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Abstract 
Linear lightning diffusion into a Faraday cage is studied.  An early‐time integral valid for large 
ratios of enclosure size to enclosure thickness and small relative permeability (ߤ/ߤ଴ ൑ 10) 
complemented by an exact residue expansion is used for this study. Existing solutions for 
nearby lightning impulse responses of electrically thick‐wall enclosures are refined and 
extended to calculate the nearby lightning magnetic field (H) and time‐derivative magnetic field 
(HDOT) inside enclosures of varying thickness caused by a decaying exponential excitation.  For 
a direct strike scenario, the early‐time integral for a worst‐case line source outside the 
enclosure caused by an impulse is simplified and numerically integrated to give the interior H 
and HDOT at the location closest to the source as well as a function of distance from the source.  
H and HDOT enclosure response functions for decaying exponentials are considered for an 
enclosure wall of any thickness.  Simple formulas are derived to provide a description of 
enclosure interior H and HDOT as well.  Direct strike voltage and current bounds for a single‐
turn optimally‐coupled loop for all three waveforms are also given. 
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Linear Diffusion into a Faraday Cage 

Executive Summary 
An impulse is used as an idealized waveform for approximating a high altitude electromagnetic 
pulse (HEMP) when treating the magnetic diffusion into a metallic enclosure [1].  A unit step on 
the other hand is used to calculate the maximum voltage induced on an optimal coupling loop 
inside a metallic enclosure and on the opposite side of the enclosure wall by lightning [2].  The 
rationale of these treatments is clear.  A thick enclosure wall allows the use of an impulse; a 
thin wall needs to use a unit step.  The questions that arise in deciding which approach to take 
are, ”What is the quantitative criterion for determining which one is more accurate?  What is 
the relevant parameter?  What errors are incurred if the criterion is violated?” 
 
The parameter most relevant to the diffusion penetration is the diffusion time (߬ௗ ൌ ∆ଶߪߤ) of 
the enclosure wall where ,  and ∆ are the permeability, conductivity and thickness of the wall 
material.  Table 1 lists various ߬ߙௗ where α is the decay constant of the lightning waveform.  All 
of these thicknesses are used in various aerospace applications.  The table shows that the 
diffusion time is both large and small compared to the fall time of the lightning waveform, 
depending on the thickness, so that neither the impulse approximation, nor the step‐function 
approximation is universally valid. 
 
 In the frequency domain, the skin depth δ is a familiar quantity for shielding.  When the skin 
depth for an incident magnetic field with ߱ as the angular frequency is small compared to the 

enclosure wall thickness, i.e.,  ߜ ൌ ඥ2/߱ߪߤ ൏ ∆ , the magnetic field is attenuated as it 

penetrates the wall.  The higher the frequency the greater the attenuation.  Letting ߱ ൌ  ,ݐ/2
leads to ݐ ൏ ߬ௗ.  For ݐ ≪ ߬ௗ, the magnetic field is greatly attenuated.  The smaller the time the 
greater the attenuation. 
 
Table 1. 	ࢊ࣎ࢻ values for different enclosure wall thicknesses and for different lightning decay 
constants. 

∆ (wall 
thickness in 
inches) 

τd ሺൌ ∆ଶߪߤሻ  
for 6061 
Aluminum 
Alloy 

ௗ߬ߙ
ߙ ൌ 3466 
	(1% lightning) 

ߙ ൌ 13864  
(50% lightning) 

1/2  5.27 ms  18.27  73 

1/4  1.32 ms  4.567  18.27 

1/8  329 μs  1.142  4.567 

1/16  82 μs  0.2855  1.142 

1/32  21 μs  0.0714  0.2855 
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The decaying exponential waveform characterizes the principal energy contribution of naturally 
occurring physical phenomena, e.g., lightning.  The decaying exponential response closely 
describes the transient behavior and is the response of interest in many physical problems.  The 
decay constant α is inversely proportional to the fall time of the waveform.  Therefore, ߬ߙௗ is 
proportional to the ratio of diffusion time to the fall time and is the transition parameter.  
Limiting cases are simple and easier to calculate and serve as useful models.  When ߙ → 0  and 
the fall time goes to infinity, the decaying exponential becomes a unit step that contains low 
frequencies.  This is considered a thin limit because low frequencies penetrate the enclosure 
wall. When ߙ → ∞  and the fall time goes to zero, the decaying exponential becomes an 
impulse that contains high frequencies. In the thick limit, we consider how high frequencies 
penetrate the wall. 
 
This report varies  ߬ߙௗ through the transition range from thin to thick.  Figure 1 is peak interior 
HDOT for nearby lightning enclosure interior fields.  Strictly speaking, the unit step response is 
only valid for	߬ߙௗ ൌ 0  and the impulse response is only valid for  ߬ߙௗ → ∞; however, either 
model can be used to approximate the problem under study.  The peak HDOT determines the 
peak induced voltage and therefore we will emphasize our discussion on HDOT.  For voltage 
calculations in an externally uniform field drive like HEMP and nearby lightning, the spatial 
variation of the nearby lightning H and HDOT inside the enclosure is assumed to be constant.   
For direct strikes, the spatial variation of the HDOT waveform is, in general, unknown and 
therefore the direct calculation of a voltage bound is also included.  The current bound is also 
used to illustrate the importance of avoiding multi‐point grounds. 

 
We compared unit step, impulse, and decaying exponential responses and found that 
approximate HDOT peaks for decaying exponentials can be obtained by combining the unit step 
coupling and the impulse coupling (treating them as independent, for the former is dominated 
by low frequencies and the latter is dominated by high frequencies).  A parallel “combination” 
of the unit step coupling and the impulse coupling yields an approximate formula for peak 
HDOT: 
 

ଵ

ு஽ை ೔்೙
೐ ൌ

ଵ

ு஽ை ೔்೙
ೞ ൅

ଵ

ு஽ை ೔்೙
೔                     (1) 

 
where superscript “e” is for decaying exponential, superscript “s” is for unit step and 
superscript “i” is for impulse and subscript “in” is for interior field.  Figure 1 shows the peak 
decaying exponential response compared to the peak unit step and the peak impulse responses 
for nearby lightning.  Note that 0.8876 is the peak response of coupling from the unit step, 

5.7118 is the slope of the peak response of the coupling from the unit impulse and 
ଵ

݀߬ߙ
 is the 

impulse moment.  These numerical values obtained by solving limiting cases are fully discussed 
in the section on numerical results. 
 
The approximation in Figure 1 makes use of (1) in combining the unit step contribution with the 
impulse contribution.  
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Figure 1.  This figure shows the peak decaying exponential response compared to the peak 
unit step and the peak impulse response. Note the unit step and impulse intersects at 

ࢊ࣎ࢻ ൌ ૟. ૝૜૞૚ where either waveform overestimates the peak derivative compared to the 

decaying exponential. ࣈ ൌ ૟. ૙ૡૡ is used for obtaining peak responses. 
 
The scale factor ߬ௗ is the product of enclosure geometric factor and diffusion time.  The 

geometric factor is  ൌ ఓబ
ఓ

௏

ௌ∆
  where V is the volume and S is the surface of the enclosure.  As an 

example a cylindrical enclosure with diameter of 2ܽ ൌ ܾ  length of ,ݐ݂	2 ൌ ∆ൌ	and ݐ݂	6
 ξ = 257.3. Note that Figure 1 is calculated with ξ = 6.088.  Scaled peak responses are ,ݏ݈݅݉	20
not very sensitive to the ξ value.  In the section on numerical results, small variations for 
different ξ’s will be discussed.  The peak unit step and impulse responses intersect at 
ௗ߬ߙ ൌ 6.4351.  At this value of ߬ߙௗ, the error is approximately a factor of 2 in either the 
impulse or step responses. Large errors can incur if the unit step is applied to the thick wall 
 HEMP has a decay   .(ௗ is small߬ߙ) or if the impulse response is applied to thin wall (ௗ is large߬ߙ)
constant ߙ ൌ 4 ൈ 10଺ [3].  The intersection point corresponds to ߬ௗ ൌ  or ,ݏߤ	1.61
approximately 9 mil aluminum foil.  For the impulse response to be accurate, the enclosure wall 
has to be at least 20 mils in thickness.   
 
Consider now a HEMP (Electric Field Peak =50 kV/m and Magnetic Field Peak =133 A/m) is 
incident on a cylindrical enclosure discussed before (2ܽ ൌ 0.61	݉ and ܾ ൌ 1.83	݉).  We 

                                                       
 The corresponding intersection for peak H response (Figure 24) is  ߬ߙௗ ൌ 0.1458.  An adequate model for 
describing HDOT may not be adequate for describing H and vice versa. 
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assume a wall thickness  ∆ൌ  ,a magnetic field perpendicular to the axis of the cylinder ,ݏ݈݅݉	20
and an optimum coupling loop oriented to capture a maximum penetrant magnetic flux.  The 
induced voltage is the time derivative of the magnetic flux through the loop.  Let us use an 
impulse model as shown in Figure 1.  20 mil‐aluminum alloy wall has  ߬ௗ ൌ ௗ߬ߙ  ,ݏߤ	8.4 ൌ 33.6  
and  the geometric factor ߦ ൌ 257.3, 
 

ܸ ൌ ଴ߤ
ௗு

ௗ௧
2ܾܽ ൌ ܱܦܪ଴ߤ ௜ܶ௡2ܾܽ ൌ

ఓబு೐ೣ
కఛ೏

ହ.଻ଵଵ଼

ఈఛ೏
2ܾܽ ൎ  .ݏݐ݈݋ݒ݈݈݅݅݉	14.5

Equation (2) for calculating the voltage of a decaying exponential waveform gives 12.2 
millivolts. 
 
Similarly, the nearby peak magnetic field is 320 A/m. Using the same cylindrical enclosure for 
the HEMP problem, the induced voltage for the maximum coupling loop as defined before is 35 
millivolts for the impulse model and 29.3 millivolts for the more accurate decaying exponential.  
 
The direct lightning model assumed in this report is one for which the lightning current is 
adjacent to the enclosure but electrically insulated from the enclosure (Figure 2).  The lightning 
channel may have high potential and the assumed lightning line source is not easily realizable 
for a small separation between the lightning carrying cable and the enclosure.  However, the 
worst‐case coupling can be approached when lightning strikes a well‐insulated cable that is 
isolated from the enclosure but their separation is sufficient to withstand the high potential.  
The relevancy of the model should be based on the potential physical configuration that might 
be susceptible to this particular threat. 
 

   
Figure 2.  Direct lightning strike to an insulated cable parallel to the enclosure wall and a 

maximum coupling loop.  
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Peak HDOT for a direct strike next to the enclosure is given in Figure 3.  The unit step coupling 
peak is 0.2516 and the slope of the unit impulse coupling peak is 4.1608. The approximation in 

Figure 3 makes use of (1) for ߩ ൌ ߤ  ,∆ ൌ  the direct strike peak current = ܫ ଴  andߤ	
as 
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Figure 3.  HDOT peak ሺ࣋ ൌ ∆ሻ	for the decaying exponential and an approximation are 
compared to the unit step and impulse responses.  This value determines the maximum 

voltage induced on an optimally coupled loop.  The enclosure wall has  ࣆ ൌ  .૙ࣆ	
        
Note that the intersection of the unit step and the impulse peaks occurs at ߬ߙௗ ൌ 16.5374 
(Figure 3).  For 1‐percentile lightning, the decay constant is determined to be ߙ ൌ 3466.  A ½‐
inch aluminum wall thickness has  ߬ߙௗ ൌ 18.27 (Table 1).  At this value of ߬ߙௗ and b as defined 
in Figure 2 is 1.83m,  
	

ܸ ൏ ׬ ܱܦܪ଴ߤ ௜ܶ௡|ఘୀ∆
∆మ௕ௗఘ

ఘమ
ஶ
∆ ൎ ܱܦܪ଴ߤ ௜ܶ௡|ఘୀ∆ܾ∆ൌ

ఓబଶൈଵ଴ఱ

଴.଴଴ହଶ଻
0.2516 ൈ 1.83 ൎ  ݏݐ݈݋ݒ	21.95  

    (4) 
for the unit step case.  Equation (3) gives 10.4 volts for the decaying exponential. 
 
HDOT values in the enclosure indicate what induced voltage on a given loop might be.  
However, because the spatial dependence of the HDOT waveform is unknown the induced loop 
voltage waveform that is the integration of the HDOT waveform on the loop area cannot be 
accurately calculated.  The voltage bound on an optimally coupled loop is a useful alternative 
for describing the enclosure interior direct strike lightning coupling (Figure 4). Note the close 
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agreement between the unit step response of 0.2516 for HDOT (Figure 3) and the unit step 
response 0f 0.2552 for the voltage bound (Figure 4).  This is because the HDOT for the unit step 

has an approximate spatial variation of (ൎ ଵ

ఘమ
). 
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Figure 4. Peak voltage bound for direct strikes. The intersection of the peak unit step voltage 

and the peak impulse voltage occurs at ࢊ࣎ࢻ ൌ ૚૚. ૝૛૟૜. 
 
