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Abstract 
 

In this research, a new lattice Boltzmann model, called the artificial interface lattice 

Boltzmann model (AILB model), is proposed for the simulation of two-phase dynamics. The 

model is based on the principle of free energy minimization and invokes the Gibbs-Duhem 

equation in the formulation of non-ideal forcing function. Bulk regions of the two phases are 

governed by a non-ideal equation of state (for example, the van der Waals equation of state), 

whereas an artificial near-critical equation of state is applied in the interfacial region. The 

interfacial equation of state is described by a double well density dependence of the free energy. 

The continuity of chemical potential is enforced at the interface boundaries. Using the AILB 

model, large density and viscosity ratios of the two phases can be simulated.  The model is able 

to quantitatively capture the coexistence curve for the van der Waals equation of state for 

different temperatures. Moreover, spatially varying viscosities can be simulated by choosing the 

relaxation time as a function of local density. 

 

Suitable velocity and density (pressure) boundary conditions are also developed for the 

particle distribution functions in the framework of the proposed model. Boundary conditions for 

both the 2D as well as 3D domains are developed and relationships to evaluate unknown 

distribution functions are explicitly provided. Based on the Cahn’s wetting theory, physics 

governing the wall-fluid interactions is also developed in the framework of the AILB model. 

Using it, any specified contact angle (ranging from 0o to 180o) can be simulated at the walls of 
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the domain.  The proposed AILB model and the Lee-Fischer LB model are evaluated on several 

simple problems which involve interactions between two phases of a fluid and, between two 

phases and solid walls. Some of these problems in the order of increasing complexity are: the 

simulation of multi-fluid Poiseuille-Couette flow, specifying static bubbles/droplets in a periodic 

domain, two-bubble or two-drop coalescence, single rising bubble, break-up of a drop/bubble 

due to shearing walls, specifying different equilibrium contact angles on the surfaces, dynamics 

of drop/bubble in contact with a surface, etc.   

 

In addition, a simulation methodology based on the Peng-Robinson (P-R) equation of 

state has been devised in the LB framework. The developed P-R model can accurately predict 

phase-coexistence curve for water and steam at different system temperatures and allows 

simulation of phases with varying density/viscosity ratios.  

  

Thermal effects in the AILB model are simulated by employing a separate distribution 

function responsible for tracking the temperature dynamics. A phenomenological model to 

simulate evaporation and condensation is also developed in the framework of the proposed 

model. The thermal model is able to qualitatively capture the bubble growth and shrinking 

dynamics due to the variations in surrounding bulk temperatures. 

 

For the numerical analyses using the LBM, a computer code is developed to solve 

problems in both 2D and 3D. The code can run on a single processor PC as well as on a parallel 

cluster. The code has been written in FORTRAN90 language and incorporates MPI paradigm for 

parallelization.  
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Chapter 1 

Introduction 
 

Dynamics of two-phase flows plays an important role in many fields of applied 

science and engineering, including oil-water flow in porous media, boiling fluids, liquid 

metal melting and solidification, and many more. Typically two-phase flows manifest a wide 

variety of geometrical patterns (or flow regimes) of associated phases depending on the 

system conditions. These patterns include, but are not limited to, bubbly, slug, churn and 

annular flows. Most common two-phase patterns observed in a vertical tube flow-boiling 

experiment are shown in Fig. 1.1. These multiple flow patterns significantly affect the overall 

system hydrodynamics by varying the heat transfer and pressure drop characteristic of a 

given flow.  

 

 

Fig. 1.1: Typical two-phase flow patterns observed in a vertical tube flow-boiling experiment 

(fluid: R134a, tube internal diameter: 4.34 mm, pressure: 10 bar) (Hua et al., 2004).  

 

Due to the existence of different flow regimes and their temporal and spatial local 

transitions (depending upon the local system conditions), predictive modeling becomes 

difficult and a challenging task. Simulation and identification of these flow regimes by 

resolving interfaces via traditional Navier-Stokes (N-S) based simulators are computationally 

complex, extremely time consuming and often very inefficient partly due to the need for 

extensive interface tracking. Moreover, since interfaces between the two-phases of a fluid are 

results of unique thermodynamic effects, one also needs to know the governing equation of 

state to incorporate a consistent thermodynamics that is usually unknown in the interfacial 

Dispersed Bubbly    Slug          Churn          Annular              Mist 
  bubbles                   
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regions. Consequently, analyses of two-phase flow are still largely based on the empirical 

correlations developed for different flow regimes.  

 

In the following sections, motivation for studying the two-phase dynamics using a 

lattice Boltzmann model (LBM) based approach is given. Some salient features of the LB 

method are outlined and its benefits over the prevalent computational fluid dynamics (CFD) 

approaches are highlighted. 

 

1.1  Motivation 

 

Advances in computational fluid dynamics over the last two decades or so have been 

very impressive. Several fields of engineering—including aeronautical, automotive, 

mechanical, chemical, etc.—have benefited from this progress. However, fruits of this 

development have been more limited for applications that involve boiling and two-phase 

flows, such as those in nuclear and some other branches of engineering. The reason may be 

the slow progress in CFD to accurately model challenging problems of interest such as those 

that involve boiling or multi-phase flows.  

 

One specific example is a boiling water reactor (BWR) core, in which the coolant 

enters the core as liquid, undergoes a phase change as it traverses the core and exits as a high-

quality two-phase mixture. Two-phase flows in BWRs typically manifest a wide variety of 

geometrical patterns of the co-existing phases depending on the local thermodynamic 

conditions (Tong & Tang, 1997).  

 

The accuracy in modeling is vital for the safety and economy of a nuclear power 

plant. However, modeling such flows ― which involve bubble nucleation, bubble growth and 

coalescence, and inter-phase surface topology transitions ― using CFD type approaches 

currently relies on empirical correlations and therefore, hinder the physics-based insightful 

predictions. For example, several best estimate codes in nuclear industry, such as RETINA, 

CATHRE still rely on the extrapolated results from some simple laboratory experiments. The 

empiricism in the closure relations is a major source of error in them.  
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Fig. 1.2:  Experimental observations to investigate two-phase dynamics for some simple 

scenarios (figure adopted from Siedel et al., 2008).  

 

To improve the accuracy, we must resolve the complexity of two-phase flow 

structures either by gathering information from the physical experiments (at similar system 

conditions) and/or from numerical/analytical methods. We should note that even now, the 

physics of very simple two-phase scenarios (for example, the growth of a single bubble on a 

heated surface and the coalescence of two bubbles) has not been fully understood. In an 

attempt to grasp the physics using state-of-the-art technologies, several experimental studies 

are currently being performed. In Fig. 1.2, photographic observations from one of such 

experiments by Siedel et al. (2008) are shown.  

 

  (a)  Single bubble growth 

  (b)  Lateral bubble coalescence of two equal sized bubbles 

  (c)  Lateral bubble coalescence of two unequal sized bubbles 
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Of course, one can not directly extrapolate results from the simple laboratory 

experiments to the scale of a nuclear power plant, and full scale experiments may be needed 

to verify and benchmark the predictions. However, conducting full scale experiments on a 

nuclear reactor scale (such as, transients, loss of coolant or flow accident (LOCA/LOFA) 

etc.) are sometimes not possible (due to safety concerns) and may not even be economically 

feasible. Therefore, we should turn to numerical experiments in order to improve the 

accuracy of closure relations. Considering the limitations (cost, parameter range, safety etc.) 

of the physical experiments, numerical experimentation seems more promising (Hazi et al., 

2002). 

 

1.2  Several computational approaches  

  

There are several computational methodologies we can use to model two-phase 

dynamics. Most conventional and popular approach is to use macroscopic Navier-Stokes (N-

S) equation (supplemented with the energy equation) and include surface tension, interfaces, 

condensation / evaporation etc. effects by means of separate models.  An excellent review of 

early Navier-Stokes based two-phase approaches can be found in Stewart and Wendroff 

(1984).  

 

Usually in conventional best-estimate two-phase flow codes, two or more sets of 

partial differential equations (PDEs) along with the closure relations are numerically solved. 

Two phases are assumed to be distributed homogenously throughout the system. The phase 

homogenization brings in a very crude approximation and is a large source of error. To relax 

this assumption, closure relations need to be tuned to the specific flow regime (annular, 

bubbly, slug etc.) under specific system conditions. However, it is difficult to find well 

established and constitutive relations between the system’s thermodynamic conditions and 

the observed flow regimes (Hazi et al., 2002). Therefore, only a few available correlations, 

whose validity may still be in question, are commonly incorporated in the computer codes. 

 

While some schemes, such as the level-set method and the volume-of-fluid (VOF) 

method, have successfully been applied to model certain two-phase systems (Krishna & Van 

Baten, 1999; Scardovelli & Zaleski, 1999; Esmaeeli & Tryggvason, 1998; Juric & 

Tryggvason, 1998), there is still a need for alternative approaches to understand the 
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connection between the two-phase macroscopic phenomena and their underlying micro-

dynamics at a much more fundamental level. Ideally, molecular dynamics (MD) simulations 

can be the ‘key’ to predict these phenomena by setting up a model which describes the 

microscopic interactions as accurate as possible. However, MD is not yet ready to be 

exploited for large scale applications due to extremely high computational cost associated 

with such close-to-reality simulations (Ceperley, 1999). Consequently, a methodology which 

can bridge the gap between MD and CFD (sometimes referred to as the meso-scale approach) 

may be more suitable for the present state of computational power (Yadigaroglu, 2005). The 

Lattice Boltzmann Method (LBM) is a good candidate because of its coarse-grained approach 

to simulate fluid flows. In LBM, the dynamics is evolved by movements of fictive clusters of 

particles on a fixed lattice which do not follow Newtonian dynamics as in MD and thus are 

computationally more affordable. Moreover, use of LBM may prove highly advantageous in 

comparison to the continuum approaches because of its inherent ability to incorporate particle 

interactions to yield phase segregation.  

 

An overview of microscopic simulations in physics and the need for multi-scale 

methods to interconnect phenomena occurring at different length and time scales are given in 

Ceperley (1999). Microscopic approaches which can be applicable in simulating nuclear 

reactor thermal-hydraulics are reviewed in Ninokata (1999). In Fig. 1.3, several 

computational approaches for fluid simulations are compared on the scale of system size, 

Knudsen number, computational efficiency and system complexity per unit volume. 

Molecular dynamics (MD) approaches are the simplest representation of fluid flow in which 

the Newtonian motion of all the particles composing the system are tracked in time. 

Interactions among the particles are implemented via prescribing the inter-particle force 

potential functions. Using MD-type approaches, very detailed information about the state of a 

system can be obtained. Due to existence of large number of particles in any real system, 

MD- approaches are extremely computer and time intensive even for the problems with very 

small length and time scales. In order to simulate fluid flow on higher scales, one has to 

coarsen over the real particles. In such a modeling scheme, pseudo-particles (a collection of 

real particles) are considered which evolve either on a fixed lattice or off-lattice. Dissipative 

particle dynamics and Direct Simulation Monte Carlo (DSMC) are off-lattice pseudo-particle 

methods in which pseudo-particles move continuously in space. LBM approach is one of the 

on-lattice pseudo-particle approach in which coarse-grained fictive particles travel on a fixed 
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lattice and interact with other such particles. In Navier-Stokes (N-S) based approaches, 

continuum-based partial differential equations are numerically solved for the macroscopic 

observables (Rabbe, 2004). 

 

 

 

Fig. 1.3: Various approaches to simulate fluid flows at different scales. Applicability of a 

certain method depends upon the system size and the Knudsen number. (Figure adopted from 

Rabbe, 2004)   

 

 Navier-Stokes fluid dynamics is applicable at small Knudsen numbers and can be 

regarded as a top-down approach to fluid simulation, whereas pseudo-particle based methods 

and lattice Boltzmann models are a bottom-up strategy of fluid simulation which are 

applicable at higher Knudsen numbers. In the Navier-Stokes world, one directly deals with 

the variations in fluid observables i.e. density, velocity, pressure etc. and predicts the state of 

the fluid in terms of these observables. In contrast to above, macroscopic observables in the 
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pseudo-particle based approaches are computed by local averaging of number densities and 

momentum of the coarse-grained particles.  

 

 Several computational approaches discussed above are best suited at different 

time/space scales for fluid simulations. Cross-scale interactions (back-and-forth feeding of 

scale-specific solutions) are required at each level of scale hierarchy in order to gain better 

predictive modeling. This multi-scale strategy (merging results at the micro-, meso- and 

macro-scales) to simulate fluid flow may be able to better address the physics of complex 

fluids. However, advances should be first made in developing the scale-specific approach and 

strategies are required to merge the solutions at different scales in order to obtain reliable 

results (Yadigaroglu, 2005). Because of its mesoscopic nature, lattice Boltzmann (LB) 

methodologies are a good fit in the realm of multi-scale simulations and can address 

problems that involve multiple levels of physical and mathematical descriptions (Succi et al., 

2001; Lantermann & Hanel, 2007).  

 

1.3  An overview of lattice Boltzmann method (LBM) 

 

Unlike conventional numerical schemes based on the discretizations of macroscopic 

continuum equations, the LBM is a particle-based approach, in which collective behavior of 

particles is represented by a single-particle probability distribution function. Roots of LBM 

lie in the earlier lattice gas cellular automata (LGCA) models, in which, evolution of particles 

on a fixed lattice simulate the overall macroscopic behavior. The uniqueness of LBM stems 

from the fact that the macroscopic dynamics emerges from the simulation of very simple 

kinetic models that incorporate the essential physics of the microscopic (or mesoscopic) 

processes in the system. There underlies an artificial micro-world of particles ‘living’, 

‘propagating’ and ‘colliding’ on a fixed lattice while conserving mass and momentum (Chen, 

1993, Chen et al., 1994).  

 

For hydrodynamic simulations, LBM models are much simpler and efficient to solve 

on a computer compared to solving its macro-counterpart partial differential equations 

(PDEs). Though LBM and its variations were proposed several decades ago, it is only with 

the recent advances in computing power that their applications to realistic problems are 

becoming a reality. This approach appears to be one of the most promising approaches due to 
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its scalability with computing power and short as well as long term promises. Computing 

power will no doubt continue to increase; and hence the LBM is likely to be applicable to 

ever larger problems (Chen & Doolen, 1998). 

 

1.4  Objectives  

 

While the overall and long term goal of an LBM based simulation capability (of two 

and even multi- phase flows)  in nuclear engineering would be to accurately predict critical 

heat flux (CHF) and flow regimes maps, it is recognized that this is a rather challenging goal. 

Work reported here consists of several steps towards that goal.  Challenges include the 

development of capabilities in a LB model to address the following:  

 Simulation of two coexisting phases in equilibrium 

o Open (such as, planar) interfaces 

o Closed (such as, circular or spherical) interfaces 

 Tracking the temporal and spatial dynamics of interfacial evolution 

 Modeling of surface-tension effects 

 Modeling of walls in the computational domain  

 Modeling of wall-fluid interaction to yield a prescribed contact angle in equilibrium 

 Modeling of flow boundary conditions to be able to specify desired fluid velocities or 

densities at the boundaries 

 Modeling of all of the above physical effects in the presence of body forces, such as 

gravity 

 Modeling of all of the above with heat-transfer considerations 

 

In addition, stable and efficient (parallel) numerical schemes must also be developed. 

Only after adequately addressing these steps, one can expect to tackle the challenging 

problem of predicting CHF and flow regime maps.  

 

This report addresses the issues of development and testing of LB models for some of 

the individual effects—namely high density ratios of the liquid and vapor phases; wall and 

surface tension effects; and two phases with phase change.  
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1.5  Outline 

 

 This report has been divided into nine chapters. An outline of which is presented 

below: 

 

 In Chapter 2, theoretical aspects of lattice Boltzmann models are discussed. A 

consistent way to recover the lattice Boltzmann equation (LBE) from the continuous 

Boltzmann transport equation (CBE) is presented.  

 

 In Chapter 3, the formulation of a non-ideal Enskog equation based LBE is presented. 

Several existing techniques in the lattice Boltzmann framework to simulate two-phase flows 

are scrutinized.  

 

 In Chapter 4, an artificial interface lattice Boltzmann model (AILB) is developed to 

simulate two-phase dynamics. The model employs two equations of state, one for the bulk 

region and another for the interfacial region. Based on the Cahn’s wetting theory, a model is 

developed for simulating different wall contact angles. 

 

 In Chapter 5, velocity and density boundary conditions are developed for the Gibbs-

Duhem LB model. The formulation is presented for D2Q9 (in two-dimensions) and D3Q19 (in 

three-dimensions) lattice-types. 

 

In Chapter 6, results for several two-phase simulations are presented and compared 

with existing theoretical and experimental results.  

 

 In Chapter 7, a Peng-Robinson (P-R) equation of state based LB model is proposed. 

Model based on P-R EOS is able to quantitatively reproduce the water-steam coexistence 

curve in the LB simulations. 

  

 In Chapter 8, a thermal model is presented for the proposed AILB model. A 

phenomenological model is developed for simulating qualitative effects of evaporation and 

condensation. 
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 In Chapter 9, a summary of the report is given.  

  

In Appendix A, a derivation of incompressible Navier-Stokes (N-S) equation from the 

LB equation is presented.  

 

 Parallelization techniques and the efficiency and scalability of LB algorithm are 

discussed in Appendix B.  

 

 Details on the boundary conditions are presented in the Appendices C, D and E.  

 

 Appendix F discusses the Mathematica routine for the Maxwell construction 

procedure in the context of a van der Waals equation of state.  

 

 In Appendix G, relations between lattice and physical units are discussed. Some 

examples are given for illustrative purposes. 
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Chapter 2 

Theoretical framework  
       

Historically, the classical lattice Boltzmann equation (LBE) originated empirically 

from its Boolean counterpart, the lattice-gas cellular automata (LGCA). In LGCA, the 

physical space is divided into a regular lattice with each lattice point populated by discrete 

particles. Particles ‘hop’ from one lattice point to another with discrete particle velocities and 

‘collide’ when they meet others. Boolean collision rules are explicitly defined at each lattice 

point. Though LGCA contributed significantly in LBE’s evolution, models based on LGCA 

contained several defects (Wolf-Gladrow D.A., 2000; Rothman & Zaleski, 1997; Rivet & 

Boon, 2001; Frish et al., 1986; Chopard & Droz, 1998) such as:  

 

 Large noise due to Boolean variables 

 Violation of the Galilean invariance due to Fermi-Dirac distribution  

 Presence of spurious invariants due to regular lattices 

 Inflexibility to adjust the viscosity, and  

 An unphysical equation of state which has an explicit dependence of pressure 

on velocity.  

 

The lattice Boltzmann models (LBM) evolved from the LGCA models in order to 

overcome the shortcomings discussed above. In LBM, sets of particle velocity distribution 

functions are used instead of single pseudo-particles of LGCA.  Furthermore, the streaming 

and collision dynamics is applied over the velocity distribution functions in order to simulate 

the fluid flow. 

 

In order to develop the LBM for solving two-phase flow problems, it is first necessary 

to understand the connection between the LBE and the continuous Boltzmann transport 

equation (CBE) to identify the simplifying approximations and their impact on the simulated 

flow physics. In the following sections, a detailed derivation of the LBE from the CBE is 

presented.  
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2.1  Continuous Boltzmann transport equation (CBE) 

 

Lattice Boltzmann equation (LBE) is a specially discretized form of the Boltzmann 

transport equation which is derived from the kinetic theory of gases. Primary variable of 

interest in the Boltzmann transport equation is a single-particle probability distribution 

function ( , , )f tr v  defined such that ( , , )f t d dr v r v  is the number of particles in a phase-

space control element ( d dr v ) about r and v . Here, r  represents a location in physical space 

and v  is microscopic velocity. Moreover, particles are assumed to be in a dilute state to have 

large inter particle separations and therefore, all the interactions involving more than two-

particles may be neglected. With all these approximations in mind, the Boltzmann transport 

equation (Cercignani, 1969; Harris, 1971) can be written as: 

 . . ( , , ) Boltzf t
t

        
r vv F r v  (2.1) 

Here, F is the acceleration experienced by a particle in the presence of an external force field 

and the collision term Boltz  accounts for the rate of gain    and loss   of particles from 

the control element ( d dr v ) due to the collisions, and is equal to: 

        1 1 1( , , ) , , ( , , ) , ,Boltz d f t f t f t f t           μ r v r v r v r v  (2.2) 

where v and 1v  are after-collision velocities of the two colliding particles moving with the  

velocities v  and 1v , respectively, before collision. Also, 1dμ is given by: 

 1 1 1

d
d d d

d

 


    
 

μ v v v  (2.3) 

where 
d

d




 
 
 

is the differential cross-section of a particle and  is the solid angle (Chapman 

& Cowling, 1970; Huang, 1963; Koga, 1970; Liboff, 1969). 

 

2.2  Simplification of Boltzmann collision integral Boltz  

 

Details of the two-body interactions in the collision integral Boltz  do not significantly 

influence the values of macroscopic hydrodynamic observables. Therefore, Boltz can be 

simplified by assuming that, at any given time t, particles are in a state close to thermal 

equilibrium and they relax to their local thermal equilibrium on a single time scale . This 
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approximation of single-time relaxation for the collision integral Boltz  was first proposed by 

Bhatnagar, Gross and Krook in 1954. Using it, Boltz can be expressed in a form known as the 

BGK collision term BGK  (Bhatnagar et al., 1954):  

 
( , , ) ( , , )eq

Boltz BGK

f t f t




    
r v r v

 (2.4) 

where   is the single relaxation time, and ( , , )eqf tr v  is an equilibrium distribution function 

given by the Maxwellian: 

   / 2

( ).( )
( , , ) , ( , ), ( , ) exp

(2 ) 2
eq eq

d
f t f t t

RT RT




     
 

v u v u
r v v r u r  (2.5) 

where d, R, T,  and u  have the units of space, gas constant, temperature, macroscopic 

density and macroscopic velocity, respectively. [Note that the Gas constant R has units of 

(Joules/kg-K) and RT has units of (m2/sec2).] 

 

 We can now write the simplified Boltzmann transport equation with the BGK 

collision approximation as: 

 . .
eqf f f

f f
t 

 
     

 r vv F  (2.6) 

 

2.3  Explicit determination of the forcing term . fvF  

 

In order to explicitly determine the forcing term . fvF , we can introduce an 

approximation (He et al., 1998): 

 
 eq eqf f f

RT


    v v

v u
 (2.7) 

Above approximation is valid since f  is close to the equilibrium and therefore, eqf  can be 

regarded as the leading part of f . Applying the above approximation, our simplified 

Boltzmann transport equation becomes: 

 
 .

.
eq

eqf f f
f f

t RT
 

    
 r

F v u
v  (2.8) 
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2.4  Series expansion of equilibrium distribution function eqf  

 

Equilibrium distribution function eqf  can be expanded in a series form, in the limit of 

constant temperature T and small velocity u , up to terms of order  2u and gives: 

  
2 21

1
2 2

eq
B

u
f w v

RT RT RT

       
   

v.u v.u
 (2.9) 

where 

  
2

/ 2
exp

(2 ) 2B d

v
w v

RT RT




 
  

 
 (2.10) 

and  Bw v  is called the Maxwell equilibrium distribution function for ‘fluid at rest’ i.e. fluid 

with 0u . 

 

2.5 Links to hydrodynamics  

 

The collision integral Boltz  in the Boltzmann transport equation possesses the 

following properties: 

 0Boltzd  v  (2.11) 

and 

 0Boltz d  v v  (2.12) 

i.e. conservation of collision invariants (1, v  and 2v ) at any r , t . 

 

Similar to Boltz , the BGK collision term BGK  must also satisfy the conservation of 

collision invariants at any r , t : 

 ( , , ) ( , , ) 0eq
BGK d f t f t d      v r v r v v  (2.13) 

 ( , , ) ( , , ) 0eq
BGK d f t f t d      v v r v r v v v  (2.14) 

 
A link to hydrodynamics can be accomplished through the above equations. 

Macroscopic density  , t r  and velocity  , tu r  are thus evaluated as: 

 ( , ) ( , , ) ( , , )eqt f t d f t d   r r v v r v v  (2.15) 
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      
1 1

, ( , , ) ( , , )
, ,

eqt f t d f t d
t t 

  u r r v v v r v v v
r r

 (2.16) 

 
2.6  Discretization in velocity space 

 
In the simplified Boltzmann transport equation, the distribution function f depends on 

space, velocity and time i.e. ( , , )f tr v . Discrete Boltzmann equation (DBE) is obtained by 

discretization in the velocity space after introducing a finite set of velocities, av  and 

associated distribution functions, ( , )af tr .  The DBE can be written as: 

 
 .

.
eq

a eqa a a
a r a a

f f f
f f

t RT
 

    


F v u
v  (2.17) 

 
where, the discrete BGK collision term ,a BGK is: 

 ,

eq
a a

a BGK

f f




    (2.18) 

 

,a BGK  must satisfy the conservation of collision invariants at any r , t  i.e.  

 ( , ) ( , )eq
a a

a a

f t f t



 r r


 (2.19) 

 ( , ) ( , )eq
a a a a

a a

f t f t



 
u

v r v r


 (2.20) 

A link to hydrodynamics is established through the above equations. Macroscopic 

density  , t r  and velocity  , tu r  are thus evaluated as: 

  , ( , ) ( , )eq
a a

a a

t f t f t   r r r  (2.21) 

      
1 1

, ( , ) ( , )
, ,

eq
a a a a

a a

t f t f t
t t 

  u r v r v r
r r

 (2.22) 

 
Here we should note that, in the multi-scale Chapman-Enskog expansion procedure 

(see Appendix A for more details), certain fourth-order tensors made of lattice directions 

must be isotropic in order to recover the rotational invariance of the momentum flux tensor at 

the macroscopic level. The isotropy requirement limits the possible lattice structures that can 

be used. This is the reason, for example, in two-dimensions (2D), a choice of rectangular 
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spatial lattice requires nine velocities at each lattice point instead of a five-velocity lattice. 

Out of these nine velocity directions, four are principal axes directions, four are diagonal 

directions and one is rest state of zero velocity (see Fig. 2.1). It is called D2Q9, or more 

generally DdQb lattice structure with d and b representing number of spatial dimensions and 

discrete velocities at each lattice point, respectively (Qian et al., 1992; Qian & Orszag, 1993). 

[It should be noted that, in two-dimensions, a hexagonal lattice only requires seven velocities 

and is isotropic. However, a hexagonal lattice is more difficult to work with than a regular 

square lattice which is naturally implemented as an array of data on a computer.] In LB 

simulations, physical symmetry (symmetry attached to the velocity space and the equilibrium 

distribution for velocities) is necessary to obtain the correct macroscopic dynamics (Cao et 

al., 1997). Derivation of the incompressible Navier-Stokes equation from the standard lattice 

Boltzmann equation is given in Appendix A. 

 

2.7  Discrete equilibrium distribution function: eq
af   

 

Discrete equilibrium distribution function eq
af can be written as: 

 
2 2. .1

1
2 2

eq
a a

u
f w

RT RT RT

       
   

a av u v u
 (2.23) 

where aw  are lattice constants which depend upon the chosen lattice structure (i.e. 2D or 3D, 

rectangular or hexagonal lattice) and the number of finite velocities at any lattice point. aw  

are evaluated such that the lattice-velocity moments (up to fourth order) over aw  are identical 

to the respective velocity moments over the Maxwell distribution  Bw v  and given by the 

following equations (Abe, 1997; Wolf-Gladrow D.A., 2000): 

 ( )a B
a

w w v d 




   v  (2.24) 

 ( ) 0a a B
a

v w v w v d 





   v  (2.25) 

 ( )a a a B
a

v v w v v w v d RT     




   v  (2.26) 

 ( ) 0a a a a B
a

v v v w v v v w v d     





   v  (2.27) 
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    2
( )a a a a a B

a

v v v v w v v v v w v d RT                   




     v  (2.28) 

 
Note that the odd velocity moments vanish. In the above equations, ij  is a Kronecker-delta 

function given by: 
  

 
1

0ij

if i j

if i j



  

 (2.29) 

and aiv denotes the i th -component (component in the i th spatial dimension) of av .  

 
 

 

Fig. 2.1: The D2Q9 lattice. (a) Nine discrete velocities for the central lattice point are shown. 

Principal direction of travel is numbered from 1 to 4, diagonal direction from 5 to 8 and the 

rest state by 0. Also, velocities with the same magnitude are displayed by the same colored 

arrows in the figure. The lattice employs three different speeds (0, c  and 2c ) corresponding 

to the rest, principal and diagonal directions of travel and therefore, has three different 

weighting functions, restw , prinw  and diagw for the discrete equilibrium distribution function. 

Here, a square lattice structure is assumed to give c x t y t      . (b) Discrete 

distribution functions in the nine directions of travel are shown and labeled accordingly from  

0f  to 8f . Their magnitudes are usually different in different directions and therefore, are 

shown with different lengths of arrows in the figure. 

 

1f

2f

3f

4f

5f  6f

8f  7f

0f  

x  

y

(a) (b) 

1

2 

3 

4 

8

5 6 

7 

0 v1=(c, 0) v3=(-c, 0) 

v2=(0, c) 

v4=(0, -c) 

v5=(c, c) 

v8=(c, -c) v7=(-c, -c) 

v6=(-c, c) 
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2.8  Determining eq
af  for a D2Q9 lattice  

 

The D2Q9 lattice, as shown in Fig. 2.1(a), includes three different microscopic speeds 

which are shown in the figure by different colored arrows. At any spatial point, discrete 

velocities in nine directions of the two-dimensional square lattice are given by: 

   0 , 0 0,0x yv v 0v  

   1 1 , 1 ,0x yv v c v     5 5 , 5 ,x yv v c c v  

   2 2 , 2 0,x yv v c v     6 6 , 6 ,x yv v c c  v  

   3 3 , 3 ,0x yv v c  v     7 7 , 7 ,x yv v c c   v  

   4 4 , 4 0,x yv v c  v     8 8 , 8 ,x yv v c c  v  

where c x t y t     . Here, we have assumed a square lattice i.e. x y   . 

 

D2Q9 lattice involves three different speeds: 0, c and 2c . For reason of symmetry, 

we can further assume that aw  for directions with identical speeds are equal. Now, we can 

calculate three different aw , called restw , prinw  and diagw , corresponding to the rest (direction 

0), the principal (directions 1, 2, 3 and 4) and the diagonal (directions 5, 6, 7 and 8) velocity 

directions, respectively. 

 

From equations (2.24)  to (2.28), we obtain the following relations for a D2Q9 square 

lattice: 

 4 4a rest prin diag
a

w w w w      (2.30) 

 2 2 2 22 4ax a ay a prin diag
a a

v w v w c w c w RT      (2.31) 

  24 4 4 42 4 3ax a ay a prin diag
a a

v w v w c w c w RT      (2.32) 

  22 2 44ax ay a diag
a

v v w c w RT   (2.33) 

Solving above set of equations for the four unknowns, restw , prinw , diagw and RT , we 

get: 
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4

9restw   (2.34) 

 
1

9prinw   (2.35) 

 
1

36diagw   (2.36) 

 
2

3

c
RT   (2.37) 

 
Similar to the procedure above, the equilibrium distribution function may be 

determined for lattices in three-dimensions, i.e. of type D3Q15 or D3Q19 (Wolf-Gladrow, 

2000).  

 

2.9  Recovery of the LBE from the discrete Boltzmann equation (DBE) 

   

The discrete Boltzmann equation (DBE) can be written in  , ,x y zr space as 

follows: 

 

     

a a a a
ax ay az

eq eq
a a a

x ax x y ay y z az z

f f f f
v v v

t x y z

f f f
F v u F v u F v u

RT

   
  

   

          

 (2.38) 

Left hand side of the above equation is composed of the Eulerian time derivative (

t  ) and the advective space derivatives ( ax ay azv x v y v z        ). Together they 

comprise the Lagrangian derivative, which gives the rate of change of the a-directional 

distribution function  , , ,af x y z t  (index a can be between 0 and (b-1) depending upon the 

chosen lattice structure DdQb) in a frame of reference which moves with the particle’s 

velocity ( , , )a ax ay azv v vv . Thus, by marching each of the b-directional populations in time 

along the characteristics    , , , ,ax ay azx y z v v v t     , the above equation yields the standard 

lattice Boltzmann equation (LBE) (Chen & Doolen, 1998; He & Luo, 1997b,c): 
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     

( , , , ) ( , , , ) ( , , , ) ( , , , )

( , , , )

eq
a ax ay az a a a

eq
a

x ax x y ay y z az z

t
f x v t y v t z v t t t f x y z t f x y z t f x y z t

f x y z t
t F v u F v u F v u

RT


             

        

 

  (2.39) 

Here, we have used an explicit forward-difference scheme in time.  

 

Note that, we can write the above LBE as a set of two equations: 

 Collision 

 

     

*( , , , ) ( , , , ) ( , , , ) ( , , , )

( , , , )

eq
a a a a

eq
a

x ax x y ay y z az z

t
f x y z t f x y z t f x y z t f x y z t

f x y z t
t F v u F v u F v u

RT


     

        

 (2.40) 

 
 Streaming 

 *( , , , ) ( , , , )a ax ay az af x v t y v t z v t t t f x y z t          (2.41) 

 

Above splitting of the LBE into two equations clearly brings out the simple physical 

interpretation of particles colliding and streaming, which results from the fully Lagrangian 

character of the equation, for which the spacing between the two neighboring lattice points is 

the distance traveled by the particles during the time step. In the collision step, the 

distribution function is updated at regularly spaced lattice points. In the streaming step, the 

updated distribution function is streamed in the direction of corresponding discrete velocities, 

towards the neighboring lattice point. The simplicity of algorithm greatly facilitates 

numerical evaluations; however, it couples space-time discretization and leaves no flexibility 

in choosing the space-time grid-steps independently.  

 

In a compact form, LBE can be written as: 

 ( , ) ( , ) ( , ) ( , )eq
a a a a a a

t
f t t t f t f t f t B t


           r v r r r  (2.42) 

where aB is the body force term given by: 

 
 . eq

a aB f
RT


 aF v u

 (2.43) 
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The kinetic nature of the lattice Boltzmann equation (LBE) offers the following 

advantages:  

 The convection operator (streaming step) in the LBE is linear, in contrast to 

the nonlinear convection terms in the corresponding macroscopic PDEs. 

Combining the simple convection with the collision operator allows the 

recovery of nonlinear macroscopic advection through multi-scale expansions. 

 Taking the nearly incompressible limit of the LBE yields the incompressible 

Navier-Stokes (N-S) equations (see Appendix A). The pressure at any lattice 

point in this approach is calculated using an equation of state, in contrast to 

iteratively solving the pressure Poisson equation.  

 Retaining only a minimal set of velocities and a few movement directions in 

the phase space extensively simplifies the transformation between the 

microscopic distribution function and macroscopic quantities. 

 

2.10  Apriori derivation of the LBE from the CBE  

   

In the absence of external forces, the continuous Boltzmann equation (CBE) can be 

written as: 

 .
eqf f f

f
t 

 
   

 rv  (2.44) 

which essentially is: 

 
eqDf f f

Dt  
    (2.45) 

where .
D

Dt t


  
 rv is the Lagrangian derivative along direction of microscopic velocity v . 

 

Multiplying both sides of the above equation with integrating factor /te  , we can 

write: 

 / /1t t eqD
f e e f

Dt
 


      (2.46) 

Now, integrating the above equation along the characteristic from time t  to t t  , 

 / /1t t t t
t t eq

t t

D f e e f Dt 



 

       (2.47) 
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we get: 

   / / /1
( , , ) ( , , )

t t
t t t t eq

t

f t t t e f t e e f Dt  




       r v v r v  (2.48) 

 

Assuming that t  is very small and during a time-step ( t  to t t  ), eqf does not 

vary significantly and thus, can be treated as a constant which is evaluated at time t  i.e. 

( , , )eqf tr v , we can write: 

   / / /1
( , , ) ( , , ) ( , , )

t t
t t t eq t

t

f t t t e f t e f t e Dt  




       r v v r v r v  (2.49) 

which essentially is: 

    / // /( , , ) ( , , ) ( , , )t t t tt eq tf t t t e f t e f t e e            r v v r v r v  (2.50) 

Dividing the above equation with   /t te   and expanding /te   in a Taylor series up to term 

of order  t  , we get: 

 ( , , ) ( , , ) 1 ... ( , , ) 1 ... 1eqt t
f t t t f t f t

 
                     

r v v r v r v  (2.51) 

which can be written as: 

 ( , , ) ( , , ) ( , , ) ( , , )eqt
f t t t f t f t f t


          r v v r v r v r v  (2.52) 

or, 

 ( , , ) ( , , ) ( , , ) ( , , )eqt
f t t t f t f t f t


         r v v r v r v r v  (2.53) 

which is the lattice Boltzmann equation (LBE) (He and Luo, 1997a; Luo, 1998; Lallemand 

and Luo, 2000). 

