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Abstract

This report summarizes the key continuum mechanics concepts required for the systematic
prescription and numerical solution of finite deformation solid mechanics problems. Topics
surveyed include measures of deformation appropriate for media undergoing large deformations,
stress measures appropriate for such problems, balance laws and their role in nonlinear
continuum mechanics, the role of frame indifference in description of large deformation
response, and the extension of these theories to encompass two dimensional idealizations,
structural idealizations, and rigid body behavior. There are three companion reports that describe
the problem formulation, constitutive modeling, and finite element technology for nonlinear
continuum mechanics systems.
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Introduction

Overview

In this report we examine in detail the continuum mechanical issues necessary for rigorous
specification of large deformation problems in solid mechanics. The discussion will provide a
bridge between the generic problem statement given at the close of Formulation of Nonlinear
Problems and the in-depth presentation of constitutive theory to be discussed in Constitutive
Modeling. At the close of the latter report, we will be in a posmon to turn attention to numerical
methods as applied to large deformation solid mechanics.

The current report’s presentation is organized as follows. We begin with a discussion of large
deformation kinematics, including consideration of velocity and acceleration measures and the
quantification of deformation and deformation rates in a general context. We then discuss the
various measures of stress that are frequently encountered in large deformation analysis. With
these preliminaries in hand, we will then be in a position to state the relevant balance laws in
notation appropriate for large deformation problems. We will also at this point discuss the
important concept of material frame indifference, which demands that material laws be unaltered
by rigid body motions. We will see that this concept places important restrictions on the
kinematic and stress measures that are suitable for prescription of constitutive laws, providing
important background information for a subsequent report.

The above information will be presented in a three-dimensional notational framework, assuming
that the solids of interest are likewise fully three-dimensional continua. Formulations appropriate
for two-dimensional problems and for structural entities in three dimensions can be readily
deduced from these equations. Accordingly, we will briefly present the modifications necessary
to adapt our theory to two-dimensjonal geometries and to problems possessing axial symmetry. -
Also we will discuss how continuum mechanical descriptions of structural elements, including
shells and beams, can be deduced from the three-dimensional formalism. We will also briefly
examine how rigid bodies can be incorporated into the notational structure we propose.

It should be emphasized that although many of the concepts to be discussed in this chapter are
applicable to Eulerian formulations, the presentation is targeted primarily toward Lagrangian
description of boundary value problems. Furthermore, for notational simplicity we work almost
exclusively in Cartesian coordinate systems rather than in general curvilinear coordinates (some
deviation from this is obviously necessary when axisymmetry is discussed). The interested reader
may care to consult [Fung, Y.C., 1965] for discussion of such curvilinear formulations in a small-
strain context, and [Marsden, J.E. and Hughes, T.J.R., 1983] for their rigorous extension to large
deformation problems.

Theory Manual Nonlinear Continuum Mechanics - Introduction 1



Measures of Deformation

Measures of Deformation

We continue using the notation from the last report (Formulation of Nonlinear Problems) that
was presented schematically in Figure 1.7. We restrict our attention to some time t € (0, T), and
consider the corresponding configuration mapping ¢, which can be mathematically represented

via (pt:S—Z —R°. The deformation gradient F is given by the gradient of this transformation,

i.e.:
00,
F = 3% 2.1
or in indices:
09, ;
F, = aXZ : 2.2)

In (2.2) one may notice a notational feature we will use unless otherwise noted: lower case
indices are to be associated with coordinates in the spatial frame, while upper case indices are
associated with material coordinates. Repeated indices in expressions will continue to imply
summation.

The deformation gradient is the most basic object used to quantify the local deformation at a
point in a solid. Most kinematic measures and concepts we will discuss rely on it explicitly or
implicitly for their definitions. For example, we can use our knowledge of elementary calculus to

give an interpretation of the determinant of F. Consider a cube of material in the reference
configuration (see Figure 2.1) whose sides can be assumed to be aligned with the coordinate axes
X;, I = 1,2, 3. The initial differential volume AV of this cube is given by

If we now consider the condition of this cube of material after the deformation @ is applied, we

notice that its volume in the current configuration dv is that of the parallelepiped spanned by the
—_— —

three vectors @._(dX;), where the notation dX; is used to indicate a reference vector in

coordinate direction J with magnitude dX ;. This volume can be written in terms of the vector

triple product:

& = Qu(3K)) - (9(TK) X 0(FK3)) . @2.4)

Theory Manual Nonlinear Continuum Mechanics - Measures of Deformation 2




Figure 2.1  Concept of volume change: deformation of a volume element as
described by the configuration mapping ¢ .

If we consider any differential vector dR in the reference configuration, the calculus of

differentials tells us that application of the mapping ¢, will produce a differential vector

—_— [— . . .
dr = @.(dR) whose coordinates are given via

(dr); = 53— (dR)x.
%, - ¢

Application of this logic to the particular differential vectors d—X_:\7 leads one to conclude:

F,,dXs, J = 3

(2.5)

(2.6)

We can write (2.4) in indicial notation by first noting that the cross product of two vectors a and

b is written as
(axb); = e;5a5by,

where € 4x>

the permutation symbol, has the following interpretation:
1if (4, 3,k)=(1,2,3)or (2,3,1) or (3,1,2)
ijk = -lif (4, 3, k) =G3,2,1)or (2,1,3) or (1,3,2) -
0 otherwise

e
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Equation (2.4) is then reexpressed via

dv

1

= €4y F,; F5Fy3dX AX,d%; = det(F)av’

F;18X (e 43 F5pdX,Fy3dXs) 2.9)

where we have used Eq. (2.3) and the fact that det(F) = e; 5xF ;1 F42F k3 (Which can be verified

through actual trial). Introducing the notation J = det(F), we conclude

dv = Jdv. (2.10)

Equation (2.10) tells us that the deformation ¢, converts reference differential volumes dv to

current volumes dv according to the determinant of the deformation gradient. For this mapping

to make physical sense, the current volume dv should be positive which then places a physical
restriction upon F that must be obeyed pointwise throughout the medium:

_ _ et 09
J = det(F) = det(—a—}—c)>0. 2.1

This physical restriction has important mathematical consequences as well. According to the
inverse function theorem of multivariate calculus, a smooth function whose gradient has a

nonzero determinant possesses a smooth and differentiable inverse. Since we have assumed ¢,

. I . -1
to be smooth and physical restrictions demand that J # 0, we can conclude that a function ¢,
exists that is differentiable; in fact, the gradient of this function is given by

a(p"l |
RAASI (2.12)
ox

We will assume throughout the remainder of our discussion that J > 0, so that such an inverse is
guaranteed to exist.

