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Abstract

The rate at which a mine detection system falsely identifies man-made or
natural clutter objects as mines is referred to as the system’s false alarm rate
(FAR). Generally expressed as a rate per unit area or time, the FAR is one
of the primary metrics used to gauge system performance. In this report, an
overview is given of statistical methods appropriate for the analysis of data
relating to FAR. Techniques are presented for determining a suitable size
for the clutter collection area, for summarizing the performance of a single
sensor, and for comparing different sensors. For readers requiring more
thorough coverage of the topics discussed, references to the statistical
literature are provided. A companion report addresses statistical issues
related to the estimation of mine detection probabilities.
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1 - INTRODUCTION

The primary statistical metrics used to assess performance for mine detection systems are
related to the probability of detecting actual targets (PD), and the false alarm rate (FAR). A
companion report [Simonson, 1998] outlines some of the standard statistical techniques and
concepts used in assessing PD. In this paper, models and calculations used to quantify the false
alarm rate are discussed. These methods can be useful both in designing tests of mine detection

systems, and an analyzing the data collected during such exercises.

In target recognition applications, every detection is classified as "true" or "false". A
detection is said to be true if an actual target (mine) is present at or near the indicated location.
Otherwise, it is false. When controlled tests of mine detection systems are conducted, the
investigator knows the number, type, and location of actual mines encountered by each system.
Thus, it is sensible to characterize performance on target mines in terms of PD, with inferences
based on the ratio of the number of detections to the number of targets emplaced. Typically, PD

varies with mine type and size.

All true detections are, by definition, caused by target mines. By contrast, false
detections may arise from two different sources: known decoy objects (e.g., bolts, cans)
intentionally buried at surveyed locations in the range of the sensor, and the background
characteristics and natural variability of the test region itself. In order to ensure that experiments
designed to test multiple detection systems are unbiased, it is important to distinguish between

these two sources.

During detection system tests, decoys (or "confusers") are sometimes emplaced to
provide diagnostic information about the types of objects that can cause a system to false alarm.
A discrete number of items is emplaced, and the detection probability can be estimated
separately for each different type of object. This probability may be referred to as the
"probability of a false alarm” (PFA) for the particular decoy type. Statistically, it is equivalent to
the "probability of detection” for a particular target type, and may be analyzed in the same

manner, using the methods outlined in Simonson [1998]. The distinction between PD and PFA




is that a high-performing system will have a high PD for relevant targets and a low PFA for

common non-targets.

The analysis of "clutter" or "background" false alarms (those representing neither an
actual mine nor a known decoy) proceeds differently. Because the investigator is unlikely to
have a full characterization of the subsurface of the test region, the cause of false alarms not
corresponding to decoy objects is generally unknown. Depending on the particular sensor used,
false alarms may be due to rocks, pockets of loose sand, small metal scraps, buried organic
material, or other subsurface phenomena. Rather than try to assign a cause to each such detection
during the test, the investigator simply notes how many of them occur. Coupled with
information about the area (or time) covered by the sensor, this data can be used to characterize
the rafe at which false detections occur in clutter. The purpose of this report is to introduce

appropriate statistical methods for assessing such rates.

Figure 1 may help to clarify the distinctions between detections due to targets, decoys,
and clutter. The schematic plot shows the spatial layout of an experiment designed to estimate
PD for three different target types, PFA for two different decoy types, and FAR for one region
that is assumed to be fairly homogeneous. Data related to all three measures is collected in a
single run of a sensor over the full test region. Each detection is classified as to cause (known

target, known decoy, or unknown clutter) and the analysis proceeds separately for each type.

In the next section, the Pcisson model for data related to clutter false alarm rates is
introduced. Computations used in estimating the false alarm rate of a single detector are
described in section 3. Methods for constructing confidence intervals, conducting hypothesis
tests, and specifying the size of the study area are all covered. A technique for comparing the
false alarm rates of two different systems is given in section 4. Graphical methods for presenting
results related to PD and FAR simultaneously are presented in section 5, and section 6 concludes

the report with a few additional considerations for data analysis.




