condition 72V p =—1/x while evaluating the second gradient of

density on the wall lattice points for a D;(Q;9 lattice, we get:

1 1 4l A
vip(x,y,z) zg[p(XJr,y,Z)_i_p(xf:y:Z) +ES2_§_p(xayaZ)_;_ (4121)
2 _1 Lo 4 _A]
Vyp(x,yqz)—6[p(x,y+,2)+p(x,y,,2) 55 3_p(x,y,Z) | (4.122)
Vﬁp(x’y’z) =é|:p(x,y,z+)+p(x,y,z_) +$S2—§_p(x,y,z)—%_ (4.123)

Combining the above three equations, we get:
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Vip| =Vip

(x,,2) B

+V2p

2
+Vip

(x,3,2) (x,3,2) (x,9,2)

1

. h (4.124)
=gSl +ZS2 —4[p(x,y,z)—;}

where
S,=p(x,y.z)+p(x,y.z)+p(xy.2)+p(x, v, 2)+p(x,y,2,)+p(x,,2.)
(4.125)
p(x,y,z)+p(x,y,z)+p(x,y.,2)+p(x.,y,2)
S, = +p(x+,y,z+)+p(xf,y,zf)+p(x+,y,zf)+p(x7,y,z+) (4.126)
+p(x, v,z )+p(x vz )+ p(xy,,z )+ p(xy.,z,)

and A is calculated from equation (4.118).

4.10 Simulation of spatially-varying viscosities

In the LBM-BGK algorithm, the kinematic viscosity of a fluid v is explicitly
determined by the prescribed single relaxation time 7 . This functional form gives a unique
value for the kinematic viscosity of the fluid irrespective of the multiple phases involved.
However, in order to accurately model the flow dynamics of a single-component two-phase
fluid, it is essential to have different kinematic viscosities for the two phases at any given

temperature.

This task may be accomplished by expressing the relaxation time 7 as a linear

function of the local fluid density p(x, y) constrained by the saturation densities of both

phases. Thus, 7(p) can be written as

T(p) _ |:T(pL)_T(pV):|p+|:T(pV)pL _T(pL)pV:| (4127)

Pr =Py Pr =Py
where 7(p,)and 7(p, ) represent, at the given temperature, the relaxation times

corresponding to the saturation density of the liquid and vapor phases, respectively. These
phase-specific relaxation times are calculated by knowing the kinematic viscosities of the

corresponding phases.
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4.11 Simulation of buoyancy effects in the LB model

Depending upon the problem being simulated, there are several ways by which one
can implement buoyancy effects in the LB model. Of course, the most appropriate and
physically accurate method is to apply the gravitational forces in the system and let the
buoyancy effects (over the low density regions) appear from the dynamics itself. The

gravitational body force corresponds to the following equation:
F iy (%,7)= p(%.7) (- (4.128)

Note that the simulation of buoyancy effects using the above equation only works when the
simulation domain is not periodic in the direction of gravity i.e. there should be a solid wall

present in the system resisting the downward fluid motion.

If the domain is periodic in all directions (i.e. no walls present) then application of the
above equation leads to the whole fluid being continuously accelerated since there is no wall

to provide any resistive drag force (Sankaranarayanan et al., 1999).

If the domain has walls in the direction parallel to the gravity then the no-slip
condition on the walls provide resistive forces to the fluid motion and lead to a scenario
similar to bubble motion driven by a Poiseuille flow. Since the gravity acts as the driving

force for the channel flow, the bubble moves in the direction of gravity.

For simulations with periodic boundaries, one can explicitly define the buoyancy

force as follows:

B, (x.3)==(p(x.9)-p") & (4.129)

sat

where p;“ is the saturated density of the liquid phase. The above form corresponds to

defining a body force over the low density region in the direction opposite to the gravity. Due
to quasi-compressible nature of the LB simulations (Buick & Greated, 2000), one may want
to explicitly define a zero force in the liquid phase, such as:

sat

~(p(x.y)-P") i p(x,y)< )

0 otherwise

E,, (%)= (4.130)

where p.“is the mean density of the two phases.
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4.12 Similarities with the phase-field modelling technique

The Gibbs-Duhem equation based LB model is conceptually similar to the phase-field
modeling technique which is quite popular in material science (Warren, 1995; Jacqmin, 1996;
Anderson et al., 1998; Yue et al., 2004; Jamet et al., 2001, 2002; Badalassi et al., 2003; Acar,
2009). Hence, before closing this chapter, the phase field model is briefly reviewed here.

The phase-field method is also a fixed-grid method with a physically diffusive
interface. Similar to the LB model, the interface in phase-field models is introduced via
minimizing the free energy of the system. The two-components are identified by a phase-field

variable (@) representing the volume fraction of the two components and thereby, indicating
the location of the interface. The variation in ¢ is smooth across the interface and stretches

over a few grid points yielding a diffuse interface. When the thickness of the stretched
interface approaches zero, results of the diffuse-interface phase-field model approximates the
corresponding sharp-interface formulations (such as the level-set methods). Phase field
methods have been used in studying numerous applications ranging from phase-transitions
and critical phenomena, solidification and dendritic growth in alloys, interfacial tension
theories, solid-state phase transformations, precipitate/grain growth (coarsening dynamics)
and complex fluids (polymers etc.). Details on the phase-field methods can be found in Feng

et al. (2005) and Moelans et al. (2008).
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Chapter 5
Boundary conditions for the AILB model

Dynamics of flow, whether it is in single-phase or multi-phase, depends upon the
surrounding environment. This dependence is mathematically prescribed by applying the
suitable boundary conditions (BCs) to the governing equations. Usually, the BCs are only
available in terms of the relevant macroscopic variables (and from which not all the
mesoscopic information is directly deducible). For example, on a static wall, the fluid
velocity is assumed to be zero to satisfy no-slip boundary condition; however, one does not
know all the particle distribution functions at the wall. Therefore, in lattice Boltzmann
models, one cannot directly apply the boundary conditions to the relevant macroscopic
variables since our governing equations are at a level below, i.e. on a mesoscopic scale.
Consequently, one has to translate the macroscopic BCs to the scale of the governing
equations and represent those in terms of the discrete distribution functions in order to

proceed with the numerical solution procedure.

Depending upon the problem at hand, various types of boundary conditions including
no-slip, free-slip, frictional slip, sliding walls, moving walls, in-flux, out-flux etc. (Succi,
2001) may be applied to the evolution of the distribution function. The most simple and
widely used approach is the bounce-back method, in which, the outgoing distribution

functions reflect back into the domain after streaming through any wall or solid obstacles.

There are three types of flow boundary conditions which are most commonly used in
LBM simulations: (i) Periodic BCs, (ii) Velocity BCs and (iii) Pressure BCs. Periodic BCs in
LBM can be applied by simply letting the outgoing distribution functions from one end of the
domain to stream into the opposite end. Periodic BCs are adequate for simulating physical
dynamics in which surfaces or wall effects are negligible. In addition, sliding walls, porous
walls or wall flux boundaries are simulated by enforcing the fluid velocity at the walls to be
equal to that of the wall. Since the pressure is not treated as an independent variable in LBM
and is usually a function of density, the pressure BCs are simulated by appropriate density

BCs. In the following sections, wall velocity and wall density boundary conditions are
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developed for D,Qy (in 2D) and D3Q,¢ (in 3D) lattices in the framework of the artificial

interface lattice Boltzmann (AILB) model.

Before proceeding further, the governing LB equation and the conservation

constraints it has to follow:

Governing LB equation:

A At(v,—u).F"
r+v At,t+At)=g (r,t)——— — g% ™ 5.1
&+, T Wyt o
where

At At (v, —u)F¢
r,t)=f (r,t)+— —fa —— 5.2
g0 =10+ [/, fa](m o 3 (5.2)

—u).F¢

g = oAV WF (53)

2 pRT »

C B
FM{F +F j (5.4)
2

F’=RTV’p-pV’u+F, (5.5)
F =RTV p—-pV u+F, (5.6)

and superscripts B and C indicate the biased and central difference scheme of gradient
evaluation, respectively. Moreover, f“ is a Maxwell-Boltzmann equilibrium distribution

function, approximated as:

2 2
[ =w |1+ M +l ML (5.7)
RT 2\ RT 2RT
where w, and RT are lattice constants which depend upon the chosen lattice type i.e. D>Qq or

D3Qo.

The distribution function at the boundaries must satisfy the following constraints of

mass and momentum conservation:
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Mass Conservation:

p(r.t)=> g, (5.8)

Momentum Conservation:

p(r,t)u(r,t)z(ZVJgaj+%FC (5.9)

Macroscopic properties (fluid densities, velocities, forcing terms etc.) in equations
(5.1) to (5.9) are known by virtue of the specific BCs being simulated, however, not all the

distribution functions ( g, ) are known at the boundaries in the post-streaming state. This is

because the exterior of the computational domain does not take part in the solution and
therefore, does not supply any distribution functions to the boundary upon streaming. These
missing distribution functions at the boundaries can be determined using the relations of the

mass and momentum conservation in equations (5.8) and (5.9).
5.1  Velocity boundary conditions in 2D

Let us consider a two-dimensional (2D) computational domain as shown in Fig. 5.1,
in which the fluid is surrounded by the South (y = 0), North (y = Ly), East (x = Lx) and West
(x =0) boundaries. Computational grid is chosen such that there are nodes lying exactly on
the physical boundaries as well as the corners. The corners are where the perpendicular
boundaries meet and are named accordingly, i.e. NW denotes the intersection of the North
and West boundaries, etc. Usually, there are more unknowns at the corners than at the straight
boundaries, and the locally available information is not sufficient for the evaluation of those
additional unknowns. Therefore, corners are treated in a special way by extrapolating

unknown density from the neighboring bulk nodes (Zou & He, 1997).

For 2D simulations, we are using a D,Qy lattice structure in this report (one may
choose other lattice structures, for example, D,Qs or D>Q7). As shown in Fig. 4.1(a), the
D,Qq lattice has 8 velocity vectors linking it with the neighboring nodes, and a null link (or
rest state). Out of these 8 links, 4 are orthogonal links which point to the nearest neighbors

(and have speed 1) and 4 are diagonal links which point to the next-nearest neighbors (and

have speed V2 ). Lattice velocities in different directions are listed in Table 4.1 for the D,Qq
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lattice. Due to the symmetry of the lattice in LBM, directional links always come in pairs i.e.
each link has a partner which points into the opposite direction. Such pairs are listed in Table

5.1 for the D,Qq lattice.

North
Boundary
o o0 0O o 0,0 O O 0O
N
West O O C(Fluid O I O O O O East
Boundary Boundary
i O O O O 0O O O O
SW SE
South
Boundary

Fig. 5.1: Two-dimensional (2D) computational domain. The fluid is enclosed by North,
South, East and West boundaries. Computational grid is chosen such that the nodes (depicted
by yellow circles) lie on the boundaries as well as on the corners (NW, SW, NE and SE).

Table 5.1: Directional pairs having opposite lattice velocities (a ,a ) for D,Qy lattice.

a a a a
13 57
2 4 6 8
3 1 7 5
4 2 8 6

In the following sections, methodology to obtain unknowns at the South boundary and
the SW corner is presented. Relations for unknowns at the rest of the boundaries are provided

in Appendix C.
5.1.1 South boundary

Let us consider a case in which the fluid at the South boundary has its x- and y-

velocities specified and equal to U, and U, , respectively. As shown in Fig. 5.2, there are
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three unknown distribution functions (g, , g; and g, ) at the boundary in the post-streaming
state. In addition, the density at the boundary ( p, ) is also an unknown. We need to determine

these 4 unknowns in order to satisty the desired velocity BC.

Mass Conservation:

P, =8 +8 +8 +g +g, +8s+g,+8, +8 (5.10)

Momentum Conservation:

At
pWUWX=(g1+g5+g8)—(g3+g6+g7)+7Ff (5.11)
At .
pWUwy:(gz+g5+g6)—(g4+g7+gg)+7Fy (5.12)
I Fluid
N
Unknowns
G
’,_ ~ South
U 3 i/)I\jl e O— Boundary
7 4 8
None

Fig. 5.2: Velocity boundary condition at the South boundary. The fluid is specified to have its

x- and y-velocity equal to U, and U

wy

, respectively. Distribution functions g, , g5, g, and

the density p, are unknown at the boundary.

Note that, in the equations (5.11) and (5.12), the forcing terms F° and F yC depend

upon gradients of the density and the chemical potential (see equation (5.6)). In order to

simplify calculations, we can evaluate these forcing terms using the density at the previous

LB time step and thereby, treat F° and F, “ as constants for the current LB time step.

To determine the 4 unknowns p,, g,, g;and g, at the boundary, we are still short of

one equation; we only have 3 equations: (5.10), (5.11) and (5.12). In order to close the

system, we assume that upon streaming, the non-equilibrium part of the outgoing distribution
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function normal to the boundary i.e. (g, — g;*) bounces back into the domain to give the non-

equilibrium part of g, , i.e.

eq _

8,—8 =88/ (5.13)
This closure condition was first proposed by Zou and He (1997) for single phase flows and,
as shown in this report, is also proven to be a good approximation for boundaries for two

phase flows.

Now, from equations (5.10) and (5.12), we can calculate density p, as:
Pu=8tete+(g +8 +8)+(g +85+g)

At
=p, =g+ +g+2(g+g +g)+rU,, —?Ff (5.14)

At
= p, ={go+gl+g3+2(g4+g7 +gg)—2Ff}/{1—Uw}

With p = known, the equilibrium distribution functions g;? and g;’ in equation (5.13),
can be evaluated using equations (5.3), (5.6) and (5.7) with the density p, , x-velocity U,
and y-velocity U, :

g =g, +(g —g¥)

eq eq At (VZ_u)f;q_(V4_u) ) C (.15
=g, +(f -1, )—7{ S RT }F

where u=U _i+U, j, /"= f(p,,u) and F is given by equation (5.6). Note that the

numerical evaluation of the right hand side of the above equation requires treating the
directional and non-directional derivatives differently, as discussed in Chapter 4, Sec-4.7.

With p, and g, known, g, and g, can now simply be obtained by solving equations (5.11)
and (5.12).

Below we list the equations which should be solved in order to obtain the desired

unknowns at the South boundary:
At
Py, ={go +g +g+2(g +g +gg)—7Fy }/{I—Uwy} (5.16)

g =g, +(g—gy") (5.17)
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At

g8.=(&+8) (& +&) AU~ F (5.18)
At .

8518 =818 +8 & +pwUWy—7Fy (5.19)

g :(g5+g6);_(g5_g6) (5'20)

=(g5+g6)_(g5_g6) (5.21)

¥ 2

5.1.2 South-West (SW) corner

Special treatment is required to impose and satisfy BCs at the corners. There are more
unknowns at the corners than there are on the nodes on straight boundaries. For example, at
the SW corner, we have 6 unknowns (p, , g,, g,, &5, & and g.) which need to be
determined (see Fig. 5.3). Since the SW node is a part of both South and West boundaries, we
can choose velocity on either boundary as the fluid velocity on the SW node. In this example,

we choose the West boundary’s velocities U, and U, , to be the velocity on the SW corner.

Mass Conservation:

Py=80+& T8 +tE8 T8 t8s+8+8 +& (5.22)

Momentum Conservation:

At

PU,. =(g+85+g)—(g +8 +g7)+7Ff (5.23)
At .

pU,, =(g+gs+gs)-(g,+g +g8)+7Fy (5.24)

Next, we assume that upon streaming, the non-equilibrium part of the outgoing

distribution functions normal to the SW node, i.e. (g, —g;’) and (g, —g,?), bounce back into
the domain to give the non-equilibrium part of g, and g, , respectively. That is

8 -8 =8 -8 (5.25)

eq _

8:—8 =88/ (5.26)
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Notice that we only have 5 equations to determine the 6 unknowns. Therefore, in

order to close the system, we approximate the density at the SW node p, with the density at
the nearest neighboring flow node p,,, (see Fig. 5.3) i.e. p, = p\z- With density p,

known, rest of the unknowns can now be evaluated using the aforementioned 5 equations.

T N West boundary
Fluid
AUw
None (CES o
Usx Pnsr
~ South
~ boundary
None

Unknowns

Fig. 5.3: Velocity boundary condition at the South-West (SW) corner. The x- and y-velocity

of the fluid is specified to be U, and U, , respectively. Distribution functions g,, g,, g,

W

gs» g, and the density p, are unknown.

Below we list the equations which should be solved in order to obtain the desired

unknowns at the SW corner:

Py = Pusr (5.27)
g =g+(g"-g) (5.28)
g =g, +(g -g) (5.29)
At ¢
858 +t8& =8 +8& & +prU, —7FX (5.30)
At ¢
g5+g6_g8:g4+g7_g2+pway_7F;) (5.31)

(gS_g6+g8)+(g5+g6_g8)
2
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g~ = (g +8—g)— g (5.33)

g+8&=p, (o +e+8+8+8+8+8) (5.34)
&:@wgﬂj&—&) (5.39)
=(g6+g8)_(g6_g8) (5.36)
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5.2 Density boundary conditions in 2D

Let us consider a 2D case in which pressure (density) is to be specified on a boundary.
For example, if a flow inlet BC is specified at a boundary via pressure (density) specification,

then we know the density p, and the tangential velocity U, at the boundary. (Usually, the

tangential velocity of the fluid at a static inlet boundary is zero.) However, the normal

velocity U, at the boundary is an unknown.

In the following sections, methodology to obtain unknowns at the South boundary and
the SW corner is presented. Relations for unknowns at the rest of the boundaries are provided

in Appendix D.
5.2.1 South boundary

At the South boundary, we need to enforce the fluid to have its x- velocity and density

equalto U, and p, , respectively. As shown in Fig. 5.2, there are three unknown distribution
functions (g,, g, and g,) at each lattice site on the South boundary in the post-streaming
state. In addition, the y-directional velocity of the fluid (U, ) is also an unknown. Therefore,

there are a total of 4 unknowns which need to be determined.

Mass Conservation:

P,=8 & +&+&+8& +8:+8+8 +8& (5.37)
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Momentum Conservation:

At

pU.. =(g +gs+g)—(g +g6+g7)+7Ff (5.38)
At .

pWUWy:(g2+g5+g6)—(g4+g7+g8)+7Fy (5.39)

As a closure condition, we assume that upon streaming, the non-equilibrium part of

the outgoing distribution functions normal to the boundary, i.e. (g, — g’ ) simply bounces

back into the domain to give the non-equilibrium part of g, , i.e.

g-8"'=8,-8' (5.40)

Below are listed all the equations which should be solved in order to obtain the

desired unknowns at the South boundary:

At
U,, ={g0 +g,+g,+2(g, +g, +gg)—7Ff -p, }/(—pw ) (5.41)
g =g, +(g—gy) (5.42)
At .
&8s — &5 :(g3+g7)_(g1+g8)+pwax_?Fr (5-43)
At .
g5+g6:g4+g7+g8_g2+pway_7Fy (5.44)
+g )+ (g. -
g5=(g5 g6)2(g5 g6) (5.45)
_(8s+85)—(85—&) (5.46)

8 5
5.2.2 South-West (SW) corner
As mentioned earlier, since there are more unknowns at the corners than the nodes on

the straight boundaries, a special treatment is required to handle BCs at the corners. For

example, at the SW node, we have 6 unknowns (p, , g,, g,, &5, & and g;) which need to

be determined (see Fig. 5.3).
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Mass Conservation:

Py=80+& T8 +t8+8t8s+8+8 +& (5.47)

Momentum Conservation:

At
pU. =(g+gs+g)—(g+g +g7)+7Ff (5.48)
pU,, =(g+gs+gs)-(g,+g +g8)+7Fy (5.49)

Next, we assume that upon streaming, the non-equilibrium part of the distribution

function normal to the SW node and directed into the boundaries, i.e. (g, —g;) and (g, — g;’
) simply bounces back into the domain to give the non-equilibrium part of g, and g, ,
respectively, i.e.

g—g =g g (5.50)

g-8'=8,-8' (5.51)

Notice that we only have 5 equations to determine 6 unknowns. Therefore, in order to
close the system, we have used Zou and He (1997) approximation, by which the density at

the SW node p, is assumed to be equal to the density at the nearest neighboring flow node

Pugr> 1€ P, = Pupr

Below are listed all the equations which should be solved in order to obtain the

desired unknowns at the SW corner:

Py = Pusr (5.52)

g =g+(g"-g) (5.53)

g =g,+(g' -gy) (5.54)
At ¢

858 +t8& =8 +8& & +prU, —7FX (5.55)
At .

85+ 868 :g4+g7_g2+pwUWy_7F;) (5.56)

(gS_g6+g8)+(g5+g6_g8)
2

g = (5.57)
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8o~ 8 =(85+8¢— &)~ & (5.58)

g+8&=p, (o +e+8+8+8+8+8) (5.59)
g :(g6+gg);(g6—gg) (5.60)
=(g6+g8)_(g6_g8) (5.61)

83 )
5.3 Velocity boundary conditions in 3D

In 3D, there are four macroscopic physical properties that can be specified at the
boundaries of a domain: fluid density, normal velocity and two components of tangential
velocity. The normal velocity is zero for solid walls and nonzero for porous walls. For no-slip
boundaries, the tangential velocity is usually the same as the velocity of the moving wall.
There are 6 surface boundaries, 12 edge boundaries and 8 corners in the 3D computational
domain. The fluid is confined with the West (x = 0), East (x = Lx), South (y = 0), North (y =
Ly), Bottom (z = 0) and Top (z = 0) surface boundaries, as shown in Fig. 5.4. Computational

grid is chosen such that the nodes lie on the surface boundaries and the corners.

For 3D simulations, a D;Q 9 lattice structure is used in this report (one may choose
other lattice structures, for example, D3Q;s or D3Q24). As shown in Fig. 4.1(b), the D3Q9
lattice has 18 velocity vectors linking it with the neighboring nodes, and a null link (or rest
state). Out of these 18 links, 6 are orthogonal links which point to the nearest neighbors (and

have speed 1) and 12 are diagonal links which point to the next-nearest neighbors (and have

speed \/5 ). Lattice velocities in different directions are listed in Table 4.2 for the D3Q9
lattice. Due to the symmetry of the lattice in LBM, directional links always come in pairs i.e.
each link has a partner which points into the opposite direction. Such pairs are listed in Table

5.2 for the D;Q9 lattice.

In order to apply velocity BCs on the surface boundaries, 6 unknowns including the
density need to be determined. However, we only have 4 equations (1 for mass conservation,
1 each for x-, y- and z-momentum). Therefore, in 3D formulation of velocity BCs, an

approach different from its 2D counterpart is considered. Here, the number of unknowns is
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reduced to 4 by assuming the partial bounce-back of the non-equilibrium distribution

functions at the boundaries and, satisfying the mass and momentum constraints.

Top Boundary
West z=1z
Boundary /
x=0 /
No
Boundary
y=Ly
- East
ol Boundary
South x =Lx
Boundary
A y= 0
z
y
O >
X Bottom
Boundary
z=0

Fig. 5.4: Three-dimensional (3D) computational domain. There are 6 surface boundaries, 12
edge boundaries and 8 corners in a 3D domain. The fluid is enclosed by West (x = 0), East (x
= Lx), South (y = 0), North (y = Ly), Bottom (z = 0) and Top (z = Lz) surface boundaries.
Computational grid is chosen such that the nodes lie on the surface boundaries as well as on

all the corners.

Table 5.2: Directional pairs having opposite lattice velocities (a ,a ) for the D;Q9 lattice.

a a a a
1|2 10| 8
2 1 11| 13
3 4 12 | 14
4 3 13 | 11
5 6 14 | 12
6 5 15| 17
7 9 16 | 18
8 10 17 | 15
9 7 18 | 16
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In the following section, a methodology to obtain unknowns at the Bottom boundary

is presented. Relations for unknowns at the rest of the boundaries are provided in Appendix

E.