With the definition of F in hand, we turn our attention to the quantification of local deformation
in a body. For any matrix, such as F, whose determinant is positive, the following decompositions
can always be made:

F = RU = VR. (2.13)

In (2.13) R is a proper orthogonal tensor (right-handed rotation), while U and Vv are positive
definite and symmetric tensors. One can show that under the conditions stated the
decompositions in (2.13) can always be made and that, in fact, they are unique. The interested
reader should consult [Gurtin, M.E., 1981], Chapter 1 for details. The decompositions in (2.13)

are called right and left polar decompositions of F, respectively. R is often called the rotation
tensor, while U and V are sometimes referred to as the right and left stretches.
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The significance of the polar decomposition is made more clear in Figure 2.2, where we consider
the deformation of a neighborhood of material surrounding a point X € Q. Equation (2.5) shows
us that the full deformation gradient maps arbitrary reference differentials into their current
positions at time t ; this idea also applies to neighborhoods of material having infinitesimal
extent. By considering the polar decomposition, we see that this deformation of material
neighborhoods can always be conceived as consisting of two parts. Considering the right polar

decomposition as an example, U contains all information necessary to describe the distortion of a
neighborhood of material, while R then maps this distorted volume into the current configuration
through pure (right-handed) rotaticn. In consideration of the left decomposition, the rotation R is
considered first, followed by the distortion V. In developing measures of local deformation, we
can then concentrate our attention on either U or V. The choice of which decomposition to use is
typically based on the coordinates in which we wish to write strains: the right stretch U most

naturally takes reference coordinates as arguments, while the left stretch V is ordinarily written
in terms of spatial coordinates. We might indicate this explicitly via

F(X) = R(X)U(X) = V(9(X))R(X). (2.14)

In characterizing large deformations, it is convenient also to define the right and left Cauchy-
Green tensors via

C=FF (2.15)

and

B = FF". (2.16)

F ) N
~ S
RPN
~
~
~
R T
,/‘ ~a -
’ N —~
Y -
$ ® ! U //
v X i R
\ 7’ ’f‘ ’
N 4 - [ ] -
.- ,/ -
%*° ~---mT

Figure 2.2  Physical interpretation of the polar decomposition. (Dotted outline
indicates a neighborhood of point X.)

The right Cauchy-Green tensor is ordinarily considered to be a material object (i.e., C(X) ), while
the left Cauchy-Green tensor is a spatial object (B(¢.(X)) . Since R is orthogonal, one can write
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R'R=RR =TI, " (2.17)

where I is the 3x3 identity tensor. Using this fact and manipulating Egs. (2.14)-(2.16) also
reveals that

[\ TR

u=c (2.18)

and

1
v = B%. (2.19)

One can see the point of connection with the small strain theory by considering the Green strain
tensor E, defined with respect to the reference configuration:

E = %(C—I). (2.20)
Let us define a reference configuration displacement field u, such that
u(X) = o(X)-X. (22D
Working in indicial notation, let us attempt to write E in terms of u:

1 1
Eiz = i(cIJ_SIJ) = i(FiIFiJ_SIJ)

_1(9 2
= 2(a—XI(ui + Xi)B_XJ(ui +X;) - SIJ)

aui 5 aui 5 5 . (2.22)
5“}5"’ ir |t E"' ig [ vYIg

J du, du;
XI‘ui) * dX0X

DI

[R5

_1 J
=3 aiza—XJ(ui)"'SiJa

J

oUy « 1, the quadratic term in
0X 5

(2.22) will be much smaller than the terms linear in the displacement gradients. If, in addition,
the displacement components u, are very small when compared with the size of the body, then

In the case where the displacement gradients are small, i.e.,

the distinction between reference and spatial coordinates becomes unnecessary and Eq. (2.22)
simplifies to

Theory Manual Nonlinear Continuum Mechanics - Measures of Deformation - Measures of Deformation 6



1{du; duy

B.io= | i e
g 2 aXJ+aXI s (223)

which is recognized as being identical with the infinitesimal case (c.f. Eq. (1.56)).
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Rates of Deformation

Introduction

The development of the last section fixed our attention on an instant t € (0, T), and proposed
some measurements of material deformation in terms of the configuration mapping ¢, . We now

allow time to vary and consider two questions: 1) how velocities and accelerations are quantified
in both the spatial and reference frames; and 2) how time derivatives of deformation measures
are properly considered in a large deformation framework. The former topic is obviously crucial
in the formulation of dynamics problems, while the latter is necessary, for example, in rate-
dependent materials where quantities, such as strain rate, must be quantified.

Material and Spatial Velocity and Acceleration

One obtains the material velocity V and the material acceleration A by fixing attention on a
particular material particle (i.e., fixing the reference coordinate X), and then considering
successive (partial) time derivatives of the motion @(X, t). This can be written mathematically
as

)
and
A 1) = 2v(x )= 2ok 1) (2.25)
’ Jt ’ ot?2 ? ’ ’

Note in Egs. (2.24) and (2.25) that V and A take X as their first argument; hence their designation
as material quantities. A Lagrangian description of motion, in which reference coordinates are
the independent variables, would most naturally use these measures of velocity and acceleration.

An Eulerian description, on the other hand, would, in general, require measures written in terms
of points x, without requiring explicit knowledge of material points X. The spatial velocity v and
the spatial acceleration a are obtained from (2.24) and (2.25) through a change of variables:

v(x, t) = V(Q, (%), t) = V, e, (x) (2.26)

and

a(x, t) = A(Q, (x),£) = A, * ¢, (x). (2.27)

Theory Manual Nonlinear Continuum Mechanics - Rates of Deformation 8




The expression given in (2.27) for the spatial acceleration may be unfamiliar to those readers
versed in fluid mechanics who may be more accustomed to thinking of acceleration as the fotal
time derivative of the spatial velocity v. We reconcile these different viewpoints here through the
introduction of the equivalent concept of the material time derivative, defined, in general, as the
time derivative of any object, spatial or material, taken so that the identity of the material particle
is held fixed. Applying this concepr. to the spatial velocity gives:

a(x, t) = v(x, t)|
4

x =X t)

v(9((%, £), )

X fixed

5 3 ) 3 ) . (2.28)
= (ﬁ(x, £) - 50 (), £) + 50, (), t>)

_[(ov .
= (Ei-Vv v)

This may be recognized as the so-called “total time derivative” of the spatial velocity v.