2 - THE POISSON MODEL

2.1 - Background and Assumptions

The Poisson distribution [Johnson, Kotz, and Kemp, 1992; Ripley, 1981] and the closely
related Poisson process [Cinlar, 1975; Taylor and Karlin, 1994] are often used to model
experimental data related to occurrence rates as a function of time or area. While this report

focuses on spatial rates, extension to temporal rates is straightforward.

For applications in mine detection, the experimenter must develop a sensible protocol for
determining what constitutes a detection. In addition, rules are needed for determining when a
detection corresponds to a known object (target mine or decoy) and when it is a clutter false
alarm. Typically, if a detection occurs at a point on the surface lying within a circle of fixed
radius about the surface point corresponding to the center of a known buried object, that
detection is characterized as being due to the buried object. (For analytical purposes, multiple
detections occurring within the same circle are generally treated as a single detection.) To
compensate for targets of different size, the radius of each detection region is adjusted to the
dimensions of the corresponding object. In order to eliminate ambiguity when assigning causes
to detections, decoys and mine targets should be emplaced in such a manner that their detection
regions do not overlap. Detections occurring outside of all target and decoy circles are classified

as clutter false alarms.

In analyzing false alarm rates, two basic measurements are used. The first measurement
is the number of clutter false alarms occurring while a detection system is under test. The second
measurement is the difference between the total area covered by the sensor, and the combined
area of all covered regions corresponding to targets and decoys. This latter figure represents the
area of the region covered within which any detection occurring would be characterized as a
clutter false alarm. It is referred to as the clutter area. Note that all decoy detections are omitted

from the clutter false alarm count, and all regions lying within decoy detection circles are

excluded from the clutter area. This allows the experimenter planning a test comparing several




different systems to include decoys that are attractive to one sensor only, without biasing the

reported false alarm rates.

The Poisson model assumes that each detection system being tested has a fixed (but
unknown) rate of clutter false alarms per unit area. In statistics, this rate is usually represented

by the parameter A, and is referred to as the intensity of the clutter false alarm process. It is

assumed that A is constant across the test region.

Some discussion of this assumption is in order. To ensure that valid estimates of the
FAR can be obtained, tests should be conducted in regions that are believed to be fairly
homogeneous. When substantial variation is known to exist, due to factors like changing surface
vegetation or moisture content, clay versus sandy soil, or shade versus direct sunlight, the full
test region should be divided into smaller sub-regions for performance analysis. A different false
alarm rate is then computed for each set of conditions, and statistical tests (see Section 4) can be
conducted to determine whether the various environmental factors significantly affect

performance.

2.2 - Notation

Suppose that a mine detection system has a true intensity of A false alarms per unit area
under certain conditions. In a system test, let R be the total area covered by the sensor, while the
combined area of all regions corresponding to mine targets is Ry, and the combined area of all
regions corresponding to decoys is Rp. The clutter area, R, is equal to R— Ry — Rp. Let K be a
random variable representing the number of clutter false detections; X is said to have the Poisson
distribution with parameter AR¢ [Cinlar, 1975; Johnson, Kotz, and Kemp, 1992]. It is of interest

to make inferences about the intensity A.

According to the Poisson model, the probability of observing k clutter false alarms is
given by:

e e (AR

Prob(K =k) = m
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fork=0,1,2, --- . The quantity K /Rc is an estimator of the unknown A. The uncertainty in this
estimator decreases as the clutter area covered increases: an experiment measuring 50 clutter
false alarms in 100 square meters is more informative than an experiment giving a single false
alarm in two square meters. The mean and variance of K /R¢ are as follows [Johnson, Kotz, and

Kemp, 1992]:

K
E(EJ— yl (2)

K)_ 4
var (E] = R (3)

The variance [Larsen and Marx, 1981] is a common measure of the uncertainty present in

an estimator. The quantity (3) decreases as R increases, demonstrating that experiments
covering a large clutter area will provide more certain information than smaller experiments.