 

2.11  Summary 

 

 In this chapter, a formal description of the lattice Boltzmann models (LBM) is 

provided. It is noted that the LB models are based on a rigorous theoretical foundation of 

Boltzmann’s transport theory. Several approximations are made in order to simplify the 

mathematical and computational complexity of the Boltzmann equation in the process of 

retrieving the LB models. Since one of the significant assumptions of the Boltzmann theory is 

to account for the rarefied (dilute) gases, the standard LB equation possesses an inherent ideal 
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gas equation of state (which is evident after a Chapman-Enskog expansion on the LBE in 

certain limits and shown in Appendix A). Due to the ideal gas nature of the standard LB 

equation, it may not be directly applied to simulate complex fluid phenomena such as two-

phase flows. Therefore, certain modifications in the LB equation are necessary to model and 

capture the necessary physics. In the next chapter, details are presented for an Enskog 

equation ― a modified Boltzmann equation which accounts for finite particle sizes ― based 

LB model in order to develop suitable models applicable for two-phase dynamics. Several 

other prevalent two-phase flow models in the LB framework are also discussed.  
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Chapter 3 

Lattice Boltzmann equation for non-ideal fluids 
 

The standard lattice Boltzmann equation (LBE) possesses an inherent ideal gas 

equation of state and is not suitable for simulation of most of the real fluids which are denser 

than the ideal gases. Inapplicability of LBE for non-ideal fluids results from the fact that the 

LBE is based on the Boltzmann transport equation, which only describes dilute gases and is 

not suitable to model dense fluids. In the Boltzmann transport equation, the size of a particle 

is assumed to be very small compared to the average distance between particles, which is a 

valid assumption only for a dilute gas. Also, only binary collisions are considered and other 

higher order collisions are ignored.  

 

In contrast to dilute gases, particles are closer in space in a dense fluid and their mean 

free path is comparable to the molecular dimensions. Therefore, particles of finite size must 

be taken into account.  Because of the finite sizes, centers of colliding particles are not at the 

same point as typically assumed in a dilute gas. At the instant of collision, if the center of 

particle A is located at r in a frame of reference fixed to particle A (i.e. moving with the same 

velocity as of particle A), then the center of the approaching particle, B, will be at  0
ˆ2rr k

where 0r is the radius of the particle (here, all the particles are assumed to be of the same size) 

and k̂  is a unit vector in the direction from the center of approaching particle (B) to particle 

A (see Fig. 3.1(a)). Furthermore, we can assume that there exists an associated inverse 

collision corresponding to each direct collision and from Fig. 3.1 (b), the centre of the inverse 

collided particle will be at   0
ˆ2r r k . 

 

In addition, since each particle occupies a finite volume equals to   3
04 3 r , net 

volume available for particles to move around is reduced and therefore, frequency of 

collisions is increased by a factor  g r , called the radial distribution function. The function 

 g r  is evaluated at the point of contact of the two colliding particles just before and after 

the collision i.e. at  0
ˆrr k  and   0

ˆr r k , respectively.  
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Fig. 3.1: Binary collision of two hard-sphere particles of equal size (radius 0r ): (a) Direct 

collision, and (b) Inverse collision. Red colored particle is particle A which is stationary, with 

a position vector r in the reference frame fixed to A and is approached by the particle B 

shown in green color. 

 

    (a) 

    (b) 
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3.1  Modified Boltzmann equation: Enskog equation 

 

By explicitly considering the volume exclusion effect of particles, Enskog proposed a 

modified Boltzmann equation (also called the Enskog equation) for dense gases as follows 

(Luo, 1998; Chapman & Cowling, 1970): 

 . . ( , , ) Enskogf t
t

        
r vv F r v  (3.1) 

Notice that the left hand side of equation (3.1) is the same as in the Boltzmann transport 

equation. 

 

In Enskog equation, collision operator Enskog  is modified to include the effects of the 

finite size of particles as: 

 
     
     

0 0 1

0 0 1

ˆ ˆ, , 2 , ,

ˆ ˆ, , 2 , ,
Enskog

g r f t f r t
d

g r f t f r t

   
  
     

 1

r k r v r k v
μ

r k r v r k v
 (3.2) 

where  

 1 1 1d d b db d μ v v v  (3.3) 

Note that, even in the Enskog equation, only two-particle collisions are considered and all the 

higher order collisions involving more than two particles are ignored. 

 

For binary collision of hard spheres of radius 0r , the impact parameter b of scattering  

is (see Fig. 3.2):  

  02 sinb r   (3.4) 

 
where   is the azimuthal angle  0 2   between the relative velocity vector  1 v v  

and unit vector k̂ , and   is the polar angle  0 2   on the plane perpendicular to vector 

 1 v v . 
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Fig. 3.2: Binary collision of two rigid spherical particles of radius 0r  whose centers are at C 

and C1. The particle at C is assumed to be at rest with respect to the reference frame. 

 2

02r dω  denotes a surface element, on the sphere of radius 02r and centered at C, on which 

C1 must lie at the instant of collision. The differential area b db d  is the projection of 

 2

02r dω  on a plane normal to  1v - v  and   is the angle between  1v - v and k̂ . 

 

3.1.1 Approximation of Enskog collision operator Enskog  

 

Assuming that the conditions in the dense gas are slowly varying in space, we can 

expand  0
ˆg rr k and  0 1

ˆ2 , ,f r tr k v  in a first order Taylor series as: 

      0 0
ˆ ˆ .g r g r g   r k r k r  (3.5) 

      0 1 1 0 1
ˆ ˆ2 , , , , 2 . , ,f r t f t r f t     r k v r v k r v  (3.6) 

Substituting equations (3.5) and (3.6) in equation (3.2) and neglecting second order 

derivatives, we get: 

 (0) (1) (2)
Enskog Enskog Enskog Enskog      (3.7) 

where  

    (0)
1 1Enskog g d f f f f    1r μ  (3.8) 

y  

  1v - v  

 1v - v  

  x  

C  

1C  
  

 2

0
ˆ2 ( )r dω k  

dω  

   2

0
ˆ2 ( )cosr dω k  

b

db  

  



 
 
 

32

    (1)
0 1 1

ˆ .Enskog r d f f f f g     1μ k r  (3.9) 

and 

  (2)
0 1 1

ˆ2 .Enskog r g d f f f f      1μ k  (3.10) 

Note that,  , ,f f t r v ,  1 1, ,f f t r v ,  , ,f f t  r v and  1 1, ,f f t  r v . 

 

3.1.2 Evaluation of (0)
Enskog  

 

(0)
Enskog only differs from the Boltzmann collision integral Boltz by a factor  g r  and 

thus, can be approximated by taking into account the BGK-collision approximation as: 

      (0) ( , , ) ( , , )eq

Enskog Boltz BGK

f t f t
g g g


 

       
 

r v r v
r r r  (3.11) 

where   is the single relaxation time and, ( , , )eqf tr v  is the equilibrium distribution function 

given by the Maxwellian: 

 
/ 2

( ).( )
( , , ) exp

(2 ) 2
eq

d
f t

RT RT




    
 

v u v u
r v  (3.12) 

 
3.1.3 Evaluation of (1)

Enskog  

 

(1)
Enskog  and (2)

Enskog  can directly be evaluated by assuming f  to be close to 

equilibrium, i.e. eqf f  and using the relation: 

 ' '
1 1

eq eq eq eqf f f f  (3.13) 

which is applicable to the Maxwell-Boltzmann form of the equilibrium distribution function 

(Chapman & Cowling, 1970).  Note that,  , ,eq eqf f t r v ,  1 1, ,eq eqf f t r v , 

 ' , ,eq eqf f t r v  and  '
1 1, ,eq eqf f t r v . 

 

From equations (3.9) and (3.13), we can write (1)
Enskog  as: 

  (1)
0 1

ˆ2 cos .eq eq
Enskog r d f f g     1μ h  (3.14) 

where ĥ  is a unit vector in the direction of relative approach velocity  1 v v . Now, from 

equation (3.3), we can write: 
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 (1)
0 1 1 1

ˆ2 cos .eq eq
Enskog r f b db d d f g       v v v h  (3.15) 

 
which, using equation (3.4), becomes: 

   
/ 2 2

(1) 2 2
0 0 1 1 1

0 0

2 4 sin cos .eq eq
Enskog r f r d d f d g

 

   
  

     
  
   v v v  (3.16) 

 
The above equation simplifies to: 

  (1)
2 .eq

Enskog f B g    v u  (3.17) 

where 2B  is called the second virial coefficient in the virial equation of state, and is equal to: 

 3
2 0

16

3
B r  (3.18) 

 
3.1.4 Evaluation of (2)

Enskog  

 

After substituting eqf f  in equation (3.10), we can write:  

  (2) ' '
0 1 1

ˆ2 cos . eq eq eq eq
Enskog r g d f f f f        1μ h  (3.19) 

which, using equations (3.3) and (3.4), can be written as: 

 (2) ' '
0 1 1 1 1

ˆ2 cos . eq eq eq eq
Enskog r g b db d d f f f f            v v v h  (3.20) 

 
Using equations (3.13) and (3.18), the above equation can be simplified to: 

  
'

(2) 1 1
2 1 1 1'

1 1

.
eq eq

eq eq
Enskog eq eq

f f
B g d f f

f f

  
    

 
 v v v  (3.21) 

and can be written as: 

  (2) '
2 1 1 1 1 1. lneq eq eq eq

Enskog B f g f d f f      v v v  (3.22) 

 
The gradient term in equation (3.22), '

1 1ln eq eqf f  can be written as: 

 
 

 2 2 2
' 1 1

1 1 / 2

.
ln 2 ln

22
eq eq

d

v v u
f f

RT RT RTRT




                           

1 1u v + v
 (3.23) 

which after substituting relations between 1v and 1v can be integrated (details of integrations 

are given in Chapman and Cowling, 1970) and yields the following: 
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v u

v u v u
u v u

 

  (3.24) 

 
This equation for (2)

Enskog  can be simplified for incompressible ( . 0 u ) and isothermal (

0T  ) fluids by setting the last two terms on the right hand side equal to zero. Moreover, 

the term involving the derivative u   can also be neglected in order to have (2)
Enskog satisfy 

mass conservation i.e. (2) 0Enskog  . Above simplifications, in turn, yield: 

    (2) 2
2 . lneq

Enskog f B g     v u  (3.25) 

 
3.1.5 Evaluation of Enskog  

 

Now, from equations (3.7), (3.11), (3.17) and (3.25), we can write Enskog  as: 

      2
2 . lneq eq

Enskog

g g
f f f B g

g
 


 

       
 

v u  (3.26) 

The above equation can be written as: 

  1 eq
Enskog

g

f f J


      (3.27) 

where  

 g g

   (3.28) 

and 

    2
2 . lneqJ f B g g    v u  (3.29) 

 
3.1.6 Lattice velocity moments of  aJ  

 

The discrete velocity counterpart of the term J  in equation (3.29) can be written as 

follows: 

    2
2 . lneq

a a aJ f B g g    v u  (3.30) 
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Zeroth lattice-velocity moment of the term aJ  is: 

   2
2

a a a

0

ln 0eq eq
a a a a rJ B g f f g



 

 
 



 
     
 
 

  
u

v u
 



 (3.31) 

First lattice-velocity moment of the term aJ  is: 
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 (3.32) 

 
3.2  Enskog equation based lattice Boltzmann equation  

 

The LBE equation for the dense gas is:  

  ( , ) ( , ) ( , ) ( , )eq
a a a a a a a

g

t
f t t t f t f t f t B J t


            r v r r r  (3.33) 

which, following the Chapman-Enskog analysis, leads to: 

      
(0)

2
2

1r

t r r ru u F B RT g

  


     

 

 
         (3.34) 

 
The above equation can be simplified to: 

       1
t r r r ru u u u F p

       


          (3.35) 

where  

  21p RT B g    (3.36) 

is the non-ideal equation of state for the Enskog equation based LB model and the kinematic 

viscosity is (Luo, 2000): 

 
2g

t
RT     

 
. (3.37) 
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After defining the governing equation of state in equation (3.36), the sound speed can 

be evaluated as: 

  2
21s

dp d
c RT B g

d d


 
 

   
 

 (3.38) 

 
In the Enskog equation, the radial distribution function g only accommodates the 

volume exclusion effects of a dense gas made of hard-spheres and has the following 

asymptotic form (Chapman & Cowling, 1970): 

    2 3

2 2 2

5
1 0.2869 0.1103 ...

8
g B B B        (3.39) 

 

To simulate a more realistic non-ideal behavior, g  can be chosen based upon the 

desired non-ideal equation of state. Moreover, g also provides freedom to alter the transport 

coefficients, i.e. fluid viscosity (equation (3.37)) and the sound speed (equation (3.38)). For 

example, the van der Waals equation of state is given by: 

 
1

1

a
p RT

RTb




 
   




 (3.40) 

A comparison of equations (3.36) and (3.40) gives: 

 
 2

1

1

b a
g

B RTb

 
  
  

 


 (3.41) 

Similarly, various other non-ideal equations of state (McQuarrie & Simon, 1999) may be 

simulated by defining radial distributions function g accordingly. 

 

 Furthermore, for a given equation of state, the Helmholtz free energy density  , 

defined as (Luo, 1998):  

 2d d
p

d d

   
  

 
    

 
 (3.42) 

can be evaluated by the following integral: 

 
2

p
d  


   (3.43) 

 



 
 
 

37

3.3  A survey of two-phase models in the LB framework 

 

The lattice-Boltzmann approach for two-phase simulation is based on a type of diffuse 

interface method, i.e. the phase interface spreads over several grid points. A review of diffuse 

interface methods can be found in Anderson et al. (1998).  

 

In most of the two-phase LB models, phase segregation is induced via the forcing 

term of the standard lattice Boltzmann equation. The specifics of the forcing term, which 

enables one to simulate multi-phase evolution, are either determined from the kinetic models 

of dense fluids (for example, Enskog equation) (Luo, 1998)  or by supplying a non-ideal 

equation of state such as van der Waals EOS or more realistic equation of states (He et al., 

1998; Yuan & Schaefer, 2006) for the fluid. Some notable two-phase LB models resulted 

from the work of Gustensen et al. (1991), Grunau et al. (1993), Rothman & Zaleski (1997).  

 

Below, we discuss some of the prevalent two-phase flow models (Succi, 2001): 

 

3.3.1 Shan-Chen (S-C) model      

 

The model proposed by Shan and Chen is one of the older LBE models for two-phase 

simulations. The non-ideal effects are produced via an attractive inter-particle force between 

nearest-neighbors, defined as (Shan & Chen, 1993; 1994): 

    
0

, ,
b

a a a
a

G t w t t 


  attrF r r v v  (3.44) 

where  0G   is the strength of attraction and aw  are the lattice-specific direction-dependent 

weighting factors. In the above equation,   is called the interaction potential and is an 

arbitrary function of density  , empirically assumed to have the following form:  

      0
0, , expt t

   


 
   

 
r r  (3.45) 

where 0  and 0  are arbitrary constants. This specific form of potential is designed to be a 

monotonically increasing and bounded function of density  , which is essential to have a 

large cohesive force for large density region (liquid) and relatively smaller cohesive force for 

low density region (vapor) (Sukop & Thorne, 2006).  
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In the S-C model, forcing effects are captured into the simulation by shifting the 

macroscopic velocity distribution in the equilibrium distribution function by: 

 ' 


 
   

 
attrF

u u  (3.46) 

 
The equilibrium distribution function eqf  is now evaluated as a function of 'u  at each time 

step (replacing u  by 'u  in the original eqf  expression). It can easily be shown that the above 

inclusion of forcing term into the equilibrium distribution function is accurate up to the order 

  u and is equivalent to applying an external acceleration attr attra F  at each spatial grid 

point.  

 

 We can expand  ,a t t  r v  in equation (3.44) in a Taylor series: 

        2 3

2 3, , .....
2 6

a a
a a

t t
t t t t    

 
          

v v
r v r v  (3.47) 

 
to get (Hou et al., 1997):  

  22 2 2 1

2 2

GRT
t RT t   

                
attra I  (3.48) 

 
Following the Chapman-Enskog expansion, in the corresponding incompressible Navier-

Stokes equation, the effect of attra  can be combined in the pressure term as: 

 2

2

GRT
p RT t     (3.49) 

to yield a non-ideal equation of state. Rest of the higher order derivative terms in equation 

(3.48) are responsible for producing the inherent surface-tension of the S-C model.  

 

Similar to the ideas represented above, wall-fluid forces are also captured by defining 

a wall adhesion force as (Martys & Chen, 1996): 

    
0

, ,
b

ads ads a a a
a

G t w s t t


  F r r v v  (3.50) 
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where adsG  is the magnitude of wall adhesion force. Varying adsG  results in different contact 

angles between the fluid and the wall. s is a Boolean vector identifying the walls in the 

domain (1, if neighbor is a wall; 0 otherwise).  

 

 Benzi et al. (2006) proposed a methodology to simulate contact angles in the S-C 

model. Huang et al. (2007) proposed a technique for simulating wall contact angles in the 

framework of S-C multi-component model (Shan & Doolen, 1995). Markus & Hazi (2008) 

very recently proposed a method to analytically determine suitable pseudo-potential gradient 

to avoid numerical instabilities in the S-C model.  

 

3.3.2 He-Shan-Doolen (HSD) model      

      

To simulate a non-ideal fluid, this model combines: 1) the inter-particle attraction 

attrF ;  2) the hard-core repulsion repF ; and  3) the gravitational force gravF  into the generic 

forcing term of the approximate Boltzmann equation as (He et al., 1998; He et al., 1999a; 

Zhang & Chen, 2000, 2003; He & Doolen, 2002; Tentner et al., 2006): 

 
 

2

.
.

eq
eq

s

f f f
f f

t c
 

    
 r

F v u
v  (3.51) 

where  1


 attr rep gravF F + F F is the acceleration (force per unit mass) of the particle. 

 

In this model, attrF  and repF are defined as: 

  22a      attrF   (3.52) 

  2 2
2 lnB RTg g   repF  (3.53) 

where a and   are constants related to the attraction term of the inter-particle potential. Here, 

attrF  represents the effective inter-particle attraction by mean-field approximation, and repF

represents the Enskog’s exclusion volume effect. 

 

Combining the attrF , repF and gravF , we can write: 

    2 2 2
22 lna B RTg g            gravF F  (3.54) 
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The above equation can be simplified as: 

 U   surf gravF F F  (3.55) 

 
where surfF  represents the force associated with the surface tension, and is equal to: 

 2   surfF   (3.56) 

 
and, U  is defined as: 

 2 2
2U B RTg a     (3.57) 

 
Furthermore, a Chapman-Enskog analysis for this model yields the non-ideal equation of 

state as:  

   2
21p RT U RT B g a          (3.58) 

 
3.3.3 Free energy based model      

      

Swift et al. (1995) developed a free energy based LB model to derive a more 

thermodynamically consistent description. In their model, the equilibrium pressure tensor for 

a non-ideal fluid was introduced directly into the collision operator and a connection is made 

between the pressure tensor and the free energy. Thermodynamic equilibrium was enforced 

via incorporating Cahn-Hillard and Ginzburg-Landau models using the concepts of free-

energy functional in the LB system. The model was demonstrated using the van der Waals 

equation of state.  The scheme was tested against verification of the Laplace law. Nourgaliev 

et al. (1999) proposed novel numerical schemes to improve the stability of the numerics. 

Palmer and Rector (2000) proposed algorithm to simulate thermal two-phase flows by 

combining the Swift et al. (1995) model with the two-distribution model to treat the internal 

energy as a separate conserved scalar. Inamuro (2004) coupled the free energy base LB 

model with a projection method to simulate two-phase immiscible fluids with large density 

differences. Zheng et al. (2005, 2006) proposed a similar model in which the interface 

between two phases is captured by minimizing the free energy functional. 
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3.3.4 Pressure evolution model     

      

The theoretical models based on the Enskog’s equation and the HSD model are 

reported to be unstable when used directly in a numerical simulation (Lee & Lin, 2003) due 

to severe pressure fluctuations at the interfaces. These pressure fluctuations are claimed to be 

associated with the non-ideal equation of state in which the derivative of pressure with 

respect to density changes sign (Lee & Lin, 2003). In order to subdue these pressure 

fluctuations, a transformed distribution function is introduced by He et al. (1999a,b) to 

simulate non-ideal pressure, and the original distribution function was used to simulate an 

order parameter representing density of the fluid. Despite including the transformation, the 

model was only able to simulate very low density ratio (order O(1)) of the two-phases in a 

Rayleigh-Taylor instability problem. In an attempt to stabilize the numerical simulation of 

above mentioned theoretical models for larger density ratio and to make the models 

practically useful, Lee & Lin (2003, 2005) and Lee & Fischer (2006) proposed stable 

discretization schemes for the forcing terms (whose stiffness along with the use of an explicit 

EOS were identified as being responsible for triggering the numerical instabilities). It is 

claimed that using the transformation, as in He et al. (1999a,b) and the consistent 

discretization, as in Lee & Lin (2005), one is able to avoid the numerical instabilities which 

plague a large number of lattice Boltzmann simulations. Similar stabilization techniques have 

been proposed by Nourgaliev et al. (2003) earlier.  

 

3.4  Summary 

 

In this chapter, derivation of a non-ideal lattice Boltzmann equation based on the 

Enskog theory of dense gases is presented. Several of the two-phase models in the LB 

framework are also introduced. Although LB simulations based on the Enskog equation are 

reported to suffer from severe numerical instabilities, they are still very useful in 

understanding the non-ideal physics of a complex fluid.  Furthermore, several of the recent 

two-phase LB models are proposed with an inherent Enskog component in the model, such as 

in the He-Shan-Doolen (HSD) and the pressure evolution model.   

 

In the next chapter, an artificial interface lattice Boltzmann (AILB) model is proposed 

for the simulation of two-phase dynamics. AILB model is found to be more stable than its 
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earlier counterparts and is able to simulate a larger density and viscosity ratios for different 

phases. The wetting boundary conditions based on the Cahn’s theory is also developed for the 

AILB model which allows simulation of different equilibrium contact angles on a wall 

surface.  
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Chapter 4 

Artificial interface lattice Boltzmann (AILB) model 
       

A thermodynamically consistent lattice Boltzmann (LB) model for the two-phase 

simulations can be obtained if one treats the chemical potential as the driving force for the 

phase separation. Incorporation of the Gibbs-Duhem equation, which imposes constraints on 

thermodynamic variables of a given system at equilibrium, into the LB model can guarantee 

the recovery of the equilibrium phase-thermodynamics (Wagner, 2006).  

 

In this chapter, a new LB model, called the artificial interface lattice Boltzmann 

(AILB) model is proposed for the two-phase simulations. The model incorporates the Gibbs-

Duhem equation in order to recover the equilibrium thermodynamics. In this model, a non 

ideal equation of state, such as the van der Waals equation of state (vdW EOS), is employed 

in the regions occupied by the bulk phases whereas an artificial equation of state is used in 

the interfacial region. The advantage of using an artificial equation of state in the interfacial 

regions is that the thickness of the interface can now be controlled in the two-phase 

simulations. Numerical experiments show that the numerical stability is also enhanced if one 

chooses a thicker interface which allows simulation of large density and viscosity ratios. 

Moreover, it is proposed to choose a suitable scaling factor for the vdW EOS. After scaling 

down the vdW EOS, one can simulate larger density/viscosity ratios without even making the 

interface thicker. 

 

In addition, a model for the fluid-solid interactions is proposed. The model is based on 

the Cahn’s theory of wetting and can simulate different equilibrium contact angles― ranging 

from 0o to 180o―on the wall surfaces.  

 

In the following sections, the development of the proposed LB model is presented and 

in the chapters that follow, thermodynamic consistency and suitability of the AILB model for 

the general two-phase flow applications are examined. 
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To test and numerically analyze the proposed model, a code in Fortran-90 is 

developed. The code is parallelized to run on a cluster of processors. More details about the 

code, parallelization technique and performance are given in Appendix B. 

 

4.1 Discrete Boltzmann (DB) equation 

 

The discrete Boltzmann (DB) equation in the presence of forcing F  can be written in 

the following form: 

 
 .

.
eq

a eqa a a a a
a a

Df f f f f
f

Dt t RT 
  

    
 

v u F
v

r
 (4.1) 

where ( , )af tr  is a single-particle distribution function discretized in the microscopic velocity 

space, av  is the microscopic velocity of the fluid particles, ( , )t r  is the fluid density, ( , )tu r  

is the fluid velocity,   is a relaxation time related to the kinematic fluid viscosity, R  is the 

ideal gas constant, T  is the temperature, F  is the force experienced by the fluid particles, r  

is the position vector of the fluid particles and t  is time.  

 

In the DB equation, eq
af  is a single-particle equilibrium distribution function which is 

derived from a Maxwell-Boltzmann distribution and can be approximated to (Chen & 

Doolen, 1998): 

 
2 2. .1

1
2 2

eq
a a

u
f w

RT RT RT

       
   

a av u v u
 (4.2) 

where  a aw t   are lattice constants which depend upon the chosen lattice type.  For a D2Q9 

lattice, shown in Fig. 4.1(a), we have: 

 

4 9 0

1/ 9 1,2,3,4

1/ 36 5,6,7,8
a

a

t a

a


 
 

 (4.3) 

For a D3Q19 lattice, shown in Fig. 4.1(b), we have: 

 

1 3 0

1/18 1 to 6

1/ 36 7 to 18
a

a

t a

a


 
 

 (4.4) 

Lattice velocities in different directions are listed in Table 4.1 and 4.2 for the D2Q9 and D3Q19 

lattices, respectively. 



 
 
 

48

 

Fig. 4.1: Lattice velocity directions in (a) D2Q9 and (b) D3Q19 lattice structures. Velocity 

directions are numbered accordingly in the panels. 

 

Table 4.1: Lattice velocities in different directions for the D2Q9 lattice structure. 
 

a axv  ayv  a axv  ayv  

1 1 0 5 1 1 

2 0 1 6 -1 1 

3 -1 0 7 -1 -1 

4 0 -1 8 1 -1 

 

 

A relationship between the distribution function ( , )af tr  and the macroscopic 

hydrodynamics is established through the BGK collision term satisfying the conservation of 

collision invariants at any r , and t . Fluid density  , t r  and velocity  , tu r  are thus 

evaluated as: 

  , ( , ) ( , )eq
a a

a a

t f t f t   r r r  (4.5) 

      
1 1

, ( , ) ( , )
, ,

eq
a a a a

a a

t f t f t
t t 

  u r v r v r
r r

 (4.6) 
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Table 4.2: Lattice velocities in different directions for the D3Q19 lattice structure. 
 

a axv  ayv  azv  a axv  ayv  azv  

1 1 0 0 10 1 -1 0 

2 -1 0 0 11 1 0 1 

3 0 1 0 12 1 0 -1 

4 0 -1 0 13 -1 0 -1 

5 0 0 1 14 -1 0 1 

6 0 0 -1 15 0 1 1 

7 1 1 0 16 0 1 -1 

8 -1 1 0 17 0 -1 -1 

9 -1 -1 0 18 0 -1 1 

 
 
4.2 Lattice Boltzmann (LB) equation  

 

The DB equation is solved by employing a Lagrangian based discretization which 

essentially integrates it along the characteristics of the underlying lattice i.e. 

( , ) ( , )at t t t    r r v . In such an integration, steps in space and time are coupled with the 

microscopic velocity along the characteristics such that, a t  r v .  The resulting discretized 

equation is called the lattice Boltzmann (LB) equation, which is: 

 
 , ,

, ,

.'
( , ) ( , ) '

a at t t t t t
aeq eq

a a a a a a

t t

dt
f t t t f t f f dt f

RT 

      
           

r v r v

r r

v u F
r v r  

  (4.7) 

After applying a trapezoidal rule of integration to evaluate the above two integrals with 

second-order accuracy, we get: 

 
   

( , ) ( , )

( , ) ( , )

( , ) ( , )
2 2

. .

2 2

a

a

eq eq
a a a a a a a

t t t t

a aeq eq
a a

t t t t

t t
f t t t f t f f f f

t t
f f

RT RT

 

 

  

  

                

  
 

r r v

r r v

r v r

v u F v u F
 

  (4.8) 
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Note that, in the LB framework, direct numerical implementation of the above 

equation (as opposed to the physically more meaningful, collide-stream formulation) is 

difficult due to the implicit nature of the BGK collision and the forcing terms. Moreover, the 

direct implementation also hinders the simple physical interpretation of particles colliding 

and streaming which in fact is a key feature of the LB algorithm. Therefore, a modified 

distribution function ( , )ag tr  is sought—in terms of the known distribution function ( , )af tr

and other quantities at time t—that transforms the LB equation (4.8) in a form solvable by the 

collide-stream algorithm.    

 

4.3 Modified distribution function ( , )ag tr  

 

By defining the modified distribution function ( , )ag tr  as: 

 
 

( , ) ( , )

.
( , ) ( , )

2 2
aeq eq

a a a a a
t t

t t
g t f t f f f

RT 
      

r r

v u F
r r  (4.9) 

the LB equation (4.8) can be transformed to the following form: 

 
 

( , )
( , )

.0.5
( , ) ( , )

0.5 0.5
aeq eq

a a a a a a
t

t

tt
g t t t g t g f f

t t RT


  

              r
r

v u F
r v r  

  (4.10) 

Notice that the above transformed LB equation can be split into a set of two 

equations, as shown below, which clearly brings out the collide-stream interpretation of the 

LB algorithm. 

 Collision 

 
 *

( , )
( , )

.0.5
( , ) ( , )

0.5 0.5
aeq eq

a a a a a
t

t

tt
g t g t g f f

t t RT


  

          r
r

v u F
r r  (4.11) 

 Streaming 

 *( , ) ( , )a a ag t t t g t    r v r  (4.12) 

Notice that the streaming equation (4.12) is responsible for the time advancement.  

 

From the transformation equation(4.9), we can write the modified equilibrium 

distribution function ( , )eq
ag tr  as: 
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 

( , )

.
( , ) ( , )

2
aeq eq eq

a a a

t

t
g t f t f

RT


 
r

v u F
r r  (4.13) 

 

The modified distribution function ( , )ag tr  can be used to determine the macroscopic 

hydrodynamics using the following relations: 

  , a a
a a

t f g   r  (4.14) 

   1 1
,

2a a a a
a a

t
t f g

 
          

    
 u r v v F  (4.15) 

 

4.4 Forcing terms to simulate phase segregation 

 

The LB equation, with a constant forcing term (can be zero) possesses an inherent 

ideal gas equation of state and is not suitable for simulating the segregated phase dynamics 

encountered in scenarios involving two coexisting phases. In order to model the non-ideal 

behavior of phase segregation, inter-particle interactions have to be introduced into the 

forcing term of LB equation by accounting for the long range attractions attrF  and short range 

repulsions repF  in addition to the constant body force GF . Adding those, we can define the net 

force F as: 

 attr rep G  F F F F  (4.16) 

 

4.4.1 Long range attractive force attrF  

 

Using a mean-field approximation for intermolecular attractions, the effective long 

range inter-particle forces are modeled by employing a mean field potential mV  as: 

  22attr mV a         F   (4.17) 

where a  and   are constants related to the intermolecular attractive potential and   is called 

the capillary coefficient of the fluid. 
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4.4.2 Short range repulsive force repF  

 

Using the Enskog theory of dense gases which accounts for the exclusion volume 

effect (due to the finite size of particles), the short range repulsive forces are modeled as: 

  2 2lnrep b RT     F   (4.18) 

where   is a density-dependent collision probability and b  is a constant related to the Virial 

equation of state. 

 

4.4.3 Net force F  

 

Adding the long range attractive forces attrF , the short range repulsive forces repF and 

the constant body force GF  (which usually is the standard gravitational force g ), we can 

associate the net force F  to the thermodynamic pressure 0P  as: 

   2
0 GP RT       F F  (4.19) 

where 0P  follows a non-ideal equation of state: 

   2
0 1P RT b a       (4.20) 

Notice that all the microscopic constants except   in equations (4.19) and (4.20) are now 

lumped together and contribute to the non-ideal thermodynamic pressure 0P . 

 

4.4.4 Gibbs-Duhem (G-D) equation 

 

For two coexisting phases of a fluid to remain in equilibrium, both the mechanical as 

well as the chemical equilibrium must be established. This constraint can be satisfied by 

enforcing the Gibbs-Duhem equation for equilibrium, which states: 

 0 0P      (4.21) 

where 0  is the bulk chemical potential which is defined as the first derivative of bulk free 

energy density 0E  with respect to the fluid density. Combining equations (4.19) and (4.21), 

we get:  

   GRT      F F  (4.22) 
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where 2
0      . 

 

4.5 Chemical potential 0  in the Lee-Fischer LB model 

 

In the Lee-Fischer LB model (Lee & Fischer, 2006), the bulk free energy density 0E  

of a fluid is modeled to take the following double-well form (Iwamatsu, 1993): 

    2 2

0
sat sat
l vE         (4.23) 

where   is a constant related to the surface tension of the fluid, and sat
l and sat

v are 

densities of the saturated liquid and vapor phases, respectively. 0E  is plotted against density 

in Fig. 4.2(a). Since the above equation of state (EOS) is usually valid in the near-critical 

state of a fluid, i.e. at low phase-density ratios, we will refer to it as an artificial EOS. 

 

From equation (4.23), relationship between the bulk chemical potential, 0 0E    , 

and the fluid density   can be derived as: 

    0 4 sat sat sat
l v m            (4.24) 

where  0.5sat sat sat
m l v    is the mean saturation density. 0  is plotted against density in 

Fig. 4.2(b). 

 

Using the bulk free energy density 0E  and the bulk chemical potential 0 , we can 

evaluate the thermodynamic pressure 0P  from the following thermodynamic identity 

 0 0 0P E   (4.25) 

to yield: 

        0 4sat sat sat sat sat
l v m l vP                      (4.26) 

The above equation is the equation of state for the fluid being simulated in the Lee-Fischer 

LB model. 0P  is plotted against density in Fig. 4.3. 
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Fig. 4.2: Dependence of bulk free energy E0 (a), and bulk chemical potential 0 (b), on fluid 

density  . The free energy is assumed to be in a double well form which has minimas at the 

bulk liquid density sat
l and the bulk vapor sat

v density. Following parameters are chosen in 

equation (4.23) for the above plots: 0.01  , 1.0sat
l   and 0.25sat

v  . 

 

Speed of sound for the double-well EOS ( ,s dblWc ) can be obtained from the following 

equation: 

 

  
  
  

2
2 0 0
, 2

4

sat sat
l v

sat sat
s dblW l m

T T
sat sat
v m

P E
c

   

     
 

   

  
         

   
    

 (4.27) 
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Fig. 4.3: Dependence of the bulk pressure 0P  on fluid density  . Theoretical Maxwell 

construction for the above pressure dependence on the density yields an equilibrium pressure 

equal to 0, and the equilibrium densities for the liquid and vapor phases equal to sat
l and sat

v

, respectively. Parameters for the above plot are same as of Fig. 4.2. 

 
Given the surface tension   of the fluid and the densities of saturated liquid and 

vapor phases ( sat
l  and sat

v ), we can evaluate the constants   and   for an ideal one-

dimensional planar interface from the following relations (derived later in the sections 4.9.3 

and 4.9.4 ): 

 
 2

3

2 sat sat
l v

D
 




 (4.28) 

 
 4

12
sat sat
l vD


 




 (4.29) 

where  D is the interface thickness (a numerical parameter). In the Lee-Fischer LB model, the 

above artificial equation of state description is used in the whole computational domain. Both 

the bulk as well as the interfacial regions are governed by the same density dependent free 

energy (double-well form) given in equation (4.23). Because of the bulk regions following an 

artificial EOS, Lee-Fischer model yields unphysical dynamics in the presence of body forces 

(such as gravity). Since the LB method is inherently a quasi-compressible method, the 

presence of body forces in the domain yields a very small density gradient in the direction of 

the body force. With increasing time, this small density gradient is further enhanced in the 

Lee-Fischer model due to the increased effective body force. The density gradient in the 

direction of the body force effectively provides an artificial force, which is continuously 
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being added to the body force as time progresses, making the system more and more 

compressible. Because they are governed by the artificial EOS, bulk densities are unable to 

correct this temporally increasing compressibility error, and the simulation ultimately 

becomes numerically unstable because of the unusually large density ratios produced in the 

simulations. 

 

Nonetheless the Lee-Fischer LB model is proved to be thermodynamically superior 

(Kikkinides, 2008) and able to effectively capture two-phase dynamics in the absence of 

gravity. The model also works well for very low magnitudes of gravity and for body forces 

applied over small regions, such as the buoyancy force in a small bubble. In Chapter 6, 

results from both the Lee-Fisher LB model and the AILB model (proposed in the following 

section) are presented for several two-phase scenarios. 

 

4.6 Chemical potential 0  in the AILB model 

 

4.6.1 Bulk equation of state 

 

For the bulk liquid ( ( , ) sat
liqx y   ) and bulk vapor ( ( , ) sat

vapx y   ) regions, we can 

choose a non-ideal equation of state, such as the van der Waals equation of state (vdW EOS), 

which is (McQuarrie & Simon, 1999): 

 20
0 1
bulk RT

P a
b

 


 


 (4.30) 

Bulk free energy density 0
bulkE  for the above non-ideal pressure 0

bulkP is given by: 

 20
0 02

ln
1

bulk
bulk P

E d RT a
b

   
 

 
    
  (4.31) 

Bulk chemical potential 0
bulk  for the vdW EOS can be obtained from: 

 0 0
0 0 ln 2

1 1

bulk
bulk E RT

RT a
b b

 
  

  
       

 (4.32) 

Notice that the above bulk free energy density 0
bulkE  and the bulk chemical potential 0

bulk  are 

related via the following identity: 

 0 0 0
bulk bulk bulkP E   (4.33) 
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Speed of sound for the vdW EOS ( ,s vdWc ) can be obtained from the following 

equation: 

 
 

2
2 0 0 0
, 22

2
1

bulk bulk

s vdW

T T

P E RT
c a

b
 

  
 

   
  

 (4.34) 

 

Instead of using vdW EOS, more realistic equation of states such as the R-K or P-R 

equation of states (Yuan and Schaefer, 2006) may also be used in the AILB model. Note that, 

in this report, results are presented only for the vdW EOS in the context of AILB model. 

More sophisticated equation of states may be employed in future studies. 

 

4.6.2 Interfacial equation of state 

 

The interfacial free energy density int
0E  of a fluid can be modeled to take the following 

double well form: 

    2 2int
0

sat sat
l vE         (4.35) 

where   is a constant related to the surface tension of the fluid, and sat
l  and sat

v  are 

densities of the saturated liquid and vapor phases, respectively.  