Exercising the concept of a material time derivative a little further, we can see from (2.24) that
the material velocity is the material time derivative of the motion, so that

v = . (2.29)

Comparing Egs. (2.25) and (2.28), we can also conclude that A and a are, in fact, the same
physical entity expressed in different coordinates. The former is most naturally written in terms
of v, while the latter is conveniently expressed in terms of v.

One may see in (2.28) the superposed dot notation for the time derivative of v. Such superposed
dots will always imply a material time derivative in this text, whether applied to material
quantities or, as in this case, spatial ones. It is further emphasized that the gradient Vv is taken

with respect to spatial coordinates and is, therefore, called the spatial velocity gradient. 1t is used
often enough to warrant a special symbol which we denote as L:

L = Vv. (2.30)

Rate of Deformation Tensors

From the spatial gradient L defined in (2.30), we can define two spatial tensors D and W, known
respectively as the spatial rate of deformation tensor and the spatial spin tensor:

D=Vwv= %[L+LT], (2.31)

s

and

Theory Manual Nonlinear Continuum Mechanics - Rates of Deformation - Rate of Deformation Tensors 9




W= V= o[-t (2.32)

It is clear that D is merely the symmetric part of the velocity gradient, while W is the
antisymmetric, or skew, portion.

The quantities D and W are spatial measures of deformation. D is effectively a measure of strain

rate suitable for large deformations, while W provides a local measure of the rate of rotation of
the material. In fact, it is readily verified that in small deformations, Eq. (2.31) amounts to
nothing more that the time derivative of the infinitesimal strain tensor defined in (1.56). It is of
interest at this point to discuss whether appropriate material counterparts of these objects exist.
Toward this end let us calculate the material time derivative of the deformation gradient F, noting
in so doing that if F is an analytic function, then the order of partial differentiation can be
reversed:

F = —a%[ix(p(x, t)] = a_ai[_a?p(x’ t)] - g_:’c. (2.33)

From (2.33) we conclude that the material time derivative F is nothing more than the material
velocity gradient. Manipulating this quantity further we find

ov _ 9 . . _ d
"—}‘E = a_x(v (Pt) - Vv((pt(x))a—x(q)t(x)) (234)
= L(Q(X))F(X)
Examination of (2.33) and (2.34) revéals that
L = (Fog, )F . (2.35)

Recalling the definition for the right Cauchy-Green strain tensor € in Eq. (2.15), we compute its
material time derivative via:

'_ifr — T T
—at[FF]—FF-*-FF

, (2.36)
= (LF)TF + FT(LF) = FI(L+ L )F
which in view of (2.31), leads us to conclude
C(X, t) = 2FT(X, £)D(Q(X), t)F(X, t). (2.37)

In view of (2.37) %C‘ is sometimes called the material rate of deformation tensor.

Theory Manual Nonlinear Continuum Mechanics - Rates of Deformation - Rate of Deformation Tensors 10




Noting that F is the Jacobian of the transformation ¢, , readers with a background in differential

geometry will recognize %C as the pull-back of the spatial tensor field D defined on ¢ _(Q).

Conversely, D is the push-forward of the material tensor field %d defined on €2. The concepts

of pull-back and push-forward are outside the scope of our present investigation, but the basic
physical principle they embody in the current context is perhaps useful. Loosely speaking, the
push-forward (or pull-back) of a tensor with respect to a given transformation produces a tensor
in the new frame of reference that we, as observers, would observe as identical to the original
tensor if we were embedded in the material during the transformation. Thus the same physical

principle is represented by both %C’f and D, but they are very different objects mathematically

since the transformation that interrelates them is the deformation itself. Recalling the definition
of Green’s strain E given in Eq. (2.20), we can easily see that
1

E = ic‘: = FTDF. (2.38)

- This further substantiates the interpretation of D as a strain rate as suggested earlier.

We have thus far developed measures of strain and strain rate appropriate for both the spatial and
reference configurations. Although it is not clear at this point why other measures may be
needed, let us consider appropriate definitions of these quantities for the rotated configuration
defined according to the polar decomposition and depicted schematically in Figure 2.2. This can
be readily done by extending the idea of pull-back and push-forward as discussed above, by

applying to the linear transformation R relating the rotated configuration to the spatial one.

The rotated rate of deformation tensor D is, therefore, defined via:

DX, t) = RT(X, ) -D(gp(X,£), t) - R(X, t
(X, t) (X, £) - D(9(X, t), t) - R(X, )‘ (2.39)
= RT(Do@)R

Noting that

¢ = 2FT(De@)F = 2UTRT(D°@)RU = 2UTD U, (2.40)
we find

L tgr-1 = lac1/2ga-1/2
D == EU CU = §C CC . (2.41)

In connection with the rotated reference frame, another tensor, L , is sometimes introduced:

L = RRT. (242)

Theory Manual Nonlinear Continuum Mechanics - Rates of Deformation - Rate of Deformation Tensors 11



As shown below, note that L is skew:

QU

. . 0 I
LT = T T = Yy =22 =90.
L+ RRT+RR | at(RR ) 5T 0

We will return later in this report to the various measures associated with the rotated
configuration. They have particular importance in the study of material frame indifference.

Theory Manual Nonlinear Continuum Mechanics - Rates of Deformation - Rate of Deformation Tensors
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Stress Measures

Stress Measures

In this section we discuss the quantification of force intensity, or stress, within a body undergoing
potentially large amounts of deformation. We begin with the Cauchy stress tensor T, and note that
provided we associate this object with the spatial configuration, this object can be interpreted
exactly as in the infinitesimal case outlined in Linear Elastic IBVP. In the current notational

framework, we interpret the components of T, which we shall denote as T, . , as representing

i3>

forces per unit areas in the spatial configuration at a given spatial point x € @_(£2).

It will be necessary in our study to consider related measures of stress defined in terms of the
other configurations we have discussed, particularly the reference and rotated configurations. To
motivate this discussion, let us reconsider the concept of traction discussed previously in the
context of the infinitesimal elastic system. The reader may recall that given a plane passing
through the point of interest x, the traction, or force per unit area acting on this plane, is given by
the formula

t; = Tiyn,,

(2.44)

where n is the unit normal vector to the plane in question.