5.3.1 Bottom boundary

Unknowns:

P> &> &i1s &us» &sand g

Mass conservation:

Momentum conservation:

From equations (5.62) and (5.65):

18
P.=2.8, (5.62)
a=0

At .

P, =(g+8 +2o+ei+8:)—(&+g+8&+gn +gl4)+7Fx (5.63)
At .

IDway = (gs +8;,+8s+8&s +g16)_(g4 +8y+ &+ 81 +g18)+7Fy (5.64)
At .

pU,. = (gs +8t8ut8s +g18)_(g6 + 8+ 8151 86 +g17)+7ﬁ; (5.65)

1 8 +8 1t8+&1t8,+8,+8+8 T8
P, =T At (5.66)
(1_Uwz) +2(g6 + 81+ 8151 86 +g17)_?FzC

Now, let us assume that the outgoing non-equilibrium distribution functions

( g.— g, a=6,12,13,16, 17) partially bounce back at the boundary to provide the

corresponding incoming non-equilibrium distribution functions ( g,— g7, a=514,111 8,15)

(see Table 5.4 for the number of the corresponding distribution function) with the 3 new

unknowns (J,,5,,5. )as:
(g5—gv)=(g -

(&1 -git)=(

(& -t%)=(

(gIS _gleg): (g17 -

8o )+ Vs 0, +V5,8, + s 0. (5.67)
9) 4+, 0, 4,8, + v, 0, (5.68)
)4 14,8, +,8, + 1,6 (5.69)

1)+ V5.0, + V15,5, +Vi5.5. (5.70)



(gls _gleg): (gm _gleg) Vis Oy +Vis , 0, Vs .0,

The above equations can be rewritten after substituting corresponding lattice

velocities from the Table 5.3, as:
g5 =g, +(g" —g)+o.

_ eq eq
g =85+ &l —g5)t+d,+0,

84— 8 )0, 0.

g
-

=g +(&s — & )+5 +0,
g ~git)-

u
o= 8n+(

+
o+ (g 5 +6.

=8 1 — &1 y

From equations (5.73) and (5.74),

(gll _g13)_(g14_g12)=(g18? _gle;])_(gleg _glgzq)+2§x

From equations (5.75) and (5.76),

(g5—80)- (g —gi6) =g — &) - (gt - &7t) +26,

From equations (5.63) and (5.77),
At .
PV =(8+8+80) (84 &+ &)+
+(gi —git)~ (e ~git)+29,
From equations (5.64) and (5.78),

PU,, =(g+g +&)—(g+g +gm)+%Ff
+(git —git) - (e —git)+29,
From equations (5.65) and (5.72)-(5.76),
pU.,.=(g +ail +gli + g1 + g1t

e e e e e At
—(g +g4 +gl +git +8if )+ F+56,

Rearranging equations (5.79), (5.80) and (5.81), we can write the three unknowns as:

At
0, _1 pwax_(gl+g7+g10)+(g2+g8+g9)—?FXC
X _E . . . )
_(gl?_glg)"'(glz_glg)
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(5.71)

(5.72)
(5.73)
(5.74)
(5.75)

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)



At
S = _1_ /7»vl;[wy a (533 'F'537 + g5 ) + (ég4 —f—ézg + Zio ) __'?i_Al:;

= (5.83)

~(grt g )+ (g -2

eq eq eq eq eq
pU.,. _(gs T8 T84 T&s +g18)

1
5, =— 5.84
=3 (5.84)

e e e e e Z&t
+(g +grt + g + gt +g1§’)—7Ff
5.4 Future directions of research

In the context of lattice Boltzmann models, a variety of “radically” different
approaches are presently in use for simulating velocity and density boundary conditions for
single- and two-phase flows. A consensus has not yet reached on the choice of appropriate
boundary conditions. A unification of these approaches is required in order to standardize the
procedure as well as for enhancing the numerical accuracy. Recently, Latt and Chopard
(2008) reviewed and compared five of such different boundary treatments for different
benchmark problems. They divided the boundary conditions into two broader categories, one
which preserves the known particle populations (Inamuro et al. (1995), Zou & He (1997))
and the other which replaces all the particle populations (regularized, finite difference and
non-linear finite difference based, see Latt & Chopard (2008)) at the boundary nodes.
Moreover, many of these different boundary conditions are only tested for the single-phase

flows and there applicability to different two-phase models still needs to be established.

Since most of the practical applications involve geometries which can not be fitted by
a rectangular grid (such as, curved pipes and other irregular shapes), there is a need to
develop boundary treatments for such non-rectangular geometries. The simplest approach to
model such arbitrary boundaries is to replace the boundaries with the zigzagging contours
which follow the rectangular grid in a staircase fashion. However, the accuracy of near-
boundary flow may be deteriorated by the artificial staircases. An extrapolation method for
treating curved boundaries is proposed in Guo et al. (2002). The distribution function at the
grid point nearest to the (physical) curved boundary is decomposed into equilibrium and non-
equilibrium parts. The non-equilibrium part is approximated by that of the neighboring fluid

node along the link, and the equilibrium part is determined by a fictitious equilibrium
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distribution function. This treatment results in second-order accuracy and good stability

characteristics (Guo et al. (2002)).
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Chapter 6

Results and discussions

In this chapter, simulation results for several two phase scenarios using the artificial
interface lattice Boltzmann (AILB) model and the Lee-Fischer model (Lee & Fischer, 2006)
are presented. An appropriate model has been chosen depending upon the problem being
simulated. Simulations, in which body force (like, gravity) plays a significant role in the
dynamics, AILB model is preferred to eliminate the artificial compressibility enhancements
found in the Lee-Fischer model. A comparison with the available analytical and/or

experimental results has also been provided.
6.1 Multi-fluid Poiseuille-Couette flow in a 2D channel

6.1.1 Analytical solution
For a three-layer Poiseuille-Couette flow in a two-dimensional (2D) channel as shown
in Fig. 6.1, the governing equations and the boundary/interface conditions can be written as

follows:

Governing equations:

d2uyl(x) __ ¥4 (6 1)
dx’ H '
dz“yz (x) __ 0,8 (6 2)

3 .
dx Hy
d2uy3(x) _ P8 6.3)

dx’ H
where u,(x), p, and g, are the y-directional velocity, density and dynamic viscosity of the

i" layer respectively (i = 1, 2 and 3) and g represents acceleration due to gravity.

Boundary conditions:

u,(x=0)=U,, (6.4)
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uy3 (x = Lx) = UwZ

(6.5)

where U, and U, are the velocities with which the left and the right walls are moving in

wl

the direction opposite to gravity. x =0 and x = L_are the domain boundaries in the x-

direction. Domain is assumed to be periodic in the y-direction.

Interface conditions:

uyl(x =x)= ”yz(x =Xx)

du,

B du,,
' dx

dx

=H,

x=x
U, (x=x)=u,(x=x,)

du,,
dx

H,

X=X, X=X,

where x =x, and x = x, are the locations of the fluid interfaces.

X F Xo
P P> Ps
Hy H, Y8

Uy 1 2 3

>
B

x=0

(6.6)

(6.7)

(6.8)

(6.9)

Fig. 6.1: Poiseuille-Couette flow in a two-dimensional (2D) channel. Three layers of

different fluids are denoted by 1, 2 and 3, which have densities p,, p,, p, and dynamic

viscosities g, (,, i, respectively. The Poiseuille effect of flow is governed by the

downward gravity g whose effect is equivalent to applying a constant pressure difference

across y-boundaries and, the Couette effect is governed by two enclosing walls moving with

the upward velocities Uy, and Uy,.
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Integrating equations (6.1), (6.2) and (6.3) gives:

u, () =-LE 2 4o xre, (6.10)
2p

U, (x)= _PE 2 +C, X+, (6.11)
2u,

}3(x)——'03g Xt x+ey, (6.12)
2

Now, we have 6 unknowns (¢,,, ¢,,, ¢, ¢, ¢, and c,, : two for each fluid layer) and 6

equations (2 boundary conditions and 4 interface conditions).

From equation (6.4),

c, =U, (6.13)
From equation (6.5),
ey L, +eyy = '203g +U,, (6.14)
3
From equation (6.7),
MG — 6y :(p1 —,02)gx1 (6.15)
From equation (6.9),
HyCoy — HaCyy Z(pz _ps)gxz (6.16)
From equation (6.6),
2
X
X TCp =6y X —Cpp = [,01 &jg_l (6-17)
Moo ) 2
From equation (6.8),
2
X
CoXy TCyp =€y Xy =C3p = [,02 £y Jg_z (6.18)
Hy ) 2

We can determine our unknowns by solving the above equations as:
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¢,) (001 0 0 0 0 U,

co| 10 0 0 0 L 1| 05p/u)el+U,,

e | [ 0 = 0000 (P =p.)ex, 6.19)
cn| |0 0 4 0 - O (P, =ps) &,

) x 1 -x -1 0 0 0-5(p1/ﬂ1_p2/ﬂ2)gx12

o) L0 0 x 1 —x, 1) \05(p, /- pi/ 1) 85

Above matrix equation (6.19) can easily be solved using Mathematica package for the

unknowns.

6.1.2 LBM simulations

In LBM simulations, kinematic viscosities v of different fluids are related to their

corresponding relaxation times 7 by:

v, =z RT (6.20)
P

v, =22 =7 RT (6.21)
P>

v, =25 2 ¢ RT (6.22)
Ps

where RT is a lattice constant and for the D,Qy as well as the D3Q,9 lattices, given by:
1
RT = 3 (6.23)

With the above relations between the relaxation time and the dynamic viscosity of a given
fluid in hand, one can compare the LBM simulation results (such as, the steady state velocity

profile in a 2D channel) for the Poiseuille-Couette flow with the results analytically.
6.1.3 Results obtained using the Lee-Fischer LB model

In Fig. 6.2, we compare the LBM results obtained using the Lee-Fischer model with
the analytical solutions for a two-layer Poiseuille flow. Simulation parameters are given in
the figure caption. Gravity is used as a buoyancy force in the simulations. A good agreement
between the simulation results and the analytical solution is observed for the y-directional
fluid velocity. Notice that it took about 2 million time-steps for the simulation to provide the

steady state results on a LBM grid of 500 x 25 points. The grid requirement in the y-direction
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is not very restrictive since periodicity is being used in that direction. However, one should
use a large number of grid points in the direction perpendicular to the interface i.e. x-direction
for these simulations. From numerical experiments, it is clear that, not surprisingly, the
solution accuracy depends upon the number of grid points in the direction perpendicular to
the interface. Obviously using a large number of grid points make the simulation take longer
to reach the steady state in a LBM simulation, however, it leads to a more accurate steady

state solution.

In Fig. 6.3, the LBM results are compared against those obtained using the analytical
solutions for a two-layer Couette flow problem. Simulation parameters are given in the figure
caption. Gravity is assumed to be zero in the simulations. The driving force is provided by the
left wall moving with an upward velocity of U,, = 0.1. Good agreement between the
simulation results and the analytical solution is observed for the y-directional fluid velocity.

500 x 25 grid points are used in the LB simulation.

liquid ﬁ vapor

[ | 7T
B |
i ! 1
15 -05
B 06
1 ] O
= | 1 I
| i o
B 04
0s b ]
: —H0.2
D PR T T TR N T T TN TR N TR TR TN T [ R TR T
100 200 300 400 500
x

(a) A comparison of steady state LBM simulation results with the analytical solution.

Fig. 6.2 (cont. on next page)
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(b) Difference in LBM prediction of upward velocity compared to the exact solution.
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0.2
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0.1
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X

(c) LBM and exact density profiles differ due to diffuse interface in the LB simulation.

Fig. 6.2: The Poiseuille flow in a two-dimensional channel of size 500 x 25. The channel is
periodic in the y-direction. Layers of liquid and vapor phases are driven by a body force
acting in the upward direction. No slip boundary condition is applied at the side walls in the

x-direction. The simulation parameters are: p, =1, p, =0.01, body force = 10°. Kinematic

viscosities of both the fluids are assumed to be equal. This is enforced by choosing the same
relaxation parameter (equals to 0.5) for both the fluids. The LBM simulation (Lee-Fischer LB
model) results for the steady state (at = 2 x 10°) density p and upward velocity u ,are in
very good agreement with the corresponding analytical solutions.
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(a) A comparison of steady state LBM simulation results with the analytical solution.
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(b) Difference in LBM prediction of upward velocity compared to the exact solution.

Fig. 6.3 (cont. on next page)
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(c) LBM and exact density profiles differ due to diffuse interface in the LB simulation.

Fig. 6.3: The Couette flow in a two-dimensional channel of size 500 x 25. The channel is
periodic in the y-direction. Layers of liquid and vapor phases are driven by moving the left
wall with a velocity Uy,. No slip boundary condition is applied at the side walls in the x-
direction. The simulation parameters are: p, =1, p, =0.01, U,, = 0.1. Kinematic viscosities

of both the fluids are assumed to be equal. This is enforced by choosing the same relaxation

parameter (equals to 0.5) for both the fluids.
6.2 Simulation of the van der Waals coexistence curve

The van der Waals equation of state (vdW EOS) is as follows:

_PRT _ »
1-bp

P (6.24)

where a and b are the van der Waals constants.

In order to explicitly show the dependence on molar volume V, we can rewrite the

above equation by substituting p =1/V as:

P= %—% (6.25)

The above equation can be written in a cubic form as:
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RT b
7 A | 7 B P (6.26)
P P P
Being a cubic equation, the above equation has three real roots V3, V; and V3 for temperatures
below the critical point. However, at the critical point, these three roots merge into one value

called V.. The parameters at the critical point are denoted by, 7'=7,, P=P, and V =V .

Since the critical point is an inflection point, and the following two conditions can be used to

determine the critical constants (P,V, and T) in terms of van der Waals constants (a and b).

8_P =0 (6.27)
ov|,
and
2
0 IZ =0 (6.28)
oV ’

A simpler approach to identify the critical constants is to write equation (6.26) at the

critical point as:

(V-r.) =0 (6.29)

which essentially is:

V3V 43V -1 =0 (6.30)

Comparing coefficients in equations (6.26) and (6.30), we can write:

RT
3VC=b+ <, 3V62=£ and V:’:a_b
P P P

c c c

(6.31)

From the above set of equations, the critical constants ( 2.,V and 7, ) can be evaluated as:

V. =3b (6.32)
P= 27‘1]?2 (6.33)
<7 2§ZR (6:34)

From equation (6.32), the density at the critical point p, can be written as:

1
= 6.35
Pe=3 (6.35)

Substituting a =3PV, and b=V, /3 in equation(6.25), we get:
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p-_RT____3E (6.36)

V=03 (i
The above equation can be rearranged to give:

P\__RT/RV, 3
[PJ (rv)-(3) (vw.y (6.37)

c

Now introducing reduced quantities P, = P/P,, V, =V /V, andT, =T/T. , and
substituting PV, = %RTC , we get the vdW equation of state in the reduced quantities:

8/3)T,
= & - iz (6.38)
Vi _(l/ 3) Vi
A typical van der Waals pressure-volume isotherm (variation of pressure P with volume V) is

plotted in Fig. 6.4 for different values of temperature.

Fig. 6.4: van der Waals pressure-volume isotherms at different temperatures.
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Fig. 6.5: Maxwell construction procedure. A typical van der Waals pressure-volume

isotherm at a temperature less than the critical temperature is shown. The horizontal line is

drawn such that the areas of the shaded part above and below the line drawn are equal. The

pressure corresponding to the horizontal line is called the equilibrium pressure. Points where

the ends of the horizontal line cross the P-V curve correspond to the liquid and vapor phases

coexisting in equilibrium.

By choosing the following vdW constants:

azg, b=l and R=1
8 3
the critical parameters are found as:
3
p.=1, T.=1 and P o
and the vdW EOS becomes:
__r 9
V—(1/3) 8V

(6.39)

(6.40)

(6.41)

Values of a and b given above will be used in the LBM simulations to reproduce the

densities of the coexisting phases of a fluid. Having identified the governing non-ideal

equation of state of a fluid, we can use Maxwell construction procedure to determine the

density values at which both the phases of a fluid are in equilibrium.
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6.2.1 Saturated liquid and vapour densities from Maxwell construction

A representation of the Maxwell equal-area construction procedure is shown in Fig.
6.5. On the P-V curve, an equilibrium pressure is identified by drawing a horizontal line DA
such that the areas of the loops (enclosed areas) both above and below the DA line are equal.
Along this line, liquid and vapor phases are in equilibrium with each other. Point 4 represents
the coexisting vapor while point D represents the coexisting liquid. Corresponding volumes
of the phases can be found by drawing vertical lines down to the x-axis from points 4 and D,
as shown in the figure. The line DL represents the change in the volume of the liquid phase
when compressed (or, increasing pressure). The steepness of this line shows the relative

incompressibility of the liquid phase. The segment BC represents an unstable region, in

which (oP/ 6V)T >0, i.e. an increase of pressure results in an increase in volume which is

unphysical and not observed for equilibrium systems.

Table 6.1: Reduced variables for vdW EOS obtained via Maxwell construction.

Ty = Tl Piigr = P Piapr = Pray Ratio = Loy by = Pﬁ
c Pc Pc Prap c
1 1 1 1 1
0.98 1.28943 0.726691 1.77 0.921912
0.95 1.46173 0.579015 2.52 0.811879
0.90 1.65727 0.425742 3.89 0.646998
0.85 1.80714 0.31973 5.65 0.504492
0.80 1.93271 0.239667 8.06 0.383362
0.75 2.04235 0.177209 11.53 0.282459
0.70 2.14044 0.128022 16.72 0.200458
0.65 2.2296 0.0894754 24.92 0.135841
0.60 231156 0.0597781 38.67 0.0868693
0.55 2.38755 0.03758 63.53 0.0515798
0.50 2.45849 0.0217468 113.05 0.0277887
0.45 2.5251 0.0112175 225.10 0.013134
0.40 2.58794 0.00491089 526.98 0.00517452
0.35 2.64749 0.00168746 1568.92 0.0015673
0.30 2.70416 0.000399065 6776.24 0.000318817
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For the vdW EOS in reduced quantities (equation (6.38)), the Maxwell equal-area
construction procedure is applied to identify the equilibrium phase densities. Results are
tabulated in Table 6.1. A code has been written in Mathematica to calculate the coexisting
densities and equilibrium pressure, details of which are provided in the Appendix F.
Schemes for converting lattice units into physical units and vice-a-versa are discussed in the

Appendix G.

6.2.2 Spinodal decomposition

If the LBM system is initialized with the densities in the unstable region of the vdW

equation of state, i.e. where (8P/ 8V) , >0, then the temporal evolution from that state results

in phase-separation. Over time, the two phases comprising the system get segregated. This
process is called the spinodal decomposition. Phase-separation process is governed by the
free energy minimization principle and results in minimizing interface lengths (Basagaoglu et

al., 2004).

Snapshots of the spinodal decomposition process are shown in Fig. 6.6 along with the
parameter values used for the simulation. As can be seen from Fig. 6.7, the mass of the
individual phase remains almost constant. Interfaces merge and coalesce in order to minimize
the interfacial length. Moreover, in order to reach a pressure and chemical equilibrium after
starting from a random initial condition, system is seen to initially have a slight increase in
mass, which later becomes constant, as shown in the Fig. 6.8. Spinodal decomposition
process in 3D is shown in Fig. 6.9. Parameters for the simulations are given in the caption of

the figure.
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LEM Time = 500

Fig. 6.6: Two-dimensional spinodal decomposition process for a van der Waals fluid.
Parameters for the LBM simulation are: p,=1.28943, p = 0.726691, density ratio = 1.77
(corresponds to Tk = 0.98), periodic domain of size 200 x 200, =5 x 10'3, 7,=7,=05,¢g
=0,v,=v,=0.5/3=0.1666, D = 3. At time t = 0, the 2D box is filled with a van der Waals
fluid at critical density p, =1 and spatially random but small density-perturbations are
introduced. Blue color in the figure represents the vapor phase and red color represents the

liquid phase. (AILB model, no scaling)

117



Equivalent 2D bubble radius
8 2 g B 2

3

a3

0T HG 000 GO0 8000 78000
Time
Fig. 6.7: Variation of an equivalent 2D bubble radius with time. Since bubbly region has
almost constant density, the graph above also represents a variation in total density of the
vapor region with time. Total mass of the bubbles remains almost constant. Bubbles and
droplets merge and condense during the free energy minimization procedure; however, the
net volume occupied by a particular phase does not change significantly during the process.

(AILB model, no scaling)
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Fig. 6.8: Variation of the total density of the simulation box with time. Note that during the
initial period, system attempts to reach equilibrium (pressure-equilibrium) consistent with the
specified system temperature, and during that process increases its net mass. (Increase is a
very small percentage of the total.) Afterwards, total system mass (density) remains

conserved. (AILB model, no scaling)
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Fig. 6.9: Three-dimensional spinodal decomposition process for a van der Waals fluid.
Parameters for the LBM simulation are: p,=1.46173, p = 0.5790, density ratio = 2.52
(corresponds to 7z = 0.95), periodic domain of size 60 x 60 x 60, =5 x 10'3, 7,=7,=0.5,
g=0,v,=v,=0.5/3=0.1666, D = 3. At time t = 0, the 3D box is filled with a van der
Waals fluid at critical density p, =1 and spatially random small density perturbations are

provided. Blue color in the figure represents vapor phase and red color represents liquid

phase. (AILB model, no scaling)
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6.2.3 Comparison of LBM simulations with densities obtained via Maxwell

construction for the vdW EOS

Several LB simulations have been performed at different system temperatures using
the AILB model. Results are presented for a single bubble coexisting with the liquid phase,
simulated in a zero-gravity periodic domain. Parameters for the simulations are: domain size
=200x 200, 0=10.005,7,=7,=0.5,g=0, v,=v, =0.5/3=0.1666, R = 50. The bubble is
centered at (100,100). Results of the simulations are given in Table 6.2. As the temperature is

reduced in the simulations, interface thickness needs to be increased, as shown in Fig. 6.10.

Table 6.2: A comparison of LBM results with the theoretical densities obtained via Maxwell
construction for the vdW EOS.

LBM

A T R
0.98 1.28943 0.726691 1.77 3 1.28803 0.72493 1.77
0.90 1.65727 0.425742 3.89 3 1.65419 0.42561 3.89
0.80 1.93271 0.239667 8.06 10 1.91809 0.23963 8.00

0.70 2.14044 0.128022 16.72 10 2.12177 0.12801 16.58
0.60 231156 0.0597781 38.67 10 2.29227 0.05977 38.35
0.50 2.45849 0.0217468 113.05 12 243775 0.02174 112.13
0.40 2.58794 0.00491089  526.98 12 2.56457 0.00491054  522.26
0.30 2.70416  0.000399065 6776.24 12 2.67819 0.000398971 6712.74

6.3 Simulation of a vapor bubble coexisting with liquid

Since LBM solution scheme is a time-marching algorithm, it is of interest to see if and
when the system reaches equilibrium for very simple two-phase problems. By equilibrium,
we mean a steady state where all the numerical artifacts die out and the solution becomes
independent of the initial condition. Note that there have been several attempts to explain and
reduce the magnitude of spurious currents in the LB simulation of two-phases (Wagner,

2002; Cristea & Sofonea, 2003; Shan, 2006).
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(a) Tr = 0.90 (b) Tr = 0.60 (c) Tr = 0.30

Fig. 6.10: Interfacial thickness for a single bubble in a periodic domain. With decreasing
temperatures, density ratio of the two phases is increased and a thicker interface is desired for
numerical stabilization. Results for the density ratios and values of the thickness controlling

parameter D for several LBM simulations are given in Table 6.2. (AILB model)

One of the simplest numerical problems involving a two-dimensional (2D) circular
bubble is the simulation of a single vapor bubble surrounded by liquid in gravity-free periodic
box. A circular bubble can be initialized at the center of a 2D periodic box with the density in
the interfacial region following the analytical result of planar interfaces in equilibrium. The
evolution of such a vapor bubble is simulated in time using the Lee-Fischer LB model. In the

absence of gravity, Lee-Fisher LB model is appropriate for such simulations.