 

A relation between the interfacial chemical potential and the fluid density   can be 

derived as: 

    
int

int 0
0 4 sat sat sat

l v m

E       



    


 (4.36) 

where  0.5sat sat sat
m l v    is the mean saturation density. 

 

In order to ensure the continuity of the chemical potential at the interface boundaries, 

i.e. at sat
liq   and sat

vap  , the interfacial chemical potential int
0 is shifted by the value of 

the bulk chemical potential at the interface boundary, i.e.  0 sat
l

bulk

 



 to give: 

    int
0 0 4

sat
l

bulk sat sat sat
l v m 

        


      (4.37) 
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Both the bulk vdW and the interfacial equation of states are graphically compared in 

Fig. 4.4 for the parameter values listed there. Note that the interfacial continuity of the 

chemical potentials is necessary in order to avoid any unwanted numerical oscillations and 

instabilities. 

 

  

Fig. 4.4: Dependence of the chemical potential 0  on fluid density  . Parameters are: TR = 

0.95, a = 9/8, b = 1/3, sat
l = 1.46173, sat

v = 0.579015, 0.025  , D = 4, 0 sat
l

bulk

 



= -

0.440966. 

 

4.6.3 Proposed scaling for the van der Waals EOS in the AILB model 

 

AILB model, as discussed in the previous section, can simulate two-phase dynamics 

with large density ratios only when one chooses interface thickness to be large. A thick 

interface spreads the interfacial gradients over a large number of lattice points and 

consequently, stabilizes the numerical simulation. For a thin interface, the AILB model does 

not converge for large density ratios. Having a thick interface impacts the computing time 

since one now needs to have a large number of lattice points in the domain to yield similar 

accuracy. 
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(a) 

   

(b) 

 

Fig. 4.5: Dependence of the chemical potential 0  on the fluid density  . Parameters are: TR 

= 0.6, a = 9/8, b = 1/3, sat
l = 2.31156, sat

v = 0.0597781, 0.025  , D = 4, 0 sat
l

bulk

 



= -

1.2005; (a) no scaling, (b) scaling factor fS = 0.05 

 

In order to avoid choosing a thick interface while retaining the numerical stability, we 

propose to scale down the vdW EOS, as shown in Fig. 4.5(b). Both the equations of state are 

graphically compared with no scaling in Fig. 4.5(a) and with scaling in Fig. 4.5(b). At a 

reduced temperature TR = 0.6 and a density ratio of ~ 40, a scaling factor of 0.05 was found 
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appropriate for stable simulations with thin interface thicknesses. Simulations are found to be 

stable for a range of scaling factors for the same system conditions. In this study we have 

treated the scaling factor to be a “free” stabilization parameter, introduced simply to help 

stabilize numerical simulations.  

 

Below we present the governing equations for the scaled AILB model: 

 
Bulk regions (saturated liquid or vapor) 
 

 0
0, 0 ln 2

1 1
bulk

scaled f

RT
RT a S

b b

 
 

  
       

 (4.38) 

Interfacial regions  
    int

0, 0, 4
sat
l

bulk sat sat sat
scaled scaled l v m 

        


      (4.39) 

where fS  is a “free” stability parameter chosen to stabilize the numerical simulations. 

 

4.7 Numerical discretization schemes 

 

Similar to use of an isotropic and compact discretization for evaluation of the 

gradients in the forcing term of the Lee-Fischer model, the AILB model can also be made 

numerically stable and applicable for large density ratios between the two phases. Numerical 

tests show that a proper use of second order biased and central difference scheme in 

evaluating gradients allows one to achieve a stable simulation while maintaining second-

order accuracy of the solution (Lee & Fischer, 2006).  

 

We can rewrite equation (4.8) to reflect the different discretization schemes of the 

forcing term as follows: 

 
   

( , ) ( , )

( , ) ( , )

( , ) ( , )
2 2

. .

2 2

a

a

eq eq
a a a a a a a

t t t t

B C
a aeq eq

a a

t t t t

t t
f t t t f t f f f f

t t
f f

RT RT

 

 

  

  

                

  
 

r r v

r r v

r v r

v u F v u F
 

  (4.40) 

where  

 B B B
GRT       F F  (4.41) 
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 C C C
GRT       F F  (4.42) 

and superscripts B and C  indicate the biased and central difference scheme of gradient 

evaluation, respectively. 

 

The modified distribution function ( , )ag tr  in equation (4.9) can now be defined as: 

 
 

( , ) ( , )

.
( , ) ( , )

2 2

C
aeq eq

a a a a a
t t

t t
g t f t f f f

RT 
      

r r

v u F
r r  (4.43) 

After choosing the modified equilibrium distribution function ( , )eq
ag tr  to be, 
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( , )

.
( , ) ( , )

2

C
aeq eq eq

a a a

t

t
g t f t f

RT


 
r

v u F
r r  (4.44) 

we can write equation (4.40) as: 
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r r

v u F
r v r  (4.45) 

The above equation can be written as, 
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v u F
r v r

v u F F
 (4.46) 

which essentially is: 

 
 

( , ) ( , )

.
( , ) ( , )

M
aeq eq

a a a a a a
t t

t
g t t t g t f f t f

RT 
          

r r

v u F
r v r  (4.47) 

where  0.5M B C F F F . 

 

From equations (4.43) and (4.44), we can also evaluate  eq
a af f  in terms of ag  and eq

ag  as: 

  
0.5

eq eq
a a a af f g g

t




  
 

 (4.48) 

Now, we can write equation (4.47) in its final solvable form as: 

    
( , ) ( , )

.
( , ) ( , )

0.5

M
aeq eq

a a a a a a
t t

t
g t t t g t g g t f

t RT 


       
  r r

v u F
r v r  (4.49) 
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The macroscopic density and velocity are now calculated from: 

  , a
a

t g r  (4.50) 

   1
,

2
C

a a
a

t
t g


     
  
u r v F  (4.51) 

 

4.8 Numerical implementation 

 

In this section, numerical implementation of the LB model is presented for a two-

dimensional 2 9D Q  square lattice. The domain ( 0 xx L  , 0 yy L  ) is divided into a 

square grid   (  1x xx y L N     ) of x yN N  grid points.  The terminal grid points lie on 

the domain boundaries at 0x  , xL and at 0y  , yL . For simplicity, 1x y t        is 

chosen in the present work. The LB solution algorithm may be divided into the following 

steps: 

 

4.8.1 Initialization (at time t = 0) 

 

Both the macroscopic state—identified by the density   and the fluid velocity xu , yu

—as well as the microscopic state—identified by the distribution function ag —of the LB 

fluid need to be properly initialized before the time evolution can be studied. 

 

In the LBM simulation of two-phase dynamics, initialization of the phase densities 

plays an important role in governing the stability of the numerical evolution. An improper 

initialization may lead to large numerical fluctuations across the interfaces, may induce large 

spurious velocities and ultimately, turn the numerical scheme unstable. Below we present 

expressions—which actually are the analytical results for the equilibrium density profile 

across a planar interface—for initializing densities of two phases in the calculation domain. 

 

A planar interface in the x-direction can be initialized as (illustrated in Fig. 4.6): 

    int

2
, , 0 tanh

2

sat sat
sat l v
mx y t x x

D

         
 

 (4.52) 
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where intx  is the position of the interface, D  is the parameter controlling the numerical 

interface thickness and sat
l , sat

v and sat
m are saturated liquid, vapor and mean densities, 

respectively. Note that there is no density variation in the y-direction. Moreover, at intx x , 

the density is equal to the mean density of the saturated phases sat
m . The numerical interface 

is stretched from int 0.5 effx D  to int 0.5 effx D  with densities sat
v for  int0 0.5 effx x D    

and sat
l  for  int 0.5 eff

xx D x L   . Note that effD  is the numerical thickness of the interface 

and is usually larger than the parameter D . Initialization for a planar interface in the y-

direction and other variations including sandwiched phase layers in either x, y or both 

directions can be deduced from the above equation in a straightforward manner. 

 

 

 

Fig. 4.6: Initialization of the densities for a two-phase (liquid-vapor) planar interface. 

Thickness of the density transition region is governed by a parameter D which is chosen to be 

3 here. In the transition region, a continuous hyperbolic-tangent shaped variation is assumed 

for the fluid density which asymptotically approaches bulk liquid and vapor densities at the 

ends of the transition region. Red and blue color in the figure shows bulk liquid and vapor 

states, respectively. 

 

    Circular interface of a two dimensional vapor bubble in a liquid environment (

0 ,0x yx L y L    ) can be initialized as (illustrated in Fig. 4.7): 

D = 3, ρl = 1.0, ρv = 0.1



 
 
 

64

       2 22
, , 0 tanh

2

sat sat
sat l v
m C Cx y t x x y y r

D

            
 

 (4.53) 

where  ,C Cx y  are coordinates of the center of the bubble and r  is the radius. The annular 

interface is centered at  ,C Cx y  and is stretched from radius 0.5 effr D  to 0.5 effr D  with 

densities sat
v  inside and sat

l outside the bubble. One can initialize a 2D circular droplet in a 

vapor environment by swapping sat
l and sat

v in the above equation. 

 

    Note that, depending upon sat
l and sat

v , the parameter D  governing the (numerical) 

interface thickness effD  has to be large enough to properly resolve the unstable region and to 

avoid steep gradients of density. A suitable value of D  for stable numerical simulations has 

to be identified by conducting numerical experiments. 

 

 

Fig. 4.7: Initialization of the densities for a two-phase (liquid-vapor) circular interface in 

two-dimensions. The density profile is governed by equation (4.53). 

 

Note that the macroscopic densities  , , 0x y t  , the macroscopic fluid velocities

 , , 0xu x y t  ,  , , 0yu x y t   as well as the distribution function ( , , 0)ag x y t   should be 

initialized in a fashion consistent with the LB dynamics so as not to produce any large 

fluctuations which then leads to unstable numerical evolution. One should avoid trivial 

initializations of such variables.  Of course, the choice of initialization may vary depending 
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upon the problem being simulated; however, it is always recommended to specify an initial 

condition which is closer to the equilibrium solution.  

 

4.8.2 Time marching 

 

A lattice Boltzmann solution algorithm involves implicit time marching which is 

performed in two steps—collision and streaming at each time step for 0t  . 

 

Collision step: 

 

At time t , the distribution function at each grid point ( , , )ag x y t  is modified using the 

following equation to represent collision:  

 
 

 

* 1
( , , ) ( , , ) ( , , ) ( , , )

0.5

( , , )0.5
( , , )

0.5 ( , , )

eq
a a a a

eqa
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g x y t g x y t g x y t f x y t
t

x y t
f x y t

t x y t RT




 

     




 

 (4.54) 

where 

 
   

 
( , , ) B C B C

a a a a a

B B
ax Gx ay Gy x x y y

x y t RT t t t t

v F v F u F u F t

                

    

v v v v
 (4.55) 

 C C C
x x x GxF RT F        (4.56) 

 C C C
y y y GyF RT F        (4.57) 

 B B B
x x x GxF RT F        (4.58) 

 B B B
y y y GyF RT F        (4.59) 

and, GxF  and GyF  are components of the constant body force GF  in the x and y directions,    

respectively. 

 

    Note that, B
a t v and C

a t v  in equation (4.55) represent lattice directional 

derivatives evaluated using their indicated difference schemes, whereas, B
x , B

y , C
x  and C

y  

in equations (4.56) to (4.59) represent space derivatives in x or y directions evaluated using 

their indicated difference schemes. 
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    Lattice directional derivative of density  , ,x y t  in the ath direction is evaluated 

using the second-order central and biased finite-difference schemes as follows (Lee & Lin, 

2005; Lee & Fischer, 2006): 

 
   

( , , )

, , , ,

2
ax ay ax ayC

a x y t

x v t y v t t x v t y v t t
t

 

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  v  (4.60) 

 
     

( , , )

2 , 2 , 4 , , 3 , ,

2
ax ay ax ayB

a x y t

x v t y v t t x v t y v t t x y t
t

  

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  (4.61) 

    Accounting for the symmetry requirements of a stable two phase LB simulation, the 

space derivatives of density  , ,x y t  are calculated by taking velocity moments of the 

corresponding finite-difference discretizations along the characteristics with appropriate 

weights. Consequently, the derivatives in x and y directions are calculated using the following 

equations based on the central and biased finite difference schemes (Lee & Lin, 2005; Lee & 

Fischer, 2006): 
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  (4.64) 
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  (4.65) 

where at are the direction dependent weighting coefficients for the equilibrium distribution 

function.  

 

 In 2D, for a D2Q9 lattice, the above derivatives can be written as follows: 

            
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  (4.66) 
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  (4.72) 

where 1x x   ,  1x x   , 2x x    and 2x x    (same notation is also applicable for 

subscripts in y). Similarly, one can write the above derivatives for a 3D lattice (D3Q19) as 

well.  

 
    Note that the above equations are also valid for calculating the directional and space 

derivatives of   after replacing the variable   with   in the above equations. However, the 

scalar variable   still needs to be calculated from the bulk chemical potential 0 , which 

requires the evaluation of second derivative of density  , ,x y t . Following a second-order 
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central discretization along the characteristics and applying the appropriate weights, one can 

evaluate the second derivative as 

     8
2 2

2( , , ) ( , , )
0

, , 2 , , , ,

2
ax ay ax ay

x y ax y t x y t
a

x v t y v t t x y t x v t y v t t
t

RT t

  
 



          
     

  


  (4.73) 

which gives: 
 

      

2 2 2

( , , ) ( , , ) ( , , )

8

2
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, , 2 , , , ,

x yx y t x y t x y t

ax ay ax ay

a
a

x v t y v t t x y t x v t y v t t
t

RT t

  

  



   

          
  

  


 

  (4.74) 

    Notice that, the evaluation of a biased difference based derivative at any grid point 

needs information from a neighboring node located one and two grid points away in the 

direction of the characteristics; however, a central difference based derivative only requires 

information from its nearest neighbors in the direction of the characteristics. Therefore, for a 

simulation in a periodic box, periodic boundary conditions (for  and ) should be handled 

in such a way that all the boundary nodes have access to the corresponding variables from as 

far as two grid points away.  

 

Streaming step: 

 

In the streaming step, the post-collision distribution function *
ag  is propagated to its 

neighboring node according to its directional index (similar to flowing *
ag  on the 

characteristics) and can be written as follows:   

 *( , , ) ( , , )a ax ay ag x v t y v t t t g x y t        (4.75) 

Periodic boundary conditions (for *
ag ) should be handled in such a way that each boundary 

node has access to *
ag  of its neighboring nodes in the direction of the characteristics. Post-

streaming values of ag  at each grid point now corresponds to the time step t t  . 
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4.8.3 Calculation of macroscopic properties 

 

At time t t  , the macroscopic density   and fluid velocities ,x yu u  at any grid point 

 ,x y  can be calculated from: 

    , , , ,a
a

x y t t g x y t t       (4.76) 

        1
, , , , , ,

, , 2
C

x ax a x
a

t
u x y t t v g x y t t F x y t t

x y t t
               
  (4.77) 

        1
, , , , , ,

, , 2
C

y ay a y
a

t
u x y t t v g x y t t F x y t t

x y t t
               
  (4.78) 

 

4.9 Simulation of equilibrium contact angles 

 

In most engineering applications, liquid-vapor phase change (vaporization/ 

condensation) occurs by transferring energy through the solid surfaces in/out of the system, 

for example, by heating or cooling the walls of a container. Therefore, the manner in which 

the two phases interact with the solid surface becomes important in estimating the overall 

heat transfer of the system.  

 

4.9.1 Wettability and the contact angle w  

 

The behavior of a liquid in contact with a solid surface usually varies from one liquid 

to another and even from one surface to another.  For example, liquid acetone on a flat 

aluminum surface spreads out to form a thin film, while liquid water on the same surface 

forms a bead shaped droplet. These different equilibrium shapes are due to the difference in 

affinities between the liquids and the solid surfaces. Usually, if a liquid has weak affinity 

with the solid surface, it collects itself into a bead form, whereas the liquid with strong 

affinity forms a film on the surface to maximize the liquid-solid contact area. The affinity of 

a liquid for a particular (solid) surface is called the wettability of that specific liquid-surface 

pair. 
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The wettability of a liquid is quantified by the contact angle (or wetting angle) w , 

which is defined as the angle between the liquid-vapor interface and the solid surface, 

measured inside the liquid (illustrated in Fig. 4.8). The basal circle of the liquid drop is called 

the contact line where the three phases (solid, liquid and vapor) meet. As the contact angle 

w  decreases, the same quantity of liquid spreads more over the surface and yields more 

wetting. In the limit 0w  , the liquid completely wets the surface by forming a film over it. 

Liquids for which 0 90o o
w   are termed as wetting liquids and for 90 180o o

w  , liquids 

are called non-wetting liquids. 

 

From Young’s law, when a liquid-vapor interface meets a solid wall, the equilibrium 

contact angle w  can be calculated from the force balance at the contact line and written as: 

 1cos sv sl
w

lv

 


  
  

 
 (4.79) 

where sv , sl  and lv  are surface tensions at the solid-vapor, solid-liquid and liquid-vapor 

contact lines, respectively (Young, 1805).   

 

 

Fig. 4.8:  Interfacial tensions acting on a contact line. sv , lv  and sl  are surface tensions 

between the solid-liquid, liquid-vapor and solid-liquid interfaces. The solid surface is taken to 

be locally flat and is idealized as perfectly smooth. The wettability is quantified by the 

contact angle (or wetting angle) w .  
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4.9.2 Several approaches to simulate w  in LBM 

 

Contact angle between a fluid and the wall needs to be modeled accurately in order to 

capture the necessary surface effects of the two-phase dynamics. Since there exist several 

different LB approaches for two-phase simulations, the treatment of wall contact angles in 

those approaches also differs significantly (Fan et al., 2001; Briant et al., 2004; Niu et al., 

2007; Takada et al., 2008; Lee & Liu, 2008). One of these is a model recently developed by 

Benzi et al. (2006), who investigated the dependency of the contact angle on “free” 

parameters of the Shan-Chen (S-C) two-phase model (Shan & Chen, 1993, 1994). By using 

such a scheme, one may simulate conditions varying from perfect hydrophobicity to perfect 

wettability on a wall surface. Needless to say, development and employment of a suitable 

wettability model is essential for any LBM based treatment of two phases.   

 

We have developed a methodology based on the Cahn’s wetting theory (Cahn, 1977) 

to simulate equilibrium contact angles in the AILB model framework. Our aim is to define 

LB boundary conditions in order to reproduce the pre-specified contact angle w  under 

steady state conditions. In the following sections, Cahn’s theory of wetting dynamics is 

presented and its connection to the AILB two-phase model is derived.  

 

4.9.3 Cahn’s theory of wetting dynamics 

 

 In the Cahn’s wetting theory (Cahn, 1977), a one-dimensional two-phase problem 

with planar interfaces is considered (illustrated in Fig. 4.9). The solid-liquid and the liquid-

vapor interfaces are assumed to exist in the direction perpendicular to the solid surface. The 

fluid density  z  is assumed to vary smoothly in the interfacial region as a function of the 

distance z from the surface. [Note that the continuum assumption of density variation in the 

interface region is most adequate when the fluid is in its near-critical state ( cT T� ), however, 

it may still be used for the temperatures far from the critical point.]  

 

For the semi-infinite fluid in Fig. 4.9, which is in contact with the solid surface at z = 

0, we can write the total free energy of the system as the sum of free energy of the bulk fluid 

bulk  and the free energy due to the presence of a surface at z = 0, i.e. surf .  
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 net bulk surf     (4.80) 

 

Using the mean-field theory, we can write the bulk free energy of the system bulk  as 

the “classical” gradient-square functional in the form below (Jacqmin, 1999):  

  
2

0

0

1

2bulk

z

d
dz E

dz

  




     
   

  (4.81) 

where  0E   is the bulk free energy density of the fluid and the gradient term represents the 

increase in system free energy due to the presence of a density gradient (Cahn, 1977). 

 

 

 

Fig. 4.9:  A planar liquid-vapor interface is in contact with the solid surface situated at z = 0. 

Liquid is in direct contact with the solid surface. An equilibrium wetting model has been 

developed by Cahn (1977) for this interfacial configuration. 

 

Assuming that the forces between the solid surface and the fluid are of short range, we 

can assume surf  to be a function of the fluid density at the surface, i.e. of  0s z   . In 

general, one can choose this functional dependence to be of any kind based on the chosen 

material for the surface and the fluid, however, for simplicity, we choose a linear dependence. 

Let us choose surf  to be: 

 surf s    (4.82) 

where a negative  sign indicates the attraction of the liquid by the solid and thereby favoring 

of a large s  (de Gennes, 1985). 
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In order to construct the equilibrium density profile  z , we need to minimize the 

bulk free energy of the system. From the calculus of variations, we know that the bulk free 

energy function in the form below 

          2

0

0 0

1
' , , '

2bulk dz E z dz L z z z     
             (4.83) 

attains a minimum if  z  satisfies the following Euler-Lagrange equation (Sagan, 1969): 

 
'

L d L

dz 
  

    
 (4.84) 

where  '
d

z
dz

  . 

 

 From equations (4.83) and(4.84),  

          2 2

0 0

1 1
' '

2 ' 2

d
E z E z

dz
     

 
                

 (4.85) 

or, 

 
2

0
2

dE d

d dz



  (4.86) 

Integrating equation (4.86), we get: 

 
2

0 2

d
E C

dz

    
 

 (4.87) 

By considering a point far into the bulk, where the fluid density   bulkz    (and bulk

can be either l  or v ), we have  0
z

d

dz





  and  0 or 0l vE     , which yields C = 0. 

Therefore, we get: 

 
2

0 2

d
E

dz

    
 

 (4.88) 

Now, substituting the above equation in equation (4.81), we can write the minimum bulk free 

energy as: 

 ,min 02
bulk bulk

s s

bulk

d
d E d

dz

 

 

       
    (4.89) 
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Notice that the density at the surface s  is still not determined, which can be ascertained by 

minimizing the net free energy net  with respect to surface density s .  

 

 Let us write the net free energy net  by making use of ,minbulk  to give: 

    02
bulk

s

net surf s d E




         (4.90) 

net  will have a minima with respect to s  if  

    00 2
bulk

s

net
surf s

s s s

d d d
d E

d d d





     
  

 
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 
  (4.91) 

Applying the Leibniz integral rule, we get: 

  02surf
s

s

d
E

d


 


 

 
 

 (4.92) 

which from equation (4.82) gives, 

  02 sE     (4.93) 

or, 

  
2

0 2sE



  (4.94) 

If  is smaller than the height of the function defined by  02 sE  , we can determine the 

roots of the equation above (i.e. possible values for the surface density s ). 

 

 Furthermore, from equations (4.88) and (4.92), we can write an equilibrium boundary 

condition on the solid surface at z = 0 as (Briant et al., 2002, 2004; Briant & Yeomans, 2004; 

Yan & Zu, 2007): 

  0
0

2surf
s

zs

d d
E

d dz

   
 

 
  

 
 (4.95) 

or, 

 ˆ. , at surface   0surf

s

d
n z

d


  


      (4.96) 

where n̂  is a unit vector normal to the surface.  
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4.9.4 Implementation of Cahn’s theory in the AILB model 

 

Choosing the double-well form for  0E  (from equation (4.35)), we get: 

    
2

2 2

2
sat sat

s l s v

   


    (4.97) 

The above equation has four roots i.e. four possible values for s  which are: 

 1 1
2 2

sat sat sat sat
l v l v

s

     
     (4.98) 

 2 1
2 2

sat sat sat sat
l v l v

s

     
     (4.99) 

 3 1
2 2

sat sat sat sat
l v l v

s

     
     (4.100) 

 4 1
2 2

sat sat sat sat
l v l v

s

     
     (4.101) 

where   is called the wetting potential, and is given by: 

 
 2

4

2sat sat
l v


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 


 (4.102) 

 
 The formulation can now be used to calculate the surface tension force between liquid 

and vapor phase for an infinite one-dimensional system, in which the lower and upper parts 

of the system are occupied by the liquid and vapor phases, respectively. The liquid-vapor 

surface tension force is given by the minimum free energy (in equation (4.89), lower and 

upper bounds of the integral are substituted by sat
l  and sat

v , respectively.). 

  02

sat
v

sat
l

lv d E




      (4.103) 

   2
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lv l vd
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

          (4.104) 

  32

6
sat sat

lv l v


     (4.105) 

 

 Surface tension between the solid surface and the fluid is given by: 
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  02
bulk

s

sf s d E




         (4.106) 

For 0  , if the fluid in contact with the solid surface is vapor then the net free energy will 

be a minimum for 2s s   and the surface tension for the solid-vapor pair can be written as: 

    
2

3

2
2 02 1

2 2 2

sat
v

s

sat sat
l v lv lv

sv s d E




         
         (4.107) 

For 0  , if the fluid in contact with the solid surface is liquid then the net free energy will 

be a minimum for 4s s   and the surface tension for the solid-liquid pair can be written as: 

    
4

3

2
4 02 1

2 2 2

sat
l

s

sat sat
l v lv lv

sl s d E




         
         (4.108) 

 
For 0  , if the fluid in contact with the solid surface is liquid then the net free energy will 

be a minimum for 3s s   and the surface tension for the solid-liquid pair can be written as: 

    
3

3

2
3 02 1

2 2 2

sat
l

s

sat sat
l v lv lv

sl s d E




         
         (4.109) 

 

And finally, for 0  , if the fluid in contact with the solid surface is vapor then the net free 

energy will be a minimum for 1s s   and the surface tension for the solid-vapor pair can be 

written as: 

    
1

3

2
1 02 1

2 2 2

sat
v

s

sat sat
l v lv lv

sv s d E




         
         (4.110) 

The wetting angle w  is determined by substituting equations (4.105), (4.107)-(4.108) into 

equation (4.79), 

 
   

3 3

2 21 1
cos

2w
  

  (4.111) 

For a given wetting angle w  in the range of 0 w   , we can write   as: 

 

1

2

2sgn cos 1 cos
2 3 3w

  
                        

 (4.112) 

where  

  1 2cos sin w   (4.113) 
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and  sgn * gives the sign of  * . 

 

Note that a desired wetting angle w  can be chosen for the LBM simulations and 

based on that the wetting potential   can be calculated from equation (4.112). With the 

wetting potential   known, we can now evaluate the value of   using equation (4.102). 

 

4.9.5 Simulation of w in the AILB model 

 

Using the approach described in the previous section, we can simulate pre-specified 

contact angles at the solid walls. We can simulate the specific equilibrium contact angle in 

the simulation algorithm by modifying the second derivative of density at the wall lattice 

points to include the appropriate wetting potential. Note that the second derivative of density 

described by equation (4.74) is still valid in the bulk region (i.e. away from the walls). One 

only needs to modify equation (4.74) for the lattice points at the wall sites where the specific 

contact angle is simulated. Details of how to modify the second gradient of density at a wall 

lattice point are given below. 

 

 For a two-dimensional D2Q9 square lattice, the second gradient of density can be 

evaluated in the bulk region (i.e. at the lattice points which are not part of a wall surface) 

using the following equation, which is essentially the expanded form of the equation(4.74): 

       
          
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      
 (4.114) 

 

Imposing a boundary condition n̂       (where n̂ is a unit outward normal vector) 

while evaluating the second gradient of density on the wall lattice points for a D2Q9 lattice, 

we get: 
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  (4.115) 
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Combining the above two equations gives: 
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  (4.117) 

where  
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2

4

sat sat
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
 

  (4.118) 

and   is calculated from 

  
1

2
1 22sgn cos 1 cos , cos sin

2 3 3w w

                             
 (4.119) 

for a given contact angle w . 

 

Similarly, for a three-dimensional D3Q19 lattice, the second gradient of density in the 

bulk region can be written as: 

  2
1 2( , , )

1
2 24 , ,

6x y z
S S x y z        (4.120) 

1S  and 2S are defined below in the equations (4.125) and (4.126).  

 

Imposing the boundary condition n̂       while evaluating the second gradient of 

density on the wall lattice points for a D3Q19 lattice, we get: 

      2
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 (4.121) 
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Combining the above three equations, we get: 
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where  
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  (4.125) 
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 (4.126) 

and  is calculated from equation (4.118).  

 
 
4.10    Simulation of spatially-varying viscosities 

 

In the LBM-BGK algorithm, the kinematic viscosity of a fluid   is explicitly 

determined by the prescribed single relaxation time  . This functional form gives a unique 

value for the kinematic viscosity of the fluid irrespective of the multiple phases involved. 

However, in order to accurately model the flow dynamics of a single-component two-phase 

fluid, it is essential to have different kinematic viscosities for the two phases at any given 

temperature.  

 

This task may be accomplished by expressing the relaxation time   as a linear 

function of the local fluid density ( , )x y constrained by the saturation densities of both 

phases. Thus, ( )   can be written as 

 
( ) ( ) ( ) ( )

( ) L V V L L V

L V L V

           
   

    
        

 (4.127) 

where ( )L  and ( )V   represent, at the given temperature, the relaxation times 

corresponding to the saturation density of the liquid and vapor phases, respectively. These 

phase-specific relaxation times are calculated by knowing the kinematic viscosities of the 

corresponding phases.  
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4.11    Simulation of buoyancy effects in the LB model  

 

Depending upon the problem being simulated, there are several ways by which one 

can implement buoyancy effects in the LB model. Of course, the most appropriate and 

physically accurate method is to apply the gravitational forces in the system and let the 

buoyancy effects (over the low density regions) appear from the dynamics itself. The 

gravitational body force corresponds to the following equation: 

      ˆ, ,gravityF x y x y g j  (4.128) 

Note that the simulation of buoyancy effects using the above equation only works when the 

simulation domain is not periodic in the direction of gravity i.e. there should be a solid wall 

present in the system resisting the downward fluid motion.  

 

 If the domain is periodic in all directions (i.e. no walls present) then application of the 

above equation leads to the whole fluid being continuously accelerated since there is no wall 

to provide any resistive drag force (Sankaranarayanan et al., 1999).   

 

 If the domain has walls in the direction parallel to the gravity then the no-slip 

condition on the walls provide resistive forces to the fluid motion and lead to a scenario 

similar to bubble motion driven by a Poiseuille flow. Since the gravity acts as the driving 

force for the channel flow, the bubble moves in the direction of gravity.   

 

For simulations with periodic boundaries, one can explicitly define the buoyancy 

force as follows:  

      ˆ, , sat
buo lF x y x y g    j  (4.129) 

where sat
l  is the saturated density of the liquid phase. The above form corresponds to 

defining a body force over the low density region in the direction opposite to the gravity. Due 

to quasi-compressible nature of the LB simulations (Buick & Greated, 2000), one may want 

to explicitly define a zero force in the liquid phase, such as: 

       ˆ, ,
,

0

sat sat
l m

buo

x y g x y
F x y

otherwise

     
 


j
 (4.130) 

where sat
m is the mean density of the two phases.  
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4.12  Similarities with the phase-field modelling technique  

 

 The Gibbs-Duhem equation based LB model is conceptually similar to the phase-field 

modeling technique which is quite popular in material science (Warren, 1995; Jacqmin, 1996; 

Anderson et al., 1998; Yue et al., 2004; Jamet et al., 2001, 2002; Badalassi et al., 2003; Acar, 

2009). Hence, before closing this chapter, the phase field model is briefly reviewed here.  

 

The phase-field method is also a fixed-grid method with a physically diffusive 

interface. Similar to the LB model, the interface in phase-field models is introduced via 

minimizing the free energy of the system. The two-components are identified by a phase-field 

variable ( ) representing the volume fraction of the two components and thereby, indicating 

the location of the interface. The variation in   is smooth across the interface and stretches 

over a few grid points yielding a diffuse interface. When the thickness of the stretched 

interface approaches zero, results of the diffuse-interface phase-field model approximates the 

corresponding sharp-interface formulations (such as the level-set methods).  Phase field 

methods have been used in studying numerous applications ranging from phase-transitions 

and critical phenomena, solidification and dendritic growth in alloys, interfacial tension 

theories, solid-state phase transformations, precipitate/grain growth (coarsening dynamics) 

and complex fluids (polymers etc.). Details on the phase-field methods can be found in Feng 

et al. (2005) and Moelans et al. (2008). 
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Chapter 5 

Boundary conditions for the AILB model 
        

Dynamics of flow, whether it is in single-phase or multi-phase, depends upon the 

surrounding environment. This dependence is mathematically prescribed by applying the 

suitable boundary conditions (BCs) to the governing equations.  Usually, the BCs are only 

available in terms of the relevant macroscopic variables (and from which not all the 

mesoscopic information is directly deducible). For example, on a static wall, the fluid 

velocity is assumed to be zero to satisfy no-slip boundary condition; however, one does not 

know all the particle distribution functions at the wall. Therefore, in lattice Boltzmann 

models, one cannot directly apply the boundary conditions to the relevant macroscopic 

variables since our governing equations are at a level below, i.e. on a mesoscopic scale.  

Consequently, one has to translate the macroscopic BCs to the scale of the governing 

equations and represent those in terms of the discrete distribution functions in order to 

proceed with the numerical solution procedure. 

 

 Depending upon the problem at hand, various types of boundary conditions including 

no-slip, free-slip, frictional slip, sliding walls, moving walls, in-flux, out-flux etc. (Succi, 

2001) may be applied to the evolution of the distribution function. The most simple and 

widely used approach is the bounce-back method, in which, the outgoing distribution 

functions reflect back into the domain after streaming through any wall or solid obstacles.  

 

There are three types of flow boundary conditions which are most commonly used in 

LBM simulations: (i) Periodic BCs, (ii) Velocity BCs and (iii) Pressure BCs.  Periodic BCs in 

LBM can be applied by simply letting the outgoing distribution functions from one end of the 

domain to stream into the opposite end.  Periodic BCs are adequate for simulating physical 

dynamics in which surfaces or wall effects are negligible. In addition, sliding walls, porous 

walls or wall flux boundaries are simulated by enforcing the fluid velocity at the walls to be 

equal to that of the wall. Since the pressure is not treated as an independent variable in LBM 

and is usually a function of density, the pressure BCs are simulated by appropriate density 

BCs.  In the following sections, wall velocity and wall density boundary conditions are 
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developed for D2Q9 (in 2D) and D3Q19 (in 3D) lattices in the framework of the artificial 

interface lattice Boltzmann (AILB) model.   

 

Before proceeding further, the governing LB equation and the conservation 

constraints it has to follow: 

 

Governing LB equation: 
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and superscripts B  and C  indicate the biased and central difference scheme of gradient 

evaluation, respectively. Moreover, eq
af  is a Maxwell-Boltzmann equilibrium distribution 

function, approximated as:  
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a av u v u
 (5.7) 

where aw  and RT are lattice constants which depend upon the chosen lattice type i.e. D2Q9 or 

D3Q19. 

 

The distribution function at the boundaries must satisfy the following constraints of 

mass and momentum conservation: 
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Mass Conservation: 

  , a
a

t g r  (5.8) 

 

Momentum Conservation: 

    , ,
2

C
a a

a

t
t t g    

 
r u r v F  (5.9) 

Macroscopic properties (fluid densities, velocities, forcing terms etc.) in equations 

(5.1) to (5.9) are known by virtue of the specific BCs being simulated, however, not all the 

distribution functions ( ag ) are known at the boundaries in the post-streaming state. This is 

because the exterior of the computational domain does not take part in the solution and 

therefore, does not supply any distribution functions to the boundary upon streaming. These 

missing distribution functions at the boundaries can be determined using the relations of the 

mass and momentum conservation in equations (5.8) and (5.9).   

 

5.1  Velocity boundary conditions in 2D 

 

Let us consider a two-dimensional (2D) computational domain as shown in Fig. 5.1, 

in which the fluid is surrounded by the South (y = 0), North (y = Ly), East (x = Lx) and West 

(x = 0) boundaries. Computational grid is chosen such that there are nodes lying exactly on 

the physical boundaries as well as the corners. The corners are where the perpendicular 

boundaries meet and are named accordingly, i.e. NW denotes the intersection of the North 

and West boundaries, etc. Usually, there are more unknowns at the corners than at the straight 

boundaries, and the locally available information is not sufficient for the evaluation of those 

additional unknowns. Therefore, corners are treated in a special way by extrapolating 

unknown density from the neighboring bulk nodes (Zou & He, 1997).  

 

For 2D simulations, we are using a D2Q9 lattice structure in this report (one may 

choose other lattice structures, for example, D2Q5 or D2Q7). As shown in Fig. 4.1(a), the 

D2Q9 lattice has 8 velocity vectors linking it with the neighboring nodes, and a null link (or 

rest state). Out of these 8 links, 4 are orthogonal links which point to the nearest neighbors 

(and have speed 1) and 4 are diagonal links which point to the next-nearest neighbors (and 

have speed 2 ). Lattice velocities in different directions are listed in Table 4.1 for the D2Q9 
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lattice. Due to the symmetry of the lattice in LBM, directional links always come in pairs i.e. 

each link has a partner which points into the opposite direction. Such pairs are listed in Table 

5.1 for the D2Q9 lattice. 

 

Fig. 5.1: Two-dimensional (2D) computational domain. The fluid is enclosed by North, 

South, East and West boundaries. Computational grid is chosen such that the nodes (depicted 

by yellow circles) lie on the boundaries as well as on the corners (NW, SW, NE and SE).  

 

Table 5.1: Directional pairs having opposite lattice velocities ( a , a ) for D2Q9 lattice. 
 

a  a  
 

a  a  

1 3 5 7 

2 4  6 8 

3 1  7 5 

4 2  8 6 

 

In the following sections, methodology to obtain unknowns at the South boundary and 

the SW corner is presented. Relations for unknowns at the rest of the boundaries are provided 

in Appendix C. 

