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Intro: What is the S-CO,, Brayton Cycle, and what are its
advantages?

Background: S-CO, Brayton Cycle Hardware Development
at Sandia

Operation at Off-Nominal Conditions:
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What is a Supercritical CO, Brayton Cycle?
How does it work?

& Department of Machanical Engineering, Stanford University
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Supercritical CO, Cycle Applicable to
Many Thermal Sources

Geothermal
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Key Features to a Supercritical Brayton Cycle

* Peak Turbine Inlet Temp is well matched to a Variety of Fabricated and Testing

Heat Sources (Nuclear, Solar, Gas, Coal, Syn-Gas, Geo) 1.5" Compressor

« Efficient ~43% - 50% for 10 - 300 MW, Systems
— 1000 F (810 K) ~538 C Efficiency =43 %
— 1292 F (1565 K) ~ 700 C Efficiency =50%

« Standard Materials (Stainless Steels and Inconels)

« High Power Density for Conversion System
— ~30 X smaller than Steam or 6 X for Helium or Air
— Transportability (Unique or Enabling Capability)

— HX’s Use Advanced Printed Circuit Board Heat Exchanger
(PCHE) Technology

* Modular Capability at ~10-20 MWe
— Factory Manufacturable (10 MW ~ 2.5m x 8m)

Efficiency at Lower Operating Temps
Standard Materials, Small Size
Modular & Transportable
AFFORDABLE and FABRICABLE

Modular & Self Contained
Power Conversion Systems
~1.5mx8m

X 3
1

3“_@' Lo, . Advanced
~ Heat Exchangers
L o Meggit / Heatric Co.




' S-CO2 Development Sequence at Sandia

Heated
Unrecuperated
Brayton Loop

Sandia Single
Compressor Loop

DOE Gen IV Split-Flow
Re-compression
Brayton Loop

Barber N 3



},‘ Key Technology:
Turbo-Alternator-Compressor Design with Gas Foil Bearings
(24" Long by 12” diameter)

Tie Bolts (Pre-stressed) Low Pressure Rotor Cavity

Chamber (150 psia)

Turbine \ : Laby Seals
- 4
' \ Compressor
Journal Bearing Stator

Water Cooling PM Motor Generator Thrust Bearing
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Goals

Primary goals for this testing were
the evaluation of:

- S-CO, compressor performance
under liquid, gas, and two-phase
conditions, near the critical point

- S-CO, gas chiller performance
LR -/ =0 7 P L when operating as a condenser.
' " ' (No hardware modifications made
to either component)
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Test Equipment

;,7

“Heat Addition”
Haskel Pumps Heat Exchanger
For Cavity Purge & .
Motor Driven Pressure Drop -Tests used the Sandia S-CO,

Compressor

compression loop, which
consists of a compressor,
heater, flow control valve, and
chiller.

“Cavity Drain”
Heat Exchanger
50 kW Gas Chiller

- Instrumented with T,p
sensors at 4 key state points,
Haske! il and a density meter at

o compressor inlet

Coriolis Flow Meter

Support Skid
(2m x 3m)

1 T=305K
P=7690kPa  Coriolis Flow
- Meter

Pressure Drop
Valve

- In the past, used for mapping
o e compressor performance at
the critical point, bearings &
seals R&D, windage tests, etc.
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3.51 kg/s
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The compressor can be operated directly at the critical point.




Temperature (K)
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The condensing cycle: liquid at the compressor inlet and condensation within the
chiller, cutting across the entire two-phase dome from gas to liquid.
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Data: 302K Liquid CO, at Compressor Inlet
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Even cooler liquid at the compressor inlet, and two-phase conditions at the chiller inlet
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Data: 298K Liquid CO, at Compressor Inlet
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Data: 296K Liquid CO, at Compressor Inlet
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Data: 300K CO, Vapor at Compressor Inlet
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Vapor-phase CO, is also no problem at the compressor inlet.
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p Two-Phase CO, at the Compressor Inlet
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The compressor can even operate with two-phase CO, at inlet!




Corrected Specific Enthalpy Rise (BTU/Ibm)

Supercritical CO, Main Compressor Map
(dH based on T and P calculated Real Time during Run)
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Corrected Mass Flow Rate (lbm/s)

For CO, liquid, compressor maps were found to fall near predictions for
supercritical CO,, though not precisely.
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Corrected Specific Enthalpy Rise (BTU/Ibm)

Supercritical CO, Main Compressor Map
(dHbased on T and P calculated Real Time during Run)
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Again for CO, vapor, compressor maps were found to fall near predictions for
supercritical CO.,.
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Compression Efficiencies Evaluated

Efficiency:
0.9
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Efficiency curves were found to be similar at all conditions investigated.




‘ In Summary, the SNL Compression Loop Has Operated with
Many Different Compressor Inlet Conditions
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The Radial S-CO, Compressor Works with Liquid, Vapor and Two-Phase Fluids

near the Critical Point 'r.
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onclusions:

- S-CO, radial compressor (and gas foil bearing, seals, etc.) can
operate in any of the regions investigated with similar levels of
efficiency

- Compressor can even operate with two-phase inlet conditions at
high pressure (>1000 psi), where density difference between phases
is small

- Spiral HX can operate as a CO, condenser, without modification

- Advanced power generation cycles operating off of (but nearby) the
critical point are unlikely to be problematic for machinery

- This work preceded successful operation of the larger Sandia Split-
Flow Brayton facility in “condensing” mode -- electrical power
production with liquid CO,, at the compressor inlet.

[
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Future Work:

- Testing is ongoing for supercritical fluid mixtures (small %
additives to CO,) to “tune” the critical temperature as desired for
optimum efficiency; ORNL is participating in this effort.

- Alternative supercritical fluids are being investigated:
SF, predicted to operate at higher efficiency and lower pressure,
and is of particular interest.
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Questions?

Tom Conboy
tmconbo@sandia.gov

Steven Wright
sawrigh@sandia.gov
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