Let us consider two differential vectors, dr; and dr,, in such a plane passing through the

spatial point x, as indicated in Figure 2.3. We assume that dr, and dr, are linearly independent

from one another and that both differential vectors have x as their base point. We further assume
that their orientations are such that the following relation from basic geometry holds:

dr; X dr, = nda, (2.45)

where da is the (differential) area of the parallelogram encompassed by dr; and dr,.
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e

Figure 2.3  Notation for derivation of Nanson’s formula.

As in the discussion in Measures of Deformation (see Eq. (2.5)), we can think of the differential
vectors dr; and dr, as the current positions of reference differential vectors dR; and dR,,

. -1 . . . .
which are based at X= ¢, (x) . In indicial notation we can relate these two sets of differential

vectors using the deformation gradient via:

(ar)), = F;;(dRy),, (2.46)
and

(dry), = F;;(aR,),. ’ (2.47)

We now seek to reexpress (2.45) in terms of reference quantities. Working in indicial notation we
can write

n.da = eiijjJ(de)JFkK(dRz)K

= e14,01;F5(dR) ;Fx(dRy), (2.48)
-1

= €14, F1.Fi Fyg(aR) ;F g (ARy)

Let us extract and work with a particular product in the last line of Eq. (2.48), namely
e13xF1.F 35F kx - One can show by a case-by-case examination that the following relation holds:

€15k F 1. 50 ke = Cox€15xF11F52F k3 (2.49)

The reader may recall from Measures of Deformation that J = det(F) has the following
representation in indicial notation:
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Combination of Eqs. (2.48), (2.49), and (2.50) yields the following result:

- ~1
n;ca = Je; ;xF;;(dR, )J(c:'iRz)K

. - (251
= JFy;m; dA
In Eq. (2.51) dA is the differential reference area spanned by dR; and dR,, and mis the
reference unit normal to this area.
In direct notation we can express this result as
nda = JF mdA. (2.52)

Equation (2.52) is sometimes referred to as Nanson’s formula and it is important, among other
reasons, because it provides the appropriate change-of-variables formula for surface integrals in
the reference and current configurations. In the current context we are more interested in
computing the product of the traction acting on our plane at x and the differential area under
consideration. Denoting this differential force by d£, we may write

df = tda = Tnda = JTF mdA. (2.53)

In examining (2.53) we find that the following definition is useful

P(X) = J(X)T(Q(X)F " (Q.(X)), (2.54)
which then allows us to write
df = PmdA. (2.55)

In examining Eq. (2.55), we note that the product Pm represents a traction, with the physical
interpretation of current force divided by reference area. The stress P is called the (Firs?) Piola-
Kirchhoff Stress, and like the associated Piola traction, Pm , measures stress by referencing the
force acting on areas to the magnitude of those areas in their undeformed configurations. The
one-dimensional manifestation of this stress measure is the engineering stress, O, originally

defined in Eq. (1.3).

in the sense discussed in Rates of Deformation, it is worthy to note that P is neither a pure spatial
nor a reference object. Such an object can be constructed by performing a pull-back of the spatial
Cauchy stress tensor T to the reference configuration:

S(X)

TF (@ (X)) P(Q(X)FT(9.(X))

» (2.56)
Fo (@ (X)B(X)

S is called the Second Piola-Kirchhoff stress tensor and it is a purely reference object. We note
in particular that S is a symmetric tensor, while P is not symmetric, in general.
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This same concept of pull-back can be employed to define a stress tensor in the rotated
configuration, which we shall denote as T . This rotated stress tensor is defined via:

T (9.(X)) = R (Q(X))T(O(X)R(Q.(X)).

(2.57)

~ As was the case with the rotated configuration quantities introduced in Rate of Deformation
Tensors, this definition will be of particular importance in the subsequent examination of frame

indifference.
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Balance Laws

Introduction

In this section we examine the local forms of the various conservations laws as expressed in the
various reference frames (spatial, reference, and rotated) we have introduced. To expedite our
development, we first discuss how integral representations of balances can be converted to
pointwise conservation principles, a process known as localization.

Localization

Suppose we consider an arbitrary volume of material, V < ., in the reference configuration of a
solid body, as depicted in Figure 2.4. Suppose further that we can establish the following generic
integral relation over this volume:

j £(X)av = 0, (2.58)
v .

where f is some reference function, be it scalar, vector, or tensor-valued, defined over all of .

Suppose now that (2.58) holds true for each and every subvolume Vv of Q. The localization
theorem then states that

£ = 0 pointwise in Q. (2.59)

The interested reader should consult [Gurtin, M.E., 1981], Section 5 for elaboration on this
principle. It should be noted that the same procedure can be applied spatially. In other words, if

we are working with a spatial object, we might consider arbitrary volumes v in the spatial
domain, and if the following holds for a spatial object g for all v:

[a=)av = 0, (2.60)

then g(x) = O throughout @,(Q).

Our primary interest in these localization principles will be to take the well-known conservation
laws for control volumes and convert them to their local counterparts valid pointwise throughout
the medium.
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Figure 2.4  Notation for localization concept.

Conservation of Mass

In consideration of the conservation of mass, let us consider a fixed control volume, v, in the

spatial domain, completely filled with our solid body at the instant in question as the body moves
through it. We may write a conservation of mass for this control volume via

-a_[’pv -nda = i—g—%dv, (2.61)

where the term on the left can be interpreted as the net mass influx to the control volume, and the
right-hand side is the rate of mass accumulation inside the control volume. Applying the
divergence theorem to the left-hand side gives

-[V-(pv)av = jg—‘;dv. (2.62)

This can be further rearranged to yield

I(%%+ Vp-v+p(V- v))dv =0, (2.63)

which can be established for any arbitrary spatial volume v . Applying the localization theorem

gives the local expression of continuity, which may be familiar to those versed in fluid
mechanics:

gﬂt+vp~v+p(v-v)=p+p(V-v)=0, (2.64)

where the concept of the material time derivative has been employed (cf. Eq. (2.28)).
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A reference configuration representation of continuity is also highly desirable, especially in the
study of solid mechanics. Therefore, we convert (2.63) to a reference configuration integral and
obtain:

j (p+pF:F H)Jdv = 0, (2.65)
-1
V= ¢, (v)

where the transformation between dv and dV is accomplished using (2.10); and the chain rule

is used to convert V - v via

v 50 = 50V (07 ()

X5

0

_ oX; _ , 2.66
=§{—Ivi((ptl(x))-a_}-{_j((ptl(x)) 0

= Fox(0y (2)Foh(07 (%))

. . . T . 5T . L
which the reader will recognize as the indicial notation form of F:F ~ . Applying the localization
theorem in the reference configuration gives

pT +pIF:F = =0, (2.67)
which holds pointwise in €.