Intensity also affects variance: for a fixed clutter area, variance increases with A.

3 - ESTIMATION AND TESTING FOR A SINGLE POISSON PARAMETER
3.1 - Confidence Intervals for 4

As discussed in Simonson [1998], it is common practice among statisticians, scientists,
and engineers to report parameter estimates along with uncertainty measures in the form of
confidence intervals. Each such interval is associated with a specified degree of confidence,
representing the a priori probability that the interval will contain the true parameter value.
Informally speaking, 95% confidence intervals are constructed in such a manner that they will
have a 95% chance of containing the true value. Formal definitions of confidence intervals can
be found in numerous texts [Bickel and Doksum, 1977; Cox and Hinkley, 1974; Silvey, 1975].

The degree of confidence in an interval is frequently represented algebraically in terms of
the quantity ¢, which is equal to one minus the a priori probability that the interval will contain

the true parameter value. Thus, for a 95% confidence interval, «is equal to 0.05. The standard
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notational convention uses the expression 100(1 — &)% to represent the certainty corresponding

to a generic confidence interval.

Two different approaches are employed to construct confidence intervals for a single
Poisson parameter, A. When the number of detections is large, the (continuous) normal
distribution is used to approximate the (discrete) Poisson [Larsen and Marx, 1981; Johnson,
Kotz, and Kemp, 1992]. This approximation makes the construction of confidence intervals
straightforward for large false alarm counts. For small counts, the normal approximation is
inappropriate and a different format for confidence intervals is required. The large sample
method is acceptable when the number of clutter detections exceeds 15 [Johnson, Kotz, and

Kemp, 1992].
3.1.1 - Small Sample Approach

The small sample method for computing confidence intervals for the Poisson parameter is
as follows. Denote the lower limit of an interval by A;, and denote the upper limit by Ay. If k

false alarms occur in a clutter region of area R, an approximate 100(1 — @)% confidence interval

for A is defined by [Hald, 1952; Johnson, Kotz, and Kemp, 1992]:

1

A, = "z?clzzk,a/z “4)
1
Ay = E‘k‘“lzz(m),l—a/z- 5)

<

Here the quantity 75, ,,, is equal to the /2 quantile of the chi-square distribution with 2k

degrees of freedom, with %3,,;,,,. defined in a similar manner. Quantiles of the chi-square

distribution are tabulated in many statistics textbooks [e.g. Larsen and Marx, 1981}, and are

readily available from most commercial statistical software packages.
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Equation (4) holds only for £ > 0. When no clutter false alarms are observed (k = 0), the

lower limit Ay is set to 0.0, while the upper limit is still computed from (5).

alarms occur in a clutter region covering Rc = 40 square meters. Then the observed FAR is

given by 12/40 = 0.30 per m*. To construct 95% confidence intervals, «is set at 0.05. From a
table of the chi-square distribution, y3,,,,5=12.401 and 3, o5 = 41.923. It follows from (4)
and (5) that (0.155, 0.524) is a 95% confidence interval for the false alarm rate (per square

meter) of the system under test. Values of A falling within this interval are deemed to be

A simple example illustrates the small sample method. Suppose that £ = 12 clutter false
consistent with the observed data.

Confidence interval width (Ay — A;) is a natural measure of the uncertainty present in an

estimate. Figure 2 shows lower and upper 95% confidence bounds, as well as interval widths,
for clutter false alarm counts ranging from zero to 15 in experiments with R¢ = 50 m? and Re =
250 m®. All of the values plotted are calculated from equations (4) and (5).
3.1.2 - Large Sample Approach

The large-sample method of computing confidence intervals uses the normal

approximation to the Poisson distribution. When k exceeds 15 clutter false alarms, an

approximate 100(1 — @)% confidence interval for A is given by [Johnson, Kotz, and Kemp,

