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EXECUTIVE SUMMARY

The research program reported here is focused on critical issues that represent conspicuous

gaps in current understanding of rapid solidification, limiting our ability to predict and control

microstructural evolution (i.e. morphological dynamics and microsegregation) at high under-

cooling, where conditions depart significantly from local equilibrium. More specifically, through

careful application of phase-field modeling, using appropriate thin-interface and anti-trapping

corrections and addressing important details such as transient effects and a velocity-dependent

(i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture

of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated

with single-phase rapid solidification and show that this method is a suitable means for a self-

consistent simulation of transient behavior and operating point selection under rapid growth

conditions. Moving beyond the limitations of conventional theoretical/analytical treatments

of non-equilibrium solute partitioning, these results serve to substantiate recent experimental

findings and analytical treatments for single-phase rapid solidification.

The departure from the equilibrium solid concentration at the solid-liquid interface was

often observed during rapid solidification, and the energetic associated non-equilibrium solute

partitioning has been treated in detail, providing possible ranges of interface concentrations

for a given growth condition. Use of these treatments for analytical description of specific

single-phase dendritic and cellular operating point selection, however, requires a model for

solute partitioning under a given set of growth conditions. Therefore, analytical solute trap-

ping models which describe the chemical partitioning as a function of steady state interface

velocities have been developed and widely utilized in most of the theoretical investigations

of rapid solidification. However, these solute trapping models are not rigorously verified due
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to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since

these solute trapping models include kinetic parameters which are difficult to directly measure

from experiments, application of the solute trapping models or the associated analytic rapid

solidification model is limited. These theoretical models for steady state rapid solidification

which incorporate the solute trapping models do not describe the interdependency of solute

diffusion, interface kinetics, and alloy thermodynamics.

The phase-field approach allows calculating, spontaneously, the non-equilibrium growth

effects of alloys and the associated time-dependent growth dynamics, without making the

assumptions that solute partitioning is an explicit function of velocity, as is the current con-

vention. In the research described here, by utilizing the phase-field model in the thin-interface

limit, incorporating the anti-trapping current term, more quantitatively valid interface kinet-

ics and solute diffusion across the interface are calculated. In order to sufficiently resolve the

physical length scales (i.e. interface thickness and diffusion boundary length), grid spacings

are continually adjusted in calculations.

The full trajectories of transient planar growth dynamics under rapid directional solidifica-

tion conditions with different pulling velocities are described. As a validation of a model, the

predicted steady state conditions are consistent with the analytic approach for rapid growth.

It was confirmed that rapid interface dynamics exhibits the abrupt acceleration of the planar

front when the effect of the non-equilibrium solute partitioning at the interface becomes sig-

nificant. This is consistent with the previous linear stability analysis for the non-equilibrium

interface dynamics. With an appropriate growth condition, the continuous oscillation dynamics

was able to be simulated using continually adjusting grid spacings. This oscillatory dynamics

including instantaneous jump of interface velocities are consistent with a previous phenomeno-

logical model by and a numerical investigation, which may cause the formation of banded

structures. Additionally, the selection of the steady state growth dynamics in the highly un-

dercooled melt is demonstrated. The transition of the growth morphology, interface velocity

selection, and solute trapping phenomenon with increasing melt supersaturations was described

by the phase-field simulation. The tip selection for the dendritic growth was consistent with
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Ivantsov’s function, and the non-equilibrium chemical partitioning behavior shows good quali-

tative agreement with the Aziz’s solute trapping model even though the model parameter(VD)

remains as an arbitrary constant. This work is able to show the possibility of comprehensive

description of rapid alloy growth over the entire time-dependent non-equilibrium phenomenon.

In addition, the simulations carried out here predict, for the first time, the full scope of

behavior, from the initial transient to the steady-state conditions, where departure from equi-

librium partitioning may lead to oscillations in composition, velocity, and interface temperature

or may lead to a far-from-equilibrium steady-state. Such predictive capability is a necessary

prerequisite to more comprehensive modeling of morphological evolution and, therefore, of

significant importance.
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CHAPTER 1. INTRODUCTION

The solidification microstructure from the liquid of a metal system shows a variety of mor-

phologies, which are determined by the competition and selection between phases depending

on the solidification process. Understanding the influence of solidification conditions and the

corresponding selection mechanism of the growth dynamics to form the morphologies is the

key research issue in the solidification study. Much has been analyzed about solidification mi-

crostructure evolution and the associated growth dynamics, experimentally and theoretically.

In the conventional theoretical investigations, the local equilibrium constraint at the interface

is applied and this is valid for low and moderate growth rates.

However, the local equilibrium condition at the solid-liquid interface is no longer valid

in a highly driven solidification condition. When the growth rate is comparable with the

atomic diffusion velocity across the solid-liquid interface, the solutal element cannot be rejected

fast enough into the liquid ahead of the interface and is trapped in the solid phase, which

results in the failure of the retainment of the local equilibrium condition at the interface.

This thermodynamically non-equilibrium chemical partitioning at the solid-liquid interface

alters the driving force for growth, the growth velocity, and the morphologies. As a result,

the phases with non-equilibrium concentration have been observed in the rapidly solidified

materials. This non-equilibrium interface concentration cannot be predicted by the purely

thermodynamical approach which gives us only a range of thermodynamically possible interface

compositions[1]. Semi-empirical models for the non-equilibrium chemical partitioning have

been widely used for the analysis of rapid alloy solidification[53, 3]. However, the dependency

of the degree of chemical partitioning on the interface velocity which the models describe is not

rigorously verified since the quantitative experimental measurement of rapid growth dynamics
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is very challenging[33, 36, 93]. Moreover, these models require adjustable parameters which

are also difficult to measure experimentally. And more critically, the interface compositions,

velocity, and morphology are selected by the interplay of themselves during the growth process.

Therefore, the interface concentration may not be able to be simply described as a function of

the interface velocity, as in the solute trapping models.

The analytical theories of the rapid solidification of alloys have been developed by consid-

ering the limitation of atomic kinetic attachment as well as the solute trapping phenomenon.

The steady state temperature of the planar interface has been described as a function of the

steady state velocities[25]. In addition, by incorporating the dendrite tip selection theories, it

could be possible to analyze the steady state rapid dendritic growth[51, 56, 58]. The rapid den-

dritic models have been fitted to the experimental measurements and the good agreement has

been shown. However, these fit has been done with several adjustable parameters which can

be hardly determined experimentally. These models are limited to the steady state dendritic

growth, and thus it is not appropriate to describe the dynamic morphology evolution which

might be controlled by the dynamic interplay of the chemical partitioning and the interface

dynamics.

Banded structure is the interesting morphology which is considered that the dynamic selec-

tion of the interface conditions is the main mechanism of the structure formation in the rapid

alloy solidification process. This microstructure is characterized by the alternating structures of

dendritic/eutectic and planar growth, and has been observed in many alloy solidifications[66].

By considering both the velocity dependent solute partition model and the limitation of atomic

kinetic attachment, the interface stability analysis has found the time-dependent oscillatory

instability of planar interface with the velocities near the absolute stability limit velocity of a

planar interface[77, 78]. In this stability analysis, it also has been shown that the oscillatory

instability is controlled by the non-equilibrium solidification effects, i.e. velocity dependent

chemical partitioning and the atomic kinetic attachment, and it has been presumed that this

time-dependent instability may trigger the interface dynamics for the banded structure for-

mation. In regard to the interface dynamics, the phenomenological model has been suggested
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for the banded structure formation by Kurz and co-workers[54]. In this model, cyclic interface

dynamics occurs between the stable dendritic/eutectic growth state and stable planar growth

state, when the pulling velocity in the directional solidification condition corresponds to the ve-

locity range where the steady state interface temperature increases with velocities. Karma and

Sarkissian showed that the time-dependent cyclic instability of planar interface can actually

leads the oscillatory interface dynamics, by a numerical analysis with a sharp phase interface

and the solute trapping model[80, 81]. In this numerical analysis, the time-periodic change of

the interface dynamics which is consistent with the previous phenomenological banded struc-

ture formation dynamics, and the effect of the latent heat have been successfully shown. For

more rigorous description of non-equilibrium interface dynamics, the microstructure evolution

has to be considered, but it is very challenging to describe the morphology evolution associated

with the non-equilibrium interface dynamics with the sharp-interface numerical analysis.

Phase-field simulation has been extensively used for studies of microstructure evolution, due

to the fact that the phase-field method has some advantages over other numerical/analytical

models. Without tracking the interface position, the evolution of phases and the diffusion

process for the entire system can be calculated simultaneously. Moreover, it has the capabil-

ity of installing the surface tension and interface anisotropy effects straightforwardly. In the

phase-field simulation, the interface dynamics is driven by only the dissipation process of the

thermodynamical solidification driving energy. Thus, the phase-field model is not limited to

the alloy concentration or the shape of the equilibrium phase-diagram as long as the thermody-

namical solidification driving energy could be properly given. During a recent decade, a more

quantitatively reliable phase-field model was developed and validated through comparison with

experimental data, analytical theory, and other numerical simulation results. It has been used

as a tool to investigate a number of aspects of solidification phenomena.

The phase-field simulation is a promising method specifically to investigate the non-equilibr-

ium interface dynamics and the corresponding morphology evolution. The diffused interface

in the phase-field model allows calculating spontaneously the non-equilibrium growth effects

of alloys and the associated time-dependent growth dynamics, without the help of the pre-
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scribed theories such as the solute trapping model[104]. In regard to rapid alloy solidification,

the phase-field simulation has been widely used to show the phenomenological morphology

evolutions[88, 89, 90]. In more quantitative studies, phase-field investigations have been used

to describe the velocity-dependent chemical partitioning at the steady state planar interface and

to compare it with the solute trapping models and some experimental measurements[92, 93]. In

most phase-field investigations, it has been focused on a separate event which occurs during al-

loy rapid growth dynamics, and comprehensive interface dynamics has not been clearly shown.

Conti demonstrated the time-periodic interface dynamics of planar direction growth[94], but

the calculated dynamics was deviated from those in the previous phenomenological model

and the sharp-interface numerical model. This might be caused by the failure to retain the

numerical stability by allowing a sufficiently small grid spacing to resolve the dynamically

changing length scales of physical properties around the solid-liquid interface. And also, the

sharp-interface limit phase-field model which Conti used may gives rise the unphysical solute

diffusion process in the interface region.

In the current work, we demonstrated the phase-field calculation results which describe

the rapid interface dynamics associated with the non-equilibrium chemical partitioning. We

utilized the thin-interface limit phase-field model with the anti-trapping current to ensure

more quantitatively valid prediction. In addition, the grid spacings are adjusted to ensure the

sufficient resolution for the interface region. By calculating transient planar growth behavior

under directional growth conditions and the steady state morphologies in undercooled melts, we

examined the influence of non-equilibrium chemical partitioning on the rapid growth dynamics

and morphological selection. Since the interface conditions and the corresponding growth

dynamics in extremely rapid solidification process is difficult to analyze experimentally, it is

very important to present the possibility of such a comprehensive description of rapid growth

dynamics as shown in the current work.

Chapter 2 will give the necessary background of the solute redistribution and associated

transient interface dynamics in alloy solidification. Then, the studies of rapid alloy solidification

including the investigation on the banded structure formation relevant to the current work
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will be briefly reviewed. At the end of the Chapter 2, the previous significant studies of

rapid solidification introduced throughout the chapter will be summarized in a table arranged

in chronological order. Chapter 3 will present the critical questions that this work tackles.

In Chapter 4, the phase-field model is briefly introduced and the governing equations and

numerical methods used for the current work will be exposited. The Chapter 5 will show the

calculated non-equilibrium interface dynamics and compare them with the analytical models

for planar front and equiaxed growth morphologies. Finally, general conclusions from the

present work and a brief suggestion for future work are provided in Chapter 6.
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CHAPTER 2. LITERATURE REVIEW

2.1 Transient Growth Dynamics And Interface Stability

2.1.1 Local equilibrium condition at the solid-liquid interface

For more than fifty years, great effort has been focused on describing the solidification

process of alloys from the melt. During the solidification of alloys, solute is emitted from the

solid phase to the liquid phase due to the finite solubility of the solute in the solid phase. This

limited accommodation of the solvent in the solid phase causes the rejected solute to pile up

in front of the interface. For typical metallic alloy castings, crystal growth occurs sufficiently

slowly, so as to ensure that the interface concentrations in both the solid and the liquid phases

are equal to the values given by the equilibrium phase diagram of the alloy system (Figure 2.1);

this interface condition is called the local equilibrium condition and the equilibrium partition

coefficient, ke, is defined as the ratio of the equilibrium solute concentration in the solid phase,

ceS , to that in the liquid phase, ceL. In that case, the speed of solidification is controlled mostly

by the transport rate of latent heat and solute atoms released from the solidifying crystal at the

solid-liquid interface. If the interface temperature or the interface concentrations are known,

the interface velocity and the evolving morphology can be described. To date, much of what

has been studied regarding solidification has assumed a local equilibrium condition and, as a

result, a valid description has been established.

2.1.2 Original observation of the planar front breakdown into perturbations

The breakdown of planar solid-liquid interface into cellular undulations was observed ex-

perimentally by Rutter-Chalmers[4] during directional solidification of dilute Sn-base binary
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Figure 2.1 A portion of a schematic equilibrium phase diagram of a binary
alloy. For a certain interface temperature, the interface solute
concentration in the solid and the liquid, ceS and ceL, respectively,
can be determined for the phase diagram.

alloys containing small amount of impurity such as Pb, Bi, Fe, Ag, and Cu and Pb-Sb alloys.

A specimen was placed in a graphite boat and the solidification proceeded by movement of

the furnace which surrounded the boat. By controlling the rate of the furnace motion, desired

solidification rate was achieved. To observe morphologies of the solid-liquid interface, the in-

terface was exposed by rapidly pouring the melt out from the boat. Figure 2.2 is an example

of free solidification surface morphology obtained by decantation of the melt, showing cellular

structures. The hexagonal shapes of the cells with straight cell boundaries were presumed to

be a result of lateral growth near the cell tip during the decantation of the melt. Cross-sections

of the cells further behind the tips were circular[5]. Transverse segregation of impurities in

cell structures was also detected. The solute elements were most heavily concentrated at cell

boundaries. In addition to this transverse segregation between cells, the average impurity con-

centration also gradually increased in the growth direction. In regard to the effect of growth

conditions on the breakdown of planar front, it was observed that the appearance of cellular
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Figure 2.2 Cellular solid-liquid interface of a directionally solidifying Pb
single crystal containing 88 ppm Ag exposed by decantation of
the melt, observed by J. W. Rutter[6]

structures was suppressed with lower growth velocities, V, and a steeper temperature gradient,

G. The cell size also depended on the V, G, and the solute concentration, c0, in the alloys.

Cell diameters decreased with increasing c0 and decreased with increasing in V and G in the

liquid.

A more extensive experimental investigation was carried out by Tiller-Rutter[7] to obtain

a quantitative relationship between growth parameters at the onset of breakdown of a planar

solid-liquid interface into cellular structures with Pb-base binary alloys. Results from exper-

iments using wide ranges of G, V, and c0 show that the breakdown of a planar front occurs

when c0/(G/V ) equals a critical value. For this transition, G/V was found to be an important

parameter, rather than G or V individually. Cell diameters were inversely proportional with

GV, and increased with c0. The existence of a solute-rich layer in the liquid ahead of the

solid-liquid interface was also experimentally confirmed in their investigation.

2.1.3 Solute redistribution analysis

Once the melt starts to solidify, solute gradually piles up in front of the solid-liquid interface

in the liquid. After this short transient state, the growth reaches a steady state, after which
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Figure 2.3 Steady state solute profile in front of the solid-liquid interface.
The solid-liquid interface is at z=0 in the moving frame with
Vn. At the steady state, the solid concentration is the same
as c0. The solute profile in the liquid can be described as an
exponential function (Eq. 2.1a).

the solid concentration is uniform and equal to the far-field liquid concentration (or initial

liquid concentration), c0 (Figure 2.3). This solute redistribution during alloy growth was

theoretically analyzed by Tiller-Rutter-Jackson-Chalmers[8]. To solve this simple case, we

first consider one-dimensional steady-state growth of alloys with a velocity, Vn. In the moving

frame with a velocity equal to Vn, the differential equations for chemical diffusion in the bulk

phases can be simplified by considering only the steady state:

cL(z) = c0 + ∆c0 exp(−Vnz
DL

) (2.1a)

cS = c0 (2.1b)

where z is the coordination of the moving frame (z=0 being the solid-liquid interface), cL(z) is

the solute concentration in the liquid at z, ∆c0 = c0 [(1− k) /k], k is the partition coefficient

which is the ratio of interfacial solute concentration in solid to that in liquid phase, and DL is

the solute diffusivity in the liquid. We can define the effective solute boundary layer thickness,
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δc (Figure 2.3) which is the length scale where solute piles up in front of the interface:

δc = 2DL/Vn (2.2)

This length scale is an important measure for the effect of solute diffusion on the growth

process.

During the solidification of a small one-dimensional alloy system of which the size is shorter

than the diffusion boundary layer thickness, δc, (such as the lateral growth of the second

dendrite arms) we cannot expect the solute profile shown in Figure 2.3; thus, the solidification

process cannot reach a steady state before it completely solidifies. In this case, the Scheil

model can be used to predict the composition profile in the solid and liquid phases in the

system, as a function of the solid phase fraction. In this small system, solute in the liquid

can be regarded as completely mixed within a very short period of time compared to the time

required for the interface to advance, whereas the solute diffusion in the solid is much slower

than the interface velocity. Therefore, the assumptions of infinite solute diffusivity in the liquid

and no solute diffusivity in the solid are reasonable. Under these assumptions, mass balance

across the interface gives the solute concentration in the liquid phase as a function of solid

phase fraction, fS (Figure 2.4):

cL = c0/(1− fS)1−ke (2.3)

This Scheil equation is valid for a normal growth rate where the local equilibrium condition at

the interface can be assumed.

A more extreme case occurs when the solute diffusion in the solid phase is also faster than

the growth velocity, resulting in a uniform concentration within each phase. The concentration

profile as a function of fS is described by the ‘lever rule’:

cL =
c0

1− (1− ke)fS
(2.4)
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Figure 2.4 Scheil model assuming complete mixing in liquid and no diffu-
sion in solid

For general solidification, the system size is much larger than δc and the steady state

solute profile shown in Figure 2.3 can be obtained. Before a planar growth process reaches

a steady state (Figure 2.5 b), an initiation stage is required to develop the solute boundary

layer (Figure 2.5 a). This regime is called the initial transient. In this regime, the interfacial

concentration on the liquid side, c∗L, increases from c0 to c0/k, and the interfacial concentration

on solid side, c∗S , increases from kc0 to c0 until the steady state is reached. Figure 2.5 shows the

directional solidification under the condition of a constant temperature gradient and a constant

cooling rate. When we assume that the interface is in local equilibrium, the solidification starts

at T eL(c0) (Figure 2.5 e). As the growth proceeds, solute piles up in front of the interface, and

increases c∗L, so that a lower interface temperature is required to freeze the more concentrated

liquid phases. Therefore, during the initial transient period, T ∗ decrease from T eL(c0) to T eS(c0).

When T ∗ = T eS(c0), mass flux balance, and therefore a steady state is achieved.

Smith, Tiller, and Rutter [9] obtained the analytical solution for the initial transient region,

which is the stage before the steady state. Their assumptions include no diffusion in the solid,

no convection, constant partition coefficient, local equilibrium at the interface, planar growth,
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Figure 2.5 Solute distribution change during directional growth with a pla-
nar front. During directional growth of a confined specimen of
alloys with nominal composition, c0, solute distribution exhibits
three different regimes: the initial transient regime (region I) for
building up a solute boundary layer in front of the solid/liquid
interface as the temperature decreases from T eL(c0) to T eS(c0),
the steady state regime (region II) where the interface temper-
ature maintains T eS(c0), and the final transient regime (region
III) by end-effect.
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and constant interface velocity. They calculated the liquid concentration at the interface for

the transient region as

c∗L =
c0

2k

[
1 + erf

(√
(Vn/DL)z

2

)
+ (2k − 1)exp

(
−k(1− k)

Vn
DL

z

)
erfc

(
2k − 1

2

√
Vn
DL

z

)]
(2.5)

When the tail of the solute boundary layer reaches the end of the system, the solute diffusion

in liquid phase is obstructed such that c∗L increases and T ∗ decreases below T eL(c0) (Figure 2.5

c).

2.1.4 Constitutional undercooling criterion

Based on the solute profile analysis, Tiller-Rutter-Jackson-Chalmers[8] explained the break-

down of a planar front during directional growth using the notion of constitutional undercooling.

Planar growth is a special case, and it is easily perturbed by thermal, solutal or other types

of noise. For pure materials, when the thermal gradient in the liquid phase is negative, the

perturbed interface is more unstable and driven for growth so that it forms dendrites. For

alloys, even if the thermal gradient in the liquid phase is positive, the constitutional under-

cooling in front of the interface makes the interface instable. The constitutional undercooling

is caused by the solute diffusion boundary layer in front of the interface. In this boundary

layer, the concentration exponentially decreases away from the interface, as shown by the dot-

ted curve in Figure 2.6. For a system with ke < 1, the liquidus temperature which depends

on the concentration in the liquid, increases nonlinearly as shown by the Figure 2.6. When

the thermal gradient is smaller than the liquidus temperature gradient, G < mGc, where Gc

is the solute concentration gradient in the liquid and m is the liquidus slope. When this is

case, there is a region in front of the interface where the actual temperature (the broken line

in Figure 2.6) is lower than the equilibrium liquidus temperature. Because the liquid in this

region is constitutionally undercooled, the planar interface tends to be unstable, and if a small

solid perturbation is created, it tends to grow. By substituting Vnc0 (1/k − 1) /DL for −Gc,
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the critical velocity for constitutional undercooling can be calculated as:

Vc = − GDL

mc0(1/k − 1)
=
GDL

∆T0
(2.6)

where ∆T0 is the temperature difference between the liquidus and the solidus for c0. If the in-

terface growth rate is lower than this constitutional undercooling limit, Vc, the planar interface

is stable, otherwise it is unstable and likely to be transformed into cells or dendrites.

Figure 2.6 Schematic of constitutional undercooling. z=0 is the solid-liq-
uid interface position during solidification. The dotted curve
indicates solute concentration. The solid curve is the melting
temperature for the solute concentration. The broken line rep-
resents the actual melt temperature. Due to the solute pile-up
in front of the solid-liquid interface, the melting temperature
increases with the distance, z. If the temperature gradient in
the melt is lower than the gradient of TL, the constitutional
undercooling (the hatched region) occurs.
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2.1.5 Instability criterion of steady state planar front

Mullins and Sekerka [10] performed a more precise analysis of instability of the perturbed

interface by accounting for the capillary effect. They analyzed the scale of perturbation which

makes the planar interface at steady state unstable. For this analysis they assumed local

equilibrium at the interface, isotropic surface energy, no solute diffusion in the solid, and a

constant partition coefficient. They introduced the mathematically perturbed interface as a

sinusoidal function, z = ε sin(ωy) where ε is the amplitude of the perturbation, and ω is the

wavenumber of the perturbation (= 2π/λ) (Figure 2.7), and calculated the concentration and

temperature diffusion field in liquid phase. If we assume that the thermal gradient is identical

in the liquid and the solid phases and ignore the latent heat effect, the original result of Mullins

and Sekerka regarding the rate of the perturbation amplitude, ε̇, as a function of the wavelength

of the perturbation, λ, can be simplified as:

ε̇

ε
=

Vn
mGc

[
−Γω2

(
ω∗ − Vn(1− k)

DL

)
−G

(
ω∗ − Vn(1− k)

DL

)
+mGc

(
ω∗ − Vn

DL

)]
(2.7)

where ω∗ = Vn/2DL+
[
(Vn/2DL)2 + ω2

]1/2. Figure 2.8 is the schematic of this result. Positive

ε̇/ε means that the perturbation tends to grow, and negative ε̇/ε means that the perturbation

tends to shrink so that the planar interface is favorable. As shown in Figure 2.8, the planar

interface is only stable for very small wavelengths. As λ increases, a flat interface becomes

unstable. For much larger λ, the rate of perturbation decreases due to the limitation of

diffusion.

Figure 2.7 Mathematical perturbation of an interface for Mullins-Sekerka’s
instability analysis, with a wavelength, λ, and an amplitude, ε
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Figure 2.8 Rate of advancing amplitude of interface perturbations, ε̇, de-
pending on the wavelength, λ, calculated by Mullins-Sekerka’s
perturbation analysis. λi is the critical wavelength of the stable
perturbation.

2.1.6 Instability observations of planar front

While the instability of a planar interface for a given solidification condition has been

predicted by Mullins-Sekerka[10], the way that an unstable plane front evolves with time

has been experimentally observed by Trivedi-Somboonsuk[11], after the initial breakdown of a

planar front in well characterized systems with a transparent material. The dynamics of pattern

formation was examined from the time that an interface became unstable until the unstable

pattern reorganized into a stable morphology. Figure 2.9 shows the sequence of events observed

from the experiments. Solidification took place from left to right in the figures. Initially the

system remained still and the solid-liquid interface was flat. The sequential events that occur

after the abrupt starting motion of the thermal gradient with a constant rate are as follows:

1. The interface temperature, T ∗, decreases since the initial interface velocity, V ∗, might

be slower than the constant rate of motion of the thermal gradient which is called the

pulling velocity, VP . While T ∗ decreases, the solidification starts and solute elements are

rejected into the liquid ahead of the solid-liquid interface in order to maintain the local

thermodynamic equilibrium at the interface. The rejected solute establishes a solute
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Figure 2.9 The morphology evolution in directional solidification of succi-
nonitrile-acetone system observed by Trivedi-Somboonsuk[11]

boundary layer in front of the interface.

2. When solidification accelerates, the plane front becomes unstable as Mullins-Sekerka[10]

predicted (Figure 2.9 (a) and (b)). The wavelength of perturbations at the initial break-

down of a planar interface which is clearly shown in Figure 2.9 (b) was found to be

about an order of magnitude larger than the predicted one from Mullins-Sekerka’s insta-

bility analysis with VP . The initial breakdown of planar interface occurred during initial

transient regime when V ∗ < VP , whereas the classical Mullins-Sekerka analysis predicts

the instability of a steady state planar interface; i.e. the interface becomes unstable

during build-up of solute boundary layer in front of the solid-liquid interface. Trivedi-

Somboonsuk[11] discussed that this instability of a planar front in a transient regime

might govern the final steady state dendritic morphology.

3. As V* keeps increasing toward VP , the perturbations grow into cell-like structures (Fig-
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ure 2.9 (c)). While the cells grow and coarsen, they go through competitive selection.

Some cells fall behind their neighbors and are eventually eliminated (Figure 2.9 (c) and

(d)).

4. The cells that survive maintain a constant spacing and start to develop side branches

(Figure 2.9 (d)) and (e)). The side-branching seems to be a noise-induced transition[12].

These dendrites are accelerated until they exhibits the steady state dendritic morphology

with VP (Figure 2.9 (f)).

As shown in the above sequence of evolution, the final steady state dendrite spacing is

determined by a coarsening process of cells and dendrites that are grown from the initial

breakdown of a planar front. As a result, the final steady state primary dendrite spacing

is expected to be several times longer than the wavelength of the initial perturbation of the

planar interface[11, 13, 14, 15].

Experimental observations have shown that final state morphologies actually have history

dependency [11, 14]. Under precisely prescribed growth conditions and sample preparation,

the same ‘history’ could be achieved and the final dendrite spacing was reproducible. Since

the pattern selection process starts to operate during transient growth as shown in Figure 2.9,

precise prediction of a final steady state pattern requires detailed knowledge of the entire

history-dependent morphology evolution dynamics[16].