 

5.1.1  South boundary  

 

Let us consider a case in which the fluid at the South boundary has its x- and y-

velocities specified and equal to wxU  and wyU , respectively. As shown in Fig. 5.2, there are 

North 
Boundary 
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Boundary 
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Boundary 
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Boundary 

N
Fluid 

NW 

SW 

NE 

SE 
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three unknown distribution functions ( 2g , 5g  and 6g ) at the boundary in the post-streaming 

state. In addition, the density at the boundary ( w ) is also an unknown. We need to determine 

these 4 unknowns in order to satisfy the desired velocity BC.  

 

Mass Conservation: 

 0 1 2 3 4 5 6 7 8w g g g g g g g g g           (5.10) 

Momentum Conservation: 
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t
U g g g g g g F 

        (5.12) 

 

 

Fig. 5.2: Velocity boundary condition at the South boundary. The fluid is specified to have its 

x- and y-velocity equal to wxU  and wyU , respectively. Distribution functions 2g , 5g , 6g  and 

the density w  are unknown at the boundary. 

 

Note that, in the equations (5.11) and (5.12), the forcing terms C
xF  and C

yF  depend 

upon gradients of the density and the chemical potential (see equation (5.6)). In order to 

simplify calculations, we can evaluate these forcing terms using the density at the previous 

LB time step and thereby, treat  C
xF  and C

yF  as constants for the current LB time step.  

 

To determine the 4 unknowns w , 2g , 5g and 6g  at the boundary, we are still short of 

one equation; we only have 3 equations: (5.10), (5.11) and (5.12).  In order to close the 

system, we assume that upon streaming, the non-equilibrium part of the outgoing distribution 
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function normal to the boundary i.e. ( 4 4
eqg g ) bounces back into the domain to give the non-

equilibrium part of 2g , i.e. 

 2 2 4 4
eq eqg g g g    (5.13) 

This closure condition was first proposed by Zou and He (1997) for single phase flows and, 

as shown in this report, is also proven to be a good approximation for boundaries for two 

phase flows.  

 

Now, from equations (5.10) and (5.12), we can calculate density w as: 

 

   

 

   

0 1 3 4 7 8 2 5 6

0 1 3 4 7 8

0 1 3 4 7 8

2
2

2 1
2

w

C
w w wy y

C
w y wy

g g g g g g g g g

t
g g g g g g U F

t
g g g g g g F U



 



        


        

          
 

 (5.14) 

 

With w  known, the equilibrium distribution functions 2
eqg  and 4

eqg  in equation (5.13), 

can be evaluated using equations (5.3), (5.6) and  (5.7) with the density w , x-velocity wxU  

and y-velocity wyU : 

 

 

      
2 4 2 4

2 2 4 4

4 2 4 .
2

eq eq

eq eq

eq eq C

w

g g g g

f ft
g f f

RT

  

  
   

v u v u
F

 (5.15) 

where wx wyU U u i j ,  ,eq eq
a a wf f  u  and CF is given by equation (5.6). Note that the 

numerical evaluation of the right hand side of the above equation requires treating the 

directional and non-directional derivatives differently, as discussed in Chapter 4, Sec-4.7. 

With w  and 2g  known, 5g  and 6g  can now simply be obtained by solving equations (5.11) 

and (5.12).  

 

Below we list the equations which should be solved in order to obtain the desired 

unknowns at the South boundary: 

    0 1 3 4 7 82 1
2

C
w y wy

t
g g g g g g F U          

 
 (5.16) 

  2 4 2 4
eq eqg g g g    (5.17) 
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    5 6 3 7 1 8 2
C

w wx x

t
g g g g g g U F 
        (5.18) 

 5 6 4 7 8 2 2
C

w wy y

t
g g g g g g U F 
        (5.19) 

 
   5 6 5 6

5 2

g g g g
g

  
  (5.20) 

 
   5 6 5 6

6 2

g g g g
g

  
  (5.21) 

 

5.1.2 South-West (SW) corner  

 

Special treatment is required to impose and satisfy BCs at the corners. There are more 

unknowns at the corners than there are on the nodes on straight boundaries. For example, at 

the SW corner, we have 6 unknowns ( w , 1g , 2g , 5g , 6g  and 8g ) which need to be 

determined (see Fig. 5.3). Since the SW node is a part of both South and West boundaries, we 

can choose velocity on either boundary as the fluid velocity on the SW node. In this example, 

we choose the West boundary’s velocities wxU  and wyU , to be the velocity on the SW corner. 

 

Mass Conservation: 

 0 1 2 3 4 5 6 7 8w g g g g g g g g g           (5.22) 

 

Momentum Conservation: 

    1 5 8 3 6 7 2
C

w wx x

t
U g g g g g g F 

        (5.23) 

    2 5 6 4 7 8 2
C

w wy y

t
U g g g g g g F 

        (5.24) 

 

Next, we assume that upon streaming, the non-equilibrium part of the outgoing 

distribution functions normal to the SW node, i.e. ( 3 3
eqg g ) and ( 4 4

eqg g ), bounce back into 

the domain to give the non-equilibrium part of 1g  and 2g , respectively. That is 

 1 1 3 3
eq eqg g g g    (5.25) 

 2 2 4 4
eq eqg g g g    (5.26) 
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Notice that we only have 5 equations to determine the 6 unknowns. Therefore, in 

order to close the system, we approximate the density at the SW node w  with the density at 

the nearest neighboring flow node NBR  (see Fig. 5.3) i.e. w NBR  . With density w  

known, rest of the unknowns can now be evaluated using the aforementioned 5 equations. 

 

 

Fig. 5.3: Velocity boundary condition at the South-West (SW) corner. The x- and y-velocity 

of the fluid is specified to be wxU  and wyU , respectively. Distribution functions 1g , 2g , 5g , 

6g , 8g  and the density w  are unknown. 

 

Below we list the equations which should be solved in order to obtain the desired 

unknowns at the SW corner: 

 w NBR   (5.27) 

  1 3 1 3
eq eqg g g g    (5.28) 

  2 4 2 4
eq eqg g g g    (5.29) 

 5 6 8 3 7 1 2
C

w wx x

t
g g g g g g U F 
        (5.30) 

 5 6 8 4 7 2 2
C

w wy y

t
g g g g g g U F 
        (5.31) 

 
   5 6 8 5 6 8

5 2

g g g g g g
g

    
  (5.32) 
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  6 8 5 6 8 5g g g g g g      (5.33) 

  6 8 0 1 2 3 4 5 7wg g g g g g g g g          (5.34) 

 
   6 8 6 8

6 2

g g g g
g

  
  (5.35) 

 
   6 8 6 8

8 2

g g g g
g

  
  (5.36) 

 

5.2  Density boundary conditions in 2D 

 

Let us consider a 2D case in which pressure (density) is to be specified on a boundary. 

For example, if a flow inlet BC is specified at a boundary via pressure (density) specification, 

then we know the density w  and the tangential velocity wxU  at the boundary. (Usually, the 

tangential velocity of the fluid at a static inlet boundary is zero.) However, the normal 

velocity wyU  at the boundary is an unknown. 

 

In the following sections, methodology to obtain unknowns at the South boundary and 

the SW corner is presented. Relations for unknowns at the rest of the boundaries are provided 

in Appendix D. 

 

5.2.1  South boundary  

 

At the South boundary, we need to enforce the fluid to have its x- velocity and density 

equal to wxU  and w , respectively. As shown in Fig. 5.2, there are three unknown distribution 

functions ( 2g , 5g  and 6g ) at each lattice site on the South boundary in the post-streaming 

state. In addition, the y-directional velocity of the fluid ( wyU ) is also an unknown. Therefore, 

there are a total of 4 unknowns which need to be determined.   

 

Mass Conservation: 

 0 1 2 3 4 5 6 7 8w g g g g g g g g g           (5.37) 
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Momentum Conservation: 

    1 5 8 3 6 7 2
C

w wx x

t
U g g g g g g F 

        (5.38) 

    2 5 6 4 7 8 2
C

w wy y

t
U g g g g g g F 

        (5.39) 

 

As a closure condition, we assume that upon streaming, the non-equilibrium part of 

the outgoing distribution functions normal to the boundary, i.e. ( 4 4
eqg g ) simply bounces 

back into the domain to give the non-equilibrium part of 2g , i.e. 

 2 2 4 4
eq eqg g g g    (5.40) 

 

Below are listed all the equations which should be solved in order to obtain the 

desired unknowns at the South boundary: 

    0 1 3 4 7 82
2

C
wy y w w

t
U g g g g g g F            

 
 (5.41) 

  2 4 2 4
eq eqg g g g    (5.42) 

    5 6 3 7 1 8 2
C

w wx x

t
g g g g g g U F 
        (5.43) 

 5 6 4 7 8 2 2
C

w wy y

t
g g g g g g U F 
        (5.44) 

 
   5 6 5 6

5 2

g g g g
g

  
  (5.45) 

 
   5 6 5 6

6 2

g g g g
g

  
  (5.46) 

 

5.2.2 South-West (SW) corner  

 

As mentioned earlier, since there are more unknowns at the corners than the nodes on 

the straight boundaries, a special treatment is required to handle BCs at the corners. For 

example, at the SW node, we have 6 unknowns ( w , 1g , 2g , 5g , 6g  and 8g ) which need to 

be determined (see Fig. 5.3). 
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Mass Conservation: 

 0 1 2 3 4 5 6 7 8w g g g g g g g g g           (5.47) 

Momentum Conservation: 

    1 5 8 3 6 7 2
C

w wx x

t
U g g g g g g F 

        (5.48) 

    2 5 6 4 7 8 2
C

w wy y

t
U g g g g g g F 

        (5.49) 

 

Next, we assume that upon streaming, the non-equilibrium part of the distribution 

function normal to the SW node and directed into the boundaries, i.e. ( 3 3
eqg g ) and ( 4 4

eqg g

) simply bounces back into the domain to give the non-equilibrium part of 1g  and 2g , 

respectively, i.e. 

 1 1 3 3
eq eqg g g g    (5.50) 

 2 2 4 4
eq eqg g g g    (5.51) 

 

Notice that we only have 5 equations to determine 6 unknowns. Therefore, in order to 

close the system, we have used Zou and He (1997) approximation, by which the density at 

the SW node w  is assumed to be equal to the density at the nearest neighboring flow node 

NBR ,  i.e. w NBR   

 

Below are listed all the equations which should be solved in order to obtain the 

desired unknowns at the SW corner: 

 w NBR   (5.52) 

  1 3 1 3
eq eqg g g g    (5.53) 

  2 4 2 4
eq eqg g g g    (5.54) 

 5 6 8 3 7 1 2
C

w wx x

t
g g g g g g U F 
        (5.55) 

 5 6 8 4 7 2 2
C

w wy y

t
g g g g g g U F 
        (5.56) 

 
   5 6 8 5 6 8

5 2

g g g g g g
g

    
  (5.57) 
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  6 8 5 6 8 5g g g g g g      (5.58) 

  6 8 0 1 2 3 4 5 7wg g g g g g g g g          (5.59) 

 
   6 8 6 8

6 2

g g g g
g

  
  (5.60) 

 
   6 8 6 8

8 2

g g g g
g

  
  (5.61) 

 

5.3  Velocity boundary conditions in 3D 

 

In 3D, there are four macroscopic physical properties that can be specified at the 

boundaries of a domain: fluid density, normal velocity and two components of tangential 

velocity. The normal velocity is zero for solid walls and nonzero for porous walls. For no-slip 

boundaries, the tangential velocity is usually the same as the velocity of the moving wall. 

There are 6 surface boundaries, 12 edge boundaries and 8 corners in the 3D computational 

domain. The fluid is confined with the West (x = 0), East (x = Lx), South (y = 0), North (y = 

Ly), Bottom (z = 0) and Top (z = 0) surface boundaries, as shown in Fig. 5.4. Computational 

grid is chosen such that the nodes lie on the surface boundaries and the corners.  

 

For 3D simulations, a D3Q19 lattice structure is used in this report (one may choose 

other lattice structures, for example, D3Q15 or D3Q24). As shown in Fig. 4.1(b), the D3Q19 

lattice has 18 velocity vectors linking it with the neighboring nodes, and a null link (or rest 

state). Out of these 18 links, 6 are orthogonal links which point to the nearest neighbors (and 

have speed 1) and 12 are diagonal links which point to the next-nearest neighbors (and have 

speed 2 ). Lattice velocities in different directions are listed in Table 4.2 for the D3Q19 

lattice. Due to the symmetry of the lattice in LBM, directional links always come in pairs i.e. 

each link has a partner which points into the opposite direction. Such pairs are listed in Table 

5.2 for the D3Q19 lattice. 

 

In order to apply velocity BCs on the surface boundaries, 6 unknowns including the 

density need to be determined. However, we only have 4 equations (1 for mass conservation, 

1 each for x-, y- and z-momentum). Therefore, in 3D formulation of velocity BCs, an 

approach different from its 2D counterpart is considered. Here, the number of unknowns is 
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reduced to 4 by assuming the partial bounce-back of the non-equilibrium distribution 

functions at the boundaries and, satisfying the mass and momentum constraints. 

 

 

Fig. 5.4: Three-dimensional (3D) computational domain. There are 6 surface boundaries, 12 

edge boundaries and 8 corners in a 3D domain. The fluid is enclosed by West (x = 0), East (x 

= Lx), South (y = 0), North (y = Ly), Bottom (z = 0) and Top (z = Lz) surface boundaries. 

Computational grid is chosen such that the nodes lie on the surface boundaries as well as on 

all the corners.  

 

Table 5.2: Directional pairs having opposite lattice velocities ( a , a ) for the D3Q19 lattice. 
 

a  a  
 

a  a  

1 2 10 8 

2 1  11 13 

3 4  12 14 

4 3  13 11 

5 6  14 12 

6 5  15 17 

7 9  16 18 

8 10  17 15 

9 7  18 16 
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In the following section, a methodology to obtain unknowns at the Bottom boundary 

is presented. Relations for unknowns at the rest of the boundaries are provided in Appendix 

E. 

 

5.3.1 Bottom boundary  

 

Unknowns: 

w , 5g , 11g , 14g , 15g and 18g  

Mass conservation: 

 
18

0
w a

a

g


  (5.62) 

Momentum conservation: 

    1 7 10 11 12 2 8 9 13 14 2
C

w wx x

t
U g g g g g g g g g g F 

            (5.63) 

    3 7 8 15 16 4 9 10 17 18 2
C

w wy y

t
U g g g g g g g g g g F 

            (5.64) 

    5 11 14 15 18 6 12 13 16 17 2
C

w wz z

t
U g g g g g g g g g g F 

            (5.65) 

From equations (5.62) and (5.65): 

 
   

0 1 2 3 4 7 8 9 10

6 12 13 16 17

1

1 2
2

w C
wz z

g g g g g g g g g

t
U g g g g g F


        

           

 (5.66) 

Now, let us assume that the outgoing non-equilibrium distribution functions 

 , 6,12,13,16,17eq
a ag g a  partially bounce back at the boundary to provide the 

corresponding incoming non-equilibrium distribution functions  , 5,14,11,18,15eq
a ag g a   

(see Table 5.4 for the number of the corresponding distribution function) with the 3 new 

unknowns  , ,x y z   as: 

    5 5 6 6 5, 5, 5,
eq eq

x x y y z zg g g g v v v         (5.67) 

    11 11 13 13 11, 11, 11,
eq eq

x x y y z zg g g g v v v         (5.68) 

    14 14 12 12 14, 14, 14,
eq eq

x x y y z zg g g g v v v         (5.69) 

    15 15 17 17 15, 15, 15,
eq eq

x x y y z zg g g g v v v         (5.70) 
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    18 18 16 16 18, 18, 18,
eq eq

x x y y z zg g g g v v v         (5.71) 

The above equations can be rewritten after substituting corresponding lattice 

velocities from the Table 5.3, as: 

  5 6 5 6
eq eq

zg g g g      (5.72) 

  11 13 11 13
eq eq

x zg g g g        (5.73) 

  14 12 14 12
eq eq

x zg g g g        (5.74) 

  15 17 15 17
eq eq

y zg g g g        (5.75) 

  18 16 18 16
eq eq

y zg g g g        (5.76) 

From equations (5.73) and (5.74),  

        11 13 14 12 11 13 14 12 2eq eq eq eq
xg g g g g g g g          (5.77) 

From equations (5.75) and (5.76),  

        15 17 18 16 15 17 18 16 2eq eq eq eq
yg g g g g g g g          (5.78) 

From equations  (5.63) and (5.77),  

 
   

   
1 7 10 2 8 9

11 13 14 12

2

2

C
w wx x

eq eq eq eq
x

t
U g g g g g g F

g g g g






      

    
 (5.79) 

From equations (5.64) and (5.78),  

 
   

   
3 7 8 4 9 10

15 17 18 16

2

2

C
w wy y

eq eq eq eq
y

t
U g g g g g g F

g g g g






      

    
 (5.80) 

From equations (5.65) and (5.72)-(5.76),  

 
 
 

5 11 14 15 18

6 12 13 16 17 5
2

eq eq eq eq eq
w wz

eq eq eq eq eq C
z z

U g g g g g

t
g g g g g F





    


      

 (5.81) 

Rearranging equations (5.79), (5.80) and (5.81), we can write the three unknowns as: 
 

 
   

   
1 7 10 2 8 9

11 13 14 12

1 2
2

C
w wx x

x
eq eq eq eq

t
U g g g g g g F

g g g g




          
     

 (5.82) 
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   

   
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
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          
     

 (5.83) 
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2
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


     
   
      
 

 (5.84) 

 
5.4  Future directions of research 

 

In the context of lattice Boltzmann models, a variety of “radically” different 

approaches are presently in use for simulating velocity and density boundary conditions for 

single- and two-phase flows. A consensus has not yet reached on the choice of appropriate 

boundary conditions. A unification of these approaches is required in order to standardize the 

procedure as well as for enhancing the numerical accuracy. Recently, Latt and Chopard 

(2008) reviewed and compared five of such different boundary treatments for different 

benchmark problems.  They divided the boundary conditions into two broader categories, one 

which preserves the known particle populations (Inamuro et al. (1995), Zou & He (1997)) 

and the other which replaces all the particle populations (regularized, finite difference and 

non-linear finite difference based, see Latt & Chopard (2008)) at the boundary nodes. 

Moreover, many of these different boundary conditions are only tested for the single-phase 

flows and there applicability to different two-phase models still needs to be established.  

 

Since most of the practical applications involve geometries which can not be fitted by 

a rectangular grid (such as, curved pipes and other irregular shapes), there is a need to 

develop boundary treatments for such non-rectangular geometries. The simplest approach to 

model such arbitrary boundaries is to replace the boundaries with the zigzagging contours 

which follow the rectangular grid in a staircase fashion. However, the accuracy of near-

boundary flow may be deteriorated by the artificial staircases. An extrapolation method for 

treating curved boundaries is proposed in Guo et al. (2002). The distribution function at the 

grid point nearest to the (physical) curved boundary is decomposed into equilibrium and non-

equilibrium parts.  The non-equilibrium part is approximated by that of the neighboring fluid 

node along the link, and the equilibrium part is determined by a fictitious equilibrium 
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distribution function. This treatment results in second-order accuracy and good stability 

characteristics (Guo et al. (2002)).  
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Chapter 6 

Results and discussions 
       

In this chapter, simulation results for several two phase scenarios using the artificial 

interface lattice Boltzmann (AILB) model and the Lee-Fischer model (Lee & Fischer, 2006) 

are presented. An appropriate model has been chosen depending upon the problem being 

simulated. Simulations, in which body force (like, gravity) plays a significant role in the 

dynamics, AILB model is preferred to eliminate the artificial compressibility enhancements 

found in the Lee-Fischer model. A comparison with the available analytical and/or 

experimental results has also been provided.  

 

6.1  Multi-fluid Poiseuille-Couette flow in a 2D channel 

 

6.1.1 Analytical solution 

 

For a three-layer Poiseuille-Couette flow in a two-dimensional (2D) channel as shown 

in Fig. 6.1, the governing equations and the boundary/interface conditions can be written as 

follows: 

 

Governing equations: 

 
2

1 1
2

1

( )yd u x g

dx




   (6.1) 

 
2

2 2
2

2

( )yd u x g

dx




   (6.2) 

 
2

3 3
2

3

( )yd u x g

dx




   (6.3) 

where ( )yiu x , i  and i  are the y-directional velocity, density and dynamic viscosity of the 

ith layer respectively (i = 1, 2 and 3) and g represents acceleration due to gravity.  

 

Boundary conditions: 

 1 1( 0)y wu x U   (6.4) 
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 3 2( )y x wu x L U   (6.5) 

where 1wU  and 2wU  are the velocities with which the left and the right walls are moving in 

the direction opposite to gravity. 0x   and xx L are the domain boundaries in the x-

direction. Domain is assumed to be periodic in the y-direction.  

 

Interface conditions: 

 1 1 2 1( ) ( )y yu x x u x x    (6.6) 

 
1 1

1 2
1 2

y y

x x x x

du du

dx dx
 

 

  (6.7) 

 2 2 3 2( ) ( )y yu x x u x x    (6.8) 

 
2 2

2 3
2 3

y y

x x x x

du du

dx dx
 

 

  (6.9) 

where 1x x  and 2x x are the locations of the fluid interfaces.  

 

 

Fig. 6.1: Poiseuille-Couette flow in a two-dimensional (2D) channel. Three layers of 

different fluids are denoted by 1, 2 and 3, which have densities 1 , 2 , 3  and dynamic 

viscosities 1 , 2 , 3 , respectively. The Poiseuille effect of flow is governed by the 

downward gravity g whose effect is equivalent to applying a constant pressure difference 

across y-boundaries and, the Couette effect is governed by two enclosing walls moving with 

the upward velocities Uw1 and Uw2. 
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Integrating equations (6.1), (6.2) and (6.3) gives: 

 21
1 11 12

1

( )
2y

g
u x x c x c




     (6.10) 

 22
2 21 22

2

( )
2y

g
u x x c x c




     (6.11) 

 23
3 31 32

3

( )
2y

g
u x x c x c




     (6.12) 

Now, we have 6 unknowns ( 11c , 12c , 21c , 22c , 31c  and 32c : two for each fluid layer) and 6 

equations (2 boundary conditions and 4 interface conditions).  

 

From equation (6.4),  

 12 1wc U  (6.13) 

From equation (6.5),  

 23
31 32 2

32x x w

g
c L c L U




    (6.14) 

From equation (6.7),  

  1 11 2 21 1 2 1c c gx       (6.15) 

From equation (6.9),  

  2 21 3 31 2 3 2c c gx       (6.16) 

From equation (6.6),  

 
2

1 2 1
11 1 12 21 1 22

1 2 2

gx
c x c c x c

 
 

 
     

 
 (6.17) 

From equation (6.8),  

 
2

32 2
21 2 22 31 2 32

2 3 2

gx
c x c c x c


 

 
     

 
 (6.18) 

We can determine our unknowns by solving the above equations as: 
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  

   
   
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    
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     

           
      
             

 (6.19) 

Above matrix equation (6.19) can easily be solved using Mathematica package for the 

unknowns.  

 

6.1.2 LBM simulations 

 

In LBM simulations, kinematic viscosities   of different fluids are related to their 

corresponding relaxation times   by: 

 1
1 1

1

RT
 


   (6.20) 

 2
2 2

2

RT
 


   (6.21) 

 3
3 3

3

RT
 


   (6.22) 

where RT  is a lattice constant and for the D2Q9 as well as the D3Q19 lattices, given by: 

 
1

3
RT   (6.23) 

With the above relations between the relaxation time and the dynamic viscosity of a given 

fluid in hand, one can compare the LBM simulation results (such as, the steady state velocity 

profile in a 2D channel) for the Poiseuille-Couette flow with the results analytically.  

 

6.1.3 Results obtained using the Lee-Fischer LB model 

 

 In Fig. 6.2, we compare the LBM results obtained using the Lee-Fischer model with 

the analytical solutions for a two-layer Poiseuille flow. Simulation parameters are given in 

the figure caption. Gravity is used as a buoyancy force in the simulations. A good agreement 

between the simulation results and the analytical solution is observed for the y-directional 

fluid velocity. Notice that it took about 2 million time-steps for the simulation to provide the 

steady state results on a LBM grid of 500 x 25 points. The grid requirement in the y-direction 
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is not very restrictive since periodicity is being used in that direction. However, one should 

use a large number of grid points in the direction perpendicular to the interface i.e. x-direction 

for these simulations. From numerical experiments, it is clear that, not surprisingly, the 

solution accuracy depends upon the number of grid points in the direction perpendicular to 

the interface. Obviously using a large number of grid points make the simulation take longer 

to reach the steady state in a LBM simulation, however, it leads to a more accurate steady 

state solution. 

 

In Fig. 6.3, the LBM results are compared against those obtained using the analytical 

solutions for a two-layer Couette flow problem. Simulation parameters are given in the figure 

caption. Gravity is assumed to be zero in the simulations. The driving force is provided by the 

left wall moving with an upward velocity of Uw = 0.1. Good agreement between the 

simulation results and the analytical solution is observed for the y-directional fluid velocity. 

500 x 25 grid points are used in the LB simulation. 

 

  

(a) A comparison of steady state LBM simulation results with the analytical solution. 

Fig. 6.2 (cont. on next page) 

 yu  

liquid vapor
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(b) Difference in LBM prediction of upward velocity compared to the exact solution. 

 

         

(c) LBM and exact density profiles differ due to diffuse interface in the LB simulation. 

 

Fig. 6.2: The Poiseuille flow in a two-dimensional channel of size 500 x 25. The channel is 

periodic in the y-direction. Layers of liquid and vapor phases are driven by a body force 

acting in the upward direction. No slip boundary condition is applied at the side walls in the 

x-direction. The simulation parameters are: 1l  , 0.01v  , body force = 10-5.  Kinematic 

viscosities of both the fluids are assumed to be equal. This is enforced by choosing the same 

relaxation parameter (equals to 0.5) for both the fluids. The LBM simulation (Lee-Fischer LB 

model) results for the steady state (at t = 2 x 106) density  and upward velocity yu are in 

very good agreement with the corresponding analytical solutions. 
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(a) A comparison of steady state LBM simulation results with the analytical solution.  

 

 

(b) Difference in LBM prediction of upward velocity compared to the exact solution. 

Fig. 6.3 (cont. on next page) 
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(c) LBM and exact density profiles differ due to diffuse interface in the LB simulation.  

 

Fig. 6.3: The Couette flow in a two-dimensional channel of size 500 x 25. The channel is 

periodic in the y-direction. Layers of liquid and vapor phases are driven by moving the left 

wall with a velocity Uw. No slip boundary condition is applied at the side walls in the x-

direction. The simulation parameters are: 1l  , 0.01v  , Uw = 0.1.  Kinematic viscosities 

of both the fluids are assumed to be equal. This is enforced by choosing the same relaxation 

parameter (equals to 0.5) for both the fluids.  

 

6.2  Simulation of the van der Waals coexistence curve  

  

 The van der Waals equation of state (vdW EOS) is as follows: 

 2

1

RT
P a

b

 


 


 (6.24) 

where a and b are the van der Waals constants.  

 

In order to explicitly show the dependence on molar volume V, we can rewrite the 

above equation by substituting 1 V  as: 

 
2

RT a
P

V b V
 


 (6.25) 

The above equation can be written in a cubic form as: 
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 3 2 0
RT a ab

V b V V
P P P

      
 

 (6.26) 

Being a cubic equation, the above equation has three real roots V1, V2 and V3 for temperatures 

below the critical point. However, at the critical point, these three roots merge into one value 

called Vc. The parameters at the critical point are denoted by, cT T , cP P  and cV V . 

Since the critical point is an inflection point, and the following two conditions can be used to 

determine the critical constants ( cP , cV  and cT ) in terms of van der Waals constants (a and b). 

 0
T

P

V





 (6.27) 

and 

 
2

2
0

T

P

V





 (6.28) 

 A simpler approach to identify the critical constants is to write equation (6.26) at the 

critical point as: 

  3
0cV V   (6.29) 

which essentially is: 

 3 2 2 33 3 0c c cV V V V V V     (6.30) 

 

Comparing coefficients in equations (6.26) and (6.30), we can write: 

 3 c
c

c

RT
V b

P
  ,        23 c

c

a
V

P
           and           3

c
c

ab
V

P
  (6.31) 

 From the above set of equations, the critical constants ( cP , cV  and cT ) can be evaluated as: 

 3cV b  (6.32) 

 
227c

a
P

b
  (6.33) 

 
8

27c

a
T

bR
  (6.34) 

From equation (6.32), the density at the critical point c can be written as: 

 
1

3c b
   (6.35) 

 
Substituting 23 c ca PV  and 3cb V  in equation(6.25), we get: 



 
 
 

113

 
   2

3

3
c

c c

PRT
P

V V V V
 


 (6.36) 

The above equation can be rearranged to give: 
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3

1 3
c c
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RT PVP

P V V V V

 
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 (6.37) 

 
Now introducing reduced quantities R cP P P , R cV V V and R cT T T , and 

substituting
3

8c c cPV RT , we get the vdW equation of state in the reduced quantities: 

 
 

  2

8 3 3

1 3
R

R
R R

T
P

V V
 


 (6.38) 

 

 A typical van der Waals pressure-volume isotherm (variation of pressure P with volume V) is 

plotted in Fig. 6.4 for different values of temperature.  

 
 

      
 
Fig. 6.4:   van der Waals pressure-volume isotherms at different temperatures.  
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Fig. 6.5:   Maxwell construction procedure.  A typical van der Waals pressure-volume 

isotherm at a temperature less than the critical temperature is shown. The horizontal line is 

drawn such that the areas of the shaded part above and below the line drawn are equal.  The 

pressure corresponding to the horizontal line is called the equilibrium pressure. Points where 

the ends of the horizontal line cross the P-V curve correspond to the liquid and vapor phases 

coexisting in equilibrium.  

 

By choosing the following vdW constants: 

 
9

8
a  ,     

1

3
b       and     1R   (6.39) 

the critical parameters are found as: 

 1c  ,     1cT       and    
3

8cP   (6.40) 

and the vdW EOS becomes: 

 
  2

9

1 3 8

T
P

V V
 


 (6.41) 

 

Values of a and b given above will be used in the LBM simulations to reproduce the 

densities of the coexisting phases of a fluid. Having identified the governing non-ideal 

equation of state of a fluid, we can use Maxwell construction procedure to determine the 

density values at which both the phases of a fluid are in equilibrium.  

A 

B 

C 

D 

L 

G 

Vvapor Vliquid 
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6.2.1 Saturated liquid and vapour densities from Maxwell construction 

 

A representation of the Maxwell equal-area construction procedure is shown in Fig. 

6.5. On the P-V curve, an equilibrium pressure is identified by drawing a horizontal line DA 

such that the areas of the loops (enclosed areas) both above and below the DA line are equal. 

Along this line, liquid and vapor phases are in equilibrium with each other. Point A represents 

the coexisting vapor while point D represents the coexisting liquid. Corresponding volumes 

of the phases can be found by drawing vertical lines down to the x-axis from points A and D, 

as shown in the figure. The line DL represents the change in the volume of the liquid phase 

when compressed (or, increasing pressure). The steepness of this line shows the relative 

incompressibility of the liquid phase. The segment BC represents an unstable region, in 

which   0
T

P V   , i.e. an increase of pressure results in an increase in volume which is 

unphysical and not observed for equilibrium systems.  

 
Table 6.1: Reduced variables for vdW EOS obtained via Maxwell construction. 
 

R
C

T
T

T
  

,
liq

liq R
C





  ,

vap
vap R

C





  

liq

vap

Ratio



  R
C

P
P

P
  

1 1 1 1 1 

0.98 1.28943 0.726691 1.77 0.921912 

0.95 1.46173 0.579015 2.52 0.811879 

0.90 1.65727 0.425742 3.89 0.646998 

0.85 1.80714 0.31973 5.65 0.504492 

0.80 1.93271 0.239667 8.06 0.383362 

0.75 2.04235 0.177209 11.53 0.282459 

0.70 2.14044 0.128022 16.72 0.200458 

0.65 2.2296 0.0894754 24.92 0.135841 

0.60 2.31156 0.0597781 38.67 0.0868693 

0.55 2.38755 0.03758 63.53 0.0515798 

0.50 2.45849 0.0217468 113.05 0.0277887 

0.45 2.5251 0.0112175 225.10 0.013134 

0.40 2.58794 0.00491089 526.98 0.00517452 

0.35 2.64749 0.00168746 1568.92 0.0015673 

0.30 2.70416 0.000399065 6776.24 0.000318817 
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For the vdW EOS in reduced quantities (equation (6.38)), the Maxwell equal-area 

construction procedure is applied to identify the equilibrium phase densities. Results are 

tabulated in Table 6.1.  A code has been written in Mathematica to calculate the coexisting 

densities and equilibrium pressure, details of which are provided in the Appendix F.  

Schemes for converting lattice units into physical units and vice-a-versa are discussed in the 

Appendix G. 

 
6.2.2 Spinodal decomposition 

 

 If the LBM system is initialized with the densities in the unstable region of the vdW 

equation of state, i.e. where   0
T

P V   , then the temporal evolution from that state results 

in phase-separation. Over time, the two phases comprising the system get segregated. This 

process is called the spinodal decomposition. Phase-separation process is governed by the 

free energy minimization principle and results in minimizing interface lengths (Basagaoglu et 

al., 2004).  

 

Snapshots of the spinodal decomposition process are shown in Fig. 6.6 along with the 

parameter values used for the simulation. As can be seen from Fig. 6.7, the mass of the 

individual phase remains almost constant. Interfaces merge and coalesce in order to minimize 

the interfacial length. Moreover, in order to reach a pressure and chemical equilibrium after 

starting from a random initial condition, system is seen to initially have a slight increase in 

mass, which later becomes constant, as shown in the Fig. 6.8. Spinodal decomposition 

process in 3D is shown in Fig. 6.9. Parameters for the simulations are given in the caption of 

the figure. 
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Fig. 6.6:   Two-dimensional spinodal decomposition process for a van der Waals fluid. 

Parameters for the LBM simulation are:  l = 1.28943, v = 0.726691, density ratio = 1.77 

(corresponds to TR = 0.98), periodic domain of size 200 x 200,  = 5 x 10-3, 0.5l v   , g 

= 0, 0.5 / 3 0.1666l v    , D = 3. At time t = 0, the 2D box is filled with a van der Waals 

fluid at critical density 1c   and spatially random but small density-perturbations are 

introduced. Blue color in the figure represents the vapor phase and red color represents the 

liquid phase. (AILB model, no scaling) 

        (a)         (b) 

        (c)         (d) 
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Fig. 6.7:   Variation of an equivalent 2D bubble radius with time. Since bubbly region has 

almost constant density, the graph above also represents a variation in total density of the 

vapor region with time. Total mass of the bubbles remains almost constant. Bubbles and 

droplets merge and condense during the free energy minimization procedure; however, the 

net volume occupied by a particular phase does not change significantly during the process. 

(AILB model, no scaling) 
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Fig. 6.8:   Variation of the total density of the simulation box with time. Note that during the 

initial period, system attempts to reach equilibrium (pressure-equilibrium) consistent with the 

specified system temperature, and during that process increases its net mass. (Increase is a 

very small percentage of the total.) Afterwards, total system mass (density) remains 

conserved. (AILB model, no scaling) 
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Fig. 6.9:   Three-dimensional spinodal decomposition process for a van der Waals fluid. 

Parameters for the LBM simulation are:  l = 1.46173, v = 0.5790, density ratio = 2.52 

(corresponds to TR = 0.95), periodic domain of size 60 x 60 x 60,  = 5 x 10-3, 0.5l v   , 

g = 0, 0.5 / 3 0.1666l v    , D = 3. At time t = 0, the 3D box is filled with a van der 

Waals fluid at critical density 1c   and spatially random small density perturbations are 

provided. Blue color in the figure represents vapor phase and red color represents liquid 

phase. (AILB model, no scaling) 
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6.2.3 Comparison of LBM simulations with densities obtained via Maxwell 

construction for the vdW EOS 

 

Several LB simulations have been performed at different system temperatures using 

the AILB model. Results are presented for a single bubble coexisting with the liquid phase, 

simulated in a zero-gravity periodic domain. Parameters for the simulations are: domain size 

= 200 x 200,  = 0.005, 0.5l v   , g = 0, 0.5 / 3 0.1666l v    , R = 50. The bubble is 

centered at (100,100). Results of the simulations are given in Table 6.2. As the temperature is 

reduced in the simulations, interface thickness needs to be increased, as shown in Fig. 6.10. 