Simulation results at the time step t = 100,000 can be assumed to have reached the
steady-state since the spurious currents surrounding the bubble have died down to the order
of 10°° or below. Time variation of the maximum spurious velocity in the domain is shown in
Fig. 6.11. It is seen that, for low density ratios of the two phases, the maximum velocity dies
out to machine precision (order of 10™'*), however, for large density ratio a very small
magnitude of spurious velocity does persist. Due to finite lattice directions and the isotropic
derivatives in the LB model, these spurious currents form eight symmetric eddies, as shown

in Fig. 6.12.
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Fig. 6.11: Time evolution of maximum velocity for a single bubble coexisting with liquid in
a periodic domain. The liquid density is fixed at 1.0. The vapor density is 0.1, 0.01 and 0.001
for the three curves which can be identified by different liquid to vapor density ratios in the
figure. Kinematic viscosities of the two phases are the same, with relaxation time for both the

liquid and the vapor phase being equal to 0.5. (Lee-Fischer LB model)

LEM Time =0 LEM Time = 100000

a0

i 40 =1 B0 100
x

Fig. 6.12: A single bubble (of vapor density 0.001) is initialized to be in coexistence with
liquid (of density 1.0) in a periodic domain. At the steady state (at # = 100,000), “spurious”
currents are present, though of a very small magnitude (of the order of 10°®), and organized in
eight symmetric eddies surrounding the bubble. (Lee-Fischer LB model)
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Fig. 6.13: Time evolution of the bubble radius. In the process of equilibration, radius of the
bubble changes along with the densities of both the liquid as well as the vapor. At the steady
state (at £ = 100,000), the bubble radius is reduced from the initial radius of 20 /u to 19.4 [u.
In the figure, the “staircase” variation of the radius is due to the applied cut-off density,
which is the mean density at # = 0, to identify the bubble perimeter. The densities of the liquid
and vapor change from their initial densities of 1.0 and 0.001 to 0.991208 and 0.00044,
respectively. (Lee-Fischer LB model)

Since the initialization of the two-phase system is done by choosing equilibrium
densities for a planar interface, the phase densities of both the phases as well as the radius of
the bubble vary during the initial period of the evolution in order to accommodate the
curvature effects. Time variation of the radius of the bubble for a density ratio of 1000 is
shown in Fig. 6.13. The steady state radius and liquid/vapor densities are compared with their
initialization values in Table 6.3 for three different density ratios. The spatial variation of the

centerline density at the steady state is plotted against the same at = 0 in Fig. 6.14.
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Fig. 6.14: The centerline density (at y = 50) of the bubble at the steady state is compared

with the specified initial density. (Lee-Fischer LB model)

Table 6.3: Results for a single bubble simulation in a periodic domain

Parameters t=0 t=100,000
Bubble radius 20 19.4
{1.0, 0.1} {0.992094, 0.0925}

(a) Liquid & vapor density ) )
Density ratio = 10

Density ratio = 10.725

o . {1.0,0.01} {0.991303, 0.0348}
(b) Liquid & vapor density
Density ratio = 100 Density ratio = 28.48
{1.0, 0.001} {0.991208, 0.00044}

(¢) Liquid & vapor density
Density ratio = 1000

Density ratio = 2252.74

In our LB simulations, a bubble (or droplet) is initialized using the analytical results
for a planar interface. This form of initialization does not correspond to the equilibrium (or
steady state) density profile due to the curvature effects. In order to quantify and analyze such
curvature effects due to the radius R, several simulations are performed with increasing

bubble radius R and keeping the size of the periodic computational domain fixed. It is
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observed that the steady state liquid and vapor densities as well as the steady state radius R
differ from their corresponding initial values. As can be seen from the Figs. 6.15-17, this
difference gets reduced for larger bubble sizes in the same size computational box. Reason
for this trend is that as we increase the radius R of a bubble, its curvature gets decreased and
hence, the system gets closer to a system with planar interface, and therefore, the difference

from the initial state gets reduced.

The results for the variation in steady state liquid and vapor densities as a function of
steady state radius of bubble are shown in Fig. 6.16. As the bubble radius is increased, the
densities asymptotically approach the corresponding planar interface values. Results for the
effect of increasing initial bubble radius on its steady-state shrinkage are shown in Fig. 6.17.

It 1s observed that a bubble shrinks more if it has a lower initial radius.

Note that, most of the lattice Boltzmann models for the two-phase simulation come
equipped with an inherent ‘artificial’ surface tension in the model, which has to be
determined from numerical experiments. Using the Lee-Fischer LB model, one can now
eliminate the artificial surface tension of the LB model. Zero artificial surface tension can be
tested by performing a LB simulation in which a bubble is initialized in a square shape with
the surface tension parameter x equals to zero and the parameter D equal to 3. Simulation
results show that in the absence of any surface tension, the bubble does not acquire a circular
shape when evolved in time. The shape and size of the bubble does not change from its initial
state even after more than 100,000 LB time steps. This confirms the absence of any artificial

surface tension in the Lee-Fischer LB model.
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p, =0.993578 p; =0.996154 p, =0.997188

p, = 0.0938422 p, = 0.0962499 p, = 0.0972401
R=20— 17.6 R=30— 29.1 R =40 — 39.55

) A5 )
X

p; =0.997751 p, =0.998124 p; =0.998391
p, = 0.0977844 p, = 0.0981474 p, = 0.0984085
R =50 — 49.75 R=60 — 59.8 R=70— 69.85

Fig. 6.15: Effect of increasing vapor bubble size in a fixed periodic computational domain.
The initial densities for liquid and vapor phases are chosen to be 1.0 and 0.1 respectively.
Different panels show the steady state (at LBM ¢ = 500000) shapes of vapor bubbles. The
steady state liquid and vapor densities are listed below each panel. Also, the change from
initial to steady-state radius of the bubble is shown for each case. Vapor and liquid phases are

shown by blue and red color, respectively. (Lee-Fischer LB model)
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Fig. 6.16: Effect of increasing bubble radius R on steady state liquid and vapor densities.
Notice that as R increases the change in steady state liquid/vapor densities from the
corresponding initial densities (which are based on the planar interface results) decreases.

(Lee-Fischer LB model)
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Fig. 6.17: Effect of increasing radius on the shrinkage of bubble from its initial state. Radius
of a bubble shrinks less for larger bubbles in a fixed computational domain. (Lee-Fischer LB

model)
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6.4 Simulation of coalescence of two bubbles/droplets

Coalescence of bubbles or droplets arises in many physical situations including
boiling, rain, emulsions, ink-jets and many of the two-phase scenarios. It is particularly
important in Boiling Water Reactors (BWR) where vapor bubbles generated near the
cladding surface coalesce to form larger bubbles and complex flow regimes, and droplets in
the vapor stream coalesce with other droplets or the liquid films on the cladding. These
phenomena cannot be modeled explicitly by the sub-channel or even CFD codes currently
used to analyze reactor thermodynamic phenomena. In this section, we show that the LBM

can be used to capture the fundamental aspects of the coalescence phenomena.
6.4.1 Experimental observations and results

When two bubbles or drops come in contact, a connecting bridge of the corresponding
phase (vapor for bubbles and liquid for drops) initially forms between the two (Li, 1996;
Martula et al., 2003; Ribeiro & Mewes, 2006). Experimental images for coalescence of two
water droplets are shown in Fig. 6.18. This bridge then gets rapidly pulled out by the surface
tension force. The speed by which the bridge widens is dictated by the competition between
the capillary forces driving the coalescence and the viscous forces slowing it down (Chen &

Chung, 2002).

The competition between viscous and inertial forces that govern the coalescence

dynamics can be characterized by the Reynolds number:

Pl — 1%
Re=—#*/ (6.42)
7

where p is the density of the drops, 7, is the radius of the connecting bridge (characteristic
. . . . S o .
size), o is the surface tension and g is the dynamic viscosity. Here, — is usually called the
U

capillary speed (characteristic speed).
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Fig. 6.18: Coalescence of two water drops. Eight consecutive images taken at 11.2 frames
per second at a resolution of 256 x 256 pixels. The image size is 5.12 mm by 5.12 mm and

initial radius of each drop is 2 mm. (Aarts et al., 2005)

It has been confirmed experimentally that the cross-over between viscous and inertial
coalescence happens at Re =1 the viscous coalescence is observed for Re <1 and inertial
coalescence for Re >1 (Aarts et al., 2005). Cross-over junction of Re =1 sets a characteristic
time and length scale beyond which inertial dynamics becomes dominant. These cross-over

scales are given by:

7
] = 6.43
oo (6.43)
,U3
t, = o (6.44)

For water, [, [l 15nm , ¢, 1 100ns and for mercury, /, [1 0.4nm (Eggers, 1997).

In the beginning of the coalescence process, the bridge radius 7, is always small and
so is the Reynolds number Re, irrespective of other fluid properties. At this stage, the

viscous forces are dominant until growing 7, takes over the cross-over length scale /. After

that, for the rest of the dynamics, the merging process is dictated by the inertial forces.

For a pure viscous coalescence of two droplets, the radius of liquid bridge increases

linearly with time, however, it varies as a square root of time for inertial coalescence (Aarts et
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al., 2005; Duchemin et al., 2003; Menchaca-Rocha et al., 2001). We can observe pure viscous

coalescence in experiments by either significantly increasing the viscosity or significantly

decreasing the surface tension of the drops.

For merging of high viscosity drops (or drops with very low surface tension), viscous

coalescence is the dominant process. To study the temporal evolution, the bridge radius 7,

and the time 7 can be non-dimensionalized as:
7
k=t (6.45)
RO
po=L (6.46)

where R, is the individual drop radius (which are assumed to be same for both the drops) at ¢

=0, and 7, is called the viscous time, given by:
(6.47)

Experimental results in Fig. 6.19 show that plotting »* with respect to ¢* gives a straight
line passing through the origin with a slope of 0.55+0.06 which means that the starting
speed of the liquid bridge (or neck) is close to half the capillary speed (Aarts et al., 2005).

For merging of low viscosity drops (e.g., water drops in ambient conditions), inertial

coalescence is the dominant process. To study the temporal evolution, bridge radius 7, and

time ¢ can be non-dimensionalized as:
7
k=t (6.48)
RO
t
*f=— (6.49)
T

where R, is the individual drop radius (which is assumed to be same for both the drops) at ¢ =

0, and 7, is called the inertial time, given by:

3
r = |2 (6.50)
(o2
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Fig. 6.19: Variation of the non-dimensional bridge radius »* with respect to the non-
dimensional time ¢* for high viscosity fluids. Different symbols represent different viscosity
values; squares: 100 mPa s, circles: 300 mPa s, triangles: 500 mPa s, plusses: 1 Pa s. The

solid line has a slope of 0.55. (Aarts et al., 2005)

Experimental results in Fig. 6.20 show that plotting »* with respect to NE gives a
straight line passing through the origin with a slope of 1.09+0.08 (for water), 1.03+0.07
(water-glycerol mixture) and 1.2940.05 for methanol (Wu et al., 2004). We note that, in
these experimental results, £ = 0 is the moment when both the drops started touching each
other physically. In simulations, one has to consider this when comparing results with the

experimental data.
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Fig. 6.20: Variation of the non-dimensional bridge radius »* with respect to the non-
dimensional time ¢* for low viscosity fluids. Different symbols represent different viscosity
values; Open squares: water, circles: 5 mPa s, triangles: 20 mPa s, filled squares: 50 mPa s.

The solid line has a slope of 1.2. (Aarts et al., 2005)
6.4.2 LBM simulations

A 2D LBM simulation is performed using a D,Qq lattice, in which, two stationary
(liquid) droplets, each of density 1, are initialized such that they are in thermodynamic
equilibrium with the vapor phase of density 0.0025 (see Fig. 6.23). A periodic box of size
600 x 1600 [u (lattice units) is chosen for the simulation. Both the droplets are assumed to be
of the same radii equal to 200 /u and are separated by a minimum spacing of 4 [u. Surface
tension of fluid is specified as 0.005 (in LBM units). LBM relaxation times for both the liquid
and vapor are taken as 0.001 and 0.5, respectively. The interface thickness in LBM
formulation is taken as equal to 4 /u initially. The kinematic viscosity v of the liquid and
vapor are related to their corresponding relaxation times 7 by v =7/3. The temporal

evolution of the above specified system of two droplets is shown in Fig. 6.21 (a) to (h).
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LBM Time =10 LBM Time = 1000 LEBM Time = 3000 LBM Time = 5000

(b) (©) (d)

LEM Time = 10000 LBM Time = 20000 LBM Time = 40000 LBM Time = 80000

(e) (2 (h)

Fig. 6.21: LBM simulation of coalescence of two stationary (liquid) droplets each of radius
200 [u (lattice units) and initially separated by 4 lu (see (a)). Due to the intermolecular
attraction, a liquid bridge is initially formed between the two drops (see (b)) which then
widens due to the presence of surface tension (see (c) to (h)) and later minimizes its surface
energy by minimizing the perimeter, for the above 2D simulation, of the liquid region to
achieve the steady state in a shape of circular drop (not shown in figure). Simulations are
performed in a box of size 600 x 1600 grid points. Other parameters of the simulations are: ¢

=0.005,g2=0, 7, =0.001, 7, =0.5, p,=1.0 and p, =0.0025 .(Lee-Fischer LB model)
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Fig. 6.22: Variation of the non-dimensional bridge radius »* with respect to the square-root

of the non-dimensional inertial time v#* for low viscosity fluids. Good agreement between
the LBM simulation results (pink squares connected by a line) and experimental data for

water drops of various radii (taken from Wu et al., 2004) is observed. (Lee-Fischer LB

model)
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Fig. 6.23: Time evolution of the liquid bridge radius. The qualitative variation is in good
agreement with the ones seen in experiments by Aarts et al. (2005) and Menchaca-Rocha et
al. (2001). (Lee-Fischer LB model)
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Fig. 6.24: Coalescence of two stationary (vapor) bubbles of radii 200 /u which are initially
separated by 4 /u distance equal to the equilibrium interface thickness parameter D (see (a)).
Due to the intermolecular attractions, a vapor bridge is initially formed between the duo (see
(b)) which then widens due to the presence of surface tension (see (c), (d) and (e)) and later
minimizes its surface energy by minimizing the perimeter of the vapor region (see (f), (g) and
(h)). Simulations are performed in a box of size 600 x 1600 grid points. Other parameters of

the simulations are: 6 =0.005,g=0, 7, =7, =0.5, p,=1.0 and p, =0.1.(Lee-Fischer LB
model)
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The radius of the liquid bridge 7, varies proportional to oc Jt and the corresponding

variation in non-dimensional terms is shown in Fig. 6.22 for both, simulation results and
experimental data for droplets of different radii. Reasonably good agreement between the two
highlights the modeling capability and applicability of the LBM for such fundamental
simulations. It is intended that these validation studies will be followed by more complex
LBM simulations of boiling phenomena relevant for BWRs in the future. In Fig. 6.23,
evolution of the liquid bridge radius is plotted in the LBM time scale. The variation shows
good qualitative agreement with the results reported in the literature. In Fig. 6.24, simulation
results for the coalescence of two (vapor) bubbles are presented. Parameters for the

simulations are provided in the caption of the figure.

We note that 3-D calculations, which capture more accurately the geometry of the
inter-phase surface and associated forces but require substantially larger computational
resources, are expected to further improve the results of coalescence simulations. In Fig. 6.25,
we present coalescence results for a 3D simulation on a coarse grid. Results are in good

qualitative agreement; however, finer grid is necessary for better quantitative accuracy.

888000

(a)t=0 (b)t=200  (c)t=600 (d)t=800 (e)t=1800  (f)t=4600

Fig. 6.25: Coalescence of two stationary bubbles of radii 15 /u which are initially separated
by 3 /u distance equal to the equilibrium interface thickness parameter D. Simulations are
performed in a periodic box of size 60 x 60 x 80 grid points. Other parameters for the

simulation are: a = 9/8, b =1/3, T =0.95, p, =1.46173, p, =0.579015, 6 = 0.005, g =0,

7, =7, =0.5. (AILB model with no scaling)
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6.5 Simulation of the Rayleigh-Taylor instability

When a fluid of higher density is placed on top of a fluid of lower density in the
presence of gravity, the interface between the two fluids is inherently unstable. Any
disturbance to the interface tends to grow leading to the penetration of both fluids into each
other and result in mixing. This phenomenon is called the Rayleigh-Taylor instability (Sharp,
1984; He et al., 1999a,b).

As an additional test of the capabilities of the LBM, a two-dimensional simulation of
Rayleigh-Taylor instability has been carried out using LBM. Computational domain is a two-
dimensional box of size 500 x 1000. No-slip boundaries are applied at the Top and the
Bottom walls. Periodic boundaries are applied at the side boundaries. Kinematic viscosities of
both the fluids are assumed to be same by choosing the relaxation times for both the fluids
equal to 0.5. Following parameters are used in the simulation: surface tension ¢ = 107,

gravity g= 107, heavier fluid density p,= 1.0, lighter fluid density p, = 0.5, channel width

W =500, relaxation times 7, =7, = 0.5, kinematic viscosities v, =v, =tRT =0.16667 .

Choosing the channel width W as the length scale and 7= (/W / g as the time scale,

we can calculate the non-dimensional Reynolds number Re and the Atwood number 4 as

follows:

re=(J72)",

A:p/_pv

pl + pv
For the simulation parameters, we have 7= 7071, Re =212 and 4 = 0.3333.

At time t = 0, a single-mode y-directional perturbation is applied to the location of the
interface. Initially, the perturbation grows with the heavier fluid displacing downwards in the
form of a symmetrical blob. As time increases, the heavier fluid develops two side spikes and
hits the Bottom wall. After hitting the Bottom wall, the heavier fluid again develops two
more side spikes which ultimately gets stretched and forms very complicated dynamical

patterns.
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T=7.07 T=8.48

T=9.89 T=11.31 T=12.73 T=14.14 T=15.55

Fig. 6.26: A two-dimensional simulation of the Rayleigh-Taylor instability. Evolution of the
fluid interface from a single-mode perturbation at different times is shown. Red colored fluid
represents the heavier fluid and the blue represents the lighter fluid. Parameters for the

simulation are: 6 = 0.001, g =107, 7, =7, =0.5, p, =1.0 and p, =0.5. Time 7 is measured

in the units of \/W / g . (Lee-Fischer LB model)

6.6 Deformation and break-up of a bubble by shear forces

Flow-induced deformation of bubbles (or droplets) happens in many physical
scenarios. The simplest problem to numerically study the bubble deformation is to place a 2D
bubble at the center of a computational box and apply the shear forces by moving the
enclosing walls of the box in the opposite directions. The box can be assumed to be periodic
in one direction and surrounded by walls in the other. Due to the opposite movement of walls,
the bubble at the center experiences opposite shear forces and deforms accordingly. Due to
the continuing shear deformation, the bubble ultimately breaks up. The LBM simulation

results are shown in the Fig. 6.27. Parameters for the simulation are listed in the caption of
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the figure. Qualitatively, the results are in good agreement with the experimental
observations. Simulation results using the scaled AILB model in 2D and unscaled AILB

model in 3D are shown in Figs. 6.28 and 6.29, respectively.

t=10,000 t=20,000

t=40,000 t=60,000

Fig. 6.27: Two-dimensional simulation for a bubble deforming (leading to break-up) in shear
flow. Parameters for the simulation are: D =3, p,= 1.0, p,,=0.5,R=50,06 = 10-3. (Lee-
Fischer LB model)

()

t=5,000 t=10,000 t= 20,000
(@) (b) (©) (d)
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Fig. 6.28: Two-dimensional simulation for a bubble deforming (leading to coalescence at its

edges due to periodicity of the domain) in shear flow. Parameters are: 200 x 200 periodic

box, Tr =0.6,a=9/8,b=1/3, p/=2.31156, p;"=0.0597781,0 =0.025, D =3, S,=0.05,

v

Unorin = 0.05, Uspusn= - 0.05. (Scaled AILB model)

Fig. 6.29: Three-dimensional simulation for a bubble deformation (leading to coalescence at
its edges due to periodicity of the domain and forming of a cylinder shape) in shear flow.
Simulations are performed in a periodic box of size 60 x 60 x 60 grid points. Other

parameters for the simulation are: a = 9/8, b=1/3, Tr =0.95, p, =1.46173, p, =0.579015, R
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=20 lu, 6=0.005,g=0, 7, =7, =0.5, D =3, Upyp = 0.05, Usouiom= - 0.05. (AILB model with

no scaling)

6.7 Simulation of wall contact angle(s)

In this section, we show the ability of the proposed LB method to capture different
contact angles in the vicinity of a wall surface. Usually the equilibrium contact angle for a
given wall surface and a given fluid is known based on the experimental observations.
Therefore in the LB simulations, the contact angle is pre-specified and assumed as a property

of the adjoining wall.

Initialization

Fig. 6.30: Different equilibrium shapes and contact angles (from 0° to 180° can be simulated
for a bubble (or droplet) in the vicinity of a wall surface. The value of the equilibrium contact

angle is assumed to be a property of the adjoining wall and therefore is pre-specified in the
LB simulation. Other parameters for the simulation are: p, = 1.0, p,,= 0.1, R =50, 6 = 10'3, g
= 0. (Lee-Fischer LB model)
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Equilibrium shapes of a bubble attached on a wall surface corresponding to different
equilibrium contact angles are shown in Fig. 6.30 (Lee-Fischer LB model) and Fig. 6.31
(Scaled AILB model). It can be seen that any equilibrium contact angle, ranging from 0°
(complete wetting, i.e. wall has no affinity with the vapor) to 180° (complete non-wetting i.e.
bubble tends to spread completely on the surface), can be simulated using the proposed LB
method. Different equilibrium shapes in the figures are steady state results which evolved

from the same initial condition.

(©) (d)

(e)
Fig. 6.31: Using the AILB model different equilibrium shapes and contact angles (from 0° to

180 can be simulated for a bubble (or droplet) in the vicinity of a wall. Parameters for the

simulation are: N-S walls, domain size = 400 x 120, reduced temperature 7z = 0.6, a = 9/8, b
=1/3, pj"=2.31156, p;"=0.0597781, o =0.025, D = 3, scaling factor S, = 0.01, initial
radius R = 30, and density contours are at time # = 20,000 [u. (a) 6, =0, (b) 6, =7z/4, (c)

0,=xr/2,(d) 6,=37/4,(e) 6, =r.(Scaled AILB model)

At time 7 = 0, a vapor bubble (vapor is shown by blue color in the figures) is
initialized in a two-dimensional computational box. The vapor bubble is surrounded by a
liquid (liquid is shown by red color in the figure). The interfacial region between the liquid
and the vapor phase is initialized using a hyperbolic-tangent profile. [Note that a hyperbolic-

tangent profile in the interfacial region comes from the analytical result for a planar interface;
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however, it can still be used for the purpose of defining a suitable initial condition when the

interface is non-planar (circular or spherical).]