2.1.7 Analytical model of initial transient dynamics

Motivated by the Trivedi-Somboonsuk’s observation[11] in the transient growth regime,

Warren and Langer[13] developed the boundary layer model by which the acceleration of flat

interface can be predicted during the initial transient directional solidification. In Tiller et

al.’s analysis (Eq. 2.5), a constant interface velocity equal to the pulling velocity, VP , was

assumed. For real transient dynamics, however, the growth rate varies until it reaches the

steady state. Warren and Langer assumed that: local equilibrium is always maintained at the

solid-liquid interface, that G is spatially and temporally constant, and that the boundary layer

concentration profile during the initial transient is the same as the equilibrium solute boundary
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layer profile, i.e. Eq. 2.1a with k = ke. Thus, δc = 2DL/V
∗ where V ∗ is the interface velocity.

After solving the solutal diffusion equation in a moving frame with velocity VP , the resultant

interface position in the moving frame, z∗ is

dz∗

dt
=

2DL(z∗ − zeL)
δc(1− ke)z∗

− VP (2.8)

and
dδc
dt

=
4DL(zeL − kez∗)
δc(1− ke)z∗

− 1
z∗ − zeL

dz∗

dt
(2.9)

where zeL is the position which corresponds to T eL(c0) in the moving frame given as zeL =

−mc0/G. m is the slope of the liquidus line and it is assumed to be constant. The numerical

calculation of equations, Eq. 2.8 and Eq. 2.9, for z∗ and δc gives the time-dependent interface

velocity and solute profile information for the initial transient. This calculation can be started

with the approximated analytical values of z∗ and δc for a small time, t,

δc ≈
√

8DLt

3
(2.10)

and

z∗ ≈ zeL − VP t+
VP
√

2DL√
3|z∗|(1− ke)

t3/2 (2.11)

As shown in Figure 2.10, this model can predict the oscillation behavior of z∗ and δc with

time. The results show the oscillatory dynamics of z* and δc, but these parameters directly

represent the interface temperature, T*, and the interface velocity, V*, respectively, since

δc = 2DL/V
∗ was assumed in this calculation and the temperature profile was fixed in the

system with a moving frame.

For a low enough VP , there are no oscillatory dynamics. The amplitude of this oscillation

increases with VP . Therefore, δc becomes zero for a critical VP and the calculation cannot pro-

ceed after that moment. This limitation of the model is a result of the purely solute diffusion-

controlled growth that this model is based on. This is reasonable only for ‘low/moderate’ rate

growth. In rapid growth, the solute pile-up in front of the solid-liquid interface decreases with



20

velocity, resulting in the transition from diffusion-controlled growth to kinetic-limited growth.

Thus, the interface mobility should be considered.

Based on this calculation of the initial transient planar interface dynamics, Warren-Langer

[13] then calculated the initial instability wavelength at the onset of instability of a planar in-

terface in a transient regime and subsequently the final steady state primary dendrite spacing.

The result of this model was in good agreement with Trivedi-Somboonsuk’s measurements[11]

and deviated from Mullins-Sekerka’s stability analysis result in the steady state. This re-

sult reassures the Trivedi-Somboonsuk’s observation that the initial breakdown on the planar

interface occurs during the initial transient growth regime, instead of the steady state.

Figure 2.10 Interface trajectory during planar directional growth in terms
of interface position (z∗) and boundary layer thickness (δc)
calculated by the Warren and Langer’s boundary-layer model
[13] with VP = 10µm/s andG = 67K/cm. Time a corresponds
to 10 sec, b to 30 sec, c to 70 sec, d to 90 sec, and e to 105 sec.
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2.2 Rapid Solidification

2.2.1 Early interesting observation of solute trapping in rapid solidification

In the typical solidification condition, the local equilibrium condition at the solid-liquid

interface is always retained; for a given interface temperature, T ∗, the liquid-side and the

solid-side interface concentrations, c∗L and c∗S , are determined by the equilibrium phase dia-

gram and the values are ceL and ceS , respectively (Figure 2.1). It was observed, however, that

the solute concentration in rapidly solidified alloy materials could deviate from the value of

the equilibrium phase diagram[17]. In a chill casting of molten Al-Cu binary alloys[18], the

Cu concentration in the solid phase was found to be the same as the initial melt composition

although the corresponding ke is about 0.17. In a splat quenching of Zn-Cd alloys[19], solid

compositions higher than the maximum solid solute solubility of Zn rich Zn-Cd alloy were ob-

served. Since the maximum solid solubility of Zn-Cd alloys occurs at a temperature above that

of the eutectic temperature, this observation implies that the deviation of the solid composition

from the equilibrium solid composition might not be just a metastable solidus composition,

i.e. extension of the equilibrium solidus curve to the eutectic region into the phase-diagram.

Re-growth of alloys from laser-induced melting[20, 21] also showed remarkable deviation of

solid composition from the equilibrium values. In White et al.’s work[22], Si substrates doped

with B, As, P, Sb, Ga, In and Bi elements were laser annealed. The partition coefficients

were obtained from the measured concentration profiles of doped elements [22, 23, 24]. The

resultant partition coefficients were higher than the equilibrium values. It was concluded that

with such a fast interface motion, the local equilibrium condition was no longer valid.

2.2.2 Early theoretical treatment of rapid solidification

The mathematical description of solidification can be given by differential equations for

heat and solute diffusions in solid and liquid phases, that describe the transport of excess

solute atoms and the latent heat released from the moving interface into the bulk phases. To

solve these diffusion equations, the initial conditions and the interface boundary conditions

are required since these diffusion equations are separately applied for each phase. The bound-
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ary conditions are comprised of the continuity equation of the temperature field across the

interface, the conservation equations of heat and mass, and the interface response functions.

The interface response function describes the response of the interface to the instantaneous

interface condition and shows the relationship between the all of the variables which represent

the interface condition, such as the interface velocity, the interface concentrations at the solid-

side and the liquid-side, the interface temperature, the interface orientation, and the defect

structure of the interface[1].

If we consider only thermodynamic variables, the response functions of binary alloys could

be expressed by two functions which describe the interface temperature, T ∗, and the solid-side

interface concentration, c∗S , in terms of the interface velocity, V ∗, and the liquid-side interface

concentration, c∗L, written as follows when the interface curvature effect on T ∗ is ignored[1]:

T ∗ = T (V ∗, c∗L) (2.12)

c∗S = c∗Lk (V ∗, c∗L) (2.13)

where k is a chemical partition coefficient at the interface, representing the ratio of c∗S to c∗L.

With regard to the second response function (Eq. 2.13), Baker and Cahn[1] thermody-

namically analyzed the interface concentration during rapid solidification and showed that the

possible ranges of c∗S and c∗L for a given T ∗ are bounded by thermodynamics. Figure 2.11

shows the molar free energy of solid and liquid phases vs. composition at a fixed temperature.

The equilibrium between the two phases can be represented by the common tangent line, im-

plying that the equal chemical potentials of the solute element between the phases (µBL = µBS ).

This common tangent gives ceS and ceL for the equilibrium phase diagram of the system shown

in Figure 2.1. Figure 2.12 represents the non-equilibrium state at the interface for a given

temperature. ∆G represents the free energy decrease when an infinitesimal amount of solid

with c∗S forms from a large amount of liquid with composition c∗L. During solidification with
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Figure 2.11 Molar free energy curves of the liquid phase (L) and the solid
phase (S) for a binary system: µ is the chemical potential,
and superscripts, A and B, represents the solvent and solute
elements, respectively.

this interface condition, the chemical potential of a solute element could increase across the

phase interface, i.e. µBL < µBS . Baker and Cahn[19] introduced the notion of “solute trapping”

during rapid solidification of alloys for which the chemical potential of the solute element in-

creases. This results in a larger partition coefficient at the solid-liquid interface compared to

the equilibrium value. Since a net decrease in free energy, ∆G, should occur for the solidifi-

cation of a liquid with composition c∗L, the range of thermodynamically possible compositions

for which a solid phase could solidify with a composition c∗L is from c1
S to c2

S . This range of

possible c∗S is schematically represented for various c∗L at a fixed temperature in Figure 2.13[1]

and, alternatively, for various temperatures for a fixed c∗L in Figure 2.14[25]. The T0 curve in

Figure 2.14 indicates the concentration where the Gibbs free energy curves of the solid and the

liquid phases at a fixed temperature are overlapping.

This thermodynamic analysis can give a general range of possible k values for a given c∗L
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Figure 2.12 When the solid phase with c∗S grows from the liquid with c∗L,
the molar free energy change is ∆G. The solid phase only
with concentrations between c1

S and c2
S is thermodynamically

possible to grow since ∆G < 0.

and T ∗. However, for the response function (Eq. 2.13), a specific value of k, which depends

on V ∗ is required for a given solidification condition. The solute trapping phenomenon occurs

when the interface velocity is comparable to or larger than the diffusive velocity of solute atom

across the solid-liquid interface. At high V ∗, there is not enough time to reject solute atoms

into the liquid ahead of interface in order to retain local equilibrium. Thus, to determine the

specific value of kV for a given V, the atomic diffusive kinetics of the solute atoms across the

interface region needs to be evaluated.

To describe this solute trapping phenomenon at the interface during the rapid growth of

alloys, Aziz[2] proposed a simple model which predicts the monotonic variation of kV from ke

to unity with steady state interface velocities. For dilute solutions, this model is given by

kV =
ke + V/VD
1 + V/VD

(2.14)
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Figure 2.13 The area inside the curve OABEPO is the thermodynami-
cally possible interface composition range in solidification. The
point E represents the equilibrium condition. On the line OB,
c∗S and c∗L are identical and the point B is the composition on
the T0 line.

where VD is a characteristic velocity of the solute trapping. VD is the diffusive velocity of a

solute atom across the solid-liquid interface, usually represented by the ratio of a solute diffu-

sivity across the interface, Di, to an interface thickness a0 which is normally in the nanometer

range for metallic systems. Figure 2.15 represents the kV as a function of V, calculated with

Eq. 2.14. The partition coefficient monotonically increases from the equilibrium value, ke, to

unity within a finite velocity range around VD.

Now the response function for T* (Eq. 2.12) needs to be formulated. Boettinger-Coriell-

Sekerka[25, 26] derived a thermodynamically consistent model for T ∗ as a function of V ∗ and

the interface concentration. In order to relate T ∗ to V ∗, Turnbull’s collision-limited growth

model[27] was employed. This collision-limited growth model was originally derived for pure
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Figure 2.14 The thermodynamically possible c∗S for a fixed c∗L (the hatched
region) is presented on the phase diagram.

materials and it assumes that during crystal growth the rate of atom attachment on the solid

surface is only limited by the collision rate of the atoms on the solid phase. It is expressed as

V = fV0

{
1− exp

(
∆G
RT ∗

)}
(2.15)

where f is the fraction of possible sites for the atom attachment on the solid-liquid interface,

V0 is a speed of sound in the liquid metal, ∆G is the molar free energy for solidification, and

R is the gas constant. For most closed-packed systems, f is thought to be close to unity and

V ∗ is much lower than V0. Thus, Eq. 2.15 can be reduced to

V = −V0
∆G
RT ∗

(2.16)

∆G in Eq. 2.16 for alloy solidification corresponds to ∆G in Figure 2.12 and formulated as

∆G =
(
µAS − µAL

)
(1− c∗S) +

(
µBS − µBL

)
c∗S (2.17)

For dilute Henrian solutions,[1]

∆G
RT ∗

=
{

ln
[

1− c∗S
1− c∗L

·
1− ceS
1− ceL

]}
(1− c∗S) +

{
ln
[
c∗S
c∗L
·
ceS
ceL

]}
c∗S (2.18)
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Figure 2.15 Aziz’s solute trapping model (Eq. 2.14)

and if straight solidus and liquid lines in the phase diagram are assumed with slopes of me
L

and me
S , respectively,

ceL =
T ∗ − TM
me
L

(2.19a)

ceS =
T ∗ − TM
me
S

(2.19b)

Since me
L/m

e
S = ke, Eq. 2.18 can be further reduced into

∆G
RT ∗

=
1− ke
me
L

(TM +me
Lc
∗
L − T ∗) + c∗L

[
ke − kV

(
1− ln

kV
ke

)]
(2.20)

Substitution of Eq. 2.16 into Eq. 2.20 gives

T ∗ = TM +me
Lc
∗
L +

me
Lc
∗
L

1− ke

[
ke − kV

(
1− ln

kV
ke

)]
+

me
L

1− ke
V ∗

V0
(2.21)

and this Eq. 2.21 could be the response function (Eq. 2.12) for a flat interface. In the last

term, the expression (1− ke)/me
L can be replaced by −L/RT 2

M where L is the latent heat per



28

mole of the solvent element. The interface mobility, µ, can be defined as

µ ≡ LV0

RT 2
M

(2.22)

For kV in the Eq. 2.21, a separate solute trapping model can be used, such as Aziz’s solute

trapping model, Eq. 2.14. Figure 2.16 shows this response function on a phase diagram for

a given c0. The solid curve depicts non-equilibrium steady state values of T ∗ and c∗L as a

function of V* for a fixed c∗S which is equal to c0. If V ∗ is low enough to hold kV = ke and

V ∗ << V0, c∗L is always c0/ke. The dashed curve represents the case of µ = ∞: the atomic

kinetic attachment is ignored, i.e. V ∗ << V0. As V* increases and solute trapping occurs, c∗L

approaches c∗S and T* increases. Then with an influence of atomic attachment kinetics at the

solid-liquid interface, T* rapidly drops as c∗L approaches c∗S .

2.2.3 Critical experiments and models of rapid solidification

The solute trapping model, Eq. 2.14, has been tested by the pulsed laser melting (PLM)

experimental technique and it has been experimentally shown that the partition coefficient

actually increase with growth velocities. The sample alloys were prepared by implanting the

solute atom into the pure metal. The solute concentration profiles were measured before and

after the pulsed laser melting. The time-resolved interface velocity and temperature were mea-

sured by exploiting the electrical conductivity and resistance during melting and solidification.

The velocity dependent partition coefficient can be determined by comparing the measured

solute concentration profile with the profile calculated using one-dimensional time-dependent

diffusion calculation results that neglect solute diffusivity in the solid phase.

Several dilute Si- and Al- binary alloys have been used for these measurements[28, 29, 30,

31, 32]. The experimental data was reasonably good agreement with the solute trapping model

as shown in Figure 2.17[28]. Since the parameter VD in Aziz’s solute trapping model is difficult

to be directly measured experimentally, it is obtained by being considered as an adjustable

parameter for best fitting in comparison of these experimentally measured kV (V ) with Aziz’s

solute model (Eq. 2.14). VD values determined in this way for various alloy systems are listed
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Figure 2.16 Interface temperature and interface concentration in the liquid
with increasing V* for a given c0 (the solid curve). The dashed
curve shows the case of µ =∞.

in Table 2.1.

However, these experimentally obtained kV data had been obtained mainly in relatively

low V (≤ VD) regime. Later, Kittl et al.[33, 36] has measured kV (V ) for higher V regime

(V > VD) with non-dilute Al-As binary alloys. Their measured kV (V ) data shows generally

good consistency with Aziz’s solute trapping model. However, there was a slight discrepancy

for a very high V in both Al-4.5 at.%As and Al-9 at.%As (Figure 2.18). The measured kV (V )

for both alloys are rather larger than predicted kV (V ) curves at around 2 m/s when the VD

obtained by best fitting of Aziz’s solute trapping model (Eq. 2.14) was 0.37 m/s[36]. The

authors argued that the data which showed the discrepancy have uncertainty in measurement

of c∗L in such a high velocity regime.
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Table 2.1 Measured diffusive speeds across the solid-liquid interface, VD,
using the pulsed laser melting (PLM) technique

Materials VD (m/s) References
Si-As 0.46 [33]
Si-Ge 2.03 [34]
Si-Bi 32 [28]
Si-Sn 17 [30]
Si-Ge 22 [31]
Si-In 57 [31]
Si-Sb 0.64 [31]
Al-Sn 36 [31]
Al-In 38 [31]
Al-Ge 6.1 [31]
Al-Cu 6.7 [31]
Ni-Zr 26 [35]

Besides the partition coefficient, the rapid dendritic solidification kinetics are experimen-

tally measured by Herlach et al.[37] using an electromagnetic levitation device for containerless

rapid solidification of pure metal and alloys to measure the interface velocity as a function of

the given undercooling. A melt drop suspended in levitation coil was undercooled to a desired

temperature, and solidification was triggered using a solid needle. This technique allows con-

trolling the initial melt undercooling and the initial nucleation site, and direct observation of

solidification process. By monitoring the temperature change by recalescence during crystal-

lization at two different positions, the rate of the interface advancement during growth can be

derived. Using this technique, the dendrite growth velocity as a function of undercooling has

been measured for many pure materials and alloys: pure Ni and Cu70Ni30 alloy[38], pure Fe[39],

dilute Ni-B[40], Ni-C alloys[41], Fe-Ni[42], Ni-Si[43], FeSi and CoSi[44], Ni-Al[45], Fe-Ni-Cr[46]

alloys.

In Willnecker et al.’s measurements[38], the velocity-undercooling relationships for pure

Ni and Ni-Cu alloy follow a power-law up to a critical undercooling, ∆T ∗. For undercoolings

higher than ∆T ∗, V increases linearly for the increasing undercooling (Figure 2.19). The

experimental evidence for Ni-B alloys by Eckler et al.[40] showed that this critical undercooling,

∆T ∗, strongly depends on the alloy composition; higher solute concentration results in higher
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Figure 2.17 Dependence of the partition coefficient on the interface veloc-
ity: squares indicate the experimentally measured data from
Bi-doped Si, and the solid curve is the prediction of Aziz’s
solute trapping model with VD=32 m/sec.[28]

∆T ∗. In addition, several experimental data[47, 48] show a plateau may appear at a velocity

for lower than ∆T ∗.

2.2.4 Rapid dendritic growth theory

To describe the rapid dendritic growth dynamics, the interface curvature effect needs to be

considered in addition to the solutal redistribution effect and kinetic effect in the rapid planar

front dynamics (Eq. 2.21).

The first dendrite growth theory was introduced by Lipton-Glicksman-Kurz (LGK)[49],

predicting the growth rate of an isolated dendrite which is growing into the undercooled melt

as a function of undercooling and alloy composition, assuming the local equilibrium at the solid-

liquid interface and the low solutal and thermal Peclet numbers. Because of these assumptions,

this LGK theory can be applied only to a non-rapid growth where the solute trapping does not

occur. This LGK theory includes the effects of solute redistribution, latent heat release, and

interface curvature at the tip, and uses the marginal stability criterion to predict the growth



32

Figure 2.18 The measured partition coefficient on the interface velocity
for Al-4.5 and 9 at.%As and model predictions. Aziz’s solute
trapping model for dilute solution (Eq. 2.14) is fitted with
VD=0.46 m/sec[33]

rate and the tip radius. In this theory, the total undercooling, ∆T , is composed of three parts:

the thermal undercooling, ∆Tt, the solute undercooling, ∆Tc, and the curvature undercooling,

∆Tr,

∆T = ∆Tt + ∆Tc + ∆Tr (2.23)

These undercoolings are described in Figure 2.20 and Figure 2.21. When a steady state

isolated alloy dendrite grows into the melt with temperature T∞, solute pile-up in front of

the tip increase the melting temperature with the distance from the tip. Latent heat rejected

from the solid increase the tip temperature from T∞. Due to the capillary force at the tip, the

curvature undercooling exists.

The undercoolings are given for dilute alloys and linear solidus and liquidus lines by

∆T = ∆T eL (c0)− T∞ (2.24)

∆Tt = Iv (Pt)L/CP (2.25)
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Figure 2.19 Measured solidification velocity as a function of melt under-
cooling for (A) pure Ni and (B) Ni70Cu30 binary alloy. For
both materials, the growth mode was changed at a critical un-
dercooling ∆T ∗. The solid curve is a theoretical prediction
with LKT model[50]. With considering the kinetic undercool-
ing, the dashed curve was fitted to the measured data with
µ = 1.6 m/sK. Using the same value of µ, the experimented
data of Ni70Cu30 was fitted by the BCT model with Aziz’s so-
lute trapping model[51]. For comparison, the prediction with
k=1 (partitionless growth) and k=0.81 (the equilibrium parti-
tion coefficient) are also shown.[38]

∆Tc = ke∆T0

{
Iv (Pc)

1− (1− ke) Iv (Pc)

}
(2.26)

∆Tr = 2TMΓ/R∗ (2.27)

where T eL (c0) is the equilibrium liquidus temperature for the nominal concentration of the

alloy, c0, and T∞ is the liquid melt bath temperature. L is the latent heat per unit volume,

CP is the heat capacity per unit volume, and ∆T0 is the freezing range of the alloy for c0,

mLc0 (ke − 1) /ke when the liquidus line is straight (i.e. mL is constant). Ivantsov function,

Iv(P), is given by

Iv (P ) = PePE1 (P ) (2.28)

where the function E1 (P ) is the first exponential integral function. The parameters Pt and
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Figure 2.20 Melt temperature and the liquidus temperature ahead of a
dendrite tip which is growing into an undercooled melt[49]

Pc are thermal and solute Peclet numbers, respectively, and given by V R/2α and V R/2DL,

respectively. R* is a dendrite tip radius, α is a liquid thermal diffusivity, and DL is a solute

diffusivity in the melt.

For a given ∆T , specific values of R* and V cannot be uniquely specified by the Eq. 2.24-

2.28 which only give the relation between ∆T and the product of V and R*. To specify the

value of R* under a given solidification condition, the LGK model employed the marginal

stability criterion by Langer and Muller-Krumbhaar[52]. According to this stability criterion,

the observed R* is equal to the shortest wavelength, λi, of a perturbation which can grow under

the local growth condition at the tip. This wavelength is given by the minimum unstable

wavelength in the result of the linear stability theory for planar interface at low velocity

(Figure 2.7). With this marginal stability criterion, all the parameters at the dendrite tip

could be successfully obtained.

However, the marginal stability criterion in LGK model is for small ke and small Pc. Thus,
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Figure 2.21 A schematic binary phase diagram, describing tip temperature
T* and tip concentration c∗L and c∗S of a steady state dendrite
growing into the undercooled melt with T∞[49].

Boettinger-Coriell[26] obtained more rigorous expression for minimum wavelength which can be

employed even for large Pc (but small Pt) using Mullins-Sekerka’s stability criterion (MS)[10],

and later Lipton-Kurz-Trivedi (LKT)[50] extended it for large Pc and large Pt. The wavelength

obtained by LKT model is

λi = R∗ =

 TMΓ/σ∗

(L/CP )Ptξt + 2meLc0(ke−1)

1−(1−ke)Iv(Pc)
ξc


1/2

(2.29)

where ξt = 1− 1√
1+1/(σ∗P 2

t )
and ξc = 1+ 2ke

1−2ke−
√

1+1/(σ∗P 2
c )

. The parameter σ∗ is 1/4π2. With

Eq. 2.23-2.29, V* and R* can be predicted with a given melt undercooling, ∆T .

Boettinger, Coriell, and Trivedi (BCT)[51] modified the previous dendritic growth theory

by considering the thermodynamic driving force of solidification process, Eq. 2.17[1], and Turn-

bull’s linear kinetic model[27], Eq. 2.16. They also applied interface solute trapping model[2, 53]

(Eq. 2.14) and the marginal stability criterion from LKT model (Eq. 2.29) to predict the tip

radius. In this analysis,

∆T = ∆Tt + ∆Tc + ∆Tr + ∆Tk (2.30)
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where ∆Tk is the kinetic undercooling. For ∆T , ∆Tt, and ∆Tr, Eq. 2.24, Eq. 2.25, and Eq. 2.27

can be applied, respectively. For R*, the marginal stability criterion for high Pc and Pt from

LKT model (Eq. 2.27) was used, but ke was replaced by kV to describe the solute trapping

phenomenon. ∆Tc and ∆Tk are same as the third and fourth terms in Eq. 2.21, respectively,

and can be rewritten as

∆Tc = me
Lc0

[
1−

mv
L/m

e
L

1− (1− kV ) Iv (Pc)

]
(2.31)

∆Tk = V ∗/µ (2.32)

where mv
L is the kinetic liquidus slope, which is

mv
L = me

L

{
1− kV − kV ln (kV /ke)

1− ke

}
(2.33)

for dilute alloys, and the interface mobility, µ = LV0/
(
RT 2

M

)
. According to this solution,

when the solidification rate becomes sufficiently high, the steady state interface temperature

might be sensitively influenced by the degree of solute trapping and the interface attachment

kinetics represented by ∆Tk, both of which are varying with the interface velocity, V*.

The broken curve in the Figure 2.19 (B) shows the prediction from this BCT model. µ for

∆Tk and VD for kV are treated as adjustable parameters to best fit the theoretical model on

the experimental results. This gives a good agreement with the experimental data below ∆T ∗

as shown in Figure 2.19. But, the linear growth mode above ∆T ∗ could not be predicted by

the BCT model.

2.2.5 Kinetic phase diagram and steady state interface temperature during rapid

solidification

The interface response function for a planar growth front (Eq. 2.21) can be used to plot non-

equilibrium phase diagrams. At a given V*, the Eq. 2.21 gives the relationships of the interface

temperature versus the interface compositions, i.e. non-equilibrium solidus and liquidus lines
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Figure 2.22 Kinetic phase-diagram of Al-Fe binary alloys with different
growth rates calculated by Carrard et al.[54]. The points 1,2,3,
and 4 indicate the steady state planar front temperature for
an Al-5 at.%Fe alloy.

for a dilute binary alloy with straight equilibrium solidus and liquidus lines. These kinetic phase

diagrams depend on the parameter, µ and VD. Figure 2.22 is one example of kinetic phase

diagrams calculated by Carrard et al.[54] for Al-Fe binary alloys. Instead of constant me
L and

ke, concentration-dependent me
L and temperature-dependent ke are used for this result. This

result shows a typical variation of the steady state interface temperature of a planar front with

V*. For Al-5 at.% Fe alloy, the steady state T* with the local equilibrium condition is much

lower than 500 K. When V* increases and solute trapping at the interface occurs, the slope of

the solidus curve increases and that of the liquidus curve decreases with V*. Thus, the solidus

and liquidus curves approach each other and the steady state T* of the planar front increases

(points 1,2, and 3 in Figure 2.22). If µ is large enough that the ∆Tk term can be ignored, those

two curves would eventually converge on the T0-curve. For general metallic systems, the effect

of the kinetic undercooling becomes important at very high velocities. Then the whole solidus

and liquidus curves may drop toward lower temperatures in the phase diagram, depending on

V* (point 4 in Figure 2.22).

Based on kinetic phase diagrams for a given alloy composition, c0, the liquidus and solidus
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Figure 2.23 Schematic solidus and liquidus temperatures, TS(c0, V ) and
TL(c0, V ), respectively, for a given alloy composition, c0, with
different growth velocities. The steady state planar front tem-
perature is equal to TS(c0, V ), and dendrite tip temperatures
can be obtained by the theories which are described in the
previous section

temperatures, TL (c0) and TS (c0), could be represented in terms of V as shown in Figure 2.23.

With low or moderate V* where the local equilibrium condition can be retained, TL and TS

remain constant and are same as the equilibrium values. As V* increases, TS and TL approach

T0 first due to the solute trapping phenomenon, and then both TL and TS decrease due to the

influence of ∆Tk. Decrease of TS might happen when the effect of the kinetic undercooling

become significant enough to compensate the undercooling decrease due to the solute trapping,

and TS may have a maximum. While both TS and TL are decreasing with V*, the values

approach each other with V* until kV =1.