Working in indicial notation we can work further to simplify (2.67) by concentrating on the term

JF:F . Letus compute the material time derivative of J as follows:

. 0J
- mFmM.

(2.68)

Calculation of BJ_ is achieved via
OF
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aJ 0
9F oy aFmM(eiijile2Fk3)

= 13k6 8Ml FJZFk3

J.jk8 8M2F3.1Fk3 +e

1jk8 8M?>Fi1Fj2

s (2.69)
= ;5 FinFy 8M1F32Fk3

+e; 51 FixFy 5MzFlle3

+ eiijkNFNm8M3Fi1Fj2

which can be further simplified to yield

oJ -1 -1 -1
37— = IF S + IF 308 + IF 3583
oM . (2.70)

-1 -1
JIF 1101 = IFym

Substitution into (2.68) gives

F = TFp Fraes @2.71)
which is nothing more than the indicial form of

J = JFE. (2.72)

Substitution into (2.67) gives

. . d
pI+pd = -JE(pJ) = 0. (2.73)
Equation (2.73) 1s the reference configuration version of the continuity equation and tells us that

the product of the density and deformation gradient determinant must be invariant with time for
all material points. This is commonly enforced in practice by assigning a reference density p to

all material points. If the current density p is always computed via

1
p = Spo, (2.74)

then Eq. (2.73) is automatically satisfied (recall that the Jacobian J is unity in the reference
configuration).
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Conservation of Linear Momentum

Considering once more a fixed control volume v, the control volume balance of linear
momentum can be expressed as

[ (ov)v - naa + J.gag(pv)dv = [fav+ [tda. (2.75)
av v v v

The first term on the left expresses the momentum outflux, while the second represents the rate of
accumulation inside the control volume. This net change of momentum is produced by the total

resultant force on the system, equal to the sum effect of the body force F and the surface
tractions t.

Applying the divergence theorem to both surface integrals, we find
j(pv)v -nda = j[v (pv)v+p(Vv)v]dv, (2.76)
ov v
and
j tda = j Pnda = j V. Tdv. (2.77)
ov ov v

Substituting (2.76) and (2.77) into (2.75) and rearranging gives

V-7+ f—pa—‘é—p(Vv)v

| J av = 0. (2.78)

v -——g—%v— (Vp -v)v—p(V-v)v

Employing the spatial form of the continuity equation (Eq.(2.63)) and recalling the formula for
the material time derivative (Eq. (2.28)) gives

j[V--r+f—pv]dv = 0. (2.79)

By the localization theorem this implies
V-T+£f=pv (2.80)

pointwise, which is recognized as the same statement of linear momentum balance utilized in our
earlier treatment of linear elasticity.

In large deformation problems it is desirable to also have a reference configuration form of
(2.80). Converting (2.79) to its indicial form we have
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J[Tij, j+E-pvylav = 0.

Working with the stress divergence term first we write

9T 9%, Ty,
ok ax = 3% Fay- (2.82)

Using Eq. (2.54) we can write

aT. . 3
lj__
=52 (p F)

0X gt
5 (2.83)
_ =197 9Fk 10
= 23F,.0%, Py Fy+ 9%, 3(Pi1F51)
Using Eq. (2.70) we can simplify (2.83) and postmultlply by F 5 to obtain:
0T;s 1 -1 __10F oP; _10F
ljFJl _=1_—19Fkx 10551 1 _-1 ;.IPiI. (2.84)

=——F;; = —Fp=— P+ o + F oL
0X; 73 g KRgx, T gox;  J JI9X

The first and last terms on the right-hand side of (2.84) cancel each other due to the fact that

OF;; OF,
—2% = 37 Therefore, we have
X aX
oT,. _ 0P,
dak= g U St £ (2.85)
0X; Y7 J0X;
Using this result and applying a change of variables to (2.81) gives
f(Pix, 1 +F;—poVy)dv = 0, (2.86)
v
where F; = J£,, the prescribed body force per unit reference volume. Employing the
localization theorem gives
DIVP+F = p,V (2.87)

pointwise in £, which expresses the balance of linear momentum in terms of reference

coordinates. In (2.87) we have used the notation DIV to indicate the divergence operator applied
in reference coordinates.
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Conservation of Angular Momentum

Considering once more an arbitrary control volume in the spatial frame, we can write its balance
of angular momentum via '

0
a_’;(x X pv)v-nda+ {E(x Xpv)dv = i(x X £)dv + a_[]x x tda, (2.88)

where the terms on the left-hand side are the outflux and accumulation terms, while the terms on
the right-hand side represent the total resultant torque.

Working this time in indicial notation, we apply the divergence theory to the surface integrals as
follows:

P1€; XV Vy + €. pd. Vv
jeijkpXijvlnlda = J( L TAIRTI TR T IR T lJdv, (2.89)
3v P\CijkPEV 1V €555 PR3V 3
and
J €;5x¥; Ty da = J(eiijkal, 1+ €55 Tyy)av. (2.90)
ov v
Substituting (2.89) and (2.90) into (2.88) and rearranging terms reveals that:
. . ov, OV
.. Xs| T + £, = ps— — ps—V
ijk*™j k1,1 k at aX]_ 1
av = 0. (2.91)

<G —y

. (9P, 9P
_.eijkxjvk(x + -é—:;{:vl + le’ 1)

+ €54k Tks ~ P15k V5 Vi

Using Egs. (2.81) and (2.64) and noting that the cross product of a vector with itself is zero, we
can simplify Eq. (2.91) and apply the localization theorem to conclude

ei5kTi; = 0, (2.92)
which, in tarn, implies the following three equations:
Ty3 = T3> T13 = T3> Ty = Tya (2.93)

In other words, the symmetry of the Cauchy stress tensor is a direct consequence of the
conservation of angular momentum. Use of Egs. (2.56) and (2.57), respectively, easily reveals

that the Second Piola Kirchhoff stress S and the rotated stress tensor T are likewise symmetric.
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The First Piola Kirchhoff stress is not symmetric and is not, in fact, a tensor in the purest sense
since it does not fully live in either the spatial or reference frame.