2m
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1m t = O
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t= 20,000
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2m
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@ t= 70,000
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Fig. 6.32: Time sequence of topological changes in the shape of a bubble in contact with a
wall surface. The equilibrium contact angle at the wall is pre-specified to be equal to 180°in

the LB simulation. Other parameters for the simulation are: p, = 1.0, p,,=0.1,R =50, o=

10-3, g =0. (Lee-Fischer LB model)
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t=10,000

t= 30,000

t = 50,000

t = 500,000

Fig. 6.33: Time sequence of topological changes in the shape of a bubble in contact with a
wall surface. The equilibrium contact angle at the wall is pre-specified to be equal to 90° in

the LB simulation. Other parameters for the simulation are: p, = 1.0, p,= 0.1, R =50, ¢ =

10-3, g = 0. (Lee-Fischer LB model)

Time sequence of topological changes for the equilibrium contact angles equal to 180°
and 90° are shown in the Figs. 6.32 and 6.33, respectively. The vapor bubble is initialized
close to the wall surface and the initial separation between the mean density contour (located
inside the interfacial region) and the wall surface is kept equal to the parameter value
defining the interfacial thickness, i.e. D. [Note that one may not see any interaction between
the bubble and the wall surface if the bubble is not placed near the surface. The critical
separation distance (below which bubble interacts with the wall and above which it does not)

is usually close to the value of D.]. Of course, one can always initialize a bubble to be on the
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wall surface and make any initial contact angle. The system will evolve in time such that the
initial contact angle will approach the specified contact angle on the wall in the steady state.
It is observed in the simulations that there is a rapid movement of contact line during the
initial evolution period. Afterwards, the contact line settles down to reach its equilibrium
shape by minimizing the free energy of the system and obtain the equilibrium contact angle

in the steady state.

Results for the simulations of prescribed contact angles in 3D are shown in Figs. 6.34

and 6.35.

o o
# = *m:n
A 10 ) 30
Y

(@) t=0 (b) £ = 400

o
§0
20
i W0 20 3
Y

(c) t=2000 (d) t=8000

0

o 10 o

Fig. 6.34: 3D simulation of topological changes in the shape of a bubble in contact with a
wall surface with a prescribed 90° contact angle. Parameters for the simulation are: Size 60 x

60 x 60 (figure shown on half scale), o =0.005, R =15, D =3, Tz = 0.95, density ratio =
252, p,,=1.46173, p,,=0.579015, density contour of p =1.0 is shown. (AILB model with

no scaling).
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(@) t=0 (b) t=2800

x bl

(c) t=1,400 (d) t=4,000

Fig. 6.35: 3D simulation of topological changes in the shape of a bubble in contact with a
wall surface with a prescribed 180° contact angle. Parameters for the simulation are: Periodic

domain, Size 60 x 60 x 60 (figure shown on half scale), o= 0.005, R=15,D =3, TR =0.95,

density ratio = 2.52, p, =1.46173, p, = 0.579015, density contour of p=1.0 is shown.

(AILB model with no scaling)

6.8 Bubble detachment from a wall surface

To further test the capabilities of the scheme and code developed, a simulation of
bubble detachment from a wall surface is carried out. The bubble is initialized at the Bottom
wall which is specified to have an equilibrium contact angle equal to 45°. Due to the gravity
and the density difference, the bubble experiences an upward buoyancy force which leads to
its shape deformation and a lift-off from the wall surface. Once the bubble gets freed from the
wall, its shape deforms again due to the balancing actions of the buoyancy and the viscous

drag forces from the surrounding liquid. Ultimately, the bubble acquires a terminal shape and
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a terminal rise velocity in the quiescent liquid. Results for the simulation are shown in Fig.

6.36. Corresponding parameter values for the simulation are shown in the caption.

< 100 150 @ 100 1“0 2m E] 100 50 20
X x x

t = 50,000 t= 100,000 t= 160,000

El 00 50,
x

t= 180,000 t=210,000 t= 230,000 t=300,000 t=400,000

2m El 10g 150, 2m| a 100 150, 21 Ed] o0 50, am
X x x

Fig. 6.36: Bubble detachment from a wall surface due to buoyancy. Parameters for the
simulation are: p,;=1.0,p,=0.1,R=50,6= 10‘3, g= 10° and GS= 7/4. Red colored fluid

represents the liquid phase and the blue represents the vapor phase. (Lee-Fischer LB model)

For a slowly growing bubble on a heated surface, the critical size of the bubble at the
instant of departure is a function of buoyancy force (which attempts to detach the bubble
from the surface) and the surface tension force (which prevents the bubble from detachment).

Fritz (1935) proposed a relationship between the departure diameter of the bubble D, and

D, o0, /L (6.51)
g(pl _pv)

where 6, is the contact angle, o is the surface tension, g is gravity and p,, p, are the

abovementioned forces, which is:

densities of the liquid and vapor phases, respectively. Recently, Yoon et al. (2001) found the
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same dependence in their numerical simulations which uses a N-S equation based mesh-free

numerical method for two-phase flows.

6.9 Single rising bubble in a quiescent liquid

Though the problem of a single rising bubble in stationary liquid has been studied for
quite a while (Harmathy, 1960; Bugg et al., 1998; Sankaranarayanan et al., 1999; Chen et al.,
1999; Takada et al., 2001; Yang et al., 2002; Frank et al., 2006; Kurtoglu & Lin, 2006; Hua
& Lou, 2007; Mukundakrishnan et al., 2007; Li et al., 2008; Hysing et al., 2008; Gupta &
Kumar, 2008), questions still remain about the flow field surrounding the bubble. There have
been some experimental studies employing hydrogen tracer-bubble technique to observe the
streamlines of the flow around a rising bubble. The experimental results for a single rising
bubble are usually communicated through some non-dimensional parameters which

characterize the rising bubble dynamics. They are:

Reynolds number:

— plDeUt
H

Re (6.52)

where p, and g, are the density and the dynamic viscosity of the continuous phase (liquid)

respectively, and U, is the terminal velocity of the rising bubble. D, is the characteristic

length scale which is equivalent to the effective bubble diameter and is calculated as follows:

e Volume equivalent diameter (for experiments or in 3D simulations):

D, = (ﬂj (6.53)

T

e Area equivalent diameter (for a 2D bubble in simulations):

D, = \/@ (6.54)
T

where J and A4 are the volume and the area of the bubble (dispersed phase) respectively.

Eotvos (Bond) number:

2
Eo=88PD. (6.55)
o
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where o is the surface tension of the two-phase system, Ap is the density difference
between the continuous and the dispersed phase, i.e. ( P — pv) and g is the gravitational

acceleration.

Morton number:

4
Mo =S8H2P (6.56)
P o

6.9.1 Experimental observations and results

The terminal shape of a single rising bubble for a range of non-dimensional numbers,
defined above, were experimentally observed by Bhaga and Weber (1981). They
photographed the rising bubble using a camera that moved upward at the same speed as the
bubble. The flow field surrounding the bubble was visualized using hydrogen bubbles tracing
technique. Observed terminal shapes of bubble were classified into several categories
(spherical, oblate ellipsoid, disk-like, spherical cap with or without wakes, skirted, etc.).
Based on these observations, a shape-regime map was constructed in the space of the

Reynolds, Eotvos and Morton numbers and is shown in Fig. 6.37.

From experiments of Bhaga and Weber, it was observed that small bubbles with low
Reynolds and Eotvos numbers (Re <1 and Eo <1) remain spherical in shape and rise
steadily in a straight path. Larger bubbles with intermediate Reynolds and Eotvos numbers (
1<Re <100 and 1< Eo <100) are deformed from their spherical shape and acquire oblate
ellipsoid, disk-like, oblate ellipsoidal cap, skirt bubble, and spherical-cap type shapes during
their terminal rise. Usually, the bubbles have indentation (or dimple) at their base due to the
closed toroidal wake accompanying the bubble. Note that bubbles in this regime still maintain
their straight rising path inside the liquid. For higher Reynolds and Eotvos numbers (

100 < Re <1000 and 100 < Eo <1000 ), bubble shapes become toroidal and turbulent wakes
develop behind the bubble that leads to unsteady bubble motion. In this case, the bubble may
rise in a wobbly path, oscillate about its mean shape and may even break-up. Several
photographs of rising air bubble in aqueous sugar solutions for different Reynolds, Eotvos

and Morton numbers are shown in Fig. 6.38.
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Fig. 6.37: Experimentally observed shape regime map of a single rising bubble in a quiescent
liquid. s, spherical; oe, oblate ellipsoid; oed, oblate ellipsoidal (disk-like and wobbling); oec,
oblate ellipsoidal cap; scc, spherical cap with closed, steady wake; sco, spherical cap with
open, unsteady wake; sks, skirted with smooth, steady skirt; skw, skirted with wavy, unsteady

skirt. (Bhaga and Weber, 1981)
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Fig. 6.38: Photographs of air bubbles from experiments conducted in aqueous sugar

solutions. (Bhaga and Weber, 1981)
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When a low-density fluid (gas) is inserted into a high-density fluid (liquid, p, > p,),

the lighter fluid forms a bubble and the density difference between the duo builds a hydraulic
pressure difference across the bubble and consequently, an upward buoyancy force is exerted
on the bubble. As a result, the bubble accelerates as long as the upward buoyancy force is
greater than the slowing-down drag force caused by the surrounding liquid. At the same time,
the shape of the bubble also gets deformed and the bubble attains a terminal velocity once the
buoyancy force (characterized by the bubble size and the density difference between two
fluids) and the drag force (characterized by the bubble shape and the fluid viscosity) get

balanced.

Due to initial upward acceleration of the bubble, a liquid flow field surrounding the
bubble sets in and leads to a higher pressure gradient at the bottom surface of the bubble. Due
to which a liquid jet forms underneath the bottom surface of the bubble. This jet pushes the
bottom surface of the bubble upwards and results in the formation of a dimpled bubble. The
upper surface of the bubble is pushed outward due to this jet formation and results in a nosed
shape. Of course, the magnitude of bubble’s deformation depends upon the density difference
between the two fluids, the surface tension and viscosity of both fluids. Due to the
deformation in bubble shape, the interface curvature is changed and consequently the surface
tension force also changes. Since the surface tension force tends to minimize the deformation
and tends to maintain the bubble in a spherical shape, there is competition between the
surface tension force and the forces due to the jet formation. A high Reynolds number (large
acceleration of bubble) and high Eotvos number (low surface tension) means a stronger liquid
jet will form underneath the bubble and the deformation will be high. Ultimately, the relative
strength between the liquid jet and the surface tension force determine whether the
continuously deforming bottom surface approaches the upper surface of the bubble and

results in a break-up of the bubble.

6.9.2 Results obtained using the Lee-Fischer LB model

In Fig. 6.39, results for the two-dimensional Lee-Fischer LB simulation of a single
rising vapor bubble in a quiescent liquid are shown at different times. The computational
domain consists of 200 x 1000 lattice points. No-slip LB boundary condition is specified on

the Bottom and Top walls of the domain. Side boundaries are assumed to be periodic. A
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bubble of radius R = 50 is initialized at ¢ = 0 to be of circular shape (in 2D) and located
slightly above (about two bubble diameters) the Bottom wall in order to reduce the possible
wall-bubble interactions. Initially, both liquid and bubble are assumed to be stationary. Due
to density difference between the vapor and the liquid phase and the presence of gravity, an
upward buoyancy force acts on the lower-density bubble. The bubble moves upward and a
liquid flow surrounding the bubble sets in due to the bubble’s movement. This deforms the
shape of the bubble from circular to 2D-oblate ellipsoidal. The deformation in bubble’s shape
is a natural consequence of the fluid flow fields (the wake below the lower surface and the

recirculation on the sides).

1000 1000 1000 1000 1000 1000
800 800 800 800 800 800
600 600 600 600 600 600
> > > > > >
400 400 400 400 400 400
200 200 200 200 200 200
200
t=10,000 t= 30,000 t= 50,000 t=70,000 t=90,000 t= 110,000

Fig. 6.39: The evolution of a single rising bubble in a quiescent liquid. Parameters for the

simulation are: p, = 1.0, p),= 0.25, R=50, 5 =5 x 10-3, g=107. (Red: liquid; blue: vapor.)

(Lee-Fischer LB model)

The rising bubble is assumed to acquire a terminal shape when its area-averaged (in

2D) velocity attains a near-constant value, which for this simulation is found to be at nearly t

= 70,000 time steps. The terminal shape and the streamlines of flow around the bubble are

shown in Fig. 6.40 (a, b) in both the laboratory and the bubble’s reference frame. The

terminal shape from the LB simulations agrees well with the generalized shape regime map

by Bhaga and Weber (1981) for the non-dimensional parameters of the simulation.
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In Fig. 6.41, the variation in bubble rising velocity with time is plotted. Both the area-
averaged velocity and the maximum fluid velocity in the bubble region are shown. It can be
observed that bubble initially accelerates due to the dominance of the buoyancy force over
the flow resistance drag. When the bubble approaches its terminal shape its rising velocity

also approaches a near-constant value.

LEM Time = 70000 LBM Time =70000

0 200

X X
(a) (b)

Fig. 6.40: Terminal shape (oblate ellipsoidal) of a rising bubble and corresponding velocity
stream lines after 70,000 LB time steps: (a) in the laboratory reference frame; and (b) in the

bubble’s reference frame. Parameters for the simulation are: p, = 1.0, p,,=0.25,R=50,6=5
x 1073, g=107, 7,=7,=0.5, Lxx Ly =200 x 1000. (Red: liquid; blue: vapor.) Non-
dimensional parameters are: Reynolds number, Re = 12.0; Eotvos number, Eo = 15.0 and
Morton number, Mo = 0.046. Terminal velocity U, is taken to be 0.02. The predicted shape

agrees well with the corresponding shape in the regime map of Bhaga and Weber (1981).
(Lee-Fischer LB model)
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Fig. 6.41: Time variation of the upward velocity of a single vapor bubble in a quiescent
liquid. Both the maximum velocity (maximum fluid velocity in the bubble region) as well as
the area-averaged velocity of the bubble are shown in the figure. Simulation parameters are

same as in Fig. 6.40.

In order to study the effects of the location of the Top wall on the bubble’s rise and
terminal velocity, several simulations have been performed with different sizes of the
computational domain. Increasing the height of the domain from 1000 to 2000 grid points did
not have significant effect on the bubble’s rise velocity indicating that the Top wall has a
minimal effect on bubble’s motion when bubble is sufficiently far away from it. Upward
velocity of the bubble is plotted as a function of time for three different domain sizes and two
gravity values in Fig. 6.42(a, b). Other parameters of the simulation are listed below the

figure.

Further simulations are performed to study the effect of increasing buoyancy force on
the terminal shape and the rise velocity of the bubble. Results are presented in Fig. 6.43
which are in good qualitative agreement with the experimental observations (see Fig. 6.44).
An increase in gravity corresponds to increase in buoyancy force which leads to a higher
initial acceleration and a higher terminal velocity. The deformation in the shape of the bubble
is also larger for higher values of gravity which may ultimately lead to break-up of a bubble

into two satellite bubbles as shown in Fig. 6.45.
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Fig. 6.42: Effect of Top wall on rising velocity of a single vapor bubble in a quiescent liquid
for three different domain sizes (Lx x Ly). Both the maximum velocity and the area-averaged
velocity of the bubble are shown in the figure. Simulation parameters are same as in Fig.

6.40.
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Fig. 6.43: Effect of increasing gravity (or buoyancy force) on rising velocity and terminal
shape of a single vapor bubble in a quiescent liquid. Velocities are averaged over the area of

the bubble. Simulation parameters are same as in Fig. 6.40. Application of gravity based
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conversion between lattice and physical units (see Appendix G, section G.1.2) show that
different gravity values in the figure correspond to different spatial grid sizes (in physical
units), which leads to the following bubble diameters in the figure: (a) 2 mm, (b) 2.5 mm, (c)
3.19 mm and (d) 3.65 mm.
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Fig. 6.44: Different bubble shapes shown in Fig. 6.43 are in good agreement with the
experimental shape regime map of Bhaga and Weber (1981).
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Fig. 6.45: Break up of a single rising vapor bubble in a quiescent liquid. Parameters for the

simulation are: p, = 1.0, p,,=0.25,R=50,06=5x 10'3, g=15x 107, Lx x Ly =600 x 1000.
p] Pv

(Red: liquid; blue: vapor.) (Lee-Fischer LB model)

6.9.3 Results obtained using the AILB model

3D simulation results obtained using the AILB model are shown in Fig. 6.46 for a

density ratio of 2.52. A coarse grid of 60 x 60 x 60 is used in the 3D simulation. Results are

in good qualitative agreement with the experimental observations. Two dimensional results at

a higher density ratio of ~ 40 are shown in Fig. 6.47. As expected, deformation increases as

the value of gravity is increased in the simulations (from (a) to (e)).
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¥

LEM Time = 10000
ki

Fig. 6.46: 3D simulation of a single rising bubble. Parameters for the simulation are: Periodic

domain, size 60 x 60 x 60 (figure shown on half scale), o= 0.005, R =15, D =3, Tr = 0.95,

density ratio = 2.52, p, =1.46173, p, = 0.579015, density contour of p =1is shown.

Result are shown at =0 and 10,000. (AILB model with no scaling).
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(a) (b) (©) (d) (e)

Fig. 6.47: Simulation of a rising bubble in a quiescent liquid. Parameters for the simulation

are: North-South walls, 200 x 400, T = 0.6, a=9/8,b=1/3, p/*=2.31156, p)"=
0.0597781, 7, =0.5, r, =0.1,0 =0.025, D =3, Sf= 0.05, shapes at £ = 20,000, R = 50; (a) g

=0.1x107,(b)g=0.2x107,(c)g=0.5x107, (d)g=0.75x 107, (¢) g =1x 10, (Scaled
AILB model)

6.10 Some guidelines to avoid shrinkage of the dispersed phase

Approach to equilibrium in the Gibbs-Duhem equation based LB models is driven by
the gradient of chemical potential which is similar to the Cahn-Hillard diffusion in the phase-
field based methods. Since the LB model is governed by an overall optimization of free
energy, it is susceptible to violate mass conservation of the two phases. For example, in a
simulation of single bubble (or droplet), it is possible that the total free energy of the system
is reduced if the bubble shrinks while simultaneously drifting the bulk densities away from
their initialized values. In the shrinking process, the interfacial energy is reduced at the
expense of an increase in the bulk energy which is permissible in the Cahn-Hillard
framework. This, however, could result in violating mass conservation for the bubble.
Theoretical analysis of the drops’ spontaneous shrinkage and its impact on mass conservation

in phase-field simulations are discussed in Yue et al. (2007).
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Based on the observations from the numerical experiments and the phase-field two-

phase models, some guidelines to avoid significant mass loss from the LB system are

suggested below:

In the simulations, use of a very large computational domain relative to the
dispersed phase should be avoided. If the volume ratio (volume of
computational box divided by the volume of bubble) is very high, the bubble
is susceptible to significant shrinking. Bubbles below a certain critical radius
may even disappear when evolved in time due to this reason.

The Cahn number should be small (i.e. Crn << 1). Cahn number is defined as

D . . . . .
Cn =—, where D is the interface thickness parameter and 7, is the radius of a

0

bubble (or drop). Usually, choosing a value of D below 3 results in deformed
interfaces, therefore, one should avoid choosing a very small number for D.
Therefore, a larger radius of the bubble should be chosen in order to have a

small Cahn number.
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Chapter 7

Peng-Robinson Equation of State (P-R EOS) based two-
phase model

A consistent LBM formulation for the simulation of a two-phase water-steam system
is presented in this chapter. Results of initial model validation over a range of thermo-
dynamic conditions typical of Boiling Water Reactors (BWRs) are also shown. The interface
between the two coexisting phases is captured from the dynamics of the model itself, i.e., no
interface tracking is needed. An inter-particle potential model proposed by Zhang & Chen
(2003) is used in this study to segregate the two coexisting phases. The Exact Difference
Method (EDM) proposed by Kupershtokh (2004) is employed to account for body forces in
the LBM algorithm. The developed model is based on the Peng-Robinson (P-R) non-ideal
equation of state and can quantitatively approximate the phase-coexistence curve for water at
different temperatures ranging from 125 to 325 °C. Consequently, coexisting phases with
large density ratios (up to ~1000) may be simulated. Two-phase models in the 200-300 °C
temperature range are of significant importance to nuclear engineers since most BWRs
operate under similar thermodynamic conditions. Simulation of bubbles and droplets in a
gravity-free environment of the corresponding coexisting phase until steady state is reached
satisfies Laplace law at different temperatures and thus, yield the surface tension of the fluid.
Comparing the surface tension thus calculated using the LBM to the corresponding
experimental values for water, the LBM lattice unit (/) can be scaled to the physical units.
Using this approach, spatial scaling of the LBM emerges from the model itself and is not

imposed externally.
7.1 D,Qg scheme with LBGK approximation

The Lattice Boltzmann equation with streaming and single relaxation time collision

operator (often known as BGK approximation, Bhatnagar et al. (1954)) is

FX+e AL+ A = £ (x,) + Lo DS (5D (7.1)
T
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[f;leq (X’ t) — fa (X’ t)]

T

where f,(x,t) is the streaming part and

is the collision part. Here, f, is

the density of particles in the “a” direction, and £ is the equilibrium distribution function.
Moreover, X is position vector, e, are velocity vectors, ¢ is time, Af is the time step, and 7 is

L . . . S 27 -1
the relaxation time that captures the kinematic viscosity v of the fluid given by v = .

On a simple D,Qy lattice (two-dimensional lattice with 8 velocity directions and 1 rest state),

the equilibrium distribution function f,“ is defined as,

S0 = £ () u(x, ) = v, o) 143750 4 220
C

c 2¢° (7-2)

a9 (e,.u)’ _Eu_z}

where the weights w, are 4/9 for the rest particles (a = 0), 1/9 fora =1, 2, 3, 4, and 1/36 for a

=5,6,7,8, and V2¢ is the maximum attainable macroscopic speed on the lattice.

Macroscopic variables such as the fluid density p and velocity U are obtained in terms of

f.(x,0):

p=1, (73)
1

— 7.4

u="21. (7.4)

7.2  Particle interaction potential and force

In order to simulate two coexisting phases in equilibrium, an inter-particle potential
model proposed by Zhang & Chen (2003) is implemented. A non-ideal equation of state

p(p,T) (such as the Peng-Robinson equation of state for water and steam) is incorporated in

this model by expressing the particle interaction force as the spatial gradient of a scalar

function U(x,t),
E (x,t)=-VU(x,t) (7.5)
U(x,?) is chosen to satisfy
U(x,1) = p(p(x,1), T(x,1)) = p(x,0)c; (7.6)
in order to yield global momentum conservation. Here ¢ is the lattice sound speed and is

equal to ¢?/3 for the D,Qy scheme. Now, by introducing interaction potential w(x,7) as
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v (x,0)=|U(x,0)| (7.7)

the interaction force F.