For a steady state planar-front growth, c∗S is the same as c0 and T* is equal to TS(c0, V ). If

planar-front growth were to happen for all velocities, the variation of T* with V* would follow

the TS curve in Figure 2.23. In metallic alloy systems, the thermal and solutal fluctuations
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in front of the interface induce the interface instability, the planar front breaks down, and

dendrite or cell structure develops under a general solidification condition. Theories for each

of these events with various V* have been extensively developed as described in the previous

section, whereas the mechanism of rapid solidification of alloys has not been fully clarified yet.

2.2.6 Modified solute trapping and dendritic growth models

Galenko and Sobolev[3, 55] expended Aziz’s solute trapping model, considering the relax-

ation time of non-equilibrium chemical diffusion process in the bulk liquid phase by introducing

a parameter, VDL, which is defined as a maximum speed for the front of the solute diffusion

propagation[55]. For dilute solutions, the model was formulated as

kV =
ke
(
1− V 2/V 2

DL

)
+ V/VD

1− V 2/V 2
DL + V/VD

(V < VDL) (2.34)

kV = 1 (V ≥ VDL) (2.35)

Figure 2.24 shows the difference between Galenko’s model and Aziz’s model with the same

VD. While kV can converge onto the value of unity only at infinite velocity with Aziz’s solute

trapping model, Galenko’s model allows for a description of the complete partitionless (kV =1)

interface at above a finite velocity (VDL).

Figure 2.25 shows the comparisons of this Galenko’s model with Aziz’s solute trapping

model fitted to the experimentally measured kV (squares and circles) by Kittl et al.[33, 36].

While Aziz’s solute trapping model (dashed curves) fits well only with moderate solidification

velocities, Galenko’s model (solid curves) provided better agreement with this experiment even

for very high velocity (V > VD) where kV becomes close to 1.

However, due to the lack of experimental data for such an extremely high velocity range,

these solute trapping models have not been thoroughly validated. More exact experimental

data is required especially for the high interface velocity where kV is approaching to 1.

For the prediction of steady state rapid dendritic growth, Galenko and Danilov[56, 57]

extended the previous models by considering the non-equilibrium solute diffusion in the melt

with Galenko and Sobolev’s solute trapping model instead of Aziz’s model. By utilizing another
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Figure 2.24 The variations of the partition coefficient with growth velocity
from Aziz’s solute trapping model and Galenko’s solute trap-
ping model

adjustable parameter, VDL, the model predictions for a whole range of undercoolings agree

reasonably well with experimental data even at an undercooling higher than ∆T∗. Wang

et al.[58] further extended this model considering the non-linear liquidus and solidus lines.

By fitting with several adjustable parameters, the model calculation is in reasonably good

agreement with experimental data as shown in Figure 2.26.

According to these analytical models, dendritic growth should be controlled by purely

solutal diffusion field ahead of the dendrite tip at low undercoolings. This undercooling range

corresponds to ∆T <180 K in the Figure 2.26. During this solutal-controlled dendritic growth,

V* increases with ∆T , and at the same time solute trapping may start. In this relatively

low-rate growth, thermal diffusion length is much longer than the tip radius, and thermal

diffusion might have almost no influence on the growth. As V* increases further, thermal

diffusion length becomes shorter, and both solutal and thermal fields control the dendritic

growth. The onset velocity of the solutal/thermal dendrite corresponds to the solutal absolute

stability velocity, VAS , obtained by the stability analysis[58]. In the analytical modeling in
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Figure 2.25 Partition coefficient versus interface velocity from Galenko’s
solute trapping model (curves 1 and 2) fitted to the Kittl et
al.’s experimental data which is shown in Figure 2.18. VD=0.8
m/s, VDL=2.5 m/s for curve 1 and 2.1 m/s for curve 2 are used.
The curves 1’ and 2’ are given by Eq. 2.34 with VDL =∞ which
is identical with Aziz’s solute trapping model[55].

Figure 2.26, VAS corresponds to the undercooling around ∆T =180 K where the V − ∆T

behavior starts to change. For ∆T > ∆T (VAS), the solute trapping phenomenon results in

the gradual transition from solute and thermal dendritic growth to purely thermal dendritic

growth. According to Galenko’s solute trapping model, the degree of solute partitioning at the

interface abruptly decreases over a finite velocity range, and complete solute trapping occurs

when V ∗ ≥ VDL. When the complete solute trapping takes place, the dendritic growth would

be controlled by pure thermal diffusion. According to Galenko and Danilov, this transition

causes the growth mechanism change from power law to linear law at a critical undercooling,

∆T ∗, and this ∆T ∗ is the undercooling where V = VDL. For ∆T > ∆T (VDL), solute pile-up

in front of dendrites vanishes, the concentration of solid phase behind the tip becomes same

as the nominal concentration of the alloy system, and the dendritic growth should be purely

thermal-controlled.

To describe the phenomenon that happens at and near the interface, these steady state

dendrite growth models utilize many separate analytic models: collision-limited growth model,
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Figure 2.26 Dendritic growth velocity versus bath undercooling. The
squares are experimental data of Ni-0.7 at.% B alloys by Eck-
ler et al.[40, 59], the dotted curve is the prediction of the BCT
model, the broken curve is that of Galenko’s model[56], and
the solid curve is Wang’s prediction.

solute trapping model, marginal stability criterion (or microscopic solvability theory), and

solute drag model. The values of many physical parameters for these separate models have

been approximated or obtained by fitting the model into experimental data since those are

hard to be obtained experimentally are considered as adjustable fitting parameters.

Despite these attempts to describe rapid growth kinetics with analytical models, the funda-

mental and comprehensive mechanism regarding the rapid solidification dynamics has not been

clearly enlightened yet. So far, no conclusive answer has been given to the V ∗−∆T behavior:

the behavior above ∆T ∗ and the physical interpretation of ∆T ∗ as well as the quantification

of the value itself. This question still remains far from fully answered even though there have

been several accounts and conjectures that point to the reason of the growth mode change at

∆T ∗ such as; residual oxygen[47], effects of the anisotropy of kinetic interfacial mobility and

change of the solute diffusion field due to the dramatic change of morphology such as den-

drite to cell (or seaweed structure) transition and side branch development[60], termination



43

of the steady state dendritic growth[60, 61, 62], and transition from solutal-controlled growth

to thermal-controlled growth[63, 64] which has been described above. Although the modeling

results could be in good agreement with experimental data, those are limited to the descrip-

tion of steady state dendritic growth. These analytic steady state dendrite models ignored the

various morphological changes with growth dynamics. In order to investigate rapid growth dy-

namics with morphology evolution, a numerical approach is more appropriate than analytical

modeling with combination of separate models for each process.

2.3 Banded Structure Formation

2.3.1 Early interesting observation of banded structure in rapid solidification

In rapid alloy solidification experiments, Sastry-Suryanarayana[65] first showed a periodic

band structure as an independent phenomenon in their rapid quenching experiments of Al-

Pd droplets. This band structure is characterized by regular succession of alternating light

and dark bands parallel to the solidification front (Figure 2.27). It has been shown that

the formation of this structure is a common phenomenon, in laser- or electron-beam melting,

melt-spinning or splat quenching experiments with various alloy systems:

Dendritic alloys: Ag-1˜65% Cu[66, 67, 68, 69, 70, 71], Al-20˜33%Cu[72], Al-0.5˜4%Fe[73],

Al-20%Pd[65], Al-6%Zr[74]

Eutectic alloys: Ag-28%Cu[66], Al-33%Cu[75, 76]

Formation of this banded structure occurs at velocities near the limit of the absolute stabil-

ity: the absolute stability velocity can be calculated from Mullins-Sekerka’s stability analysis

of planar front and the velocity, a perturbation with any wavelength tends to diminish, i.e. a

planar front is the most stable. In the dark bands, cellular, dendritic or eutectic structures have

been seen, depending on the nominal composition of the alloy. The light band is segregation

free and has uniform composition, so that it has been presumed that the planar growth results

in these light bands.

From the series of electron beam solidifications of Ag-Cu binary alloys with various beam

scanning velocities and alloy compositions, the microstructure map, Figure 2.28, was estab-
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Figure 2.27 Typical banded structure observed in electron beam solidifi-
cation of Ag-Cu alloys. The electron beam scan velocity is 17
cm/sec.[66]

lished [66]. The band structure was observed with the velocities between those for cell/dendrites

and for microsegregation-free structures. Band structure did not appear in dilute alloys. The

velocities for the transitions from cells/dendrites to bands, and from bands to microsegregation-

free structures decrease with c0.

2.3.2 Interface stability analysis for banded structure formation

Banded structure formation is an interesting phenomenon since it cannot be explained by

the classical Mullins-Sekerka’s linear absolute stability analysis[10] for planar interface. The

modified linear absolute stability analysis accounting for local non-equilibrium effect, such

as solute trapping[77, 78], may be related with the band structure formation. The result of

the modified linear absolute stability analysis for planar interface showed that the velocity of

absolute stability limit, VAS , is higher than that from the classical Mullins-Sekerka’s stability

analysis, and at velocities slightly less than VAS , there is an oscillatory instability with time

for rather long wavelengths.

Coriell-Sekerka[77] modified the classical Mullins-Sekerka’s linear stability theory[10] by

considering the velocity-dependent chemical partition coefficient for the first time. In the

result of this analysis, it was shown that at high velocities there exists oscillatory instability
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Figure 2.28 Experimentally determined microstructure selection map for
Ag-Cu alloys by electron beam solidification[66]

for relatively long wavelength perturbations, in addition to the instability predicted by Mullins-

Sekerka’s theory. This modified stability analysis suggested that the instability may occur with

so called ”solute pump mechanism.” For V* with large ∂kV /∂V , the local interface velocities

along the perturbed solid-liquid interface is varying, and so as kV . Thus, there exists variation

of solute rejection rate along the interface. For any perturbation, the local interface velocity

and kV reach maxima at the peak of the perturbation and thus the least amount of solute

would be rejected at the peak. This makes lateral solute segregation which does not required

lateral solute diffusion. This is the suggested ”solute pump mechanism” which explains how

the relatively long wavelength perturbation can be unstable even at high velocities. Since the

wavelength is quite long, capillarity is not very effective in stabilizing the plane front. This is in

contrast with the situation in the classical Mullins-Sekerka’s stability model; solute diffusion

drives the lateral segregation, only a short wavelength of perturbation which can produce

lateral segregation would exist at high velocities because of decreasing solute diffusive time,

and this short wave is strongly stabilized by capillarity. Such instability of long wavelength
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perturbations may exist at even higher interface velocities than that of the absolute stability

limit by Mullins-Sekerka’s theory. This is because capillarity does not strongly affect the

instability of this long wavelength perturbation, whereas in the classical Mullins-Sekerka’s

stability analysis the plane front stabilizes by the strong capillarity effect. The result of the

modified linear stability analysis critically depends on the parameters, µ and VD. For V* with

small derivative, ∂kV /∂V , classical Mullins-Sekerka absolute stability theory may be valid with

direct substitution of kV for ke.

This instability in the solute pump mechanism has oscillatory characteristics. Since solute is

least rejected at the peak of a perturbation, the decreased local concentration gradient makes

the local velocity at the peak of the perturbation slower. With a decreasing peak velocity,

kV decreases at the peak. Then more amount of solute is rejected from solid and the local

concentration gradient increases again. Subsequently, the local interface velocity increases.

This cycle repeats.

This long wavelength oscillatory instability had been considered as a possible mechanism of

banded structure formation[66, 79]. However, even if the diffusionless lateral solute segregation

occurs, the degree of the segregation is not big enough to explain the high solute concentration

of precipitations in dark bands. Furthermore, this lateral solute segregation cannot directly

explain the evolution of alternating morphologies in banded structures.

Merchant-Davis[78] modified the analysis of Coriell-Sekerka[77]. Using Aziz’s solute trap-

ping model for dilute solutions[2] and incorporating the kinetic undercooling at the interface,

the Merchant-Davis’s model allows velocity-dependent kV and T* in a thermodynamically con-

sistent way. Based on the fixed temperature gradient condition, latent heat release is ignored.

In this analysis, new oscillatory instability for the infinite wavelength, i.e. planar front, has

been identified. Above a certain critical growth velocity, zero-wave number of perturbation

becomes most unstable. This is schematically illustrated in Figure 2.29 and Figure 2.30. Fig-

ure 2.29 represents a spectrum of amplification rates of perturbations for a given V at which

plane front oscillatory instability occurs. If a perturbation has a positive amplification rate, the

plane front tends to be unstable and the perturbation with corresponding wavelength would
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grow. In addition to the instability of perturbations with a finite range of wavelengths pre-

dicted in the Mullis-Sekerka’s model (solid curve), it has been shown that there exists another

instability with very high wavelengths (dashed curve) and the most unstable perturbation is

one with infinite wavelength. Figure 2.30 shows conditions where amplification rate becomes

zero (neutral stability) for any wavelength in V − c0 space. The solid curve in a low velocity

range represents the neutral stability condition for non-oscillatory instability, and the dashed

curve in a high velocity range shows that for the oscillatory planar front instability identified

by Merchant-Davis. The interface mobility,µ, affects the stabilization of this oscillatory insta-

bility as well as ∂kV /∂V . With a kV close to unity or smaller value of µ, planar front tends to

stabilize. A smaller µ leads to a shifted dashed curve to the higher c0 range in the Figure 2.30.

It has been proposed that this instability of planar front should trigger the oscillatory inter-

face dynamics which yields banded structures[80, 81]. Later, Huntley-Davis[82] extended the

linear stability analysis for better understanding of the role of thermal diffusion in banding

phenomena.

2.3.3 Phenomenological analysis and schematics of banded structure formation

The linear stability analysis has been shown that planar front has oscillatory instability

at high growth rates and this instability might trigger the interface dynamics for banded

structure formation. This, however, cannot explain the interface dynamics itself which could

give rise to banded structures. Thus Boettinger et al.[66], Gremaud et al.[73], and Carrard

et al.[54] have proposed a phenomenological interface dynamics model to elaborate the time-

periodic structure change. The Figure 2.31 schematically shows the steady state velocity-

dependent interface temperature of planar and dendritic growth for high velocity range. For a

directional growth condition with a constant temperature gradient, G, a given pulling velocity,

VP , lower than V1 gives dendritic structures, and planar growth occurs with VP higher than

V3. According to Carrard et al.’s explanation[54], if VP is between V1 and V3, the steady state

cannot be achieved because planar front is unstable under a directional growth condition with

a pulling velocity in the range of dTS/dV > 0; the driving force for the solidification decreases
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Figure 2.29 A schematic of amplification rate of perturbations on a planar
front with wavelengths. The solid curve and the dashed curve
represent the non-oscillatory and oscillatory instabilities, re-
spectively. For a certain growth condition, a planar front (the
infinite wavelength) with the oscillatory instability can have
the maximum amplification rate as shown in this schematic

as the velocity increases. This instability with V1 < V < V3 might be directly related with

the oscillatory instability of planar front at high growth rates[77, 78]. During the transient

growth, when the interface velocity reaches V1, the growth appears unstable. The interface

velocity jumps to V2. At this time the interface temperature remains still since the velocity

jump occurs instantaneously. Then interface temperature and velocity follow the steady state

curve for planar front (V2 → V3). When the temperature becomes TMAX with V3, the interface

motion becomes unstable again because of the positive slope of the steady state curve. Then the

velocity jumps to the steady state dendrite tip velocity, V4, instantaneously, and then increases

again along with the steady states dendritic growth curve. By repeating this cycle, the interface

motion will never reach its steady state, and periodic bands of dendrites and planar front will

be shown alternately. In this model, it is assumed that when the solidification mode changes

from cellular/dendritic to planar growth and from planar to cellular/dendritic growth, abrupt
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Figure 2.30 A schematic of the neutral stability conditions where the maxi-
mum amplification rate is zero for non-oscillatory (solid curve)
and oscillatory (dashed-curve) instabilities. For the growth
conditions corresponding to the right side of the curves, the
planar front becomes unstable.

quasi-instantaneous transition occurs, and between the transitions the steady state is retained.

This model is able to explain the alternating occurrence of dark and light bands, and to be

used for predicting the quantitative band spacings. However, this phenomenological model is

ignored the latent heat generation which might significantly affect the rapid growth dynamics.

In order to describe this oscillating dynamics of banded structures quantitatively, the transient

interface kinetics as well as morphology evolution should be considered[83, 84, 85, 86, 54].

2.3.4 Numerical analysis of banded structure formation dynamics

Motivated by the phenomenological interface dynamics by Kurz et al.[54] for the forma-

tion of banded structures and the presumption that oscillatory instability of planar interface
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Figure 2.31 The phenomenological model for formation of banded struc-
tures. In directional solidification, when V1 < VP < V3,
the interface dynamics may follow the cycle V1 → V2 →
V3 → V4 → V1 and never reach the steady state.[54]

(Merchant-Davis[78]) may trigger the dynamics for the banded structure formation, a numerical

analysis was carried out and confirms that the growth condition predicted by Merchant-Davis’s

stability analysis actually leads to the oscillatory interface dynamics of planar front[80, 81] as

suggested in a phenomenological model[54]. Their sharp-interface numerical model of direc-

tional solidification[87] employed the solute trapping model of Aziz[2], attachment kinetic ef-

fect, and velocity-dependent liquidus from thermodynamically consistent model by Boettinger-

Coriell[26] for the boundary conditions at the solid-liquid interface. When the calculation

started from a point on the up-sloping part of TS curve (between V1 and V3 in Figure 2.31)

under the condition where latent heat is ignored, instantaneous jump of V* to the steady state

planar growth branch, followed by the steady state dynamics along the TS curve toward V3,

and subsequently instantaneous deceleration of V* at TMAX are calculated.

It was also shown that the consideration of latent heat strongly affects the oscillatory

instability of planar interface and the time-periodic interface dynamics. A larger thermal

diffusivity decreases the range of VP and c0 where the oscillatory instability of planar interface

should occur and the variation range of V* during oscillatory interface dynamics.

Even though this one-dimensional analysis does not include the effect of the transverse
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morphological instability, it still shows an essential feature of interface dynamics responsible

for banding phenomenon.

2.4 Phase-Field Simulation Of Rapid Solidification

Since the phase-field model employs a diffuse interface, the interface dynamics can be pre-

dicted without any prescribed interface conditions. The interfacial conditions can be implicitly

calculated. All the events that occur during growth processes are selected in the direction of

decreasing Gibbs free energy density of the system. By considering only Gibbs free energy

density of the whole system, the only fundamental force which drives the growth, the natural

selection process of rapid growth dynamics can be numerically calculated. More detail of the

phase-field model will be described in the next chapter.

In regard to rapid solidification, a couple of phenomenological calculations have been re-

ported. Boettinger and Warren[88] calculated 2-dimensional morphological evolution of a bi-

nary alloy under the directional solidification conditions. Starting from the initial planar front,

the calculated morphology successfully showed the breakdown of the planar front, evolution

of cell structures, and transition of cell structures into planar front during initial transient

process. But the calculations were primarily focused on the phenomenological evolution itself,

rather than the rapid growth characteristics. In Kim-Kim’s calculation[89], it was demon-

strated that the banded structure evolution could be simulated by the phase-field calculation.

The alternative evolution of dendritic and planar growth has also been successfully shown. Fan

et al.’s calculation[90] shows the morphology transition from dendrite to planar growth with

increasing melt undercooling in the isothermal system.

Solute trapping phenomenon has been investigated with the phase-field model by calcu-

lating the steady state planar interface temperature and the solute distribution across the

interface in an isothermal system with a given steady state interface velocity. Wheeler et

al.[91] first showed the possibility of describing the velocity-dependent solute trapping by the

phase-field model with a constant chemical diffusivity in both phases. Then Ahmad et al.’s

calculation[92] with different diffusivities in bulk phases was fitted by Aziz solute trapping
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model and showed a good agreement. It was also shown that the solute trapping occurred

when Di/V is comparable to the interface thickness and that the smaller equilibrium partition

coefficient may lead to higher characteristic velocity for solute trapping, VD. Di is the solute

diffusivity across the interface region. In an effort to fit the phase-field simulation result to

the Kittl et al.’s experimental data[33, 36] which has a slight deviation from Aziz’s model at

high V range, Danilov and Nestler[93] introduced a new definition of interface concentrations

in the phase-field calculation results. The resultant kV as a function of growth rates deviates

with Galenko’s model as well as Aziz’s model. More extensive experimental data is needed to

validate the kV description.

V − ∆T behavior of steady state rapid dendritic growth was simulated by Galenko et

al.[63, 64] in an undercooled melt considering both solutal and thermal diffusion processes.

The result could show the V − ∆T behavior change at a specific undercooling, ∆T ∗. The

calculated solute and temperature field around the steady state dendrite tip confirmed that

there is only a temperature gradient in front of the tip for the undercooling higher than ∆T ∗.

The continuous oscillation dynamics of planar front growth under fixed temperature gra-

dients was calculated by Conti[94] in a one-dimensional system. Although the calculation

successfully shows oscillating interface dynamics, the calculated cycle of the interface dynam-

ics in T-V space showed some deviation from the model suggested by Carrard et al.[54] and the

calculation by Karma et al.[80, 81]. In the latter model and calculation, there exist the instan-

taneous acceleration and deceleration of interface velocity with an almost constant interface

temperature when the latent heat release is ignored, but Conti’s result failed to demonstrate

the feature. It can be presumed that the fixed grid spacing used in this work may not be able

to sufficiently resolve the phase- and concentration-fields across the interface region, especially

when the interface velocity is strongly accelerating.
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Table 2.2 Summary of critical investigation in rapid solidification (in
chronological order)

AUTHORS
(YEAR)

DESCRIPTIONS MAT. REF.

Rutter-
Chalmers(1953)

Experimental
observation of
planar interface
breakdown
Constitutional
undercooling
criterion

The breakdown of planar interface
into cellular morphology was exper-
imentally observed by decanting the
melt during growth.
The constitutional undercooling cri-
terion in front of the interface was
first suggested as a cause of break-
down of planar interface.

Sn-
and
Pb-
base
alloys

[4]

Tiller-Jackson-
Rutter-
Chalmers(1953)

Solute redistribu-
tion analysis dur-
ing the transient
Constitutional
undercooling
criterion

Theoretical analysis of solute redis-
tribution near the solid-liquid in-
terface of binary alloys was made
for initial transient and steady state
conditions, with a constant interface
velocity.
A quantitative analysis of constitu-
tional undercooling zone was made.

[8]

Duwez-
Willens-
Klement(1960),
Baker-
Cahn(1969),
White-
Narayan-
Young(1979)

The fist obser-
vations of solute
trapping in rapid
solidification

By chill casting, splat quenching, or
laser surface melting, it was found
that the concentration of solid grown
with rapid growth rate could exceed
the equilibrium value or even the
maximum solid solubility.

Cu-
Ag,Zn-
Cd,Si-
based
bi-
nary
alloys

[17,
19,
20]

Mullins-
Sekerka(1964)

Stability analysis
of planar interface

The stability of perturbations on
a plane front of dilute binary al-
loys was analyzed under directional
growth conditions.
For a specific range of interface ve-
locity, perturbations with a specific
range of wavelength may grow into
cells.

[10]

Baker-
Cahn(1971)

Thermodynamic
analysis of solute
trapping

Thermodynamically possible range
of interface concentrations for a
given temperature was shown.
The notion of ’solute trapping’ was
first introduced.

[1]
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Table 2.2 (Continued)

Sastry-
Sryanarayana
(1981),
Boettinger-
Shechtman-
Schaefer-
Biancaniello
(1984)

The first obser-
vation of banded
structure in rapid
solidification

By electron-beam surface melting
and splat quenching, banded struc-
ture was observed at a velocity range
between those for cellular/dendritic
or eutectic growth and for planar
growth.

Al-
Pd,
Ag-
Cu

[65,
66]

Aziz(1982) Solute trapping
model

A solute trapping model for a dilute
binary alloy was presented, which
represents the partition coefficient as
a function of interface velocity.
The model shows that the solute
trapping occurs in a finite range of
velocity around the diffusive speed of
solute in the liquid.

[2]

Coriell-
Sekerka(1983)

Non-equilibrium
planar interface
stability analysis
for rapid growth
rate

Extension of Mullins-Sekerka
(1964)’s linear stability analysis un-
der conditions where the partition
coefficient varies with velocities.
Novel oscillatory instability of per-
turbations with significantly large
wavelengths was found.

[77]

Boettinger-
Coriell-
Sekerka(1984)

Analytic solution
of T(V) for rapid
planar growth

Steady state interface temperature
for planar growth of binary alloys
was derived as a function of the in-
terface velocity and the initial melt
concentration, using Baker-Cahn’s
thermodynamic driving energy of so-
lidification (1971), Turnbull’s colli-
sion limited growth model (1975),
and Aziz’s solute trapping model.

[25]



55

Table 2.2 (Continued)

Trivedi-
Somboonsuk
(1985)

Instability mea-
surement during
the transient

The morphology evolution from ini-
tial flat interface to fully grown
steady state dendritic arrays was ob-
served.
It was found that the initial per-
turbation from flat interface starts
during initial transient regime of
the growth, and that the final
steady state morphology is history-
dependent.

SCN-
acetone

[11]

Lipton-Kurz-
Trivedi(1987)

Analytic model of
dendrite tip radii
and velocities
for rapid solid-
ification (LKT
model)

The LGK model, analytic model of
dendritic growth for small under-
coolings by Lipton-Glicksman-Kurz
(1984), was extended for high under-
coolings by employing the marginal
stability criterion for high Peclet
numbers.

[50]

Boettinger-
Coriell-
Trivedi(1988)

Analytic model
of rapid dendritic
growth (BCT
model)

The LKT model was extended by
employing the kinetic undercooling
and Aziz’s solute trapping model.

Ag-
Cu

[51]

Willnecker-
Herlach-
Feuerbacher
(1989), Eckler-
Gartner-
Assadi-
Norman-
Greer-
Herlach(1997)

The first experi-
mental measure-
ment of interface
velocities versus
undercoolings
during rapid
growth

By levitation melting, the growth ve-
locities were measured with different
melt undercoolings.
The measured data was consistent
with the prediction of BCT model
only for undercoolings lower than a
critical value.
For undercoolings higher than the
critical value, a different mode of
growth was observed.

Ni-
Cu,
Fe-Ni

[38,
95]

Aziz-Tsao-
Thompson-
Peercy-
White(1986),
Smith-
Aziz(1994)

Experimental
measurements of
solute trapping

Interface partition coefficients as a
function of growth velocities were ex-
perimentally measured.
Aziz’s solute trapping model fits the
measured data quite well.

Si-Bi,
Al-
Cu,
Al-
Ge,
Al-In,
Al-Sn

[28,
32]
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Table 2.2 (Continued)

Merchant-
Davis(1990)

Non-equilibrium
planar interface
stability analysis
for rapid growth
rate

The Coriell-Sekerka’s stability
analysis (1983) was extended by em-
ploying Aziz’s solute trapping model
and velocity dependent solidus from
Boettinger-Coriell-Sekerka (1984),
for directional solidification with no
latent heat generation.
For a specific range of pulling veloc-
ities and alloy compositions, time-
periodic oscillatory instability for
zero-wave number was found.
This oscillatory instability was pre-
sumed as an origin of formation of
banded structures.

[78]

Carrard-
Gremaud-
Zimmermann-
Kurz(1992)

Phenomenological
model of banded
structure forma-
tion

A phenomenological model of in-
terface dynamics which may yield
banded structures was first sug-
gested. According to this model, the
banded structure forms by instanta-
neous transitions between dendritic
and planar growth modes.

Al-
Fe,
Al-
Cu,
Ag-
Cu

[54]

Karma-
Sarkissian(1992,
1993)

Numerical analy-
sis of oscillation
dynamics

By numerical calculation of rapid
planar directional growth, it was
frist confirmed that the oscilla-
tory planar instability predicted
by Merchant-Davis (1990) actually
leads to the oscillatory interface
dynamics suggested by Carrard et
al.(1992), and latent heat may signif-
icantly alter the oscillatory interface
dynamics.