Stress Power

Finally, we examine the consequences of a control volume expression of energy balance. We
assume herein a purely mechanical description and assume, to begin, that there is no mechanical
dissipation, so that the system we consider conserves energy exactly. In other words, all work put
into the system through the applied loads goes either into stored internal elastic energy or into
kinetic energy.

With this in mind the conservation of energy for a spatial control volume is written as
J (e + lpv . v)v -nda + Ji(e + 1pv . v)dv
3 2 ot 2
v

, (2.94)
= Uf-vdv+ J'(Tn) . vda)
v ov

where e is the internal stored energy (i.e., elastic energy) per unit spatial volume.

As we have done previously, we apply the divergence theorem to the surface integrals:

j(e+%pv-v)v~nda
v

V-v(e+%pv-v)+Ve-v ’ (2.95)

=j av
v

+ %Vp cv(v-v)+pv - (Vv)v
and

jt -vda = j['r:vv+ (V-T) v]dv. (2.96)
ov

v

Substituting (2.95) and (2.96) into (2.94) and rearranging gives

—(V T+ f—pg—‘;—p(Vv)v) . v-

0= dv. 2.97)
i—%v-v@—i+p(V-v)+Vp-v) v (

L +T:Vv—-e(V-v)-¢é .

Using Eqgs. (2.81) and (2.64) we find
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0 = j[T:Vv-e(V-v)-e']dv. | (2.98)

Splitting (2.98) into two integrals we have

0 = j-rzvvdv-j(e(v ‘v)—&)dv. (2.99)

v

We now wish to convert (2.99) to the reference configuration and apply localization. In so doing
we recognize that the second integral in (2.99) can be treated directly analogously to that of Eq.

(2.63), with the density in (2.63) being replaced by the energy e in the current case. The result
of this manipulation will lead to a term form identical to the result (2.73), with e substituted for
p . In other words, we have

j(e(v.v)—é)dv = Jj—t(eJ)dV. (2.100)
v v

Concentrating on the first integral and using Eqgs. (2.35) and (2.68) to aid in the calculation, we
find

IT:Vvdv = J(To(p‘l):(Lo(p_l)JdV
v v

. 1 . (2.101)
= j(-r°(p‘ ):(FF )Jav = jp:s‘-dv
A\ v
Combining these results and employing the localization theorem, we conclude that
-é—(eJ) = E = P:F (2.102)
dt

pointwise in Q, where E is the stored elastic energy per unit reference volume. Therefore, P:F
represents the rate of energy input into the material by the stress (per unit volume), commonly
known as the stress power. Taking into account the various measures of stress and deformation
rate we have considered, it can be shown that for a given material point, the stress power can be
written in the following alternative forms:

. 1_.
Stress power= P:F= (ESC) = JTD =JT:D . (2.103)
It should be noted that this definition can be used also for dissipative (i.e., nonconservative)
materials but that the interpretation becomes different: the stress power in this case is the sum of
the rate of increase of stored energy and the rate of energy dissipation by the solid.
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Frame Indifference

Frame Indifference

An important concept to be considered in the formulation of constitutive theories in large
deformations is that of frame indifference, alternatively referred to as objectivity. Although
somewhat mathematically involved, the concept of objectivity is fairly simple to understand
physically.

When we write constitutive laws in their most general forms, we seek to express tensoral
quantities, such as stress and stress rate, in terms of kinematic tensoral quantities, most
commonly strain and strain rate. The basic physical idea behind frame indifference is that this
constitutive relationship should be unaffected by any rigid body motions the material may be
undergoing at the instant in question. Mathematically we describe this situation by defining an
alternative reference frame that is rotating and translating with respect to the coordinate system
in which we pose the problem. For our constitutive description to make sense, the tensoral
quantities we use in it (stress, stress rate, strain, and strain rate) should simply transform
according to the laws of tensor calculus when subjected to this transformation. If a given quantity
does this we say it is material frame indifferent, and if it does not we say it is not properly
invariant.

Consider now a motion, @(X, t). We imagine ourselves to be viewing this motion from another
reference frame, denoted in the following by *, which can be related to the original spatial frame

via
x* = e(t)+Q(t)x, (2.104)

where x = @(X, t).In (2.104) e(t) is a relative rigid body translation between the original

frame and observer *, while a relative rotation is produced by the proper orthogonal tensor Q(t).
To observer * the motion appears as defined by

x* = ¥(X, t) = e(t)+Q(B)p(X, t). (2.105)

Then for the * frame, we can define an appropriate deformation gradient:

= Jox = 0lo.®) = o (2.106)

and a spatial velocity gradient L*:
. -1 d -1
L* = V¥v* = FY(F*) = :{E(QF)(QF)

s (2.107)
= (QFF‘IQT + QVVFF—lQT)
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which can be simplified to

L* = QLQT + 0QT. ' (2.108)

For L= Vv to be objective, it would transform according to the laws of tensor transformation
between the two frames, so that only the first term on the right-hand side of (2.108) would be
present. Clearly L = Vw is not objective.

Examining the rate of deformation tensor, on the other hand, one finds:

D* = %(L* + (L*)T) |
(2.109)

1 . .
= E[QLQT + 00T + O(L.)TQT + Q7]
One can also show that
607+ 00" = L100™ = Ly1] =0 (2.110)
dt dt ’
so substituting this result into (2.109) gives
D* = %Q[L+LT]QT = QDQT, (2.11D)

which shows us that D is objective.

Therefore, we have a spatial rate-of-strain object, D, that is objective. The question arises about
whether corresponding reference measures of rate are objective. It turns out that such material
rates are automatically objective, since they do not change when superimposed rotations occur

spatially. Consider, for example, the right Cauchy-Green tensor C:

C* = (F*)T(F*) = FTQTQF = C. (2.112)

In view of (2.112) it is obvious that

¢t = ¢. (2.113)

Turning our attention to stress rates, let us examine the material time derivative of the Cauchy
stress T':

: d -1 oT
T = [EE(To(pt)} *Q, = (§—E+v . VT). (2.114)
Now T is itself objective by its very definition as a tensoral quantity. Thus we can write

¥ = QTQT. (2.115)
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Computing the material time derivative of (2.115) we find

T* = O7QT + QTQT + QTQT. (2.116)

Since the first and third terms on the right-hand side of (2.116) do not, in general, cancel, we see
- that the material time derivative of the Cauchy stress T is not objective.