" (X,f) can be written as

(X0 =2y (x,)Vy(X,1) (7.8)
In the above equations, the interaction potential (and force) depends upon the spatial and
temporal grid via local density and local temperature governed by the non-ideal equation of

state.
7.3 Numerical implementation on a D, lattice

For a grid point (i, j) of a D,Qy lattice, the equation (7.8) can be numerically evaluated
by taking account of the interaction potentials at its nearest—(i+1, ), (i-1, ), (i, j+1), (i, j-
I)—and the next-nearest—(i+1, j+1), (i-1, j-1), (i+1, j-1), (i-1, j+1)—neighbor sites. This
leads to a six point scheme for the potential gradient in the x- and y-directions, and may be

written as,

0 .. . . . .
a—f(u) = [ +1, ) —w (=1, )]
W e WA+ L j+ D)=y (i=1L j+ D)+ (@+1Lj-D)-w(@-1,j-1)]
(7.9)

oy . . . ..
a—'y”(u)=w,,m,[w(z,J+1)—w(z,1—1>]

+Wext—near [V/(l + 1’ ] + 1) - l//(l + 1’ ] - 1) + l//(l - 1’ ] + 1) - l//(l - 1’ ] - 1)]
(7.10)

To find the weighting coefficients w,, . and w

near next—near’

the potential gradient may be
approximated by using the method of finite difference in the x-direction (assuming Ax = Ay =
1),

aa_')/c’(i,j) =%[y/(i+1,j)—l//(i—1,j)]
1

=[G +Lj+D+y(+1j-D) (-1 j+D+y(-1,j-1)]

(7.11)

N

In the above equation, a second order central finite-difference scheme is used in the x-
direction to evaluate the potential gradient at (Z, j) in terms of potential values at (i-/, j) and

(i+1, ). These neighboring node potentials are further approximated by averaging the
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corresponding potential values of the neighboring nodes in the y-direction. The equation for
the potential gradient in the y-direction can also be written in a similar way. From equations
(7.9) and (7.11), it is clear that the correct determination of the weighting coefficients
requires,

w osow =L (7.12)

near next—near 2

and w,__>w since nearest neighbors should have more influence when compared to

near next—near
the next-nearest neighbors. For the LBM simulations reported here, wyeqr and Wyexs-neqr are

chosentobe w_=4w = !

near next—near 3 ‘

There is a need for some flexibility in predicting the same coexistence curve from the
LBM simulations when using different equations of state. To provide this flexibility, a
parameter & is inserted into the expression for the interaction force by approximating (X, )
that appears in equation (7.8), for example, in the x-direction as

Woapprox (5 J) = W @+ 1, ) +yw (i =1, )+ (=28 (@, /) (7.13)

Depending upon the equation of state being modeled, a & value may be determined that leads
to LBM results that accurately match the theoretical saturated densities for both the phases
(Medvedev et al., 2007). Several numerical experiments of spinodal decomposition phase-
segregation are carried out at the same temperature using different & values in the
simulations. A & value of -0.088 is found to yield good agreement with the theoretical
coexistence curve constructed using the Peng-Robinson (P-R) equation of state (described
later in Sec. 7.5), and for which the resulted saturated densities are in close agreement with
the theoretically obtained (using the Maxwell construction on the P-R equation of state)
saturated densities of liquid and vapor phases. While performing numerical experiments it is
observed that the parameter £ only needs to be tuned once for any selected temperature in the
coexistence region and then may be used for other temperatures as a constant to yield results

in fairly good agreement with the theoretical ones.
7.4 Simulation of the body forces
In the LBM, the incorporation of body forces (particle interaction, gravitational or

externally applied forces) usually affects the stability of multi-phase simulations. Numerical
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instability is caused by the large changes in velocity in the interface region during each time
step. In order to increase the stability of the LBM simulations, an Exact Difference Method
(EDM) is proposed by Kupershtokh (2004) which combined with the general approximation

of forcing functions results in reduced spurious currents at the interfaces and accurate
reproduction of the phase-coexistence curve. In EDM, a term Af, representing the change in

the distribution function is added to the collision term to account for the change in

momentum due to body forces. Thus, at the time step (7 + At)

Fx+e At t+An = £ (xf)+ Lo GOS0 (7.14)
T

where Af, equals to the difference in the equilibrium distribution function evaluated at the
constant density as the velocity is varied for each time-step Af, and is given by,

Af, = 1. (pyutAu)— 7 (p,u) (7.15)
Here, change in velocity Au is evaluated by computing the change in momentum Ap at each

time-step due to body forces, and is given by
Ap _ F(x,)A¢
P e

Au = (7.16)

7.5 Peng-Robinson (P-R) equation of state

An equation of state (EOS) describes the relationship between temperature, pressure
and density (volume) of a fluid. One such EOS is the Peng-Robinson (P-R) equation of state
(McQuarrie & Simon (1998)). It is widely used for determining the state of various fluids
categorized by different accentric factors. The accentric factor (0) depends on the molecular
structure of the fluid and is determined from its critical properties. Values of ® are tabulated
in thermodynamic tables for various fluids. P-R EOS, which is a three-parameter (7, p. and
o, defined below) cubic equation, fairly accurately captures the saturated densities over most
of the liquid-vapor equilibrium curve. For water and steam, the accentric factor @ = 0.3443
leads to predicted values of saturated densities that agree very well with experimental data.
This comparison is shown in Fig. 7.1. Although more sophisticated equations of state —
fitted to experimental data — can be developed and implemented in the LBM model, the P-R
EOS is chosen due to its flexibility in changing the type of fluid by varying the accentric

factor .
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Fig. 7.1: Comparison of the theoretical coexistence curve (Maxwell construction) and the
corresponding LBM simulation for Peng-Robinson (P-R) equation of state. Saturated water

and vapor densities from NIST tables are also shown.

The P-R equation of state is:

_ PRT  aa(T)p’
1-bp 1+2bp-b’p’

p (7.17)

where a(T) =[1+(0.37464+1.54226—0.269920°)(1-/T/T )’ and a =0.45724R°T?/p,

b=0.0778RT./p, . Here, T. and p. represent critical temperature and critical pressure of the

fluid under consideration, respectively. For water, T, is 647.1 K and p. is 22.064 MPa. In
simulations reported here, the constants a, b and R are set to be 2/49, 2/21 and 1, respectively.
The critical properties of the LBM fluid are then evaluated in terms of these constants. Using
the law of corresponding states (McQuarrie & Simon (1998)), the reduced properties of

lattice fluid can then be converted to real fluid properties.
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Table 7.1: Comparison of saturated properties of water obtained from NIST tables and LBM
simulations at various temperatures.

T psat, liquid psat, vapor psat

3 3
T/T, (°C) (kg/m”) (kg/m”) (MPa)

NIST LBM NIST LBM | NIST | LBM

0.60 115.11 | 945.62 | 1117.36 | 1.02 1.46 0.18 0.18
0.62 128.05 | 937.49 | 1093.01 | 1.37 1.98 0.25 0.26
0.64 140.99 | 924.48 | 1077.74 | 2.07 2.66 0.38 0.35
0.66 153.94 | 915.27 | 1061.57 | 2.67 3.60 0.50 0.49
0.68 166.88 | 900.65 | 1044.51 | 3.83 4.85 0.73 0.68
0.70 179.82 | 885.01 | 1026.35 | 5.37 6.49 1.05 0.92
0.72 192.76 | 874.00 | 1007.07 | 6.65 8.61 1.31 1.24
0.74 205.70 | 856.54 | 986.53 9.01 11.31 1.79 1.65
0.76 218.65 | 837.84 | 964.56 | 12.03 14.70 2.40 2.16
0.78 231.59 | 824.63 | 941.06 | 14.47 18.91 2.89 2.79
0.80 244.53 | 803.53 | 915.81 | 18.90 24.11 3.77 3.56
0.82 257.47 | 788.53 | 888.55 | 22.47 30.49 4.46 4.47
0.84 270.41 | 764.36 | 859.00 | 28.96 38.28 5.66 5.56
0.86 283.36 | 746.97 | 822.79 | 34.20 46.15 6.60 6.64
0.88 296.30 | 718.53 | 793.43 | 43.82 60.33 8.21 8.36
0.90 309.24 | 686.48 | T747.75 | 56.27 71.51 10.12 | 9.74
0.92 322.18 | 662.45 | 707.96 | 66.74 92.21 11.56 | 11.86
0.94 335.12 | 620.65 | 657.16 | 87.37 | 115.75 | 14.03 | 14.01
0.96 348.07 | 586.88 | 591.89 | 106.31 | 144.42 | 1590 | 16.28
0.98 361.01 | 516.71 | 518.09 | 151.35| 195.95 | 19.09 | 19.10
0.99 367.48 | 481.53 | 445.58 | 177.15| 23435 | 20.27 | 20.55

P-R EOS can be written as a cubic equation in V (replace p by 1/V in Eq. (17)) and

thus, has three real roots for 7'< T,.. The benefit of the cubic nature is that it can describe both
the gaseous and the liquid phases of a fluid. Plotting p vs. V at constant 7" and then applying
the so-called Maxwell equal-area construction (McQuarrie & Simon (1998)), yields the
phase-coexistence curve. Fig. 7.1 compares the theoretical coexistence curve with the one
obtained using the LBM simulations. It can be seen that the LBM results agree well with the
theoretical results. Moreover, in Fig. 7.1, the saturated water and vapor densities from NIST
tables (Harvey et al. (2004)) are also plotted for comparison. It is observed that, when
compared to the water-steam data at a selected temperature, P-R EOS slightly over-predicts
the saturated vapor and water densities. However, the calculated density ratio of saturated
liquid and vapor matches very well with the water-steam data at different temperatures as
shown in Fig. 7.2. The saturated properties obtained from NIST data and LBM simulations

are compared in Table 7.1 for different temperatures.
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Fig. 7.2: Comparison of density ratios (saturated water / saturated vapor) obtained from
Peng-Robinson EOS, NIST saturated property tables, and from corresponding LBM

simulations at different temperatures.
7.6 Kinematic viscosities of liquid and vapor phases

In the LBM-BGK algorithm, the kinematic viscosity of a fluid v is explicitly
. . . o . . 27 -1 .
determined by the prescribed single relaxation time 7 from the relationship, v = rT This

functional form gives a unique value for the kinematic viscosity of the fluid irrespective of
the multiple phases involved. However, in order to accurately model the flow dynamics of a
single-component two-phase fluid, it is essential to have different kinematic viscosities for
the two phases at any given temperature. This can be accomplished by expressing the

relaxation time 7 as a linear function of the local fluid density p(x, y) constrained by the
saturation densities of both phases. Thus, 7() can be written as (Angelopoulos et al.

(1998)),

()= {r(m) —r(py)} , {r(pv)m - T(pL)pV} (7.18)
Pr =Py PL =Py
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where 7(p,)and 7(p, ) represent, at the given temperature, the relaxation times

corresponding to the saturation density of the liquid and vapor phases, respectively. These
phase-specific relaxation times are calculated by knowing the corresponding phase kinematic

viscosities.
7.7 Results and discussions

The LBM simulations are performed for a xy-periodic domain of size 200 x 200
lattice-units (/u). Initially, a water drop (or vapor bubble) of 20 x 20 /u radius is placed at the
center of the domain surrounded by the corresponding coexisting phase (saturated vapor for
liquid drop at the centre and saturated liquid for vapor bubble in the centre). The simulation
is evolved in time till the steady state is reached. After 40,000 time-steps, the difference in
simulated observed variables (velocities, densities etc.) for each consecutive 1000 time-steps
reaches below 107 units. This is taken as the criterion for the steady-state. Fig. 7.3 shows the
steady-state density variation along a line passing through the center of the drop (or bubble)
for different temperatures. It is observed that the interface between the two phases becomes

thicker as temperature increases for both the drop and the bubble.

Using the Laplace law, the surface tension of water-steam system may be estimated.
A series of bubbles of various sizes (20 to 50 [u radius) are simulated at different
temperatures. After 40,000 time steps, the steady-state radii and inside/outside densities of
the bubble are evaluated. Densities are then converted to the corresponding pressures using P-
R EOS and the difference between the inside and the outside pressure AP of the bubble is
computed. According to the Laplace law, for a 2D droplet/bubble, the pressure difference is
given by

AP = (7.19)

g
R
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Fig. 7.3: The LBM simulation of a stationary saturated vapor bubble (saturated liquid drop)
in equilibrium with its saturated liquid (saturated vapor) environment at different
temperatures. A periodic domain of 200 x 200 grid size is initialized with one phase over a
circular shape (of 20 grid-point radius) surrounded by another phase in the remaining space.
A total of 40,000 time-steps are simulated to achieve steady state for both cases: (a) vapor

bubble in liquid; and (b) liquid drop in vapor.
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In Fig. 7.4, AP is plotted against the inverse of the bubble radius (1/R) which yields
straight lines of different slopes at different temperatures. As can be seen from Fig. 7.4, the
spatial grid resolution of the LBM fluid is still in the lattice units (/«). Therefore, comparing
the LBM surface tension (slope of AP vs. 1/R) with experimental surface tension of water
may give an approximate measure of the LBM grid size in physical units. Thus, we can write

O oy (MPalu) = foy,,. (Pam) (7.20)

where o5, .,

is the LBM surface tension in MPa-lu units and o, 1s the water surface
tension in Pa-m units, for example, as given by NIST. Here, f is a scaling factor with
appropriate units to relate both the surface tensions. From Eq. (20), the estimate for 1 lattice
unit in LBM is obtained as:

llu=fx10"m (7.21)
With f close to 1/3000, the LBM surface tension when converted to physical units well
predicts the surface tension values in NIST tables for water for different temperatures ranging
from 125 °C to 325 °C. For water, 1 lattice unit is hence estimated to be close to 0.33 nm. Fig.
7.5 and Table 7.2 show comparison of the surface tensions of the LBM fluid and the values
tabulated in NIST water property table (after the spatial scaling). Good agreement with
macroscopic values suggests that the LBM approach is able to capture the surface tension
phenomenon rather well at this scale. However, such a small lattice size is a concern for the
computational viability of any realistic simulation and future work will refine the LBM

model to allow capturing the correct surface tension while using a coarser lattice.

Next, some qualitative results for the two-phase test simulations performed in a zero-
gravity periodic domain of 200 x 200 lattice dimension are presented. The local densities are
allowed to evolve according to the LBM algorithm at a specified temperature until the steady
state is reached. Simulations are performed at a temperature of 250 °C at which the coexisting
phase density ratio equals to ~40. This temperature and the corresponding density ratio are of
prime interest to nuclear engineers since most of the Boiling Water Reactors (BWRs) operate
at this mean temperature. In Fig. 7.6, different stages of a coalescence process of two vapor
bubbles (2D) are shown. Initially, at # = 0, the bubbles are separated by a very thin liquid

layer of 1 /u thickness. As time evolves, the bubbles start coalescing with each other to
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minimize the net interfacial energy and finally, leading to a single large bubble of area

approximately equal to the sum of the areas of initial bubbles.

125 C

lu 1 -1?5(: /‘
225 C

g . *275C s a

g FaEC -
L o~

(H11)} 202 JIES s e pLE w7
1R (-1}

Fig. 7.4: Plot of pressure difference across bubble vs. inverse radius simulated at different

temperatures. Results of the LBM simulations satisfy Laplace law and the slope of curves

gives surface tension of the fluid at the corresponding temperature. Simulation domain is xy-

periodic, and of 200 x 200 lattice unit size.

Table 7.2: Comparison of surface tension of water obtained from NIST tables and LBM
simulations at various temperatures.

T c
(°C) (N/m)
NIST LBM

125 | 0.053955 | 0.059265
175 | 0.043302 | 0.045139
225 1 0.031903 | 0.030836
275 10.020163 | 0.018221
325 10.008774 | 0.006924
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Fig. 7.5: A comparison of surface tension of water (NIST data) with the surface tension

values obtained from the LBM simulations, after lattice scaling.

In Fig. 7.7, results of a simulation that models the interaction between a liquid film
and a liquid droplet are shown. Initially, at # = 0, there exists a thin vapor film between the
liquid film and the droplet. As time evolves, the drop experiences a cohesive force from the
film and attaches to it. Now, the combined liquid chunk oscillates and reorganizes itself to
minimize the net interfacial energy by minimizing its surface area. Finally, it leads to a thick
liquid film of volume equal to the sum of the volumes of the liquid film and the droplet. In
Figs. 7.8 and 7.9, results are shown for a thin liquid film of sinusoidal shape as it evolves
after a sudden relaxation in the absence of any external force. By prescribing the sinusoidal
shape as an initial condition, the system contains very high interfacial energy and tries to
minimize it during relaxation to equilibrium over time. The evolution scenario is simulated
for two different cases with equal film thickness and different amplitudes of the sinusoidal
initial shape. In the case of a large amplitude sinusoidal wave, the film breaks up into several
circular droplets (Fig. 7.8), while a relatively small amplitude wave damps out and evolves

into a liquid film of uniform thickness (Fig. 7.9).
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t=50

t=400 t=5000

Fig. 7.6: Snapshots showing coalescence of 2D vapor bubbles at 7= 250 °C. Densities of
bubble (shown in blue) and liquid (shown in red) are 23.093 and 896.214 kg/m’, respectively.

Ratio of kinematic viscosity of vapor and liquid is 6.5.
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Fig. 7.7: Snapshots showing coalescence of a thin liquid film with a liquid droplet at different
LBM time-steps for 7= 250 °C. Densities of vapor (shown in blue) and liquid drop or film
(shown in red) are 23.093 and 896.214 kg/m’, respectively. Ratio of kinematic viscosity of
vapor and liquid is 6.5.
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Fig. 7.8: Snapshots showing break-up of a sinusoidal thin liquid film of large wave amplitude
into several circular droplets (7'= 250 °C). Densities for vapor (shown in blue) and liquid
(shown in red) are 23.093 and 896.214 kg/m’, respectively. Ratio of kinematic viscosity of
vapor and liquid is 6.5.
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=300 t=2000

Fig. 7.9: Snapshots showing relaxation of a sinusoidal thin liquid film of small wave
amplitude into a thick liquid film (7= 250 °C). Densities for vapor (shown in blue) and liquid
(shown in red) are 23.093 and 896.214 kg/m’, respectively. Ratio of kinematic viscosity of
vapor and liquid is 6.5.

7.8 Conclusions

It is shown that a non-ideal equation of state, such as the Peng-Robinson EOS, may be
coupled with the LBGK scheme with a single density-dependent relaxation time to capture
the phase-coexistence curve for water and steam over a wide range of temperatures.
Simulating a series of isothermal bubbles and droplets suspended in their coexisting phase
predicts the surface tension of the LBM fluid. Comparing this to the experimental data for

water provides a way to scale the spatial grid of the LBM in physical units so that the
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predicted surface tension in physical units accurately matches the measured surface tension

data.
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Chapter 8

Simulation of thermal effects

In general, thermal lattice Boltzmann models fall into three categories, 1) the
multispeed approach, 2) the passive-scalar approach and 3) the thermal energy distribution

approach.

Multispeed LB models are developed by extending corresponding isothermal models
by using additional lattice speeds and higher-order velocity terms in the equilibrium
distribution functions. Although this approach is based on a rigorous theoretical foundation,
numerical simulations using the multispeed thermal model usually suffer from severe
numerical instabilities, and applicability is often restricted to a narrow temperature range

(Alexander et al., 1993; Chen et al., 1994; McNamara et al., 1995).

In passive scalar based LB models, temperature dynamics is simulated by a separate
distribution function which is independent of the density distribution function. Numerical
stability is significantly enhanced in these models compared with the multispeed thermal
models. However, the viscous heat dissipation and the compression work done by pressure
are assumed to be negligible in these models. Shan (1997) used the passive scalar LB
approach to simulate Rayleigh-Benard convection. Boussinesq approximation was used in the
body force term. Palmer & Rector (2000) used a similar approach to solve the following flow
problems: 1) flow with non-uniform conductivity between two plates, 2) entry length
behavior for flow in a channel between two parallel plates, and 3) Rayleigh-Benard
convection. Similarly, Guo et al. (2002) also used the passive scalar thermal LB model for the
Boussinesq incompressible fluids. A porous plate problem with a temperature gradient and
the problem of natural convection in a square cavity were solved. Kao & Yang (2007) and
Kuznik (2007) also simulated the same Rayleigh-Benard convection problem using the

passive scalar approach.

The thermal energy distribution approach is derived by discretizing the continuous
evolution Boltzmann equation for the internal energy distribution function and was first

proposed by He et al. (1998). This scheme is similar to the passive scalar approach since it
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also uses a separate distribution function to simulate the temperature evolution. Its numerical
stability is also comparable with the passive scalar approach. Moreover, this scheme also
incorporates the viscous heat dissipation and the compression work done by pressure. Peng et
al. (2003a,b) simplified the thermal LB model by He et al. (1998) to neglect the compression
work done by pressure and the viscous heat dissipation, and simulated the natural convection
in 2D and 3D cavities. Dixit & Babu (2006) used the thermal energy distribution LB
approach to simulate natural convection in a square cavity for high Rayleigh numbers (up to
10'%). They implemented the LB model on to non-uniform grids in order to achieve high
Rayleigh numbers. No turbulence model was invoked in their simulations. Niu et al. (2007)
used the thermal energy distribution LB approach to simulate micro-thermal flows by relating
the thermal relaxation time to the Knudsen number of the fluid. Results for the thermal
Couette flow problem in a micro-channel was compared against those from the direct

simulation Monte Carlo (DSMC) and the molecular dynamics (MD) approaches.

Recently, thermal models based on LBM were extended for some novel applications.
Mishra et al. (2005) and Mishra & Roy (2007) developed the LB method to solve the energy
equation of a two-dimensional transient conduction-radiation problem. Results of the LBM
simulations were compared against results obtained using the finite volume method (FVM) .
Wang et al. (2007) applied the thermal LB approach to simulate the fluid-solid conjugate heat
transfer. Hazi & Markus (2008) extended the LBM to model heat transfer in supercritical
fluids. Their model was able to qualitatively capture the piston effect which is responsible for
increased heat transfer in a microgravity environment. Onset of convection in a Rayleigh-

Benard configuration was also studied.

Note that most of the thermal LB models proposed in the past are for the single phase
fluids and do not really account for the thermodynamic phase change in a system. In Yuan &
Schaefer (2006a,b), Shan-Chen (S-C) model is coupled with a passive-scalar based
temperature solver. The nature of the thermal and momentum coupling was essentially
through the body force term similar to the approach popularly being used in the simulation of
Rayleigh-Benard convection problems. Chatterjee & Chakraborty (2007) developed an
enthalpy-source based LBM to simulate conduction dominated phase change (such as,

melting of ice) problem. Very recently, Dong et al. (2009) introduced a phase-change
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coupling between the LB momentum and energy solvers. The problem of growth and

deformation of a rising bubble in a superheated liquid was simulated.

In this chapter, a simplified thermal LB model, based on the thermal energy
distribution approach, is presented. The simplifications are made after neglecting the viscous
heat dissipation and the work done by pressure in the original thermal energy distribution
model. Details of the model are presented in the next section, followed by a discussion of the

boundary conditions, and then results for some two-phase thermal problems.
8.1 Thermal energy distribution LB model

The governing equation for the thermal energy distribution function is (Peng et al.,

2003a):

h, (r+v ALt +Af) = h (r,f) —ﬂ[ha (r.0) =k (r.0) | (8.1)
TT
where 7, is the thermal relaxation time and is related to the thermal diffusivity «, by:
2 1
r ZE(TT —chzAt (82)

[In the above, c is taken to be unity for a uniform square lattice (D,Qg or D3Q9), i.e. for

Ax = At . For numerical stability reasons, 7, is usually chosen well above 0.5.]

The above governing equation may be split into the following two equations:

e Collision

B(r,0)=h (r,0) —ﬂ[ha (r,0) =k (r,)] (8.3)
7’-T
e Streaming
h(r+v At,t+At)= I (r,t) (8.4)

For a D,Qq lattice, which is defined as:

0, a=0
v, =1{cos[(a—1)7/2],sin[(a~1)7/2]}c, a=123,4 (85)
V2{cos[(a=5)x/2+7/4],sin[ (a=5)x/2+x/4]}c,  a=5,6,78
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the equilibrium distribution function 4. 1is given by (He et al., 1998):

hy' = —2—3)827 (8.6)
o pE v,u v,u) u’
h172’3’4 Z? 15+150—2+45 02 —150—2 (87)
I PP O AN U (8.8)
56,78 36 Cz : Cz : Cz ’

where ¢ = DRT /2 and D is the number of dimensions.

Note that the above equilibrium distribution function %7, given by equations (8.6) to

(8.8), simulates the convection-diffusion equation for the energy transport. In order to only
simulate the heat conduction effects, which might be dominant in several physical scenarios,

following distribution function can be used:

he =0 (8.9)

e E
h5sa = £ (8.10)

6

] pE
hsrs = o (8.11)

Macroscopic temperature 7' (r,t) can be calculated from the following equation:

g(r,t)zﬁza:ha(r,t) (8.12)

Note that a Chapman-Enskog expansion of equation (8.1) with the equilibrium distribution
function given by equations (8.6) to (8.8) leads to the following energy equation (Peng et al.,
2003a):

0,(pe)+V.(pue)=a,V*(pe) (8.13)
8.2 Density dependent thermal diffusivities: o, (p)

In the thermal LB algorithm described earlier, the thermal diffusivity of a fluid «, is

explicitly determined by the prescribed thermal relaxation time 7, using equation (8.2). This
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functional form gives a unique value for the thermal diffusivity of the fluid irrespective of the
multiple phases involved. However, in order to accurately model the temperature dynamics of
a single-component two-phase fluid, it is essential to have different thermal diffusivities for

the two phases and incorporation of density-dependent variation in the interfacial regions.