Al-Fe [80,
81]
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Table 2.2 (Continued)

Warren-
Langer(1993)

Analytical model
of initial transient
dynamics

A theoretical analysis of morphology
evolution was presented for a direc-
tional solidification from initially flat
interface to a steady state dendritic
array.
First, the acceleration of flat inter-
face concerning build-up of solute
boundary layer, second, onset of in-
stability of the flat interface during
the transient, and last, a steady state
primary dendrite spacing are sequen-
tially calculated.

SCN-
acetone

[13]

Wheeler-
Boettinger-
McFadden
(1993),
Ahmad-
Wheeler-
Boettinger-
McFadden
(1998)

Phase-field simu-
lation of solute
trapping at a 1D
steady state inter-
face

Solute trapping phenomena at the
solid-liquid interface of binary alloys
were calculated in a one-dimensional
isothermal system at a steady state
with given velocities. The results
are fitted by Aziz’s solute trapping
model and/or compared with exper-
imentally measured data.

Ni-Cu [91,
92]

Kittl-Aziz-
Brunco-
Thompson
(1995), Kittl-
Sanders-
Aziz-Brunco-
Thompson
(2000)

Experimental
measurement of
solute trapping

The first measurement of velocity-
dependent partition coefficient for
the high velocity regime and for non-
dilute alloys was performed. The re-
sults were reasonably well fitted by
Aziz’s solute trapping model.
The partition coefficient at a most
high velocity was slightly deviated
from the model, but authors ar-
gued that this is due to experimental
uncertainty at such a high velocity
regime.

Si-As [33,
36]

Galenko-
Sobolev(1997),
Galenko(2007)

Solute trapping
model

Aziz’s solute trapping model was
extended, concerning the relaxation
time for solute diffusion in the liquid.
In contrast with Aziz’s model, this
model predicts complete solute trap-
ping at a specific interface velocity.

[3,
55]
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Table 2.2 (Continued)

Galenko-
Danilov
(1997,1999)

Analytical predic-
tion of dendritic
growth

The BCT model was extended by us-
ing Galenko’s solute trapping model.
The model can be reasonably well
fitted to experimentally measured
data for very high undercooling
range where the linear growth mode
exists.

Ni-B,
Ni-Cu

[56,
57]

Conti(1998) Phase-field sim-
ulation of oscil-
latory interface
dynamics during
rapid solidifica-
tion

Oscillatory rapid planar interface
dynamics in directional growth con-
dition was calculated by phase-field
model.
The growth parameter range where
the oscillatory dynamics can occur
was reasonably in agreement with
Merchant-Davis’s stability analysis,
but the interface dynamics itself de-
viated from the previous model and
numerical calculation result.

Ni-Cu [94]

Boettinger-
Warren(1999)

Phase-field simu-
lation of morphol-
ogy evolution dur-
ing directional so-
lidification

Time-dependent morphology evolu-
tion from initial planar interface
to steady state planar or cellular
structure was calculated under a di-
rectional growth condition by the
phase-field model.

Ni-Cu [88]

Kim-
Kim(2001)

Phase-field simu-
lation of banded
structure forma-
tion

Morphology evolution of banded
structure was shown by the phase-
field simulation.

Al-Cu [89]

Fan-
Greenwood-
Haataja-
Provatas(2006)

Phase-field simu-
lation of isother-
mal rapid crystal
growth

Growth mode change with differ-
ent melt undercoolings accompanied
with morphology change and solute
trapping was shown by phase-field
simulation.

Ni-Cu [90]



59

Table 2.2 (Continued)

Danilov-
Nestler(2006)

Phase-field simu-
lation of solute
trapping at a 1D
steady state inter-
face

The velocity-dependent chemical
partitioning at the solid-liquid inter-
face of binary alloys was calculated
in a one-dimensional isothermal
system at a steady state with given
velocities. In order to fit to the
Kittl et al.’s experimental results
which has a little deviation for
very high velocity, new definition
of interface concentrations was
used. The results are fitted by the
experimentally measured data and
compared with several different
solute trapping models.

Si-As [93]
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CHAPTER 3. OBJECTIVES AND APPROACH

The primary goal of this work is to investigate the response of the solid-liquid interface

to the driving force and its effect on the morphology evolution of alloys in a highly driven

solidification condition by means of the phase-field simulation. Toward this goal, the critical

questions tackled in this thesis are:

• How do initial transient dynamics of a planar front vary with pulling velocity

during rapid directional growth?

The study on rapid alloy growth dynamics at ’non-steady state’ has not been suffi-

ciently conducted. The relevance of the non-steady state (transient) alloy growth dy-

namics to the final steady state growth morphologies have been shown in the Trivedi-

Somboonsuk’s experimental analysis[11] and Warren-Langer’s theoretical analysis[13] for

’low/moderate’ rate growth where the local equilibrium at the solid-liquid interface is

retained. In rapid directional growth of alloys, it has been considered that the banded

structure formation is the result of non-steady state interface dynamics in which the

chemical partitioning, the interface kinetics, and morphology evolution are all correlated.

However, the calculation of initial transient dynamics of planar directional solidification

by Warren-Langer[13] did not consider the solute trapping phenomenon and also was

based on the purely solutal-diffusion-controlled interface motion. Thus, Warren-Langer’s

analytical method cannot be applied to the rapid growth case where the effect of solute

diffusion on the growth dynamics becomes diminished by solute trapping at the interface

and the effect of atomic attachment kinetics on the growth control becomes stronger.

Karma-Sarkissian[80, 81] used the Aziz’s model to analytically describe the oscillatory

dynamics. But the current research predicts the non-equilibrium partitioning in a more
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natural way without a explicit velocity-composition function.

• Can the phase-field method be used to accurately predict the rapid oscillation

dynamics of planar front?

There have been a couple of phase-field studies on the banded structure formation which

can be observed in rapid directional growth condition. Kim-Kim[89] only reproduced

the phenomenological morphology evolution: alternating dendritic and planar growth

modes occur in the growth direction. Conti[94] could successfully calculate non-steady

oscillatory cycle of planar interface dynamics and the variation of the non-equilibrium

chemical partitioning at the interface along the cycle which may form the banded struc-

ture. But, the trace of the cycle does not agree qualitatively with those of Carrard et

al.’s phenomenological model[54] and Karma-Sarkissian’s numerical calculation[80, 81].

Due to the sharp-interface limit phase-field model and the fixed ’thick’ grid spacing, the

Conti’s work could not properly describe the instantaneous velocity jump during the

cycle. The sharp-interface limit phase-field model could lead to the non-physical solute

diffusion across the interface region, and in turn alter the rapid interface dynamics. Conti

also used fixed grid spacing throughout the whole calculation. This could give rise to

the numerical instability in the calculation: insufficient number of grid points over the

interface region may cause invalid interface kinetics.

• How does solute partitioning (kV ) vary during non-steady state dynamics, i.e.

initial transient and oscillation dynamics?

Since solute trapping phenomenon is one of the main characteristics of rapid alloy solid-

ification, a velocity-dependent partition coefficient at the steady state has been analyzed

with theoretical approaches and numerical phase-field calculations as well as some experi-

mental measurements. However, the experimental data for very high velocity regimes has

been limited because of the uncertainties in the measurements as described in the Kittl’s

experimental studies[33, 36]. Accordingly, the dependency of the partition coefficient on

the full range of the steady state growth rate has not been clearly validated. Moreover,
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in the growth dynamics, the degree of chemical partitioning is not the parameter which

is determined only by the interface velocity. The chemical partitioning, the interface ve-

locity, and the evolving morphology should be mutually correlated. The investigation of

this correlation during growth must be a critical factor in the rapid solidification study.

• Can the phase-field method be used to probe the influence of solute parti-

tioning on the morphology selection in rapid alloy solidification?

’Rapid’ alloy solidification may be characterized by the non-equilibrium solute partition-

ing and significant effect of atomic attachment kinetics. Even with the phenomenological

and analytical theories developed in the last half century, the understanding of the na-

ture of selection mechanism of the interface dynamics and resulting morphology evolution

is still lacking.This is in contrast with ’low/moderate’ rate solidification for which the

theories have been fairly well established based on numerous experimental observations

and measurements. The precise experimental measurements of interface response and

the solidification condition during rapid growth are very challenging to quantify, thus it

is one of the critical reasons why the study of rapid alloy growth is difficult.

In order to describe the rapid alloy solidification and provide answers for the above ques-

tions, we performed the phase-field simulation in highly driven solidification conditions. For

more quantitatively valid description of rapid growth dynamics, the phase field model in the

thin-interface limit with the anti-trapping current term is utilized. First, one-dimensional cal-

culations for a planar front growth were performed under directional growth conditions with a

fixed temperature gradient, to study the initial transient dynamics under rapid solidification

conditions. We applied seven different pulling velocities in the range of 1 mm/s˜10 m/s, in

which Warren-Langer’s model cannot predict the full transient dynamics. The calculations

started with the interface temperature close to the equilibrium liquidus temperature for the

alloy composition, and continued until the interface velocity and the solute composition in the

solid are same as the pulling velocity and alloy composition, respectively. For a pulling velocity

which never leads to the steady state and yields oscillatory interface dynamics, the calculations

are terminated after several repeated cycles were computed. The computed transient interface
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dynamics were compared with Warren-Langer’s predictions and analytical descriptions of the

steady state temperature of a planar interface with velocities, exposing the limitations of the

analytical models and addressing the ability of the current approach to describe the appropri-

ate rapid growth dynamics. The interface concentrations are measured during the transient

growth and thus the correlation between chemical partitioning and interface dynamics was

exhibited. Second, the steady state growth morphologies in isothermally undercooled melts

have been simulated at a fixed melt temperature. With the increasing initial supersaturations,

the steady state interface velocities, radii of the curvature, and interface concentrations were

measured, and it was demonstrated that the phase-field method can appropriately describe

the morphological section associated with the non-equilibrium chemical partitioning as well as

the local equilibrium condition. For all computations in this research, materials parameters

for Ni-Cu binary alloys were used.
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CHAPTER 4. THE PHASE-FIELD MODEL AND THE CALCULATION

METHOD

The traditional numerical modeling method used for solidification processes is the sharp-

interface model. For this calculation, partial differential equations for each phase should be

solved with boundary conditions at the sharp phase boundaries. The difficulty of this calcula-

tion comes from as solving all the partial differential equations and boundary conditions, while

at the same time, tracing the position of interfaces to apply the boundary conditions.

During the last 20 years, the phase-field model has been utilized extensively to calculate

the complex morphological evolution during phase transitions. The model does not explicitly

need to track the interface position or to calculate the boundary conditions at the interface.

Since those are calculated implicitly, the microstructural evolution in the whole system, i.e. for

all the phases, is calculated simultaneously with the one or more order parameters or “phase-

fields” along with the appropriate thermal and solutal diffusion parameters and equations.

Interfacial properties are incorporated with the energetics of the phase field.

4.1 Basic Theory

4.1.1 Diffuse interface and phase-field variable

The phase-field model adapts the diffuse-interface theory[96, 97, 98], wherein an interface

with a finite thickness is used in this model. The concentration or temperature profile is

continuously differentiable in this finite interface region, and any other physical properties of

the interface are diffused over this interface region.

In Phase-field model, a phase is described with the phase-field variable, φ, which is a

kind of an order parameter. This variable has a unique value in each bulk phase, and varies
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Figure 4.1 Phase-field variable profile over the solid/liquid interface[99]
where x=0 is interface position. δ represents the interface thick-
ness. φ is zero in solid and unity in liquid bulk phase. In be-
tween the bulk phases, the phase variable changes smoothly.

smoothly over the interface region. Thus, the phase-field variable is spatially continuous,

and it is a function of time. The exact interface position could be assumed to be where the

phase-field variable has the average value of those for the adjacent bulk phases. For example,

Figure 4.1 shows the phase-field variable profile over the solid/liquid interface region where δ

is the interface thickness, and the phase-field variable φ is 0 in solid and 1 in liquid. Other

common conventions for phase-field variable is 1 in solid and 0 in liquid, or -1 in solid and 1

in liquid.

The phase-field variable within the interface region is physically meaningful in the order-

disorder transition case, where we consider the phase-field variable as the degree of ordering

of the state. In the case of solidification, one possible interpretation of the phase variable is

the amplitude of atomic density wave function[99]. In the bulk solid and liquid phase, the

amplitude of the atomic density function is constant, where as in the interface region, it is

gradually changing. Although this could be a physical explanation of phase-field variable, it is

originally developed as a purely mathematical concept.
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4.1.2 Governing equations

The phase-field model is based on the assumption that the overall rate of evolution is

proportional to the variational derivation, δF/δφ,

∂φ

∂t
= −Mφ

δF

δφ
(4.1)

where F is the total free energy functional of the system and Mφ is phase-field mobility which

is a positive value [100, 101]. The total free energy of a system can be postulated as

F =
∫

[f(φ, T, c, · · · ) +
ε2φ
2
|∇φ|2]dV (4.2)

where the chemical free energy density, f , is a function of phase-field variable, temperature,

composition, and so on. The chemical free energy density forms a double well potential with

a free energy barrier between phases. This free energy density function should have the local

minima at the value of phase-field variable for a bulk phase. To make this function in this form,

auxiliary functions are applied. ε2 is the gradient penalty due to the gradient of phase-field

within the interfacial region, which has constant value for an isotropic interfacial energy. The

second term in the square brackets represents the energy which is generated by the phase-field

gradient over the diffuse interface region. Having a larger interface thickness is energetically

favorable since it lowers the phase-field gradient. On the other hand, to decrease the chemical

free energy, the interface needs to be sharper since the chemical free energy within the interfacial

region is higher than that for the bulk phase. Therefore, the interface thickness is determined

by the competitive action of these two energies. Depending on the purpose of the simulation,

this free energy functional can include, elastic energy, electrostatic energy, and so on, as well

as the bulk chemical free energy and interfacial energy.

Using the free energy functional (Eq. 4.2), the solute diffusion can be postulated as

∂c

∂t
= ∇ ·

[
Mc∇

(
δF

δc

)]
(4.3)
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where Mc is the mobility of the solute diffusion field and it is a positive value [98, 102].

Therefore, the governing equations are

∂φ

∂t
= −Mφ

δF

δφ
= Mφ

(
ε2φ∇2φ− ∂f

∂φ

)
(4.4)

and
∂c

∂t
= ∇ ·

[
Mc∇

(
δF

δc

)]
= ∇ ·

[
Mc∇

∂f

∂c

]
(4.5)

4.2 Quantitative Simulation

To decide the values of the phenomenological parameters in the phase-field equation, espe-

cially for the case of solidification, mathematical mapping of those parameters of the phase-field

equation to the physical parameters of the sharp-interface model is needed since the goal of the

phase-field model is to reproduce the results of the sharp-interface model. Especially for the

quantitatively reliable simulations, developing an appropriate mapping method is the critical

issue since the early ages of the phase-field model.

4.2.1 The Sharp-interface limit analysis

Caginalp[103] showed that the phase-field model in the limit of the vanishing interface

thickness can be reduced to the classical sharp-interface model (Stefan problem), and Wheeler,

Boettinger, and McFadden[104] and Wang et al.[105] obtained the value of the parameters in

the phase-field model at this limit, as the simplest way of representing the parameters with

the experimentally measurable quantities. In this limit, the temperature variation over the

interface region can be regarded as zero and the interface temperature is fixed to the melting

temperature in case of pure materials. That makes the analysis simple, and qualitatively

reasonable solidification morphologies can be simulated. As results of the sharp-interface limit

analysis, Wheeler, Boettinger, and McFadden represents the phase-field model parameters, W ,

εφ, and Mφ as

W =
3a0σ

δ
(4.6)
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ε2 =
6σδ
a0

(4.7)

Mφ =
µσTM
Lε2

=
a0µTM

6Lδ
(4.8)

where W is the height of the energy barrier between the free energies of two bulk phases, and

a0 is a scalar value which depends on the definition of the interface region.

However, because the parameters are derived in this limit, the simulation results cannot

properly recover the sharp interface model results unless the interface thickness is very thin,

i.e. thinner than or comparable to the capillary length [106, 91, 107, 108, 109], which is on

the order of 10−9 m for most metals. For properly resolving the interface region, the grid

spacing should be smaller than the interface thickness. On the other hand, the scale of the

overall microstructural morphology for normal growth conditions is on the scale of microns,

and diffusion length scale is on the order of millimeters. Because these span length scales over

seven orders of magnitudes, there can be a very high computational cost.

When a thicker interface than the capillary length is used for dendritic growth calculation,

the individual values of the dendrite tip radius and velocity considerably depend on the interface

thickness and diffuse boundary layer thickness while the Péclet number related with the product

of those values is in a good agreement with Ivantsov solution [91, 109]. Therefore, for a

practically accessible computational time, the far-field undercooling on the order of L/CP is

required, in which range, a small dendrite tip radius can be obtained [110].

Moreover, the phase-field mobility (Eq. 4.8) is derived under the condition of a negligible

curvature undercooling comparing to the kinetic undercooling. Therefore, it is not appropriate

to use for the opposite case, i.e. the limit where the kinetic undercooling is negligibly small

compared to the curvature undercooling [106].
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4.2.2 The Thin-interface limit analysis

To overcome the severe limitations of the sharp-interface limit analysis, in 1996, Karma and

Rappel [106, 111] did asymptotic analysis for pure materials which is called the thin-interface

limit analysis. This analysis allows to quantitatively reliable phase-field simulations with a

relatively thicker interface than the capillary length scale. Simultaneously, this analysis enables

the low velocity growth simulation in the regime of the low undercooling less than L/CP . This

results in a vanishing kinetic effect. Whereas the sharp-interface limit analysis assumes that

the interface thickness is vanishing so that the temperature field within the interface region

is constant, the thin-interface limit analysis is based on the assumption that the interface

thickness has finite value, i.e. non-zero, but still much thinner than diffusion boundary layer

thickness, δT = 2α/V , and tip radius. In addition to the previous assumption, by assuming

that the conductivities in the solid and liquid phases are equal, the temperature field over

the interface region is derived, and the parameters in the phase-field model are represented

with measurable physical quantities. This allows the interface thickness to be on the order of

capillary length. By using this thicker interface, relatively low grid resolutions can be used,

which is crucial to cut down the computational cost.

With this model, the limitation for the kinetic undercooling can be overcome, and the

thick interface width can be used. However, since the equal thermal diffusivities in solid and

liquid are used for this analysis, it cannot be applied to the case of unequal diffusivities. When

unequal thermal diffusivities are applied to this thin-interface limit model for pure materials,

there is a discontinuity of temperature field across the interface region, and an anomalous

term in the Gibbs-Thomson equation [112] which is dependent on the interface temperature

gradient.

4.2.2.1 The anti-trapping current

To compensate for the solute trapping effect which is a result of chemical potential jump

over a thick interface of an alloy simulation by the thin-interface limit, Karma [113] introduced

the anti-trapping current term into the solute diffusion equation. For accuracy and numerical
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ease, this anti-trapping current term has been adopted in many simulations for dilute binary

alloys [113, 114, 115, 116, 117, 118, 119, 120]. By using this anti-trapping current term, the

anomalous solute diffusion effect can be effectively controlled regardless of the grid size [121].

However, the model is limited to dilute binary alloys [121], and this artificial current term

sometimes makes thermodynamically unrealistic solute profiles in front of the interface. Then

Kim [121] extended the anti-trapping current model for dilute binary alloys to multicomponent

systems with arbitrary thermodynamic properties.

4.3 Calculation Method

The phase-field simulation is essentially solving the Allen-Cahn equation (Eq. 4.4) and

Cahn-Hilliard equation (Eq. 4.5) numerically. All the parameters and functions in those equa-

tions, such as a free energy density function, phase-field and concentration field mobilities, and

a gradient penalty coefficient must be defined using physical parameters, for physically reliable

results. This section will describe the model formulations and the numerical method used for

the current study for rapid alloy growth.

In the thin-interface limit model, temperature and/or concentration variations across the

interface region are not ignored. That allows quantitative calculations even with rather unre-

alistically thick interface, whereas δ should be comparable to the capillary length for quanti-

tatively valid simulations in the sharp-interface limit.

In the case of alloys, the difference of solutal diffusivities in the solid and liquid phases

is several orders of magnitude. When a relatively thick interface is used, this big diffusivity

difference between two adjacent phases causes several spurious interface diffusion kinetics and

solute trapping. Karma[113] resolved this problem by introducing the anti-trapping current

term in the phase-field evolution equation. This term gives a counterflux against unphysical

solute trapping flux. Although this work is for the specific case of dilute, one-sided binary

alloys, Tong et al. showed that the same forms of the governing equations can be effectively

valid for non-dilute alloys. Their governing equations for isotropic growth are as following:[122]
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τ(T )η(n̂)2∂φ

∂t
= ∇·

[
W (T )2η(n̂)2∇φ

]
+φ−φ3−λ(T )

(
1− φ2

)2
U+∇·

(
|∇φ|2W (T )2η(n̂)

∂η(n̂)
∂(∇φ)

)
(4.9)

(
1 + k(T )

2
− 1− k(T )

2
φ

)
∂U

∂t
= ∇ ·

(
D(T )

1− φ
2
∇U +

1
2
√

2
{1 + [1− k(T )]U} ∂φ

∂t

∇φ
|∇φ|

)
+

1
2
{1 + [1− k(T )]U} ∂φ

∂t
(4.10)

where φ = +1 in solid phase, φ = −1 in liquid phase, τ is the time scale parameter related to the

interface kinetic attachment, η is the anisotropy term, W is the interface thickness parameter

which corresponds to δ/4, λ is the coupling parameter between the phase-field and chemical

diffusion dynamics, and U is the normalized supersaturation. According to the thin-interface

limit analysis [115], the relationship between λ, τ , and W is

W =
d0λ

a1
(4.11)

and

τ =
a2λ

D
W 2 (4.12)

where the capillary length, d0 = Γ/∆T , Γ = σT/L, ∆T = T eL(ceS) − T , a1 = 0.8839, and

a2 = 0.6267 [113]. U = (eu − 1) / (1− k), and u = ln {(2c/ceL) / (1 + k − [1− k]φ)}

Concerning the anisotropy of interfacial energy, the gradient energy penalty coefficient, ε, is

a function of the orientation of the interface normal, θ, which is the angle between the direction

of normal vector of interface and a reference coordination axis, i.e.

ε = ε̄η(θ) (4.13)

where ε̄ is an average gradient energy penalty coefficient, and η is an interface orientation-

dependent term. For an 4-fold symmetric anisotropy of cubic crystals in two-dimensional
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system,

η = 1 + ε4cos(4θ) (4.14)

. Considering more general three-dimensional anisotropies of interfacial stiffness, η can be a

function of the components of the interface normal, i.e.

η(n̂) = 1 + ε1

(
3∑
i=1

n4
i −

3
5

)
+ ε2

(
3

3∑
i=1

n4
i + 66n2

1n
2
2n

2
3 −

17
7

)
· · · (4.15)

For an effective fast calculation, the governing equations are discretized with the fully

explicit finite difference method in uniform meshes. The forward difference for the temporal

derivatives and central difference for spatial derivatives are used. To make sure the solutions

converge, FDM stability condition should be satisfied: D(∆t)/(∆x)2 < 1/2.
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CHAPTER 5. CALCULATION RESULT

5.1 Rapid Directional Growth Dynamics Of A Planar Front

5.1.1 Numerical method

To describe the dynamic response of a planar interface during the initial transient growth

stage of binary alloys under highly driven growth conditions, directional solidification in a

one-dimensional system is calculated with various pulling velocities, VP . By being limited to a

one-dimensional geometry, we can set aside the curvature effect on growth dynamics and focus

on the relationship between solute redistribution and the interface kinetics. In this calculation,

the thin-interface limit model with the anti-trapping current is utilized for more quantitatively

valid description of the solute diffusion across the interface. Eq. 4.6 and Eq. 4.7 are used

as governing equations. Since this is the one-dimensional calculation, the anisotropy term is

unity. The parameters to solve these equations are shown in Eq. 4.8 and Eq. 4.9.

The latent heat release at the solid/liquid interface and the heat diffusion process are

ignored in this calculation. The parameter λ is first set to λ = 7. The material parameters

of Ni-Cu binary alloys used in this calculation are listed in Table 5.1. The constant chemical

diffusivity in liquid phase, DL = 10−9 m2/sec, is used and the diffusion in the solid phase is

neglected. The polynomials for ceL and ceS as functions of temperature are obtained by fitting

to the equilibrium Ni-Cu binary alloys phase diagram and used for the phase-field calculation.

ceL = 5.34508×10−11T 4+1.55652×10−9T 3−5.36312×10−6T 2−0.00277367T+290.9179 (5.1)
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Table 5.1 The material parameters used in the calculations

Ni Cu
Melting temperature (K) 1728 1358
Latent heat (J/m3) 2350×106 1728×106

Interface energy (J/m2) 0.37 0.29
Molar volume (cm3/mole) 7.42 7.42

ceS = −4.02814×10−11T 4+2.03968×10−9T 3+1.95303×10−6T 2−0.00277277T−227.622 (5.2)

Since the latent heat generation is neglected, the temperature gradient, G, is assumed as

a constant. The calculation domain is moving along with the interface. Zero-flux boundary

conditions for both phase-field and chemical diffusion field are applied. This boundary condi-

tion is reasonable because the domain length is chosen to be large enough so that neither the

phase-field nor the liquid solute field would reach domain boundaries. The temperature field

is set as

T (z) = T ∗ +G (z − z∗) (5.3)

where z* is an interface position, T* is the interface temperature, and ∆x is a grid spac-

ing. At t=0, the uniform initial liquid concentration equals c0, and the solid concentration

is given as ceS(T (z)). For all the current calculations, c0 is set to 0.61, which corresponds to

T eL(c0)=1547.34 K, and T eS(c0)=1497.21 K. The growth starts with T ∗(t = 0)=1546.3 K which

is the temperature about 1 K less than T eL(c0), because it needs a small amount of interface

undercooling to trigger the growth. Once the calculation starts, the fixed temperature field

is pulled with VP . The calculation continues until it shows the steady state growth behavior

which is indicated by the constant V ∗ = VP and c∗S = c0 with time. G=10 K/mm and the

range of VP between 0.001 and 10 m/sec are used in this investigation. According to Eq. 4.8,

the interface thickness, W, depends on the parameter λ and the temperature-dependent cap-

illary length, d0(T ∗). Although λ is fixed in this calculation, the interface thickness, W, varies

in accordance with T ∗ during calculations. At each time step, d0(T ∗) = Γ/(T eL(c0) − T ∗) is
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calculated and applied to the governing equations. Since the Gibbs-Thompson coefficient, Γ,

and T eL(c0) are constant, d0(T ∗) decreases with T ∗, and the interface thickness becomes thinner

at the lower T ∗. For adequate numerical resolution over the interface region, we continually

adjust the ∆x during calculations to maintain at least 10 grid points over the interface region.

The thin-interface limit (TIL) phase-field model used in this calculation reduces the possibil-

ity of numerical error that comes from an interface that is thicker than the physical solid/liquid

interface. For a quantitatively exact description of interface kinetics, the interface thickness

for the phase-field model is required to be on the order of the real physical interface thickness.

The experimental data of the interface thickness, however, is not available for all the alloy

systems and temperatures. Even if we know the physical interface thickness, the phase inter-

face for metallic systems is usually on the order of Armstrongs, making ∆x much smaller and

the calculation time increases considerably. By using the TIL phase-field model, we expect

that the calculation results may be quantitatively valid even if the interface thickness in the

calculations is a little thicker than the real interface thickness. The anti-trapping current term

has been used to eliminate the unphysical solute diffusion phenomena in the interface region

that could be induced by the thick interface in the TIL phase-field model[113]. Such an effort

to correctly describe the solute diffusion in the interface region is very important in simulating

the rapid solidification dynamics where chemical solute trapping might occur, since the solute

trapping phenomenon is closely related to the solute diffusion process across the interface and

might have a strong influence on the interface dynamics. For the same reason, temperature-

dependent W, which is physically realistic, is necessary since solute trapping phenomenon is

very sensitive to the interface thickness.