The unit step voltage bound for the direct strike problem (Figure 2) just discussed can be 
calculated by (Figure 4) 

ܸ ൌ 0.2552 ఓబ
ఛ೏
ܾܫ ൎ ଴.ଶହହଶൈఓబ

଴.଴଴ହଶ଻
2 ൈ 10ହ ൈ 1.83 ൎ  .ݏݐ݈݋ݒ	22.27

 
The peak impulse voltage bound (Figure 4) is somewhat smaller than the voltage obtained from 

peak HDOT (Figure 3) because HDOT from the impulse drops off much faster than 
ଵ

ఘమ
.  The 

approximation in Figure 4 is a formula similar to (3): 
 

ܸ߬ௗ	/ܾܫ0ߤ ൎ
ଵ

భ
బ.మఱఱమ

ା
ഀഓ೏
మ.వభల

  (5) 

The more accurate decaying exponential voltage bound (5) is thus  ܸ ൎ 0.0982	
0ூ௕ߤ

ఛ೏	
ൎ

   .ݏݐ݈݋ݒ	8.57
 
HDOT for ߩ ൌ ∆ that gives the maximum induced voltage of an optimally coupled loop is a 
universal response and can be scaled for any enclosure wall thickness Δ by noticing the impulse 

solution is scaled by ሺ߬ௗሻ૛∆ and thus is inversely proportional to ∆ହ.  Similarly, the unit step 
HDOT solution is inversely proportional to ∆ଷ.  The corresponding induced voltage is scaled by 
∆ିସ for the impulse and ∆ିଶ for the unit step, which agrees with voltage bounds (5).  As an 
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example, the induced voltage (5) for a 1/8‐inch aluminum enclosure (߬ߙௗ ൌ 1.142) with same 

geometry and 1/8‐in wall thickness is  ܸ ൎ 0.232	 ఓబܾܫ
߬݀	

ൎ  .ݏݐ݈݋ݒ	324

 
We must emphasize at this point that there is no reliable way to know which one of the two 
models (unit step or impulse) to use because the intersection point in Figure 1, Figure 3 and 
Figure 4 cannot be determined a priori.   For example, how do we know ߬ߙௗ of 1.142 is too 
small for using the impulse model?  If the impulse model is used for calculating  the peak 
voltage bound, the resulting estimated voltage is approximately a factor of 11 too high. 
 
On the other hand, although either the unit step or the impulse model may overestimate the 
peak response, the peak obtained from the model is always conservative; the resulting design 
based on either model will have adequate shielding. 
 
The procedure for deriving the approximate expression (1) for the enclosure interior peak 
HDOT as a function of ߬ߙௗ can be used to address the situation.  When both the unit step and 
impulse HDOT are known, an accurate fit function is available for use.  Furthermore, the 
technique of using a fit function is applicable to other diffusion problems.  For instance, the 
insulated conductor that is struck by lightning can be only a small distance away from the 
enclosure.  In this case, solving for the unit step and impulse responses is considerably simpler 
than the decaying exponential response.  The fit function for decaying exponentials can thus be 
constructed with the simpler unit step and impulse responses.   
 
Equation 4 can be integrated to describe the short‐circuit current (i) on the optimally coupled 
loop shown in Figure 2.  Note that the induced voltage V on the left hand side of (4) is the same 

as 
ௗ

ௗ௧
ሺ݅ܮሻ and ܱܦܪ ௜ܶ௡|ఘୀ∆ on the right hand side is the same as 

ௗ

ௗ௧
 ௜௡|ఘୀ∆ the current on theܪ

short‐circuit coupling loop can therefore be expressed as 
 

݅ ൏ ఓబ
௅
௜௡|ఘୀ∆ܾ∆ൎܪ

ଶగூ

ୡ୭ୱ୦షభ
ሺഐష∆ሻ
ೝబ

଴.ଶହଵ଺

ଵ଼.ଶ଻
ൎ  ܣ݇	2.7  

where the loop inductance L is assumed to arise from images on enclosure walls that dominate 

the impedance of the loop, ܽ is the outer radius of the enclosure and ݎ଴	is the wire radius
.   

The reduction for the loop current from the impulse to decaying exponential is determined 
later and found to be approximately 10% lower.  A typical current bound for a perfectly 
conducting loop is thus high and hence multi‐point grounds must be avoided [4].  If there is a 
series capacitance in the loop (e.g., an incidental open switch or other openings in the circuit), 
the loop current will be small because the impedance for the capacitance is very large at this 
frequency range. 
 

                                                       
 0.2516 is from Figure 4 and 

ଶగ

coshെ1ሺഐష∆ሻ
ೝబ

ൎ 1 is used. This is an order‐of‐magnitude estimate.  The actual 

inductance can be considerably lower than the value obtained from the assumption.  
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Other useful approximations are the application of averaging to a convolution integral (28) and 
an ad hoc use of averaging to a two‐parameter integral (57). 
 
Finally, the double exponential waveform does not provide a good description of HDOT for the 
lightning waveform.  The time derivative of a double exponential waveform that starts from a 

maximum value and decays in time on the order of  
ଵ

ఉ
 , where  is the rate‐of‐rise constant, 

does not resemble the time derivative of the lightning current.  Therefore, the transparency 
limit (∆	→ 0) for solutions given in this report is not realistic and should not be taken.   
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Introduction	
A Faraday cage is an enclosure composed of a continuous system of conductors, such that the 
potential difference between any two points on the cage is zero, when exposed to an 
electrostatic field. Although the definition is limited to electrostatic fields, Faraday cages are 
also effective in transient applications. In such cases, although potential differences and 
average fields are not identically zero, they are reduced dramatically from what they would 
have been in the absence of the shield. As a result, they are used in virtually all high‐
consequence or mission‐critical applications to mitigate the effects of electrical and 
electromagnetic environments. 
 
Faraday cages constructed as metallic enclosures must be evaluated for their attributes of 
shielding effectiveness against external electrical stresses. Enclosures of interest here are 
metallic cases.  The external electrical stresses are nearby and direct lightning threats.  Nearby 
solutions are useful for situations where the distance from the lightning current to the 
enclosure is much greater than the enclosure linear dimension.  Direct strike solutions give a 
worst‐case coupling to the enclosure interior. 
 
Nearby lightning can couple to the critical circuits inside the enclosure only through magnetic 
fluxes.  However, direct lightning strikes can penetrate the imperfect Faraday cage through 
insults on specific enclosure physical features.  First, the metallic enclosure wall must be thick 
enough to provide attenuation for lightning, not only for reducing the magnetic flux coupling, 
but also for stopping the lightning continuing current from burning through the wall. Second, 
the bolts used for connecting the enclosure must be evaluated for their contact impedances 
and the bolt spacing must be small so that no excessive voltage will appear on the joint.  Lastly 
and most important of all is that any line penetration must be stopped.  Use of lightning surge 
arrestors, inductors, fuses and robust switches are recommended to stop lightning that might 
be attached to the line penetrations from reaching protected circuits.   These circuits must be 
evaluated for all three different threats.  
   
This report first considers only the linear diffusion by extending the existing nearby solution of 
impulse magnetic field coupling into a thick‐wall enclosure [1] to enclosures of arbitrary 
thickness using an early‐time integral and a residue expansion for a decaying exponential 
excitation.  The limiting cases of the impulse and the unit step excitation are used to illustrate 
the magnetic coupling to an enclosure.  Decaying exponential response functions, uniformly 
valid for all thicknesses, are introduced for constructing the solution.  The wide transition for H 
and HDOT from very thick to the thin limit is covered by numerical curves as well as 
approximate analytical formulas. 
 
The worst‐case magnetic coupling to an enclosure from a direct lightning strike is then treated. 
The situation when the lightning current flows in a conductor in close proximity to the 
enclosure, but is insulated from the metallic enclosure case such that the magnetic flux from 
lightning can optimally couple to the enclosure interior, is the worst case. If lightning attaches 
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to the enclosure metal case the lightning current will be distributed on the enclosure case so 
that the magnetic coupling to the enclosure interior will be reduced. 
  
For a direct strike, a previous paper [2] treats the maximum penetration of a step function 
enclosure response that applies to a situation with  ߬ௗ ≪ 	 ߬௙ (where ߬ௗ	is the diffusion time of 

the enclosure wall and ߬௙	is the fall time of the incident waveform).  This report applies the 

basic formulation given in [2] to arbitrary wall thicknesses and the lightning waveform is 
treated as a decaying exponential waveform.  The solution is also numerically studied for 
distant fields.  Approximate formulas are derived to facilitate the understanding of the relevant 
physics. Again, decaying exponential response functions, uniformly valid for all thicknesses, are 
introduced for constructing the solution.  Voltage and current bounds for all three waveforms 
are also given. 
 
The organization of the report:  (A) executive summary provides a description of major 
accomplishments of the report, (B) subsections in the introduction present the parameters of 
lightning, the distinction between the nearby and direct lightning, and relevant works on linear 
diffusion, (C) sections on numerical results give complete waveforms for all limiting cases and 
all peak enclosure interior parameters are summarized in tables, (D) sections on technical 
details are given in the order of general solutions, nearby lightning, direct lightning for impulses 
and for decaying exponentials, and voltage and current bounds for direct strikes, (E) all 
supporting figures are gathered in one section, followed by conclusions.    

Parameters	of	Lightning	
The parameters of lightning (such as peak amplitude, peak rise rate, pulse width, and total 
action) are statistical in nature. Statistical study of the frequency of the various lightning 
parameters [5, 6] indicated that they are reasonably well described by lognormal distributions, 
which are straight lines on logarithmic probability paper. Consequently, the full distributions 
are described by two points, which are the 50‐percentile and 1‐percentile worst‐case levels (or 
the 50‐percentile and 1‐percentile occurrence levels). The most important parameters are 
shown below in Table 2. 
 
We therefore assume that the return stroke can be represented by an exponential pulse of the 
form 

  ݅ሺݐሻ ൌ ൫݁ିఈ௧ܫ െ ݁ିఉ௧൯ݑሺݐሻ ൌ ሻݐሺ݂ܫ 	ൎ  ሻݐሺݑఈ௧ି݁ܫ (6) 

which is a two‐parameter waveform in current amplitude I and α. In terms of the time to half 
maximum t50 or action G, the decay constant α is given by 

 
50

2ln

t
   (7) 

or 

 
G

I

2

2

 ,  (8) 

where 
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   



0

2 dttiG .  (9) 

 
Table 2.  Lightning Environment: return stroke and flash parameters. 
 

RETURN STROKE PARAMETERS  1 % 50 % 

Peak Current (kA)  200.
 

30. 

Time to Peak (s)  0.1‐15.  3. 

Maximum Rate of Rise (kA/s)  400.  150. 

Time to Decay to Half Maximum (s)   10.‐500.*  50. 

Amplitude of Continuing Current (A)  30.‐700.  150. 

Duration of Continuing Current (ms)  500.  150. 

FLASH PARAMETERS     

Number of Strokes  >20.  4. 

Interstroke Interval (ms)  10.‐500.  60. 

Total Flash Duration (ms)  30.‐1000.  180. 

Total Charge Transfer (C)  350.  15. 

Action [I2dt] (A2‐s)  3.106  5.104 

  Notes: *       The decay time has been revised downward in recent years; however, 
  according to the best available data, the action, which is a measure of the total 

  impulse strength, is still 3  106 A2‐s at the one‐percentile occurrence level. 200 μs was  
  discussed by Ciano and Pierce [5]. 
 

If we fix I = 200 kA and assume a decay time of 500 s (see Table 2), the corresponding action is 
14.4  106 A2‐s, which is almost a factor of five larger than the one‐percentile action for the 
entire flash. On the other hand, if we choose the decay constant to satisfy the one‐percentile 

action, the time to half maximum is a little over 100 s, which is not necessarily a value that 
would give rise to a maximum interior field. If we choose the decay constant to maximize the 
total impulse charge, 

   



0 

I
dttiQ ,  (10) 

such a choice also maximizes the interior field. Therefore, if we assume the impulse charge Q is 
equal to its one‐percentile value of 40 C (see Appendix A) and add a 50‐percent safety margin, 

the time to half maximum t50  200 s, and the total action G = 5.8  106 A2‐s. Under these 
assumptions, the decay constant is 

      -1s 3466s 200/2ln     (11) 

Parameter β in (6) is determined by maximum rate of rise in Table 2: 
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ߚ ൎ
೏಺
೏೟

ூ
ൎ 2 ൈ 10଺	ିܿ݁ݏଵ	(1‐percentile severity levels) or 0.75 ൈ 10଺	ିܿ݁ݏଵ	(50‐percentile 

severity levels).  A 1‐percentile peak current is used for all calculations. 

Nearby	vs.	Direct‐Strike	Lightning		
Nearby lightning is a normal environment, which is an expected logistical and operational 
environment that the system is required to survive without degradation in operational 
reliability. Based on practical considerations, the nearby lightning environment is defined as the 
magnetic field due to a 20‐kA return stroke at 10 m or a 200‐kA return stroke at 100 m, where, 

for a vertical lightning channel, the magnetic field H at a distance   is given by 

     
2

ti
tH  .  (12)   

The peak value of this magnetic field is  

  A/m 320pk
exH . 

 
Lightning strikes closer than 10 m or those that produce larger fields than the above are 
considered direct strikes. Direct‐strike lightning is an abnormal environment for aeronautical 
systems. 

Relevant	Works	on	Linear	Diffusion	
Kaden investigated diffusion for canonical geometries in the frequency domain in [7];  
Bedrosian and Lee [1], [8] summarized Kaden’s enclosure diffusion from a plane wave incident 
magnetic field for EMP applications as 
 
ு೔೙
ு೐ೣ

ൎ ଵ

௖௢௦௛ඥ௦ఛ೏ାఎඥ௦ఛ೏௦௜௡௛ඥ௦ఛ೏
                  (13) 

where ߟ ൌ ఓబ௔

ఓ∆
  for parallel plates and 2ܽ is the plate separation;  ߟ ൌ ఓబ௔

ଶఓ∆
 for a cylindrical shell 

and a is the radius of the cylinder;  ߟ ൌ ఓబ௔

ଷఓ∆
 for a spherical shell and ܽ is the radius of the 

sphere.  Bedrosian and Lee generalized the definition of geometric factor ߟ to (19) to be given 
later. 
 