It, therefore, becomes critical, when a constitutive description requiring a stress rate is to be
formulated, to consider a frame indifferent measure of stress rate. A multitude of such rates have
been contrived; the interested reader is encouraged to consult [Marsden, J.E. and Hughes, T.J.R.,
1983] for a highly theoretical treatment. For our discussion here we consider two such rates,
especially prevalent in the literature: the Jaumann rate and the Green-Naghdi rate. Both rates rely
on roughly the same physical idea: rather than taking the derivative of the Cauchy stress itself,
we rotate the object from the spatial frame before taking the time derivative, so that the reference
frame in which the time derivative is taken is the same for all frames related by the
transformation (2.104).

For example, let us consider the Jaumann rate of stress, which we denote here as T . Its definition
is given as follows:

~

T = T—WT+ TW. (2.117)

We can verify that this rate of stress is truly objective by direct calculation, by con51der1ng the
object as it would appear to observer *:

~

TF = PE _WRTE 4 PRWE (2.118)

The quantity T* is given by (2.116), T* is given by (2.115), and W* can be computed with the
aid of (2.108) and (2.111):

W* = L*-D*= QLQ" +00Q —QDQ". (2.119)

Substituting these quantities into (2.118) we find

T* = GTQT+QTQT + QTGT
~(QLQ" + 00" - 0DQ")QTQT . (2.120)
+QTQT(QLQ" + 00" —0DQ")

Canceling terms and using the fact that go” = ~QQT , we can simplify (2.120) to
T = Q[F-Wr+TW]Q = QQ’, (2.121)

which ensures us that, indeed, T is objective.
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In consideration of the Green-Naghdi rate we, perhaps, gain more insight into how objective
rates can be designed. The Green-Naghdi rate of Cauchy stress is defined via:

T = RTR', (2.122)

where R is the rotation tensor from the polar decomposition of ¥, and 7 is the rotated Cauchy
stress defined in (2.57).

Let us examine how the rotation tensor R transforms. Recalling Eq. (2.106) we can write
F*=R*U* = QF = QRU. (2.123)

We now note two things: first, that the product QR is itself a proper orthogonal tensor and
second, that the polar decomposition is unique for a given deformation gradient. Therefore,
comparing the second and fourth terms of (2.123), we must conclude:

U* = U, (2.124)
and

R* = QR. (2.125)
Using Egs. (2.125) and (2.122) we can compute: |

T+ = R*T*R*’ = QRT*R Q" . (2.126)

Returning to the definition of T in Eq. (2.57) and incorporating Egs. (2.115) and (2.125), we
can write

p*=R*"P*R*=R"Q (QTQ')OR = R'TR = T . (2.127)

Therefore, the rotated stress tensor appears exactly the same in both frames of reference. It
follows that

rx = @ (2.128)

which, when substituted into (2.126), gives
T*=QRT R'Q" = QTQ", (2.129)
which is recognized as nothing more than the properly objective transformation of T.

One may note that result (2.128) gives considerable insight into how objective rates can be
constructed. In the current case we transform the stress into the rotated configuration before
computing its time derivative, and then transform the result back to the spatial configuration.
Since the rotated stress is exactly the same for all reference frames related by (2.104), taking the
time derivative of it and then transforming produces an objective object. This idea can be
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generalized as follows: construction of an objective rate of stress is achieved by considering the
time derivative of a stress measure defined in a coordinate system that is rotating about some set
of axes. In fact, one can show that the Jaumann stress rate can be similarly interpreted.

Finally, the Green-Naghdi rate can be manipulated further to a form resembling more closely the
form given for the Jaumann rate (Eq. (2.117)). We may write

d,_T T
R——(R TR)R

RR'T+ 7+ TRRT, (2.130)
P+ LTP+TL
T4+TL- LT

where we have used Eq. (2.42) to define L , recalling also that this object is skew.
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Two-Dimensional Formulations

Introduction

In this section we very briefly discuss the adaptation of the three-dimensional framework to two-
dimensional problems. We consider three cases of primary interest: plane strain, plane stress, and
axisymmetry.

Plane Strain

The so-called plane strain assumption is appropriate when the following conditions hold: 1) the
object of interest can be geometrically described in a two-dimensional manner (for example, by
considering a cross section of a very long object); 2) once so idealized, no loads on the structure
act in the direction normal to the two-dimensional plane selected; 3) no significant displacement
occurs normal to this plane; and 4) the variation of any quantity (stress, strain, displacement, etc.)
in the direction normal to the plane can be neglected. Conditions 3) and 4) require that all out-of-
plane strain components be zero, giving rise to the name plane strain.

The reader should refer to Figure 2.5 for the notational framework we will use. We associate the
third index, i = 3, (i.e., the z-coordinate) with the out-of-plane direction. All of the continuum
mechanical concepts we have developed for the three-dimensional case can then be
straightforwardly applied to the current situation. We note that in two dimensions, one simply
considers the large deformation boundary value problem summarized in Large Deformation

Problems to be defined over a two-dimensional domain with the unknown motion ¢ having two
components rather than three.

Note that, in general, it is necessary, however, to keep track of some stress components
associated with the third dimension. This comes about due to the coupling between the in-plane
strains and the out-of-plane stresses. For example, considering infinitesimal elasticity for a
moment, we have the following strain components equal to zero:

Ej; = Ey = Egy = 0. | (2.131)
If the elastic response is isotropic, we can use Egs. (1.59) and (1.62) to conclude that
T3 = Ty3 = 0, (2.132)
but also that
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Xy

Figure 2.5  Two-dimensional notation for plane stress and plane strain cases.

Plane Stress

The plane stress assumption is appropriate when the following set of circumstances hold: 1) the
object of interest can be geometrically described in a two-dimensional manner; 2) once so
idealized, no loads on the structure act in the direction normal to the two-dimensional plane
selected; 3) no significant internal stress is generated in the direction normal to this plane; and 4)
the variation of stress, strain, and in-plane displacement in the direction normal to the plane can
be neglected. Condition 3), in particular, makes this idealization most appropriate for thin, flat
objects subject to in-plane loads. The fact that nonzero stresses are assumed to lie within the
plane gives rise to the name plane stress.