Figure 5.1 shows φ, c, and T-fields at t=0.045 sec with VP=0.1 m/sec. It is still under

initial transient growth and does not reach the steady state. The φ-field shows the interface

region where φ varies continuously from +1 to -1. The exact interface position, z*, is defined

as the position where φ equals zero. In Figure 5.1, the measured z* is 14.9 µm. Since DS was

ignored, the c-field in the solid phase in Figure 5.1 (b) indicates the trace of c∗S which gradually

increases during this initial transient period. This c-field clearly shows the difference between
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Figure 5.1 (a) The phase-, (b) concentration-, and (c) tem-
perature-fields at t=0.045 sec, calculated with
VP=0.1 m/sec.



77

c∗L and c∗S , which is due to the chemical partitioning. c∗S is defined as the concentration where

it starts to increase near the solid-side interface. c∗L is identified with the maximum value of

the c-profile. We can see the solute diffusion layer in the liquid phase ahead of the interface.

The gradient of T-field remains in G. T ∗ is identified with the temperature at the nearest

grid point to z∗(φ = 0). Since ∆x is sufficiently small, this value of T ∗ is almost same as the

temperature at φ = 0.

By tracking the changes of z*, c∗S , c∗L, and T ∗, the variations of V ∗ and kV in time can

be obtained. Figure 5.2 is an example of the time-dependent traces of interface conditions,

measured from the same calculation shown in Figure 5.1 with VP=0.1 m/sec. In the Figure 5.2

(c), the solid curve and dashed curve indicate c∗L and c∗S , respectively.

5.1.2 Transient dynamics trajectories with various pulling velocities

The variations of T* and V* in time during the initial transient growth with various VP s are

shown on a T-V space in Figure 5.3. All the calculations are started from the same temperature,

T*=1546.3 K (t=0). Once the calculation starts, T* decreases since the temperature field

cools at a constant rate and V* is much lower than VP . After a monotonic decrease of T* with

increasing V*, V* suddenly rises at a critical interface temperature, T+. This abrupt increase

of V* continues to a critical interface velocity, V +. Both T+ and V + seem invariable with

VP . At V +, both V* and T* increase again if VP < V +, and if VP > V +, both V* and T*

keep decreasing. Once V* reaches VP , the steady state condition is generally achieved. In the

current calculation, only the calculation with VP=0.001 m/sec did not reach the steady state

and exhibited a continuous oscillation of V* and T*.

5.1.3 Analytical liquidus and solidus curves

These initial transient growth trajectories in Figure 5.3 are compared with the steady state

of planar front growth theory. The steady state interface temperature of a planar front as a
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Figure 5.2 The calculated variations of T*, V*, and c* with
time for VP=0.1 m/sec
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function of the interface velocity was calculated with the analytical model for dilute alloys[26]

TS (c0, V ) = TAM +
me
Lc0

kV

1− kV + kV ln
(
kV
ke

)
1− ke

− βV (5.4)

where TAM is the melting temperature of the pure solvent material and me
L is the slope of

equilibrium linear liquidus line. β is the attachment kinetic coefficient (=1/µ). ke = ceS/c
e
L is

the equilibrium partition coefficient at the interface for c0. Since linear solidus and liquidus

lines are assumed in this model, ke is constant with temperature. The temperature calculated

by this model is the same as the solidus temperature for c0 in a kinetic phase diagram which

depends on the interface velocity. Thus, the liquidus temperature for c0 is

Figure 5.3 The calculated traces of T* and V* during the transient direc-
tional growth with various VP s. The dotted curves are theoret-
ical prediction of the kinetic solidus and the liquidus tempera-
tures for c0=0.61.
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TL (c0, V ) = (1− kV )
(
TAM − TS (c0)

)
+ TS (c0) (5.5)

where the solidus temperature, TS(c0), is calculated by the previous temperature. Solute

drag effect is ignored in this model. For kV , Aziz’s solute trapping model is applied. By

using the values of VD=0.016 m/s and β=2000 K sec/m, we could obtain the solidus and

liquidus temperature curves (dotted curves in Figure 5.3) which are roughly consistent with

the steady state temperature calculated by the current simulation results. Since this analytical

model is for dilute solutions and straight solidus and liquidus in the phase-diagram, the exact

agreement with the current simulation results is not expected. Even so, the analytical theory

is consistent enough with the current results to associate the steady state temperature with

the initial transient solidification path.

From the comparison with the steady state T-V curve, T+ is slightly lower than T eS and V +

corresponds to the steady state temperature for planar front growth at T+. Once V* reaches

V +, the transient interface dynamics might follow the steady state T-V curve regardless of VP .

The critical temperature T+ could not be described by the steady state analytical theory.

5.1.4 Continuous oscillation dynamics

All the calculated initial transient growth paths after passing V + follow the steady state

curve until V* reaches VP , except for VP=0.001 m/sec. The steady state is not achieved with

VP=0.001 m/sec. Figure 5.4(a) shows the calculated data for VP=0.001 m/sec (solid diamonds)

with the analytically predicted steady state for planar front (the dotted curve). The dynamics is

consistent with the proposed banded structure mechanism without latent heat generation[73,

54, 80, 81]: the cycle, 4 → 1 → 2 → 3 → 4, repeats. The only difference with the band

formation model is that there is the steady state tip operating points for cellullar/dendritic or

eutectic growth between the path 2→ 3 as shown in Figure 2.31. Since this calculation is only

for the planar-front growth, the dynamics cannot be related to that of the dendritic growth,

but the fundamental dynamics is consistent. According to Karma’s numerical calculation, the

processes of 4 → 1 and 2 → 3 occur almost instantaneously, and T* does not change[80, 81].

The current calculation could successfully show the velocity jump with a constant T*. As shown
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in Figure 5.4 (b) of V*(t) for the same calculation, 4 → 1 and 2 → 3 occur instantaneously

comparing with 3→ 4 or 1→ 2, and T* stays almost constant during these processes as shown

in Figure 5.4 (a). This is the difference with Conti’s phase-field calculation results. Conti has

been calculated this continuous oscillation dynamics with the sharp-interface limit phase-field

simulation with a fixed ∆x. In the result, however, the instantaneous velocity jump occurs

with a increasing T*. This is not consistent with the current results and Karma’s calculation

as well as Kurz’s model. The difference seems to come from the fixed grid spacing Conti used.

During the rapid acceleration at high V*, the phase-field across the interface region may be

influenced, and the interface thickness may decrease. The grid spacing should be small enough

to resolve the interface thickness for a proper description of interface dynamics. However, in

Conti’s calculations, the fixed grid spacing has been used throughout the whole calculation

and the grid spacing is just small enough to resolve the equilibrium phase-field profile across

the interface region. That might cause the numerical instability of the calculations at high V*

regime.

5.1.5 Analytical model for initial transient dynamics

These T-V trajectories calculated by the phase-field simulations were compared with the

analytical solution for initial transient dynamics of planar fronts. Interface response to the

controlled growth environment was analytically calculated by Warren and Langer[13]. This

model is based on the assumptions of the local equilibrium at the solid-liquid interface and

equilibrium solute profile in front of the interface which is assumed to be an exponential profile.

Figure 5.5 shows transient planar interface dynamics calculated using Warren-Langer’s

analysis. T* and V* are obtained by T*= T eL(c0) − G(zeL − z∗) and V*=dz*/dt+VP from

Eq. 2.8 and Eq. 2.9. The TL and TS curves in Figure 5.3 are also included in this figure for

comparison. The eight different VP s,10−7, 5× 10−7, 10−6, 2× 10−6, 6× 10−6, 10−3, 5× 10−3,

and 10−2 m/s, are used here. The same values of c0, G, and DL in the phase-field simulations

are applied, and for T eL(c0) and ke, 1547.34 K and 0.82544 are used, respectively. Unlike the

original model, kV obtained by Aziz’s solute trapping model has been used instead of ke. For
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Figure 5.4 The calculated interface dynamics with VP = 0.001m/s.
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the calculation of kV , VD is set to 0.016 which is the value used for the estimated TS(V )

curve. T* starts from near T eL(c0) at the beginning of growth and reaches the steady state

temperature.

In Figure 5.5, with increasing VP , T*-V* behavior changes from monotonic decrease (V 1
P )

to oscillatory behavior (V 2−5
P ). For sufficiently low pulling velocities (V 1

P ), starting from

T*=T eL(c0) and V*=0, T* and V* keep decreasing and increasing, respectively, until the steady

state. For higher pulling velocities (V 2−5
P ), the highly accelerated interface dynamics yields

oscillatory response of T* and V* until the steady state. The amplitude of the oscillation

increases with VP . With a high enough VP (V 6−8
P ), the oscillation amplitude becomes so large

that T* reaches a critical temperature T+ during the oscillation, and the interface acceler-

ates abruptly. When the abrupt acceleration occurs, δc and dz*/dt go to zero and infinity,

respectively, in the Eq. 2.8 and Eq. 2.9. Thus, the calculation cannot proceed further with

this analysis. Although this analysis uses some approximations, we believe that this zero-

δc phenomenon is physically realistic and related to the solute trapping effect in the rapid

solidification.

5.1.6 Comparison with an analytical model

As shown in Figure 5.5, there is a limit to VP where the analytic model can predict the

full trajectory of the initial transient dynamics. In contrast, the phase field simulation could

be utilized for any VP without such a limit. However, the phase-field simulation with a low

VP requires extremely large amount of calculation time because large δc and slow V* require a

larger system size and longer solidification time. Thus, in the current work, the dynamics with

VP=0.001 m/sec and the higher VP s are calculated with the phase-field model. This range of

VP is above the limit that the Warren-Langer model can describe the full dynamics with for the

growth condition used in the current study. Nevertheless, we could compare the phase-field

simulation results with only the valid part of the dynamics from the analytical calculation

results.

The VP s used in these calculations are 0.001, 0.005, 0.01, 0.1, 1, and 10 m/s. The solid
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Figure 5.5 Initial transient interface dynamics calculated with Warre-
n-Langer’s model with various VP s. The dotted curves are the
kinetic solidus and liquidus temperature predicted in Figure 5.3.
For VP ≥1 mm/s, the full transient dynamics could not be de-
scribed.

curves in Figure 5.6 are from the analytical calculations and symbols are from the phase-field

simulations. This comparison shows that the phase-field calculation results are reasonably

consistent with the valid part of the analytical calculation. The slight difference might result

from the temperature-independent ke assumption used in Aziz’s model. While Warren-Langer’s

model fail to describe the dynamics after the steep rise of V*, the phase-field simulation is

capable to show that the growth mode changes at a specific velocity, V +, and the oscillation

dynamics.
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5.1.7 Chemical partitioning path for continuous oscillation

These planar front dynamics with high rates might be strongly related with the solute par-

titioning effect at the solid-liquid interface. During the initial transient process, the variation

of kV is measured at the interface. Figure 5.7 (a) shows the trajectory of measured ∆T ∗ and

V* from the phase-field simulation with VP=0.001 m/sec. This is the pulling velocity that

yields the continuous oscillation. In Figure 5.7 (b), the dotted curve indicates measured kV

and V* during the same solidification process. This kV is defined as kV = c∗S/c
∗
L. The red

dashed curve indicates the ke(T ) that corresponds to the ∆T ∗ shown in Figure 5.7 (a). Since

the growth process starts with ∆T ∗=0 K and V*=0 m/sec, both ∆T ∗ and V* slowly increase,

but V* is much smaller than VP until ∆T ∗ reaches ∆T+. In this regime, as seen in Figure 5.7

(b), the measured kV (blue dotted line) is the same as the ke. Then kV is found to deviate from

the value of ke when ∆T ∗ becomes close to ∆T+. This is the point which exactly coincides

with the beginning of the steep rise of V*. As V* approaches V + the increase of kV with

V* stops and then kV decreases again until the increase of V* stops at V +. Since for this

VP=0.001 m/sec V + is higher than VP , V* decreases again. As shown before, the interface

dynamics at this time follows the steady state operating points for the planar front. During

the continuous oscillation cycle, kV is oscillating with V*. At the lowest V* in the cycle kV is

found to be close to ke. This indicates that the lowest end of V* in the cycle is determined by

the kV .

Figure 5.8 shows the trajectories of ∆T ∗ and kV as a function of V* for VP=0.1 m/sec.

Similar to the Figure 5.7 (b), the red dashed curve represents the ke which corresponds to

the ∆T ∗ at the moment shown in Figure 5.8 (b). Until V* reaches V +, the kV behaves alike

the case of VP=0.001 m/sec. Then as V* keeps increasing until the steady state, the kV also

gradually increases.

5.1.8 The role of the solute trapping phenomena

In this measurement, until ∆T ∗ approaches ∆T+, the local equilibrium is maintained.

According to the continuous growth model by Aziz, this means that V* is low enough that
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Figure 5.6 The comparison of the phase-field results with the analytical
model predictions.

it allows sufficient time for the solute element to fully diffuse across the interface region and

that the local equilibrium can be maintained. During the steep rise of V* at ∆T+, ∆T ∗

remains almost constant. This means that the total driving energy for solidification is also not

varying while both kV and V* increase. This can be interpreted that the driving energy to

drastically increase the V* originated from only solute trapping at the interface. The extremely

high V* might not be able to be achieved with ke at the interface. At this point, it should be

mentioned that we are trying to consider the solute trapping phenomena as a process for saving

sufficient driving energy to move the interface. The Gibbs free energy difference between solid

and liquid phases can be dissipated by driving the interface motion, changing the interface

curvature, or diffusing solute across the interface. The current calculation is limited to one-

dimensional systems, and the effect of curvature is not being considered. A system containing

an undercooled melt transforms toward the direction of lowering the energy of the whole
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system by spending the Gibbs free energy of solidification on both increasing velocity and solute

diffusion across the interface (i.e. chemical partitioning at the interface). Therefore, it could be

said that the driving energy for the steep rising of V* with an almost constant ∆T ∗ is achieved

by increasing kV . That means the solute partition can be suppressed to decrease the need for

solute diffusion across the interface and to use this saved energy for inducing faster interface

velocity. To a certain extent, this is opposed to the interpretation of solute trapping phenomena

by Aziz. It is similar to the solute drag, but the solute drag phenomena during solidification is

not well analyzed or established yet[53, 58, 92, 123, 124, 125, 36, 126, 127, 128, 63, 129].

Figure 5.7 (a) Interface undercooling versus interface velocity during tran-
sient dynamics with VP=0.001 m/s. (b) The kV variation dur-
ing growth dynamics for VP=0.001 m/s (the dotted curve).
ke(T ∗) trajectories is also shown for comparison (the dashed
curve).
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Figure 5.8 (a) Interface undercooling versus interface velocity during tran-
sient dynamics with VP=0.1 m/s. (b) The kV change during
growth dynamics for VP=0.1 m/s (the dotted curve). ke(T ∗)
trajectories is also shown for comparison (the dashed curve).

5.1.9 Effect of the interface thickness on the interface dynamics

According to the Eq. 4.8, the ratio of W to d0(T ∗) is λ/a1. Since a1 is a constant, λ is the

parameter directly related in determining the interface thickness, W. If we use very small value

of λ˜0.2 that makes W/d0(T ∗)˜1 from the beginning of the calculation, the quantitatively valid

results might be guaranteed. However, the small W requires much smaller ∆x and ∆t. This

makes computations challenging. Especially at the beginning of the initial transient growth,

V* is relatively much slower than VP and δc is much longer than that at the steady state. This
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causes that the computation with λ=0.2 is impractical. For a reasonable calculation time, a

bigger λ value might be required as long as it still allows quantitatively valid results.

In all the calculations shown before, λ=7 is used. For VP=0.1 m/s, the initial transient

dynamics with λ=3 and 2 have been computed and the results are shown in Figure 5.9 (solid

curves). The most noticeable difference on the dynamic paths is V + which is the velocity that

the abrupt V* increase at T+ stops. As in the case of λ=7, the approximated steady state

planar front operating points (dotted curves) calculated by the analytical model are roughly

fitted to the computed initial transient dynamics. The parameters used for this approximation

are listed in Table 5.9. The interface dynamics from the phase-field simulations are in reason-

able agreement with the analytically calculated steady state curves. The steady state T* from

the phase-field simulations are changed with λ. For λ=3, the minute oscillation dynamics were

found without the steady state. According to the comparison with the analytical steady state

curves, this variation of the final T* and different dynamics come from the change of VD and

β by λ.

According to the comparison above, smaller λ in the phase-field calculations results in

larger VD and smaller β. The smaller interface thickness determined by smaller λ allows easier

transport of solute atoms across the interface, and thus the solute trapping occurs at the higher

velocity range. Since VD measures the velocity range the solute trapping occurs, it is reasonable

that VD increases with λ. In the phase-field model[115], the interface kinetic coefficient, β,

depends on the solute distribution in the diffused interface and the maximum value of β would

be β0 = a1τ/(λW ). By choosing τ = a2λW
2/D as in the current study, the maximum kinetic

coefficient, β0, would be β0 = a1a2W/D = a2d0λ/D. The current calculation results are well

representing the influence of λ on β.

Table 5.2 Kinetic parameters used for estimating the velocity-dependent
solidus temperatures

VD [m/s] β [sec K/m]
λ = 7 0.016 2000
λ = 3 0.082 540
λ = 2 0.19 290
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Figure 5.9 A part of the transient interface dynamics calculated with the
phase-field simulation for VP=0.1 m/s with different value of
λ.For each phase-field simulation result, TS curve in Eq. 4.13
was calculated by fitting.

5.1.10 Influence of latent heat

In the current calculations, we have ignored the latent heat release at the solid/liquid

interface, and thermal diffusion calculations are not included. When we ignore the latent

heat generation, the numerical calculation result shows a qualitatively consistent shape of the

interface dynamics with the model proposed by Kurz et al.. But, especially for very high growth

velocities, it has been shown that the latent heat has great influence on growth dynamics[80, 81].

If we consider latent heat generation and its diffusion process during growth, the orbit of the

dynamics can be changed significantly. Since for higher V the latent heat generation affects

the interface temperature more significantly, the heat diffusion process should be considered

for the complete analysis of highly driven growth process. It is necessary to incorporate the

thermal diffusion calculations into the current study for a more comprehensive analysis.
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5.1.11 Summary

• Planar interface response to highly driven growth conditions was investigated which is

difficult to measure experimentally. The phase-field model in the thin-interface limit

with the antitrapping current was utilized. We have shown the initial transient growth

dynamics of binary alloys with different high VP s under a fixed G. Using phase-field

simulations, the interface response to the system’s free energy could be analyzed.

• There was a critical temperature, T+, where the interface velocity abruptly increases

during the initial transient growth with a high VP . During this abrupt increase of V*,

the interface temperature stays almost constant at T+ and severe solute trapping occurs.

This T+ is lower than the equilibrium solidus temperature and not influenced by VP and

the interface thickness. Even Warren-Langer’s model can predict this T+. If VP is low

enough that the interface temperature could not reach T+ during the initial transient, the

interface dynamics exhibits monotonic behavior or damping oscillating dynamics until it

reaches the steady state.

• The interface dynamics calculated by the phase-field simulation shows good consistency

with Warren-Langer’s analytical model which is incorporated with Aziz’s solute trapping

model. Unlike the analytical model, the phase-field simulation can compute the interface

dynamics after the abrupt increase of the interface velocity at T+.

• The interface dynamics after the abrupt increase of V* at T+ exhibits a good agreement

with the analytical model of the steady state for the planar front. The steady state

interface temperature was determined by the steady state operating point corresponding

to the VP .

• The continuously oscillating interfacial behavior which occurs with a specific range of VP

is more consistent with that of banded structure dynamics proposed by Kurz et al.[73]

and numerically calculated by Karma, than Conti’s phase-field simulation.

• The parameter λ which determines the interface thickness in the phase-field model
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changes the highly driven interface dynamics and the steady state. This is because

λ influences physical solute trapping phenomena as well as the numerical interface mo-

bility. With a smaller λ, higher interface mobility can be achieved and solute trapping

occurs at a higher velocity range. This directly affects the initial transient dynamic and

steady state temperature.

• From the observation of solute trapping during the rapid increase of V* at T+, the solute

trapping phenomena seems to induce the rapid increase of V* at a constant temperate.

Under the condition where a limited free energy is available, solute diffusion across the

interface has to be suppressed to increase the interface velocity.

• For a more complete description of the rapid growth dynamics of realistic systems, ther-

mal diffusion calculation should be included, since in the rapid growth the latent heat

release could affect the interfacial dynamics more significantly.

5.2 Morphology And Velocity Selection In The Undercooled Melt

5.2.1 Numerical method

The previous one-dimensional calculations of the planar growth allowed us to ignore the

curvature effect (i.e. morphology evolution). In this work, we simulate the two-dimensional

equiaxed growth of binary alloys in an undercooled melt with the phase-field model, taking

into account of the morphology effect. The Eq. 4.6 and Eq. 4.7 are used as governing equations.

The latent heat release at the solid/liquid interface during the growth process is ignored in

this calculation so that we do not calculate heat diffusion process and the melt temperature is

fixed at a uniform temperature. W and τ are determined by Eq. 4.8 and Eq. 4.9. The 4-fold

symmetric anisotropy is applied, i.e. η(θ) = 1+ε4 cos(4θ) = (1−3ε4)[1+4ε4/(1−3ε4)(n4
x+n4

y)] =

η(n). At all the boundaries of the calculation domain, zero-flux boundary conditions are applied

for both φ and c-fields. To avoid the influence of the domain boundaries, the calculation

domain size is increased during the calculation before the tail of solute boundary layer reaches

the domain boundary.



93

The materials parameters of Ni-Cu binary alloy are in Table 5.1 for these calculations.

The solute diffusivity in the liquid phase is set to 10−9 m2/sec. The solute diffusion in the

solid phase is neglected. To calculate the supersaturation, U, as a function of the temperature

and the undercooling, ∆T , as a function of the concentration, polynomial expressions of ceL(T ),

ceS(T ), and T eL(c) are obtained by the best fit to the equilibrium phase-diagram of Ni-Cu binary

alloys (Eq. 4.10 and Eq. 4.11).

The isothermal temperature is set to T=1574 K. At this temperature, the values of ceL

and ceS are 0.459595 and 0.394839, respectively, and the equilibrium partition coefficient is

ke ≈0.86. Initial concentrations, c0, used for this work are 0.310657, 0.388364, 0.40601,

0.412504, 0.418999, 0.425494, 0.433693, and 0.440168. Those concentrations correspond to

the initial supersaturations, Ω0 = (ceL − c0)/(ceL − ceS), 2.3, 1.1, 0.83, 0.73, 0.63, 0.53, 0.4,

and 0.3, respectively. Except the cases of c0=0.433693 and 0.440168, λ=0.2 is used to ensure

W ≈ d0. This interface thickness could be regarded as a real interface thickness scale. With

this scale of the interface, it is expected that there is no numerical artifice induced by the

diffused interface. For the calculations of c0=0.433693 and 0.440168, λ=0.5 and 0.8 are used

respectively to expedite the calculations with low growth velocities. The four-fold anisotropy

of the interfacial energy (ε4) is chosen as 0.04. This value of the anisotropy is much larger than

that for the typical interface anisotropy of metal alloys which is less than 0.01. However, this

large anisotropy reduces the calculation time needed to obtain the steady state morphologies

since a larger anisotropy increases the dendrite tip velocity and decreases the tip radius. The

generic grid spacing is ∆x=0.4W, which means that the equilibrium diffused interface includes

ten grid points. To accelerate the calculation, the grid spacings for far-field of liquid phase are

set as twice that of the generic grid spacings in the solid phase and the diffused interface re-

gion. In this coarse-grid region, the phase-field is constant as φ=-1 because it is the liquid-only

region. The fine grid region expands continuously in size along with the varying dendrite tip

position during the calculation so that the interface and solid phase region are always included

within the fine grid region. At t=0, a small triangular solid seed with c0 is placed at the lower

left corner. The tip velocity is identified by the rate of varying interface position with time,
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along the coordinate axes. The tip radius is calculated by parabolic fitting.

5.2.2 Morphological transition

Figure 5.10 shows calculations of the steady state morphologies at an isothermal condition;

different morphologies are predicted with c0. The initial concentrations for these calculations

are c0=0.40601, 0.388364 and 0.310657. Those initial concentrations correspond to the initial

supersaturations, Ω0=0.83, 1.1 and 2.3, respectively. Higher supersaturation means higher

melt undercooling which is the difference between the equilibrium melting temperature for the

c0 and the melt temperature. As Ω0 increases, the morphologies are altered from a 4-fold

symmetric dendrite to circular crystal with no anisotropy. With Ω0=0.83 (Figure 5.10 (A)),

four primary dendrite trunks grow along with the coordinate axes. Since we did not apply any

induced noise at the interface, we do not see any side branch even until the steady state is

achieved at the dendrite tip. The concentration field exhibits the solute pile-up in the liquid

phase in front of the interface and the typical segregation pattern in the solid dendrite trunk

(the lowest concentration along the center line of the trunk). The shape of the interface and

the iso-concentration lines near the dendrite tip are close to a parabolic shape. For a larger

initial supersaturation (Figure 5.10 (B) and (C)), the dendritic morphology is not observed.

For Ω0=1.1 (Figure 5.10 (B)), a few shallow cells appear along the crystallographic axes. For

a higher Ω0=2.3, it becomes close to a circular shape. In this non-dendritic structure, it is

hard to see the concentration difference between both phases and any solute segregation in the

solid phase (Figure 5.10 (C)). Only the small solute accumulation at the interface indicates

the location of the interface. The calculations are done only in a quarter of the domain shown

in Figure 5.10 and those are reflected about x- and y- axes. The domain sizes shown in the

figures are 3.17 µm× 3.17 µm, 7.81 µm× 7.81 µm, and 2.11 µm× 2.11 µm, respectively, and

those snapshots are taken at t=33.5 µsec, 22.0 µsec, and 0.737 µsec, respectively.
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Figure 5.10 Calculated growing crystal morphologies of an ideal binary al-
loy with different initial supersaturations; color map indicates
the concentration field. (A) c0=0.40601. (B) c0=0.388364.
(C) c0=0.310657.

5.2.3 Non-equilibrium chemical partitioning at the interface

Figure 5.11 plots the steady-state solute profiles near the interface along the coordinate

axis, which is the crystallographic axis and also the center line of the dendrite, calculated with

different initial concentrations. The calculated diffusion boundary layer thickness, δc, decreases

with Ω0 (i.e. increase with c0). For very high Ω0 (c0=0.310657), δc becomes as small as the

interface thickness, W.

Figure 5.12 shows the interface concentration measured from simulation results as a function

of Ω0. c∗S (triangles) and c∗L (squares) are identified by extrapolating the concentration fields

in the bulk solid and liquid, respectively, to the position corresponding to φ=0. ceL and ceS

are also indicated with dotted lines and circles, respectively, in Figure 5.12. All the values in

Figure 5.12 are normalized by c0, and thus the dashed line represents c0. For lower Ω0 (< 0.9),

the c∗S and c∗L are close to the equilibrium values. This means the interface retains the local

equilibrium condition. As Ω0 increases, the interface concentrations gradually deviate from the

equilibrium values, and c∗S approaches c0 due to the decrease of solute rejection. This behavior

is analogous to that predicted using experimental data by Eckler et al.[40]. Figure 5.13 shows

the measured kV as a function of the steady state interface velocity. It is clearly seen that the

kV gradually increases with V* from the equilibrium value, ke. This continuously increasing
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Figure 5.11 Interface concentrations field near the interface with differ-
ent far-field concentrations, measured from current phase-field
simulations.

kV with V* is consistent with the Aziz’s analysis (the dashed line) with VD=0.5 m/s.