A plane wave incident on a single plate does not simulate how the magnetic flux leaves the 
enclosure and cannot be used to model the enclosure diffusion for a nearby lightning field. 
However, for a line source next to the enclosure wall the magnetic flux can cross the enclosure 
wall on one side and leave the enclosure on the other side and therefore a single plate is used 
to treat a direct strike to an insulated cable adjacent to the enclosure.  
 
There is evidence that the single plate model for direct strike is quite adequate for describing 

an arbitrary enclosure.  Merewether [9] calculated the maximum HDOT inside a ½‐in‐thick‐ 2‐D 

cylindrical shell with a one‐percentile lightning return stroke striking an adjacent insulated 

conductor using a current waveform of  
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ሻݐሺܫ ൌ 	 ෡	ܫ
ቀ ೟
ഓభ
ቁ
೘

ଵାቀ ೟
ഓభ
ቁ
೘ ݁

ି ೟
ഓమ                     (14) 

where parameters m, ܫ	෡, τ1 and τ2 were adjusted to match a given peak amplitude, peak rate , 

and fall time  (݉ ൌ 10 seems to give the best fit to measured data).  Frequency‐domain 

solutions were transformed using 65,536‐, or 131,072‐point Fast Fourier Transforms (FFTs) and 

the HDOT so obtained agrees with the single plate model calculation to approximately 2%.  
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Numerical	Results	
This section summarizes all useful parameters calculated by (A) providing complete waveforms 

for limiting cases (߬ߙௗ ൌ 0; ௗ߬ߙ	 ൌ ∞), (B) describing simple fit functions for peaks for these 
parameters that were discussed in the executive summary in tables and (C) summarizing peak 

responses of all identified parameters for representative values of ߬ߙௗ.  The enclosure interior 
parameters are: 

 H and HDOT for nearby lightning,  

 H and HDOT at ߩ ൌ ∆ and ߩ ൌ 10∆ for direct strike lightning  (ߤ ൌ ߤ ଴ andߤ ൌ  ,(଴ߤ10
 Voltage and current bounds for direct strike lightning. 

 

Waveforms	for	Fundamental	Solutions	
Figure 5 gives the nearby lightning H inside the enclosure for an impulse that corresponds 

to	߬ߙௗ ൌ ∞, or can be used as HDOT for a unit step that corresponds to ߬ߙௗ ൌ 0. 
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Figure 5.  Normalized H for an impulse is shown with normalized time. This can be used for 
HDOT for a unit step. The pulse width of the interior field determines the procedure for 

obtaining the actual penetrating field. Relevant parameters are  tp = 0.47d, t50 = 0.13d and 
4.64d.  (17) is compared to (49) and found to be 2.72% too high. ࣈ ൌ ૟. ૙ૡૡ is used. 

 
Figure 5 shows the pulse width of the impulse response H as approximately  4.5߬ௗ.   Figure 6 on 
the other hand shows the pulse width of the HDOT for an impulse (߬ߙௗ ൌ ∞) as approximately  
0.13߬ௗ.  HDOT for a unit step has a wide pulse and thus is dominated by low frequencies, while 
HDOT for an impulse has a narrow pulse width and is thus dominated by high frequencies. Most 
figures are computed with ߦ ൌ 6.088.  Figure 7 compares H for two different values of ξ.  Figure 
8 compares HDOT for three different values of ξ.  



27 
 

The unit step responses for two values of ξ (Figure 9) obtained by integrating H shown in Figure 
5 approaches the static limit. Figure 10 shows a corresponding case for direct strikes.  
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Figure 6. Normalized HDOT for an impulse is shown with normalized time. The pulse width of 

the interior field determines the procedure for obtaining the actual penetrating field. 

Relevant parameters are  tp = 0.092d, t50 = 0.049d and 0.18d. (24) is compared to (50) and 
found to give 3.68% too high in peak. ࣈ ൌ ૟. ૙ૡૡ is used. 

 

t/d (1/(4T))

0.01 0.1 1 10 100


 d

H
in

/H
ex

-0.2

0.0

0.2

0.4

0.6

0.8

1.0




 
Figure 7.  Normalized H for an impulse with two different ξ’s.  The peak for ξ=10.4 is 0.926 

occurring at 0.5392; the peak for ξ=6.088 is 0.8876 occurring at 0.49. 
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Figure 8.  HDOT Comparisons for different ξ:  HDOT peak 5.7118 at 0.09 for ξ = 6.088, 5.7973 

at 0.0912 for ξ = 10.41 and 5.9179 at 0.092 for ξ = 257.3. 
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Figure 9.  Normalized H for a unit step is shown with normalized time.  The enclosure for large 
ξ appears to rise slower to the steady state in the normalized time, but because ξ is inversely 
proportional to ∆ and τd is inversely proportional to the square of ∆ it actually rises a lot 

faster. 
 
Direct strike pulse widths for impulse responses H and HDOT at  ߩ ൌ 	10	∆  shown in Figure 11 
and Figure 12 appear to be approximately the same as those for the nearby fields shown in 
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Figure 5 and Figure 6 and thus they approach a plane field limit.  Note that for  ߩ ൌ 	∆ , the 
pulse width of H is approximately  0.32߬ௗ and the pulse width of HDOT is approximately  
0.06߬ௗ.  
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Figure 10.  Normalized Unit Step H Responses for Direct Lightning Strikes (ࣆ ൌ  .(૙ࣆ
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Figure 11.  Normalized Impulse H Responses for Direct Lightning Strikesሺࣆ ൌ ࣋ ૙ሻ.  Forࣆ ൌ ∆, 
relevant parameters are  tp = 0.14d, t50 = 0.065d and 0.39d.  For  ࣋ ൌ ૚૙∆, relevant 

parameters are  tp = 0.36d, t50 = 0.12d and 1.8d. 
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Figure 12.  Normalized Impulse HDOT Responses for Direct Lightning Strikes ሺࣆ ൌ   ૙ሻ. Forࣆ

࣋ ൌ ∆, relevant parameters are  tp = 0.06d, t50 = 0.037d and 0.097d.  For ࣋	 ൌ ૚૙∆, relevant 
parameters are  tp = 0.09d, t50 = 0.05d and 0.18d. 

	
Since	the	magnetic	permeability	of	the	enclosure	wall	enters	into	the	nearby	enclosure	
solutions	through	diffusion	time	d	only,	the	nearby	result	is	applicable	to	moderate	values	
of		ߥ ൌ 	magnetic	the	function	a	is	later	given	strikes	direct	for	solution	The		.	଴ߤ/ߤ
permeability.		We	present	direct	lightning	fundamental	solutions	for		ߤ ൌ  Figure 13	଴.ߤ10

gives	the	comparison	of	the	static	limit	derived	in	ሾ2ሿ	as		 ଵ
ଶగ∆

ଶ௟௡ሺሻ
మିଵ

	and	magnetic	fields	at	

different	distances	obtained	by	the	early‐time	integral	.		H	and	HDOT	as	a	function	of		for	
ߤ ൌ ߤ	for	those	from	differ	somewhat	଴ߤ10 ൌ ߤ	For		଴.ߤ ൌ 	as	vary	they	଴,ߤ

ଵ

ఘమ
;	for	ߤ ൌ 	,଴ߤ10

they	are	shown	in	Figure 14	and	Figure 15.		Again,	these	responses	are	the	limiting	cases	of	H	
or	HDOT	responses	in	the	thin	and	thick	limits.	
	
For direct strikes, the spatial dependence of the HDOT waveform inside the enclosure is 
unknown and the induced voltage cannot be obtained accurately.   Fortunately, the voltage 
bounds for an impulse and a unit step on a one‐turn optimally coupled loop shown in Figure 2 
can be calculated. Their waveforms are shown in Figure 16 and Figure 17.  Figure 17 can also be 
used for the current bound on a short‐circuit one‐turn optimally coupled loop for an impulse.  
The voltage bound peak for an impulse (Figure 16) occurs at a time closer to the peak HDOT 
arrival time at  ߩ ൌ ∆ than that at ߩ ൌ 10∆ (Figure 12).  The voltage bound peak for a unit step 
(Figure 17) occurs at a time closer to the peak HDOT arrival time at  ߩ ൌ ∆ than that at ߩ ൌ 10∆ 
(Figure 11).  
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Figure 13.  Unit step responses for ࣋ ൌ 	∆ and ࣋ ൌ 	૚૙∆ are compared to the static limit 
obtained previously in [2] ሺࣆ ൌ ૚૙ࣆ૙ሻ. The deviation from static limit is caused by the 

inaccuracy of the early‐time integral. 
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Figure 14.  Normalized Impulse H Responses for Direct Lightning Strikesሺࣆ ൌ ૚૙ࣆ૙ሻ.  It 

appears that the magnetic field varies as 
૚

࣋
 rather than

૚

࣋૛
. 



32 
 

	
 

t/d (1/(4T))

0.1 1 10

H
D

O
T

in



d



/ 
I 

-4

-2

0

2

4

6

8

10

12

14




 
Figure 15.  Normalized Impulse H Responses for Direct Lightning Strikes	ሺࣆ ൌ ૚૙	ࣆ૙ሻ.  It 

appears that the magnetic field varies as  
૚

࣋૜/૛
. 
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Figure 16.  Voltage bound for an optimally coupled loop under impulse excitations (µ = µ0). 

The peak value is 2.918 occurring at 0.069. 
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Figure 17.  Voltage bound for an optimally coupled loop under unit step excitations (µ = µ0). 
Alternatively, this can be used for current bounds for an impulse excitation.  The peak value is 

0.2552  occurring at 0.215. 
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Figure 18.  Current bound for an optimally coupled loop under a unit step excitation (µ = µ0).  

As t/τd→∞, the vertical value approaches 2.862. 
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Figure 18 for current bounds for a unit step (ߤ ൌ  ଴) that is based on the total flux pathߤ	
through the loop as the upper limit extends to infinity reflects the limitation of the model.  

Since the static magnetic field varies as  
ଵ

ఘ
 , the flux should diverge.  In practice, a truncation of 

the upper limit to the actual enclosure dimension should give a more realistic number.  Thus, H 
given in Figure 10 (	ߤ ൌ ߤ)  ଴) and Figure 13ߤ	 ൌ  ଴) should be used for calculating the totalߤ	10
magnetic flux linking, and the current bound for, the loop.  
 
Figure 19 and Figure 20 give corresponding voltage bounds for ߤ ൌ  ଴ ; the comments givenߤ	10
for  Figure 16 and Figure 17 (	ߤ ൌ  ଴) are applicable to this case.   Figure 21 is also limited byߤ	
similar reasoning to that given for Figure 18.  
 
We have completed discussions for the relevant waveforms for the limiting cases and will 
continue by discussing simple fit functions of decaying exponential peaks as discussed in the 
executive summary. 
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Figure 19.  Voltage bound for an optimally coupled loop under an impulse excitation (µ = 10 
µ0). The peak value is 6.946 occurring at 0.0625. 
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Figure 20.  Voltage bound for an optimally coupled loop under a unit step excitation (µ = 

10µ0). Alternatively, this can be used for current bounds for an impulse excitation.  The peak 
value is 0.5167 occurring at 0.1764.  
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Figure 21. Current bound for an optimally coupled loop under a unit step excitation (µ = 

10µ0).  As t/τd→∞, the vertical value approaches 1.458. 
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Fit	Functions	for	Peak	Responses	
Let us summarize the fit functions (2), (3) and (5) as 
 

݃௘ ൌ ଵ
ഀഓ೏
೗
ା
భ
೘

  ,   ݃௜ ൌ ௟

ఈఛ೏
  ,  ݃௦ ൌ ݉                (15) 

 
where the subscript “e” for the decaying exponential, “i” for impulse and “s” for unit step 
and its parameter given in Table 3. “b” is the length of the loop in the direction of the lightning 
current as defined in Figure 2. 
 
Table 3.  Parameters for Approximate Formula (15) for Peak HDOT  and Voltage Bounds. 

Environment  Physical  
Quantity 

Field point  Permeability  Approximation Parameters  

݃ ݈  ݉
Nearby 
Lightning 

HDOT  Everywhere 
inside 
enclosure 

ߤ ൑  ଴ߤ10 ܱܦܪ ௜ܶ௡ ߬ௗ
௘௫ܪ

 
5.7118 
(ξ=6.088) 

0.8876
(ξ=6.088)

Direct 
Lightning 

HDOT  ߩ ൌ ∆  ߤ ൌ  ଴ߤ ∆ܱ݀߬݊݅ܶܦܪ
ܫ

 
4.1608  0.2516 

Direct 
Lightning 

HDOT  ߩ ൌ 10∆  ߤ ൌ  ଴ߤ 2߬݀ߩܱ݊݅ܶܦܪ
∆ܫ

2.0997  0.2938 

Direct 
Lightning 

HDOT  ߩ ൌ ∆  ߤ ൌ  ଴ߤ10 ∆ܱ݀߬݊݅ܶܦܪ
ܫ

 
4.7065  0.2281 

Direct 
Lightning 

HDOT  ߩ ൌ 10∆  ߤ ൌ  ଴ߤ10 2߬݀ߩܱ݊݅ܶܦܪ
∆ܫ

11.8978  1.1272 

Direct 
Lightning 

Voltage 
Bound 

Single‐Turn 
Loop 

ߤ ൌ  ଴ߤ ܸ߬݀
ܾܫ଴ߤ

 
2.916  0.2552 

Direct 
Lightning 

Voltage 
Bound 

Single‐Turn 
Loop 

ߤ ൌ  ଴ߤ10 ܸ߬݀
ܾܫ଴ߤ

 
6.949  0.5167 

  
 
The 1st, 2nd and 6th row of data in Table 3 correspond to fit functions (2), (3) and (5), 
respectively.  In Table 3, the numerical values for ݈ are obtained from peaks of Figure 5, Figure 
11, Figure 14, Figure 17 and Figure 20, and for  ݉ are from peaks of Figure 6, Figure 12, Figure 
15, Figure 16 and Figure 19, respectively. 
 