This task may be accomplished by expressing the thermal relaxation time 7, as a
linear function of the local fluid density p(x, y) constrained by the saturation densities of both

phases. Thus, 7,(p) can be written as

TT(,O) — |:TT(pL)_TT(pV)j|p+|:TT(pV)pL _TT(pL)pV :| (8.14)
Pr =Py Pr =Py
where 7,(p,)and 7,(p,) represent, at the given temperature, the relaxation times

corresponding to the saturation density of the liquid and vapor phases, respectively. These
phase-specific thermal relaxation times are calculated using the thermal diffusivities of the

corresponding phases.

8.3 Wall Temperature BCs (Dirichlet type)

For a D,Q lattice, unknown thermal distribution functions at the walls can be
approximated to be the equilibrium distribution functions with an additional counter-slip

thermal energy peg' determined to satisfy the fixed temperature constraint at the walls

(D’Orazio and Succi, 2003, 2004; D’Orazio et al., 2004).

I Fluid
N

Unknowns
U“ ’ @
) »,
South
b o

None

@)

Fig. 8.1: Unknown distribution functions at the South boundary for application of a thermal

boundary condition.
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For example, if the temperature is specified on a South boundary which is moving

with a velocity U = (wa , Uwy) then the unknowns 4, , hsand £, can be assumed to be the

equivalent equilibrium distribution functions with a total thermal energy p(gS +¢ ') , 1.e.

+ 1
hzzp(gs 8)F2
9
where
v.U v, U Y U?
I,=15+15 “'2w+4.5( “'zwj -1.5—-
c c c
and
I p(gs+5')r
5 5
36
+ 1
hs_p(gs 5)1_6
36
where

2 2
=T, =3+6-2" +4.5(Vg“j ~15%
C C C

Now, applying the conservation equation (8.12), we have:

peg =Y h,=(hy+h +h+h,+h +h)+(hy+hs+hy)

Using equations (8.15) to (8.19), we can write the above equation as:

ples+e')
36

ples+e') ples+e')

PEs =GCpn I+ I+ L

where

G

known

=hy+h+h +h +h +h
Now, p(&+¢')can be determined as:

36(10‘9S _Gknown)
(40, +T5+T)

ples+e')=

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

Now, using equations (8.15), (8.17) and (8.18), the unknown distribution functions at the

South boundary can be determined.
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Using the same approach described above, the temperature boundary conditions at the

other wall orientations (i.e., the North, West and East walls) can be developed.

8.4 Wall Heat Flux BCs (Neumann type)

In order to apply the wall heat flux boundary conditions, one can use an approach
similar to the one described in the previous section. The specified heat flux condition
(Neumann boundary condition) at the wall has to be first converted into a Dirichlet-type
condition. This can be done by using the conventional second-order finite difference
approximation for the temperature gradient and identifying the unknown temperature value at
the wall. Once the corresponding temperature at the wall is known, the scheme described in

previous section to determine the unknowns can be used.

For example, if the heat flux on the South boundary is specified, then the temperature
on the South boundary can be obtained from:

oT 4]Ei,2) _711',3) _3Ti

(i.1)
— = =q (8.24)
Oy ) 2Ay s
which is:
AT, =T, —2q,Ay
T =—2 "33) d (8.25)

Once T is known, we can use the relations in the previous section to determine the unknown
distribution functions. Here, g, denotes the outward heat flux (heat being taken away from

the boundary), a positive increase in which yields a subsequent decrease in 7.

Using the same approach described above, the heat flux boundary conditions can be

developed and applied for the other orientations as well (North, West and East walls).

8.5 Simulation of evaporation and condensation

For bubbles in liquid scenarios, one can qualitatively simulate evaporation and

condensation effects by making the interfacial (i.e. for p,,, < p < p,, ) rest-state particle
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distribution function depend upon the local superheat (or local sub-cooling) and the local

temperature gradient.

Evaporation effects:

For a D,Qq lattice, the rest-state particle distribution functions at the interfacial lattice

nodes (x,,,,,) are modified by the following equation at each time step in the post-collision
stage to simulate evaporation effects:

old

9
g;ew (xim H yim ) = g‘) (xint s yint ) - ZATSuperZ Wa |:T(xint + vaxAt’ yint + vayAt) - T(xint H yint ):I
a=l1

(8.26)

where (x,,,;, )are the lattice coordinates that fall into the interfacial regions (i.e.

1

Pup <P < Py,)» &, is the particle distribution function, 7*“ is the saturation temperature of

the fluid, ATy, =T (X, ¥, )—T"" is the local superheat and y is the temperature

sensitivity coefficient quantifying the evaporation of the LB fluid.

Note that the above modification is only applied for the lattice directions, for which

the following three conditions are met:

p(xint + vaxAZ’yint + vayAt) > p(xint’yint) (827)
T(xim +v, Aty + vayAt) > T(xim,yim) (8.28)
ATSuper = T(xinwyinl ) _TW’ > O (829)

Above conditions ensure that only the liquid particles (surrounding the vapor region) which
have higher temperature than the interfacial lattice points transfer their energy to the bubble

and yield evaporation.

Condensation effects:

For a D,Qq lattice, the rest-state particle distribution functions at the interfacial lattice

nodes (x,,,,,) are modified by the following equation at each time step in the post-collision

stage to simulate condensation effects:
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9
g (xint’ yint) =g (xint’yint ) + ZATSubZWa |:T('xint’yint ) - T(xim +V, AL Vi +VayAt):|

(8.30)

where (x,,,,, )are the lattice coordinates that fall into the interfacial regions (i.e.

1

Py <P <Py,) > &, 1 the particle distribution function, 7 * is the saturation temperature of

the fluid, ATy, =7"°" —T(x,,, ., ) is the local sub-cooling and y is the temperature

1

sensitivity coefficient quantifying the condensation of the LB fluid.

Note that, as in the evaporation case, the above modification is only applied for the

lattice directions, for which the following three conditions are met:

,o(xint +v, Aty + vayAt) > p(xim,yim) (8.31)
T(xint + vaxAt’ yint + vayAt) < T('xim’yim) (832)
AT, =T _T(xint’yint) >0 (8.33)

Above conditions ensure that only the liquid particles (surrounding the vapor region) which
have lower temperature than the interfacial lattice points are allowed to accept energy and

mass transfer (condensation) from the bubble interface.

By changing the rest-state particle distribution functions to simulate evaporation or
condensation effects, we are essentially changing the pressure in the interfacial region of the
bubble. Depending upon the local superheat/sub-cooling and temperature gradient from the
neighboring lattice points, the change in interfacial pressure leads to the growth or shrinkage
of the bubble.

8.6 Results and discussions

In Fig. 8.2, results for the growth of a bubble due to thermal diffusion from the
superheated walls are presented. A single bubble is initialized in the two-dimensional domain
using the simulation parameters listed in the figure. At time ¢ = 0, the bubble is at its saturated
temperature and the walls surrounding the domain are at a higher temperature. As time is

increased, higher temperature from the walls causes heat to diffuse to the bubble and
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contributes in its temporal growth as shown in Fig. 8.2 (b). Note that the heat conduction is

assumed to be the dominant mode of heat transfer in the simulations. Resulting growth of the

bubble is in close agreement with the theoretical model of R oc Jt (Zuber, 1961).

In Fig. 8.3, simulation results for the shrinkage, due to condensation, of a single
bubble in a sub-cooled domain are presented. The bubble is initially at the saturated
temperature and as time proceeds, gets condensed due to the temperature diffusion from the
sub-cooled walls. Here again, the conduction is assumed to be the dominant mode of heat

transfer.

In Fig. 8.4, simulation results for the femperature coupled AILB model are presented
for the growth and rise of a vapor bubble away from a heated wall. Temperature boundary
conditions are applied at the South (Ts = 1.0) and the North wall (Ty = 0.8) of the 2D
domain, whereas both the fluid phases are initialized at a reduced temperature equal to 0.95.
The vapor bubble is initialized at # = (0 away from the South wall which grows due to
evaporation at the interface because of the higher temperature in the interfacial region. The
bubble rises because of the buoyancy forces, resulting in the shape deformation of the bubble.
Parameters for the simulation are listed in the figures. Since the temperature in the vicinity of
the North wall is less than the bulk fluid temperature, condensation happens at the interface
when bubble approaches the North wall. Bubble disappears due to condensation as time

increases.

193



t=0 t=10,000 t=20,000 t=130,000

(a) Growth of a two-dimensional bubble

Radius of bubble
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(b) Temporal variation in the radius of the growing bubble

Fig. 8.2: Two-dimensional simulation of the growth of a single vapor bubble due to
temperature dynamics. The initial temperature of the bulk fluid at # = 0 equals to Tr = 0.95
and all the walls of the domain are kept at a higher temperature (Tway = 1.0). Heat conduction
is assumed to be the dominant mode of heat transfer in the system. Simulations are performed
in a 2D box of size 200 x 200 grid points. Other parameters for the simulation are: N-S-E-W
walls,a=9/8,b=1/3, Tp=0.95, p, =1.46173, p, =0.579015, R =25 lu, 5 =0.005, g =0,

r,=7,=05,D=3, =50, 7,,=1.2, 7, ;= 0.6. (AILB model with no scaling)
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t=0 t=5,000 t=10,000 t=30,000

(a) Shrinkage of a two-dimensional bubble

20

Radius of bubble
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0 5000 10000 1 5_000 20000 25000 30000
Time

(b) Temporal variation in the radius of the shrinking bubble

Fig. 8.3: Two-dimensional simulation of the shrinking of a single vapor bubble due to
condensation. The initial temperature of the bulk fluid at # = 0 equals to Tr = 0.95 and all the
walls of the domain are kept at a lower temperature (Ty.; = 0.9). Heat conduction is assumed
to be the dominant mode of heat transfer in the system. Simulations are performed in a 2D
box of size 200 x 200 grid points. Other parameters for the simulation are: N-S-E-W walls, a
=9/8,b=1/3,Tr=0.95, p, =1.46173, p, =0.579015, R =25 lu, 5 =0.005, g =0,

7,=71,=05,D=3, y=50, 7;,=1.2, 7, ,= 0.6. (AILB model with no scaling)
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LEM Time = 60000 LEM Time = 70000 LEW Time = 80000 LEM Time = 80000 LEM Time = 100000

Fig. 8.4: Two-dimensional simulation of a single rising vapor bubble with heat transfer.

South wall of the domain is at higher temperature (Ts = 1.0) and the North wall of the domain
is at a lower temperature (Tx = 0.8) than the bulk fluid temperature which is at a temperature
equal to Tr = 0.95. Simulations are performed in a 2D box of size 240 x 480 grid points.
Other parameters for the simulation are: N-S walls, E-W periodic, a=9/8, b =1/3, T = 0.95,
p,=1.46173, p, =0.579015, R =30 lu,6=0.005,g=5x 10, 7,=7,=0.5, D=3, y=10,

7,,=1, 7,,= 0.6. (AILB model with no scaling)
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Chapter 9

Summary and Conclusions

In the boiling water reactors (BWRs), the two-phase interactions play an important
role in the design, operation and accident scenarios. Sub-cooled boiling and critical heat flux
play an important role even in pressurized water reactors (PWRs). The two fluid phases and
their different flow patterns make the fluid dynamics highly complex and therefore, the
predictive modeling of such a system becomes very difficult. In order to circumvent these
modeling difficulties, experiments have been performed in the past which employ relatively
simpler geometries, and empirical results from those studies have been extrapolated to the
reactor system conditions. Of course, most of the empirical correlations may not be
applicable in a wide range of system conditions and the reactor system analyses codes

employing those correlations suffer from a large error margin in their predictions.

One should note that the physics of two-phase (or two-fluid) interactions, with or
without temperature variations, is still not very clear and simple experiments (such as, rising
of a single air (or vapor) bubble or two bubble coalescence) are still being performed and
analyzed. Therefore, the path to successfully model the two-phase dynamics would be to
develop a simulation tool which can simulate, in the order of increasing complexity, single
bubble/droplet coexisting with the inverse phase, interaction of two phases with system walls
having different contact angles, suitable boundary conditions to simulate moving walls and
walls at rest effects, existence of a body force such as gravity, topological shape changes due
to fluid dynamics which may result in break-up or coalescence of a fluid phase, and multiple
bubbles/droplets interactions for different system conditions. Once all these scenarios have
been independently tested and validated with experiments and/or other available data in the
literature, one will have more faith and of course, more understanding of the physics being
simulated when simulations are performed for more complicated scenarios. All of the above
mentioned scenarios should be first validated for isothermal cases and then, with the
inclusion of temperature effects. More experimental studies would become a necessity in
order to fine tune the models. In this report, a successful attempt has been made to address
the above mentioned goals in the order described in the framework of the lattice Boltzmann

(LB) model. Obviously, additional refinements to the model and validation studies are still
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needed to develop a predictive capability to model two-phase flow dynamics in, say, BWRs.

The lattice Boltzmann method (LBM) is an alternative numerical scheme for solving
incompressible fluid flow behavior. The scheme has its roots in kinetic theory and can serve
as an efficient solver for incompressible low-Re number flows in complex geometries —
including porous media and for the simulation of complex fluids. Since the incompressibility
criterion is not strictly enforced in the LB models, therefore it belongs to a class of pseudo-
compressible solvers of fluid dynamics. The LB method inherited most of the advantages
from the LGCA and eliminated excessive statistical noise, lattice artifacts such as the lack of
Galilean invariance and the dependence of pressure on the fluid velocity. The advantage with
LBM lies in the fact that the computational algorithm is simple and efficient; and there is no
need to solve the Poisson equation for pressure distribution. Moreover, the LB method allows
the implementation of phenomenological terms and rules on the kinetic motion of fictive

particle-clusters and thereby, allows the more complex macroscopic dynamics to evolve.

An artificial interface lattice Boltzmann (AILB) model is proposed in this report for
the analysis of liquid-vapor two phase flows. Interface between the two fluid phases in the
AILB model stretches across several grid points. Because of the diffuse interface description
and the lattice Boltzmann evolution algorithm, moving interfaces are handled with a relative
ease compared with the corresponding sharp-interface approaches. In the AILB algorithm,
there is no need to explicitly track the phase-interface (i.e. to explicitly follow the position of
the interfaces) or apply any interface conditions (such as, the continuity of shear stress etc.).
Therefore, the overall computational complexity is reduced. The AILB model is able to
handle singular topological events (such as, break-up and coalescence) without any need to
introduce separate models for them. Simulation of such events in existing two-phase models
usually requires special treatment in the solution algorithm. For example, in several other
models, a threshold on the thickness has to be prescribed in order to remove any thinning
neck (or film) during the simulation of a break-up event. In the AILB model, no artificial
trigger is needed to simulate bubble/drop breakup and coalescence. Due to the free-energy
minimization principal of the AILB model, it could easily be extended to incorporate
complex fluids (such as, polymers, colloids etc.). Several other interaction models could be
included in composing the net free energy of the system, which upon minimization could

produce desired interfacial events.
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The artificial interface LB model (AILB) model, proposed in this report, differs from
the earlier proposed Lee-Fischer LB model in the fact that the AILB model employs two
equations of states, one for the bulk phase and another for the interfacial region. Artificial
equation of state in the interfacial region allows one to have some control over the interfacial
thickness, and use of which also facilitates stable numerical simulations for the fluid phases
with large density and viscosity ratios. Use of the van der Waals or other similar non-ideal
equation of state in the bulk phases allows one to maintain the near-constant bulk densities in
the presence of body forces (such as gravity). Lee-Fischer LB model fails to maintain the
near-constant density ratio in the presence of gravity, and the time-dependent increase in the
density ratio of bulk phases in a Lee-Fischer LB simulation makes them numerically
unstable. The cause of artificial enhancement of the numerical compressibility effects due to
gravity in a Lee-Fischer LB simulation was identified in this report and the above artifact is

cured in the AILB model.

Based on the Cahn’s wetting theory, a model is proposed in the context of AILB
framework to simulate different contact angles at the wall sites. Moreover, boundary
conditions for the AILB model are developed in both the two as well as three dimensional
domains. Several simulation scenarios are presented and the results are compared with some
of the existing data. For example, in an isothermal flow, rising of a vapor bubble in viscous
liquid is numerically simulated and the results are compared with the empirical data.
Numerical results are provided for the shape and terminal speed of the rising bubble which
shows good agreement with the experimental observations. Similarly, LB simulation of

coalescence of two droplets provided good agreement with experimental studies.

A thermal model, based on the two-distribution function approach, is also developed
in the AILB model framework. The temperature effects are simulated by using a separate
particle distribution function. A phenomenological model is also developed for the simulation
of evaporation and condensation effects on a bubble. Additional work is needed to develop a
physical model to couple the momentum and thermal energy dynamics of the LB system to
effectively simulate boiling and other thermal effects.

It is hoped that these developments will lead to a better understanding of multi-phase

interactions, formation of various flow patterns and thus, will pave the way towards a
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simulation-based capability to predict critical heat flux (CHF) and flow regime maps with an

ultimate goal to improve reactor safety calculations.
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Appendix A

Lattice Boltzmann equation to Navier-Stokes (N-S)
equations

To derive the hydrodynamic equations from the generic LBE, the truncated Taylor
series expansion and the Chapman-Enskog two-time scale separation techniques is adopted.
Resulting partial differential equations in the two separated time scales describe advective
‘fast” dynamics in the faster time scale, and diffusive ‘slow’ dynamics in the slower time
scale. These two different PDEs are combined to yield the compressible Navier-Stokes (N-S)
equation, from which, the incompressible N-S equation is obtained in the limit of constant

density. The derivation given below is based on material from Wolf-Gladrow (2000).
A.1 Multi-scale expansion

Hydrodynamic description of the collective motion of particles requires defining a
hydrodynamic limit, in which, the smallest macroscopic length scale L is large compared to
the characteristic microscopic length scale (for example, lattice mean free path 4 which is of
the order of the distance between two neighboring lattice points), i.e. L[l A . Ratio of 4 and
L can be defined as the lattice Knudsen number, ¢ :

A
— el 1 Al
Vi (A.1)

&

which, being a small number (¢[] 1), can be used as an expansion parameter in the

Chapman-Enskog multi-scale expansion procedure.

Using ¢ as an expansion parameter, the discrete velocity distribution function f, (r,?)

can be expanded about the discrete equilibrium distribution function f(r,#) [This is valid
since the system is assumed to be in a near-equilibrium state.]:
= +efV+e fP+... (A.2)

where the lattice Knudsen number ( &) acts as a small parameter used to distinguish relative
orders of magnitude of the terms in the series. . In addition, to satisfy the conservation of

collision invariants, we must have:
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D fO=>v P =0 k>1 (A.3)

Since smallest macroscopic length scale L is of order [] &' (see equation (A.1)), we
can introduce a new space variable r,, which in the units of &', is defined by:

I =——=er (A.4)

-1
&

Based on experience with real fluids, we may anticipate two time-scales (fast and
slow) for any macroscopic inhomogeniety to propagate in a fluid. For example, (i) non-linear
and pressure effects advect ‘fast’ and are represented by first-order space derivatives in a

partial differential equation. Therefore, such an inhomogeniety will traverse a length scale of

order &' in a time scale of order &', i.e. Azl O(Ax) . However, (i1) linear diffusive effects

(e.g., viscous damping of sound waves) occur ‘slowly’ and are represented by second-order

space derivatives in a partial differential equation. Therefore, such an inhomogeniety will
traverse a length scale of order &' in a time scale of order &~ i.e. At[l O(sz) . Relying on
these physical arguments, we may assume two new time scales, fast ¢, and slow ¢, , in the

units of ¢ 'and &7, respectively:

0]

L and 1,0 i (A5)
Note that ¢, and ¢, are not independent variables. They are related to ¢ by:

t=¢'t, +e7t, (A.6)
As a consequence, the time derivative 0, becomes:
0,=&0, + gzétz (A7)

and the space derivative 0, becomes:

o =&, (A.8)

Ty Na

where 0, is the derivative with respect to the & -component of r, .

The acceleration F (external force per unit mass) implicitly involves double
derivative with respect to the time variable, i.e.

F=0v=0,(0r) (A.9)

From the above equation, F is clearly of order 0(82) and higher, and can be expanded as:
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F=&F? +F% + .. (A.10)

A.2 Forcing term in the LB equation

The forcing term (F.T.) in the LB equation is:

F.(v,—u)
FT.=BAt=——"—2=f“A¢t A.ll
p RT 1 (A.11)
Substituting £ yields:
F.(v,- ST
F.T.=MWG et Lfveuy w g, (A.12)
RT RT 2\ RT 2RT
Neglecting terms of order O(u2 ) or higher, we get:
FT.=—2F | (v, —u)+v, 20 | Ar (A.13)
RT RT

A.3 Order separation of LBE

The LB equation with the forcing term can now be written as:

f.(x+V ALt +Af) = fa(r,r)—ﬂ[];(r,t)—ﬁq(r,z)]
¢ (A.14)

+ F.|:(Va —u)+v, V“'H}At
RT RT

The left hand side of the above equation f, (r + v Atz + At) can be expanded in a Taylor
series about r and ¢ up to terms of second order O(At2 ) to give:

f,(xr+v AL t+At)=f (r,t)+Atv, 0O, f,+At0,f,

aa™~'r,

( Az‘)2 (A.15)

+ [Vaavaﬁaraarﬂfz; +2vaaara alf;l +at2fz‘1:|

Substituting the above equation into equation (A.14) yields:

V,,0, [, +0.1, +%[vﬂavaﬂ8ra6rﬁfa +2v,,0, 0,1, +8t2fa}+%[fa _faeq]

(A.16)
Wa

- F.{(Va—u)Jrva va.u}
RT RT
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Now, substituting new space and time-derivatives (from equations (A.7) and (A.8) ) and the

forcing term (from equation (A.10)) in the above equation gives:

3 vaavaﬂarm arw ](a

&v,,0, f.+(, 1.+, f)+A— +26v,,0, (0,1, +€°0,1,) +l[fa—qu]
T
(56,1 +£°0, )(gatlfa +gzat2fa)

=&(82F(2)+83F(3)+...).|:(Va—ll) Y u}
RT * RT

(A.17)

In the above equation, neglecting higher order terms (i.e. terms of the order O (83 ) or higher)

gives:

aa™ n,

_ W & F®. {( u) Va-“}
" RT Va * RT

&(v,u0,, +0, )ﬂ+gz(a,2+A2t[vmvaﬁa, 0, +2v,,0, 0, +82Df+ [f-1]

(A.18)

Now, substituting expansion of f, in the above equation and neglecting terms of the order

O(g3 ) or higher, we get:

£(v,,0, +0,) [ +&*(v,,0, +0, )/ +¢ (a,z +A2t[vmvaﬂar 0, +2v,,0, 0, +62D 1o

l W20 Wa 2p@ _ v,.u
+T|:gf;’ +gf;‘ :|_RT8F . (Va ll)-i—Va RT

(A.19)

Note that, the above equation, which is up to second order accurate with respect to ¢,

is sufficient to recover the Navier-Stokes equation in the incompressible limit. However,

retaining higher order terms (order O(g3 ) or higher) in the above equation leads to the

recovery of Burnett and Super-Burnett equations.

