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What is a Supercritical CO2 Brayton Cycle? 

How does it work?

Liquid like Densities with CO2

Very Small Systems,

High Efficiency due to Low Pumping Power
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High Density Means Very Small Power Conversion System

Non-Ideal Gas Means Higher Efficiency at Moderate Temperature
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Supercritical CO2 Cycle Applicable to 

Many Thermal Sources
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Key Features to a Supercritical Brayton Cycle

• Peak Turbine Inlet Temp is well matched to a Variety of 

Heat Sources (Nuclear, Solar, Gas, Coal, Syn-Gas, Geo)

• Efficient ~43% - 50%  for 10 - 300 MWe Systems

– 1000 F (810 K) ~ 538 C         Efficiency = 43 % 

– 1292 F (1565 K) ~ 700 C        Efficiency =50%

• Standard Materials (Stainless Steels and Inconels )

• High Power Density for Conversion System

– ~30 X smaller  than Steam or 6 X for Helium or Air

– Transportability (Unique or Enabling Capability)

– HX’s Use Advanced Printed Circuit Board Heat Exchanger 

(PCHE) Technology

• Modular Capability at ~10-20 MWe

– Factory Manufacturable (10 MW ~ 2.5m x 8m)

Advanced
Heat Exchangers 
Meggit / Heatric Co.

Modular & Self Contained
Power Conversion Systems
~ 1.5 m x 8 m

12’

Steam Turbine Turbine Building

Efficiency at Lower Operating Temps

Standard Materials, Small Size

Modular & Transportable

AFFORDABLE and FABRICABLE

S-CO2

Fabricated and Testing

1.5” Compressor

70 hp
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Key Technology:

Turbo-Alternator-Compressor Design with Gas Foil Bearings  
( 24” Long by 12” diameter) 

Tie Bolts (Pre-stressed)

Turbine

Compressor

Laby Seals

Journal Bearing
Thrust Bearing

Stator 

Water Cooling        PM Motor Generator

Low Pressure Rotor Cavity

Chamber (150 psia)

Gas-Foil Bearings
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- At Sandia, ongoing research into analysis 

of advanced S-CO2 power cycles:

- reheat, condensing, intercooling, etc.

-This will require compressor and chiller 

operation in a variety of new, unproven 

operating regimes

- Experimental tests needed to verify 

performance under these conditions

Motivation



Primary goals for this testing were 

the evaluation of:

- S-CO2 compressor performance 

under liquid, gas, and two-phase 

conditions, near the critical point

- S-CO2 gas chiller performance 

when operating as a condenser. 

(No hardware modifications made 

to either component)

- The CO2 equation of state

Goals

(b)

(c)

(a)



Test Equipment
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-Tests used the Sandia S-CO2

compression loop, which 

consists of a compressor, 

heater, flow control valve, and 

chiller.  

- Instrumented with T,p

sensors at 4 key state points, 

and a density meter at 

compressor inlet

- In the past, used for mapping 

compressor performance at 

the critical point, bearings & 

seals R&D, windage tests, etc.
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Data: Supercritical CO2 at Compressor Inlet
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The compressor can be operated directly at the critical point.



Data: 303K Liquid CO2 at Compressor Inlet
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The condensing cycle: liquid at the compressor inlet and condensation within the 

chiller, cutting across the entire two-phase dome from gas to liquid.



Data: 302K Liquid CO2 at Compressor Inlet
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Even cooler liquid at the compressor inlet, and two-phase conditions at the chiller inlet
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Data: 298K Liquid CO2 at Compressor Inlet
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Data: 296K Liquid CO2 at Compressor Inlet
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Data: 300K CO2 Vapor at Compressor Inlet

Vapor-phase CO2 is also no problem at the compressor inlet.
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Two-Phase CO2 at the Compressor Inlet

The compressor can even operate with two-phase CO2 at inlet!
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For CO2 liquid, compressor maps were found to fall near predictions for 

supercritical CO2, though not precisely.
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supercritical CO2.



Efficiency curves were found to be similar at all conditions investigated.
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In Summary, the SNL Compression Loop Has Operated with 

Many Different Compressor Inlet Conditions

The Radial S-CO2 Compressor Works with Liquid, Vapor  and Two-Phase Fluids 

near the Critical Point



Conclusions:

- S-CO2 radial compressor (and gas foil bearing, seals, etc.) can 

operate in any of the regions investigated with similar levels of 

efficiency

- Compressor can even operate with two-phase inlet conditions at 

high pressure (>1000 psi), where density difference between phases 

is small

- Spiral HX can operate as a CO2 condenser, without modification

- Advanced power generation cycles operating off of (but nearby) the 

critical point are unlikely to be problematic for machinery

- This work preceded successful operation of the larger Sandia Split-

Flow Brayton facility in “condensing” mode -- electrical power 

production with liquid CO2 at the compressor inlet.



Future Work:

- Testing is ongoing for supercritical fluid mixtures (small % 

additives to CO2) to “tune” the critical temperature as desired for 

optimum efficiency; ORNL is participating in this effort.

- Alternative supercritical fluids are being investigated:

SF6, predicted to operate at higher efficiency and lower pressure, 

and is of particular interest.
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