Figure 22 as summarized in the 3rd row of data (ߩ ൌ 10∆) in Table 3 is relevant to the coupling 
loop located away from the enclosure wall.  The intersection of the unit step and the impulse 
peaks occurs at ߬ߙௗ ൌ 7.15, which is not very different from the nearby lightning value shown 
in Figure 1 but very different from the direct strike value for ߩ ൌ ∆ (Figure 3). The closeness of 
these values in these two cases is closely related to the pulse widths of their fundamental 
solutions (Figure 6 and Figure 12).  Figure 23 and Figure 24 or Row 4 and 5 of data in Table 3  
give the corresponding comparison for ߤ ൌ  ଴ and are applicable to magnetic steel with lowߤ10	
permeability.  Figure 25 gives the peak voltage bounds for ߤ ൌ  .଴ߤ10	
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Figure 22.  HDOT peak at  ࣋ ൌ ૚૙∆ for decaying exponential and an approximation are 

compared to those of the unit step and the impulse excitations. The intersection for the unit 
step and impulse peaks occurs at ࢊ࣎ࢻ ൌ ૠ. ૚૝૟ૠ, which is 11% greater than that for the 

nearby lightning case shown in Figure 1. The enclosure wall has ࣆ ൌ  .૙ࣆ	
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Figure 23.  HDOT peak (࣋ ൌ ∆ሻ	for the decaying exponential and an approximation are 

compared to the unit step and the impulse responses.  This value determines the maximum 
voltage induced on an optimally coupled loop. The intersection of unit step and impulse peak 

occurs at  ࢊ࣎ࢻ ൌ ૛૙. ૟૜૜૞.  The enclosure wall has ࣆ ൌ 	૚૙ࣆ૙.   
 



38 
 

d

0.1 1 10 100

P
ea

k 
H

D
O

T
in
 d
2

/ 
I

0.1

1

10

100
decaying exponential
unit step (1.1272)
impulse (11.8978/(d))

approximation

 
Figure 24.  HDOT peak at  ࣋ ൌ ૚૙∆ for decaying exponential and an approximation are 

compared to those of the unit step and the impulse excitations. The intersection of unit step 
and impulse peak occurs at  ࢊ࣎ࢻ ൌ ૚૙. ૞૞૞૛. The enclosure wall has ࣆ ൌ 	૚૙ࣆ૙. 
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Figure 25. Peak voltage bounds for direct strikes. The intersection of unit step and impulse 

peak occurs at  ࢊ࣎ࢻ ൌ ૚૜. ૝૝ૡૡ.  ( ࣆ ൌ ૚૙	ࣆ૙ሻ.  
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The fit function for peak H is 
 

݄௘ ൌ ଵ
ഀഓ೏
೘

ା
భ
೙

  ,   ݄௜ ൌ ௠

ఈఛ೏
  ,   ݄௦ ൌ ݊                (16) 

where parameters are defined in Table 4.  Parameters in the table are: “i “ is the current , “L” is 
the inductance of a single‐turn loop and “b” is the length of loop along the lightning current 
(Figure 2).  Here we assume the inductance is dominating when calculating current bounds, 
however, the resistance can be dominating and voltage bounds are more relevant in practical 
situations. 
 
Table 4. Parameters for Approximate Formula (16) for Peak H and Current Bounds. “i” is the 
short‐circuit current for the optimum coupled loop with length b along the lightning current. 

Environment  Physical  
Quantity 

Field point  Permeability  Approximation Parameters  

݄ ݉  ݊
Nearby 
Lightning 

H  Everywhere 
inside 
enclosure 

ߤ ൑  ଴ߤ10 ௜௡ܪ
௘௫ܪ

 
0.8876 
(ξ=6.088) 

6.088 
(ξ=6.088)

Direct 
Lightning 

H  ߩ ൌ ∆  ߤ ൌ  ଴ߤ ∆݊݅ܪ
ܫ

 
0.2516  0.1592 

Direct 
Lightning 

H  ߩ ൌ 10∆  ߤ ൌ  ଴ߤ 2ߩ݊݅ܪ

∆ܫ
 

0.2938  1.592 

Direct 
Lightning 

H  ߩ ൌ ∆  ߤ ൌ  ଴ߤ10 ∆݊݅ܪ
ܫ

 
0.2281  0.0666 

Direct 
Lightning 

H  ߩ ൌ 10∆  ߤ ൌ  ଴ߤ10 2ߩ݊݅ܪ

∆ܫ
 

1.1272  1.0288 

Direct 
Lightning 

Current 
Bound 

Single‐Turn 
Loop 

ߤ ൌ  ଴ߤ ݅ܮ
ܾܫ଴ߤ

 
0.2552  NA 

Direct 
Lightning 

Current 
Bound 

Single‐Turn 
Loop 

ߤ ൌ  ଴ߤ10 ݅ܮ
ܾܫ଴ߤ

 
0.5167  NA 

 
 
The fit function for current bounds is not given because the total magnetic flux linking the 
short‐circuit loop is large for the unit step compared to that for the impulse. 
 
Comparisons of enclosure interior peak H for decaying exponential numerical value, unit step, 
impulse  and approximation given in Table 4 are given in Figure 26 (nearby), Figure 27 (direct 
strike ߩ ൌ ߤ  ∆ ൌ ߩ ଴), Figure 28 (direct strikeߤ ൌ ߤ  ∆10 ൌ ߩ ଴), Figure 29 (direct strikeߤ ൌ ∆  
ߤ ൌ ߩ ଴),Figure 30 (direct strikeߤ10 ൌ ߤ  ∆10 ൌ   .(଴ߤ10
 
There is an important difference between the accuracy of the fit function presented in Table 3 
for HDOT and that presented in Table 4 for H:  Both HDOT for the unit step and HDOT for the 
impulse are pulses and the resulting approximation has relatively small errors.  The unit step H 
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is not a pulse, and thus the governing parameter ߬ߙௗ has to be extremely small before 
approaching the unit step response and the fit function incurs a large error in that limit.  
Nevertheless, we include a description of the fit function. 
 
As discussed before, because the unit step current bounds can be obtained by other 
consideration, only impulse model and numerical decaying exponential peaks are given for 
current bounds in Figure 31 and Figure 32. 
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Figure 26.  Peak H for nearby lightning (ࣆ ൌ  ૙ሻ. The unit step and impulse intersection is atࣆ	

ࢊ࣎ࢻ ൌ ૙. ૚૝૞ૡ. The unit step peak shown is ૟. ૙ૡૡ (the value of ξ ). 
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Figure 27.  Peak H for direct strikes at ࣋ ൌ ∆. The intersection of unit step and impulse peak 

occurs at  ࢊ࣎ࢻ ൌ ૚. ૞ૡ૙૝. ( ࣆ ൌ   .૙ሻࣆ	
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Figure 28. Peak H for direct strikes at ࣋ ൌ ૚૙∆. The intersection of unit step and impulse peak 

occurs at  ࢊ࣎ࢻ ൌ ૙. ૚ૡ૝૞. ( ࣆ ൌ  .૙ሻࣆ	
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Figure 29.  Peak H for direct strikes at ࣋ ൌ ∆.  The intersection of unit step and impulse peak 

occurs at  ࢊ࣎ࢻ ൌ ૜. ૝૛૝ૢ.  ( ࣆ ൌ 	૚૙ࣆ૙ሻ.     
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Figure 30.  Peak H for direct strikes at ࣋ ൌ ૚૙∆.  The intersection of unit step and impulse 

peak occurs at  ࢊ࣎ࢻ ൌ ૚. ૙ૢ૞૟.  ( ࣆ ൌ ૚૙	ࣆ૙ሻ. 
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Figure 31.  Current bound for a short‐circuit loop shown in Figure 2 ( ࣆ ൌ  ૙).  The unit stepࣆ	
current bound is not given because more accurate limit can be obtained from the actual loop 

geometry. 
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Figure 32.  Current bound for a short‐circuit loop shown in Figure 2 ( ࣆ ൌ 	૚૙ࣆ૙).  The unit 
step current bound is not given because more accurate limit can be obtained from the actual 

loop geometry. 

Comparison	of	Decaying	Exponential	Peaks	with	the	Fit	Function	
In order to gain accuracy when using the peak response given in this report, we include a 
comparison of the numerical result and fit function for representative value of the governing 
parameter.  Table 5 provides the actual numerical value followed by the value from the fit 
function for various HDOT and voltage bounds.  
 
The loop voltage of the EMP example given in the executive summary was estimated to be 12.2 
millivolts using the fit function (2).  Notice the discrepancy between the actual numerical value 
and the approximation for  ߬ߙௗ ൌ 30 is 2% higher for the actual numerical value.  This gives the 
more accurate loop voltage as 12.4 millivolts.  Using numbers given in caption of Figure 8 
accounting for ξ of 257.3 the loop voltage is 12.8 millivolts. 
 
The loop voltage of the lightning problem for ½‐in enclosure is estimated from (5) to be 8.57 
volts.  The discrepancy between the numerical value and the approximation for a voltage bound 
with  ߬ߙௗ ൌ 20 is 1.6% higher for the numerical value, resulting in a loop voltage of 8.69 volts. 
 
Table 6 compares actual numerical evaluation of H with the approximate fit functions and gives 
the actual current bounds for representative governing parameters.  As discussed before, the 
errors incurred by the H fit functions are greater than those for HDOT.     
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Table 5.  Comparison of HDOT and Voltage Actual Peaks with Approximate Formula (15).  The 
Actual Peak is followed by the Approximation indicated by (A) in Each data Entry.  

 	ௗ߬ߙ
value 

Nearby  
HDOT 
Peak 

(ξ=6.088) 

Direct  
HDOT 
Peak 
ߩ ൌ ∆, 
ߤ		 ൌ  ଴ߤ	

Direct  
HDOT Peak  
ߩ ൌ 10∆,	 
ߤ	 ൌ  ଴ߤ

Direct  
HDOT Peak
ߩ ൌ ∆, 

ߤ ൌ  ଴ߤ10

Direct  
HDOT Peak 
ߩ ൌ 10∆,
ߤ ൌ  ଴ߤ10

Direct 
 Voltage 
Bound 
ߤ ൌ  ଴ߤ	

Direct 
Voltage 
Bound 

ߤ ൌ  ଴ߤ10

0.05  0.8730 
0.8808 (A) 

0.2507 
0.2508 (A) 

0.2904 
0.2918 (A) 

0.2275 
0.2275 (A) 

1.1208 
1.1219 (A) 

0.2537 
0.2541 (A) 

0.5142 
0.5148 (A) 

0.066  0.8688 
0.8786 (A) 

0.2504 
0.2506 (A) 

0.2894 
0.2911 (A) 

0.2273 
0.2274 (A) 

1.1182 
1.1202 (A) 

0.2532 
0.2537 (A) 

0.5134 
0.5142 (A) 

0.1  0.8602 
0.874 (A) 

0.2498 
0.2501 (A) 

0.2871 
0.2897 (A) 

0.2269 
0.2270 (A) 

1.1138 
1.1166 (A) 

0.2522 
0.253 (A) 

0.5117 
0.5129 (A) 

0.2  0.8371 
0.8608 (A) 

0.2480 
0.2486 (A) 

0.2811 
0.2858 (A) 

0.2257 
0.2259 (A) 

1.1005 
1.1062 (A) 

0.2492 
0.2508 (A) 

0.5069 
0.5091 (A) 

0.33  0.8103 
0.8443 (A) 

0.2458 
0.2467 (A) 

0.2739 
0.2808 (A) 

0.2242 
0.2245 (A) 

1.0839 
1.0930 (A) 

0.2455 
0.248 (A) 

0.5009 
0.5053 (A) 

0.5  0.7805 
0.8236 (A) 

0.2430 
0.2442 (A) 

0.2654 
0.2746 (A) 

0.2221 
0.2227 (A) 

1.0636 
1.0762 (A) 

0.2410 
0.2445 (A) 

0.4933 
0.4982 (A) 

0.66  0.7562 
0.805 (A) 

0.2403 
0.2419 (A) 

0.2581 
0.269 (A) 

0.2203 
0.2210 (A) 

1.0458 
1.0609 (A) 

0.2371 
0.2413 (A) 

0.4865 
0.4925 (A) 

1  0.7111 
0.7682 (A) 

0.2351 
0.2373 (A) 

0.2446 
0.2577 (A) 

0.2166 
0.2176 (A) 

1.0097 
1.0297 (A) 

0.2292 
0.2347 (A) 

0.4730 
0.4809 (A) 

2  0.6155 
0.6771 (A) 

0.2214 
0.2245 (A) 

0.2144 
0.2296 (A) 

0.2066 
0.2079 (A) 

0.9220 
0.9476 (A) 

0.2099 
0.2172 (A) 

0.4389 
0.4498 (A) 

3.3  0.5325 
0.5867 (A) 

0.2064 
0.2097 (A) 

0.1871 
0.201 (A) 

0.1951 
0.1966 (A) 

0.8338 
0.8587 (A) 

0.1905 
0.198 (A) 

0.4033 
0.4149 (A) 

5  0.4575 
0.4995 (A) 

0.1902 
0.1932 (A) 

0.1620 
0.1729 (A) 

0.1824 
0.1836 (A) 

0.7448 
0.7649 (A) 

0.1710 
0.1775 (A) 

0.3664 
0.3767 (A) 

6.6  0.4061 
0.4382 (A) 

0.1776 
0.1798 (A) 

0.1444 
0.1527 (A) 

0.1722 
0.1728 (A) 

0.6794 
0.6935 (A) 

0.1565 
0.1618 (A) 

0.3382 
0.3466 (A) 

10  0.3304 
0.3475 (A) 

0.1563 
0.1568 (A) 

0.1183 
0.1225 (A) 

0.1542 
0.1536 (A) 

0.5751 
0.5788 (A) 

0.1334 
0.1361 (A) 

0.2922 
0.2963 (A) 

20  0.2157 
0.2161 (A) 

0.1167 
0.1139 (A) 

0.0780 
0.0773 (A) 

0.1190 
0.1158 (A) 

0.4001 
0.3894 (A) 

0.0941 
0.0928 (A) 

0.2112 
0.2078 (A) 

30  0.1603 
0.1568 (A) 

0.0934 
0.0894 (A) 

0.0583 
0.0565 (A) 

0.0972 
0.0930 (A) 

0.3073 
0.2934 (A) 

0.0729 
0.0704 (A) 

0.1660 
0.1599 (A) 
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Table 6.  Comparison of H and Current Actual Peaks with Approximate Formula (16).  The 
Actual Peak is followed by the Approximation indicated by (A) in Each data Entry.   