After substituting the corresponding scale expansions, the LBE equation can be

written in an order separated form as:
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BV + 6B =0

where
E" =(v,0, +0,) S Lo _
and
E§2>=(a,2+A2t [Vivis,.0,, + 20,0, 0, +
+(v,,0,, +0,) £+ f;”—B;”:o
where

B =Y g, (v,—u)+v, Vall
RT RT

A.4 First order macrodynamics: £’

A.4.1 Mass conservation: Y E\" =0

Zeroth lattice-velocity moment of E is

pIEDRINARD Y FREES WART

which is:

(Zf“’jﬂ? (Z j %{Zf;”j:

a
=P =pu, =0

and, can be written in a more simplified form as:

0,p+0,, (pu,)=0

A.4.2 Momentum conservation: Zv EV =0

ao a

First lattice-velocity moment of E'" is

1 1
ZvaaEzi )= Zvaa aﬂa f“l +Zvaa 4 f“i Zvaaf;z( : = O
a a a

which is:
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(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)



9, [va f;’"j+6,.w (Zvaavaﬂ f;’"j+l(zm f;”j =0 (A.28)
a T a

a

| —
=pliy =)

=0

and, can be written in a more simplified form as:

o, (pu,)+0, [N ]=0 (A.29)
where
) = v, v, [ (A.30)

is called the zeroth-order momentum flux tensor, which represents flux of the « -component

of momentum transported along the f -axis.

A.4.3 Evaluation of IT})

Second lattice-velocity moment of the discrete equilibrium distribution function f,

can be evaluated as:

1 uu
ll(O) Evvw Ly v ouv.u ——LL
I 2(RT) 7" % T2RT

uu
Z aa aﬂ a zvaa aﬂ ay a ﬁ Zvaavaﬂvayvagwa

a

(A31)

=pRTS,, =0 =P(RT)(8,48,6+6,, 05 +6,:55, )
uu
st
- E Vv W
aaaf a
2RT <

=pRTS,,

=p0O,5+ pu,uy,
where p = pRT is the pressure of an ideal gas and hence, represents the inherent ideal gas

equation of state of the isothermal LBE.
For a two-dimensional (xy) system:

© _ nY Hg’ u’ uu,
My = o o =Poyutpl e (A.32)

At this point, since we have defined pressure in our system, we can calculate the

sound speed ¢, as:
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¢ = |9 _ JrT

dp

A.5 Second order macrodynamics: £

A.5.1 Mass conservation: ZEL(IZ) =

Zeroth lattice-velocity moment of £ is:

Vaava a ai"
(v, +0,) 10+ &, LA e
e 2| +2v,,0, 0, +0, _0

1
@ _ g
+;fa — B,

-3

a a

or,

(0)
=p =l =Py

r—% —
2, [Z f64j+—a 0, [vavaﬂﬁq}ma%a,‘ (vaquj

+_62 (Zfeqj+a (Z"aafam}r@,l [Zﬁ(')J_Fl(Zﬁl(Z)j_zBiz) —0
a P T\ & -

=p =0 =0 =0 =0

The above equation reduces to:
At At
6t2p+78%6%1_[(a(2 +A10, 0, (pou,) +76,21p =0
The third term on the right hand side of the above equation is equivalent to:

A, 0, (pu,) ==, 8, [TIY)

Na

Furthermore, the last term on the right hand side of equation (A.36) is equivalent to:

Sae=5aler)=-5a (o ()= 52,5, 3]

Now, substituting these terms in equation (A.36), we get:

At

. p (A; 0,0, Iy —At0, 0, TIj+— 5 0.0, H<0>j=0

which essentially is:

0,p=0
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(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)



A.5.2 Momentum conservation: Zv E® =0

aoa—a
a

First lattice-velocity moment of E”is

2

Z vaaEiﬂ Z vaa
a a

1
@ _ p@
+;fa —B,

or,
=pity

vaava ar ar
(v..0,, +0, )f;lw[a[zﬂ{ poe

18 ]\erq
2 a
+2vaaarmatl +atl :0 (A41)

—_171(0)
=I5

=0 =0

The above equation reduces to:

=pF?

(0)
—awﬂaﬁ

2, ( pua)-k%@rw@m (Z VeaVagVer f“’J+Atat o, 1) +%atl [0, (pu,)]

+0, | D VuaVus [ | pFP =0
B Ja a

15 ( - \_:‘:7_4

We can write " in terms of £/ as:

£ ==2(v,0, +0,) 1

Substituting £ in equation (A.43) gives:

TERM -1
At ]
0, (on.) (5 7)0,,0, ( S s o

TERM-1 in the above equation can be evaluated as:
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At
—7
2

TERM -2

—
ja 5, 1% =0

=ity

atz (Zvaaf(zeqj+_ g hy (Z aa aﬁ ayfgq]—i_Ata a (Zvaavaﬁfaeqj_’_%atzl (zvaaf:qJ
+arw (zvaavaﬂf;z(l)J+atl (zvaaﬁz(l)j-i_%(zvaa](a(bj ZvaaBy)

(A.42)

(A.43)

(A.44)

(A.45)



eq
anﬁam [Zvaavaﬂvay a ]
a

_ i Vass | VagUeVaytty UMy
T gy Za:vaavaﬂvaywa [1 + Csz 26‘3 2032 j:|
- . _
Zvaavaﬂva}/wa +C_2 Zvaavaﬂva;/va§wa
=0,0, =0 =P} (8,50, +0, 85 +0,:05,) (A.46)
ug uu
+ 2051// ;vaavaﬂvayvaévay/wa _T;;vaavaﬂvaywa
L =0 =0 |
2
=10, 0, pu; (8,40, +6,,6,+5,:0,)
2
=C (50:/7575 00y O + 3,60, )[arwam (pué )]
TERM-2 in equation (A.45) can be evaluated as:
0 _ 2
0,0, 1% =0,0, (pcid,,) A
_ 2 _ 2 :
=0, (0,p)0,,=—c15,,0, 0, (pu,)
Note that, in the above equation, terms of order O(uz) have been neglected.
Substituting TERM-1 and TERM-2 in the above equation, we get:
_ &)
o, (pu,)=v|0,,0,, (pu,)+0,.0, (pu,) |+ pF (A48)
where v is the kinematic viscosity, given by:
A
y= RT(T—%) (A.49)

A.6 Order-combined macro-dynamics: ¢E +&’E?

A.6.1 Mass conservation: 2(8E2” + ngf’) =0

Combining corresponding first and second order macro-dynamic equations, we get:

e|o,p+o, (pu,)]+&’[8,p]=0 (A.50)
which essentially is:
(8atl+826[2)p+8arm (pu,)=0 (A.51)
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and reduces to the continuity equation:

d,p+0, (pu,)=0 (A.52)

A.6.2 Momentum conservation: ZVW (SES) + ngf)) =0

a

Combining corresponding first and second order macro-dynamic equations, we get:

g o, (pua)—v(arlﬂﬁrw (pua)+8rm@rw (puﬂ))

el o, (pu,)+o, 015 | o =0 (A.53)
_p p
The above equation can be written as:
) _
0, (pua ) + Q,ﬂHaﬁ =v [arﬂa,ﬂ (pua ) +0, ar/} (puﬂ )} + pF, (A.54)
A.6.3 Incompressible limit: p = constant
In the incompressible limit, p = constant , the continuity equation yields the
incompressible continuity equation:
0, (u,)=0 (A.55)
and the order-combined momentum conservation equation yields:
o
o,(u,)+——"=v5,0, (u,)+F, (A.56)
p s B

Substituting Hfﬁ; in the above equation, we get the incompressible Navier-Stokes equation:

0, (u, ) +u,(0,u,)= —%(arap)w(a,,ﬂa,ﬁua%@ (A.57)

A.7 Remarks on fluid viscosity in the LB equation

In the LBE, fluid viscosity is given by (see equation (A.49), which is in a non-

dimensional form and is written without ‘bars’ over variables):
_ (- Af
v=zC! (r ——j (A.58)

which, for a D2Q9 lattice, is:



7= EzA’_[r*—lj (A.59)

In the first-order LBE simulations, 7* has to be greater than 0.5 for a positive non-
zero kinematic viscosity v . Usually, for numerical stability considerations, 7 * is taken to be
between 0.5 and 3.0. Here, we should note that, 7* appears explicitly on the right hand side

of the LB equation and is used as a pre-specified parameter in the LBM calculations.

For given non-dimensional kinematic viscosity (7 =Re™") and the spatial grid size

Ax = Ay, we can calculate LBM time step as:

=2
AT = Ax_ (r*—lj:lﬁz (r*-0.5)Re (A.60)
3v 2) 3
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Appendix B

Code, Parallelization and Performance

For large applications to be solved on distributed memory machines (or clusters), the

Message Passing Interface (MPI) is the most widely used approach and therefore, is used for

parallelization of the LBM code.
B.1 Domain decomposition

Domain decomposition technique is a natural way of parallelization for a system in
which the computation of a variable at any grid-point depends only on the variables at the
neighboring grid-points. In this technique, the computational grid is partitioned into several
smaller sub-domains (one for each processor) of desired size. Each processor performs
computations on a certain sub-domain and exchanges information with the neighboring
processors whenever necessary. For a 2D calculation, the computational domain may be
divided by either a 1D or 2D partitioning scheme. A 1D partitioning scheme slices the
domain only in one direction leading to horizontal or vertical slices. However, a 2D

partitioning scheme slices the domain in both the directions (shown in Fig. B.1).

Processor | Processor 2
:'o' ® e e o 8 9 :'o' ® e @ @ o o
@ © 0O O O 0O @ |OOOOOOC31
. . . | |
Full simulation domain )@ c 00 o0co0e @®00O0CO0OEe,
___________ 1® 000 0Oe 1©€0000CO0e,
pPoToToToT T 070707 Y) '® oo 0o 0c0Ce@ 0000 00 e
IOOOOOO OOOO: IOOOOOOOJ LC)__Q_Q_Q_Q_Q_QJ
DO OOGCOOOOO O
1
cCoooo0o0o0O0OO00 —
[} |
o o ool D e eee BT EE 6 e8!
© 00000000 dp e 000006
b 0o 0000 000 0 1@ 000 0o e \
Y oo 0000 a.c.o.0 ®© 00008 900060060,
ittt 1® 0 00 00 e :OOOOOOO}
l@eoc 0c0c0co0e 2000006
X 0000 000 ©00 0 000
Processor 3 Processor 4

Fig. B.1: 2D block decomposition of the simulation domain. The calculation grid is divided
into several sub-domains to be assigned to each of the participating processors. Every sub-

domain (grey circles,O) is now padded with a ghost layer of grid-points (green circles,®) on

each side.
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In a parallel LBM code, each of the sub-domains is subsequently padded with a ghost
layer of grid-points at its boundaries. These ghost layers are essential to ensure accurate and

simultaneous passing of boundary information to the neighboring processors.

B.2 Data partition and performance

Domain decomposition alone does not yield the expected speedup in a LBM code. It
should be accompanied by a corresponding data-partitioning so that each processor only
stores and computes the data of the assigned sub-domain. In a basic LBM code, most of the
calculation involves the distribution function data which is usually stored in an array. Passing
such an array (and many more for an advanced code) for large 3D problems to each and
every processor will require large amount of memory and consequently, will slow down the
calculation due to cache miss and page faults. Therefore, it is essential that each processor
only sees the data for its sub-domain and communicates with other processors using ghost
layers. The algorithm template dictates which discrete variables must be communicated to the

neighboring processors.

An important feature of LBM scheme is the inherent spatial locality of the
collision operator. From the evolution algorithm of the LBM, interactions between
processors are only required before the execution of the propagation step. Processors interact
by sending their boundary data to the neighboring processors and by receiving data in their
ghost layers from the neighboring processors (see Figure B.2). By using ghost layer of grid
points, the propagation step can be isolated from the data exchange step. Hence, the

computation is independently carried out point-by-point in the LBM method.

B.3 Efficiency with fixed problem size per processor

Parallelization efficiency is best measured by increasing the size of the calculation
with the increase in the number of processors. It is usually done by maintaining the constant
calculation load for each processor by assigning the same size of sub-domain to each
processor. A fixed number of LBM time steps are simulated for all the runs involving

different number of processors and thus, different total problem sizes.
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Fig. B.2: Data exchange among the participating processors. Processor in the center (C)
communicates with its neighboring processors (N, S, W and E) in order to synchronize data
at its boundaries and the surrounding ghost layers. Processor C sends data from its North,
South, East and West boundary to the processors N, S, E and W, respectively.
Simultaneously, it receives data in its North, South, East and West side ghost layer from the
processors N, S, E and W’s South, North, West and East boundaries, respectively. The

respective exchange is shown by different colored arrows in the figure.

Since problem size per processor is fixed, therefore it is expected that the running
time, in the absence of communication cost, should remain constant irrespective of the

number of processors. Hence, speedup, S, for a fixed problem size is defined as,

pT
S=—= (B.1)
TP
and efficiency, E, is defined as
T
E=_" (B.2)
T P

where p is the number of processors, 7| is runtime when a single processor is used and 7, is

runtime when p number of processors are used. Efficiency and speed-up of the LBM code,
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written for single-phase flow and for simulating low-density spinodal decomposition of two-

phases, are shown in Figure B.3 for varying number of processors.
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Fig. B.3: (a) Efficiency and (b) speed-up for a parallel LBM code running on a distributed
memory machine (Turing cluster, University of Illinois at Urbana Champaign). Each
processor runs the LBM calculation on a 2D sub-domain consisting of 66 x 66 grid points
(including ghost layers). A fixed number of 10,000 time-steps are simulated in each run.

Total size of the problem increases with increasing number of processors.
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Appendix C

Velocity boundary conditions in 2D

In this appendix, velocity boundary conditions for the North, East and West

boundaries in a 2D domain are presented. Since respective corners of the above boundaries

are treated in a special way, results for them are also presented.

C.1 North boundary

Unknowns at the North boundary can be obtained following the process for the South

boundary in Sec. 5.1.1. In this section, we only provide the resulting equations.

Below are the equations which should be solved in order to obtain the desired

unknowns p,, g,, g, and g, at the North boundary (see Fig. C.1).

At
P, :{g0+g1 +g, +2(g2 +g; +g6)+2FyC}/{1+Uwy}

8783 :(gl

g.=g+(g’-g¥)

At
+g5)_(g3 +g6)_pwax +?F;cc

At
&, +8:=8, 18518 &4 _pway +?F1C

7

8

(g +8&)+(g —g)
2

_ (& +&) (g -&)
2
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North
N O— Boundary

Unknowns

Fluid

Fig. C.1: Velocity boundary condition at the North boundary. The x- and y-velocity of the

fluid is specified to be U, and U, respectively. Distribution functions g, , g,, g, and the

wy

density p, are unknown.

C.2 West boundary

Unknowns at the West boundary can be obtained following the process for the South

boundary in Sec. 5.1.1. In this section, we only provide the resulting equations.

Below are the equations which should be solved in order to obtain the desired

unknowns p, , g,, g5 and g, at the West boundary (see Fig. C.2).

At

Py :{go+g2 +g4+2(g3 +8&s +g7)_2Frc}/{l_wa} (C.7)
g =g+(g"-g¥) (C.8)

At .
g-&=(g+g)-(+e) AU, - F (C.9)

At .
gS +g8 = g3 +g6 +g7 _gl +10wax _?Fr (CIO)

+g.)+(g. —

g5=(g5 gs)z(gs gg) (C.11)
_(85+8)—(85—8) (C.12)

&5 B
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West Boundary

None 3 { Fluid

Unknowns

Fig. C.2: Velocity boundary condition at the West boundary. The x- and y-velocity of the

wy

fluid is specified to be U, and U, , respectively. Distribution functions g, g5, gg and the

density p, are unknown.

C.3 East boundary

Unknowns at the East boundary can be obtained following the process for the South

boundary in Sec. 5.1.1. In this section, we only provide the resulting equations.

Below are the equations which should be solved in order to obtain the desired

unknowns p, , g;, g, and g, at the East boundary (see Fig. C.3).

At
P, ={go+g2 +g,+2(g +g; +gg)+zﬂc}/{1+Uw} (C.13)
g =g +(g"—g") (C.14)
At
87— & :(g2+g5)_(g4+g8)_pway+7 v (CIS)
At .
8,8 :gl+g5+g8_g3_pwax+7Fv (C.16)
: =(g7+g6)+(g7_g6) (C.17)

2
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(C.18)

East Boundary

L
Ui
L 5
‘<:> 1 None
y
8

Unknowns O

Fluid

Fig. C.3: Velocity boundary condition at the East boundary. The x- and y-velocity of the fluid

is specified tobe U, and U, , respectively. Distribution functions g,, g,, g, and the

wy ?

density p, are unknown.

C.4 South East (SE) corner

Unknowns at the SE corner can be obtained following the process for the SW corner

in Sec. 5.1.2. In this section, we only provide the resulting equations.

Below are the equations which should be solved in order to obtain the desired

unknowns at the SE corner (see Fig. C.4).

P = Prsr (C.19)
g =g +(g—g") (C.20)
g =g, +(g - gy") (C21)
At .
888 =8 & & +pPU, —7Fx (C.22)
8s+8:—&; :g4+g8_g2+pway__ y (C.23)

2
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_ (g5+g6_g7)_(g5 _gs_g7)

C.24
; . (C24)
g-2 =(gs+8—8)—& (C.25)
g5+g7=pw—(go+g1+g2+g3+g4+g6+g8) (C.26)
+g,)+(g -
lesre)r(sme) (C.27)
2
+ — —
= (gs g7) (gs g7) (C.28)
2
East
Boundary
] \
AUw
N
Fluid @ o> one
Pnsr
Unknowns
South ~
Boundary ~
None

Fig. C.4: Velocity boundary condition at the South-East (SE) corner. The x- and y-velocity of

the fluid is specified to be U, and U, , respectively. Distribution functions g, , 5,85, &>

Wi

g, and the density p, are unknown.

C.5 North East (NE) corner

Unknowns at the NE corner can be obtained following the process for the SW corner

in Sec. 5.1.2. In this section, we only provide the resulting equations.

Below are the equations which should be solved in order to obtain the desired

unknowns at the NE corner (see Fig. C.5).
P = Prsr (C.29)
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g =g +(g" —g") (C.30)

g =8 +(g—g") (C31)
At .
87 -8 1T8& =8 -8~ &+tpr.U, —7Fx (C.32)
At .
8, +8 8 =88~ &+pU,, _?F) (C.33)
-2, -8+ 8 )+(-g, +g.—
g7:_{( 8~ +8)+ (-8 +& gs)} (C34)
2
86— 85 :(_g7 + & _g8)+g7 (C.35)
g6+g8:pw>_(g0+gl+g2+g3+g4+g5+g7) (C.36)
+g.)+(g. -
g6:(g6 gg) (g6 gs) (C.37)
2
+ — —
ggz(gs gs)z(g6 g) (C.38)

None Unknowns
North M\
Boundary ~
Fluid
None
U\\ y

@

N Pner Uy

East
Boundary

Fig. C.5: Velocity boundary condition at the North-East (NE) corner. The x- and y-velocity
of the fluid is specified to be U, and U

wy ?

respectively. Distribution functions g5, g, , g,

g,, gyand the density p, are unknown.
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C.6 North West (NW) corner

Unknowns at the NW corner can be obtained following the process for the SW corner

in Sec. 5.1.2. In this section, we only provide the resulting equations.

Below are the equations which should be solved in order to obtain the desired

unknowns at the NW corner (see Fig. C.6).

Pw = Pxsr (C.39)
g =g +(g—g) (C.40)
g =g +(g-g¥) (CA1)

At ¢
&—&+&=&+&—&+mﬂmmgﬂ (C.42)
gS_g7_g8:g4_g6_g2+pway__Fy (C43)

2

(gs—g,+g)-(g5—g &)

= C.44

83 > ( )

85— & z(gs_g7+gg)_g8 (C.45)
g5+g7:Iow_(go+g1+g2+g3+g4+g6+g8) (C.46)
5=(g5+g7);'(g5_g7) (C.47)
:(g5+g7)_(g5_g7) (C.48)

8 >
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None

6
~\ North
Unknowns 9, Boundary
None Fluid
@
Pngr N
West
Boundary

Fig. C.6: Velocity boundary condition at the North-West (NW) corner. The x- and y-velocity

of the fluid is specified to be U, and U, , respectively. Distribution functions g, g,, g;.,

Wi

g,, ggand the density p, are unknown.

226



Appendix D
Density boundary conditions in 2D
In this appendix, density boundary conditions for the North, East and West boundaries

in a 2D domain are presented. Since respective corners of the above boundaries are treated in

a special way, results for them are also presented.

D.1 North, West and East boundaries

Unknowns at the North, West and East boundaries can be obtained following the
process for the South boundary in Sec. 5.2.1. In this section, we only provide the resulting

equations.

Below are the equations which should be solved in order to obtain the desired

unknowns p, , g,, g, and g, at the North boundary (see Fig. C.1).

At
Uwyz{go+g1+g3+2(g2+g5+g6)+2ch_pw }/ W (D.1)
g =g +(g-g¥) (D.2)
g7_g8:(gl+g5)_(g3+g6)_pwax+7F:\‘ (D.3)
At o
&t 8 :g2+g5+g6_g4_pway+7Fy (D4)
+g.)+(g, -
= (g7 gs) (g7 gs) (D.5)
2
J’_ J— —
g - (87 +8:)—(8:—&) D.6)
2
Below are the equations which should be solved in order to obtain the desired
unknowns p, , g,, g and g, at the West boundary (see Fig. C.2).
At ¢
U,.= {go +8,+8,+2(8 + & +g7)—7Fx —pw}/(—pw) (D.7)
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g =g+(g"-g¥) (D.8)

At
gS_g8:(g4+g7)_(g2+g6)+pway _?Ff (D.9)
At ¢
&5+ &5 :g3+g6+g7_g1+pwax_7Fv (D.10)
+g.)+(g.—
g Esra) (e (D.11)
2
+ — —_
g8 — (gS gS) (gS gS) (Dlz)
2
Below are the equations which should be solved in order to obtain the desired
unknowns p, , g,, g,and g, at the East boundary (see Fig. C.3).
JAY
Uwfx:{g0+g2+g4+2(g1+g5+g8)+2F;c _pw}/ w (D13)
g =g +(g"-g") (D.14)
JAY
2, & =(g2+g5)—(g4+g8)—pwUW+7 . (D.15)
At ¢
g7+g6:g1+g5+g8_g3_pwax+?Fr (D16)
+g.)+(g, -
g7 — (g7 g6) (g7 g6) (D17)
2
+ — J—
_ (& +8)—(8—8) (D.18)

6 2

D.2 South East (SE), North East (NE) and North West (NW) corners

Unknowns at the SE, NE and NW corners can be obtained following the process for

the SW corner in Sec. 5.2.2. In this section, we only provide the resulting equations.

Below are the equations which should be solved in order to obtain the desired

unknowns at the SE corner (see Fig. C.4).
Pw = Pxsr (D.19)

g =g +(g—g") (D.20)
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g, =g,+(g -g¥)

At
88 —8 =88 ~-&+pU,, —7Ff

At
85+8 & =8&+& & +tprU, _?Evc
_ (gS +g6_g7)_(g5 _g6_g7)
&6 = 5

85— & :(g5+g6_g7)_g6
8s+8 =P, (8 +8+8&+8 +8+8+&)

_ (g5+g7)+(g5_g7)
2

85

(&5+g)-(g5-2)
& = )

Below are the equations which should be solved in order to obtain the desired

unknowns at the NE corner (see Fig. C.5).

P = Pnsr
g =g +(g—g")

g, =g +(g’-g¥)

At
~8,— 8+ 8 =88 & +PU.. —7Ff

At
818 ~& =& ~8&-&+pU, ~—F'

__{(_g7 —&s +gs)+(_g7 +g6 _gs)}
8 = )

i :(_g7 +g6_g8)+g7
g+8=p,—(g+8+8 +8+8,+8+g,)

_ (g6+g8)+(g6_g8)
o 2

(gt 8) (g &)
8s = >
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(D.31)
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Below are the equations which should be solved in order to obtain the desired

unknowns at the NW corner (see Fig. C.6).

pw = pNBR (D39)
g =g +(g" -g) (D.40)
g =8 +(g—g") (D.41)
At .
&8 +t& =818 & +P.U. _?F;c (D.42)
At ¢
858 8 =8 8- &+pU, —7Fy (D.43)
— + — — —
gsz(gs & gs) (gs &7 gs) (D.44)
2
88, = (gs — &5 +gg)_g8 (D45)
g5+g7pr_(go+g1+g2+g3+g4+g6+gs) (D.46)
+g.)+(g—
5=(g5 g7) (gs g7) (D.47)
2
+ p— p—
_(8s+81)-(8-8) (D.48)

87 )
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Appendix E

Velocity boundary conditions in 3D

In this appendix, velocity boundary conditions for the Top, South, North, East and

West boundaries in a 3D domain are presented.