19921]:
k 1 z 1
A:—-—+_—27__1;0‘_/£’k+_2 6
L R, 2R, Lan R. 4Z1~a/2 (6)
k 1, z 1
A, = — + Z, +—1i’2—1}k+—z2_ . 7
U R, 2R, 1-a/2 R, g -l (7)

Here, the quantity z,_,,, represents the quantile of the standard normal distribution

corresponding to probability 1 — /2. For example, to get a 95% confidence interval, choose o=
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0.05, and use the value zp975s = 1.960 in equations (6) and (7). Tables of the standard normal
distribution are found in many statistics textbooks [e.g. Larsen and Marx, 1981], and are readily

available from most commercial statistical software packages.

Figure 3 shows upper and lower 95% confidence bounds, along with interval widths, for
k ranging from 15 to 250 detections in experiments with R¢ = 50 and 250 m®. All of the values
shown are computed using Equations (6) and (7). As in the small sample case (Figure 2), the

confidence interval widths computed here vary with both &k and Rc.

3.2 - Hypothesis Tests

Statistical tests provide a mechanism for choosing among two conflicting hypotheses
about the model underlying an observed data set [Koopmans, 1987; Silvey, 1975]. The null
hypothesis (Hp) is accepted in the absence of strong evidence to the contrary. The alternative
hypothesis (H;) is accepted when experimental data are deemed to be inconsistent with Hy. The
probability of rejecting Hy when Hj is true is referred to as the level of a test, and is often

denoted by o

In the case of a single Poisson parameter, one may wish to test whether observed data are
consistent with the hypothesis that A is equal to some specified value, Ay. The appropriate null

and alternative hypotheses are given by:

H,: A=4, (8a)
H:A#4,, (8b)
and the following test statistic is used:
|1
z= ,AO | . €))
A, /R,

Here, A = k/R. is the observed false alarm rate. If the null hypothesis is true, the statistic (9)

has a distribution that is approximately standard normal for large k (greater than 15) [Johnson,




Kotz, and Kemp, 1992]. If H; is true, z will tend to be large. An ¢rlevel test rejects Hy when z

exceeds 7, ,,,, the 1 — 072 quantile of the standard normal distribution.

As an example, consider a test of Hy: A = 0.10 versus H;: A # 0.10, and suppose that the
available data show k = 18 clutter false alarms in R¢c = 100 m?. This gives an observed false
alarm rate of A = 0.18. The test statistic (9) takes on the value z = 2.530. To test at level o

=0.05, compare z to zp975s = 1.960. Because z > 1.960, Hy is rejected at level 0.05: the observed

data are not consistent with a false alarm rate of 0.10 per square meter.

The test statistic (9) is based on the normal approximation to the Poisson distribution and
is only appropriate when the number of false alarms is large. For small %, the recommended
testing procedure would be to reject (8a) for values of Ay not lying in the small-sample

confidence interval computed from (4) and (5).

3.3 - Clutter Area Calculation

The normal approximation to the Poisson distribution can be used to calculate the

approximate clutter area needed to keep the uncertainty in estimates of A below some specified

level. Here, uncertainty is expressed in terms of 100(1 — %)% confidence interval width. The
experimenter begins by specifying an observed clutter false alarm rate, }:0, and a tolerable
confidence interval width, W, corresponding to ZAO From equations (6) and (7), the width of a

100(1 — )% confidence interval on A, when the observed proportion is A,is given by:

2 , R . 1/2
ci.width = —ZI?L’;l:/”LRC + —z{_a/2i| (10)

C

Setting the width equal to the desired value W, and solving (10) for R¢ gives:

R. =72 (11

24+ (42 + W2
¢ = Zan > -

Wa




As an example, to obtain confidence intervals with width no greater than 0.10 for an observed
clutter false alarm rate of io =0.5 per m?, it follows from (11) that the clutter area must cover at

least 771 square meters.

Of course, during the test planning phase the investigator will not know the observed
FAR. Thus, the choice of an appropriate value of /io for use in (11) is not clear. One option is
to select a value that is believed to be a reasonable upper bound. Because (11) increases with

ZAD , this approach will give a conservative estimate of the required clutter area.