5.2.4 Selection of the interface velocity and curvature

Figure 5.14 shows the measured interface velocities, V*, and interface radius, R*, as a

function of the initial supersaturation, Ω0. Since the dendrite tip grows along the coordinate

axis, as shown in Figure 5.10 (A) in most calculated morphologies, the interface velocities are

calculated by tracking the position of φ=0 on the coordinate axis as a function of time during

the simulation. In the case of cellular growth (Figure 5.10 (B)), the cell tip is not exactly on

the coordinate axis, and we obtained the positions of the cell tip which is the closest one to the

coordinate axis, at two different times. The cell tip velocity is considered the position difference

divided by the time duration. R* is measured from the calculated crystal morphology by the

parabolic fitting. As mentioned by Ramirez et al., most analytical theories of dendritic growth

are based on the parabolic assumption of the dendrite tip shape. Thus, it is reasonable to

fit the simulated crystal morphology into the parabolic equation and to obtain the radius of

curvature from the parabolically fitted equation. The method of fitting follows that of Ramirez
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Figure 5.12 Normalized interface concentrations, c∗L and c∗S (squares and
triangles, respectively) as a function of the initial supersatura-
tions. The equilibrium concentrations for both phases are also
shown as dotted lines.

et al.. After obtaining the interface position coordinates on the x-y plane, which corresponds

to φ = 0, those interface position coordinates are plotted on the x2 − y plane. The slope for

a linear part of the x2 − y plot corresponds to the interface curvature, R∗. For Ω0 > 1.5, the

growth morphology is almost circular (Figure 5.10 (c)). Thus, unlike steady state dendrites

or cells, R* is continuously increasing and does not have a steady state value, while V* is

constant. Thus, the tip radius for Ω0=1.7 in Figure 5.14 (b) is the value at t=1.4 µsec and the

R* would keep increasing after then.

In the Figure 5.14 (a), V* increases with Ω0 in power law at Ω0 < 0.9, but at Ω0 > 1 V*

shows linear dependency on Ω0. R* also decreases with Ω0 at Ω0 < 0.9, but increases at Ω0 > 1.

This transition of growth behavior appears under the solidification condition where the non-

equilibrium chemical partitioning starts to occur (Figure 5.12). With increasing V* with Ω0,

the non-equilibrium solute partitioning becomes significant with 0.9< Ω0 <1, and the solute

pile-up ahead of the solid-liquid interface lessens. This should lead to the transition from

solute diffusion-controlled growth dynamics into kinetic-limited growth. This growth mode



98

Figure 5.13 Measured interface partition coefficients as a function of the
measured steady state tip velocities (dots). Aziz’s solute trap-
ping model (Eq. 2.14) with the atomic diffusive velocity, VD,
equal to 0.5 m/sec is consistent with the measured kV .

change is consistent with experimental observations[40]. For more quantitative comparison

with experimental results, calculations should incorporate heat transfer. With low growth

rate, the thermal diffusive speed may be much faster than the growth rate and the thermal

diffusion take little effect on the growth. But a higher growth rate may decrease the thermal

boundary layer in front of the solid-liquid interface and this leads to the growth dynamics

dominated by thermal diffusion.

The selection behavior of the dendrite tip velocity and the tip radius is in agreement with

the Ivantsov function (Eq. 2.28). The Peclet numbers are obtained from the measured tip

velocity and the tip radius (PC = R∗V ∗/2DL). The measured tip supersaturation, Ω∗(=

(c∗L− c0)/(c∗L− c∗S)), is calculated with the interface concentrations at the steady state growth.

For lower c0, effective interface supersaturation, Ω∗, approaches unity because both c∗L and c∗S

converge on c0 due to the solute trapping phenomenon. The relationship of Pc and Ω∗ shows

a reasonably good agreement with the Ivantsov function (Figure 5.15).
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Figure 5.14 Measured interface velocities and tip radii with different initial
supersaturations
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Figure 5.15 Comparison of the measured Peclet numbers (circles) and
Ivantsov function (dashed curve).

5.2.5 Summary

• The isothermal morphology evolution in the growth of a binary alloy in an undercooled

melt was computed by the phase-field model. The growth velocity and morphology selec-

tion in response of the highly driven growth condition and the non-equilibrium chemical

partitioning have been shown. It has been shown that this calculation is capable of simu-

lating appropriate interface kinetics and morphology evolution, regardless of the velocity

regime or growth mode.

• The morphology transition has been shown with different melt undercoolings. The den-

drite morphology changes into cells and circular shapes (planar growth) in turn with

increasing initial supersaturations. This transition is consistent with the previous ana-

lytical models and phase-field calculations[88, 130].

• It could be observed that the solute partitioning at the solid-liquid interface strongly

decrease as the growth velocity increases. The non-equilibrium solute partitioning be-

havior measured from calculation results is in good agreement with Aziz’s solute trapping
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model.

• It was possible to simulate the selection of morphologies, growth rates, and interface

concentrations under both typical and highly driven growth conditions. With lower ini-

tial supersaturations, the calculated tip operating points are consistent with the classical

solidification theories and the local equilibrium condition is retained. With higher su-

persaturations, the calculation successfully shows the characteristic transition into the

kinetically driven growth regime. It could show that this phase-field simulation can

properly capture the transition from equilibrium to non-equilibrium growth kinetics over

wide range of undercoolings, involving the drastic change of the length and time scales

of dynamic growth conditions
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CHAPTER 6. GENERAL CONCLUSION

We have seen that the phase-field simulation is able to describe easily the interface dy-

namics in response to various solidification conditions, and it can be utilized to investigate the

rapid growth dynamics for which experimental studies are difficult. In the current work, we

demonstrated the dynamic response of the solid-liquid interface of alloys experiencing a rapid

growth condition. The non-equilibrium chemical partitioning and the corresponding selection

of interface dynamics was calculated by virtue of the diffused interface characteristics of the

phase-field model.

In this work, transient planar interface dynamics in rapid directional solidification condition

were addressed. We have shown that Warren-Langer’s model cannot be applied to the rapid

growth condition where the non-equilibrium chemical partitioning and the effect of atomic at-

tachment kinetics become significant. Through the phase-field simulation, we described the full

transient interface dynamics associated with the non-equilibrium growth process. The calcu-

lated steady state condition is in good agreement with the analytical description of the planar

interface condition. The steady state interface temperature was found to depend on the pulling

velocity.

During the transient growth dynamics, the instantaneous jump of interface velocity was

shown. This phenomenon has been suggested in the previous interface stability analysis[77, 78]

and phenomenological model[54], and confirmed in a numerical approach[80, 81]. It has been

presumed that it might be triggered by the time-dependent oscillatory instability of the planar

interface in a specific range of growth condition. Conti has successfully presented the periodic

variations of the growth rate, but the results deviated with the previous theory and analysis.

By utilizing the thin-interface limit phase-field model with anti-trapping current and continually
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adjusting grid spacing in accordance with the effective interface thickness during growth process,

the current simulation successfully presented the full transient oscillation dynamics which is in

good agreement with the previous analysis.

The variation of interface concentrations during the fast transient growth dynamics were

also shown, whereas the experimental measurement of these values is very challenging. In the

beginning of the transient dynamics, the interface retains the local equilibrium condition; but,

at a critical interface undercooling, the chemical partitioning at the interface gradually deviates

from the local equilibrium value. The interface velocities respond dynamically to the variation

of the interface chemical partitioning.

In addition to the transient planar front dynamics, steady state morphology selection as-

sociated with the non-equilibrium interface dynamics also has been demonstrated through the

phase-field calculation. These calculation results correctly described the transition from equi-

librium to non-equilibrium growth selection as a function of the initial supersaturation of the

melt. By increasing the initial supersaturation of the isothermal system, the morphology was

changed from dendrites/cells to planar fronts. Under a growth condition, the transition in

the velocity-undercooling behavior was shown. During these transitions of morphologies and

the velocity-undercooling behavior, the measured interface concentrations showed that the

non-equilibrium chemical partitioning begins. By comparing the results with the Ivantsov’s

analytical growth theory, the measured operating points of the growing crystals were verified.

Our simulation showed the time-dependent interface dynamics which are selected by the

comprehensive correlation between the non-equilibrium chemical partitioning, the selections of

the interface velocity and morphology, and the effect of the atomic attachment kinetics. We

should note that the phase-field calculation allows the prediction of rapid growth dynamics

without any prescribed solidification theories. In the calculation, the dynamics were selected

only by the competitions between length scales and times scales of various physical properties

during the dissipation process of the solidification driving force. This process is very close in

nature to the fundamental mechanism of alloy solidification.

The current work concerned the transient planar growth dynamics in directional solidifi-
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cation and the steady state morphology in undercooled melts. Realistically, in most of the

growth conditions where the local equilibrium retains during the transient dynamics, the pla-

nar interface is not stable and it tends to evolve complex morphologies. And in the rapid

growth condition, the diffusive length of the heat can be compatible with the length scale of

the growing crystal. In that case, the thermal boundary layer ahead of the solid-liquid interface

may significantly affect the growth dynamics and cannot be ignored. For more rigorous study

of the rapid growth dynamics of alloys, therefore, the phase-field investigation of transient

interface growth dynamics of alloys in two-dimensional directional solidification system would

be suggested including the competition between the chemical and heat diffusion process.
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APPENDIX A. THE CODES

Here are the codes used to compute the main results of the current thesis work.

One-dimensional directional growth calculation

////////////////////////////////////////////////////////////////////////////
//// Phase-field simulation ////
//// 1D planar growth of regular binary alloys ////
//// constant temperature gradient condition ////
//// moving frame ////
//// no solid diffusion ////
////——————————————————————————————————////
//// Thin-interface limit model ////
//// Anti-trapping current ////
//// Noise on the phase-field ////
//// based on Tong, Greenwood, Haataja, and Provatas (2008,PRB) ////
//// Last updated : 2/3/2010 by Jeong Yun Choi ////
////////////////////////////////////////////////////////////////////////////

#include <iostream>
#include <time.h>
#include <iomanip>
#include <stdlib.h>
#include <fstream>
#include <cmath>

using namespace std;

const double R=8.3144; //the gas constant

unsigned long ii,iip; //current and previous grid point at the interface
double *x,*T,*c,*cp,*phi,*phip,*U,*Up;

FILE *phase1,*phase2,*phase3,*phase4,*phase5,*conc1,*conc2,*conc3,*conc4,*conc5,
*parameters,*df,*T1,*T2,*T3,*T4,*T5,*V,*phase,*conc,*TT,*Xaxis,*Xaxis1,*Xaxis2,
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*Xaxis3,*Xaxis4,*Xaxis5;

double clE(double T0);
double csE(double T0);
void diff(unsigned long nts,unsigned long L,double dt,double dx,double Dl,double vm,

double c0,double LA,double LB,double TmA,double TmB,double lambda,double Gamma,
double a1,double a2);

void moving(unsigned long L,unsigned long nts,double dt,double G,double dx,double c0,
double TmA);

void start(unsigned long L,double c0,double T0,double dx,double G,double TmA);
double timestep(double Dl,double S,double dx,double tau,double W,double k);
double Tl(double c),Ts(double c);

void ugrid(unsigned long L,double dx);
void temp(unsigned long L,double Tdot,double dt,double TmA,double nts);

/////////////////////////////////////////////////////////////////////////////
//// main function ////
/////////////////////////////////////////////////////////////////////////////
int main()
{

unsigned long seconds,L,i;
unsigned int hours=0,minutes=0,mins left=0,secs left=0;
time t time1,time2; // start-calculation time, end-calculation time
time(&time1);

double dx,dt,t growth; // grid spacing (input value) (m), timestep, total time of the growth
double Dl; // solute diffusivity in liquid (input value) (m2/s)
double c0,cmax; // initial composition in liquid (input value) (atomic fraction), maximum

concentration
double T0; // initial temperature at the first grid point (input value) (K)
double TmA,TmB; // melting temperature of solvent and solute (input value) (K)
double vm; // molar volume of alloy (input value) (m3/mol)
double sigA,sigB; // interface energy of solvent and solute (input value) (J/m2)
double S; // FDM stability parameter
double LA,LB; // latent heat (J/m3)
unsigned long iout; // output interval
unsigned long ntsl,nts,nts0; // total number of time steps (input value)
double *te;
double tau,a2,lambda,W,d0,a1,Gamma,DT,k,csEQ,clEQ,G,Tdot,xii;

phase1=fopen(”phase1.dat”,”w”);
phase2=fopen(”phase2.dat”,”w”);
phase3=fopen(”phase3.dat”,”w”);
phase4=fopen(”phase4.dat”,”w”);
phase5=fopen(”phase5.dat”,”w”);
conc1=fopen(”conc1.dat”,”w”);
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conc2=fopen(”conc2.dat”,”w”);
conc3=fopen(”conc3.dat”,”w”);
conc4=fopen(”conc4.dat”,”w”);
conc5=fopen(”conc5.dat”,”w”);
phase=fopen(”phase.dat”,”w”);
T1=fopen(”T1.dat”,”w”);
T2=fopen(”T2.dat”,”w”);
T3=fopen(”T3.dat”,”w”);
T4=fopen(”T4.dat”,”w”);
T5=fopen(”T5.dat”,”w”);
TT=fopen(”TT.dat”,”w”);
conc=fopen(”conc.dat”,”w”);
parameters=fopen(”parameters.dat”,”w”);
df=fopen(”datainput.dat”,”r”);
V=fopen(”V.dat”,”w”);
Xaxis=fopen(”Xaxis.dat”,”w”);
Xaxis1=fopen(”Xaxis1.dat”,”w”);
Xaxis2=fopen(”Xaxis2.dat”,”w”);
Xaxis3=fopen(”Xaxis3.dat”,”w”);
Xaxis4=fopen(”Xaxis4.dat”,”w”);
Xaxis5=fopen(”Xaxis5.dat”,”w”);

if(df==NULL){
cout<<”\nError opening datainput.dat!”<<endl;
return 0;

};

fscanf(df,”%lu %lf %lf %lf %lf %lf %lf %lf %lf %lu %lu %lf %lf %lf %lf %lu %lf %lf %lf %lf
%lf %lf %lf”,&L,&TmA,&TmB,&LA,&LB,&sigA,&sigB,&vm,&Dl,&nts0 ,&ntsl,&T0,
&c0,&S,&iout,&a1,&a2,&lambda,&G,&Tdot,&dx,&t growth);

cout<<”\nL:”<<L<<”\nTmA:”<<TmA<<”\nTmB:”<<TmB<<”\nLA:”<<LA<<”\
nLB:”<<LB<<”\nsigA:”<<sigA<<”\nsigB:”<<sigB<<”\nvm:”<<vm<<”\nDl:”
<<Dl<<”\nnts0:”<<nts0<<”\nntsl:”<<ntsl<<”\nc0:”<<c0<<”\nT0:”<<T0<<”
\nS:”<<S<<”\niout: ”<<iout<<”\na1:”<<a1 <<”\na2:”<<a2<<”\nlambda:”<<
lambda<<”\nG:”<<G<<”\nTdot:”<<Tdot<<”\ndx:”<<dx<<”\nt growth:”<<
t growth<<endl;

fprintf(parameters,”/////////////////////////////////////////////////////////////
///\n”);

fprintf(parameters,”//// Phase-field simulation /
///\n”);

fprintf(parameters,”//// 1D planar growth of binary alloys /
///\n”);

fprintf(parameters,”//// constant temperature gradient condition /
///\n”);

fprintf(parameters,”//// moving frame /
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///\n”);
fprintf(parameters,”//// no solid diffusion /

///\n”);
fprintf(parameters,”////————————————————————————————/

///\n”);
fprintf(parameters,”//// Thin-interface limit model /

///\n”);
fprintf(parameters,”//// Anti-trapping current /

///\n”);
fprintf(parameters,”//// Noise on the phase-field /

///\n”);
fprintf(parameters,”//// based on Tong,Greenwood,and Provatas (2008,PRB) /

///\n”);
fprintf(parameters,”//// 1DDS 2 3 10.cpp /

///\n”);
fprintf(parameters,”//// Last updated : 2/3/2010 by Jeong Yun Choi /

///\n”);
fprintf(parameters,”/////////////////////////////////////////////////////////

///////\n\n\n\n”);
fprintf(parameters,”////INPUT PARAMETERS\n\n”);
fprintf(parameters,”Total number of grid points (L):\t%lu\n”,L);
fprintf(parameters,”Melting temperature of the solvent element (TmA) [K]:\t%G\n”,TmA)

;
fprintf(parameters,”Melting temperature of the solute element (TmB) [K]:\t%G\n”,TmB);
fprintf(parameters,”Latent heat of the solvent element (LA) [J/m3]:\t%G\n”,LA);
fprintf(parameters,”Latent heat of the solute element (LB) [J/m3]:\t%G\n”,LB);
fprintf(parameters,”Solid/liquid interfacial energy of the solvent element (sigA) [J/m2]:

%G\n”,sigA);
fprintf(parameters,”Solid/liquid interfacial energy of the solute element (sigB) [J/m2]:

%G\n”,sigB);
fprintf(parameters,”Average molar volume (vm) [m3/mol]:\t%G\n”,vm);
fprintf(parameters,”Diffusion coefficient of the liquid phase (Dl) [m2/sec]:\t%G\n”,Dl);
fprintf(parameters,”Initial temperature at the interface (T0) [K]:\t%G\n”,T0);
fprintf(parameters,”Initial composition (c0) [atomic fraction]:\t%G\n”,c0);
fprintf(parameters,”FDM stability parameter (S):\t%G\n”,S);
fprintf(parameters,”Initial time steps to calculate (nts0):\t%lu\n”,nts0);
fprintf(parameters,”Input final time steps to calculate (ntsl):\t%lu\n”,ntsl);
fprintf(parameters,”a1 :\t%G\n”,a1);
fprintf(parameters,”a2 :\t%G\n”,a2);
fprintf(parameters,”lambda :\t%G\n”,lambda);
fprintf(parameters,”Frozen Temperature Gradient (G):\t%G\n”,G);
fprintf(parameters,”Constant Cooling Rate (Tdot):\t%G\n”,Tdot);
fprintf(parameters,”Initial time:\t%G\n”,t growth);

x=(double *)malloc((L+1)*sizeof(double));
if(x==NULL){
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cout<<”Out of Memory”<<endl;
exit(0);

};

T=(double *)malloc((L+1)*sizeof(double));
if(T==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

c=(double *)malloc((L+2)*sizeof(double));
if(c==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

cp=(double *)malloc((L+2)*sizeof(double));
if(cp==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

phi=(double *)malloc((L+2)*sizeof(double));
if(phi==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

phip=(double *)malloc((L+2)*sizeof(double));
if(phip==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

U=(double *)malloc((L+2)*sizeof(double));
if(U==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

Up=(double *)malloc((L+2)*sizeof(double));
if(Up==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};
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Gamma=sigA*TmA/LA;
csEQ=csE(T0);
clEQ=clE(T0);
k=csEQ/clEQ;
if(T0>TmA ‖ clEQ<=0. ‖ csEQ<=0. ‖ csEQ>clEQ ‖ k>1.-1.e-12) k=1.-1.e-12;

DT=Tl(c0)-T0;
d0=Gamma/DT;
W=lambda*d0/a1;
tau=a2*lambda/Dl*pow(W,2.);

fprintf(parameters,”Gibbs-Thomson coefficient (Gamma)[Km]:\t%G\n”,Gamma);
fprintf(parameters,”Equilibrium solidus concentration (csEQ)[at.%]:\t%G\n”,csEQ);
fprintf(parameters,”Equilibrium liquidus concentration (clEQ)[at.%]:\t%G\n”,clEQ);
fprintf(parameters,”Equilibrium partition coefficient (k):\t%G\n”,k);
fprintf(parameters,”Solidification temperature range (DT)[K]:\t%G\n”,DT);
fprintf(parameters,”solutal capillary length (d0)[m]:\t%G\n”,d0);
fprintf(parameters,”Interface width (W)[m]:\t%G\n”,W);
fprintf(parameters,”Interface kinetic attachment time (tau)[sec]:\t%G\n”,tau);
fprintf(parameters,”Grid spacing (dx) [m]:\t%G\n”,dx);

start(L,c0,T0,dx,G,TmA); // set the initial condition
dt=timestep(Dl,S,dx,tau,W,k); // calculate dt

for(nts=nts0;nts<=ntsl;nts++){
temp(L,Tdot,dt,TmA,nts);
diff(nts,L,dt,dx,Dl,vm,c0,LA,LB,TmA,TmB,lambda,Gamma,a1,a2);
if(ii!=iip){

xii=((0.-phi[ii])*dx+(phi[ii]-phi[ii-1])*x[ii])/(phi[ii]-phi[ii-1]);
cmax=0.;
for(i=1;i<L;i++) cmax=max(cmax,max(c[i],c[i+1]));
fprintf(V,”%E\t%E\t%lf\t%lf\t%lf\n”,t growth+dt*(nts-(nts0-1)),xii,T[ii]-G*(x[ii]-

xii),c[1],cmax);
if(ii!=iip && nts!=ntsl) moving(L,nts,dt,G,dx,c0,TmA);

};
if(!(nts%iout)){

if((L%2)==1) cout<<nts<<”/”<<ntsl<<”\tt=”<<t growth+dt*(nts-(nts0-1))
<<”\n\tii=”<<ii<<”\tphi[1]=”<<phi[1]<<”\n\tc[L]=”<<c[L] <<”\tphi[L]=
”<<phi[L]<<”\n\tT[”<<ii<<”]=”<<T[ii]<<”\tx[”<<ii<<”]=”<<x[ii]<<”\t

c[1]=”<<c[1]<<endl;
else cout<<nts<<”/”<<ntsl<<”\tt=”<<t growth+dt*(nts-(nts0-1))<<”\n\tii=”
<<ii<<”\tphi[1]=”<<phi[1]<<”\n\tc[L-1]=”<<c[L-1]<<”\tphi[L-1]=”<<
phi[L-1]<<”\n\tT[”<<ii<<”]=”<<T[ii]<<”\tx[”<<ii<<”]=”<<x[ii]<<”\
tc[1]=”<<c[1]<<endl;

};
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if(ii>=L-1){
cout<<”ii=”<<ii<<endl;
nts++;
te=phip,phip=phi,phi=te;
te=cp,cp=c,c=te;
break;

}
else if(x[ii]<0.){

cout<<”x[ii]=”<<x[ii]<<endl;nts++;te=phip,phip=phi,phi=te;te=cp,cp=c,c=te;
break;

}
else if(c[L]>c0+5.e-7){

cout<<”c[L]=”<<c[L]<<endl;nts++;te=phip,phip=phi,phi=te;te=cp,cp=c,c=te;
break;

};

if(nts<=ntsl/5 && nts+1>ntsl/5){
for(i=1;i<=L;i++){

fprintf(T1,”%lf\n”,T[i]);
fprintf(Xaxis1,”%E\n”,x[i]);
fprintf(phase1,”%lf\n”,phi[i]);
fprintf(conc1,”%lf\n”,c[i]);

};
fclose(phase1);fclose(conc1);fclose(T1);fclose(Xaxis1);

}
else if(nts>ntsl/5){

if(nts<=ntsl*2/5 && nts+1>ntsl*2/5){
for(i=1;i<=L;i++){

fprintf(T2,”%lf\n”,T[i]);
fprintf(Xaxis2,”%E\n”,x[i]);
fprintf(phase2,”%lf\n”,phi[i]);
fprintf(conc2,”%lf\n”,c[i]);

};
fclose(phase2);fclose(conc2);fclose(T2);fclose(Xaxis2);

}
else if(nts>ntsl*2/5){

if(nts<=ntsl*3/5 && nts+1>ntsl*3/5){
for(i=1;i<=L;i++){

fprintf(T3,”%lf\n”,T[i]);
fprintf(Xaxis3,”%E\n”,x[i]);
fprintf(phase3,”%lf\n”,phi[i]);
fprintf(conc3,”%lf\n”,c[i]);

};
fclose(phase3);fclose(conc3);fclose(T3);fclose(Xaxis3);

}
else if(nts>ntsl*3/5){
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if(nts<=ntsl*4/5 && nts+1>ntsl*4/5){
for(i=1;i<=L;i++){

fprintf(T4,”%lf\n”,T[i]);
fprintf(Xaxis4,”%E\n”,x[i]);
fprintf(phase4,”%lf\n”,phi[i]);
fprintf(conc4,”%lf\n”,c[i]);

};
fclose(phase4);fclose(conc4);fclose(T4);fclose(Xaxis4);

};
};

};
};
iip=ii;ii=0;
te=phip,phip=phi,phi=te;
te=cp,cp=c,c=te;
te=Up,Up=U,U=te;

};

cout<<”total number of time step=”<<nts-1<<”\n”;
fprintf(parameters,”total number of time step=%lu\n”,nts-1);
fprintf(parameters,”total time of growth =%E\n”,t growth+dt*(nts-(nts0-1)-1));

for(i=1;i<=L;i++){
fprintf(phase5,”%lf\n”,phip[i]);
fprintf(conc5,”%lf\n”,cp[i]);
fprintf(Xaxis5,”%E\n”,x[i]);
fprintf(T5,”%lf\n”,T[i]);

};

time(&time2);
seconds=(unsigned long)difftime(time2,time1);
minutes=seconds/60;
secs left=seconds%60;
hours=minutes/60;
mins left=minutes%60;
cout<<”total CPU time=”<<hours<<” h ”<<mins left<<” m ”<<secs left<<” s\n”;
fprintf(parameters,”total CPU time=%u h %u m %u s\n”,hours,mins left,secs left);

fclose(phase);fclose(phase5);
fclose(conc);fclose(conc5);fclose(T5);fclose(TT);
fclose(parameters);fclose(df);fclose(V);fclose(Xaxis);fclose(Xaxis5);

free(x);free(T);free(phi);free(phip);free(c);free(cp);free(U);free(Up);

return 0;
}
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double clE(double T0)
{

//******** best fit of phase diagram of Ni-Cu binary alloy********//
double clE=0.008085*pow((T0-1545.)/110.9,4.)+0.002123*pow((T0-1545.)/110.9,3.)

-0.06596*pow((T0-1545.)/110.9,2.)-0.3076*(T0-1545.)/110.9+0.6184;
if(clE>1.) return(1.);
else return(clE);

}

double csE(double T0)
{

//******** best fit of phase diagram of Ni-Cu binary alloy ********//
double csE=-0.006093*pow((T0-1545.)/110.9,4.)+0.002782*pow((T0-1545.)/110.9,3.)