 

Table 6.2: A comparison of LBM results with the theoretical densities obtained via Maxwell 
construction for the vdW EOS.  
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0.98 1.28943 0.726691 1.77 3 1.28803 0.72493 1.77 

0.90 1.65727 0.425742 3.89 3 1.65419 0.42561 3.89 

0.80 1.93271 0.239667 8.06 10 1.91809 0.23963 8.00 

0.70 2.14044 0.128022 16.72 10 2.12177 0.12801 16.58 

0.60 2.31156 0.0597781 38.67 10 2.29227 0.05977 38.35 

0.50 2.45849 0.0217468 113.05 12 2.43775 0.02174 112.13 

0.40 2.58794 0.00491089 526.98 12 2.56457 0.00491054 522.26 

0.30 2.70416 0.000399065 6776.24 12 2.67819 0.000398971 6712.74 

     

 

6.3   Simulation of a vapor bubble coexisting with liquid  

 

Since LBM solution scheme is a time-marching algorithm, it is of interest to see if and 

when the system reaches equilibrium for very simple two-phase problems. By equilibrium, 

we mean a steady state where all the numerical artifacts die out and the solution becomes 

independent of the initial condition. Note that there have been several attempts to explain and 

reduce the magnitude of spurious currents in the LB simulation of two-phases (Wagner, 

2002; Cristea & Sofonea, 2003; Shan, 2006).  
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Fig. 6.10: Interfacial thickness for a single bubble in a periodic domain. With decreasing 

temperatures, density ratio of the two phases is increased and a thicker interface is desired for 

numerical stabilization. Results for the density ratios and values of the thickness controlling 

parameter D for several LBM simulations are given in Table 6.2. (AILB model) 

 

One of the simplest numerical problems involving a two-dimensional (2D) circular 

bubble is the simulation of a single vapor bubble surrounded by liquid in gravity-free periodic 

box. A circular bubble can be initialized at the center of a 2D periodic box with the density in 

the interfacial region following the analytical result of planar interfaces in equilibrium. The 

evolution of such a vapor bubble is simulated in time using the Lee-Fischer LB model. In the 

absence of gravity, Lee-Fisher LB model is appropriate for such simulations. 

 

Simulation results at the time step t = 100,000 can be assumed to have reached the 

steady-state since the spurious currents surrounding the bubble have died down to the order 

of 10-6 or below. Time variation of the maximum spurious velocity in the domain is shown in 

Fig. 6.11. It is seen that, for low density ratios of the two phases, the maximum velocity dies 

out to machine precision (order of 10-14), however, for large density ratio a very small 

magnitude of spurious velocity does persist. Due to finite lattice directions and the isotropic 

derivatives in the LB model, these spurious currents form eight symmetric eddies, as shown 

in Fig. 6.12.  

  

 

       (a) TR = 0.90    (b) TR = 0.60   (c) TR = 0.30 
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Fig. 6.11:  Time evolution of maximum velocity for a single bubble coexisting with liquid in 

a periodic domain. The liquid density is fixed at 1.0. The vapor density is 0.1, 0.01 and 0.001 

for the three curves which can be identified by different liquid to vapor density ratios in the 

figure. Kinematic viscosities of the two phases are the same, with relaxation time for both the 

liquid and the vapor phase being equal to 0.5. (Lee-Fischer LB model) 

 

 

Fig. 6.12:  A single bubble (of vapor density 0.001) is initialized to be in coexistence with 

liquid (of density 1.0) in a periodic domain. At the steady state (at t = 100,000), “spurious” 

currents are present, though of a very small magnitude (of the order of 10-6), and organized in 

eight symmetric eddies surrounding the bubble. (Lee-Fischer LB model) 



 
 

124

 

 

Fig. 6.13:  Time evolution of the bubble radius. In the process of equilibration, radius of the 

bubble changes along with the densities of both the liquid as well as the vapor. At the steady 

state (at t = 100,000), the bubble radius is reduced from the initial radius of 20 lu to 19.4 lu. 

In the figure, the “staircase” variation of the radius is due to the applied cut-off density, 

which is the mean density at t = 0, to identify the bubble perimeter. The densities of the liquid 

and vapor change from their initial densities of 1.0 and 0.001 to 0.991208 and 0.00044, 

respectively. (Lee-Fischer LB model) 

 

Since the initialization of the two-phase system is done by choosing equilibrium 

densities for a planar interface, the phase densities of both the phases as well as the radius of 

the bubble vary during the initial period of the evolution in order to accommodate the 

curvature effects. Time variation of the radius of the bubble for a density ratio of 1000 is 

shown in Fig. 6.13. The steady state radius and liquid/vapor densities are compared with their 

initialization values in Table 6.3 for three different density ratios. The spatial variation of the 

centerline density at the steady state is plotted against the same at t = 0 in Fig. 6.14.  
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Fig. 6.14:  The centerline density (at y = 50) of the bubble at the steady state is compared 

with the specified initial density. (Lee-Fischer LB model) 

 

Table 6.3: Results for a single bubble simulation in a periodic domain 
  
Parameters  t = 0 t = 100,000 

Bubble radius 20 19.4 

(a) Liquid & vapor density 
{1.0, 0.1} 

Density ratio = 10 

{0.992094, 0.0925} 

Density ratio = 10.725 

(b) Liquid & vapor density 
{1.0, 0.01} 

Density ratio = 100 

{0.991303, 0.0348} 

Density ratio = 28.48 

(c) Liquid & vapor density 
{1.0, 0.001} 

Density ratio = 1000 

{0.991208, 0.00044} 

Density ratio = 2252.74 

 

In our LB simulations, a bubble (or droplet) is initialized using the analytical results 

for a planar interface. This form of initialization does not correspond to the equilibrium (or 

steady state) density profile due to the curvature effects. In order to quantify and analyze such 

curvature effects due to the radius R, several simulations are performed with increasing 

bubble radius R and keeping the size of the periodic computational domain fixed. It is 
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observed that the steady state liquid and vapor densities as well as the steady state radius R 

differ from their corresponding initial values. As can be seen from the Figs. 6.15-17, this 

difference gets reduced for larger bubble sizes in the same size computational box. Reason 

for this trend is that as we increase the radius R of a bubble, its curvature gets decreased and 

hence, the system gets closer to a system with planar interface, and therefore, the difference 

from the initial state gets reduced.  

 

 The results for the variation in steady state liquid and vapor densities as a function of 

steady state radius of bubble are shown in Fig. 6.16. As the bubble radius is increased, the 

densities asymptotically approach the corresponding planar interface values.  Results for the 

effect of increasing initial bubble radius on its steady-state shrinkage are shown in Fig. 6.17. 

It is observed that a bubble shrinks more if it has a lower initial radius.  

 

Note that, most of the lattice Boltzmann models for the two-phase simulation come 

equipped with an inherent ‘artificial’ surface tension in the model, which has to be 

determined from numerical experiments. Using the Lee-Fischer LB model, one can now 

eliminate the artificial surface tension of the LB model. Zero artificial surface tension can be 

tested by performing a LB simulation in which a bubble is initialized in a square shape with 

the surface tension parameter   equals to zero and the parameter D equal to 3. Simulation 

results show that in the absence of any surface tension, the bubble does not acquire a circular 

shape when evolved in time. The shape and size of the bubble does not change from its initial 

state even after more than 100,000 LB time steps.  This confirms the absence of any artificial 

surface tension in the Lee-Fischer LB model.   
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Fig. 6.15:  Effect of increasing vapor bubble size in a fixed periodic computational domain. 

The initial densities for liquid and vapor phases are chosen to be 1.0 and 0.1 respectively. 

Different panels show the steady state (at LBM t = 500000) shapes of vapor bubbles. The 

steady state liquid and vapor densities are listed below each panel. Also, the change from 

initial to steady-state radius of the bubble is shown for each case. Vapor and liquid phases are 

shown by blue and red color, respectively. (Lee-Fischer LB model) 

  

ρl = 0.993578  
ρv = 0.0938422
R = 20 → 17.6 

ρl = 0.996154 
ρv = 0.0962499
R = 30 → 29.1 

ρl = 0.997188
ρv = 0.0972401
R = 40 → 39.55 

ρl = 0.997751
ρv = 0.0977844
R = 50 → 49.75 

ρl = 0.998124  
ρv = 0.0981474
R = 60 →  59.8

ρl = 0.998391
ρv = 0.0984085
R = 70 → 69.85 
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Fig. 6.16:  Effect of increasing bubble radius R on steady state liquid and vapor densities. 

Notice that as R increases the change in steady state liquid/vapor densities from the 

corresponding initial densities (which are based on the planar interface results) decreases. 

(Lee-Fischer LB model) 

 

 

Fig. 6.17:  Effect of increasing radius on the shrinkage of bubble from its initial state. Radius 

of a bubble shrinks less for larger bubbles in a fixed computational domain. (Lee-Fischer LB 

model) 
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6.4   Simulation of coalescence of two bubbles/droplets  

 

 Coalescence of bubbles or droplets arises in many physical situations including 

boiling, rain, emulsions, ink-jets and many of the two-phase scenarios. It is particularly 

important in Boiling Water Reactors (BWR) where vapor bubbles generated near the 

cladding surface coalesce to form larger bubbles and complex flow regimes, and droplets in 

the vapor stream coalesce with other droplets or the liquid films on the cladding. These 

phenomena cannot be modeled explicitly by the sub-channel or even CFD codes currently 

used to analyze reactor thermodynamic phenomena. In this section, we show that the LBM 

can be used to capture the fundamental aspects of the coalescence phenomena.   

 

6.4.1 Experimental observations and results 

 

When two bubbles or drops come in contact, a connecting bridge of the corresponding 

phase (vapor for bubbles and liquid for drops) initially forms between the two (Li, 1996; 

Martula et al., 2003; Ribeiro & Mewes, 2006). Experimental images for coalescence of two 

water droplets are shown in Fig. 6.18. This bridge then gets rapidly pulled out by the surface 

tension force. The speed by which the bridge widens is dictated by the competition between 

the capillary forces driving the coalescence and the viscous forces slowing it down (Chen & 

Chung, 2002).  

 

       The competition between viscous and inertial forces that govern the coalescence 

dynamics can be characterized by the Reynolds number:  

 Re
br





 
 
   (6.42) 

where   is the density of the drops, br  is the radius of the connecting bridge (characteristic 

size),   is the surface tension and   is the dynamic viscosity.  Here, 



 is usually called the 

capillary speed (characteristic speed).   
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Fig. 6.18:  Coalescence of two water drops. Eight consecutive images taken at 11.2 frames 

per second at a resolution of 256 x 256 pixels. The image size is 5.12 mm by 5.12 mm and 

initial radius of each drop is 2 mm. (Aarts et al., 2005)  

 

It has been confirmed experimentally that the cross-over between viscous and inertial 

coalescence happens at Re 1 ; the viscous coalescence is observed for Re 1  and inertial 

coalescence for Re 1  (Aarts et al., 2005). Cross-over junction of Re 1  sets a characteristic 

time and length scale beyond which inertial dynamics becomes dominant. These cross-over 

scales are given by: 

 
2

l



  (6.43) 

 
3

2
t




  (6.44) 

For water, 15l nm � , 100t ns �  and for mercury, 0.4l nm �  (Eggers, 1997).  

 

          In the beginning of the coalescence process, the bridge radius br  is always small and 

so is the Reynolds number Re , irrespective of other fluid properties. At this stage, the 

viscous forces are dominant until growing br  takes over the cross-over length scale l . After 

that, for the rest of the dynamics, the merging process is dictated by the inertial forces.  

 

For a pure viscous coalescence of two droplets, the radius of liquid bridge increases 

linearly with time, however, it varies as a square root of time for inertial coalescence (Aarts et 
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al., 2005; Duchemin et al., 2003; Menchaca-Rocha et al., 2001). We can observe pure viscous 

coalescence in experiments by either significantly increasing the viscosity or significantly 

decreasing the surface tension of the drops. 

 

For merging of high viscosity drops (or drops with very low surface tension), viscous 

coalescence is the dominant process. To study the temporal evolution, the bridge radius br  

and the time t can be non-dimensionalized as: 

 
0

* brr
R

  (6.45) 

 *
t

t


  (6.46) 

where 0R  is the individual drop radius (which are assumed to be same for both the drops) at t 

= 0, and   is called the viscous time, given by: 

 0R





  (6.47) 

Experimental results in Fig. 6.19 show that plotting *r  with respect to *t  gives a straight 

line passing through the origin with a slope of  0.55 0.06  which means that the starting 

speed of the liquid bridge (or neck) is close to half the capillary speed (Aarts et al., 2005).  

 

For merging of low viscosity drops (e.g., water drops in ambient conditions), inertial 

coalescence is the dominant process. To study the temporal evolution, bridge radius br  and 

time t can be non-dimensionalized as: 

 
0

* brr
R

  (6.48) 

 *
i

t
t


  (6.49) 

where 0R  is the individual drop radius (which is assumed to be same for both the drops) at t = 

0, and i  is called the inertial time, given by: 

 
3
0l

i

R


  (6.50) 
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Fig. 6.19:  Variation of the non-dimensional bridge radius *r  with respect to the non-

dimensional time *t  for high viscosity fluids. Different symbols represent different viscosity 

values; squares: 100 mPa s, circles: 300 mPa s, triangles: 500 mPa s, plusses: 1 Pa s. The 

solid line has a slope of 0.55. (Aarts et al., 2005) 

 

Experimental results in Fig. 6.20 show that plotting *r  with respect to *t  gives a 

straight line passing through the origin with a slope of  1.09 0.08  (for water), 1.03 0.07  

(water-glycerol mixture) and  1.29 0.05  for methanol (Wu et al., 2004). We note that, in 

these experimental results, t = 0 is the moment when both the drops started touching each 

other physically. In simulations, one has to consider this when comparing results with the 

experimental data. 
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Fig. 6.20:  Variation of the non-dimensional bridge radius *r  with respect to the non-

dimensional time *t  for low viscosity fluids. Different symbols represent different viscosity 

values; Open squares: water, circles: 5 mPa s, triangles: 20 mPa s, filled squares: 50 mPa s. 

The solid line has a slope of 1.2. (Aarts et al., 2005)  

 

6.4.2 LBM simulations 

 

A 2D LBM simulation is performed using a D2Q9 lattice, in which, two stationary 

(liquid) droplets, each of density 1, are initialized such that they are in thermodynamic 

equilibrium with the vapor phase of density 0.0025 (see Fig. 6.23).  A periodic box of size 

600 x 1600 lu (lattice units) is chosen for the simulation. Both the droplets are assumed to be 

of the same radii equal to 200 lu and are separated by a minimum spacing of 4 lu. Surface 

tension of fluid is specified as 0.005 (in LBM units). LBM relaxation times for both the liquid 

and vapor are taken as 0.001 and 0.5, respectively. The interface thickness in LBM 

formulation is taken as equal to 4 lu initially. The kinematic viscosity   of the liquid and 

vapor are related to their corresponding relaxation times   by / 3  .  The temporal 

evolution of the above specified system of two droplets is shown in Fig. 6.21 (a) to (h). 
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Fig. 6.21:  LBM simulation of coalescence of two stationary (liquid) droplets each of radius 

200 lu (lattice units) and initially separated by 4 lu (see (a)).  Due to the intermolecular 

attraction, a liquid bridge is initially formed between the two drops (see (b)) which then 

widens due to the presence of surface tension (see (c) to (h)) and later minimizes its surface 

energy by minimizing the perimeter, for the above 2D simulation, of the liquid region to 

achieve the steady state in a shape of circular drop (not shown in figure). Simulations are 

performed in a box of size 600 x 1600 grid points. Other parameters of the simulations are: σ 

= 0.005, g = 0, 0.001l  , 0.5v  , 1.0l   and 0.0025v  .(Lee-Fischer LB model) 

    (e)   (f)         (g)   (h)  

    (a)   (b)         (c)   (d)  
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Fig. 6.22:  Variation of the non-dimensional bridge radius *r  with respect to the square-root 

of the non-dimensional inertial time *t  for low viscosity fluids. Good agreement between 

the LBM simulation results (pink squares connected by a line) and experimental data for 

water drops of various radii (taken from Wu et al., 2004) is observed. (Lee-Fischer LB 

model) 

 

Fig. 6.23:  Time evolution of the liquid bridge radius. The qualitative variation is in good 

agreement with the ones seen in experiments by Aarts et al. (2005) and Menchaca-Rocha et 

al. (2001). (Lee-Fischer LB model) 
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Fig. 6.24:  Coalescence of two stationary (vapor) bubbles of radii 200 lu which are initially 

separated by 4 lu distance equal to the equilibrium interface thickness parameter D (see (a)).  

Due to the intermolecular attractions, a vapor bridge is initially formed between the duo (see 

(b)) which then widens due to the presence of surface tension (see (c), (d) and (e)) and later 

minimizes its surface energy by minimizing the perimeter of the vapor region (see (f), (g) and 

(h)). Simulations are performed in a box of size 600 x 1600 grid points. Other parameters of 

the simulations are: σ = 0.005, g = 0, 0.5l v   , 1.0l   and 0.1v  .(Lee-Fischer LB 

model) 

    (e)   (f)         (g)   (h)  

    (a)   (b)         (c)   (d)  
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The radius of the liquid bridge br  varies proportional to t  and the corresponding 

variation in non-dimensional terms is shown in Fig. 6.22 for both, simulation results and 

experimental data for droplets of different radii. Reasonably good agreement between the two 

highlights the modeling capability and applicability of the LBM for such fundamental 

simulations.  It is intended that these validation studies will be followed by more complex 

LBM simulations of boiling phenomena relevant for BWRs in the future. In Fig. 6.23, 

evolution of the liquid bridge radius is plotted in the LBM time scale. The variation shows 

good qualitative agreement with the results reported in the literature. In Fig. 6.24, simulation 

results for the coalescence of two (vapor) bubbles are presented. Parameters for the 

simulations are provided in the caption of the figure. 

 

We note that 3-D calculations, which capture more accurately the geometry of the 

inter-phase surface and associated forces but require substantially larger computational 

resources, are expected to further improve the results of coalescence simulations. In Fig. 6.25, 

we present coalescence results for a 3D simulation on a coarse grid. Results are in good 

qualitative agreement; however, finer grid is necessary for better quantitative accuracy. 

 

 

 

Fig. 6.25:  Coalescence of two stationary bubbles of radii 15 lu which are initially separated 

by 3 lu distance equal to the equilibrium interface thickness parameter D. Simulations are 

performed in a periodic box of size 60 x 60 x 80 grid points. Other parameters for the 

simulation are: a = 9/8, b = 1/3, TR = 0.95, 1.46173l  , 0.579015v  , σ = 0.005, g = 0, 

0.5l v   . (AILB model with no scaling) 

 

 

 (a) t = 0          (b) t = 200       (c) t = 600          (d) t = 800       (e) t = 1800        (f) t = 4600 
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6.5   Simulation of the Rayleigh-Taylor instability 

 

When a fluid of higher density is placed on top of a fluid of lower density in the 

presence of gravity, the interface between the two fluids is inherently unstable. Any 

disturbance to the interface tends to grow leading to the penetration of both fluids into each 

other and result in mixing. This phenomenon is called the Rayleigh-Taylor instability (Sharp, 

1984; He et al., 1999a,b). 

 

As an additional test of the capabilities of the LBM, a two-dimensional simulation of 

Rayleigh-Taylor instability has been carried out using LBM. Computational domain is a two-

dimensional box of size 500 x 1000. No-slip boundaries are applied at the Top and the 

Bottom walls. Periodic boundaries are applied at the side boundaries. Kinematic viscosities of 

both the fluids are assumed to be same by choosing the relaxation times for both the fluids 

equal to 0.5. Following parameters are used in the simulation: surface tension σ = 10-3, 

gravity g =   10-5, heavier fluid density l = 1.0, lighter fluid density v = 0.5, channel width 

W = 500, relaxation times 0.5l v   , kinematic viscosities 0.16667l v RT     . 

 

Choosing the channel width W as the length scale and T = /W g  as the time scale, 

we can calculate the non-dimensional Reynolds number Re and the Atwood number A as 

follows: 

 Re WWg   

l v

l v

A
 
 





. 

For the simulation parameters, we have T = 7071, Re = 212 and A = 0.3333. 

 

At time t = 0, a single-mode y-directional perturbation is applied to the location of the 

interface. Initially, the perturbation grows with the heavier fluid displacing downwards in the 

form of a symmetrical blob. As time increases, the heavier fluid develops two side spikes and 

hits the Bottom wall. After hitting the Bottom wall, the heavier fluid again develops two 

more side spikes which ultimately gets stretched and forms very complicated dynamical 

patterns.   
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Fig. 6.26:  A two-dimensional simulation of the Rayleigh-Taylor instability. Evolution of the 

fluid interface from a single-mode perturbation at different times is shown. Red colored fluid 

represents the heavier fluid and the blue represents the lighter fluid. Parameters for the 

simulation are: σ = 0.001, g = 10-5, 0.5l v   , 1.0l   and 0.5v  . Time T is measured 

in the units of /W g . (Lee-Fischer LB model) 

 

6.6   Deformation and break-up of a bubble by shear forces 

 

 Flow-induced deformation of bubbles (or droplets) happens in many physical 

scenarios. The simplest problem to numerically study the bubble deformation is to place a 2D 

bubble at the center of a computational box and apply the shear forces by moving the 

enclosing walls of the box in the opposite directions. The box can be assumed to be periodic 

in one direction and surrounded by walls in the other. Due to the opposite movement of walls, 

the bubble at the center experiences opposite shear forces and deforms accordingly. Due to 

the continuing shear deformation, the bubble ultimately breaks up. The LBM simulation 

results are shown in the Fig. 6.27. Parameters for the simulation are listed in the caption of 

T = 0 T= 2.82 T = 5.65 T = 7.07 T = 8.48 

T = 9.89 T = 11.31 T= 12.73 T = 14.14 T = 15.55 



 
 

140

the figure. Qualitatively, the results are in good agreement with the experimental 

observations. Simulation results using the scaled AILB model in 2D and unscaled AILB 

model in 3D are shown in Figs. 6.28 and 6.29, respectively. 

 

 

 

Fig. 6.27: Two-dimensional simulation for a bubble deforming (leading to break-up) in shear 

flow. Parameters for the simulation are: D = 3, ρ
l
 = 1.0, ρv = 0.5, R = 50, σ = 10-3.  (Lee-

Fischer LB model) 

 

 

  t = 0                   t = 5,000              t = 10,000                 t = 20,000 

    (a)                   (b)                     (c)                      (d) 

t = 0 t = 10,000 t = 20,000 

t = 40,000 t = 55,000 t = 60,000 

UN= 0.1 

US= - 0.1 
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Fig. 6.28: Two-dimensional simulation for a bubble deforming (leading to coalescence at its 

edges due to periodicity of the domain) in shear flow. Parameters are: 200 x 200 periodic 

box, TR = 0.6, a = 9/8, b = 1/3, sat
l = 2.31156, sat

v = 0.0597781, 0.025  , D =3, fS = 0.05, 

UNorth = 0.05, USouth = - 0.05. (Scaled AILB model) 

 

 

 

Fig. 6.29: Three-dimensional simulation for a bubble deformation (leading to coalescence at 

its edges due to periodicity of the domain and forming of a cylinder shape) in shear flow. 

Simulations are performed in a periodic box of size 60 x 60 x 60 grid points. Other 

parameters for the simulation are: a = 9/8, b = 1/3, TR = 0.95, 1.46173l  , 0.579015v  , R 

t = 0 t = 1,000 

t = 2,600 t = 2,800

t = 3,400 t = 8,000 
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= 20 lu, σ = 0.005, g = 0, 0.5l v   , D = 3, UTop = 0.05, UBottom = - 0.05. (AILB model with 

no scaling) 

 

 

 

6.7   Simulation of wall contact angle(s) 

 

In this section, we show the ability of the proposed LB method to capture different 

contact angles in the vicinity of a wall surface. Usually the equilibrium contact angle for a 

given wall surface and a given fluid is known based on the experimental observations. 

Therefore in the LB simulations, the contact angle is pre-specified and assumed as a property 

of the adjoining wall.   

 

 

 

Fig. 6.30: Different equilibrium shapes and contact angles (from 0o to 180o) can be simulated 

for a bubble (or droplet) in the vicinity of a wall surface. The value of the equilibrium contact 

angle is assumed to be a property of the adjoining wall and therefore is pre-specified in the 

LB simulation. Other parameters for the simulation are: ρ
l
 = 1.0, ρv = 0.1, R = 50, σ = 10-3, g 

= 0. (Lee-Fischer LB model) 
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180o 
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143

 Equilibrium shapes of a bubble attached on a wall surface corresponding to different 

equilibrium contact angles are shown in Fig. 6.30 (Lee-Fischer LB model) and Fig. 6.31 

(Scaled AILB model). It can be seen that any equilibrium contact angle, ranging from 0o 

(complete wetting, i.e. wall has no affinity with the vapor) to 180o (complete non-wetting i.e. 

bubble tends to spread completely on the surface), can be simulated using the proposed LB 

method. Different equilibrium shapes in the figures are steady state results which evolved 

from the same initial condition.  

 

 

(a)     (b) 

 

(c)     (d) 

 

(e) 

Fig. 6.31: Using the AILB model different equilibrium shapes and contact angles (from 0o to 

180o) can be simulated for a bubble (or droplet) in the vicinity of a wall. Parameters for the 

simulation are: N-S walls, domain size = 400 x 120, reduced temperature TR = 0.6, a = 9/8, b 

= 1/3, sat
l = 2.31156, sat

v = 0.0597781, 0.025  , D = 3, scaling factor fS = 0.01, initial 

radius R = 30, and density contours are at time t = 20,000 lu. (a) 0w  , (b) 4w  , (c) 

2w  , (d) 3 4w  , (e) w  . (Scaled AILB model) 

 

At time t = 0, a vapor bubble (vapor is shown by blue color in the figures) is 

initialized in a two-dimensional computational box.  The vapor bubble is surrounded by a 

liquid (liquid is shown by red color in the figure). The interfacial region between the liquid 

and the vapor phase is initialized using a hyperbolic-tangent profile. [Note that a hyperbolic-

tangent profile in the interfacial region comes from the analytical result for a planar interface; 
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however, it can still be used for the purpose of defining a suitable initial condition when the 

interface is non-planar (circular or spherical).]  

 

 

Fig. 6.32: Time sequence of topological changes in the shape of a bubble in contact with a 

wall surface. The equilibrium contact angle at the wall is pre-specified to be equal to 180o in 

the LB simulation. Other parameters for the simulation are: ρ
l
 = 1.0, ρv = 0.1, R = 50,  σ = 

10-3, g = 0. (Lee-Fischer LB model) 

 

t = 0

t = 10,000

t = 20,000

t = 30,000

t = 70,000

t = 500,000
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Fig. 6.33: Time sequence of topological changes in the shape of a bubble in contact with a 

wall surface. The equilibrium contact angle at the wall is pre-specified to be equal to 90o in 

the LB simulation. Other parameters for the simulation are: ρ
l
 = 1.0, ρv = 0.1, R = 50,  σ = 

10-3, g = 0. (Lee-Fischer LB model) 

 

Time sequence of topological changes for the equilibrium contact angles equal to 180o 

and 90o are shown in the Figs. 6.32 and 6.33, respectively. The vapor bubble is initialized 

close to the wall surface and the initial separation between the mean density contour (located 

inside the interfacial region) and the wall surface is kept equal to the parameter value 

defining the interfacial thickness, i.e. D. [Note that one may not see any interaction between 

the bubble and the wall surface if the bubble is not placed near the surface. The critical 

separation distance (below which bubble interacts with the wall and above which it does not) 

is usually close to the value of D.]. Of course, one can always initialize a bubble to be on the 

t = 0

t = 10,000

t = 30,000

t = 50,000

t = 500,000
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wall surface and make any initial contact angle. The system will evolve in time such that the 

initial contact angle will approach the specified contact angle on the wall in the steady state. 

It is observed in the simulations that there is a rapid movement of contact line during the 

initial evolution period. Afterwards, the contact line settles down to reach its equilibrium 

shape by minimizing the free energy of the system and obtain the equilibrium contact angle 

in the steady state.  

 

Results for the simulations of prescribed contact angles in 3D are shown in Figs. 6.34 

and 6.35. 

 

 

 

Fig. 6.34: 3D simulation of topological changes in the shape of a bubble in contact with a 

wall surface with a prescribed 90o contact angle. Parameters for the simulation are: Size 60 x 

60 x 60 (figure shown on half scale),  = 0.005, R = 15, D = 3, TR = 0.95, density ratio = 

2.52, liq = 1.46173, vap = 0.579015, density contour of 1.0   is shown. (AILB model with 

no scaling).  

 

 

  (a)  t = 0    (b)  t = 400 

       (c)  t = 2000                  (d)  t = 8000 
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Fig. 6.35: 3D simulation of topological changes in the shape of a bubble in contact with a 

wall surface with a prescribed 180o contact angle. Parameters for the simulation are: Periodic 

domain, Size 60 x 60 x 60 (figure shown on half scale),  = 0.005, R = 15, D = 3, TR = 0.95, 

density ratio = 2.52, liq = 1.46173, vap = 0.579015, density contour of 1.0   is shown. 

(AILB model with no scaling) 

 

6.8  Bubble detachment from a wall surface 

 

To further test the capabilities of the scheme and code developed, a simulation of 

bubble detachment from a wall surface is carried out. The bubble is initialized at the Bottom 

wall which is specified to have an equilibrium contact angle equal to 45o. Due to the gravity 

and the density difference, the bubble experiences an upward buoyancy force which leads to 

its shape deformation and a lift-off from the wall surface. Once the bubble gets freed from the 

wall, its shape deforms again due to the balancing actions of the buoyancy and the viscous 

drag forces from the surrounding liquid. Ultimately, the bubble acquires a terminal shape and 

 (a)  t = 0    (b)  t = 800 

   (c)  t = 1,400    (d)  t = 4,000 
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a terminal rise velocity in the quiescent liquid. Results for the simulation are shown in Fig. 

6.36. Corresponding parameter values for the simulation are shown in the caption. 

 

 

 

Fig. 6.36: Bubble detachment from a wall surface due to buoyancy. Parameters for the 

simulation are: ρ
l
 = 1.0, ρv = 0.1, R = 50, σ = 10-3, g = 10-6 and θ

s
= π/4. Red colored fluid 

represents the liquid phase and the blue represents the vapor phase. (Lee-Fischer LB model) 

 

 For a slowly growing bubble on a heated surface, the critical size of the bubble at the 

instant of departure is a function of buoyancy force (which attempts to detach the bubble 

from the surface) and the surface tension force (which prevents the bubble from detachment). 

Fritz (1935) proposed a relationship between the departure diameter of the bubble dD and 

abovementioned forces, which is: 

 
 d w

l v

D
g


 




 (6.51) 

 where w  is the contact angle,   is the surface tension, g  is gravity and l , v are the 

densities of the liquid and vapor phases, respectively. Recently, Yoon et al. (2001) found the 

t = 0 t = 20,000 t = 50,000 t = 100,000 t = 160,000

t = 180,000 t = 210,000 t = 230,000 t = 300,000 t = 400,000
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same dependence in their numerical simulations which uses a N-S equation based mesh-free 

numerical method for two-phase flows.  

 

6.9 Single rising bubble in a quiescent liquid 

 

 Though the problem of a single rising bubble in stationary liquid has been studied for 

quite a while (Harmathy, 1960; Bugg et al., 1998; Sankaranarayanan et al., 1999; Chen et al., 

1999; Takada et al., 2001; Yang et al., 2002; Frank et al., 2006; Kurtoglu & Lin, 2006; Hua 

& Lou, 2007; Mukundakrishnan  et al., 2007; Li et al., 2008; Hysing et al., 2008; Gupta & 

Kumar, 2008), questions still remain about the flow field surrounding the bubble. There have 

been some experimental studies employing hydrogen tracer-bubble technique to observe the 

streamlines of the flow around a rising bubble. The experimental results for a single rising 

bubble are usually communicated through some non-dimensional parameters which 

characterize the rising bubble dynamics. They are: 

 

Reynolds number: 

 Re l e t

l

D U


  (6.52) 

where l  and  l  are the density and the dynamic viscosity of the continuous phase (liquid) 

respectively, and tU  is the terminal velocity of the rising bubble. eD  is the characteristic 

length scale which is equivalent to the effective bubble diameter and is calculated as follows: 

 Volume equivalent diameter (for experiments or in 3D simulations): 

 
1/3

6
e

V
D


   
 

 (6.53) 

 Area equivalent diameter (for a 2D bubble in simulations): 

 
4

e

A
D


  (6.54) 

where V and A are the volume and the area of the bubble (dispersed phase) respectively. 

 
 
Eotvos (Bond) number: 

 
2
eg D
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



  (6.55) 



 
 
 

150

where   is the surface tension of the two-phase system,   is the density difference 

between the continuous and  the dispersed phase, i.e.  l v   and g is the gravitational 

acceleration. 

 

Morton number: 

 
4

2 3
l

l

g
Mo

 
 


  (6.56) 

 

6.9.1 Experimental observations and results 

 

The terminal shape of a single rising bubble for a range of  non-dimensional numbers, 

defined above, were experimentally observed by Bhaga and Weber (1981). They 

photographed the rising bubble using a camera that moved upward at the same speed as the 

bubble. The flow field surrounding the bubble was visualized using hydrogen bubbles tracing 

technique.  Observed terminal shapes of bubble were classified into several categories 

(spherical, oblate ellipsoid, disk-like, spherical cap with or without wakes, skirted, etc.). 

Based on these observations, a shape-regime map was constructed in the space of the 

Reynolds, Eotvos and Morton numbers and is shown in Fig. 6.37. 

 

 From experiments of Bhaga and Weber, it was observed that small bubbles with low 

Reynolds and Eotvos numbers ( Re 1  and 1Eo  ) remain spherical in shape and rise 

steadily in a straight path. Larger bubbles with intermediate Reynolds and Eotvos numbers (

1 Re 100   and 1 100Eo  ) are deformed from their spherical shape and acquire oblate 

ellipsoid, disk-like, oblate ellipsoidal cap, skirt bubble, and spherical-cap type shapes during 

their terminal rise. Usually, the bubbles have indentation (or dimple) at their base due to the 

closed toroidal wake accompanying the bubble. Note that bubbles in this regime still maintain 

their straight rising path inside the liquid. For higher Reynolds and Eotvos numbers (

100 Re 1000   and 100 1000Eo  ), bubble shapes become toroidal and turbulent wakes 

develop behind the bubble that leads to unsteady bubble motion. In this case, the bubble may 

rise in a wobbly path, oscillate about its mean shape and may even break-up.  Several 

photographs of rising air bubble in aqueous sugar solutions for different Reynolds, Eotvos 

and Morton numbers are shown in Fig. 6.38.   
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Fig. 6.37: Experimentally observed shape regime map of a single rising bubble in a quiescent 

liquid. s, spherical; oe, oblate ellipsoid; oed, oblate ellipsoidal (disk-like and wobbling); oec, 

oblate ellipsoidal cap; scc, spherical cap with closed, steady wake; sco, spherical cap with 

open, unsteady wake; sks, skirted with smooth, steady skirt; skw, skirted with wavy, unsteady 

skirt. (Bhaga and Weber, 1981) 
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Fig. 6.38: Photographs of air bubbles from experiments conducted in aqueous sugar 

solutions. (Bhaga and Weber, 1981) 
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When a low-density fluid (gas) is inserted into a high-density fluid (liquid, l v  ), 

the lighter fluid forms a bubble and the density difference between the duo builds a hydraulic 

pressure difference across the bubble and consequently, an upward buoyancy force is exerted 

on the bubble. As a result, the bubble accelerates as long as the upward buoyancy force is 

greater than the slowing-down drag force caused by the surrounding liquid. At the same time, 

the shape of the bubble also gets deformed and the bubble attains a terminal velocity once the 

buoyancy force (characterized by the bubble size and the density difference between two 

fluids) and the drag force (characterized by the bubble shape and the fluid viscosity) get 

balanced.  

 

 Due to initial upward acceleration of the bubble, a liquid flow field surrounding the 

bubble sets in and leads to a higher pressure gradient at the bottom surface of the bubble. Due 

to which a liquid jet forms underneath the bottom surface of the bubble. This jet pushes the 

bottom surface of the bubble upwards and results in the formation of a dimpled bubble. The 

upper surface of the bubble is pushed outward due to this jet formation and results in a nosed 

shape. Of course, the magnitude of bubble’s deformation depends upon the density difference 

between the two fluids, the surface tension and viscosity of both fluids. Due to the 

deformation in bubble shape, the interface curvature is changed and consequently the surface 

tension force also changes. Since the surface tension force tends to minimize the deformation 

and tends to maintain the bubble in a spherical shape, there is competition between the 

surface tension force and the forces due to the jet formation. A high Reynolds number (large 

acceleration of bubble) and high Eotvos number (low surface tension) means a stronger liquid 

jet will form underneath the bubble and the deformation will be high. Ultimately, the relative 

strength between the liquid jet and the surface tension force determine whether the 

continuously deforming bottom surface approaches the upper surface of the bubble and 

results in a break-up of the bubble.    

  

6.9.2 Results obtained using the Lee-Fischer LB model 

 

In Fig. 6.39, results for the two-dimensional Lee-Fischer LB simulation of a single 

rising vapor bubble in a quiescent liquid are shown at different times. The computational 

domain consists of 200 x 1000 lattice points. No-slip LB boundary condition is specified on 

the Bottom and Top walls of the domain. Side boundaries are assumed to be periodic. A 
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bubble of radius R = 50 is initialized at t = 0 to be of circular shape (in 2D) and located 

slightly above (about two bubble diameters) the Bottom wall in order to reduce the possible 

wall-bubble interactions. Initially, both liquid and bubble are assumed to be stationary. Due 

to density difference between the vapor and the liquid phase and the presence of gravity, an 

upward buoyancy force acts on the lower-density bubble. The bubble moves upward and a 

liquid flow surrounding the bubble sets in due to the bubble’s movement. This deforms the 

shape of the bubble from circular to 2D-oblate ellipsoidal. The deformation in bubble’s shape 

is a natural consequence of the fluid flow fields (the wake below the lower surface and the 

recirculation on the sides). 

 

 

 

Fig. 6.39: The evolution of a single rising bubble in a quiescent liquid. Parameters for the 

simulation are: ρ
l
 = 1.0, ρv = 0.25, R = 50, σ = 5 x 10-3, g = 10-5. (Red:  liquid; blue: vapor.) 