 	ௗ߬ߙ
value 

Nearby  
H Peak 
(ξ=6.088) 

Direct  
H Peak 
ߩ ൌ ∆, 
ߤ		 ൌ  ଴ߤ	

Direct  
H Peak  
ߩ ൌ 10∆,  
ߤ ൌ  ଴ߤ

Direct  
H Peak 
ߩ ൌ ∆, 

ߤ ൌ  ଴ߤ10

Direct 
H Peak  

ߩ ൌ 10∆,
ߤ ൌ  ଴ߤ10

Direct 
 Current 
Bound 
ߤ ൌ ଴ߤ	

Direct 
Current 
Bound 

ߤ ൌ ଴ߤ10
0.05  3.5566 

4.5333 (A) 
0.1191 
0.1543 (A) 

0.6210 
1.2526 (A) 

0.0626 
0.0728 (A) 

0.8642 
0.9839 (A) 

0.2879  0.3977 

0.066  3.2370 
4.1908 (A) 

0.1153 
0.1528 (A) 

0.5710 
1.1726 (A) 

0.0617 
0.0724 (A) 

0.8344 
0.9703 (A) 

0.2684  0.3776 

0.1  2.7487 
3.6111 (A) 

0.1088 
0.1497 (A) 

0.4970 
1.0325 (A) 

0.0600 
0.0717 (A) 

0.7829 
0.9428 (A) 

0.2396  0.3466 

0.2  1.9653 
2.5668 (A) 

0.0967 
0.1413 (A) 

0.3740 
0.764 (A) 

0.0561 
0.0695 (A) 

0.6820 
0.87 (A) 

0.1934  0.2929 

0.33  1.4678 
1.8655 

0.0869 
0.1317 (A) 

0.3030 
0.571 (A) 

0.0525 
0.0668 (A) 

0.5997 
0.7907 (A) 

0.1619  0.2534 

0.5  1.1178 
1.3744 (A) 

0.0782 
0.1209 (A) 

0.2464 
0.4292 (A) 

0.0489 
0.0637 (A) 

0.5275 
0.7064 (A) 

0.1373  0.2209 

0.66  0.9186 
1.1015 (A) 

0.0723 
0.1123 (A) 

0.2120 
0.3479 (A) 

0.0463 
0.0609 (A) 

0.4783 
0.642 (A) 

0.1219  0.1996 

1  0.6721 
0.7747 (A) 

0.0631 
0.0975 (A) 

0.1661 
0.248 (A) 

0.0419 
0.0559 (A) 

0.4053 
0.5379 (A) 

0.1003  0.1687 

2  0.3813 
0.4136 (A) 

0.0481 
0.0703 (A) 

0.1051 
0.1345 (A) 

0.0339 
0.0449 (A) 

0.2903 
0.3641 (A) 

0.0692  0.1215 

3.3  0.2460 
0.2576 (A) 

0.0378 
0.0516 (A) 

0.0725 
0.0843 (A) 

0.0278 
0.0357 (A) 

0.2174 
0.2564 (A) 

0.0508  0.0919 

5  0.1685 
0.1725 (A) 

0.0300 
0.0382 (A) 

0.0518 
0.0567 (A) 

0.0229 
0.0282 (A) 

0.1654 
0.1849 (A) 

0.0382  0.0707 

6.6  0.1300 
0.1316 (A) 

0.0253 
0.0308 (A) 

0.0408 
0.0433 (A) 

0.0198 
0.0236 (A) 

0.1355 
0.1465 (A) 

0.0311  0.0584 

10  0.0874 
0.0875 (A) 

0.0191 
0.0217 (A) 

0.0281 
0.0288 (A) 

0.0155 
0.0174 (A) 

0.0980 
0.1016 (A) 

0.0224  0.0429 

20  0.0442 
0.0441 (A) 

0.0120 
0.0117 (A) 

0.0145 
0.0146 (A) 

9.5e‐3 
9.882e‐3 (A) 

0.0538 
0.0534 (A) 

0.0122  0.0241 

30  0.0295 
0.0294 (A) 

7.89e‐3 
7.97e‐3 (A) 

9.8e‐3 
9.734e‐3 (A) 

6.847e‐3 
6.895e‐3 (A) 

0.0368 
0.0362 (A) 

8.336e‐3 0.0166 
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General Diffusion Solutions for Enclosure 
The diffusion time for the enclosure wall is discussed in Table 1.  The diffusion time gives us an 
indication of the shielding effectiveness of the enclosure wall, however the peak and he 
waveform of actual penetrating responses are determined by the penetration parameter	߬ߙௗ 
as discussed in the executive summary.  This section discusses the enclosure interior H and 
HDOT from the unit step and impulse excitations for nearby as well as direct lightning.  The 
nearby enclosure solution is more well‐known and is used as an example for our discussion. 
 
Nearby lightning responses for H and HDOT to an impulse existing in the literature are shown in 
Figure 5 and Figure 6. 
 
In this case, for parallel planes, infinite cylinders, and spheres, the impulse magnetic field within 
the enclosure is independent of position and is given by [1] 

௜௡ܪ
ሺଵሻ ൎ

ଶு೐ೣ
√గఈ೏

ଵ

ඥ௧/೏
݁ି

೏
ర೟ , t/d  0.06  (17) 

௜௡ܪ
ሺଶሻ ൎ

ு೐ೣ
ఈ೏

ቈ݁
ି

೟
೏ െ 2݁

ି
ഏమ೟
೏ ൅ 2݁

ି
రഏమ೟
೏ ቉, t/d > 0.06  (18) 

where   is  the previously discussed geometrical parameter for the enclosure given by 

 ൌ ఓబ
ఓ

௏

ௌ∆
.  (19) 

 
That (17) and (18) agrees within 1% at ݐ ൌ 0.06	߬ௗ does not mean the peak is accurate to less 
than 1%.  An exact residue expansion is given in (49) and (17) and (18) give a peak of 2.72% too 

high.   At the peak, the quantity in brackets in (18) is approximately equal to one, so that 

௜௡ܪ
௣௘௔௞ ൎ ு೐ೣ

ఈఛ೏
  (20) 

or, noting that the surface resistance of the wall and cavity inductance are given by 

ܴ ൌ ଵ

ఙ∆
 and ܮ ൌ ఓబ௏

ௌ
  (21) 

respectively, the parameter  can be written in the form 

 ൌ ௅

ோఛ೏
  (22) 

and therefore 

௜௡ܪ
௣௘௔௞ ൎ ு೐ೣ

ఈఛ೏
ൌ ோு೐ೣ

ఈ௅
  (23) 

 
The early‐time HDOT formula is found to be 

ௗு೔೙
ሺభሻ

ௗ௧
ൎ ଶு೐ೣ

√గఈሺ೏ሻమ
቎െ ଵ

ଶ൬ ೟೏
൰
య/మ ൅

ଵ

ସ൬ ೟೏
൰
ఱ/మ቏ ݁

ି
೏
ర೟,	t/ௗ ൑ 0.13            (24) 

The corresponding late‐time HDOT formula is given in [8]   

                                                       
 [1] uses 0.1 for the boundary between the early‐time formula and the late‐time formula.  The difference 
between the two formulas at 0.1 is 5.47%.  At 0.06, the difference is only 0.45%. 
 Numbers for two different ξ’s are shown in Figure 7. 
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ௗு೔೙
ሺమሻ

ௗ௧
ൎ െ ு೐ೣ

ఈሺ೏ሻమ
ቈ
ଵ

మ
݁
ି ೟
೏ െ ଶ݁ߨ2

ିഏ
మ೟
೏ ൅ ଶ݁ߨ8

ିరഏ
మ೟

೏ ቉,	t/ௗ ൐ 0.13  (25)   

At t/ௗ ൌ 0.13, the percentage difference is 0.56%. Similarly, the peak derivative of the internal 
magnetic field is given by [1] 
ௗு೔೙

೛೐ೌೖ

ௗ௧
ൎ ଺ோு೐ೣ

௅ఈఛ೏
	ൌ଺ு೐ೣ
ఈఛ೏

మ                     (26) 

The numerical coefficient 6 comes from the essential singularity of (17) and thus (24) (Figure 
6).  (24) gives the peak 3.68% too high when compared to (50) for ߦ ൌ 6.008. 
    
Figure 5 can be used for the HDOT unit step response.  Figure 6 provides HDOT for the impulse 
response, which is much narrower in pulse width than the HDOT unit step response.  The H unit 
step response is obtained by integrating (17) and (18) and shown in Figure 9. 
  
If we assume  ܾ ൌ 72	inches	 and  2ܽ ൌ the geometric factor of (19) is   ,ݏ݄݁ܿ݊݅	24 ൎ 10.4. If 
b remains the same and 2ܽ ൌ  ,ݏ݄݁ܿ݊݅	12 ൎ 5.6.   ൌ 6.088 is used to obtained nearby 
lightning figures.  The geometric factor is not included in the direct strike model because only 
the planar structure is treated.  The corresponding direct lightning responses for H and HDOT 
unit step and impulse responses are shown in Figure 10, Figure 11 and Figure 12 
 

Given 	݂ሺݐሻ	as defined in (6) and an impulse response of the enclosure ܪ௜௡
௜ ሺݐ′ሻ, the enclosure 

interior HDOT can be expressed as		
ௗு೔೙

೐

ௗ௧
ൌ ௗ

ௗ௧
ቂ׬ ௜௡ܪሻ′ݐሺ݂ߙ

௜ ሺݐ െ ሻ′ݐ
௧
଴ 	ቃ′ݐ݀ 	             (27) 

The superscript “e” has been introduced to ܪ௜௡to represent a decaying exponential.  Two 
limiting cases where solutions are simplified considerably are the thick limit and thin limit: 
 

If  
ଵ

ఈ
  is much less than the pulse width of the H or HDOT response function shown in Figure 5 or 

Figure 6, the thick limit applies.  Figure 5 and Figure 6 approximate that limit as: 

௜௡ܪ
௘ ൌ ׬ ௜௡ܪሻ′ݐሺ݂ߙ

௜ ሺݐ െ ሻ′ݐ
௧
଴ ′ݐ݀ ൎ ௜௡ܪ	

௜ ሺݐ െ  ሻ〈ݐ〉           (28) 

ௗு೔೙
೐

ௗ௧
ൌ ׬ ሻ′ݐሺ݂ߙ

ௗு೔೙
೔ ሺ௧ି௧ᇱሻ

ௗ௧ᇱ

௧
଴ ′ݐ݀ ൎ 	

ௗு೔೙
೔ ሺ௧ି〈௧〉ሻ

ௗ௧
              (29) 

Here 

〈ݐ〉 ൌ
׬ ௧ᇱൣ௘௫௣൫ିఈ௧ᇲ൯ି௘௫௣൫ିఉ௧ᇲ൯൧ௗ௧ᇱ
೟
బ

׬ ሾ௘௫௣ሺିఈ௧ᇱሻି௘௫௣ሺିఉ௧ᇱሻሿௗ௧ᇱ
೟
బ

ൎ
ሾଵି௘௫௣ሺିఈ௧ሻሿିఈ௧௘௫௣ሺିఈ௧ሻ

ఈሾଵି௘௫௣ሺିఈ௧ሻሿ
          (30) 

and superscript “i” represents the impulse response.  Therefore, the thick approximation is only 
a time delay of the H or HDOT impulse response function. 
 

Two comments are in order: First, (28) is derived by expanding ܪ௜௡
௜ ሺݐ െ  as a function of t’ in		ሻ′ݐ

the integral in terms of Taylor series around	〈ݐ〉 and select 〈ݐ〉 such that the first order 
contribution vanishes [10]: ׬ ݂ሺݐ′ሻ

௧
଴

ሺݐᇱ െ ᇱݐሻ݀〈ݐ〉 ൌ 0.   Second, Microsoft® Excel® can be used 

                                                       
 Numerical coefficients for three different ξ’s from (50) are shown in Figure 8. 
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for quick numerical evaluation.  To see how well (28) and (30) works, we refer to Figure 40 and 
Figure 41. 
 