+0.02402*pow((T0-1545.)/110.9,2.)-0.3075*(T0-1545.)/110.9+0.4739;
if(csE>1.) return(1.);
else return(csE);

}

void diff(unsigned long nts,unsigned long L,double dt,double dx,double Dl,double vm,double
c0,double LA,double LB,double TmA,double TmB,double lambda,double Gamma,double
a1,double a2)

{
unsigned long i;
double GE,GW;
double phipP,phipE,phipW,phiP,phiE,phiW,UpP,UpE,UpW;
double tau,W,DT,d0;
double k,clEQ,csEQ;
for(i=1;i<=L;i++){

if(i<=iip+100){
phipP=phip[i];
phipE=phip[i+1];
phipW=phip[i-1];
UpP=Up[i];

if(i==1)phipW=phipE;
else if(i==L)phipE=phipW;

DT=Tl(c0)-T[iip];
d0=Gamma/DT;
W=lambda*d0/a1;
tau=a2*lambda/Dl*pow(W,2.);

phi[i]=phipP+dt/tau*(phipP-pow(phipP,3.)-lambda*pow(1.-pow(phipP,2.),2.)*UpP
+pow(W/dx,2.)*(phipE-2.*phipP+phipW));

if(phi[i]>1.)phi[i]=1.;
else if(phi[i]<-1.)phi[i]=-1.;
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if(i>ii && phi[i]<=0. && phi[i-1]>=0.) ii=i;
}
else phi[i]=-1.;

};

for(i=1;i<=L;i++){
UpP=Up[i];
UpE=Up[i+1];
UpW=Up[i-1];
phipP=phip[i];
phipE=phip[i+1];
phipW=phip[i-1];
phiP=phi[i];
phiE=phi[i+1];
phiW=phi[i-1];

if(i==1){
UpW=UpP-UpE+UpP;
phipW=phipE;
phiW=phiE;

}
else if(i==L){

UpE=UpP+UpP-UpW;
phipE=phipW;
phiE=phiW;

};

if(abs(phipE-phipP)<1.e-10) GE=0.;
else if((phipE-phipP)>0.) GE=1.;
else GE=-1.;

if(abs(phipW-phipP)<1.e-10) GW=0.;
else if((phipP-phipW)>0.) GW=1.;
else GW=-1.;

csEQ=csE(T[i]);
clEQ=clE(T[i]);
if(csEQ>1.) csEQ=1.;
if(clEQ>1.) clEQ=1.;
k=csEQ/clEQ;
if(T[i]>TmA ‖ clEQ<=0. ‖ csEQ<=0. ‖ csEQ>clEQ ‖ k>1.-1.e-12) k=1.-1.e-12;

DT=Tl(c0)-T[iip];
d0=Gamma/DT;
W=lambda*d0/a1;
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U[i]=UpP+(1.+(1.-k)*UpP)/(1.+k-(1.-k)*phipP)*(phiP-phipP)
+1./(2.*dx*(1.+k-(1.-k)*phipP))*(Dl*dt/dx*((2.-phipE-phipP)*(UpE-UpP)
-(2.-phipP-phipW)*(UpP-UpW))+W/sqrt(2.)*(((1.+(1.-k)*UpE)*(phiE-phipE)
+(1.+(1.-k)*UpP)*(phiP-phipP))*GE-((1.+(1.-k)*UpP)*(phiP-phipP)
+(1.+(1.-k)*UpW)*(phiW-phipW))*GW));

c[i]=clEQ/2.*(U[i]*(1.-k)+1.)*(1.+k-(1.-k)*phiP);
if(T[i]>TmA ‖ clEQ<=0. ‖ csEQ<=0. ‖ k>=1.-1.e-12) {

c[i]=cp[i];U[i]=(2.*c[i]/clEQ/(1.+k-(1.-k)*phi[i])-1.)/(1.-k);};
};

}

void moving(unsigned long L,unsigned long nts,double dt,double G,double dx,double c0,double
TmA)

{
unsigned long i;
short s;
double clEQ,csEQ,k;

s=short(ii)-short(iip);
if(s>0){

for(i=1;i<=L-s;i++){
x[i]=x[i+s];
T[i]=T[i+s];
phi[i]=phi[i+s];
U[i]=U[i+s];
c[i]=c[i+s];

};
for(i=L-s+1;i<=L;i++){

x[i]=x[i-1]+dx;
T[i]=T[i-1]+G*dx;
csEQ=csE(T[i]);
clEQ=clE(T[i]);
k=csEQ/clEQ;
if(T[i]>TmA ‖ clEQ<=0. ‖ csEQ<=0. ‖ csEQ>clEQ ‖ k>1.-1.e-12) k=1.-1.e-12;
phi[i]=-1.;
U[i]=(2.*c0/clEQ/(1.+k-(1.-k)*(-1.))-1.)/(1.-k);
c[i]=c0;

};
ii-=s;
iip-=s;

}
else {

for(i=L;i>=(unsigned long)(1-s);i- -){
x[i]=x[i+s];
T[i]=T[i+s];
phi[i]=phi[i+s];
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U[i]=U[i+s];
c[i]=c[i+s];

};
for(i=-s;i>=1;i- -){

x[i]=x[i+1]-dx;
T[i]=T[i+1]-G*dx;
c[i]=c[i+1];
csEQ=csE(T[i]);
clEQ=clE(T[i]);
k=csEQ/clEQ;
if(T[i]>TmA ‖ clEQ<=0. ‖ csEQ<=0. ‖ csEQ>clEQ ‖ k>1.-1.e-12) k=1.-1.e-12;
phi[i]=1.;
U[i]=(2.*c[i]/clEQ/(1.+k-(1.-k)*(-1.))-1.)/(1.-k);

};
ii-=s;
iip-=s;

};
}

void start(unsigned long L,double c0,double T0,double dx,double G,double TmA)
{

//initial condition setting//
unsigned long i;

for(i=1;i<=L;i++){
T[i]=T0-G*350.*dx+G*(i-1)*dx;
cp[i]=c0;
if(i<350){

phip[i]=1.;
cp[i]=(csE(T[i])<c0)?csE(T[i]):c0;

}
else phip[i]=-1.;

iip=350;
};

ugrid(L,dx); // set the positions of grid points

/****** To continue the calculation after a stop of the previous calculation ******/
/*

ifstream phiin,cin,Tin,Xin;

phiin.open(”phase ini.dat”);
cin.open(”c ini.dat”);
Tin.open(”T ini.dat”);
Xin.open(”X ini.dat”);
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for(i=1;i<=L;i++){
// if(i>120600){
// T[i]=T[i-1]+G*dx;
// x[i]=x[i-1]+dx;
// phip[i]=-1.;
// cp[i]=c0;
// }
// else{

if(i==1) Tin>>T[i];
else T[i]=T[i-1]+G*dx;
Xin>>x[i];
phiin>>phip[i];
cin>>cp[i];

// };
};
iip=115800;

*/

/****** Translating the interface position ******/
/* for(i=1;i<=L;i++){

if(i<=119000){
T[i]=T[i+1000];
x[i]=x[i+1000];
phip[i]=phip[i+1000];
cp[i]=cp[i+1000];

}
else {

T[i]=T[i-1]+G*dx;
x[i]=x[i-1]+dx;
phip[i]=-1.;
cp[i]=cp[i-1];

};
};

*/

/****** Dividing meshes ******/
/* for(i=1;i<=L;i+=2){

if(i>6000){
T[i]=T[i-2]+G*dx*2.;
x[i]=x[i-2]+dx*2.;
phip[i]=-1.;
cp[i]=c0;

}
else{

Tin>>T[i];
Xin>>x[i];
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phiin>>phip[i];
cin>>cp[i];

};
};
for(i=2;i<=L;i+=2){

if(i==L){
T[i]=T[i-1];
x[i]=x[i-1];
phip[i]=phip[i-1];
cp[i]=cp[i-1];

}
else{

T[i]=(T[i+1]+T[i-1])/2.;
x[i]=(x[i+1]+x[i-1])/2.;
phip[i]=(phip[i+1]+phip[i-1])/2.;
cp[i]=(cp[i+1]+cp[i-1])/2.;

};
};
iip=600;

*/
/*

phiin.close();
cin.close();
Tin.close();
Xin.close();

*/

// ugrid(L,dx); // set the positions of grid points
}

void temp(unsigned long L,double Tdot,double dt,double TmA,double nts)
{

unsigned long i;
double csEQ,clEQ,k;

for(i=1;i<=L;i++){
T[i]-=Tdot*dt;
csEQ=csE(T[i]);
clEQ=clE(T[i]);
k=csEQ/clEQ;
if(T[i]>TmA ‖ clEQ<=0. ‖ csEQ<=0. ‖ csEQ>clEQ ‖ k>1.-1.e-12) k=1.-1.e-12;
else Up[i]=(2.*cp[i]/clEQ/(1.+k-(1.-k)*phip[i])-1.)/(1.-k);

};
}

double timestep(double Dl,double S,double dx,double tau,double W,double k)
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{
double dt=(Dl>pow(W,2.)/tau)?S*dx*dx/Dl:S*dx*dx/(pow(W,2.)/tau);

fprintf(parameters,”time step=%E\n”,dt);
cout<<”time step=”<<dt<<”\n”;

return(dt);
}

double Tl(double c)
{

//******** best fit of phase diagram of Ni-Cu binary alloy ********//
return(-210.7*pow(c,3.)+146.3*pow(c,2.)-307.*c+1728.);

}

double Ts(double c)
{

//********** best fit of phase diagram of Ni-Cu binary alloy **********//
return(-261.*pow(c,4.)+471.8*pow(c,3.)-222.4*pow(c,2.)-359.*c+1728.);

}

void ugrid(unsigned long L,double dx)
{

//generating uniform grids

unsigned long i;

x[1]=0.;

for(i=2;i<=L;i++)
x[i]=x[i-1]+dx;

fprintf(parameters,”dx=%E\n”,dx);

}

Two-dimensional calculation for equiaxed growth into an undercooled melt

///////////////////////////////////////////////////////////////////
//// Phase-field simulation ////
//// 2D dendritic growth of regular binary alloys ////
//// under an isothermal condition ////
//// epsilon 4 ////
//// no solid diffusion ////
//// simple adaptive grid ////
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////—————————————————————————————–////
//// Thin-interface limit model ////
//// Anti-trapping current ////
//// based on Tong, Greenwood, and Provatas (2008,PRB) ////
//// TIL ATC.cpp ////
//// Last updated : 10/8/2009 by Jeong Yun Choi ////
///////////////////////////////////////////////////////////////////

#include <iostream>
#include <time.h>
#include <iomanip>
#include <stdlib.h>
#include <fstream>
#include <cmath>

using namespace std;

const double R=8.3144;

unsigned long ii,iip,jj,jjp,gb,gbp;
double *x,*y,**c,**cp,**phi,**phip,**U,**Up;

FILE *phase1,*phase2,*phase3,*phase4,*phase5,*conc1,*conc2,*conc3,*conc4,*conc5,
*parameters,*V,*df,*rho,*phase,*conc,*Yaxis,*Xaxis;

double clE(double T0);
double csE(double T0);
void diff(unsigned long nts,unsigned long L,unsigned long M,double dt,double dx,double Dl,

double vm,double c0,double T0,double fluc ,double LA,double LB,double TmA,double
TmB,

double eps4,double tau,double lambda,double k,double W,double clEQ);
void moving(unsigned long L,unsigned long nts,double dt,double G,double dx,double c0,double

*x,double *c,double *cp,double *T,double *phi, double *phip,unsigned long ii);
void start(unsigned long L,unsigned long M,double c0,double dx,double clEQ,double k);
void radius(double dx,double dt,unsigned long nts);
double timestep(double Dl,double S,double dx,double tau,double W,double k);
double Tl(double c);
void ugrid(unsigned long L,unsigned long M,double dx);

/////////////////////////////////////////////////////////////////////////////
//// main function ////
/////////////////////////////////////////////////////////////////////////////
int main()
{

unsigned long seconds,L,M,i,j;
unsigned int hours=0,minutes=0,mins left=0,secs left=0;
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time t time1,time2;
time(&time1); //starting time

double dx,dt; // grid spacing (input value) (m)
double Dl; // solute diffusivity in liquid (input value) (m2/s)
double c0; // initial composition in liquid (input value) (atomic fraction)
double T0; // initial temperature at the first grid point (input value) (K)
double TmA,TmB; // melting temperature of solvent and solute (input value) (K)
double vm; // molar volume of alloy (input value) (m3/mol)
double sigA,sigB; // interface energy of solvent and solute (input value) (J/m2)
double S; // FDM stability parameter
double LA,LB; // latent heat (J/m3)
double eps4,fluc;
unsigned long iout; // output interval
unsigned long ntsl,nts,nts0; // total number of time steps (input value)
double **te;
double tau,a2,lambda,W,d0,a1,Gamma,DT,k,csEQ,clEQ;

phase1=fopen(”phase1.dat”,”w”);
phase2=fopen(”phase2.dat”,”w”);
phase3=fopen(”phase3.dat”,”w”);
phase4=fopen(”phase4.dat”,”w”);
phase5=fopen(”phase5.dat”,”w”);
conc1=fopen(”conc1.dat”,”w”);
conc2=fopen(”conc2.dat”,”w”);
conc3=fopen(”conc3.dat”,”w”);
conc4=fopen(”conc4.dat”,”w”);
conc5=fopen(”conc5.dat”,”w”);
phase=fopen(”phase.dat”,”w”);
conc=fopen(”conc.dat”,”w”);
parameters=fopen(”parameters.dat”,”w”);
V=fopen(”V.dat”,”w”);
df=fopen(”datainput.dat”,”r”);
rho=fopen(”rho.dat”,”w”);
Xaxis=fopen(”Xaxis.dat”,”w”);
Yaxis=fopen(”Yaxis.dat”,”w”);

if(df==NULL){
cout<<”\nError opening datainput.dat!”<<endl;
return 0;

};

fscanf(df,”%lu %lu %lf %lf %lf %lf %lf %lf %lf %lf %lu %lu %lf %lf %lf %lf %lf %lu %lf
%lf %lf”,&L,&M,&TmA,&TmB,&LA,&LB,&sigA,&sigB,&vm,&Dl,&nts0,&ntsl,&T0,
&c0,&eps4,&fluc,&S,&iout,&a1,&a2,&lambda);

cout<<”\nL:”<<L<<”\nM:”<<M<<”\nTmA:”<<TmA<<”\nTmB:”<<TmB<<
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”\nLA:”<<LA<<”\nLB:”<<LB<<”\nsigA:”<<sigA<<”\nsigB:”<<sigB<<”\n
vm:”<<vm<<”\nDl:”<<Dl<<”\nnts0:”<<nts0<<”\nntsl:”<<ntsl<<”\nc0:”<<
c0<<”\nT0:”<<T0<<”\neps4:”<<eps4<<”\nS:”<<S<<”\niout: ”<<iout<<”\na1
:”<<a1<<”\na2:”<<a2<<”\nlambda:”<<lambda<<endl;

fprintf(parameters,”/////////////////////////////////////////////////////////////
///\n”);

fprintf(parameters,”//// Phase-field simulation /
///\n”);

fprintf(parameters,”//// 2D dendritic growth of binary alloys /
///\n”);

fprintf(parameters,”//// under an isothermal condition /
///\n”);

fprintf(parameters,”//// tip radius calculation /
///\n”);

fprintf(parameters,”//// epsilon 4 /
hspace5 mm///\n”);
fprintf(parameters,”//// no solid diffusion /

///\n”);
fprintf(parameters,”//// simple adaptive grid /

///\n”);
fprintf(parameters,”////————————————————————————————/

///\n”);
fprintf(parameters,”//// Thin-interface limit model /

///\n”);
fprintf(parameters,”//// Anti-trapping current /

///\n”);
fprintf(parameters,”//// based on Tong,Greenwood,and Provatas (2008,PRB) /

///\n”);
fprintf(parameters,”//// TIL ATC.cpp /

///\n”);
fprintf(parameters,”//// Last updated : 10/8/2009 by Jeong Yun Choi /

///\n”);
fprintf(parameters,”/////////////////////////////////////////////////////////

///////\n\n\n\n”);
fprintf(parameters,”////INPUT PARAMETERS\n\n”);
fprintf(parameters,”Total number of grid points (L):\t%lu\n”,L);
fprintf(parameters,”Melting temperature of the solvent element (TmA) [K]:\t%g\n”,TmA);
fprintf(parameters,”Melting temperature of the solute element (TmB) [K]:\t%g\n”,TmB);
fprintf(parameters,”Latent heat of the solvent element (LA) [J/m3]:\t%g\n”,LA);
fprintf(parameters,”Latent heat of the solute element (LB) [J/m3]:\t%g\n”,LB);
fprintf(parameters,”Solid/liquid interfacial energy of the solvent element (sigA) [J/m2]:

%g\n”,sigA);
fprintf(parameters,”Solid/liquid interfacial energy of the solute element (sigB) [J/m2]:

%g\n”,sigB);
fprintf(parameters,”Average molar volume (vm) [m3/mol]:\t%g\n”,vm);
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fprintf(parameters,”Diffusion coefficient of the liquid phase (Dl) [m2/sec]:\t%g\n”,Dl);
fprintf(parameters,”Initial temperature at the first grid point (T0) [K]:\t%g\n”,T0);
fprintf(parameters,”Initial composition (c0) [atomic fraction]:\t%g\n”,c0);
fprintf(parameters,”FDM stability parameter (S):\t%g\n”,S);
fprintf(parameters,”Initial time steps to calculate (nts0):\t%lu\n”,nts0);
fprintf(parameters,”Input final time steps to calculate (ntsl):\t%lu\n”,ntsl);
fprintf(parameters,”Four-fold anisotropy (eps4):\t%g\n”,eps4);
fprintf(parameters,”degree of noise (fluc):\t%g\n”,fluc);
fprintf(parameters,”a1 :\t%g\n”,a1);
fprintf(parameters,”a2 :\t%g\n”,a2);
fprintf(parameters,”lambda :\t%g\n”,lambda);

x=(double *)malloc((L+1)*sizeof(double));
if(x==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

y=(double *)malloc((M+1)*sizeof(double));
if(y==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

c=(double **)malloc((L+2)*sizeof(double));
for(i=0;i<L+2;i++){

c[i]=(double *)malloc((M+2)*sizeof(double));
if(c[i]==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};
};
if(c==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

cp=(double **)malloc((L+2)*sizeof(double));
for(i=0;i<L+2;i++){

cp[i]=(double *)malloc((M+2)*sizeof(double));
if(cp[i]==NULL)

cout<<”Out of Memory”<<endl;
exit(0);

};
};
if(cp==NULL){
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cout<<”Out of Memory”<<endl;
exit(0);

};

phi=(double **)malloc((L+2)*sizeof(double));
for(i=0;i<L+2;i++){

phi[i]=(double *)malloc((M+2)*sizeof(double));
if(phi[i]==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};
};
if(phi==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

phip=(double **)malloc((L+2)*sizeof(double));
for(i=0;i<L+2;i++){

phip[i]=(double *)malloc((M+2)*sizeof(double));
if(phip[i]==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};
};
if(phip==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

U=(double **)malloc((L+2)*sizeof(double));
for(i=0;i<L+2;i++){

U[i]=(double *)malloc((M+2)*sizeof(double));
if(U[i]==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};
};
if(U==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

Up=(double **)malloc((L+2)*sizeof(double));
for(i=0;i<L+2;i++){

Up[i]=(double *)malloc((M+2)*sizeof(double));
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if(Up[i]==NULL){
cout<<”Out of Memory”<<endl;
exit(0);

};
};
if(Up==NULL){

cout<<”Out of Memory”<<endl;
exit(0);

};

Gamma=sigA*TmA/LA;
csEQ=csE(T0);
clEQ=clE(T0);
k=csEQ/clEQ;
DT=Tl(csEQ)-T0;
d0=Gamma/DT;
W=lambda*d0/a1;
tau=a2*lambda/Dl*pow(W,2.);
dx=0.4*W;

fprintf(parameters,”Gibbs-Thomson coefficient (Gamma)[Km]:\t%g\n”,Gamma);
fprintf(parameters,”Equilibrium solidus concentration (csEQ)[at.%]:\t%g\n”,csEQ);
fprintf(parameters,”Equilibrium liquidus concentration (clEQ)[at.%]:\t%g\n”,clEQ);
fprintf(parameters,”Equilibrium partition coefficient (k):\t%g\n”,k);
fprintf(parameters,”Solidification temperature range (DT)[K]:\t%g\n”,DT);
fprintf(parameters,”Solutal capillary length (d0)[m]:\t%g\n”,d0);
fprintf(parameters,”Interface width (W)[m]:\t%g\n”,W);
fprintf(parameters,”Interface kinetic attachment time (tau)[sec]:\t%g\n”,tau);
fprintf(parameters,”Grid spacing (dx) [m]:\t%g\n”,dx);

start(L,M,c0,dx,clEQ,k); // set the initial condition
dt=timestep(Dl,S,dx,tau,W,k); // calculate dt

for(nts=nts0;nts<=ntsl;nts++){
gbp=gb;
if(nts!=nts0) gb=((iip>jjp)?iip:jjp)+15;
diff(nts,L,M,dt,dx,Dl,vm,c0,T0,fluc,LA,LB,TmA,TmB,eps4,tau,lambda,k,W,clEQ);
if(!(nts%iout)){

if((L%2)==1)
cout<<nts<<”/”<<ntsl<<”\tt=”<<dt*nts<<”\n\tii=”<<ii<<”\tphi[1][1]=

”<<phi[1][1]<<”\n\tc[L][1]=”<<c[L][1] <<”\tphi[L][1]=”<<phi[L][1]<<”gb
=”<<gb<<endl;

else cout<<nts<<”/”<<ntsl<<”\tt=”<<dt*nts<<”\n\tii=”<<ii<<”\tphi[1]
[1]=”<<phi[1][1]<<”\n\tc[L-1][1]=”<<c[L-1][1]<<”\tphi[L-1][1]=”<<phi[L
-1][1]<<”\tgb=”<<gb<<endl;

};
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if(ii>=L-1 ‖ jj>=M-1) {nts++;break;};
if(nts<=ntsl/5 && nts+1>ntsl/5){

for(i=1;i<=L;i++){
for(j=1;j<=M;j++){

fprintf(phase1,”%g\n”,phi[i][j]);
if((i>gb ‖ j>gb) && (i%2)*(j%2)==0){

if(i%2==0){
if(j%2==0){

if(i!=L && j!=L)
fprintf(conc1,”%g\n”,(c[i-1][j-1]+c[i-1][j+1]+c[i+1][j-1]+c[i+1][

j+1])/4.);
else if(i==L && j==L)

fprintf(conc1,”%g\n”,c[i-1][j-1]);
else if(i==L)

fprintf(conc1,”%g\n”,(c[i-1][j-1]+c[i-1][j+1])/2.);
else fprintf(conc1,”%g\n”,(c[i-1][j-1]+c[i+1][j-1])/2.);

}
else {

if(i==L)
fprintf(conc1,”%g\n”,c[i-1][j]);

else
fprintf(conc1,”%g\n”,(c[i-1][j]+c[i+1][j])/2.);

};
}
else {

if(j==M)
fprintf(conc1,”%g\n”,c[i][j-1]);

else
fprintf(conc1,”%g\n”,(c[i][j-1]+c[i][j+1])/2.);

};
}
else fprintf(conc1,”%g\n”,c[i][j]);

};
fprintf(phase1,”\n”);
fprintf(conc1,”\n”);

};
fclose(phase1);fclose(conc1);

}
else if(nts>ntsl/5){

if(nts<=ntsl*2/5 && nts+1>ntsl*2/5){
for(i=1;i<=L;i++){

for(j=1;j<=M;j++){
fprintf(phase2,”%g\n”,phi[i][j]);
if((i>gb ‖ j>gb) && (i%2)*(j%2)==0){

if(i%2==0){
if(j%2==0){
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if(i!=L && j!=L)
fprintf(conc2,”%g\n”,(c[i-1][j-1]+c[i-1][j+1]+c[i+1][j-1]+c[i

+1][j+1])/4.);
else if(i==L && j==L)

fprintf(conc2,”%g\n”,c[i-1][j-1]);
else if(i==L)

fprintf(conc2,”%g\n”,(c[i-1][j-1]+c[i-1][j+1])/2.);
else fprintf(conc2,”%g\n”,(c[i-1][j-1]+c[i+1][j-1])/2.);

}
else {

if(i==L)
fprintf(conc2,”%g\n”,c[i-1][j]);

else
fprintf(conc2,”%g\n”,(c[i-1][j]+c[i+1][j])/2.);

};
}
else {

if(j==M)
fprintf(conc2,”%g\n”,c[i][j-1]);

else
fprintf(conc2,”%g\n”,(c[i][j-1]+c[i][j+1])/2.);

};
}
else fprintf(conc2,”%g\n”,c[i][j]);

};
fprintf(phase2,”\n”);
fprintf(conc2,”\n”);

};
fclose(phase2);fclose(conc2);

}
else if(nts>ntsl*2/5){

if(nts<=ntsl*3/5 && nts+1>ntsl*3/5){
for(i=1;i<=L;i++){

for(j=1;j<=M;j++){
fprintf(phase3,”%g\n”,phi[i][j]);
if((i>gb ‖ j>gb) && (i%2)*(j%2)==0){

if(i%2==0){
if(j%2==0){

if(i!=L && j!=L)
fprintf(conc3,”%g\n”,(c[i-1][j-1]+c[i-1][j+1]+c[i+1][j-1]+

c[i+1][j+1])/4.);
else if(i==L && j==L)

fprintf(conc3,”%g\n”,c[i-1][j-1]);
else if(i==L)

fprintf(conc3,”%g\n”,(c[i-1][j-1]+c[i-1][j+1])/2.);
else fprintf(conc3,”%g\n”,(c[i-1][j-1]+c[i+1][j-1])/2.);
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}
else {

if(i==L)
fprintf(conc3,”%g\n”,c[i-1][j]);

else
fprintf(conc3,”%g\n”,(c[i-1][j]+c[i+1][j])/2.);

};
}
else {

if(j==M)
fprintf(conc3,”%g\n”,c[i][j-1]);

else
fprintf(conc3,”%g\n”,(c[i][j-1]+c[i][j+1])/2.);

};
}
else fprintf(conc3,”%g\n”,c[i][j]);

};
fprintf(phase3,”\n”);
fprintf(conc3,”\n”);

};
fclose(phase3);fclose(conc3);

}
else if(nts>ntsl*3/5){

if(nts<=ntsl*4/5 && nts+1>ntsl*4/5){
for(i=1;i<=L;i++){

for(j=1;j<=M;j++){
fprintf(phase4,”%g\n”,phi[i][j]);
if((i>gb ‖ j>gb) && (i%2)*(j%2)==0){

if(i%2==0){
if(j%2==0){

if(i!=L && j!=L)
fprintf(conc4,”%g\n”,(c[i-1][j-1]+c[i-1][j+1]+c[i+1][j-1]

+c[i+1][j+1])/4.);
else if(i==L && j==L)

fprintf(conc4,”%g\n”,c[i-1][j-1]);
else if(i==L)

fprintf(conc4,”%g\n”,(c[i-1][j-1]+c[i-1][j+1])/2.);
else

fprintf(conc4,”%g\n”,(c[i-1][j-1]+c[i+1][j-1])/2.);
}
else {

if(i==L)
fprintf(conc4,”%g\n”,c[i-1][j]);

else
fprintf(conc4,”%g\n”,(c[i-1][j]+c[i+1][j])/2.);

};
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}
else {

if(j==M)
fprintf(conc4,”%g\n”,c[i][j-1]);

else
fprintf(conc4,”%g\n”,(c[i][j-1]+c[i][j+1])/2.);

};
}
else fprintf(conc4,”%g\n”,c[i][j]);

};
fprintf(phase4,”\n”);
fprintf(conc4,”\n”);

};
fclose(phase4);fclose(conc4);

};
};

};
};
if(ii!=iip){

radius(dx,dt,nts);
};
iip=ii;ii=0;
jjp=jj;jj=0;
te=phip,phip=phi,phi=te;
te=cp,cp=c,c=te;
te=Up,Up=U,U=te;

}

cout<<”total number of time step=”<<nts-1<<”\n”;
fprintf(parameters,”total number of time step=%lu\n”,nts-1);
fprintf(parameters,”total time of growth =%g\n”,(nts-1)*dt);

for(i=1;i<=L;i++){
fprintf(Xaxis,”%g\t”,x[i]);
for(j=1;j<=M;j++){

fprintf(phase5,”%g\n”,phip[i][j]);
if((i>gb ‖ j>gb) && (i%2)*(j%2)==0){

if(i%2==0){
if(j%2==0){

if(i!=L && j!=L)
fprintf(conc5,”%g\n”,(cp[i-1][j-1]+cp[i-1][j+1]+cp[i+1][j-1]+cp[i+1][j