4 - COMPARING TWO POISSON PROPORTIONS

In practical applications of mine detection technology, false alarms can be costly in
dollars, time, and operational success. Thus, the development of new sensors and processing
methods with reduced false alarm rates is a goal of much ongoing research. Determining when
one sensor has significantly out-performed another is an important step in the analysis of data
from a multi-system demonstration or test. In this section, a statistical hypothesis test for
comparing the performances of twc different sensors is discussed. The same technique may also
be used to assess the performance of a single system under different experimental conditions
(e.g., dry sandy soil versus wet clay), or in different replications of the same system over the

same clutter region.

4.1 - An Hypothesis Test for Two Poisson Rates

Suppose that system A covers a clutter area of R, during test, with k4 clutter false alarms
observed. Let A4 represent the true FAR underlying system A. The quantities R, , ks, and A5

are defined similarly for system B.

The FAR performance comparison is based on the question: "Is the FAR demonstrated

by system A significantly different from the FAR demonstrated by system B?" In statistical

terms, this question is phrased as an hypothesis test, with null and alternative hypotheses given
by:




Hy: A=A, (12a)

H A %4, (12b)

One method for choosing between Hy and H; conditions on the total number of false
alarms (k4 + k) and examines the percentage of this total that is due to each system [Hald, 1952;
Lampton, 1994]. Let 74 represent the probability that any one false alarm is due to system A.
Conditional on the total number of false alarms, the experimental data may be viewed as a series
of ks + ké binomial trials, with two possible outcomes (system A or system B) at each trial. The

probability of system A is equal to 7 at every trial.

Under the null hypothesis (12a) the clutter false alarm rates underlying the two systems

are the same, and 74 should therefore be equal to:

R
T (13)

r, = —=*—
A
R, +R.,

which is simply the percentage of the total clutter area that was covered by system A. (If

R; =R, it follows that 7z, =1/2).

Under this framework, the hypotheses given in (12) are equivalent to:

H :n,=7n, (14a)
0 A Ag

H:n,#7, . (14b)

Methods for testing hypotheses about a single binomial proportion are discussed in Simonson

[1998]. Ifboth 7 ,(k, +k,)and (1 -7 ,)(k, +kj) exceed five, the test statistic:
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ke _{_ 1
k, +k Y 2k, +k
§ = A B ( A B) (15)
(-7, )
k,+k,

may be used. When the null hypothesis (14a) is true, s has a distribution that is approximately
standard normal [Fleiss, 1981]. If H; is true, (15) will tend to be large. An o-level test rejects
Hj when s exceeds the quantile of the standard normal distribution corresponding to probability 1
- a2,

As an example of the method, suppose that system A covered a clutter area of R, =250

m’ and gave ks = 118 false alarms. Suppose further that system B gave kg = 72 false alarms in a

clutter area of R, =200 m?. If the two systems have the same underlying false alarm rate, we

would expect that the fraction of false alarms due to system A would be approximately 7z, =

250/450 = 0.556. The actual fraction due to A was 118/190 = 0.621. From (15), the test statistic
has value s = 1.744. To test at level 0.05, s is compared to zp975s = 1.960. Because s < 1.960, the
null hypothesis is not rejected: the difference in rates between the two systems is not significant

at the 5% level.