(Lee-Fischer LB model) 

 

The rising bubble is assumed to acquire a terminal shape when its area-averaged (in 

2D) velocity attains a near-constant value, which for this simulation is found to be at nearly t 

= 70,000 time steps. The terminal shape and the streamlines of flow around the bubble are 

shown in Fig. 6.40 (a, b) in both the laboratory and the bubble’s reference frame. The 

terminal shape from the LB simulations agrees well with the generalized shape regime map 

by Bhaga and Weber (1981) for the non-dimensional parameters of the simulation. 

t = 10,000 t = 30,000 t = 50,000 t = 70,000 t = 90,000 t = 110,000
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In Fig. 6.41, the variation in bubble rising velocity with time is plotted. Both the area-

averaged velocity and the maximum fluid velocity in the bubble region are shown. It can be 

observed that bubble initially accelerates due to the dominance of the buoyancy force over 

the flow resistance drag. When the bubble approaches its terminal shape its rising velocity 

also approaches a near-constant value.  

 

 

Fig. 6.40: Terminal shape (oblate ellipsoidal) of a rising bubble and corresponding velocity 

stream lines after 70,000 LB time steps: (a) in the laboratory reference frame; and (b) in the 

bubble’s reference frame. Parameters for the simulation are: ρ
l
 = 1.0, ρv = 0.25, R = 50, σ = 5 

x 10-3, g = 10-5, 0.5l v   , Lx x Ly = 200 x 1000. (Red:  liquid; blue: vapor.)  Non-

dimensional parameters are: Reynolds number, Re = 12.0; Eotvos number, Eo = 15.0 and 

Morton number, Mo = 0.046. Terminal velocity Ut  is taken to be 0.02. The predicted shape 

agrees well with the corresponding shape in the regime map of Bhaga and Weber (1981). 

(Lee-Fischer LB model) 

 

        (a)         (b) 
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Fig. 6.41: Time variation of the upward velocity of a single vapor bubble in a quiescent 

liquid. Both the maximum velocity (maximum fluid velocity in the bubble region) as well as 

the area-averaged velocity of the bubble are shown in the figure. Simulation parameters are 

same as in Fig. 6.40. 

 

In order to study the effects of the location of the Top wall on the bubble’s rise and 

terminal velocity, several simulations have been performed with different sizes of the 

computational domain. Increasing the height of the domain from 1000 to 2000 grid points did 

not have significant effect on the bubble’s rise velocity indicating that the Top wall has a 

minimal effect on bubble’s motion when bubble is sufficiently far away from it. Upward 

velocity of the bubble is plotted as a function of time for three different domain sizes and two 

gravity values in Fig. 6.42(a, b). Other parameters of the simulation are listed below the 

figure. 

 

 Further simulations are performed to study the effect of increasing buoyancy force on 

the terminal shape and the rise velocity of the bubble. Results are presented in Fig. 6.43 

which are in good qualitative agreement with the experimental observations (see Fig. 6.44). 

An increase in gravity corresponds to increase in buoyancy force which leads to a higher 

initial acceleration and a higher terminal velocity. The deformation in the shape of the bubble 

is also larger for higher values of gravity which may ultimately lead to break-up of a bubble 

into two satellite bubbles as shown in Fig. 6.45.  
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Fig. 6.42: Effect of Top wall on rising velocity of a single vapor bubble in a quiescent liquid 

for three different domain sizes (Lx x Ly). Both the maximum velocity and the area-averaged 

velocity of the bubble are shown in the figure. Simulation parameters are same as in Fig. 

6.40. 

 

 

Fig. 6.43: Effect of increasing gravity (or buoyancy force) on rising velocity and terminal 

shape of a single vapor bubble in a quiescent liquid. Velocities are averaged over the area of 

the bubble. Simulation parameters are same as in Fig. 6.40. Application of gravity based 

Maximum velocity

Average velocity

Increasing Domain Size
200 x 1000, 1500, 2000

Maximum velocity

Average velocity

Increasing Domain Size
200 x 1000, 1500, 2000

        (a) g = 10-5  (b) g = 0.5 x 10-5 

g = 0.25 x 10-5

g = 0.5 x 10-5

g = 1.0 x 10-5

g = 1.5 x 10-5

Terminal shapes of 
bubble at t = 50,000

Eo = 22.5 
Mo = 0.0693 

Eo = 15.0 
Mo = 0.0462 

Eo = 7.5 
Mo = 0.0231 

Eo = 3.75 
Mo = 0.0115 

Re = 18

Re = 12

Re = 6

Re = 3

 
(d) 
 
 
 
 
(c) 
 
 
 
(b) 
 
 
(a) 



 
 
 

158

conversion between lattice and physical units (see Appendix G, section G.1.2) show that 

different gravity values in the figure correspond to different spatial grid sizes (in physical 

units), which leads to the following bubble diameters in the figure: (a) 2 mm, (b) 2.5 mm, (c) 

3.19 mm and (d) 3.65 mm. 

 

Fig. 6.44: Different bubble shapes shown in Fig. 6.43 are in good agreement with the 

experimental shape regime map of Bhaga and Weber (1981). 
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Fig. 6.45: Break up of a single rising vapor bubble in a quiescent liquid. Parameters for the 

simulation are: ρ
l
 = 1.0, ρv = 0.25, R = 50, σ = 5 x 10-3, g = 1.5 x 10-5, Lx x Ly = 600 x 1000. 

(Red:  liquid; blue: vapor.) (Lee-Fischer LB model) 

 

6.9.3 Results obtained using the AILB model 

 

 3D simulation results obtained using the AILB model are shown in Fig. 6.46 for a 

density ratio of 2.52. A coarse grid of 60 x 60 x 60 is used in the 3D simulation. Results are 

in good qualitative agreement with the experimental observations. Two dimensional results at 

a higher density ratio of ~ 40 are shown in Fig. 6.47. As expected, deformation increases as 

the value of gravity is increased in the simulations (from (a) to (e)).   

t = 2000 t = 10,000 t = 15,000 t = 20,000

t = 24,000 t = 28,000 t = 30,000 t = 32,000
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Fig. 6.46: 3D simulation of a single rising bubble. Parameters for the simulation are: Periodic 

domain, size 60 x 60 x 60 (figure shown on half scale),  = 0.005, R = 15, D = 3, TR = 0.95, 

density ratio = 2.52, liq = 1.46173, vap = 0.579015, density contour of 1  is shown. 

Result are shown at t = 0 and 10,000. (AILB model with no scaling).  
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 (a)    (b)        (c)           (d)  (e) 

 

Fig. 6.47: Simulation of a rising bubble in a quiescent liquid. Parameters for the simulation 

are:  North-South walls, 200 x 400, TR = 0.6, a = 9/8, b = 1/3, sat
l = 2.31156, sat

v = 

0.0597781, 0.5l  , 0.1v  , 0.025  , D =3, fS = 0.05, shapes at t = 20,000, R = 50; (a) g 

= 0.1 x 10-5 , (b) g = 0.2 x 10-5, (c) g = 0.5 x 10-5, (d) g = 0.75 x 10-5, (e) g = 1 x 10-5. (Scaled 

AILB model) 

 

6.10  Some guidelines to avoid shrinkage of the dispersed phase  

 

 Approach to equilibrium in the Gibbs-Duhem equation based LB models is driven by 

the gradient of chemical potential which is similar to the Cahn-Hillard diffusion in the phase-

field based methods. Since the LB model is governed by an overall optimization of free 

energy, it is susceptible to violate mass conservation of the two phases. For example, in a 

simulation of single bubble (or droplet), it is possible that the total free energy of the system 

is reduced if the bubble shrinks while simultaneously drifting the bulk densities away from 

their initialized values. In the shrinking process, the interfacial energy is reduced at the 

expense of an increase in the bulk energy which is permissible in the Cahn-Hillard 

framework. This, however, could result in violating mass conservation for the bubble. 

Theoretical analysis of the drops’ spontaneous shrinkage and its impact on mass conservation 

in phase-field simulations are discussed in Yue et al. (2007).  
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 Based on the observations from the numerical experiments and the phase-field two-

phase models, some guidelines to avoid significant mass loss from the LB system are 

suggested below: 

 In the simulations, use of a very large computational domain relative to the 

dispersed phase should be avoided. If the volume ratio (volume of 

computational box divided by the volume of bubble) is very high, the bubble 

is susceptible to significant shrinking. Bubbles below a certain critical radius 

may even disappear when evolved in time due to this reason. 

 The Cahn number should be small (i.e. Cn  < < 1). Cahn number is defined as 

0

D
Cn

r
 , where D is the interface thickness parameter and 0r  is the radius of a 

bubble (or drop). Usually, choosing a value of D below 3 results in deformed 

interfaces, therefore, one should avoid choosing a very small number for D. 

Therefore, a larger radius of the bubble should be chosen in order to have a 

small Cahn number. 
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Chapter 7 

Peng-Robinson Equation of State (P-R EOS) based two-
phase model 
       

A consistent LBM formulation for the simulation of a two-phase water-steam system 

is presented in this chapter. Results of initial model validation over a range of thermo-

dynamic conditions typical of Boiling Water Reactors (BWRs) are also shown. The interface 

between the two coexisting phases is captured from the dynamics of the model itself, i.e., no 

interface tracking is needed. An inter-particle potential model proposed by Zhang & Chen 

(2003) is used in this study to segregate the two coexisting phases. The Exact Difference 

Method (EDM) proposed by Kupershtokh (2004) is employed to account for body forces in 

the LBM algorithm. The developed model is based on the Peng-Robinson (P-R) non-ideal 

equation of state and can quantitatively approximate the phase-coexistence curve for water at 

different temperatures ranging from 125 to 325 oC. Consequently, coexisting phases with 

large density ratios (up to ~1000) may be simulated. Two-phase models in the 200-300 oC 

temperature range are of significant importance to nuclear engineers since most BWRs 

operate under similar thermodynamic conditions. Simulation of bubbles and droplets in a 

gravity-free environment of the corresponding coexisting phase until steady state is reached 

satisfies Laplace law at different temperatures and thus, yield the surface tension of the fluid. 

Comparing the surface tension thus calculated using the LBM to the corresponding 

experimental values for water, the LBM lattice unit (lu) can be scaled to the physical units. 

Using this approach, spatial scaling of the LBM emerges from the model itself and is not 

imposed externally.  

 

7.1  D2Q9 scheme with LBGK approximation 

 

The Lattice Boltzmann equation with streaming and single relaxation time collision 

operator (often known as BGK approximation, Bhatnagar et al. (1954)) is 

 
[ ( , ) ( , )]

( , ) ( , )
eq

a a
a a

f t f t
f t t t f t




     a

x x
x e x  (7.1) 
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where ( , )af tx  is the streaming part and 
[ ( , ) ( , )]eq

a af t f t


x x

 is the collision part. Here, af  is 

the density of particles in the “a” direction, and  eq
af  is the equilibrium distribution function. 

Moreover, x is position vector, ae  are velocity vectors, t is time, t  is the time step, and   is 

the relaxation time that captures the kinematic viscosity   of the fluid given by 
2 1

6

 
 . 

On a simple D2Q9 lattice (two-dimensional lattice with 8 velocity directions and 1 rest state), 

the equilibrium distribution function eq
af  is defined as, 

 
2 2

2 4 2

( )9 3
( , ) ( ( , ), ( , )) ( , ) 1 3

2 2
eq eq

a a af t f t t w t
c c c

 
 

     
 

a ae .u e .u u
x x u x x  (7.2) 

where the weights aw  are 4/9 for the rest particles (a = 0), 1/9 for a = 1, 2, 3, 4, and 1/36 for a 

= 5, 6, 7, 8, and √2c is the maximum attainable macroscopic speed on the lattice. 

Macroscopic variables such as the fluid density  and velocity u are obtained in terms of 

( , )af tx : 

 a
a

f   (7.3) 

 
1

a
a

f


 u  (7.4) 

 
7.2  Particle interaction potential and force  

 

In order to simulate two coexisting phases in equilibrium, an inter-particle potential 

model proposed by Zhang & Chen (2003) is implemented. A non-ideal equation of state 

( , )p T (such as the Peng-Robinson equation of state for water and steam) is incorporated in 

this model by expressing the particle interaction force as the spatial gradient of a scalar 

function ( , )U tx , 

 int ( , ) ( , )F t U t x x  (7.5) 

( , )U tx is chosen to satisfy  

 2( , ) ( ( , ), ( , )) ( , ) sU t p t T t t c  x x x x  (7.6) 

in order to yield global momentum conservation. Here 2
sc is the lattice sound speed and is 

equal to 2 3c  for the D2Q9 scheme. Now, by introducing interaction potential ( , )t x  as 



 
 
 

168

 2 ( , ) ( , )t U t x x  (7.7) 

the interaction force int ( , )F tx  can be written as  

 int ( , ) 2 ( , ) ( , )F t t t  x x x  (7.8) 

In the above equations, the interaction potential (and force) depends upon the spatial and 

temporal grid via local density and local temperature governed by the non-ideal equation of 

state. 

 

7.3  Numerical implementation on a D2Q9 lattice  

 

For a grid point (i, j) of a D2Q9 lattice, the equation (7.8) can be numerically evaluated 

by taking account of the interaction potentials at its nearest—(i+1, j), (i-1, j), (i, j+1), (i, j-

1)—and the next-nearest—(i+1, j+1), (i-1, j-1), (i+1, j-1), (i-1, j+1)—neighbor sites. This 

leads to a six point scheme for the potential gradient in the x- and y-directions, and may be 

written as, 

 
( , ) [ ( 1, ) ( 1, )]

[ ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)]

near

next near

i j w i j i j
x

w i j i j i j i j

  

   


   


           

 

  (7.9) 

 
( , ) [ ( , 1) ( , 1)]

[ ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)]

near

next near

i j w i j i j
y

w i j i j i j i j

  

   


   


           

 

  (7.10) 

 

To find the weighting coefficients nearw  and next nearw  , the potential gradient may be 

approximated by using the method of finite difference in the x-direction (assuming ∆x = ∆y = 

1), 

 

1
( , ) [ ( 1, ) ( 1, )]

2
1

[( ( 1, 1) ( 1, 1)) ( ( 1, 1) ( 1, 1))]
4

i j i j i j
x

i j i j i j i j

  

   


   



           
 (7.11) 

In the above equation, a second order central finite-difference scheme is used in the x-

direction to evaluate the potential gradient at (i, j) in terms of potential values at (i-1, j) and 

(i+1, j). These neighboring node potentials are further approximated by averaging the 
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corresponding potential values of the neighboring nodes in the y-direction. The equation for 

the potential gradient in the y-direction can also be written in a similar way. From equations 

(7.9) and (7.11), it is clear that the correct determination of the weighting coefficients 

requires, 

 
1

2
2near next nearw w    (7.12) 

and near next nearw w   since nearest neighbors should have more influence when compared to 

the next-nearest neighbors. For the LBM simulations reported here, wnear and wnext-near are 

chosen to be 
1

4
3near next nearw w   .  

 

 There is a need for some flexibility in predicting the same coexistence curve from the 

LBM simulations when using different equations of state. To provide this flexibility, a 

parameter ξ is inserted into the expression for the interaction force by approximating ( , )t x  

that appears in equation (7.8), for example, in the x-direction as 

 ( , ) ( ( 1, ) ( 1, )) (1 2 ) ( , )approx i j i j i j i j            (7.13) 

Depending upon the equation of state being modeled, a ξ value may be determined that leads 

to LBM results that accurately match the theoretical saturated densities for both the phases 

(Medvedev et al., 2007). Several numerical experiments of spinodal decomposition phase-

segregation are carried out at the same temperature using different ξ values in the 

simulations. A ξ value of -0.088 is  found to yield good agreement with the theoretical 

coexistence curve constructed using the Peng-Robinson (P-R) equation of state (described 

later in Sec. 7.5),  and  for which the resulted saturated densities are in close agreement with 

the theoretically obtained (using the Maxwell construction on the P-R equation of state) 

saturated densities of liquid and vapor phases. While performing numerical experiments it is 

observed that the parameter ξ only needs to be tuned once for any selected temperature in the 

coexistence region and then may be used for other temperatures as a constant to yield results 

in fairly good agreement with the theoretical ones. 

 

7.4  Simulation of the body forces 

 

In the LBM, the incorporation of body forces (particle interaction, gravitational or 

externally applied forces) usually affects the stability of multi-phase simulations. Numerical 
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instability is caused by the large changes in velocity in the interface region during each time 

step. In order to increase the stability of the LBM simulations, an Exact Difference Method 

(EDM) is proposed by Kupershtokh (2004) which combined with the general approximation 

of forcing functions results in reduced spurious currents at the interfaces and accurate 

reproduction of the phase-coexistence curve. In EDM, a term af  representing the change in 

the distribution function is added to the collision term to account for the change in 

momentum due to body forces. Thus, at the time step ( t t  ) 

 
[ ( , ) ( , )]

( , ) ( , )
eq

a a
a a a

f t f t
f t t t f t f




       a

x x
x e x  (7.14) 

where af  equals to the difference in the equilibrium distribution function evaluated at the 

constant density as the velocity is varied for each time-step t , and is given by, 

 ( , ) ( , )eq eq
a a af f f   u +Δu u  (7.15) 

Here, change in velocity Δu  is evaluated by computing the change in momentum Δp  at each 

time-step due to body forces, and is given by  

 
( , )t t

 


 
Δp F x

Δu  (7.16) 

 

7.5  Peng-Robinson (P-R) equation of state 

 

An equation of state (EOS) describes the relationship between temperature, pressure 

and density (volume) of a fluid. One such EOS is the Peng-Robinson (P-R) equation of state 

(McQuarrie & Simon (1998)). It is widely used for determining the state of various fluids 

categorized by different accentric factors. The accentric factor (ω) depends on the molecular 

structure of the fluid and is determined from its critical properties. Values of ω are tabulated 

in thermodynamic tables for various fluids. P-R EOS, which is a three-parameter (Tc, pc and 

ω, defined below) cubic equation, fairly accurately captures the saturated densities over most 

of the liquid-vapor equilibrium curve. For water and steam, the accentric factor ω = 0.3443 

leads to predicted values of saturated densities that agree very well with experimental data. 

This comparison is shown in Fig. 7.1. Although more sophisticated equations of state ― 

fitted to experimental data ― can be developed and implemented in the LBM model, the P-R 

EOS is chosen due to its flexibility in changing the type of fluid by varying the accentric 

factor ω. 
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Fig. 7.1: Comparison of the theoretical coexistence curve (Maxwell construction) and the 

corresponding LBM simulation for Peng-Robinson (P-R) equation of state. Saturated water 

and vapor densities from NIST tables are also shown. 

 

The P-R equation of state is: 

 
2

2 2

( )

1 1 2

RT a T
p

b b b

  
  

 
  

 (7.17) 

 

where 2 2( ) [1 (0.37464 1.54226 0.26992 )(1 )]cT T T        and 2 20.45724 c ca R T p , 

0.0778 c cb RT p . Here, Tc and pc represent critical temperature and critical pressure of the 

fluid under consideration, respectively. For water, Tc is 647.1 K and pc is 22.064 MPa. In 

simulations reported here, the constants a, b and R are set to be 2/49, 2/21 and 1, respectively. 

The critical properties of the LBM fluid are then evaluated in terms of these constants. Using 

the law of corresponding states (McQuarrie & Simon (1998)), the reduced properties of 

lattice fluid can then be converted to real fluid properties.   
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Table 7.1: Comparison of saturated properties of water obtained from NIST tables and LBM 
simulations at various temperatures. 

 

T / Tc 
T 

( oC ) 

ρsat, liquid 
( kg / m3 ) 

 

ρsat, vapor 
( kg / m3 ) 

 

psat 
( MPa ) 

 
  NIST LBM NIST LBM NIST LBM 
        

0.60 115.11 945.62 1117.36 1.02 1.46 0.18 0.18 
0.62 128.05 937.49 1093.01 1.37 1.98 0.25 0.26 
0.64 140.99 924.48 1077.74 2.07 2.66 0.38 0.35 
0.66 153.94 915.27 1061.57 2.67 3.60 0.50 0.49 
0.68 166.88 900.65 1044.51 3.83 4.85 0.73 0.68 
0.70 179.82 885.01 1026.35 5.37 6.49 1.05 0.92 
0.72 192.76 874.00 1007.07 6.65 8.61 1.31 1.24 
0.74 205.70 856.54 986.53 9.01 11.31 1.79 1.65 
0.76 218.65 837.84 964.56 12.03 14.70 2.40 2.16 
0.78 231.59 824.63 941.06 14.47 18.91 2.89 2.79 
0.80 244.53 803.53 915.81 18.90 24.11 3.77 3.56 
0.82 257.47 788.53 888.55 22.47 30.49 4.46 4.47 
0.84 270.41 764.36 859.00 28.96 38.28 5.66 5.56 
0.86 283.36 746.97 822.79 34.20 46.15 6.60 6.64 
0.88 296.30 718.53 793.43 43.82 60.33 8.21 8.36 
0.90 309.24 686.48 747.75 56.27 71.51 10.12 9.74 
0.92 322.18 662.45 707.96 66.74 92.21 11.56 11.86 
0.94 335.12 620.65 657.16 87.37 115.75 14.03 14.01 
0.96 348.07 586.88 591.89 106.31 144.42 15.90 16.28 
0.98 361.01 516.71 518.09 151.35 195.95 19.09 19.10 
0.99 367.48 481.53 445.58 177.15 234.35 20.27 20.55 

 

P-R EOS can be written as a cubic equation in V (replace  by 1/V in Eq. (17)) and 

thus, has three real roots for T < Tc. The benefit of the cubic nature is that it can describe both 

the gaseous and the liquid phases of a fluid. Plotting p vs. V at constant T and then applying 

the so-called Maxwell equal-area construction (McQuarrie & Simon (1998)), yields the 

phase-coexistence curve. Fig. 7.1 compares the theoretical coexistence curve with the one 

obtained using the LBM simulations. It can be seen that the LBM results agree well with the 

theoretical results. Moreover, in Fig. 7.1, the saturated water and vapor densities from NIST 

tables (Harvey et al. (2004)) are also plotted for comparison. It is observed that, when 

compared to the water-steam data at a selected temperature, P-R EOS slightly over-predicts 

the saturated vapor and water densities. However, the calculated density ratio of saturated 

liquid and vapor matches very well with the water-steam data at different temperatures as 

shown in Fig. 7.2. The saturated properties obtained from NIST data and LBM simulations 

are compared in Table 7.1 for different temperatures. 
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Fig. 7.2: Comparison of density ratios (saturated water / saturated vapor) obtained from 

Peng-Robinson EOS, NIST saturated property tables, and from corresponding LBM 

simulations at different temperatures. 

 

7.6  Kinematic viscosities of liquid and vapor phases 

 

In the LBM-BGK algorithm, the kinematic viscosity of a fluid  is explicitly 

determined by the prescribed single relaxation time   from the relationship, 
2 1

6

 
 . This 

functional form gives a unique value for the kinematic viscosity of the fluid irrespective of 

the multiple phases involved. However, in order to accurately model the flow dynamics of a 

single-component two-phase fluid, it is essential to have different kinematic viscosities for 

the two phases at any given temperature. This can be accomplished by expressing the 

relaxation time as a linear function of the local fluid density ( , )x y constrained by the 

saturation densities of both phases. Thus, ( )   can be written as (Angelopoulos et al. 

(1998)), 

 
( ) ( ) ( ) ( )

( ) L V V L L V

L V L V

           
   

    
        

 (7.18) 
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where ( )L  and ( )V   represent, at the given temperature, the relaxation times 

corresponding to the saturation density of the liquid and vapor phases, respectively. These 

phase-specific relaxation times are calculated by knowing the corresponding phase kinematic 

viscosities. 

 

7.7 Results and discussions 

 

The LBM simulations are performed for a xy-periodic domain of size 200 x 200 

lattice-units (lu). Initially, a water drop (or vapor bubble) of 20 x 20 lu radius is placed at the 

center of the domain surrounded by the corresponding coexisting phase (saturated vapor for 

liquid drop at the centre and saturated liquid for vapor bubble in the centre). The simulation 

is evolved in time till the steady state is reached. After 40,000 time-steps, the difference in 

simulated observed variables (velocities, densities etc.) for each consecutive 1000 time-steps 

reaches below 10-6 units. This is taken as the criterion for the steady-state. Fig. 7.3 shows the 

steady-state density variation along a line passing through the center of the drop (or bubble) 

for different temperatures. It is observed that the interface between the two phases becomes 

thicker as temperature increases for both the drop and the bubble.  

 

Using the Laplace law, the surface tension of water-steam system may be estimated. 

A series of bubbles of various sizes (20 to 50 lu radius) are simulated at different 

temperatures. After 40,000 time steps, the steady-state radii and inside/outside densities of 

the bubble are evaluated. Densities are then converted to the corresponding pressures using P-

R EOS and the difference between the inside and the outside pressure ∆P of the bubble is 

computed. According to the Laplace law, for a 2D droplet/bubble, the pressure difference is 

given by  

 P
R


   (7.19) 
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(a) 

 

(b) 

Fig. 7.3: The LBM simulation of a stationary saturated vapor bubble (saturated liquid drop) 

in equilibrium with its saturated liquid (saturated vapor) environment at different 

temperatures. A periodic domain of 200 x 200 grid size is initialized with one phase over a 

circular shape (of 20 grid-point radius) surrounded by another phase in the remaining space. 

A total of 40,000 time-steps are simulated to achieve steady state for both cases: (a) vapor 

bubble in liquid; and (b) liquid drop in vapor.  
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In Fig. 7.4, ∆P  is plotted against the inverse of the bubble radius (1/R) which yields 

straight lines of different slopes at different temperatures. As can be seen from Fig. 7.4, the 

spatial grid resolution of the LBM fluid is still in the lattice units (lu). Therefore, comparing 

the LBM surface tension (slope of ∆P vs. 1/R) with experimental surface tension of water 

may give an approximate measure of the LBM grid size in physical units. Thus, we can write 

 , ( . ) ( . )LBM lu WaterMPa lu f Pa m   (7.20) 

where ,LBM lu  is the LBM surface tension in MPa-lu units and Water  is the water surface 

tension in Pa-m units, for example, as given by NIST. Here,  f  is a scaling factor with 

appropriate units to relate both the surface tensions. From Eq. (20), the estimate for 1 lattice 

unit in LBM is obtained as:  

 61 10lu f m   (7.21) 

With  f  close to 1/3000, the LBM surface tension when converted to physical units well 

predicts the surface tension values in NIST tables for water for different temperatures ranging 

from 125 oC to 325 oC. For water, 1 lattice unit is hence estimated to be close to 0.33 nm. Fig. 

7.5 and Table 7.2 show comparison of the surface tensions of the LBM fluid and the values 

tabulated in NIST water property table (after the spatial scaling). Good agreement with 

macroscopic values suggests that the LBM approach is able to capture the surface tension 

phenomenon rather well at this scale. However, such a small lattice size is a concern for the 

computational viability of any realistic simulation and future work will refine the LBM 

model to allow capturing the correct surface tension while using a coarser lattice. 

 

 Next, some qualitative results for the two-phase test simulations performed in a zero-

gravity periodic domain of 200 x 200 lattice dimension are presented. The local densities are 

allowed to evolve according to the LBM algorithm at a specified temperature until the steady 

state is reached. Simulations are performed at a temperature of 250 oC at which the coexisting 

phase density ratio equals to ~40. This temperature and the corresponding density ratio are of 

prime interest to nuclear engineers since most of the Boiling Water Reactors (BWRs) operate 

at this mean temperature. In Fig. 7.6, different stages of a coalescence process of two vapor 

bubbles (2D) are shown. Initially, at t = 0, the bubbles are separated by a very thin liquid 

layer of 1 lu thickness. As time evolves, the bubbles start coalescing with each other to 
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minimize the net interfacial energy and finally, leading to a single large bubble of area 

approximately equal to the sum of the areas of initial bubbles.  

 

 

Fig. 7.4: Plot of pressure difference across bubble vs. inverse radius simulated at different 

temperatures. Results of the LBM simulations satisfy Laplace law and the slope of curves 

gives surface tension of the fluid at the corresponding temperature. Simulation domain is xy- 

periodic, and of 200 x 200 lattice unit size. 

 

 

Table 7.2: Comparison of surface tension of water obtained from NIST tables and LBM 
simulations at various temperatures. 

 
T 

( oC ) 
 σ 

( N / m ) 
 NIST LBM 
   

125 0.053955 0.059265
175 0.043302 0.045139
225 0.031903 0.030836
275 0.020163 0.018221
325 0.008774 0.006924
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Fig. 7.5: A comparison of surface tension of water (NIST data) with the surface tension 

values obtained from the LBM simulations, after lattice scaling.  

 

In Fig. 7.7, results of a simulation that models the interaction between a liquid film 

and a liquid droplet are shown. Initially, at t = 0, there exists a thin vapor film between the 

liquid film and the droplet. As time evolves, the drop experiences a cohesive force from the 

film and attaches to it. Now, the combined liquid chunk oscillates and reorganizes itself to 

minimize the net interfacial energy by minimizing its surface area. Finally, it leads to a thick 

liquid film of volume equal to the sum of the volumes of the liquid film and the droplet. In 

Figs. 7.8 and 7.9, results are shown for a thin liquid film of sinusoidal shape as it evolves 

after a sudden relaxation in the absence of any external force. By prescribing the sinusoidal 

shape as an initial condition, the system contains very high interfacial energy and tries to 

minimize it during relaxation to equilibrium over time. The evolution scenario is simulated 

for two different cases with equal film thickness and different amplitudes of the sinusoidal 

initial shape. In the case of a large amplitude sinusoidal wave, the film breaks up into several 

circular droplets (Fig. 7.8), while a relatively small amplitude wave damps out and evolves 

into a liquid film of uniform thickness (Fig. 7.9). 
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t = 0       t = 50 

 

t = 400       t = 5000 

 

Fig. 7.6: Snapshots showing coalescence of 2D vapor bubbles at T = 250 oC. Densities of 

bubble (shown in blue) and liquid (shown in red) are 23.093 and 896.214 kg/m3, respectively. 

Ratio of kinematic viscosity of vapor and liquid is 6.5. 
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t = 0     t = 400 

          

t = 1000    t = 2000 

 

t = 4000     t = 50,000 

 

Fig. 7.7: Snapshots showing coalescence of a thin liquid film with a liquid droplet at different 

LBM time-steps for T = 250 oC. Densities of vapor (shown in blue) and liquid drop or film 

(shown in red) are 23.093 and 896.214 kg/m3, respectively. Ratio of kinematic viscosity of 

vapor and liquid is 6.5. 
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t = 0     t = 60 

 

t = 80     t = 2000 

 

Fig. 7.8: Snapshots showing break-up of a sinusoidal thin liquid film of large wave amplitude 

into several circular droplets (T = 250 oC). Densities for vapor (shown in blue) and liquid 

(shown in red) are 23.093 and 896.214 kg/m3, respectively. Ratio of kinematic viscosity of 

vapor and liquid is 6.5. 
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t = 0     t = 60 

 

t = 300     t = 2000 

 

Fig. 7.9: Snapshots showing relaxation of a sinusoidal thin liquid film of small wave 

amplitude into a thick liquid film (T = 250 oC). Densities for vapor (shown in blue) and liquid 

(shown in red) are 23.093 and 896.214 kg/m3, respectively. Ratio of kinematic viscosity of 

vapor and liquid is 6.5. 

 

 7.8 Conclusions 

 

It is shown that a non-ideal equation of state, such as the Peng-Robinson EOS, may be 

coupled with the LBGK scheme with a single density-dependent relaxation time to capture 

the phase-coexistence curve for water and steam over a wide range of temperatures. 

Simulating a series of isothermal bubbles and droplets suspended in their coexisting phase 

predicts the surface tension of the LBM fluid. Comparing this to the experimental data for 

water provides a way to scale the spatial grid of the LBM in physical units so that the 
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predicted surface tension in physical units accurately matches the measured surface tension 

data.  
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Chapter 8 

Simulation of thermal effects 
       

In general, thermal lattice Boltzmann models fall into three categories, 1) the 

multispeed approach, 2) the passive-scalar approach and 3) the thermal energy distribution 

approach.  

 

Multispeed LB models are developed by extending corresponding isothermal models 

by using additional lattice speeds and higher-order velocity terms in the equilibrium 

distribution functions. Although this approach is based on a rigorous theoretical foundation, 

numerical simulations using the multispeed thermal model usually suffer from severe 

numerical instabilities, and applicability is often restricted to a narrow temperature range 

(Alexander et al., 1993; Chen et al., 1994; McNamara et al., 1995).  

 

In passive scalar based LB models, temperature dynamics is simulated by a separate 

distribution function which is independent of the density distribution function. Numerical 

stability is significantly enhanced in these models compared with the multispeed thermal 

models. However, the viscous heat dissipation and the compression work done by pressure 

are assumed to be negligible in these models. Shan (1997) used the passive scalar LB 

approach to simulate Rayleigh-Benard convection. Boussinesq approximation was used in the 

body force term. Palmer & Rector (2000) used a similar approach to solve the following flow 

problems: 1) flow with non-uniform conductivity between two plates, 2) entry length 

behavior for flow in a channel between two parallel plates, and 3) Rayleigh-Benard 

convection. Similarly, Guo et al. (2002) also used the passive scalar thermal LB model for the 

Boussinesq incompressible fluids. A porous plate problem with a temperature gradient and 

the problem of natural convection in a square cavity were solved. Kao & Yang (2007) and 

Kuznik (2007) also simulated the same Rayleigh-Benard convection problem using the 

passive scalar approach. 

 

The thermal energy distribution approach is derived by discretizing the continuous 

evolution Boltzmann equation for the internal energy distribution function and was first 

proposed by He et al. (1998). This scheme is similar to the passive scalar approach since  it 
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also uses a separate distribution function to simulate the temperature evolution. Its numerical 

stability is also comparable with the passive scalar approach. Moreover, this scheme also 

incorporates the viscous heat dissipation and the compression work done by pressure. Peng et 

al. (2003a,b) simplified the thermal LB model by He et al. (1998) to neglect the compression 

work done by pressure and the viscous heat dissipation, and simulated the natural convection 

in 2D and 3D cavities. Dixit & Babu (2006) used the thermal energy distribution LB 

approach to simulate natural convection in a square cavity for high Rayleigh numbers (up to 

1010). They implemented the LB model on to non-uniform grids in order to achieve high 

Rayleigh numbers. No turbulence model was invoked in their simulations. Niu et al. (2007) 

used the thermal energy distribution LB approach to simulate micro-thermal flows by relating 

the thermal relaxation time to the Knudsen number of the fluid. Results for the thermal 

Couette flow problem in a micro-channel was compared against those from the direct 

simulation Monte Carlo (DSMC) and the molecular dynamics (MD) approaches. 

 

 Recently, thermal models based on LBM were extended for some novel applications. 

Mishra et al. (2005) and Mishra & Roy (2007) developed the LB method to solve the energy 

equation of a two-dimensional transient conduction-radiation problem. Results of the LBM 

simulations were compared against results obtained using the finite volume method (FVM) . 

Wang et al. (2007) applied the thermal LB approach to simulate the fluid-solid conjugate heat 

transfer. Hazi & Markus (2008) extended the LBM to model heat transfer in supercritical 

fluids. Their model was able to qualitatively capture the piston effect which is responsible for 

increased heat transfer in a microgravity environment. Onset of convection in a Rayleigh-

Benard configuration was also studied.  

 

Note that most of the thermal LB models proposed in the past are for the single phase 

fluids and do not really account for the thermodynamic phase change in a system. In Yuan & 

Schaefer (2006a,b), Shan-Chen (S-C) model is coupled with a passive-scalar based 

temperature solver. The nature of the thermal and momentum coupling was essentially 

through the body force term similar to the approach popularly being used in the simulation of 

Rayleigh-Benard convection problems. Chatterjee & Chakraborty (2007) developed an 

enthalpy-source based LBM to simulate conduction dominated phase change (such as, 

melting of ice) problem. Very recently, Dong et al. (2009) introduced a phase-change 
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coupling between the LB momentum and energy solvers. The problem of growth and 

deformation of a rising bubble in a superheated liquid was simulated. 

 

In this chapter, a simplified thermal LB model, based on the thermal energy 

distribution approach, is presented. The simplifications are made after neglecting the viscous 

heat dissipation and the work done by pressure in the original thermal energy distribution 

model. Details of the model are presented in the next section, followed by a discussion of the 

boundary conditions, and then results for some two-phase thermal problems. 

 

8.1  Thermal energy distribution LB model 

 

The governing equation for the thermal energy distribution function is (Peng et al., 

2003a): 

 ( , ) ( , ) ( , ) ( , )eq
a a a a a

T

t
h t t t h t h t h t


         r v r r r  (8.1) 

where T  is the thermal relaxation time and is related to the thermal diffusivity T by: 

 22 1

3 2T T c t     
 

 (8.2) 

[In the above, c is taken to be unity for a uniform square lattice (D2Q9 or D3Q19), i.e. for 

x t   . For numerical stability reasons, T  is usually chosen well above 0.5.] 

 

The above governing equation may be split into the following two equations: 

 Collision 

 *( , ) ( , ) ( , ) ( , )eq
a a a a

T

t
h t h t h t h t


     r r r r  (8.3) 

 Streaming 

 *( , ) ( , )a a ah t t t h t    r v r  (8.4) 

 

For a D2Q9 lattice, which is defined as:  

     
    

a

0, 0

v cos 1 2 ,sin 1 2 , 1, 2,3, 4

2 cos 5 2 4 ,sin 5 2 4 , 5,6,7,8

a

a a c a

a a c a

 

   

 
          


           

 (8.5) 
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the equilibrium distribution function eq
ah is given by (He et al., 1998): 

 
2

0 2

2

3
eqh

c


 

u
 (8.6) 

 
2 2

1,2,3,4 2 2 2

. .
1.5 1.5 4.5 1.5

9
eq u

h
c c c

        
   

a av u v u
 (8.7) 

 
2 2

5,6,7,8 2 2 2

. .
3 6 4.5 1.5

36
eq u

h
c c c

        
   

a av u v u
 (8.8) 

where / 2DRT   and D is the number of dimensions.  