The notation given in Figure 2.5 is appropriate for this class of problems, and as was the case in
plane strain, we simply specify the problem as a two-dimensional boundary value problem
solving for the two-vector ¢ . Again, however, in describing the constitutive relations some

knowledge of the third dimension must be maintained. Considering again the linear elastic case
for simplicity, we have

T3 = Ty3 = T33 = 0, (2.134)
from which we can conclude (for isotropy) that
Ej3 = Ep3 = 0, (2.135)
but also that

~ME;; + Ey)

Eyz = W?ﬁ , (2.136)

in general. Particularly when formulating plasticity problems, the out-of-plane straining is
important to include as we shall see in later work.
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Axisymmetry

An axisymmetric formulation is uscful when an object possesses an axis of symmetry, and when
the loading, boundary conditions, and response are invariant with respect to rotation about this

axis. Under these circumstances it is convenient to construct a coordinate system, (r, z), as
shown in Figure 2.6.

o

r

Figure 2.6  Notation for an axisymmetric problem (z is the axis of symmetry).
The actual three-dimensional object is obtained by rotating the
above cross sections 360 degrees about the z-axis.

An in-depth treatment of axisymmetry is beyond the scope of our current treatment. The main
idea is that our coordinate system is no longer Cartesian but is instead curvilinear. For reference
we consider again the infinitesimal case. We consider a displacement vector,

a= |1, (2.137)
u

and find that the appropriate expressions of strain are now

. du, 5 -0 E du, du,
=g T eTe e 2.138)
u du
Egg = ;r By, =0, E,, = a—zz

The stress-strain relations are still as given by Eq. (1.59), i.e.

T = CE. (2.139)

The differential equations of equilibrium do need to be rewritten, however, due to the special
form of the stress divergence resulting from the curvilinear coordinate system. One finds the
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following to be the appropriate expressions of linear momentum balance for axisymmetric
problems:

xXr Xz .
— T+ 4 f = pu
or 0z r r = PUr
aTrZ arI:‘ZZ Xz
— Py Iy f =
or 0z r z = Pz

Theory Manual Nonlinear Continuum Mechanics - Two-Dimensional Formulations - Axisymmetry

(2.140)

34



Structural Components

Introduction

Most discussion in this report has been primarily concerned with the description of deformation
and stress in fully three-dimensional bodies. It is frequently desirable in solid mechanics to
describe entities that are comparatively thin in at least one spatial direction and perhaps in two.
The former case is commonly referred to as a shell or plate (depending on whether the entity is
initially curved or flat), and the second case is referred to as a beam or truss (depending upon
whether bending is to be considered). In this section we briefly discuss how the continuum
mechanical framework we have constructed can be adapted to these situations.

The Degenerated Solid Approach

We consider initially a thin plate- or shell-like object, described schematically as shown in Figure
2.7. We consider that there is one spatial dimension, the through-the-thickness direction, that is
much smaller than the characteristic in-plane dimensions of the object.

3

R

Figure 2.7  Schematic of a generic plate or shell object shown in the reference
configuration.

One could consider the ordinary three-dimensional formalism to apply pointwise within this
solid, leading to a boundary value problem written in terms of all three displacement components

u; . When analyzing shells, however, we become interested in writing the equations in terms of

only the midsurface position, denoted as P in the figure, and the rotations of unit vectors E, that
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are normal to this surface in the reference configuration. We can, therefore, express any reference
point X in the shell in terms of the midsurface position P and the unit vector:

X = P+ZE,, (2.141)

c

7 The quantity t is the

where Z is a through-the-thickness coordinate ranging between —% and

local thickness of the shell referenced by P.

As readers familiar with solid mechanics will be aware, the equations governing structural -
objects are conveniently written in terms of so-called stress resultants, or net moments, torques,
and forces, acting across cross sections. In the degenerated solid approach, one takes the fully
three-dimensional equations of motion and performs through-the-thickness integration in terms

of the appropriate coordinate (in this case z ) to obtain governing equations in terms of the
midsurface displacements of points P and rotations of vectors E;.

If the deformation is infinitesimal, so that reference and current coordinates are the same and

changes in the thickness t are insignificant, we obtain the shell equations of equilibrium by
calculating

t

2 82

| [V T+ f +—p-—“§sz =0. (2.142)
. ot

2

The result will be a boundary value problem written in terms of midsurface displacements,
rotations, and stress resultants. We will return to this approach in more detail when discussing
finite element procedures for treating the shell and plate equations in a companion report.

Plates and Shells

In addition to the concept of a degenerated solid, another important aspect of plate and shell
formulations is the specific kinematic description used to quantify displacement. Referring again
to Figure 2.7, we describe the configuration mapping for any point in the shell in terms of the

midsurface displacement @ and the normal vector rotation q:
0(X) = ®(P) + Zg X E; (2.143)

where we have actually made two kinematic assumptions: first, that the through-the-thickness
deformation is negligible so that Z is the same coordinate as in (2.141); and second, that normals
to the midsurface (i.e., E; ) remain straight, although not necessarily normal. This assumption
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leads to Mindlin plate theory where the rotation of vectors E; with respect to the reference

surface gives rise to transverse shear strains and stresses in the material.

Examining Eq. (2.143) we see that there are three dependent variables associated with the
mapping @ and three, in general, associated with the rotation q. However, we generally discard

the component of g producing rotation about E; . Thus, in general, there are five dependent

variables we seek to find in a plate or shell boundary value problem.

Beams

Beams can be considered within this framework also by considering two transverse dimensions
to be small when compared to the remaining one (i.e., beam length). Thus, rather than
degenerating in one spatial dimension to obtain the resultant-based equilibrium equations (as in
(2.142)), we integrate in two. The result is usually a system with six dependent variables,
described in terms of a one-dimensional object (a reference line, rather than surface, in this case).
Three of these correspond to the %, y, and z-components of the reference line displacement, and
the other three correspond to rotations.
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Rigid Bodies

Rigid Bodies

Finally, it will be desirable in some problems to be able to incorporate the equations of motion
into a system in which some bodies or entities are rigid (i.e., no deformation is allowed to occur

within some reference domain ). In this case, one has the followingset of governing equations
from rigid body dynamics:

Y F, = Ma,
D Fy = Ma,
Y F, = Ma,

: : (2.144)

1
B o=
! n

where the subscripts x, v, and z refer to global (reference) coordinates, and subscripts 1, 2, and
3 refer to the principal directions of the inertia tensor fixed to the solid. The quantities I, I,,

and I, are the principal values of the inertia tensor, and the ® ’s are the components of angular

velocity in the principle directions. We will return to the implementation of these equations when
discussing finite element methods in a companion report.
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