In applying the method outlined in this section to experimental data, it is important to be
aware of the assumptions used to derive the statistic (15). Specifying 7, =R /(R., +R.,)
implies that the two systems were tested under equivalent conditions. If system A were tested in
a more challenging environment than system B, (15) would not represent a fair test of the
relative performances of the two systems. Ideally, the two systems should cover the same clutter

region, so that R. equals R.- . In many experimental situations, this is not possible. However,
g c, &4 Cp Y €Xp p

every effort should be made to ensure that the conditions encountered by the two systems are

comparable.
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5 - SUMMARY PERFORMANCE MEASURES: PD, PFA, AND FAR

As discussed in this report and the companion document [Simonson, 1998], the common
metrics used to characterize the performance of detection systems are PD (the probability of
detection), PFA (the probability of a false alarm), and FAR (the false alarm rate). All three are
of vital interest, and they must be considered together in evaluating detection systems. A system
that achieves a high PD but is subject to frequent false alarms may have little value in time-
critical applications. Conversely, a system that rarely makes false detections but misses a
substantial proportion of real mines is unlikely to gain acceptance among users. In this section,
some methods are presented for graphically summarizing system performance for targets,

decoys, and clutter.

Figure 4 is an example of a display style that can be used to show detection rates, along
with confidence intervals, for different types of known objects. The viewer can see at a glance
that the hypothetical sensor in question had little difficulty in detecting large and small metal
mines, but frequently missed plastic mines. While it rarely false alarmed on the wooden decoys,
it misclassified bolts as targets about 60% of the time. Due to the relatively small number of
decoy objects utilized, the 95% confidence intervals for PFA on the decoys were considerably
wider than intervals characterizing PD for mine targets. Variations of this general type of plot
can be used to display the performance of multiple sensors on the same test data, or the
performance a single sensor under varying experimental conditions. In producing such a plot, it

is implicitly assumed that the same detection threshold was used across all target and decoy

types.

For many detection systems, the primary output at any given point in space is not a
binary (mine/no mine) decision, but rather a continuous one-dimensional variable that is
thresholded to determine whether or not a detection has occurred. This variable may simply be
the magnitude of a received physical or chemical signal, or it may represent a measure of the
similarity between the received signal and a known signal that is characteristic of targets. For

such data, it is common to display sensor performance in terms of PD and FAR, as a function of
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a varying threshold. Displays of this type are called receiver-operator characteristic (ROC)
curves [Andrews, George, and Altshuler, 1997; Poor, 1988].

Assume that the variable in question tends to be large in the presence of the target. When
a threshold level is chosen, detection is said to occur at each location in the test region giving a
value at or above this level. As the threshold is reduced, the number of detections increases.
ROC curves are constructed by varying the threshold, and plotting observed false alarm rate (per
unit area) versus observed PD. The points representing PD/FAR pairs are then connected to give
a smooth-looking curve. Figure 5 is an example summarizing the performance of a hypothetical
sensor for small metallic mines under two different conditions: dry sandy soil, and wet sandy
soil. For each condition, the PD corresponding to any given FAR can be read from the
appropriate curve. For example, with a FAR of one per 100 m?, the sensor achieves a PD of
100% for dry soil and about 78% for wet soil. Multiple curves can be used to graphically
illustrate performance differences observed across various sensor types, target types, and

experimental conditions.

6 - DISCUSSION

This report and its companion [Simonson, 1998] outline a variety of statistical techniques
pertinent to mine detection problems. Methods are introduced for the estimation of PD, PFA,
and FAR. Hypothesis tests are developed for assessing performance differences between two
different sensors, or between two different environments for the same sensor. Basic formulas for
calculating sample sizes and clutter areas are included. In selecting the material to be presented,
the goal has been to choose a few straightforward and broadly applicable techniques - not to
provide an exhaustive catalog and review of statistical methodology. Of necessity, some
relevant subjects have been neglected. In this section, two particularly important (and closely
related) topics are briefly addressed, with references provided to more complete accounts. These
topics are the design of multi-factor experiments and the analysis of variance (ANOVA) for

multiple comparisons.
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When planning experiments to test the capabilities of different mine detection systems,
the designer is frequently interested in determining whether (and how much) a variety of
different experimental factors impact sensor performance. Controlled factors may include target
type and size, soil type and moisture content, and burial depth. Due to cost considerations, it
may not be feasible to conduct a large number of replications of every possible combination of
experimental factors. However, by careful selection of the combinations to be tested, the
experimenter can ensure good estimates of the effects that are deemed the most important. The
general field of statistical experimental design is concerned with the planning of efficient
experiments to provide the desired information in a readily extractable form. Two standard

references in this area are the texts by Box, Hunter, and Hunter (1978) and Cox (1958).