On the other hand, if  
ଵ

ఈ
  is somewhat greater than the pulse width of the H or HDOT response 

function shown in Figure 5 and Figure 6, then the enclosure wall can be considered as thin and 
the thin approximation applies: 

௜௡ܪ
௘ ൌ ׬ ௜௡ܪ

௜ ሺݐ′ሻ݂ߙሺݐ െ ሻ′ݐ
௧
଴ ′ݐ݀ ൎ ݂ሺݐሻߙ ׬ ௜௡௜ܪ	ௗߙ ሺݐ/ௗሻ݀ሺݐ/ௗ	ሻ

௧/೏
଴ ൎ ݂ሺݐሻܪ௜௡

௦ ሺݐሻ ൎ
௜௡ܪ
௦ ሺݐሻ݁݌ݔሺെݐߙሻ                    (31)   

ௗு೔೙
೐

ௗ௧
ൌ ׬

ௗு೔೙
೔ ሺ௧ᇱሻ

ௗ௧ᇱ

௧
଴ ݐሺ݂ߙ െ ′ݐሻ݀′ݐ ൎ ݂ሺݐሻܪ௜௡

௜ ሺݐሻ ൎ ௜௡ܪ
௜ ሺݐሻ.          (32) 

 superscript “s” represents the unit step response.  The time‐delay formulas are not derived 

here because calculating time delay requires evaluating the moment for ܪ௜௡
௜ ሺݐሻ and 

ௗு೔೙
೔ ሺ௧ሻ

ௗ௧
 and 

the resulting formula is too cumbersome to apply. 
   
Equations (28) and (31) are for H, while (29) and (32) are for HDOT.  Approximations (28), (29), 
(31) and (32) can be explained by their Laplace transforms. Transforming time to its normalized 

time  
௧

೏
, the Laplace transform of the decaying exponential is 

ଵ

ఈఛ೏ା௦ᇱ
. In a thick limit  (߬ߙௗ → ∞), 

the decaying exponential transform becomes 
ଵ

ఈఛ೏
 and its response response becomes 

ଵ

ఈఛ೏
௜௡ܪ	

௜ . 

In a thin limit  (߬ߙௗ → 0), the decaying exponential transform becomes 
ଵ

௦ᇱ
 and its response 

becomes 	ܪ௜௡
௦ . 

 
A word of caution.  Equation (32) does not apply to the rise portion of the incident field 

െ݁݌ݔሺെݐߚሻ, i.e., the condition for using (32):  has to be somewhat greater than 
ଵ

ఛ೏
. Otherwise 

the interior HDOT will rise faster than the incident HDOT.  The double exponential waveform 
does not describe the HDOT of the incident field very well and the resulting transparent limit is 
not valid. 
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Nearby Lightning Responses for Decaying Exponential and for Unit 
Step Waveforms 
This section starts with utilizing existing nearby lightning formulas for constructing the solution 
for decaying exponential and unit step excitations and ends with accurate numerical solutions 
based on residue expansion of known solutions. 
  
Consider an exterior nearby lightning magnetic field, Hex, with a decaying exponential 
waveform. The early‐time integral for the interior cavity field of an enclosure is the 
approximation below [1] 
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                        (33) 
The Laplace transform can be inverted when a partial fraction is applied to the first 
multiplicative factor in the denominator of the integrand.  The remaining expressions are 
tabulated in [11].  Note the left hand side of (33) is valid for all time, while the right hand side is 
for the early time only and ξ is large. The time‐domain response for the right hand side integral 
can be written as 
 

௜௡ܪ
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௜ு೐ೣ
ඥఈఛ೏
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                        (34) 

where 	   



x

t dtexerfc
22


					                                                                                              (35) 

or 

௜௡ܪ
ሺଵሻ ൌ െ ݔ݁ܪ2

ඥ݀߬ߙ
ݐߙ√൫݂݅ܿݎ݁	൯	݀߬ߙ൫݅ඥ݌ݔ݁ൣ݉ܫሻݐ	ߙሺെ݌ݔ݁ ൅ √ܶ൯൧.  Note superscript “(1)” represents 

early time and superscript “(2)” will represent late time.       

Identities     zerfceizw z 2

 			and					    iyxwiyxw  )  are used to show 
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The thin‐wall limit of a unit step response can be verified by letting ߙ → 0.  The result is 
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௧

గ
ሺെܶሻ݌ݔ݁ െ ඥ߬ௗ݂݁ܿݎ൫√ܶ൯቉            (37)	
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Although (36) and (37) give reasonable bounds for the time‐domain responses, the use of 

impulse responses is restricted to  
௧

ఛ೏
൏ 0.06.    For  ݐ/߬ௗ ൒ 0.06, the following equation are 

derived: 
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for the decaying exponential.   However, because using the late‐time expression (9) for the 
early time causes a large error, (38) cannot be used directly.   The correction in the early‐time 
error can be accounted for ݐ ൐ 0.06߬ௗ by adding  
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where ܪ௜௡

ሺଵሻሺݐ′ሻ and	ܪ௜௡
ሺଶሻሺݐ′ሻ are given by (17) and (18).  

	
	
For  ݐ/߬ௗ ൒ 0.06 , the interior field is thus given by  
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	 	 	 	 	 	 	 	 	 	 	 	 ሺ40ሻ	
	
By letting ߙ → 0  the unit step response can be shown to be: 
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Again, for 
௧

ఛ೏
൒ 0.06,  a correction term must be added to (41): 
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Thus,  
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Finally,	the	double	exponential	response	can	also	be	written	as	

௜௡ܪ
ௗ௘ ൌ ௜௡ܪ	

௘ ቀ ௧

ఛ೏
, ௗቁ߬ߙ െ ௜௡ܪ

௘ ቀ ௧

ఛ೏
, 	ௗቁ߬ߚ 	 	 	 	 	 	 ሺ44ሻ	

Here (36) is used for  
௧

ఛ೏
൏ 0.06 and (40) is used for	 ௧

ఛ೏
൒ 0.06. Superscript “de” represents the 

double exponential response. 
 
The HDOT for exponential decaying responses can be obtained by observing an identity 
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The first term on the right is the impulse response (17) and (18) and the only dependent 
variable in the second term is the decaying exponential response. (45) is obtained by writing 
the impulse response as the sum of the decaying exponential and its time derivative from the 
corresponding functions in the transformed domain.  
 
The left hand side of (33) can be evaluated exactly by the residue expansion.  First, the integral 
on the left hand side of (33) is transformed from s‐plane to z‐plane with the transformation  

ݖ ൌ ඥ߬ݏௗ	.	The	resulting	integral	is		

௜௡ܪ ൌ
ଶு೐ೣ
ଶగ௜

׬
௭௘

೥మ
೟
ഓ೏

ሺ௭మାఈఛ೏ሻሾୡ୭ୱ୦௭ା௭ ୱ୧୬୦ ௭ሿ
Гݖ݀               (46) 

 
where the contour	Г	is shown in Figure 33. 
 

 
Figure 33.  The contour in the z‐plane . 

Equation (43) has only poles. They are located at		ݖ ൌ ݅ඥ߬ߙௗ		and		ݖ௡ ൌ  satisfy	௡ݍ	where	௡ݍ݅
	
ሻݍሺܨ ൌ ݍݏ݋ܿ െ ݍ݊݅ݏݍ ൌ 0.			An iterative equation can be used to determine the root location: 

   

Re(Z) 

Contour Г 

Im (Z) 

q0 

q1 

q2 

(ατd) 
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௡ାଵݍ ൌ ௡ݍ െ
ிሺ௤೙ሻ

ிᇲሺ௤೙ሻ
		where				ܨᇱሺݍሻ ൌ െሺ൅ 1ሻݍ݊݅ݏ െ ݍݏ݋ܿݍ.	 The initial guess for the mth 

roots for ሺ݊ ൌ 0,1,2, …	ሻ	are		ݍ௡ୀ଴	ሺ0ሻ ൌ 		
ଵ

ඥ
				and			ݍ௡ୀ଴	ሺ݉ሻ ൌ ݉			,ߨ݉		 ൌ 1,2,3.	

	
The residue expansion can be written as 
	

ு೔೙
ு೐ೣ

ൌ ∑ ଶ௤೘௘
ష೜೘

మ ೟
ഓ೏

൫ఈఛ೏ି௤೘
మ 	൯ሾ௤೘௖௢௦௤೘ାሺ	ାଵሻ௦௜௡௤೘ሿ

ஶ
௠ୀ଴ ൅ ௘షഀ೟

௖௢௦ඥఈఛ೏ିඥఈఛ೏௦௜௡ඥఈఛ೏
		 	 	 ሺ47ሻ	

	

ு஽ை்೔೙ఛ೏
ு೐ೣ

ൌ െ∑ ଶ௤೘
య 	௘

ష೜೘
మ ೟
ഓ೏

൫ఈఛ೏ି௤೘
మ 	൯ሾ௤೘௖௢௦௤೘ାሺ	ାଵሻ௦௜௡௤೘ሿ

ஶ
௠ୀ଴ െ ఈఛ೏௘షഀ೟

௖௢௦ඥఈఛ೏ିඥఈఛ೏௦௜௡ඥఈఛ೏
	 	 ሺ48ሻ	

	
One can derive an expression for a double pole caused formed by overlapping ඥ߬ߙௗ by one of 
the  ݍ௡’s.  However, it is not needed here.  In a similar manner, Impulse H and HDOT responses 
are given   

ு೔೙ఈఛ೏
ு೐ೣ

ൌ ∑ ଶ௤೘௘
ష೜೘

మ ೟
ഓ೏

௤೘௖௢௦௤೘ାሺ	ାଵሻ௦௜௡௤೘
ஶ
௠ୀ଴ 	 	 	 	 	 	 	 	 ሺ49ሻ	

ு஽ை்೔೙ሺఈఛ೏ሻఛ೏
ு೐ೣ

ൌ െ∑ ଶ௤೘
య ௘

ష೜೘
మ ೟
ഓ೏

௤೘௖௢௦௤೘ାሺ	ାଵሻ௦௜௡௤೘
ஶ
௠ୀ଴ 	 	 	 	 	 	 ሺ50ሻ	

The unit step response is a simple integration of (49) 

ு೔೙
ೞ

ு೐ೣ
ൌ ∑

ଶ൭ଵି௘
ష೜೘

మ ೟
ഓ೏൱

௤೘ሾ௤೘௖௢௦௤೘ାሺ	ାଵሻ௦௜௡௤೘ሿ
ஶ
௠ୀ଴ 		             (51) 

 
The accuracy of peak responses is determined by the location of dominating poles rather than 
the number of poles included in the calculation.  Because the residue expansion is extremely 
accurate and convenient for numerical calculations, (47) through (51) are used to obtain all 
nearby lightning responses. 
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Direct‐Strike Response for Impulse 
For the direct‐strike case, the maximum internal fields and pin‐level voltages are induced when 
the lightning channel is inclined at an acute angle with respect to the enclosure wall or for a 
direct strike to an insulated conductor that is parallel and very close to the outer surface of the 
wall (Figure 2). Direct attachment with the lightning channel oriented perpendicular to the 
shield wall results in smaller voltages [12,13].  The impulse response is examined in great detail 
to exhibit the general features of the enclosure interior field from a direct strike. 

Derivation of Transverse Magnetic Fields inside the Enclosure from a 
Longitudinal Current Filament 

Consider the problem of calculating the transverse magnetic fields on the opposite side of an 
electrically thick wall (of thickness Δ) due to a parallel current filament with time dependence 

   tueIti t .  According to Reference 2, the early‐time approximation for replacing 

      e
2

1
~sinh~cosh  in the magnetic vector potential gives  

~௭௧௢௧ܣ
ଶఓబூ

గ
׬

ఉమ/

ቀඥఉమିଵାఉ/ቁ
మ
ඥఉమିଵ

ஶ
ଵ

ଵ

ଶగ௜
׬

௘ೞ೟షಷሺഁሻඥೞഓ೏

௦ାఈ
ߚ݀ݏ݀

௥ା௜ஶ
௥ି௜ஶ          (52) 

where   ߥ ൌ μ/μ଴  and 

ሻߚሺܨ ൌ ߚ ൅ ቀఘ
∆
െ 1ቁඥߚଶ െ 1                (53) 

Note that  is the wall thickness and  the transverse radial distance from the filament center.  

The integration over   represents a superposition of solutions that satisfy Laplace’s equation.  
The validity of (52) for enclosure applications is that ߩ ≪ 2ܽ, where 2a is the enclosure 
dimension. 
 

The magnetic field expression can be simplified by recognizing that for d >> t50, the lightning 
source behaves as an impulse ߙ → ∞. Under this approximation, the inverse Laplace Transform 
becomes 
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ܫ଴ߤ2
ߙߨ

න
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 ߚ݀ݏ݀

 
The magnetic vector potential can be simplified as [11] 
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ଵ
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The magnetic field is given by 
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1
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߲
ߩ	߲
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~௫ܪ െ ଼ூ

ఈ∆ఛ೏
ቀ்
గ
ቁ
ଷ
ଶൗ
׬

൫ఉమ/ఔ൯
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ஶ
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మ்݀ߚ		      (54) 

 
where T ൌ τୢ/4t. 

 
For ൌ 1, this is simplified to 

௫ܪ ൌ െ ଼ூ
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ቀ்
గ
ቁ
ଷ/ଶ
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ஶ
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For 
ఘ

∆
െ 1 ൌ 0 , 

~௫ܪ െ ଼ூ
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ቀ்
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ቁ
ଷ
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׬ ଶߚ
ஶ
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ଶ
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మ்݀ߚ		        (56) 

 
Note that (54) can be used to evaluate the magnetic field away from the wall.  

 Let  ൌ ఘ

∆
െ 1 and  ݑ ൌ  ଶ‐1, (54) can also be expressed asߚ
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For  1 ,  
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(58) 
Equations (53) through (58) can be used for the numerical evaluation of magnetic field and its 
derivative inside the enclosure. 

Averaging and Truncation Approximations for Maximum Magnetic Fields 

Equation (56) or (58) with  0 gives the maximum magnetic field inside the enclosure and can 
be expressible in terms of a finite number of simple functions: 
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 (59) 

However, averaging and truncation approximations [2], [14] are expressed in terms of 
elementary functions. 