 

 Note that the above equilibrium distribution function eq
ah , given by equations (8.6) to 

(8.8), simulates the convection-diffusion equation for the energy transport. In order to only 

simulate the heat conduction effects, which might be dominant in several physical scenarios, 

following distribution function can be used: 

 0 0eqh   (8.9) 

 1,2,3,4 6
eqh


  (8.10) 

 5,6,7,8 12
eqh


  (8.11) 

 
Macroscopic temperature  ,T tr can be calculated from the following equation: 

    
1

, ( , )
, a

a

t h t
t




 r r
r

 (8.12) 

Note that a Chapman-Enskog expansion of equation (8.1) with the equilibrium distribution 

function given by equations (8.6) to (8.8) leads to the following energy equation (Peng et al., 

2003a): 

      2.t T       u  (8.13) 

 

8.2 Density dependent thermal diffusivities:  T   

 

In the thermal LB algorithm described earlier, the thermal diffusivity of a fluid T  is 

explicitly determined by the prescribed thermal relaxation time T  using equation (8.2). This 
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functional form gives a unique value for the thermal diffusivity of the fluid irrespective of the 

multiple phases involved. However, in order to accurately model the temperature dynamics of 

a single-component two-phase fluid, it is essential to have different thermal diffusivities for 

the two phases and incorporation of density-dependent variation in the interfacial regions.  

 

This task may be accomplished by expressing the thermal relaxation time T  as a 

linear function of the local fluid density ( , )x y constrained by the saturation densities of both 

phases. Thus, ( )T   can be written as 

 
( ) ( ) ( ) ( )

( ) T L T V T V L T L V
T

L V L V

           
   

    
        

 (8.14) 

where ( )T L  and ( )T V   represent, at the given temperature, the relaxation times 

corresponding to the saturation density of the liquid and vapor phases, respectively. These 

phase-specific thermal relaxation times are calculated using the thermal diffusivities of the 

corresponding phases.  

 

8.3  Wall Temperature BCs (Dirichlet type) 

 

For a D2Q9 lattice, unknown thermal distribution functions at the walls can be 

approximated to be the equilibrium distribution functions with an additional counter-slip 

thermal energy '  determined to satisfy the fixed temperature constraint at the walls 

(D’Orazio and Succi, 2003, 2004; D’Orazio et al., 2004).  

 

 

Fig. 8.1:  Unknown distribution functions at the South boundary for application of a thermal 

boundary condition. 
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For example, if the temperature is specified on a South boundary which is moving 

with a velocity  w wx wyU U , U  then the unknowns 2h , 5h and 6h can be assumed to be the 

equivalent equilibrium distribution functions with a total thermal energy  'S   , i.e. 

 
 

2 2

'

9
Sh

  
   (8.15) 

where 

 
2 2

2 2 2 2

. .
1.5 1.5 4.5 1.5 wU

c c c
      
 

a w a wv U v U
 (8.16) 

and  

 
 

5 5

'

36
Sh

  
   (8.17) 

 
 

6 6

'

36
Sh

  
   (8.18) 

where 

 

 
2 2

5 6 2 2 2

. .
3 6 4.5 1.5

u

c c c
        
 

a av u v u
 (8.19) 

Now, applying the conservation equation (8.12), we have: 

    0 1 3 4 7 8 2 5 6S a
a

h h h h h h h h h h            (8.20) 

Using equations (8.15) to (8.19), we can write the above equation as: 

 
     

2 5 6

' ' '

9 36 36
S S S

S knownG
        


  

        (8.21) 

where 

 0 1 3 4 7 8knownG h h h h h h       (8.22) 

Now,  '   can be determined as: 

    
 2 5 6

36
'

4
S known

S

G
  


 

  
 (8.23) 

Now, using equations (8.15), (8.17) and (8.18), the unknown distribution functions at the 

South boundary can be determined. 
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Using the same approach described above, the temperature boundary conditions at the 

other wall orientations (i.e., the North, West and East walls) can be developed. 

 

8.4  Wall Heat Flux BCs (Neumann type) 

 

In order to apply the wall heat flux boundary conditions, one can use an approach 

similar to the one described in the previous section. The specified heat flux condition 

(Neumann boundary condition) at the wall has to be first converted into a Dirichlet-type 

condition. This can be done by using the conventional second-order finite difference 

approximation for the temperature gradient and identifying the unknown temperature value at 

the wall. Once the corresponding temperature at the wall is known, the scheme described in 

previous section to determine the unknowns can be used. 

 

For example, if the heat flux on the South boundary is specified, then the temperature 

on the South boundary can be obtained from: 

      ,2 ,3 ,1

( ,1)

4 3

2
i i i

S

i

T T TT
q

y y

 
 

 
 (8.24) 

which is: 

    ,2 ,34 2

3

Si i

S

T T q y
T

  
  (8.25) 

Once ST  is known, we can use the relations in the previous section to determine the unknown 

distribution functions. Here, Sq  denotes the outward heat flux (heat being taken away from 

the boundary), a positive increase in which yields a subsequent decrease in ST . 

 

Using the same approach described above, the heat flux boundary conditions can be 

developed and applied for the other orientations as well (North, West and East walls). 

 

8.5  Simulation of evaporation and condensation 

 

For bubbles in liquid scenarios, one can qualitatively simulate evaporation and 

condensation effects by making the interfacial (i.e. for vap liq    ) rest-state particle 
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distribution function depend upon the local superheat (or local sub-cooling) and the local 

temperature gradient.  

 

Evaporation effects: 

 
For a D2Q9 lattice, the rest-state particle distribution functions at the interfacial lattice 

nodes  int int,x y  are modified by the following equation at each time step in the post-collision 

stage to simulate evaporation effects: 

        
9

9 int int 9 int int int int int int
1

, , , ,new old
Super a ax ay

a

g x y g x y T w T x v t y v t T x y


           

  (8.26) 

where  int int,x y are the lattice coordinates that fall into the interfacial regions (i.e.  

vap liq    ) , ag  is the particle distribution function, satT  is the saturation temperature of 

the fluid,  int int, sat
SuperT T x y T    is the local superheat and   is the temperature 

sensitivity coefficient quantifying the evaporation of the LB fluid.  

 

Note that the above modification is only applied for the lattice directions, for which 

the following three conditions are met: 

    int int int int, ,ax ayx v t y v t x y       (8.27) 

    int int int int, ,ax ayT x v t y v t T x y      (8.28) 

  int int, 0sat
SuperT T x y T     (8.29) 

 
Above conditions ensure that only the liquid particles (surrounding the vapor region) which 

have higher temperature than the interfacial lattice points transfer their energy to the bubble 

and yield evaporation.  

 

Condensation effects: 

 
For a D2Q9 lattice, the rest-state particle distribution functions at the interfacial lattice 

nodes  int int,x y  are modified by the following equation at each time step in the post-collision 

stage to simulate condensation effects: 
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        
9

9 int int 9 int int int int int int
1

, , , ,new old
Sub a ax ay

a

g x y g x y T w T x y T x v t y v t


           

  (8.30) 

where  int int,x y are the lattice coordinates that fall into the interfacial regions (i.e.  

vap liq    ) , ag  is the particle distribution function, satT  is the saturation temperature of 

the fluid,  int int,sat
SubT T T x y    is the local sub-cooling and   is the temperature 

sensitivity coefficient quantifying the condensation of the LB fluid.  

 

Note that, as in the evaporation case, the above modification is only applied for the 

lattice directions, for which the following three conditions are met:  

    int int int int, ,ax ayx v t y v t x y       (8.31) 

    int int int int, ,ax ayT x v t y v t T x y      (8.32) 

  int int, 0sat
SubT T T x y     (8.33) 

 
Above conditions ensure that only the liquid particles (surrounding the vapor region) which 

have lower temperature than the interfacial lattice points are allowed to accept energy and 

mass transfer (condensation) from the bubble interface. 

 

By changing the rest-state particle distribution functions to simulate evaporation or 

condensation effects, we are essentially changing the pressure in the interfacial region of the 

bubble. Depending upon the local superheat/sub-cooling and temperature gradient from the 

neighboring lattice points, the change in interfacial pressure leads to the growth or shrinkage 

of the bubble. 

 

8.6  Results and discussions 

 

 In Fig. 8.2, results for the growth of a bubble due to thermal diffusion from the 

superheated walls are presented. A single bubble is initialized in the two-dimensional domain 

using the simulation parameters listed in the figure. At time t = 0, the bubble is at its saturated 

temperature and the walls surrounding the domain are at a higher temperature. As time is 

increased, higher temperature from the walls causes heat to diffuse to the bubble and 
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contributes in its temporal growth as shown in Fig. 8.2 (b). Note that the heat conduction is 

assumed to be the dominant mode of heat transfer in the simulations. Resulting growth of the 

bubble is in close agreement with the theoretical model of R t  (Zuber, 1961). 

 

In Fig. 8.3, simulation results for the shrinkage, due to condensation, of a single 

bubble in a sub-cooled domain are presented. The bubble is initially at the saturated 

temperature and as time proceeds, gets condensed due to the temperature diffusion from the 

sub-cooled walls. Here again, the conduction is assumed to be the dominant mode of heat 

transfer. 

 

In Fig. 8.4, simulation results for the temperature coupled AILB model are presented 

for the growth and rise of a vapor bubble away from a heated wall. Temperature boundary 

conditions are applied at the South (TS = 1.0) and the North wall (TN = 0.8) of the 2D 

domain, whereas both the fluid phases are initialized at a reduced temperature equal to 0.95. 

The vapor bubble is initialized at t = 0 away from the South wall which grows due to 

evaporation at the interface because of the higher temperature in the interfacial region. The 

bubble rises because of the buoyancy forces, resulting in the shape deformation of the bubble. 

Parameters for the simulation are listed in the figures. Since the temperature in the vicinity of 

the North wall is less than the bulk fluid temperature, condensation happens at the interface 

when bubble approaches the North wall. Bubble disappears due to condensation as time 

increases.  
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                 t = 0                          t = 10,000                   t = 20,000                    t = 30,000 

 

(a) Growth of a two-dimensional bubble 

 

 

(b) Temporal variation in the radius of the growing bubble 

 

Fig. 8.2: Two-dimensional simulation of the growth of a single vapor bubble due to 

temperature dynamics. The initial temperature of the bulk fluid at t = 0 equals to TR = 0.95 

and all the walls of the domain are kept at a higher temperature (Twall = 1.0). Heat conduction 

is assumed to be the dominant mode of heat transfer in the system. Simulations are performed 

in a 2D box of size 200 x 200 grid points. Other parameters for the simulation are: N-S-E-W 

walls, a = 9/8, b = 1/3, TR = 0.95, 1.46173l  , 0.579015v  , R = 25 lu, σ = 0.005, g = 0, 

0.5l v   , D = 3,  = 50, ,T l =1.2, ,T v = 0.6. (AILB model with no scaling) 
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             t = 0                          t = 5,000                     t = 10,000                    t = 30,000 

 

(a) Shrinkage of a two-dimensional bubble 

 

 

(b) Temporal variation in the radius of the shrinking bubble 

 

Fig. 8.3: Two-dimensional simulation of the shrinking of a single vapor bubble due to 

condensation. The initial temperature of the bulk fluid at t = 0 equals to TR = 0.95 and all the 

walls of the domain are kept at a lower temperature (Twall = 0.9). Heat conduction is assumed 

to be the dominant mode of heat transfer in the system. Simulations are performed in a 2D 

box of size 200 x 200 grid points. Other parameters for the simulation are: N-S-E-W walls, a 

= 9/8, b = 1/3, TR = 0.95, 1.46173l  , 0.579015v  , R = 25 lu, σ = 0.005, g = 0, 

0.5l v   , D = 3,  = 50, ,T l =1.2, ,T v = 0.6. (AILB model with no scaling) 
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Fig. 8.4: Two-dimensional simulation of a single rising vapor bubble with heat transfer. 

South wall of the domain is at higher temperature (TS = 1.0) and the North wall of the domain 

is at a lower temperature (TN = 0.8) than the bulk fluid temperature which is at a temperature 

equal to TR = 0.95. Simulations are performed in a 2D box of size 240 x 480 grid points. 

Other parameters for the simulation are: N-S walls, E-W periodic, a = 9/8, b = 1/3, TR = 0.95,

1.46173l  , 0.579015v  , R = 30 lu, σ = 0.005, g = 5 x 10-6, 0.5l v   , D = 3,  = 10, 

,T l =1, ,T v = 0.6. (AILB model with no scaling) 
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Chapter 9 

Summary and Conclusions  
       

In the boiling water reactors (BWRs), the two-phase interactions play an important 

role in the design, operation and accident scenarios. Sub-cooled boiling and critical heat flux 

play an important role even in pressurized water reactors (PWRs). The two fluid phases and 

their different flow patterns make the fluid dynamics highly complex and therefore, the 

predictive modeling of such a system becomes very difficult. In order to circumvent these 

modeling difficulties, experiments have been performed in the past which employ relatively 

simpler geometries, and empirical results from those studies have been extrapolated to the 

reactor system conditions. Of course, most of the empirical correlations may not be 

applicable in a wide range of system conditions and the reactor system analyses codes 

employing those correlations suffer from a large error margin in their predictions.  

 

One should note that the physics of two-phase (or two-fluid) interactions, with or 

without temperature variations, is still not very clear and simple experiments (such as, rising 

of a single air (or vapor) bubble or two bubble coalescence) are still being performed and 

analyzed. Therefore, the path to successfully model the two-phase dynamics would be to 

develop a simulation tool which can simulate, in the order of increasing complexity, single 

bubble/droplet coexisting with the inverse phase, interaction of two phases with system walls 

having different contact angles, suitable boundary conditions to simulate moving walls and 

walls at rest effects, existence of a body force such as gravity, topological shape changes due 

to fluid dynamics which may result in break-up or coalescence of a fluid phase, and multiple 

bubbles/droplets interactions for different system conditions. Once all these scenarios have 

been independently tested and validated with experiments and/or other available data in the 

literature, one will have more faith and of course, more understanding of the physics being 

simulated when simulations are performed for more complicated scenarios. All of the above 

mentioned scenarios should be first validated for isothermal cases and then, with the 

inclusion of temperature effects. More experimental studies would become a necessity in 

order to fine tune the models. In this report, a successful attempt has been made to address 

the above mentioned goals in the order described in the framework of the lattice Boltzmann 

(LB) model. Obviously, additional refinements to the model and validation studies are still 



 
 
 

201

needed to develop a predictive capability to model two-phase flow dynamics in, say, BWRs.   

 

The lattice Boltzmann method (LBM) is an alternative numerical scheme for solving 

incompressible fluid flow behavior. The scheme has its roots in kinetic theory and can serve 

as an efficient solver for incompressible low-Re number flows in complex geometries ― 

including porous media and for the simulation of complex fluids.  Since the incompressibility 

criterion is not strictly enforced in the LB models, therefore it belongs to a class of pseudo-

compressible solvers of fluid dynamics. The LB method inherited most of the advantages 

from the LGCA and eliminated excessive statistical noise, lattice artifacts such as the lack of 

Galilean invariance and the dependence of pressure on the fluid velocity. The advantage with 

LBM lies in the fact that the computational algorithm is simple and efficient; and there is no 

need to solve the Poisson equation for pressure distribution. Moreover, the LB method allows 

the implementation of phenomenological terms and rules on the kinetic motion of fictive 

particle-clusters and thereby, allows the more complex macroscopic dynamics to evolve. 

 

An artificial interface lattice Boltzmann (AILB) model is proposed in this report for 

the analysis of liquid-vapor two phase flows. Interface between the two fluid phases in the 

AILB model stretches across several grid points. Because of the diffuse interface description 

and the lattice Boltzmann evolution algorithm, moving interfaces are handled with a relative 

ease compared with the corresponding sharp-interface approaches. In the AILB algorithm, 

there is no need to explicitly track the phase-interface (i.e. to explicitly follow the position of 

the interfaces) or apply any interface conditions (such as, the continuity of shear stress etc.). 

Therefore, the overall computational complexity is reduced. The AILB model is able to 

handle singular topological events (such as, break-up and coalescence) without any need to 

introduce separate models for them. Simulation of such events in existing two-phase models 

usually requires special treatment in the solution algorithm. For example, in several other 

models, a threshold on the thickness has to be prescribed in order to remove any thinning 

neck (or film) during the simulation of a break-up event. In the AILB model, no artificial 

trigger is needed to simulate bubble/drop breakup and coalescence. Due to the free-energy 

minimization principal of the AILB model, it could easily be extended to incorporate 

complex fluids (such as, polymers, colloids etc.). Several other interaction models could be 

included in composing the net free energy of the system, which upon minimization could 

produce desired interfacial events.  



 
 
 

202

 

The artificial interface LB model (AILB) model, proposed in this report, differs from 

the earlier proposed Lee-Fischer LB model in the fact that the AILB model employs two 

equations of states, one for the bulk phase and another for the interfacial region. Artificial 

equation of state in the interfacial region allows one to have some control over the interfacial 

thickness, and use of which also facilitates stable numerical simulations for the fluid phases 

with large density and viscosity ratios. Use of the van der Waals or other similar non-ideal 

equation of state in the bulk phases allows one to maintain the near-constant bulk densities in 

the presence of body forces (such as gravity). Lee-Fischer LB model fails to maintain the 

near-constant density ratio in the presence of gravity, and the time-dependent increase in the 

density ratio of bulk phases in a Lee-Fischer LB simulation makes them numerically 

unstable. The cause of artificial enhancement of the numerical compressibility effects due to 

gravity in a Lee-Fischer LB simulation was identified in this report and the above artifact is 

cured in the AILB model.   

 

Based on the Cahn’s wetting theory, a model is proposed in the context of AILB 

framework to simulate different contact angles at the wall sites. Moreover, boundary 

conditions for the AILB model are developed in both the two as well as three dimensional 

domains. Several simulation scenarios are presented and the results are compared with some 

of the existing data. For example, in an isothermal flow, rising of a vapor bubble in viscous 

liquid is numerically simulated and the results are compared with the empirical data. 

Numerical results are provided for the shape and terminal speed of the rising bubble which 

shows good agreement with the experimental observations. Similarly, LB simulation of 

coalescence of two droplets provided good agreement with experimental studies. 

 

A thermal model, based on the two-distribution function approach, is also developed 

in the AILB model framework. The temperature effects are simulated by using a separate 

particle distribution function. A phenomenological model is also developed for the simulation 

of evaporation and condensation effects on a bubble. Additional work is needed to develop a 

physical model to couple the momentum and thermal energy dynamics of the LB system to 

effectively simulate boiling and other thermal effects. 

It is hoped that these developments will lead to a better understanding of multi-phase 

interactions, formation of various flow patterns and thus, will pave the way towards a 
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simulation-based capability to predict critical heat flux (CHF) and flow regime maps with an 

ultimate goal to improve reactor safety calculations.  
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Appendix A 

Lattice Boltzmann equation to Navier-Stokes (N-S) 
equations 
 

To derive the hydrodynamic equations from the generic LBE, the truncated Taylor 

series expansion and the Chapman-Enskog two-time scale separation techniques is adopted. 

Resulting partial differential equations in the two separated time scales describe advective 

‘fast’ dynamics in the faster time scale, and diffusive ‘slow’ dynamics in the slower time 

scale. These two different PDEs are combined to yield the compressible Navier-Stokes (N-S) 

equation, from which, the incompressible N-S equation is obtained in the limit of constant 

density. The derivation given below is based on material from Wolf-Gladrow (2000). 

 

A.1  Multi-scale expansion 

   

Hydrodynamic description of the collective motion of particles requires defining a 

hydrodynamic limit, in which, the smallest macroscopic length scale L  is large compared to 

the characteristic microscopic length scale (for example, lattice mean free path   which is of 

the order of the distance between two neighboring lattice points), i.e. L � . Ratio of   and 

L  can be defined as the lattice Knudsen number,  : 

 1
L

  �  (A.1) 

which, being a small number ( 1 � ), can be used as an expansion parameter in the 

Chapman-Enskog multi-scale expansion procedure.  

 

Using   as an expansion parameter, the discrete velocity distribution function ( , )af tr  

can be expanded about the discrete equilibrium distribution function ( , )eq
af tr  [This is valid 

since the system is assumed to be in a near-equilibrium state.]: 

 (1) 2 (2) ...eq
a a a af f f f      (A.2) 

where the lattice Knudsen number ( ) acts as a small parameter used to distinguish relative 

orders of magnitude of the terms in the series. . In addition, to satisfy the conservation of 

collision invariants, we must have: 
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 ( ) ( ) 0 1k k
a a a

a a

f f k    v  (A.3) 

Since smallest macroscopic length scale L  is of order 1 �  (see equation (A.1)), we 

can introduce a new space variable 1r , which in the units of 1  , is defined by: 

 
1


  1

r
r r  (A.4) 

Based on experience with real fluids, we may anticipate two time-scales (fast and 

slow) for any macroscopic inhomogeniety to propagate in a fluid. For example, (i) non-linear 

and pressure effects advect ‘fast’ and are represented by first-order space derivatives in a 

partial differential equation. Therefore, such an inhomogeniety will traverse a length scale of 

order 1   in a time scale of order 1  , i.e.  t x  � . However, (ii) linear diffusive effects 

(e.g., viscous damping of sound waves) occur ‘slowly’ and are represented by second-order 

space derivatives in a partial differential equation. Therefore, such an inhomogeniety will 

traverse a length scale of order 1   in a time scale of order 2   i.e.  2t x  � . Relying on 

these physical arguments, we may assume two new time scales, fast 1t  and slow 2t , in the 

units of 1  and 2  , respectively: 

 1 21 2
and

t t
t t

  � �  (A.5) 

Note that 1t  and 2t are not independent variables. They are related to t  by:  

 1 2
1 2t t t     (A.6) 

As a consequence, the time derivative t  becomes: 

 
1 2

2
t t t       (A.7) 

and the space derivative r
 becomes: 

 
1

,r r 
    (A.8) 

where 
1r 

 is the derivative with respect to the  -component of 1r . 

 

The acceleration F  (external force per unit mass) implicitly involves double 

derivative with respect to the time variable, i.e.  

  t t t    F v r  (A.9) 

From the above equation, F  is clearly of order  2  and higher, and can be expanded as: 
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 2 (2) 3 (3) ...   F F F  (A.10) 

 

A.2  Forcing term in the LB equation 

 

The forcing term (F.T.) in the LB equation is: 

 
 .

F.T. eq
a aB t f t

RT


   aF v u

 (A.11) 

Substituting eq
af  yields: 

 
  2 2. . .1

F.T. 1
2 2a

u
w t

RT RT RT RT

         
   

a a a
F v u v u v u

 (A.12) 

Neglecting terms of order  2u or higher, we get: 

   .
F.T. .aw

t
RT RT

      
a

a a

v u
F v u v  (A.13) 

 

A.3  Order separation of LBE 

 

The LB equation with the forcing term can now be written as:   

  

 

 

( , ) ( , ) ( , ) ( , )

.
.

eq
a a a a a

a

t
f t t t f t f t f t

w
t

RT RT


         

      
a

a a

r v r r r

v u
F v u v

 (A.14) 

 
The left hand side of the above equation ( , )a af t t t   r v  can be expanded in a Taylor 

series about r  and t  up to terms of second order  2t  to give:  

  2

2

( , ) ( , )

2
2

a a a a r a t a

a a r r a a r t a t a

f t t t f t t v f t f

t
v v f v f f



  



  

         

          

r v r

 (A.15) 

Substituting the above equation into equation (A.14) yields: 

 

 

2 1
2

2
.

.

eq
a r a t a a a r r a a r t a t a a a

a

t
v f f v v f v f f f f

w

RT RT

       
                 

     
a

a a

v u
F v u v

 (A.16) 
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Now, substituting new space and time-derivatives (from equations (A.7) and (A.8) ) and the 

forcing term (from equation (A.10)) in the above equation gives: 

 
   

  

   

1 1

1 1 2 1 1 2

1 2 1 2

2

2 2

2 2

2 (2) 3 (3)

1
2

2

.
... .

a a r r a

eq
a r a t a t a a r t a t a a a

t t t a t a

a

v v f
t

v f f f v f f f f

f f

w

RT RT

 

 

 

 



     


   

 

  
                   
        

       
a

a a

v u
F F v u v

 

  (A.17) 

 

In the above equation, neglecting higher order terms (i.e. terms of the order  3 or higher) 

gives: 

 
 

 

1 1 2 1 1 1 1 1

2 2

2 (2)

1
2

2

.
.

eq
a r t a t a a r r a r t t a a a

a

t
v f v v v f f f

w

RT RT

       




                       
     

a
a a

v u
F v u v

 

  (A.18) 

 
Now, substituting expansion of af  in the above equation and neglecting terms of the order 

 3 or higher, we get: 

 
   

 

1 1 1 1 2 1 1 1 1 1

2 (1) 2 2

(1) 2 (2) 2 (2)

2
2

.1
.

eq eq
a r t a a r t a t a a r r a r t t a

a
a a

t
v f v f v v v f

w
f f

RT RT

          

  


                     
          

a
a a

v u
F v u v

 

  (A.19) 

 
Note that, the above equation, which is up to second order accurate with respect to  , 

is sufficient to recover the Navier-Stokes equation in the incompressible limit. However, 

retaining higher order terms (order  3 or higher) in the above equation leads to the 

recovery of Burnett and Super-Burnett equations. 

 

After substituting the corresponding scale expansions, the LBE equation can be 

written in an order separated form as: 
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 (1) 2 (2) 0a aE E    (A.20) 

where 

  
1 1

(1) (1)1
0eq

a a r t a aE v f f
 

       (A.21) 

and 

 

 

2 1 1 1 1 1

1 1

(2) 2

(1) (2) (2)

2
2

1
0

eq
a t a a r r a r t t a

a r t a a a

t
E v v v f

v f f B

  



  

 

              

      
 (A.22) 

where  

  (2) (2) .
.a

a

w
B

RT RT
     

a
a a

v u
F v u v  (A.23) 

 
A.4  First order macrodynamics: (1)

aE  

 

A.4.1  Mass conservation: (1) 0a
a

E   

 

Zeroth lattice-velocity moment of (1)
aE  is: 

 
1 1

(1) (1)1
0eq eq

a a r a t a a
a a a a

E v f f f
 

          (A.24) 

which is: 

 
1 1

(1)

0

1
0eq eq

t a r a a a
a a a

u

f v f f






 


 

     
         

     
  
  

 (A.25) 

and, can be written in a more simplified form as: 

  
1 1

0t r u
       (A.26) 

 

A.4.2  Momentum conservation: (1) 0a a
a

v E   

 

First lattice-velocity moment of (1)
aE  is: 

 
1 1

(1) (1)1
0eq eq

a a a a r a a t a a a
a a a a

v E v v f v f v f
    

          (A.27) 

which is: 
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1 1

(0)

(1)

0

1
0eq eq

t a a r a a a a a
a a a

u

v f v v f v f


 

   




 

              
     
  
  

 (A.28) 

and, can be written in a more simplified form as: 

  
1 1

(0) 0t ru
          (A.29) 

where 

 (0) eq
a a a

a

v v f     (A.30) 

is called the zeroth-order momentum flux tensor, which represents flux of the  -component 

of momentum transported along the  -axis. 

 

A.4.3  Evaluation of (0)
  

 

Second lattice-velocity moment of the discrete equilibrium distribution function eq
af  

can be evaluated as: 

 

 

 
   2

(0)
2

2

0

1
1

22

2

2

a
a a a a a

a

a a a a a a a a a a a a
a a a

RT RT

a a a
a

RT

v u u u
v v w v u v u

RT RTRT

u u u
v v w v v v w v v v v w

RT RT

u u
v v w

RT

p

      



   
      

  
        

        

 
 

 



    



 
     

 
 

  







  



  



u u 

 (A.31) 

where p RT  is the pressure of an ideal gas and hence, represents the inherent ideal gas 

equation of state of the isothermal LBE.  

 

For a two-dimensional (xy) system: 

 
(0) (0) 2

(0)
(0) (0) 2
xx xy x x y

yx yy x y y

u u u
p

u u u  
    

             
 (A.32) 

 

At this point, since we have defined pressure in our system, we can calculate the 

sound speed sc  as: 
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 s

dp
c RT

d
   (A.33) 

 
A.5  Second order macrodynamics: (2)

aE  

 

A.5.1  Mass conservation: (2) 0a
a

E   

 

Zeroth lattice-velocity moment of (2)
aE is: 

 
  1 1

1 1 2

1 1 1

(1)

2
(2)

(2) (2)

2 2 0
1

a a r r eq
a r t a t a

a r t t
a

a a

a a

v vt
v f f

vE

f B

 





 






             
           

 
  
 

   (A.34) 

or, 

 

(0)

2 1 1 1 1

1 1 1

2 (1) (1) (2)

0 0 0

2

1

2

u

eq eq eq
t a r r a a a r t a a

a a a

eq
t a r a a t a a

a a a a

t
f v v f t v f

t
f v f f f

 

  





  







 

   

     
           

     
                     

       

  

   

  

   

(2)

0

0a
a

B



 


 (A.35) 

The above equation reduces to: 

  
2 1 1 1 1 1

(0) 2 0
2 2t r r r t t

t t
t u

      
             (A.36) 

The third term on the right hand side of the above equation is equivalent to:  

  
1 1 1 1

(0)
r t r rt u t
               (A.37) 

Furthermore, the last term on the right hand side of equation (A.36) is equivalent to:  

     
1 1 1 1 1 1 1

2 (0)

2 2 2 2t t t t r r r

t t t t
u

                        (A.38) 

Now, substituting these terms in equation (A.36), we get: 

 
2 1 1 1 1 1 1

(0) (0) (0)

0

0
2 2t r r r r r r

t t
t

       



                
 

 (A.39) 

which essentially is: 

 
2

0t    (A.40) 



 
 
 

211

 

A.5.2  Momentum conservation: (2) 0a a
a

v E   

 

First lattice-velocity moment of (2)
aE is: 

 
  1 1

1 1 2

1 1 1

(1)

2
(2)

(2) (2)

2 2 0
1

a a r r eq
a r t a t a

a r t t
a a a

a a

a a

v vt
v f f

vv E v

f B

 





 




 



             
           

 
  
 

   (A.41) 

or, 

 

(0)

2 1 1 1 1 1

1 1

2

(1) (1) (2)

0

2 2

1

u u

eq eq eq eq
t a a r r a a a a t r a a a t a a

a a a a

r a a a t a a a a
a a a

t t
v f v v v f t v v f v f

v v f v f v f

 

  



 

      

   

 



                        
       
          
    

   

  

  


( 2)

(2)

0

0a a
a

F

v B





 

   




 

  (A.42) 

The above equation reduces to: 

 
   



(0)
1

2 1 1 1 1 1 1

1

(0)

(1) (2)

?

2 2

0

r

eq
t r r a a a a t r t t

a

r a a a
a

t t
u v v v f t u

v v f F



  



     

  

 



  



                   
 

    
 







 (A.43) 

We can write (1)
af in terms of eq

af  as: 

  1 1

(1) eq
a a r t af v f

      (A.44) 

Substituting (1)
af  in equation (A.43) gives: 

  
2 1 1 1 1

1
2

(0) 0
2 2

TERM
TERM

eq
t r r a a a a t r

a

t t
u v v v f

        




                       





 (A.45) 

TERM-1 in the above equation can be evaluated as: 
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  

1 1

1 1

4

1 1

2 4 2

2

0

4

1
2 2

2

s

eq
r r a a a a

a

a a a
r r a a a a

a s s s

a a a a a a a a a
a as

c

r r

a a a
s

v v v f

v u v u v u u u
v v v w

c c c

u
v v v w v v v v w

c

u u
v v v

c

 

 

     

 

  

       
  


      

      

 
  

   

    
 
  

       
  



  







 
 

 
   

1 1

1 1

2

0 0

2

2

2a a a a a a a
a as

s r r

s r r

u u
v v w v v v w

c

c u

c u

 

 

 
    

      

      

      

      

 

 
 
 
 
 
 
 
  

    

      

 
 

 (A.46) 

 
TERM-2 in equation (A.45) can be evaluated as: 

 
 
   

1 1 1 1

1 1 1 1

(0) 2

2 2

t r t r s

s r t s r r

c

c c u

 

  

 

  

 

   

     

      
 (A.47) 

Note that, in the above equation, terms of order  2u  have been neglected. 

Substituting TERM-1 and TERM-2 in the above equation, we get: 

      
2 1 1 1 1

(2)
t r r r ru u u F

                    (A.48) 

where   is the kinematic viscosity, given by: 

 
2

t
RT     

 
 (A.49) 

 
A.6  Order-combined macro-dynamics: (1) 2 (2)

a aE E   

 

A.6.1  Mass conservation:  (1) 2 (2) 0a a
a

E E    

 

Combining corresponding first and second order macro-dynamic equations, we get: 

  
1 1 2

2 0t r tu
                 (A.50) 

which essentially is: 

  


 
1 2 1

2 0

rt

t t r u




    


     


 (A.51) 
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and reduces to the continuity equation: 

   0t r u
       (A.52) 

 

A.6.2  Momentum conservation:  (1) 2 (2) 0a a a
a

v E E     

 

Combining corresponding first and second order macro-dynamic equations, we get: 

         2 1 1 1 1

1 1

(0) 2

(2)
0

t r r r r

t r

u u u
u

F

   



  
 



   
  



      
            

 (A.53) 

 
The above equation can be written as: 

      (0)
t r r r r ru u u F

                          (A.54) 

 

A.6.3  Incompressible limit: constant   

  

 In the incompressible limit, constant  , the continuity equation yields the 

incompressible continuity equation: 

   0r u
    (A.55) 

and the order-combined momentum conservation equation yields: 

    
(0)

r

t r ru u F

 


  



 
       (A.56) 

Substituting (0)
  in the above equation, we get the incompressible Navier-Stokes equation: 

        1
t r r r ru u u p u F

       


           (A.57) 

 

A.7  Remarks on fluid viscosity in the LB equation 

 

In the LBE, fluid viscosity is given by (see equation (A.49), which is in a non-

dimensional form and is written without ‘bars’ over variables): 

 2

2s

t
c     
 

 (A.58) 

which, for a D2Q9 lattice, is: 
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2 1

*
3 2

c t     
 

 (A.59) 

where 
x y

c
t t

 
 
 

 and *
t

 


.  

 

In the first-order LBE simulations, *  has to be greater than 0.5 for a positive non-

zero kinematic viscosity  . Usually, for numerical stability considerations, *  is taken to be 

between 0.5 and 3.0. Here, we should note that, *  appears explicitly on the right hand side 

of the LB equation and is used as a pre-specified parameter in the LBM calculations. 

 

For given non-dimensional kinematic viscosity ( 1Re  ) and the spatial grid size 

x y   , we can calculate LBM time step as: 

  
2

21 1
* * 0.5 Re

3 2 3

x
t x 


        

 
 (A.60) 
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Appendix B 

Code, Parallelization and Performance 
 

For large applications to be solved on distributed memory machines (or clusters), the 

Message Passing Interface (MPI) is the most widely used approach and therefore, is used for 

parallelization of the LBM code.  

 

B.1 Domain decomposition 

       

Domain decomposition technique is a natural way of parallelization for a system in 

which the computation of a variable at any grid-point depends only on the variables at the 

neighboring grid-points. In this technique, the computational grid is partitioned into several 

smaller sub-domains (one for each processor) of desired size.  Each processor performs 

computations on a certain sub-domain and exchanges information with the neighboring 

processors whenever necessary. For a 2D calculation, the computational domain may be 

divided by either a 1D or 2D partitioning scheme. A 1D partitioning scheme slices the 

domain only in one direction leading to horizontal or vertical slices. However, a 2D 

partitioning scheme slices the domain in both the directions (shown in Fig. B.1).  

 

 

Fig. B.1: 2D block decomposition of the simulation domain. The calculation grid is divided 

into several sub-domains to be assigned to each of the participating processors. Every sub-

domain (grey circles, ) is now padded with a ghost layer of grid-points (green circles, ) on 

each side. 
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In a parallel LBM code, each of the sub-domains is subsequently padded with a ghost 

layer of grid-points at its boundaries. These ghost layers are essential to ensure accurate and 

simultaneous passing of boundary information to the neighboring processors. 

 

B.2 Data partition and performance 

       

Domain decomposition alone does not yield the expected speedup in a LBM code. It 

should be accompanied by a corresponding data-partitioning so that each processor only 

stores and computes the data of the assigned sub-domain. In a basic LBM code, most of the 

calculation involves the distribution function data which is usually stored in an array. Passing 

such an array (and many more for an advanced code) for large 3D problems to each and 

every processor will require large amount of memory and consequently, will slow down the 

calculation due to cache miss and page faults. Therefore, it is essential that each processor 

only sees the data for its sub-domain and communicates with other processors using ghost 

layers. The algorithm template dictates which discrete variables must be communicated to the 

neighboring processors.  

 

An  important  feature of  LBM scheme is  the inherent  spatial  locality  of  the  

collision  operator. From the evolution algorithm of the LBM, interactions between 

processors are only required before the execution of the propagation step. Processors interact 

by sending their boundary data to the neighboring processors and by receiving data in their 

ghost layers from the neighboring processors (see Figure B.2). By using ghost layer of grid 

points, the propagation step can be isolated from the data exchange step. Hence, the 

computation is independently carried out point-by-point in the LBM method.   