The first step in analyzing data from multi-factor experiments often involves using the
analysis of variance to determine which factors (and combinations of factors) significantly
impact performance. While ANOVA is a familiar and widely used technique, it is based on
several assumptions that may be questionable for mine detection data. In particular, the response
variable is assumed to be énormally distributed. When the actual response represents a
percentage of mines detected, the exact distribution is binomial and the normal approximation
may be inadequate if the observed percentage is close to zero or one, or if the number of target
mines emplaced is small. In such cases, it is necessary to transform the observed percentages to
a new domain in which the normality assumption is more nearly met. The book by Box, Hunter,
and Hunter (1978) provides an excellent introduction to the mathematics of ANOVA. The
collection edited by Hoaglin, Mosteller, and Tukey (1991) discusses a number of more advanced

topics, including transformation and graphical display.

It is hoped that the material covered in the present report and its companion, along with
the referenced statistical literature, will provide some useful guidance to the mine detection

community in the areas of experimental planning and statistical data analysis.
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SCHEMATIC REPRESENTATION:
LAYOUT FOR ESTIMATING PD, PFA, AND FAR

REGION USED
TO ESTIMATE PD
FOR TARGET TYPE i

REGION USED
TO ESTIMATE PFA
FOR DECOY TYPE |

REGION USED
TO ESTIMATE FAR

Figure 1 - Schematic diagram of an experimental layout. This experiment is designed to provide estimates of PD
for three different mine target types, PFA for two different decoy types, and FAR over a clutter area believed to be
homogeneous. Non-overlapping detection regions are used to compute the different estimates. Detections occurring
within the dark circles are classified as target hits, while those occurring within the light circles are classified as
decoy hits. Detections occurring within the striped region are designated as clutter false alarms.
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Figure 2 — Small sample 95% confidence intervals for a single Poison parameter. Bounds and widths are
shown for clutter areas of Rc = 50 m” and R¢ = 250 m”. All of the values plotted were computed using the small
sample method of equations (4) and (5). For a fixed number of false alarms, uncertainty decreases as area increases.
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Figure 3 - Large sample 95% confidence intervals for a single Poisson parameter. Bounds and widths are
shown for clutter areas of Rc = 50 m? and R¢ = 250 m®. All of the values plotted were computed using the large
sample method of equations (6) and (7).
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PERFORMANCE SUMMARY - KNOWN OBJECTS

MINE TARGETS: DECOYS:
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0.8- -0.8
£ 0.6- ? fos &
S ]
g i S
Q 0.44 -0.4 E

0.2 I ¥

¢
0.0- | o -0.0

] I 1 1 1
LARGE SMALL SMALL DECOY #1  DECOY #2
METAL METAL PLASTIC (WOO0D) (BOLTS)

n=17 n=26 n=51 n=10 =8

Upper 95% Confidence Limit
Observed Detection Percentage

Lower 95% Confidence Limit

Figure 4 - Sample graphical summary. Results are shown for a hypothetical sensor tested against three different
types of mine targets and two types of decoys. For each target or decoy type, the observed detection percentage is
shown as a solid dot and the corresponding uncertainty is represented in terms of a 95% confidence interval. To
provide the viewer with some information about the experimental design, the number of times each object type was
encountered 1s also listed.
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ROC CURVES: SMALL METALLIC MINES
(31 Target Mines, Clutter Area = 1000 sq.m)
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Figure 5 - Sample ROC curve, The curve iliustrates the performance of a hypothetical sensor against a specific
target type (small metallic mines) under two different environments. For each test condition, 31 target mines were
encountered, and a clutter area of 1000 square meters was covered. For a clutter area of this size, false alarm rates
below 0.001/m’ cannot be estimated, so the curves are left truncated at this point.
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