 
An averaging technique gives 
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  (60) 

Averaging for  1  is  
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Alternatively, the truncation method gives 

௫ܪ ൎ
ସூ

ఈ∆ఛ೏గ
య
మൗ
݁ି் ቊെ ଼்

ଷ
െ ଶ଼

ଵହ
െ ଵଶ

ଷହ்
൅ ଼

଻
ܶ
ହ
ଶൗ ቈቀ1 ൅

ଵ

்
ቁ
଻
ଶൗ
െ 1቉ െ

ସ

ହ
ܶ
ହ
ଶൗ ቈቀ1 ൅

ଵ

்
ቁ
ହ
ଶൗ
െ 1቉ 	െ

ସ

ହ
ܶ
ଷ
ଶൗ ቈቀ1 ൅

ଵ

்
ቁ
ହ
ଶൗ
െ 1቉ ൅

ଶ

ଷ
ܶ
ଷ
ଶൗ ቈቀ1 ൅

ଵ

்
ቁ
ଷ
ଶൗ
െ 1቉ቋ  (62) 

Averaging for Magnetic Fields Away from the Source Wall 

Critical circuitry may be located far away from the enclosure wall and are not subjected to the 
large field near the line source.  This discussion provides simple averaging formulas for 
describing magnetic field away from the wall. 
 
Averaging is defined as  
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Rather than using averaging alone, we also impose consistency in mapping and define 
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The averaging result is thus given by 
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and for ߥ ്1 
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Numerical	Examples	for	Impulse	Responses	

Maximum	Magnetic	Field	in	the	Enclosure		
Approximate formulas only involve elementary functions. Equations (56), (58) with  ൌ 0, and 
(59) were evaluated numerically for I = 200 kA, α = ln(2)/(200 s), ߤ ൌ ଴,  = 2.6  10ߤ	

7 S/m, 

and Δ = 0.5 inches. The maximum magnetic field inside an enclosure is 2.2 105 A/m at 
approximately 0.76 ms. The results are compared in Figure 34, which shows that the truncation 
result gives a more accurate peak and the averaging formula gives a somewhat lower peak 
value. Figure 35 shows the numerical derivatives of the magnetic field given by (56), (58) with 

 ൌ 0, and (59). The peak time derivative of the magnetic field derived is 6.8108 A/m/s at 0.3 
ms.  Truncation gives slightly higher HDOT in Figure 35. 
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Figure 34.  Comparison of the maximum magnetic field inside an enclosure by various 

methods: exact integration, averaging, and truncation method.      
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Maximum H Dot Inside an Enclosure
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Figure 35. Comparison of the maximum magnetic field derivative inside an enclosure by 

various methods: exact integration, averaging, and truncation method. 
   

Magnetic	Field	Away	from	the	Wall	
The magnetic field from the line source falls off spatially away from the wall.  Figure 36 shows 
the comparison of the exact integration and the averaging results at a distance 	ߩ ൌ 	∆ and 
ߩ ൌ 	2∆ The peak time derivative of the magnetic field decreases approximately a factor of four 
when the distance away from the wall double.  Figure 37 shows the peak time derivative 
magnetic field decreases approximately 25 times and 100 times when the distance increases to 
ߩ ൌ 	5∆ and ߩ ൌ 	10∆ respectfully.  
 
Figure 38 and Figure 39 illustrate the peak magnetic field and the peak time derivative of 

magnetic field are approximately proportion to the factor

2





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

 


. 

 
For Δ = 0.5 inches,   ܾ ൎ 72	inches	 and  ߩ ൌ 	∆, the worst case induced voltage in a single‐turn 
loop in air occupying the full cross section of the enclosure from an impulse is  
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Figure 36.  Comparison of the maximum magnetic field derivative inside an enclosure by 

exact integration and averaging method for  ൌ	∆	and  ൌ 	૛∆. 
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Figure 37.  Comparison of the maximum magnetic field derivative inside an enclosure by 

exact integration and averaging method for  ൌ 	૞∆		 and ൌ 	૚૙∆. 
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Peak Magnetic Field as Distance Varies
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Figure 38.  Peak magnetic field as distance varies away from the wall. 
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Figure 39. Peak time derivative of magnetic field as distance varies away from the wall. 
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Direct‐Strike	Response	for	Decaying	Exponential	Waveforms	
The inverse Laplace transformation arising from propagating an exponential decaying function 
is 
	
ଵ

ଶగ௜
׬

௘షೖ√ೞ

௦ାఈ
݁௧௦݀ݏ; 						݇ ൌ

௖ା௜ஶ
௖ି௜ஶ 	ሻඥ߬ௗߚሺܨ 	 	 	 	 	 	 (66)	

	
where		ܨሺߚሻ	is	given	by	(53).	 	 	 	 	 	 	 	 	
	 	 	 	
The inverse transform is not given in Standard Transform Table [11]; however, if a partial 
fraction is applied to the denominator, the resulting function is: 
 
௜

ଶ√ఈ
ቂ ଵ

√௦ା௜√ఈ
െ ଵ

√௦ି௜√ఈ
ቃ ݁ି௞√௦	 	 	 	 	 	 	 	 	 (67)	

	
The time‐domain function is then  
given by 
	
ଵ

ଶ
ቂ݁௜௞√ఈ݁ିఈ௧݂݁ܿݎ ቀ݅√ݐߙ ൅

௞

ଶ√௧
ቁ ൅ ݁ି௜௞√ఈ݁ିఈ௧݂݁ܿݎ ቀെ݅√ݐߙ ൅

௞

ଶ√௧
ቁቃ,	 	 	 (68)	

	
which is reduced to 
	

݁
షೖమ

ర೟ ܴ݁ ቂݓ ቀ√ݐߙ ൅
௜௞

ଶ√௧
ቁቃ.	 	 	 	 	 	 	 	 	 (69)	

	
Note that		ݓሺ݅ݖሻ ൌ ݁௭

మ
ݔሺെݓ				and			ሻݖሺ݂ܿݎ݁ ൅ ሻݕ݅ ൌ ݔሺݓ ൅ ଓݕሻതതതതതതതതതതതതത	or	ݓሺݖଵሻ ൌ ݁ି௭భ

మ
	.ଵሻݖሺെ݂݅ܿݎ݁

	 	 	 	 	 	 	 	 	 	 	 	 	 	
Equation (52) can be expressed as	
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	 	 (70)	

	
To take the derivative of (70) with respect to  we use the function in (68) as 
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The magnetic field is given by 
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	 	 	 	 	 	 	 	 	 	 	 	 	ሺ71ሻ	
where 	ݑ ൌ ଶߚ െ 1	 	 	 	 	 	 	 	 	 	 	
	 	 	 	
For ൌ 1,		this is simplified to	
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ሺ72ሻ				
For		ߩ

∆
ൌ 1

,	
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	 ሺ73ሻ	 	

Equations (70), (71), (72) can be numerically evaluated to be compared to (56), (57) and (55), 
respectively, for different fall‐times (or values of ߬ߙௗ). 
 
The double exponential response can be written as 
	

௫ௗ௘ܪ ൌ ௫ܪ ቀ݀߬ߙ,
ݐ

߬݀
ቁ െ ௫ܪ ቀ݀߬ߚ,

ݐ

߬݀
ቁ
	 	 	 	 	 	

	 	 (74)	

	
where each term in (74) is given by (71). 
 
Note that when  0  (unit step limit), (66), (67) and (68) reduce to corresponding  
equations for the unit step discussed next. 
	

Unit	Step	Responses	
The unit step magnetic field response can be obtained from (52) 
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The differentiation in  can be carried out to yield 
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	 	 	 	 	 	 	 ሺ75ሻ	

	
For	 ൌ 1,	
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∆3/2ߨ
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As ݐ → ∞	the unit step response approaches the static limit. 
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Voltage and Current Bounds for Direct Strikes 
The	distant	time‐derivative	magnetic	field	deviates	from	 ଵ

ఘమ
		and	therefore	the	maximum	

voltage	cannot	be	calculated	from	HDOT	ሺextrapolated	in	ρሻ.			A	separate	derivation	for	the	
maximum	induced	voltage	is	needed.	
	
Referring	to	ሾ2ሿ,	the	magnetic	flux	passing	through	the	loop	in	the	‐direction	ሺthat	is	
normal	to	the	loopሻ	shown	in	Figure 2	is	calculated	below	using	ܤሬԦ ൌ ׏	 ൈ 	cylindrical	a	in	Ԧܣ
coordinate:	
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We	can	define	V	as	the	voltage	bound	ሺFigure 2ሻ	for	decaying	exponential	as	
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The	s‐integration	can	be	carried	out	to	yield	
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or	
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	 	 	 	 	 	 	 	 	 	 	 	 ሺ79ሻ	

For	߬ߙௗ → 0	ሺthe	unit	step	limitሻ,	
	
୚ఛ೏
ఓబூ௕

ൌ ଶ

గ
׬

൫ఉయ/ఔ൯

ቀඥఉమିଵାఉ/ఔቁ
మ
ඥఉమିଵ

ஶ
ଵ

௘షഁ
మഓ೏/ሺర೟ሻ

ଶඥగሺ௧/ఛ೏ሻయ
		ߚ݀ 	 	 	 	 	 ሺ80ሻ	

	
For	߬ߙௗ → ∞	ሺthe	impulse	limitሻ	
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which	can	be	reduced	to	
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where	
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In	order	to	take		߬ߙௗ → ∞	of	ሺ79ሻ	we	use	
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Therefore, as		߬ߙௗ → ∞,		(79) becomes (81).	
	
As	߬ߙௗ → 0,		(79) becomes (80) because 
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Current bounds for an inductance dominating closed loop can be obtained by integrating  (77) 
in time to obtain (We neglect the sign for the flux knowing that the flux change is compensated 
by induced voltage)  
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The corresponding bounds for the unit step and impulse are 
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and 
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Some comments are in order: Our investigation is based on the early‐time integral as discussed 

in (52).  The parameters such as HDOT and voltage bounds that occur early in time are 

accurately determined by (52).  However, in calculating H, the current bound, or the total flux 

for unit step excitations, the result may not be correct.  The enclosure interior magnetic field 

due to the unit step falls off as  
ଵ

ఘ
  from the line source (Figure 10 and Figure 13).  If the upper 

integration of the loop area extends to infinity as done in this section, the total flux diverges 

and a realistic bound cannot be obtained.   As discussed before, if a unit step current or flux 

bound is sought, it is more reasonable to limit the integration to the physical dimension of the 

enclosure so that a realistic bound can be obtained.           
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Collection	of	Figures		
Decaying exponential waveforms with all physical parameters discussed for representative ߬ߙௗ 
for nearby as well as direct strikes are given in this section.  These parameters for nearby 
lightning are H and HDOT and for direct strike lightning are H and HDOT for two field points 
ߩ ൌ ∆  and ߩ ൌ 10∆, voltage and current bounds for both ߤ ൌ ߤ ଴ andߤ	 ൌ     .଴ߤ10	
 

H	for	Transition	Range		(Figure	40	through	Figure	46)	
An alternative explanation to the Laplace transform discussion in the section on general 
diffusion solutions for the transition is (45).  ߦ ൌ 6.088 is used for Figure 40 through Figure 46.  

As		߬ߙௗ → ∞, (45) becomes   ܪ௜௡
௘ ൎ ݊݅ܪ

݅

݀߬ߙ
  and, as	߬ߙௗ → 0, (45) becomes   ܱܦܪ ௜ܶ௡

௘ ൎ ݊݅ܪ
݅  or 

௜௡ܪ
௘ ൎ ݊݅ܪ

ݏ .  Note also the pulse width widens as ߬ߙௗ decreases.  Figure 40 compares the 
numerical result for  ߬ߙௗ ൌ 30 with the approximate formula (28) with (30).  The 
approximation is quite adequate for ߬ߙௗ ൐ 30.  Figure 41 indicates that a slight error in peaks if 
the approximation is used for	߬ߙௗ ൌ 6.6.  Large errors in peaks can occur for ߬ߙௗ ൏ 5.  Figure 
40 through Figure 42 are shown with H normalized to be compared to the impulse response.  
Figure 43 shows the transition from large to small ߬ߙௗ when the peak varies approximately 

1/ඥ߬ߙௗ.  The transition implies the decaying exponential response makes the transition from 

an approximate unit step response to an impulse response as ߬ߙௗ increases (Figure 26) 
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Figure 40.  Comparison of exact numerical result with approximate formula (28) with (30). 
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Figure 41. Numerical results for several values of ࢊ࣎ࢻ are shown.  If approximate formula (28) 

is used, slight errors in peak H result, because (28) preserves the peak from the impulse 
result.  
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Figure 42.  At these  ࢊ࣎ࢻ values, peak value decreases as ࢊ࣎ࢻ decreases. 

 
Figure 43  through Figure 46 are shown with H normalized to the unit step limit.  Figure 44 
shows that at ߬ߙௗ ൌ 0.01, the peak of H almost approaches the unit step steady state limit. 
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Figure 45 and Figure 46 show how the approximate formula (31) compares to the numerical 
results for ߬ߙௗ ൌ 0.01 and  0.001. 
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Figure 43.  At these values of  ࢊ࣎ࢻ, peak values vary approximately as ૚/ඥࢊ࣎ࢻ which has 
been scaled out.  The intersection unit step peak and impulse peak in Figure 26 (ࢊ࣎ࢻ ൌ

૙. ૚૝૞ૡ) corresponds to the occurrence of the peak response, which would have occurred 
between ࢊ࣎ࢻ ൌ ૙. ૚ and ࢊ࣎ࢻ ൌ ૙. ૛. 
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Figure 44. Peak value approaches the unit step late‐time value as  ࢊ࣎ࢻ decreases. The unit 

step response approach ξ, which is 6.088. 
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Figure 45.  At  ࢊ࣎ࢻ ൌ ૙. ૙૚, approximate formula (31) has a small error in the peak. 
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Figure 46.  At  ࢊ࣎ࢻ ൌ ૙. ૙૙૚, the error in approximate formula (31) is negligible. 