E.1 Top boundary

Unknowns:

P> s> &2r &i3» &6 a0A g5

Mass conservation:

18
p.=.8,
a=0

Momentum conservation:

At
pU,, = (gl T8+ &0t 8&n +glz)_(gz T8 T8 T8 +g14)+?F;C

At
PU,, =(g+8 +8+&s+86)—(8+8 +810+8p +g18)+7Ff

At
AU, :(g5 tE&n T8t &is +g18)_(g6 +81, 1t 81518 +g17)+7FzC

From equations (E.1) and (E.4):
& T8 1t8, 181818, t8 T8 + 8

1
Py =T~ At
(1+Uwz) +2(g5+g11+g14+g15+g18)+?FzC

Assuming the partial bounce back of the non equilibrium distribution functions,
g, =g +(8’ —g¥)+(v,.0,+v,,5,+v,.5.)
where {a,a}={6,5},{12,14},{13,11},{16,18},{17,15} .
The above equation can be written in more explicit form as,
g =8 +(g —gi)-o.

&3 = 8u +(g18;] _gfi])_éx_éz
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g = &+ (gt — il )+ 5. -0,
&7 = &5 +(g16;[ _gle;[)_é‘y -0,
&i6 = &8 +(g16g _gleg)+§y -0,

Algebraic manipulations give,
(g1 -80) (s —g)= (e —&if) (gt —git ) +25,

(gls _g17)_(g18 _g16) = (gfg _gle?)_(gleg _gleg)"'Zé‘y

Now, using the momentum conservation relations,

At
PU,. =(8+8 +80)-(&+g+8g)+—F

2
+(2 - g1t) (e - git)+ 25,
pU,, =(g+g +&)-(g +& +gm)+%Ff
+(g - git) (gt —git)+25,
pU,. =(g" +aif +ail + g +aif)
(g g+ g+ g+ S FC 55
From the above equations, unknowns can be evaluated as:

At
5 _l pwax _(gl +g7 +g10)+(g2 +g8+g9)_7F¥C

~(gi1-git)+ (g —g)

At
P, _(g3 t&; +gS)'*'(g4 T8 +g10)_?FyC

~(grt g )+ (g -2

P, ~(g +eil +gil + 2t + 1Y)

S 1
s eq eq eq eq eq)_ At Jas
+(g6 T8 815 T8 +g17) PR

E.2 South boundary

Unknowns:

P> &» &5 &s» &5 and g
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Mass conservation:

18
=>g,
a=0

Momentum conservation:

At
AU =(8+8+ 80t 81T 80) (8248 T8 8+ &)+ S FC

At
PU,, =(&+g +g+8s+8s6)~ (g4+g9+gm+gn+glg)+71%?

At
pU,.= (gs + 81+ 8.t 8;s +g18)_(g6 + 81, 851t 8 +g17)+7FzC
From equations (E.20) and (E.22):
1 & t8 +t8,+8: T8 t811t&,1T851T8u
At

(I_Uwy) +2(g4 T8 T80t 81y +g18)_717yc

Py =

Assuming the partial bounce back of the non equilibrium distribution functions,
g, =g +(8’ -2 )+(v,.0,+v,,5,+v,.5.)

where {a,a} ={3,4},17,91,{8,10} 15,17}, {16,18} .
The above equation can be written in more explicit form as,

& =g, +(g —gi')+0,

g =g +(g' — g5 )+0,+9,
=g, +(g —g1l)-0,+95,
g17+(g gll)+3,+5.
=g +(g —gil)+5, 6.

Algebraic manipulations give,
(g-8) (g —8u)=(g — g5 )~ (& - &y )+ 25,

(gIS _g17)_(g16 ~ &)= (gleg _gle;])_(glgg _gleg)+25z
Now, using the momentum conservation relations,
At
pU,. = (g1 + & +g12)_(g2 +8&i +g14)+?EcC

+(g5 g5~ (g — gt )+ 25,
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— eq eq eq eq eq
pU,, =(g +g5 +gu +gl+g)

e e e e e At
(g8 g + el vt + gl )+ F 459,

At
pU,. =(gs+g,+8.)-(g+2n +gl3)+7Ff
+(gr - gt ) - (gt — gt ) +20.

From the above equations, unknowns can be evaluated as:

pU,, _(gl + & +g12)+(g2 + 8 +g14)

|
é‘x ~ At e e e e
2 —Eﬂc—(gé"—g;"%(gg"—glg)
[P0 (g5 + g5 + e + gt + i)
5 =—
y e e e e e At
S |+(g5 + g5 + gt + gt re )=
L [PV = (gs +au+gi)+ (g +en +ain)
522_ At e e e 2
2 _TFVZC _(glg _gléj)—i_(glg _glg)

E.3 North boundary

Unknowns:

Pus 845 &o» &uo» &7 and gig

Mass conservation:

18
pu=2.8.
a=0

Momentum conservation:

At
PU.=(8+8 +80+8 +8,)— (g +8 +8 +8n +g14)+7F;C
Pl :(g3 T8 T8yt &is +g16)_(g4 +8&+ 80t 81y +g18)+7FyC

At
PU,. =(gs+ 2 +8u+8s+85) (8 +2+85+ & +g17)+7FzC

From equations (E.39) and (E.41):
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8 18 +8 18 +8t81 18,1785+ 8u

At
+—F°¢

L]
o >

1+Uwy) +2(g3+g7 +g8+g15+g16)

Assuming the partial bounce back of the non equilibrium distribution functions,

g, =g +(8’ -8 )+(v,.0,+v,,5,+v,.5.)
where {a,a} ={4,3},{9.7}.{10.8},{17,15}.{18.16}
The above equation can be written in more explicit form as,
g =g +(g —g5)-0,

8o :g7+(g9eq_g;q)_5x_5y

go=8s+(gll —g)+3,-9,
g =gs+(gd-g)-5,-6.
gs=gq+(gl—gil)-5,+6.

Algebraic manipulations give,
(g,-8)-(gs—8u)=(g5 —g5") (8 - &y )+ 25,

(85— 7))~ (2 —gis) = (& — 2t )~ (gt —git) + 2.
Now, using the momentum conservation relations,
P, =(g+8i+g,)—(8+gns +g14)+%Ff
+e - a') (e - iy) + 29,
pU.,, =(g +g5 +gu +gl +g)

e e e e e Az
_(g4q +gl+gil+gl +g1§)+7Ff +506,

At
pU,. = (gs T8 +g14)_(g6 T8, +g13)+7FzC
+(grt —git) (gt —git)+20.
From the above equations, unknowns can be evaluated as:

P, _(gl +8 +g12)+(g2 +85 +gm)
S =

1
T2 S —(g5"—g5')+(ge — gt
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pU,, (g5 +g5 + g + g + gt )

1
S ==
e e e e e At
TS (g g g gl +g13)—7Ff
1 pwaz_(g5+gll+g14)+(g6+g12+g13)
52 >y At e e e e
2 _?cm_(glg_gl?)"'(glg_glg)

E.4 West boundary

Unknowns:

P> 81> &1 o> & and g,

Mass conservation:

18
Pu=2.8,
a=0

Momentum conservation:

At
P, z(gl +8,+80t+t8n +g12)_(g2 +8st8y+ 8 +gl4)+7FxC

At

FC
27

AU, =(8+8 +8s+8is+816) (84 + &+ 80+ 81 +8s) +

At
pU,. = (gs +811t8ut+8&s +g18)_(g6 + 81+ 81318 +g17)+7FzC
From equations (E.58) and (E.59):
| 801818, 185+ 8c+ &8s+ 86817 T &is
P, =( At

1-U,,) +2(g2+gx+g9+gl3+gl4)—3Ff

Assuming the partial bounce back of the non equilibrium distribution functions,
g, =g +(8’ -8 )+(v,.0,+v,,5,+v,.5.)

where {a,a} =1{1,2},{7,9},{10,8},{11,13},{12,14} .
The equation above can be written in more explicit form as,
g =g +(g"—g)+d,
g =8 +(g" —gy)+0,+5,

go=g+(gl—g)+5.-9,
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g, =8, +(gf —g)+6, +0.

8n =81 +(g1eg _gleZ)+§x -0,
Algebraic manipulations give,
(g:-2) (g0 —20)=(g" —g5') (gl —g")+25,

(g1 -20) (22 —g) = (g7 —2if) (gt —gi1) +26.
Now, using the momentum conservation relations,
P, =g +&)" +git +&it +271)

At
—(g5" +gu + g5t + gt +gfj)+7Ff +56,

At
pway :(g3 + 85 +g16)_(g4 + 8, +g18)+?FyC

+(e —g') (g - i) +26,

At
pU,. = (gs t+ 45 +g18)_(g6 + 86 +g17)+7FZC
+(gr - g4 ) (g1 - gt ) +20.

From the above equations, unknowns can be evaluated as:
P, — (8 +g5 +gil + gl +g1)

1
é‘x :g eq eq eq eq eq At C
+(g2 T8 T8& &3 +g14)_?Er
1 pway _(g3 + 85 +g16)+(g4 + 87 +g18)
5V =5 At [ e [ €
I (g g )+ (gl &)
[PV (8 + &is + i)+ (g6 + 216+ 217)
52 ) At e e e e
2 _EFVZC _(glij _glg)"'(glg _gljt[)

E.S East boundary

Unknowns:

Pus &> &os &s» &3 and gy,
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Mass conservation:

18
=>g,
a=0

Momentum conservation:

At
PV, =(8+8 +80+8& +g12)_(g2 T8 T8 85 +g14)+7ﬂc

At
pU,, = (g3 T8 T8 T8&is +g16)_(g4 T8 T80t 81 +g18)+?FyC

At
pU,.= (gs + 81+ 8t 8 +g18)_(g6 + 81, 851t 8 +g17)+7FzC
From equations (E.77) and (E.78):
1 8T8 +8,+85+8c+815 8167817 T 8&is

P At
(1+wa) +2(g1 +g;,+80t8&u +g12)+7F;C

P, =

Assuming the partial bounce back of the non equilibrium distribution functions,
ga = ga + (gsq - g;q ) + (Va,xé‘x + Va,yé‘y + va,zé‘z)

where {a,@} ={2,1}.{9,7}.{8,10}.{13,11},{14,12}
The equation above can be written in more explicit form as,
g =g +(g —g")-95,
g =g +(g'—g")-0,-9,

5+5

=8t - &

0.+

z

=8t

(& ~&it)-
g11+(g gu) 0, -9,
(g14 g12)

Algebraic manipulations give,
(g,-8) (g0 -2 =g — &) (gt — &)+ 29,

(g1-81)~(22-8u) = (g7 ~ &%)~ (git - git) +26.
Now, using the momentum conservation relations,
pU,. =(g" +g" + gt + gl +2iY)

e e e e e At
_(gzq +gy' +8y +81 +glf)+7FXC +50,

238

(E.77)

(E.78)
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(E.84)
(E.85)
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At
pU,, = (g3 +&is +g16)_(g4 T8 +g18)+_EvC

2
+(g5" - &)~ (gt —gs")+26,

At
P =(8s+8is+ &)~ (8 + 81+ &)+ FY
+(gt - 2it) - (gt - it)+20.
From the above equations, unknowns can be evaluated as:
P, —(8 +g5 +gi + gl +g1)

1
é‘ng eq eq eq eq eq At C
+(g2 T8 T8 +g13+g14)—7ﬁ—;
1 pway_(g3+g15+gl6)+(g4+g17+g18)
0,==1 At
B e Gt A C TRy
L [PV = (g5 +ais +ai) + (g + & + 1)
52 ) At e e e e
2 |- (el —g)+ (e gt
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Appendix F

Mathematica routine for Maxwell construction

Below is the Mathematica algorithm to apply Maxwell equal-area construction and

compute the equilibrium phase densities for the van der Waals equation of state:
! Define the van der Waals equation

! Rearrange for pressure

! Calculate critical constants (V¢ and T;)

! Calculate a and b in terms of critical constants (V¢ and 7,)

! Calculate Pc

! List critical parameters (Pc, V¢ and 7,)

! Calculate the critical compressibility factor Z = LA

c

! Write the vdW equation of state in reduced variables

! Identify the limiting pressure values (pressures corresponding to points B and C) at a given

reduced temperature (for example, at reduced temperature Tr = 0.3)

! Guess a suitable pressure value between the above two limiting values. One may choose the

average of these two if it is non-zero.

! Calculate phase volumes corresponding to the intersection of the horizontal line described

by above mid-pressure with the P-V curve.

! Define area under the horizontal line as ‘Area-1’
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! Define area under the P-V curve as ‘Area-2’

! Find the equilibrium pressure value for which these two areas are equal

! List the equilibrium pressure and the volumes of two coexisting phases

(Actual code can be found in Prashant, 2010)
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Appendix G

Conversion between physical and lattice units

One of the key steps in applying LBM to solve physical problems is the accurate

conversion between physical and lattice units. There are two widely used methods: one is to

directly convert between the physical and lattice units (which may be called direct

conversion), and another is to perform the conversion via a non-dimensional formulation

(which may be called dimensionless formulation). In the following sections, these two

methods are discussed in detail:

G.1 Direct conversion

In the direct conversion approach, lattice units are related to the physical units via the

time step At and spatial grid size /. A list of physical and lattice units, and their relationship

are provided in the Table G.1 (taken from Feng et al., 2007).

Table G.1: Relationship between physical and lattice units in a LB calculation.

Variable Physical Lattice Relationship
Density p p P= PP
Grid spacing Ax=Ay=h AX=Ay =h =1
Time step At At =1
5 _
Lattice speed c= Zt C = % =1
t
Coordinates/displacement X X X = hX
. : Ax _ AX h _
Macroscopic velocity =— u=— u=—u
At At At
1 h _ 1 h _
Speed Of Sound s,phy — ﬁz s,lattice = EE cs,phy = Ecs,lattice
A _ Au h/At _
Acceleration === a= —E a= /— a
At At At
Kinematic viscosity y o3 1 h sz 1 h?
(for 1 order discretization) S-laitice 2 ) At slatice 2 ) At _n
2 72 v=v-—
. o _ At
(for 2" order discretization) V=1C, e " V=1C e h—_
LY, At
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G.1.1 Acoustics based conversion

From Table G.1, we have:

2
— «h
v=c T —

e G.1
s,lattice At ( )

where 7" is either (Z' - 0.5) or 7 depending upon the discretization used in formulating the

LBE.
h _
cs,phy = A_tcs,lattice (Gz)
From the above equations, we can write:
V= ciphyr*At (G.3)
or,
At=—Y (G.4)
Co T
and
c, At
h = i,phy =— i " (GS)
c c ¢, T

s,lattice s,lattice™ s, phy
For example, if a system with the following known physical quantities for air at temperature
=300 K (Nourgaliev et al., 2003) is to be simulated:
Physical speed of sound ¢, , .= 300 m/s (in air)
=10 m%/s

Kinematic viscosity of air v, .

Then, from the above equations, one LB grid spacing and one LB time step correspond to (7"

can be chosen to be 0.01 from numerical stability considerations):

-5
At=+=l.lx10'8s (G.6)
(300)°(107)
-5
h= 10 =5.8%x10"m (G.7)

(\16)(300 )(107)
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Similarly, for water, we have: ¢, , ~1500 m/sand v, ~ 107 m%/s. Now, using these

water

values and 7 =0.01, we get:

=7
A= _44x10"s (G.8)
(1500 (10)
-7
h= 10 =1.1x10"%m (G.9)

[%j(lsoo )(107)

G.1.2 Gravity based conversion

For a simulation in which gravity is the driving force for the flow, one can find the

time and space conversion factors by using the relations below.

h/At _
=l G.10
VL (G.10)
h
v=cl, 7 — G.11
s,lattice At ( )
The above equations yield:
_ 1
—\2 |3
At=|—2 {Ej } (G.12)
Cs,latticez— g
and
- - 2
h=|— - = (G.13)
L cs,latliceT g
For g =10m/s’ (physical), g =107 (LBM), v,, , =10 m’/s, z"=0.01 (chosen), €., =1/3

(for D,Q lattice), we get: At =3.1x 10*sand 4 =9.65x 10* m.

From equations (G.12) and(G.13), it is clear that an increase of lattice gravity means a
simultaneous increase in spatial grid size and time steps (if other physical parameters remain

the same), i.e. using a higher lattice gravity is equivalent to simulating a larger system (larger
bubble).
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Similarly, if one wants to keep the spatial grid resolution and time step of the
simulation fixed (i.e. # and At fixed), then one needs to redefine the lattice gravity to

simulate the same physics in different domain sizes.
G.1.3 How many “physical molecules” does a “LB particle” represent?

Let us suppose that each LB particle represents N molecules and at each lattice site,

there are f LB particles (on an average) going in each of the lattice directions of a D0

lattice. Then, total number of molecules at each lattice site is equal to Nfb (Succi, 2001).

In physical space, if the physical number density of molecules 77 (molecules per cubic
meter) is known and spatial grid size is / then total number of molecules in one lattice cell of

volume /’ is equal to ni’.

From the above arguments, we can calculate N from:

N:% (G.14)

For a D,Qy lattice, we have,b =9, assuming /' =0.1 and /4 =1um, we get:
N = (1 11x107"® ) n . For an ideal gas, number of molecules per cubic meter at standard
temperature and pressure condition is equal to Loschimdt number 7= 2.687 x 10*° per cubic

meter, which gives N =3x10" molecules per lattice site (one reason why LBM is called a

mesoscopic method).

G.2 Dimensionless formulation

This section is based on the dimensionless unit conversion approach discussed in the
handout by Latt (2008). In this approach, the physical system (P) is first converted into a non-
dimensional system (ND), and then the non-dimensional system is converted into a lattice
Boltzmann system (LB). The three systems (P, ND and LB) are defined such that they have
the same Reynolds (Re) number. The transition from P to ND is made by choosing a

characteristic length /, and time ¢#,, and the transition from ND to LB is made by choosing

the discrete space step 4 and time step At .
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G.2.1 Governing equations in physical units

Usually LB simulations are targeted towards solving an incompressible Navier-Stokes
(N-S) equations, which are simply the laws of mass and momentum conservation. The mass
conservation equation states that the macroscopic velocity field is divergence-free, i.e.
V,u,=0 (G.15)
where u, is the macroscopic velocity and subscript ‘p’ indicates the physical units of

evaluation.

The momentum conservation equation in physical units can be written as:

1
o u,+(u,-V,)u,==——V,P +v,Viu (G.16)

p prP
IOOp

where P is the pressure and v, is the kinematic viscosity in the physical units.

G.2.2 From physical (P) to non-dimensional (ND) system

In order to convert the physical system (P) governed by equations (G.15) and (G.16)

into a non-dimensional system (ND), we have to first choose the characteristic length /, , and
time scale 7, , in physical units depending upon the problem being simulated. For example,
l, ,can be the size of an obstacle immersed in the fluid or diameter of the bubble or droplet
being simulated, and 7, , can be the time needed for a passive scalar to travel the

characteristic length in the fluid. Using these characteristic scales, we can now non-

dimensionalize the governing equations (G.15) and (G.16) to yield:

Vnd 'und :O (G17)
1
alﬂdund +(und Vo )”nd =-V,.b, +R_evidu"d (G.18)
t 1 | LY
r u
where £, =25, 1y =75y == 0, =70, V, ==V B =, | 5 | By
0,p 0,p ( 0,p /tO,p) 0,p 0,p ZO,p

and Re is the Reynolds number defined as:
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2
Re = —IO’”

L,V

(G.19)

Now, expressing the reference physical variables /; , and ¢, , in non-dimensional units, we

get:
/
Iyt = ZO—P =1 (G.20)
0,p
t
lowa = = =1 (G.21)
0,p

Since Reynolds number remains the same in both the flow configurations (P and ND), we can

write:
IR I 1
Re=—22 =0 _ __ (G.22)
tO,pr tO,nand Vnd

G.2.3 From non-dimensional (ND) to lattice Boltzmann (LB) system

The discrete space step 4 is defined as the reference non-dimensional length [, ,
divided by the number of cells N, used to discretize the length. Similarly, discrete time step

At is calculated by dividing the reference non-dimensional time ¢,,, by the number of time

StePS N,y,eeps N€€ded to reach a desired time. Since /;,, =1 and ¢,,, =1, we get:
1
h= (G.23)
Ncel/s
1
At = (G.24)
timesteps
Other variables can be converted between (ND) and (LB) systems using:
Ung
Uy =—= G.25
b (h/At) ( )
At At 1
V="V, =—5— G.26
b hz nd hz Re ( )
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G.2.4 Illustrative example

In an attempt to explain the unit conversion from (P) to (LB), an example (again,

taken from Latt (2008)) is presented below.

Suppose we want to simulate flow in a 2D lid-driven cavity, in which the fluid is
confined within a box of size 3 cm x 3 cm. The lid at the top moves with a speed of 2
cm/min. The viscosity of the fluid is 5 cm*/min (Raspberry Jam). The following steps outline

the unit conversion process (Latt, 2008):

 Define the physical characteristic length and time scale. Let us select /, ,=3 cm

and ¢, , = “2_= 1.5 min (time taken by the lid to traverse the characteristic
lid
length).
12
e Compute the flow Reynolds number, i.e. Re = —£—=1.2
Lo,V

e Choose the discretization parameters (grid space and time step). Suppose we want
to pick 101 x 101 lattice points to discretize our 2D simulation domain (lattice

points lie on the domain boundaries), then N, = 100 which gives the discrete

grid spacing to be & = = 0.01. Furthermore, let us select Az to be 2 x 107

cells
(how to appropriately pick At will be discussed in the next section).

e Having selected 4 and At¢, we can now establish u, (equivalent lattice velocity to

simulate the lid velocity) and v, (lattice viscosity) from equations (G.25) and

(G.26) as:

U, = —nd__ Yia = 0.02 (G.27)

P(hAe) (1, /0, ) (/AT

At At 1
Vi =h—2vnd ZFR—GZ 1.67 (G28)

Once lattice viscosity is determined, one can calculate the single-relaxation time 7

from its relationship with the lattice viscosity.
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G.2.5 How to appropriately pick A¢?

As discussed in Latt (2008), there is no straightforward intuitive way to choose Az in

a LB simulation. In several other numerical methods, time-step Af is often linked with space

step & from the relation Az[] #° due to numerical stability considerations. However, in

LBM, the relationship between At and /4 results from other constraints.

From equation (G.27), we know that velocities measured in the lattice units are of the

order At/h (i.e. u, [l % ), and since the LB velocity should be less than the lattice speed of

. . . L h
sound, c, (i.e. u, <c,, for subsonic flows), there is a constraint in the form of Az < ﬁ

where ¢, = L for a D,Qy lattice (Latt, 2008).

NG

Another constraint on A¢ can be obtained for the simulation of incompressible flows.
Since LBM is a quasi-compressible method, i.e. the system in LB simulations enters a
slightly compressible regime to solve the pressure equation of the fluid. The compressible

effects, however, do affect the numerical accuracy of the system. Since the compressibility

error of the LB simulations ¢,,,,, scales with the square of Mach-number, Ma® (ie. 0 Ma’

), we can keep the system close to incompressible by choosing a low Mach number (i.e. low

Ma =-2). From the above discussion, we can write:
c

s

AtY
0 Ma® 0w, [ (7j (G.29)

gcomp

For a second order accurate LBM, the lattice resolution error scales with 4 as &, [ h*. In

order to keep the order of both error terms the same (i.e. &

comp

D glattice )’ one can Scale the At

as At h*, which apparently is the same constraint that one encounters in explicit fluid

solvers (Latt, 2008).
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