 

B.3 Efficiency with fixed problem size per processor 

       

Parallelization efficiency is best measured by increasing the size of the calculation 

with the increase in the number of processors. It is usually done by maintaining the constant 

calculation load for each processor by assigning the same size of sub-domain to each 

processor. A fixed number of LBM time steps are simulated for all the runs involving 

different number of processors and thus, different total problem sizes. 
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Fig. B.2: Data exchange among the participating processors.  Processor in the center (C) 

communicates with its neighboring processors (N, S, W and E) in order to synchronize data 

at its boundaries and the surrounding ghost layers.  Processor C sends data from its North, 

South, East and West boundary to the processors N, S, E and W, respectively.  

Simultaneously, it receives data in its North, South, East and West side ghost layer from the 

processors N, S, E and W’s South, North, West and East boundaries, respectively. The 

respective exchange is shown by different colored arrows in the figure. 

 

Since problem size per processor is fixed, therefore it is expected that the running 

time, in the absence of communication cost, should remain constant irrespective of the 

number of processors. Hence, speedup, S, for a fixed problem size is defined as, 

s

p

pT
S

T
  (B.1) 

and efficiency, E, is defined as  

s

p

T
E

T
  (B.2) 

where  p is the number of processors, sT  is runtime when a single processor is used and pT  is 

runtime when  p number of processors are used. Efficiency and speed-up of the LBM code, 
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written for single-phase flow and for simulating low-density spinodal decomposition of two-

phases, are shown in Figure B.3 for varying number of processors. 

 

(a) 

(b) 

Fig. B.3: (a) Efficiency and (b) speed-up for a parallel LBM code running on a distributed 

memory machine (Turing cluster, University of Illinois at Urbana Champaign). Each 

processor runs the LBM calculation on a 2D sub-domain consisting of 66 x 66 grid points 

(including ghost layers). A fixed number of 10,000 time-steps are simulated in each run. 

Total size of the problem increases with increasing number of processors.  
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Appendix C 

Velocity boundary conditions in 2D 
 

In this appendix, velocity boundary conditions for the North, East and West 

boundaries in a 2D domain are presented. Since respective corners of the above boundaries 

are treated in a special way, results for them are also presented. 

 

C.1 North boundary 

       

Unknowns at the North boundary can be obtained following the process for the South 

boundary in Sec. 5.1.1. In this section, we only provide the resulting equations.  

 

 Below are the equations which should be solved in order to obtain the desired 

unknowns w , 4g , 7g  and 8g  at the North boundary (see Fig. C.1). 

    0 1 3 2 5 62 1
2

C
w y wy

t
g g g g g g F U          

 
 (C.1) 

  4 2 4 2
eq eqg g g g    (C.2) 

    7 8 1 5 3 6 2
C

w wx x

t
g g g g g g U F 

        (C.3) 

 7 8 2 5 6 4 2
C

w wy y

t
g g g g g g U F 

        (C.4) 

 
   7 8 7 8

7 2

g g g g
g

  
  (C.5) 

 
   7 8 7 8

8 2

g g g g
g

  
  (C.6) 
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Fig. C.1: Velocity boundary condition at the North boundary. The x- and y-velocity of the 

fluid is specified to be wxU  and wyU , respectively. Distribution functions 4g , 7g , 8g  and the 

density w  are unknown. 

 

C.2 West boundary 

       

Unknowns at the West boundary can be obtained following the process for the South 

boundary in Sec. 5.1.1. In this section, we only provide the resulting equations.  

 

Below are the equations which should be solved in order to obtain the desired 

unknowns w , 1g , 5g  and 8g  at the West boundary (see Fig. C.2). 

    0 2 4 3 6 72 1
2

C
w x wx

t
g g g g g g F U          

 
 (C.7) 

  1 3 1 3
eq eqg g g g    (C.8) 

    5 8 4 7 2 6 2
C

w wy y

t
g g g g g g U F 
        (C.9) 

 5 8 3 6 7 1 2
C

w wx x

t
g g g g g g U F 
        (C.10) 

 
   5 8 5 8

5 2

g g g g
g

  
  (C.11) 

 
   5 8 5 8

8 2

g g g g
g

  
  (C.12) 
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Fig. C.2: Velocity boundary condition at the West boundary. The x- and y-velocity of the 

fluid is specified to be wxU  and wyU , respectively. Distribution functions 1g , 5g , 8g  and the 

density w  are unknown. 

 

C.3 East boundary 

       

Unknowns at the East boundary can be obtained following the process for the South 

boundary in Sec. 5.1.1. In this section, we only provide the resulting equations.  

 

Below are the equations which should be solved in order to obtain the desired 

unknowns w , 3g , 6g  and 7g  at the East boundary (see Fig. C.3). 

    0 2 4 1 5 82 1
2

C
w x wx

t
g g g g g g F U          

 
 (C.13) 

  3 1 3 1
eq eqg g g g    (C.14) 

    7 6 2 5 4 8 2
C

w wy y

t
g g g g g g U F 

        (C.15) 

 7 6 1 5 8 3 2
C

w wx x

t
g g g g g g U F 

        (C.16) 

 
   7 6 7 6

7 2

g g g g
g

  
  (C.17) 
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   7 6 7 6

6 2

g g g g
g

  
  (C.18) 

 

                                         

Fig. C.3: Velocity boundary condition at the East boundary. The x- and y-velocity of the fluid 

is specified to be wxU  and wyU , respectively. Distribution functions 3g , 6g , 7g  and the 

density w  are unknown. 

 

C.4 South East (SE) corner 

       

Unknowns at the SE corner can be obtained following the process for the SW corner 

in Sec. 5.1.2. In this section, we only provide the resulting equations.  

 

Below are the equations which should be solved in order to obtain the desired 

unknowns at the SE corner (see Fig. C.4). 

 w NBR   (C.19) 

  3 1 3 1
eq eqg g g g    (C.20) 

  2 4 2 4
eq eqg g g g    (C.21) 

 5 6 7 3 8 1 2
C

w wx x

t
g g g g g g U F 
        (C.22) 

 5 6 7 4 8 2 2
C

w wy y

t
g g g g g g U F 
        (C.23) 
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   5 6 7 5 6 7

6 2

g g g g g g
g

    
  (C.24) 

  5 7 5 6 7 6g g g g g g      (C.25) 

  5 7 0 1 2 3 4 6 8wg g g g g g g g g          (C.26) 

 
   5 7 5 7

5 2

g g g g
g

  
  (C.27) 

 
   5 7 5 7

7 2

g g g g
g

  
  (C.28) 

 

 

 

Fig. C.4: Velocity boundary condition at the South-East (SE) corner. The x- and y-velocity of 

the fluid is specified to be wxU  and wyU , respectively. Distribution functions 2g , 3g , 5g , 6g , 

7g  and the density w  are unknown. 

 

C.5 North East (NE) corner 

       

Unknowns at the NE corner can be obtained following the process for the SW corner 

in Sec. 5.1.2. In this section, we only provide the resulting equations.  

 

Below are the equations which should be solved in order to obtain the desired 

unknowns at the NE corner (see Fig. C.5). 

 w NBR   (C.29) 
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  3 1 3 1
eq eqg g g g    (C.30) 

  4 2 4 2
eq eqg g g g    (C.31) 

 7 6 8 3 5 1 2
C

w wx x

t
g g g g g g U F 

         (C.32) 

 7 6 8 4 5 2 2
C

w wy y

t
g g g g g g U F 

         (C.33) 

 
   7 6 8 7 6 8

7 2

g g g g g g
g

       
  

 
 (C.34) 

  6 8 7 6 8 7g g g g g g       (C.35) 

  6 8 0 1 2 3 4 5 7wg g g g g g g g g          (C.36) 

 
   6 8 6 8

6 2

g g g g
g

  
  (C.37) 

 
   6 8 6 8

8 2

g g g g
g

  
  (C.38) 

 

 

Fig. C.5: Velocity boundary condition at the North-East (NE) corner. The x- and y-velocity 

of the fluid is specified to be wxU  and wyU , respectively. Distribution functions 3g , 4g , 6g , 

7g , 8g and the density w  are unknown. 

 

1 

2 

3 

4 

5 6 

7 8 

None

None

N

Unknowns 

Uwx 

Uwy 

Fluid

0 North  
Boundary 

East 
Boundary 

NBR

w  



 
 
 

225

C.6 North West (NW) corner 

       

Unknowns at the NW corner can be obtained following the process for the SW corner 

in Sec. 5.1.2. In this section, we only provide the resulting equations.  

 

Below are the equations which should be solved in order to obtain the desired 

unknowns at the NW corner (see Fig. C.6). 

 w NBR   (C.39) 

  1 3 1 3
eq eqg g g g    (C.40) 

  4 2 4 2
eq eqg g g g    (C.41) 

 5 7 8 3 6 1 2
C

w wx x

t
g g g g g g U F 
        (C.42) 

 5 7 8 4 6 2 2
C

w wy y

t
g g g g g g U F 
        (C.43) 

 
   5 7 8 5 7 8

8 2

g g g g g g
g

    
  (C.44) 

  5 7 5 7 8 8g g g g g g      (C.45) 

  5 7 0 1 2 3 4 6 8wg g g g g g g g g          (C.46) 

 
   5 7 5 7

5 2

g g g g
g

  
  (C.47) 

 
   5 7 5 7

7 2

g g g g
g

  
  (C.48) 
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Fig. C.6: Velocity boundary condition at the North-West (NW) corner. The x- and y-velocity 

of the fluid is specified to be wxU  and wyU , respectively. Distribution functions 1g , 4g , 5g , 

7g , 8g and the density w  are unknown. 
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Appendix D 

Density boundary conditions in 2D 
 

In this appendix, density boundary conditions for the North, East and West boundaries 

in a 2D domain are presented. Since respective corners of the above boundaries are treated in 

a special way, results for them are also presented. 

 

D.1 North, West and East boundaries 

       

Unknowns at the North, West and East boundaries can be obtained following the 

process for the South boundary in Sec. 5.2.1. In this section, we only provide the resulting 

equations.  

 

Below are the equations which should be solved in order to obtain the desired 

unknowns w , 4g , 7g  and 8g  at the North boundary (see Fig. C.1). 

  0 1 3 2 5 62
2

C
wy y w w

t
U g g g g g g F           

 
 (D.1) 

  4 2 4 2
eq eqg g g g    (D.2) 

    7 8 1 5 3 6 2
C

w wx x

t
g g g g g g U F 

        (D.3) 

 7 8 2 5 6 4 2
C

w wy y

t
g g g g g g U F 

        (D.4) 

 
   7 8 7 8

7 2

g g g g
g

  
  (D.5) 

 
   7 8 7 8

8 2

g g g g
g

  
  (D.6) 

 

Below are the equations which should be solved in order to obtain the desired 

unknowns w , 1g , 5g  and 8g  at the West boundary (see Fig. C.2). 

    0 2 4 3 6 72
2

C
wx x w w

t
U g g g g g g F            

 
 (D.7) 
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  1 3 1 3
eq eqg g g g    (D.8) 

    5 8 4 7 2 6 2
C

w wy y

t
g g g g g g U F 
        (D.9) 

 5 8 3 6 7 1 2
C

w wx x

t
g g g g g g U F 
        (D.10) 

 
   5 8 5 8

5 2

g g g g
g

  
  (D.11) 

 
   5 8 5 8

8 2

g g g g
g

  
  (D.12) 

 

Below are the equations which should be solved in order to obtain the desired 

unknowns w , 3g , 6g and 7g  at the East boundary (see Fig. C.3). 

  0 2 4 1 5 82
2

C
wx x w w

t
U g g g g g g F           

 
 (D.13) 

  3 1 3 1
eq eqg g g g    (D.14) 

    7 6 2 5 4 8 2
C

w wy y

t
g g g g g g U F 

        (D.15) 

 7 6 1 5 8 3 2
C

w wx x

t
g g g g g g U F 

        (D.16) 

 
   7 6 7 6

7 2

g g g g
g

  
  (D.17) 

 
   7 6 7 6

6 2

g g g g
g

  
  (D.18) 

 
D.2 South East (SE), North East (NE) and North West (NW) corners 

       

Unknowns at the SE, NE and NW corners can be obtained following the process for 

the SW corner in Sec. 5.2.2. In this section, we only provide the resulting equations.  

 

Below are the equations which should be solved in order to obtain the desired 

unknowns at the SE corner (see Fig. C.4). 

 w NBR   (D.19) 

  3 1 3 1
eq eqg g g g    (D.20) 
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  2 4 2 4
eq eqg g g g    (D.21) 

 5 6 7 3 8 1 2
C

w wx x

t
g g g g g g U F 
        (D.22) 

 5 6 7 4 8 2 2
C

w wy y

t
g g g g g g U F 
        (D.23) 

 
   5 6 7 5 6 7

6 2

g g g g g g
g

    
  (D.24) 

  5 7 5 6 7 6g g g g g g      (D.25) 

  5 7 0 1 2 3 4 6 8wg g g g g g g g g          (D.26) 

 
   5 7 5 7

5 2

g g g g
g

  
  (D.27) 

 
   5 7 5 7

7 2

g g g g
g

  
  (D.28) 

 

Below are the equations which should be solved in order to obtain the desired 

unknowns at the NE corner (see Fig. C.5). 

 w NBR   (D.29) 

  3 1 3 1
eq eqg g g g    (D.30) 

  4 2 4 2
eq eqg g g g    (D.31) 

 7 6 8 3 5 1 2
C

w wx x

t
g g g g g g U F 

         (D.32) 

 7 6 8 4 5 2 2
C

w wy y

t
g g g g g g U F 

         (D.33) 

 
   7 6 8 7 6 8

7 2

g g g g g g
g

       
  

 
 (D.34) 

  6 8 7 6 8 7g g g g g g       (D.35) 

  6 8 0 1 2 3 4 5 7wg g g g g g g g g          (D.36) 

 
   6 8 6 8

6 2

g g g g
g

  
  (D.37) 

 
   6 8 6 8

8 2

g g g g
g

  
  (D.38) 
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Below are the equations which should be solved in order to obtain the desired 

unknowns at the NW corner (see Fig. C.6). 

 w NBR   (D.39) 

  1 3 1 3
eq eqg g g g    (D.40) 

  4 2 4 2
eq eqg g g g    (D.41) 

 5 7 8 3 6 1 2
C

w wx x

t
g g g g g g U F 
        (D.42) 

 5 7 8 4 6 2 2
C

w wy y

t
g g g g g g U F 
        (D.43) 

 
   5 7 8 5 7 8

8 2

g g g g g g
g

    
  (D.44) 

  5 7 5 7 8 8g g g g g g      (D.45) 

  5 7 0 1 2 3 4 6 8wg g g g g g g g g          (D.46) 

 
   5 7 5 7

5 2

g g g g
g

  
  (D.47) 

 
   5 7 5 7

7 2

g g g g
g

  
  (D.48) 
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Appendix E 

Velocity boundary conditions in 3D 

 

In this appendix, velocity boundary conditions for the Top, South, North, East and 

West boundaries in a 3D domain are presented.  

 

E.1 Top boundary 

 

Unknowns: 

w , 6g , 12g , 13g , 16g  and 17g  

Mass conservation: 

 
18

0
w a

a

g


  (E.1) 

Momentum conservation: 
 

    1 7 10 11 12 2 8 9 13 14 2
C

w wx x

t
U g g g g g g g g g g F 

            (E.2) 

    3 7 8 15 16 4 9 10 17 18 2
C

w wy y

t
U g g g g g g g g g g F 

            (E.3) 

    5 11 14 15 18 6 12 13 16 17 2
C

w wz z

t
U g g g g g g g g g g F 

            (E.4) 

From equations (E.1) and (E.4): 

 
   

0 1 2 3 4 7 8 9 10

5 11 14 15 18

1

1 2
2

w C
wz z

g g g g g g g g g

t
U g g g g g F


        

           

 (E.5) 

Assuming the partial bounce back of the non equilibrium distribution functions,  

    , , ,
eq eq

a a a a a x x a y y a z zg g g g v v v         (E.6) 

where            , 6,5 , 12,14 , 13,11 , 16,18 , 17,15a a  .   

The above equation can be written in more explicit form as, 

  6 5 6 5
eq eq

zg g g g      (E.7) 

  13 11 13 11
eq eq

x zg g g g        (E.8) 
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  12 14 12 14
eq eq

x zg g g g        (E.9) 

  17 15 17 15
eq eq

y zg g g g        (E.10) 

  16 18 16 18
eq eq

y zg g g g        (E.11) 

Algebraic manipulations give, 

        11 13 14 12 11 13 14 12 2eq eq eq eq
xg g g g g g g g          (E.12) 

        15 17 18 16 15 17 18 16 2eq eq eq eq
yg g g g g g g g          (E.13) 

Now, using the momentum conservation relations, 

 
   

   
1 7 10 2 8 9

11 13 14 12

2

2

C
w wx x

eq eq eq eq
x

t
U g g g g g g F

g g g g






      

    
 (E.14) 

 
   

   
3 7 8 4 9 10

15 17 18 16

2

2

C
w wy y

eq eq eq eq
y

t
U g g g g g g F

g g g g






      

    
 (E.15) 

 
 
 

5 11 14 15 18

6 12 13 16 17 5
2

eq eq eq eq eq
w wz

eq eq eq eq eq C
z z

U g g g g g

t
g g g g g F





    


      

 (E.16) 

From the above equations, unknowns can be evaluated as: 

 
   

   
1 7 10 2 8 9

11 13 14 12

1 2
2

C
w wx x

x
eq eq eq eq

t
U g g g g g g F

g g g g




          
     

 (E.17) 

 
   

   
3 7 8 4 9 10

15 17 18 16

1 2
2

C
w wy y

y
eq eq eq eq

t
U g g g g g g F

g g g g




          
     

 (E.18) 

 
 

 
5 11 14 15 18

6 12 13 16 17

1

5
2

eq eq eq eq eq
w wz

z eq eq eq eq eq C
z

U g g g g g

t
g g g g g F




     
   
      
 

 (E.19) 

 

E.2 South boundary 

 

Unknowns: 

w , 3g , 7g , 8g , 15g  and 16g  
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Mass conservation: 

 
18

0
w a

a

g


  (E.20) 

Momentum conservation: 

    1 7 10 11 12 2 8 9 13 14 2
C

w wx x

t
U g g g g g g g g g g F 

            (E.21) 

    3 7 8 15 16 4 9 10 17 18 2
C

w wy y

t
U g g g g g g g g g g F 

            (E.22) 

    5 11 14 15 18 6 12 13 16 17 2
C

w wz z

t
U g g g g g g g g g g F 

            (E.23) 

From equations (E.20) and (E.22): 

    
0 1 2 5 6 11 12 13 14

4 9 10 17 18

1

21
2

w C
ywy

g g g g g g g g g

t
g g g g g FU


        

   
        

 (E.24) 

Assuming the partial bounce back of the non equilibrium distribution functions,  

    , , ,
eq eq

a a a a a x x a y y a z zg g g g v v v         (E.25) 

where            , 3, 4 , 7,9 , 8,10 , 15,17 , 16,18a a  .   

The above equation can be written in more explicit form as, 

  3 4 3 4
eq eq

yg g g g      (E.26) 

  7 9 7 9
eq eq

x yg g g g        (E.27) 

  8 10 8 10
eq eq

x yg g g g        (E.28) 

  15 17 15 17
eq eq

y zg g g g        (E.29) 

  16 18 16 18
eq eq

y zg g g g        (E.30) 

Algebraic manipulations give, 

        7 9 8 10 7 9 8 10 2eq eq eq eq
xg g g g g g g g          (E.31) 

        15 17 16 18 15 17 16 18 2eq eq eq eq
zg g g g g g g g          (E.32) 

Now, using the momentum conservation relations, 

 
   

   
1 11 12 2 13 14

7 9 8 10

2

2

C
w wx x

eq eq eq eq
x

t
U g g g g g g F

g g g g






      

    
 (E.33) 
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 
 

3 7 8 15 16

4 9 10 17 18 5
2

eq eq eq eq eq
w wy

eq eq eq eq eq C
y y

U g g g g g

t
g g g g g F





    


      

 (E.34) 

 
   

   
5 11 14 6 12 13

15 17 16 18

2

2

C
w wz z

eq eq eq eq
z

t
U g g g g g g F

g g g g






      

    
 (E.35) 

From the above equations, unknowns can be evaluated as: 
 

 
   

   
1 11 12 2 13 14

7 9 8 10

1

2
2

w wx

x C eq eq eq eq
x

U g g g g g g

t
F g g g g




      
   
      

 (E.36) 

 
 

 
3 7 8 15 16

4 9 10 17 18

1

5
2

eq eq eq eq eq
w wy

y eq eq eq eq eq C
y

U g g g g g

t
g g g g g F




     
   
      
 

 (E.37) 

 
   

   
5 11 14 6 12 13

15 17 16 18

1

2
2

w wz

z C eq eq eq eq
z

U g g g g g g

t
F g g g g




      
   
      

 (E.38) 

 
E.3 North boundary 

 

Unknowns: 

w , 4g , 9g , 10g , 17g  and 18g  

Mass conservation: 

 
18

0
w a

a

g


  (E.39) 

Momentum conservation: 

    1 7 10 11 12 2 8 9 13 14 2
C

w wx x

t
U g g g g g g g g g g F 

            (E.40) 

    3 7 8 15 16 4 9 10 17 18 2
C

w wy y

t
U g g g g g g g g g g F 

            (E.41) 

    5 11 14 15 18 6 12 13 16 17 2
C

w wz z

t
U g g g g g g g g g g F 

            (E.42) 

From equations (E.39) and (E.41): 
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    
0 1 2 5 6 11 12 13 14

3 7 8 15 16

1

21
2

w C
ywy

g g g g g g g g g

t
g g g g g FU


        

   
        

 (E.43) 

Assuming the partial bounce back of the non equilibrium distribution functions,  

    , , ,
eq eq

a a a a a x x a y y a z zg g g g v v v         (E.44) 

where            , 4,3 , 9,7 , 10,8 , 17,15 , 18,16a a  .   

The above equation can be written in more explicit form as, 

  4 3 4 3
eq eq

yg g g g      (E.45) 

  9 7 9 7
eq eq

x yg g g g        (E.46) 

  10 8 10 8
eq eq

x yg g g g        (E.47) 

  17 15 17 15
eq eq

y zg g g g        (E.48) 

  18 16 18 16
eq eq

y zg g g g        (E.49) 

Algebraic manipulations give, 

        7 9 8 10 7 9 8 10 2eq eq eq eq
xg g g g g g g g          (E.50) 

        15 17 16 18 15 17 16 18 2eq eq eq eq
zg g g g g g g g          (E.51) 

Now, using the momentum conservation relations, 

 
   

   
1 11 12 2 13 14

7 9 8 10

2

2

C
w wx x

eq eq eq eq
x

t
U g g g g g g F

g g g g






      

    
 (E.52) 

 
 
 

3 7 8 15 16

4 9 10 17 18 5
2

eq eq eq eq eq
w wy

eq eq eq eq eq C
y y

U g g g g g

t
g g g g g F





    


      

 (E.53) 

 
   

   
5 11 14 6 12 13

15 17 16 18

2

2

C
w wz z

eq eq eq eq
z

t
U g g g g g g F

g g g g






      

    
 (E.54) 

From the above equations, unknowns can be evaluated as: 

 
   

   
1 11 12 2 13 14

7 9 8 10

1

2
2

w wx

x C eq eq eq eq
x

U g g g g g g

t
F g g g g




      
   
      

 (E.55) 
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 

 
3 7 8 15 16

4 9 10 17 18

1

5
2

eq eq eq eq eq
w wy

y eq eq eq eq eq C
y

U g g g g g

t
g g g g g F




     
   
      
 

 (E.56) 

 
   

   
5 11 14 6 12 13

15 17 16 18

1

2
2

w wz

z C eq eq eq eq
z

U g g g g g g

t
F g g g g




      
   
      

 (E.57) 

 
E.4 West boundary 

 

Unknowns: 

w , 1g , 7g , 10g , 11g  and 12g  

Mass conservation: 

 
18

0
w a

a

g


  (E.58) 

Momentum conservation: 

    1 7 10 11 12 2 8 9 13 14 2
C

w wx x

t
U g g g g g g g g g g F 

            (E.59) 

    3 7 8 15 16 4 9 10 17 18 2
C

w wy y

t
U g g g g g g g g g g F 

            (E.60) 
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From equations (E.58) and (E.59): 
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Assuming the partial bounce back of the non equilibrium distribution functions,  

    , , ,
eq eq

a a a a a x x a y y a z zg g g g v v v         (E.63) 

where            , 1, 2 , 7,9 , 10,8 , 11,13 , 12,14a a  .   

The equation above can be written in more explicit form as, 

  1 2 1 2
eq eq

xg g g g      (E.64) 

  7 9 7 9
eq eq

x yg g g g        (E.65) 

  10 8 10 8
eq eq

x yg g g g        (E.66) 
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  11 13 11 13
eq eq

x zg g g g        (E.67) 

  12 14 12 14
eq eq

x zg g g g        (E.68) 

Algebraic manipulations give, 

        7 9 10 8 7 9 10 8 2eq eq eq eq
yg g g g g g g g          (E.69) 

        11 13 12 14 11 13 12 14 2eq eq eq eq
zg g g g g g g g          (E.70) 

Now, using the momentum conservation relations, 
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From the above equations, unknowns can be evaluated as: 
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E.5 East boundary 

 

Unknowns: 

w , 2g , 9g , 8g , 13g  and 14g  
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Mass conservation: 
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0
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  (E.77) 

Momentum conservation: 
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From equations (E.77) and (E.78): 
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Assuming the partial bounce back of the non equilibrium distribution functions,  

    , , ,
eq eq

a a a a a x x a y y a z zg g g g v v v         (E.82) 

where            , 2,1 , 9,7 , 8,10 , 13,11 , 14,12a a  .   

The equation above can be written in more explicit form as, 

  2 1 2 1
eq eq

xg g g g      (E.83) 

  9 7 9 7
eq eq

x yg g g g        (E.84) 

  8 10 8 10
eq eq

x yg g g g        (E.85) 

  13 11 13 11
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  14 12 14 12
eq eq

x zg g g g        (E.87) 

Algebraic manipulations give, 

        7 9 10 8 7 9 10 8 2eq eq eq eq
yg g g g g g g g          (E.88) 
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Now, using the momentum conservation relations, 
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From the above equations, unknowns can be evaluated as: 
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Appendix F 

Mathematica routine for Maxwell construction 

 

Below is the Mathematica algorithm to apply Maxwell equal-area construction and 

compute the equilibrium phase densities for the van der Waals equation of state: 

 

! Define the van der Waals equation  

 

! Rearrange for pressure 

 

! Calculate critical constants (VC and Tc)  

 

! Calculate a and b in terms of critical constants (VC and Tc) 

 

! Calculate Pc 

  

! List critical parameters (PC, VC and Tc) 

 

! Calculate the critical compressibility factor c c

c

PV
Z

RT
  

! Write the vdW equation of state in reduced variables  

 

! Identify the limiting pressure values (pressures corresponding to points B and C) at a given 

reduced temperature (for example, at reduced temperature TR = 0.3) 

 

! Guess a suitable pressure value between the above two limiting values. One may choose the 

average of these two if it is non-zero.  

 

! Calculate phase volumes corresponding to the intersection of the horizontal line described 

by above mid-pressure with the P-V curve. 

 

! Define area under the horizontal line as ‘Area-1’ 
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! Define area under the P-V curve as ‘Area-2’ 

 

! Find the equilibrium pressure value for which these two areas are equal 

 

! List the equilibrium pressure and the volumes of two coexisting phases 

 

(Actual code can be found in Prashant, 2010) 
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Appendix G 

Conversion between physical and lattice units 

 

One of the key steps in applying LBM to solve physical problems is the accurate 

conversion between physical and lattice units. There are two widely used methods: one is to 

directly convert between the physical and lattice units (which may be called direct 

conversion), and another is to perform the conversion via a non-dimensional formulation 

(which may be called dimensionless formulation). In the following sections, these two 

methods are discussed in detail: 

 

G.1 Direct conversion 

 
 In the direct conversion approach, lattice units are related to the physical units via the 

time step t  and spatial grid size h . A list of physical and lattice units, and their relationship 

are provided in the Table G.1 (taken from Feng et al., 2007). 

 

Table G.1: Relationship between physical and lattice units in a LB calculation. 

Variable Physical Lattice  Relationship 

Density     ref    

Grid spacing x y h     1x y h       
Time step t  1t    

Lattice speed 
h

c
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


 1
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c
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 

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x
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
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u u  

Speed of sound ,
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3
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3
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h
c c
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


u
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



u
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h t
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



a a  

Kinematic viscosity  
(for 1st order discretization) 

2
2
,

1

2s lattice

h
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t
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2
2
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G.1.1 Acoustics based conversion 

 

From Table G.1, we have: 

 
2

2 *
,s lattice

h
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t
 


 (G.1) 

where *  is either  0.5  or   depending upon the discretization used in formulating the 

LBE. 
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h
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t



 (G.2) 

 

From the above equations, we can write: 

 2 *
,s phyc t    (G.3) 

or,  

 
2 *
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t
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   (G.4) 

and  

 ,

*
, , ,

s phy

s lattice s lattice s phy

c t
h

c c c


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
   (G.5) 

 

For example, if a system with the following known physical quantities for air at temperature 

= 300 K (Nourgaliev et al., 2003) is to be simulated: 

Physical speed of sound ,s phyc = 300 m/s (in air) 

Kinematic viscosity of air ,air phy = 10-5 m2/s 

Then, from the above equations, one LB grid spacing and one LB time step correspond to ( *  

can be chosen to be 0.01 from numerical stability considerations): 
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Similarly, for water, we have: , 1500s phyc   m/s and 710water   m2/s. Now, using these 

values and * =0.01, we get: 
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G.1.2 Gravity based conversion 

 

For a simulation in which gravity is the driving force for the flow, one can find the 

time and space conversion factors by using the relations below. 
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The above equations yield: 
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and  
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For 10g m/s2 (physical), 510g (LBM), ,air phy = 10-5 m2/s, * = 0.01 (chosen), 2

,s latticec =1/3 

(for D2Q9 lattice), we get: t  = 3.1 x 10-4 s and h  = 9.65 x 10-4 m. 

 

From equations (G.12) and(G.13), it is clear that an increase of lattice gravity means a 

simultaneous increase in spatial grid size and time steps (if other physical parameters remain 

the same), i.e. using a higher lattice gravity is equivalent to simulating a larger system (larger 

bubble). 
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 Similarly, if one wants to keep the spatial grid resolution and time step of the 

simulation fixed (i.e. h  and t  fixed), then one needs to redefine the lattice gravity to 

simulate the same physics in different domain sizes. 

  

G.1.3 How many “physical molecules” does a “LB particle” represent? 

  

Let us suppose that each LB particle represents N molecules and at each lattice site, 

there are f  LB particles (on an average) going in each of the lattice directions of a DdQb 

lattice. Then, total number of molecules at each lattice site is equal to Nfb (Succi, 2001). 

  

 In physical space, if the physical number density of molecules  (molecules per cubic 

meter) is known and spatial grid size is h  then total number of molecules in one lattice cell of 

volume 3h  is equal to 3h . 

 

 From the above arguments, we can calculate N from: 

 
3h

N
fb


  (G.14) 

 For a D2Q9 lattice, we have, 9b  , assuming 0.1f   and 1h m , we get: 

 181.11 10N   . For an ideal gas, number of molecules per cubic meter at standard 

temperature and pressure condition is equal to Loschimdt number  = 2.687 x 1025 per cubic 

meter, which gives 73 10N   molecules per lattice site (one reason why LBM is called a 

mesoscopic method). 

 

G.2 Dimensionless formulation 

 
 This section is based on the dimensionless unit conversion approach discussed in the 

handout by Latt (2008). In this approach, the physical system (P) is first converted into a non-

dimensional system (ND), and then the non-dimensional system is converted into a lattice 

Boltzmann system (LB).  The three systems (P, ND and LB) are defined such that they have 

the same Reynolds (Re) number. The transition from P to ND is made by choosing a 

characteristic length 0l  and time 0t , and the transition from ND to LB is made by choosing 

the discrete space step h and time step t .  
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G.2.1 Governing equations in physical units 

 

 Usually LB simulations are targeted towards solving an incompressible Navier-Stokes 

(N-S) equations, which are simply the laws of mass and momentum conservation. The mass 

conservation equation states that the macroscopic velocity field is divergence-free, i.e. 

 0p p  u  (G.15) 

where pu  is the macroscopic velocity and subscript ‘p’ indicates the physical units of 

evaluation.  

 

The momentum conservation equation in physical units can be written as: 

   2

0

1
pt p p p p p p p p p

p

u u u P u


         (G.16) 

where pP  is the pressure and p  is the kinematic viscosity in the physical units. 

 

G.2.2 From physical (P) to non-dimensional (ND) system  

 

 In order to convert the physical system (P) governed by equations (G.15) and (G.16) 

into a non-dimensional system (ND), we have to first choose the characteristic length 0, pl  and 

time scale 0, pt  in physical units depending upon the problem being simulated. For example, 

0, pl can be the size of an obstacle immersed in the fluid or diameter of the bubble or droplet 

being simulated, and 0, pt  can be the time needed for a passive scalar to travel the 

characteristic length in the fluid. Using these characteristic scales, we can now non-

dimensionalize the governing equations (G.15) and (G.16) to yield: 

 0nd nd  u  (G.17) 

   21
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and Re  is the Reynolds number defined as: 
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2
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p p
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t 
  (G.19) 

Now, expressing the reference physical variables 0, pl  and 0, pt  in non-dimensional units, we 

get: 
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 0,
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Since Reynolds number remains the same in both the flow configurations (P and ND), we can 

write: 

 
2 2
0, 0,

0, 0,

1
Re p nd

p p nd nd nd
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G.2.3 From non-dimensional (ND) to lattice Boltzmann (LB) system  

 

 The discrete space step h  is defined as the reference non-dimensional length 0,ndl  

divided by the number of cells cellsN used to discretize the length. Similarly, discrete time step 

t  is calculated by dividing the reference non-dimensional time 0,ndt  by the number of time 

steps timestepsN  needed to reach a desired time. Since 0, 1ndl   and 0, 1ndt  , we get: 

 
1

cells

h
N

  (G.23) 

 
1

timesteps

t
N

   (G.24) 

Other variables can be converted between (ND) and (LB) systems using: 
 

 
 

nd
lb

u
u

h t



 (G.25) 

 
2 2

1

Relb nd

t t

h h
  

   (G.26) 
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G.2.4 Illustrative example  

 

 In an attempt to explain the unit conversion from (P) to (LB), an example (again, 

taken from Latt (2008)) is presented below. 

 

Suppose we want to simulate flow in a 2D lid-driven cavity, in which the fluid is 

confined within a box of size 3 cm x 3 cm. The lid at the top moves with a speed of 2 

cm/min. The viscosity of the fluid is 5 cm2/min (Raspberry Jam). The following steps outline 

the unit conversion process (Latt, 2008): 

 

 Define the physical characteristic length and time scale. Let us select 0, pl = 3 cm 

and 0,
0,

p
p

lid

l
t

U
 = 1.5 min (time taken by the lid to traverse the characteristic 

length). 

 Compute the flow Reynolds number, i.e. 
2
0,

0,

Re p

p p

l

t 
 = 1.2 

 Choose the discretization parameters (grid space and time step). Suppose we want 

to pick 101 x 101 lattice points to discretize our 2D simulation domain (lattice 

points lie on the domain boundaries), then cellsN = 100 which gives the discrete 

grid spacing to be 
1

cells

h
N

  = 0.01. Furthermore, let us select t  to be 2 x 10-4 

(how to appropriately pick t  will be discussed in the next section).  

 Having selected h  and t , we can now establish lbu (equivalent lattice velocity to 

simulate the lid velocity) and lb (lattice viscosity) from equations (G.25) and 

(G.26) as: 

 
    0, 0,

nd lid
lb

p p

u U
u

h t l t h t
 

 
= 0.02 (G.27) 

 

 
2 2

1

Relb nd

t t

h h
  

  = 1.67 (G.28) 

Once lattice viscosity is determined, one can calculate the single-relaxation time   

from its relationship with the lattice viscosity. 



 
 
 

249

 

G.2.5 How to appropriately pick t ?  

 

 As discussed in Latt (2008), there is no straightforward intuitive way to choose t  in 

a LB simulation. In several other numerical methods, time-step t  is often linked with space 

step h  from the relation 2t h �  due to numerical stability considerations. However, in 

LBM, the relationship between t  and h  results from other constraints. 

 

 From equation (G.27), we know that velocities measured in the lattice units are of the 

order t / h  (i.e. lb

t
u

h


� ), and since the LB velocity should be less than the lattice speed of 

sound, sc  (i.e. lb su c , for subsonic flows), there is a constraint in the form of 
3

h
t   

where 
1

3
sc   for a D2Q9 lattice (Latt, 2008). 

 

 Another constraint on t  can be obtained for the simulation of incompressible flows. 

Since LBM is a quasi-compressible method, i.e. the system in LB simulations enters a 

slightly compressible regime to solve the pressure equation of the fluid. The compressible 

effects, however, do affect the numerical accuracy of the system. Since the compressibility 

error of the LB simulations comp  scales with the square of Mach-number, 2Ma  (i.e. 2Ma �  

), we can keep the system close to incompressible by choosing a low Mach number (i.e. low 

lb

s

u
Ma

c
 ). From the above discussion, we can write: 

 
2

2 2
comp lb

t
Ma u

h
  

 
 

� � �  (G.29) 

For a second order accurate LBM, the lattice resolution error scales with h  as 2
lattice h � . In 

order to keep the order of both error terms the same (i.e. comp lattice � ), one can scale the t  

as 2t h � , which apparently is the same constraint that one encounters in explicit fluid 

solvers (Latt, 2008). 
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