HDOT	for	Transition	Range	(Figure	47	through	Figure	51)	
Figure 47 shows the transition to HDOT for the unit impulse. 	ߦ ൌ 6.088 is used for Figure 47 
through Figure 51. It is obvious that time delay formula (29) is a good approximation to all ߬ߙௗ 
responses shown.   Again, (45) describes the transition.  As		߬ߙௗ → ∞, (45) becomes   ܱܦܪ ௜ܶ௡

௘ ൎ
ܱ݊݅ܶܦܪ

݅

݀߬ߙ
  and, as	߬ߙௗ → 0, (45) becomes   ܱܦܪ ௜ܶ௡

௘ ൎ ݊݅ܪ
݅ .  Note also the pulse width widens as ߬ߙௗ 

decreases.   
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Figure 47.  For large ࢊ࣎ࢻ, the approximate time delay formula given by (29) has small 

numerical discrepancy.  
From ߬ߙௗ ൌ 30 to ߬ߙௗ ൌ 0.33, peak HDOT is reduced by approximately a factor of 4.5 (Figure 
48 and Figure 49). A large transition range is described as the coefficient of (34), i.e., the peak 

varies approximately by 1/ඥ߬ߙௗ.  Figure 50 and Figure 51 illustrate, for ߬ߙௗ ൑ 0.2 ,  the peak 
HDOT and its waveform is approximately  given by the peak impulse H response and its 
waveform (Figure 5).  
 

t/d (1/(T))

0.01 0.1 1 10

H
D

O
T

in


d

 d


/H

e
x

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

d = 30

d = 20

d = 10

d = 6.6

d = 5

d = 3.3

 
Figure 48.  Peak HDOT is approximately inversely proportional to ඥࢊ࣎ࢻ , which has been 

scaled out.  Peak occurs near the curve ࢊ࣎ࢻ ൌ ૟. ૟, because of the intersection of the unit 
step and impulse peaks at 6.4351 shown in Figure 1. 
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Figure 49. In this ࢊ࣎ࢻ range, peak HDOT has a large decrease as ࢊ࣎ࢻ decreases. 
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Figure 50. In this ࢊ࣎ࢻ range, peak HDOT approaches the impulse H response (32). 
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Figure 51. The waveform approaches the impulse response (32) at these ࢊ࣎ࢻ values.  

H	Transition	for	࣋ ൌ ࣆ	,∆	 ൌ 	55)	Figure	through	52	(Figure	૙,ࣆ
All figures for direct strikes to be presented are labeled as ܪ௜௡ rather than ܪ௫.  They are derived 
from a planar wall.  However, the solution is valid for most enclosures because other walls can 
be assumed to be distant from the source.  The difference between the nearby planar 
excitation and the direct strike attachment to the insulated cable in proximity (that results in a 
line source) is the geometric parameter ξ (19).  
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Figure 52.  For all values of  ࢊ࣎ࢻ, approximation 28 with (30) works well.  Exponential 

decaying responses are time‐delay of impulse H. 
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Figure 53.  The peak and waveform deviate noticeably from those of Impulse H at  ࢊ࣎ࢻ ൌ ૜૙.  

For corresponding nearby responses, see Figure 41. 
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Figure 54.   Vertical quantity has been scaled to ඥࢊ࣎ࢻ resulting in comparable peaks.  The 

intersection of unit step and impulse peaks shown in Figure 27 occurs at ࢊ࣎ࢻ ൌ ૚. ૞ૡ૙૝, 
which would corresponding to peak in the scaled quantity shown. 
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Figure 55.  The unit step response is the same as shown in Figure 9.  For small values of ࢊ࣎ࢻ, 

(31) is a good approximation. 
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HDOT	Transition	for	࣋ ൌ 	∆	, ࣆ ൌ 	59)	Figure	through	56	(Figure		૙ࣆ
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Figure 56.  For ࢊ࣎ࢻ ൌ ૜૙૙, the response the same as impulse HDOT. 
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Figure 57.  Vertical quantity has been scaled to ඥࢊ࣎ࢻ resulting in comparable peaks. The 

intersection of unit step and impulse peak occurs at  ࢊ࣎ࢻ ൌ ૚૟. ૞૜ૠ૝. 
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Figure 58.   These HDOT responses for these values of ࢊ࣎ࢻ are well approximated by the 

impulse H. 
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Figure 59.  Impulse H (32) is a very good approximation to these HDOT. 
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H	Transition	for		࣋ ൌ 	૚૙	∆	,	ࣆ ൌ 	64)	Figure	through	60	(Figure	૙ࣆ
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Figure 60.  Impulse H (28) with (30) is an excellent approximation to these values of ࢊ࣎ࢻ. 
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Figure 61.  Transition values for  ࣋ ൌ 	૚૙∆ is close to that for the nearby response (Figure 41). 
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Figure 62.  Peak H decreases quite a bit from the impulse H given in Figure 61. 
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Figure 63.  These curves should be compared to unit step response shown in Figure 64. The 

intersection of peak unit step and impulse responses occurs at  ࢊ࣎ࢻ ൌ ૙. ૚ૡ૝૞; however, the 
transition peak in the scaled vertical axis (ඥࢊ࣎ࢻ) is not shown. 
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Figure 64.  Transition to unit step response is shown. (31) is a good approximation to these 

curves. 
 

HDOT	Transition	for	࣋ ൌ ૚૙∆,	ࣆ ൌ 	68)	Figure	and	65	(Figure		૙ࣆ
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Figure 65.  For  ࢊ࣎ࢻ ൌ ૜૙૙ , the response is well approximated by impulse HDOT. 
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Figure 66.  Vertical quantity has been scaled to ඥࢊ࣎ࢻ  resulting in closer peak values.  The 
intersection of peak unit step and impulse responses occurs at ࢊ࣎ࢻ ൌ ૠ. ૚૝૟ૠ. 
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Figure 67.  At these values of  ࢊ࣎ࢻ the impulse H is a fair approximation for peaks.  
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Figure 68.  Impulse H or (32) is a good approximation to these value of ࢊ࣎ࢻ. 

 

H	Transition	for	࣋ ൌ ࣆ	,∆	 ൌ ૚૙ࣆ૙	(Figure	69	through	Figure	72)	
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Figure 69.  These responses are well approximated by (28) with (30).  Some errors in peak for 

ࢊ࣎ࢻ ൑ ૟૟. 
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Figure 70.  The peak decreases by almost a factor of 2 as ࢊ࣎ࢻ reduces from 30 to 5. 
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Figure 71.  This should be compared to the unit step response shown in Figure 72.  (31) is a 
good approximation for these curves.  The intersection of the unit step and impulse peaks 
occurs at ࢊ࣎ࢻ ൌ ૜. ૝૛૝ૢ, which is between the value shown in Figure 70 and the current 

figure. 
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Figure 72.  For these values of ࢊ࣎ࢻ, responses can be approximated by (31). 

HDOT	Transition	for	࣋ ൌ ࣆ	,∆ ൌ ૚૙ࣆ૙	(Figure	73	through	Figure	76)	
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Figure 73.  For  ࢊ࣎ࢻ ൌ ૜૙૙ , the response is well approximated by impulse HDOT.  
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Figure 74. Vertical quantity has been scaled to ඥࢊ࣎ࢻ  resulting in closer peak values. Figure 
23 indicates the intersection of the unit step and impulse peaks occurs at ࢊ࣎ࢻ ൌ ૛૙. ૟૜.  

Notice the near peak for curve shown for	ࢊ࣎ࢻ ൌ ૛૙.    
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Figure 75.  Impulse H or (32) is a good approximation to responses for these values of ࢊ࣎ࢻ.  

ࢊ࣎ࢻ ൌ ૚ is when the transition starts. 
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Figure 76.  Impulse H or (32) is an excellent approximation to the responses for these values 

of ࢊ࣎ࢻ. 

H	Transition	for	࣋ ൌ 	૚૙∆,	ࣆ ൌ ૚૙ࣆ૙	(Figure	77	and	Figure	80)	
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Figure 77.  (28) with (30) is an excellent approximation to responses for these values of ࢊ࣎ࢻ. 
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Figure 78.  The peak H decreases considerably in the range  ૞ ൏ ࢊ࣎ࢻ ൏ ૜૙. 
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Figure 79.  Vertical quantity has been scaled to ඥࢊ࣎ࢻ  resulting in closer peak values. Note 
the intersection of unit step peak and impulse occurs at ࢊ࣎ࢻ ൌ ૚. ૙ૢ૞૟, which corresponds 

to the peak value shown. 
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Figure 80. For these values of ࢊ࣎ࢻ, responses can be approximated by (31).  

HDOT	Transition	for	࣋ ൌ ૚૙	∆,	ࣆ ൌ ૚૙ࣆ૙	(Figure	81	and	Figure	84)	
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Figure 81.  HDOT for  ࢊ࣎ࢻ ൌ ૚૙૙	can be approximated by (29) with (30). 
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Figure 82.  Vertical quantity has been scaled to ඥࢊ࣎ࢻ  resulting in closer peak values.  

Intersection of the unit step and impulse responses occurs at ࢊ࣎ࢻ ൌ ૚૙. ૞૞૞૛, as shown in 
Figure 24 the near peak for the curve ࢊ࣎ࢻ ൌ ૚૙. 
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Figure 83.  Impulse H or (32) is a good approximation to responses for these values of ࢊ࣎ࢻ.   
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Figure 84. Impulse H or (32) is an excellent approximation to responses for these values of 

 . ࢊ࣎ࢻ
 

Voltage	Bounds	µ	=	µ0		(Figure	85	through	Figure	88)	
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Figure 85.  Voltage bounds for direct strikes (µ = µ0). 
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Figure 86. Voltage bounds for direct strikes. The intersection of unit step and impulse peak 

occurs at  ࢊ࣎ࢻ ൌ ૚૚. ૝૛૟૜  (µ = µ0). 
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Figure 87. Voltage bounds for direct strikes (µ = µ0). 
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Figure 88.  Voltage bounds for direct strikes (µ = µ0). 
 
 

Voltage	Bounds	µ	=	10µ0		(Figure	89	and	Figure	92)	
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Figure 89. Voltage bounds for direct strikes (µ = 10 µ0). 
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Figure 90.  Voltage bounds for direct strikes. The intersection of unit step and impulse peak 

occurs at  ࢊ࣎ࢻ ൌ ૚૜. ૝૝ૡૡ  (µ = 10 µ0). 
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Figure 91.  Voltage bounds for direct strikes (µ = 10 µ0). 
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Figure 92.  Voltage bounds for direct strikes (µ = 10 µ0). 

Current	Bounds	µ	=	µ0		(Figure	93	and	Figure	96)	
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Figure 93.  Current bounds for direct strikes (µ = µ0). 
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Figure 94.  Current bounds for direct strikes (µ = µ0). 
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Figure 95.  Current bounds for direct strikes (µ = µ0).  The peak on the scaled “i“ appears to 
occur near ࢊ࣎ࢻ	 ൎ ૚.   
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Figure 96.  Current bounds for direct strikes (µ = µ0). 

	Current	Bounds	µ	=	10µ0		(Figure	97	and	Figure	100)	
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Figure 97.  Current bounds for direct strikes (µ = 10 µ0). 
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Figure 98.  Current bounds for direct strikes (µ = 10 µ0). 
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Figure 99.  Current bounds for direct strikes (µ = 10 µ0).  The peak on the scaled “i“ appears to 

occur near ࢊ࣎ࢻ	 ൎ ૛.   
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Figure 100.  Current bounds for direct strikes (µ = 10 µ0). 

   

Conclusions 
Linear magnetic diffusion into a metallic enclosure has been studied with a more realistic 
decaying exponential incident waveform.  Lightning parameters are used to illustrate a field 
excitation by nearby lightning and a line source excitation by a direct strike to a metallic cable 
insulated from the enclosure.   
 
For a transient magnetic field incident on a metallic enclosure, the existing simple formulas for 

the impulse response on the enclosure interior are compared to the exact residue expansion.  

This expansion is also used to numerically calculate enclosure interior responses for decaying 

exponentials.  For a line source excitation of a metallic enclosure, the existing enclosure interior 

response for a unit step excitation is extended to the impulse excitation as well as to the case of 

a decaying exponential.  The physical parameters studied include H and HDOT at the wall ߩ ൌ ∆  
as well as ߩ ൌ 10∆, voltage and current bounds for any single–turn coupling loops. 

The governing parameter ߬ߙௗ is identified and numerically investigated to determine the peak 

response and waveform transition of a decaying exponential response from the unit step 

response to the impulse response. 

The enclosure interior responses as a function of the product of metallic enclosure parameter 

constant and lightning decaying constant ߬ߙௗ have been extensively tabulated.  The enclosure 
interior responses for any enclosure wall with linear material properties can be determined 
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from the curves presented.  The only exception to the use of data is the transparency limit 

∆→ 0	due to the use of the double exponential lightning waveform. 

Those who read and understand the executive summary will develop a feel for how to estimate 

the induced voltage on any loop inside the enclosure from a transient magnetic field such as 

the nearby lightning magnetic field.  They can also determine the maximum voltage on a single 

loop inside an enclosure from a worst‐case direct strike lightning coupling to the enclosure.  But 

before embarking on such tasks, they should study the whole report together with the relevant 

references to fully appreciate the limitations of such a treatment.  We believe that this report is 

a useful addition to the current literature on the linear magnetic diffusion through a metallic 

wall. 

Appendix A. Impulse Charge Statistics
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Figure 101. Impulse charge statistics (excluding continuing current). 

Adapted from Berger et al. (1975). 
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