+1])/4.);
else if(i==L && j==L)

fprintf(conc5,”%g\n”,cp[i-1][j-1]);
else if(i==L)

fprintf(conc5,”%g\n”,(cp[i-1][j-1]+cp[i-1][j+1])/2.);
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else
fprintf(conc5,”%g\n”,(cp[i-1][j-1]+cp[i+1][j-1])/2.);

}
else {

if(i==L)
fprintf(conc5,”%g\n”,cp[i-1][j]);

else
fprintf(conc5,”%g\n”,(cp[i-1][j]+cp[i+1][j])/2.);

};
}
else {

if(j==M)
fprintf(conc5,”%g\n”,cp[i][j-1]);

else
fprintf(conc5,”%g\n”,(cp[i][j-1]+cp[i][j+1])/2.);

};
}
else fprintf(conc5,”%g\n”,cp[i][j]);
if(i==L) fprintf(Yaxis,”%g\t”,y[j]);

};
fprintf(phase5,”\n”);
fprintf(conc5,”\n”);

};
cout<<”gb=”<<gb<<endl;
time(&time2);
seconds=(unsigned long)difftime(time2,time1);
minutes=seconds/60;
secs left=seconds%60;
hours=minutes/60;
mins left=minutes%60;
cout<<”total CPU time=”<<hours<<” h ”<<mins left<<” m ”<<secs left<<” s\n”;
fprintf(parameters,”total CPU time=%u h %u m %u s\n”,hours,mins left,secs left);

fclose(phase);fclose(phase5);
fclose(conc);fclose(conc5);
fclose(V);fclose(parameters);fclose(df);fclose(rho);fclose(Yaxis);fclose(Xaxis);
for(i=0;i<L+2;i++){

free(c[i]);
free(cp[i]);
free(phi[i]);
free(phip[i]);
free(U[i]);
free(Up[i]);

};

free(x);free(y);free(phi);free(phip);free(c);free(cp);free(U);free(Up);
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return 0;
}

double clE(double T0)
{

//******** fitted phase diagram of Ni-Cu alloy calculated by phase-field simulation using
ideal solution model (1382K<=T<=1592K)********//

return(-1.242e-6*pow(T0,2.)+0.00113*T0+1.758);
}

double csE(double T0)
{

//******** fitted phase diagram of Ni-Cu alloy calculated by phase-field simulation using
ideal solution model (1382K<=T<=1592K)********//

return(7.388e-7*pow(T0,2.)-0.00498*T0+6.403);
}

void diff(unsigned long nts,unsigned long L,unsigned long M,double dt,double dx,double Dl,
double vm,double c0,double T0,double fluc,double LA,double LB,double TmA,double
TmB,double eps4,double tau,double lambda,double k,double W,double clEQ)

{
unsigned long i,j;
double A0,GE,GW,GN,GS;
double phipP,phipE,phipW,phipN,phipS,phipWN,phipEN,phipWS,phipES,phiP,phiE,

phiW,phiN,phiS,UpP,UpE,UpW,UpN,UpS;

for(i=1;i<=L;i++){
for(j=1;j<=M;j++){

if(i<=gb && j<=gb){
phipP=phip[i][j];
phipE=phip[i+1][j];
phipW=phip[i-1][j];
phipN=phip[i][j+1];
phipS=phip[i][j-1];
phipEN=phip[i+1][j+1];
phipWN=phip[i-1][j+1];
phipES=phip[i+1][j-1];
phipWS=phip[i-1][j-1];

if((i>gbp ‖ j>gbp) && (i%2)*(j%2)==0){
if(i%2==0){

if(j%2==0){
if(i!=L && j!=L)

Up[i][j]=(Up[i-1][j-1]+Up[i-1][j+1]+Up[i+1][j-1]+Up[i+1][j+1])/4.;
else if(i==L && j==L)

Up[i][j]=Up[i-1][j-1];
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else if(i==L)
Up[i][j]=(Up[i-1][j-1]+Up[i-1][j+1])/2.;

else Up[i][j]=(Up[i-1][j-1]+Up[i+1][j-1])/2.;
}
else {

if(i==L) Up[i][j]=Up[i-1][j];
else Up[i][j]=(Up[i-1][j]+Up[i+1][j])/2.;

};
}
else {

if(j==M)
Up[i][j]=Up[i][j-1];

else
Up[i][j]=(Up[i][j-1]+Up[i][j+1])/2.;

};
};
UpP=Up[i][j];
if(i==1 && j==1){

phipW=phipE;
phipS=phipN;
phipWN=phipEN;
phipES=phipEN;
phipWS=phipEN;

}
else if(i==1 && j!=M){

phipW=phipE;
phipWN=phipEN;
phipWS=phipES;

}
else if(i==1){

phipW=phipE;
phipN=phipS;
phipWN=phipES;
phipEN=phipES;
phipWS=phipES;

}
else if(i!=L && j==1){

phipS=phipN;
phipES=phipEN;
phipWS=phipWN;

}
else if(i!=L && j==M){

phipN=phipS;
phipWN=phipWS;
phipEN=phipES;

}
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else if(i==L && j==1){
phipE=phipW;
phipS=phipN;
phipEN=phipWN;
phipES=phipWN;
phipWS=phipWN;

}
else if(i==L && j!=M){

phipE=phipW;
phipEN=phipWN;
phipES=phipWS;

}
else if(i==L){

phipE=phipW;
phipN=phipS;
phipEN=phipWS;
phipES=phipWS;
phipWN=phipWS;

};

if(phipE==phipW && phipN==phipS){
phi[i][j]=phipP+dt/tau*((phipP-pow(phipP,3.)-lambda*pow(1.-pow(phipP,2.)

,2.)*UpP)+pow(W/dx,2.)*(2./3.*(phipE+phipW+phipN+phipS+1./4.*(
phipEN+phipWN+phipES+phipWS)-5.*phipP)));

}
else {

A0=1.+4.*eps4/(1.-3.*eps4)*(pow(phipE-phipW,4.)+pow(phipN-phipS,4.))/
pow(pow(phipE-phipW,2.)+pow(phipN-phipS,2.),2.);

phi[i][j]=phipP+dt/tau*((phipP-pow(phipP,3.)-lambda*pow(1.-pow(phipP,2.)
,2.)*UpP)/pow((1.-3.*eps4)*A0,2.)+pow(W/dx,2.)*(2./3.*(phipE+phipW
+phipN+phipS+1./4.*(phipEN+phipWN+phipES+phipWS)-5.*phipP)+
16.*eps4/((1.-3.*eps4)*A0*(pow(phipE-phipW,2.)+pow(phipN-phipS,2.)))
*((phipE-2.*phipP+phipW)*(pow(phipE-phipW,2.)-(pow(phipE-phipW,4.
)+pow(phipN-phipS,4.))/(pow(phipE-phipW,2.)+pow(phipN-phipS,2.)))+
(phipN-2.*phipP+phipS)*(pow(phipN-phipS,2.)-(pow(phipE-phipW,4.)+
pow(phipN-phipS,4.))/(pow(phipE-phipW,2.)+pow(phipN-phipS,2.))))));

};

if(i>ii && phi[i][j]<=0. && phi[i-1][j]>=0.) ii=i;
if(j>jj && phi[i][j]<=0. && phi[i][j-1]>=0.) jj=j;

}
else phi[i][j]=-1.;

};
};
for(i=1;i<=L;i++){

for(j=1;j<=M;j++){
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if(i<=gb && j<=gb){
UpP=Up[i][j];
if(((i+1)>gbp ‖ j>gbp) && ((i+1)%2)*(j%2)==0){

if((i+1)%2==0){
if(j%2==0){

if((i+1)!=L && j!=L)
UpE=(Up[i][j-1]+Up[i][j+1]+Up[i+2][j-1]+Up[i+2][j+1])/4.;

else if((i+1)==L && j==L)
UpE=Up[i][j-1];

else if((i+1)==L)
UpE=(Up[i][j-1]+Up[i][j+1])/2.;

else
UpE=(Up[i][j-1]+Up[i+2][j-1])/2.;

}
else {

if((i+1)==L)
UpE=Up[i][j];

else
UpE=(Up[i][j]+Up[i+2][j])/2.;

};
}
else {

if(j==M)
UpE=Up[i+1][j-1];

else
UpE=(Up[i+1][j-1]+Up[i+1][j+1])/2.;

};
}
else UpE=Up[i+1][j];
UpW=Up[i-1][j];
if((i>gbp ‖ (j+1)>gbp) && (i%2)*((j+1)%2)==0){

if(i%2==0){
if((j+1)%2==0){

if(i!=L && (j+1)!=L)
UpN=(Up[i-1][j]+Up[i-1][j+2]+Up[i+1][j]+Up[i+1][j+2])/4.;

else if(i==L && (j+1)==L)
UpN=Up[i-1][j];

else if(i==L)
UpN=(Up[i-1][j]+Up[i-1][j+2])/2.;

else
UpN=(Up[i-1][j]+Up[i+1][j])/2.;

}
else {

if(i==L)
UpN=Up[i-1][j+1];

else
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UpN=(Up[i-1][j+1]+Up[i+1][j+1])/2.;
};

}
else {

if((j+1)==M)
UpN=Up[i][j];

else
UpN=(Up[i][j]+Up[i][j+2])/2.;

};
}
else UpN=Up[i][j+1];
UpS=Up[i][j-1];
phipP=phip[i][j];
phipE=phip[i+1][j];
phipW=phip[i-1][j];
phipN=phip[i][j+1];
phipS=phip[i][j-1];
phipEN=phip[i+1][j+1];
phipWN=phip[i-1][j+1];
phipES=phip[i+1][j-1];
phipWS=phip[i-1][j-1];
phiP=phi[i][j];
phiE=phi[i+1][j];
phiW=phi[i-1][j];
phiN=phi[i][j+1];
phiS=phi[i][j-1];

if(i==1 && j==1){
UpW=UpE;
UpS=UpN;
phipW=phipE;
phipS=phipN;
phipWN=phipEN;
phipES=phipEN;
phipWS=phipEN;
phiW=phiE;
phiS=phiN;

}
else if(i==1 && j!=M){

UpW=UpE;
phipW=phipE;
phipWN=phipEN;
phipWS=phipES;
phiW=phiE;

}
else if(i==1){
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UpW=UpE;
UpN=UpS;
phipW=phipE;
phipN=phipS;
phipEN=phipES;
phipWN=phipES;
phipWS=phipES;
phiW=phiE;
phiN=phiS;

}
else if(i!=L && j==1){

UpS=UpN;
phipS=phipN;
phipES=phipEN;
phipWS=phipWN;
phiS=phiN;

}
else if(i!=L && j==M){

UpN=UpS;
phipN=phipS;
phipEN=phipES;
phipWN=phipWS;
phiN=phiS;

}
else if(i==L && j==1){

UpE=UpW;
UpS=UpN;
phipE=phipW;
phipS=phipN;
phipEN=phipWN;
phipES=phipWN;
phipWS=phipWN;
phiE=phiW;
phiS=phiN;

}
else if(i==L && j!=M){

UpE=UpW;
phipE=phipW;
phipEN=phipWN;
phipES=phipWS;
phiE=phiW;

}
else if(i==L){

UpE=UpW;
UpN=UpS;
phipE=phipW;
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phipN=phipS;
phipEN=phipWS;
phipWN=phipWS;
phipES=phipWS;
phiE=phiW;
phiN=phiS;

};

if(phipE==phipP && phipEN+phipN-(phipES+phipS)<1.e-15) GE=0.;
else GE=(4.*phipE-4.*phipP)/sqrt(16.*pow(phipE-phipP,2.)+pow(phipEN-

phipES+phipN-phipS,2.));
if(phipW==phipP && phipWN+phipN-(phipWS+phipS)<1.e-15) GW=0.;
else GW=(4.*phipP-4.*phipW)/sqrt(16.*pow(phipP-phipW,2.)+pow(phipWN-

phipWS+phipN-phipS,2.));
if(phipN==phipP && phipEN+phipE-(phipWN+phipW)<1.e-15) GN=0.;
else GN=(4.*phipN-4.*phipP)/sqrt(16.*pow(phipN-phipP,2.)+pow(phipE-

phipW+phipEN-phipWN,2.));
if(phipS==phipP && phipES+phipE-(phipWS+phipW)<1.e-15) GS=0.;
else GS=(4.*phipP-4.*phipS)/sqrt(16.*pow(phipP-phipS,2.)+pow(phipE-phipW

+phipES-phipWS,2.));

U[i][j]=UpP+(1.+(1.-k)*UpP)/(1.+k-(1.-k)*phipP)*(phiP-phipP)+1./(2.*dx*(1.
+k-(1.-k)*phipP))*(Dl*dt/dx*((2.-phipE-phipP)*(UpE-UpP)-(2.-phipP-
phipW)*(UpP-UpW)+(2.-phipN-phipP)*(UpN-UpP)-(2.-phipP-phipS)*(UpP
-UpS))+W/sqrt(2.)*(((1.+(1.-k)*UpE)*(phiE-phipE)+(1.+(1.-k)*UpP)*(
phiP-phipP))*GE-((1.+(1.-k)*UpP)*(phiP-phipP)+(1.+(1.-k)*UpW)*(phiW-
phipW))*GW+((1.+(1.-k)*UpN)*(phiN-phipN)+(1.+(1.-k)*UpP)*(phiP-
phipP))*GN-((1.+(1.-k)*UpP)*(phiP-phipP)+(1.+(1.-k)*UpS)*(phiS-phipS))
*GS));

}
else if((i%2)*(j%2)==1){

UpP=Up[i][j];
phipP=phip[i][j];
phiP=phi[i][j];
if(i+2<=L){

UpE=Up[i+2][j];
phipE=phip[i+2][j];
phiE=phi[i+2][j];

}
else{

UpE=Up[i][j];
phipE=phip[i][j];
phiE=phi[i][j];

};
if(i>=3){

UpW=Up[i-2][j];
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phipW=phip[i-2][j];
phiW=phi[i-2][j];

}
else{

UpW=Up[i][j];
phipW=phip[i][j];
phiW=phi[i][j];

};
if(j+2<=L){

UpN=Up[i][j+2];
phipN=phip[i][j+2];
phiN=phi[i][j+2];

}
else {

UpN=Up[i][j];
phipN=phip[i][j];
phiN=phi[i][j];

};
if(j>=3){

UpS=Up[i][j-2];
phipS=phip[i][j-2];
phiS=phi[i][j-2];

}
else {

UpS=Up[i][j];
phipS=phip[i][j];
phiS=phi[i][j];

};
if(i==1 && j==1){

UpW=UpE;
UpS=UpN;
phipW=phipE;
phipS=phipN;
phiW=phiE;
phiS=phiN;

}
else if(i==1 && j!=M){

UpW=UpE;
phipW=phipE;
phiW=phiE;

}
else if(i==1){

UpW=UpE;
UpN=UpS;
phipW=phipE;
phipN=phipS;
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phiW=phiE;
phiN=phiS;

}
else if(i!=L && j==1){

UpS=UpN;
phipS=phipN;
phiS=phiN;

}
else if(i!=L && j==M){

UpN=UpS;
phipN=phipS;
phiN=phiS;

}
else if(i==L && j==1){

UpE=UpW;
UpS=UpN;
phipE=phipW;
phipS=phipN;
phiE=phiW;
phiS=phiN;

}
else if(i==L && j!=M){

UpE=UpW;
phipE=phipW;
phiE=phiW;

}
else if(i==L){

UpE=UpW;
UpN=UpS;
phipE=phipW;
phipN=phipS;
phiE=phiW;
phiN=phiS;

};

U[i][j]=UpP+1./(4.*dx*(1.+k-(1.-k)*phipP))*(Dl*dt/(2.*dx)*((2.-phipE-phipP)
*(UpE-UpP)-(2.-phipP-phipW)*(UpP-UpW)+(2.-phipN-phipP)*(UpN-UpP)-
(2.-phipP-phipS)*(UpP-UpS)));

};
c[i][j]=clEQ/2.*(U[i][j]*(1.-k)+1.)*(1.+k-(1.-k)*phipP);

};
};

}

void radius(double dx,double dt,unsigned long nts)
{
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double xi,phiii 1,tipradi;

xi=((0.-phi[ii][1])*dx+(phi[ii][1]-phi[ii-1][1])*x[ii])/(phi[ii][1]-phi[ii-1][1]);
phiii 1=(phi[ii][2]-phi[ii-1][2])*xi/dx+phi[ii][2]-(phi[ii][2]-phi[ii-1][2])*x[ii]/dx;
tipradi=(phi[ii][1]-phi[ii-1][1])*dx/(2.*phiii 1);

fprintf(rho,”%g\t%g\t%g\n”,dt*nts,xi,tipradi);
if(nts%100==0) printf(”rho=%g\n”,tipradi);

}

void start(unsigned long L,unsigned long M,double c0,double dx,double clEQ,double k)
{

unsigned long i,j;
/*

for(i=1;i<=L;i++)
for(j=1;j<=M;j++){

cp[i][j]=c0;
if(i+j<=30) phip[i][j]=1.; //triangle

// if(i<=15 && j<=15) phip[i][j]=1.; //square
// if(sqrt(double(i*i+j*j))<=15) phip[i][j]=1.; //circle
// if(sqrt(double((i-L/2)*(i-L/2)+(j-M/2)*(j-M/2)))<=15) phip[i][j]=1.; //center

else phip[i][j]=-1.;
Up[i][j]=(2.*cp[i][j]/clEQ/(1.+k-(1.-k)*phip[i][j])-1.)/(1.-k);
gb=45;

};
ugrid(L,M,dx); // set the positions of grid points

*/

ifstream phiin,cin;

phiin.open(”phase ini.dat”);
cin.open(”c ini.dat”);

for(i=1;i<=L;i++)
for(j=1;j<=M;j++){

if(i>3650 ‖ j>3650){
phip[i][j]=-1.;
cp[i][j]=c0;

}
else{

phiin>>phip[i][j];
cin>>cp[i][j];

};
Up[i][j]=(2.*cp[i][j]/clEQ/(1.+k-(1.-k)*phip[i][j])-1.)/(1.-k);
gb=724;iip=709;jjp=709;

};
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phiin.close();
cin.close();

ugrid(L,M,dx); // set the positions of grid points
}

double timestep(double Dl,double S,double dx,double tau,double W,double k)
{

double dt=(Dl/k>pow(W,2.)/tau)?S*dx*dx/(Dl/k):S*dx*dx/(pow(W,2.)/tau);

fprintf(parameters,”time step=%g\n”,dt);
cout<<”time step=”<<dt<<”\n”;

return(dt);
}

double Tl(double c)
{

//******** fitted phase diagram of Ni-Cu alloy calculated by phase-field simulation using
ideal solution model (1382K<=T<=1592K)********//

return(-74.1*pow(c,2.)-289.*c+1723.);
}

void ugrid(unsigned long L,unsigned long M,double dx)
{

//generating uniform grids
unsigned long i,j;

x[1]=0.;
y[1]=0.;

for(i=2;i<=L;i++)
x[i]=x[i-1]+dx;

for(j=2;j<=M;j++)

y[j]=y[j-1]+dx;

fprintf(parameters,”dx=%g\n”,dx);
cout<<”dx=”<<dx<<endl;

}
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APPENDIX B. THE DERIVATION OF PHASE-FIELD MODELS

The phase-field simulation is essentially to solve the Allen-Cahn equation (Eq. 4.4) and

Cahn-Hilliard equation (Eq. 4.5) numerically. All the parameters and functions in those equa-

tions, such as a free energy density function, phase-field and concentration field mobilities, and

a gradient penalty coefficient must be defined using physical parameters, for physically reliable

results.

The sharp-interface limit model formulation

The following formulations are based on the model developed by Warren and Boettinger

[108] which is the sharp-interface limit model introduced in chapter 4.2.1. It is simple and

straightforward to derive. The phase-field variable, φ is set to zero in the solid phase and unity

in the liquid phase. It has 0 < φ < 1 value for interface between solid and liquid phases.

Pure materials

To solve the governing equations (Eq. 4.4 and 4.5), the chemical free energy density, f ,

needs to be defined as a function of physical parameters of the system. f has a constant value

in the bulk phases where φ = 0 and 1. The values correspond to the bulk free energy densities,

and the difference between adjacent bulk phases depends on the system temperature. Between

the bulk phases (0 < φ < 1), it is regarded that a free energy barrier exists. Desired shapes of

f as a function of φ is described schematically in Figure B.1. When the system temperature

equals to the melting temperature, TM , there is no free energy density difference between the

solid and liquid bulk phases. If the temperature is lower than TM , the free energy density for

solid is lower than that for liquid, and otherwise, it is higher than f for liquid phase.
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Figure B.1 Free energy density versus the phase-field variable, depending
on temperature. It has local minima at φ = 0 (solid) and φ = 1
(liquid), and between those, there exists an energy barrier.

Including all these characteristics, The free energy density function can be described as

f(φ) = Wg(φ) + h(φ)(fL − fS) + fS (B.1)

using auxiliary functions g(φ) and h(φ) where W is a parameter related to the free energy

density barrier height, and fL and fS are the bulk free energy densities of the liquid and solid

phases, respectively, i.e. fL = f(1) and fS = f(0). g(φ) is a function with a double well shape,

and g(0) = g(1) = 0 as shown in Figure B.2 (a). This form of function can be made purely

mathematically as following,

g(φ) = φ2 (1− φ)2 (B.2)

The function, h(φ), has the smoothly increasing form, where h(0) = 0, and h(1) = 1 as shown

in Figure B.2 (b). This function should be chosen to satisfy the condition that f has two
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minima at φ = 0 and φ = 1, i.e.

∂f

∂φ

∣∣∣
φ=0,1

= 0

∂2f

∂φ2

∣∣∣
φ=0,1

> 0 (B.3)

When we apply the function g(φ) (equation B.2) to f (equation B.1), the simplest polynomial

function h(φ)that satisfies the condition (B.3), h(0)=0, and h(1) = 1 is

h(φ) = φ3(10− 15φ+ 6φ2) (B.4)

The free energy density function with two auxiliary functions, (B.2) and (B.4), is

Figure B.2 Auxiliary functions, g (φ) and h (φ), used in phase-field model.
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f(φ) = Wφ2(1− φ)2 + φ3(10− 15φ+ 6φ2)(fL − fS) + fS (B.5)

and, its first and second derivatives are

∂f

∂φ
= 2Wφ(2φ− 1)(φ− 1) + 30(1− φ)2(fL − fS) (B.6)

and
∂2f

∂φ2
= 2W [6φ(φ− 1) + 1] + 60φ(φ− 1)(2φ− 1)(fL − fS) (B.7)

At φ = 0 and φ = 1, i.e. bulk phases, equation (B.6) goes to zero, and from the equation (B.7),

the second derivative has the value of 2W which is positive since the energy barrier height is

always positive. It shows that the condition (B.3) is satisfying with the auxiliary functions

(B.2) and (B.4). The simplest form of the temperature-dependent bulk free energy density

difference, fL − fS , in equation (B.1), can be given by

fL − fS =
L

TM
(TM − T ) (B.8)

Using these expression (B.1), (B.2), (B.4), and (B.8), the phase evolution equation (Eq. 4.4)

becomes,
∂φ

∂t
= −Mφ

[
∂f

∂φ
− ε2∇2φ

]
= Mφ

[
ε2∇2φ−W ∂g

∂φ
− ∂h

∂φ
(fL − fS)

]
= Mφ

[
ε2∇2φ−W ∂g

∂φ
− ∂h

∂φ

L

TM
(TM − T )

] (B.9)

Since the solidification of pure materials is generally controlled by thermal diffusion process,

in the phase-field simulation of pure materials, the phase evolution equation (B.9) is solved in

conjunction with the following thermal diffusion equation:

∂H

∂t
= ∇α∇H = ∇kT∇T (B.10)

where the heat capacity, α is constant for both phases. To make this enthalpy generation
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equation into the time-dependent temperature distribution equation, the enthalpy densities in

the solid and liquid phases at temperature, T, can be given by

HS(T ) = HS(TM ) + CP (T − TM )

HL(T ) = HL(TM ) + CP (T − TM ) (B.11)

where the specific heats in solid and liquid phases are same and independent on temperatures.

If we assume that the enthalpy density across the phase interface has a phase fraction-weited

value, the enthalpy density for an interface could be,

H = h(φ)HL + (1− h(φ))HS (B.12)

Applying this enthalpy density into the thermal diffusion equation (B.10) yields

∂T

∂t
=
kT
CP
∇2T − ∂h

∂φ

∆Hf

CP

∂φ

∂t
(B.13)

since

HL(T )−HS(T ) = HL(TM )−HS(TM ) = ∆Hf (B.14)

∂HL(T )
∂t

=
∂HS(T )
∂t

= CP
∂T

∂t
(B.15)

from the bulk enthalpy densities (equation B.12).

Binary alloys

The bulk free energy density of binary alloys is usually described as a function of the

phase-field, the temperature, and the solute concentration, and given as,

fS,L = (1− c)µ̃AS,L + cµ̃BS,L (B.16)
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where µ̃AS,L and µ̃BS,L are the chemical potentials of alloying component A and B, respectively,

and c is the atomic concentration of solute component, B. According to the regular solution

model, the chemical potentials for binary alloys are,

µ̃AS,L = fAS,L(φ, T ) + ΩS,L(φ)c2 +
RT

vm
ln(1− c) (B.17)

µ̃BS,L = fBS,L(φ, T ) + ΩS,L(φ)(1− c)2 +
RT

vm
ln c (B.18)

where fAS,L and fBS,L are free energy densities of pure metals, ΩS,L, is an enthalpy density of

mixing which is a function of φ, vm is a molar volume, and R is the gas constant. Then, the

bulk free energy density of binary alloys in equation (B.16) is

fS,L = (1− c)
{
fAS,L(φ, T ) + ΩS,L(φ)c2 +

RT

vm
ln(1− c)

}
+ c

{
fBS,L(φ, T ) + ΩS,L(φ)(1− c)2 +

RT

vm
ln c
} (B.19)

Applying these bulk free energy densities into the free energy density in equation (B.1)

results in

f = Wg(φ) + h(φ) (fL − fS) + fS

= Wg(φ) + h(φ)
{

(1− c)L
A

TAM
(TAM − T ) + c

LB

TBM
(TBM − T ) + (ΩL − ΩS)c2

}
+ fS

(B.20)

where W = (1 − c)WA + cWB. Using this f , the phase-field evolution equation (Eq. 4.4) for

alloys is

∂φ

∂t
= −Mφ

 W ∂g
∂φ + ∂h

∂φ

{
(1− c) LA

TAM
(TAM − T ) + cL

B

TBM
(TBM − T ) + c(1− c)(ΩL − ΩS)

}
−ε2∇2φ


(B.21)
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This can be simplified in the case of ideal binary alloys (ΩL = ΩS = 0) as

∂φ

∂t
= Mφ

[
ε2∇2φ−W ∂g

∂φ
− ∂h

∂φ

{
(1− c)L

A

TAM
(TAM − T ) + c

LB

TBM
(TBM − T )

}]
(B.22)

According to Kim et al. [131], the enthalpy, H, and temperature, T , in the thermal

diffusion equation for pure materials can be mapped to the solute concentration, c, and chemical

potential, µ̃ = ∂f/∂c, respectively, for a solute diffusion equation. Therefore, mapping of the

thermal diffusion equation (B.10) yields the solutal diffusion equation,

∂c

∂t
= ∇ D

∂2f/∂c2
∇∂f
∂c

(B.23)

since kT = αCP = α(∂H/∂T ) is correspond to D∂c/(∂f/∂c) = D/(∂2f/∂c2). D is a solute

diffusion coefficient which can be represented as a phase fraction weighted value, i.e. D(φ) =

DS + h(φ)(DL −DS). By the comparison of the equation (B.23) with the equation (4.5), the

solute mobility parameter, Mc is equal to D/(∂2f/∂c2). Then, the equation (4.5) using the

free energy density, f , in equation (B.1) becomes

∂c

∂t
= ∇ ·

(
Mc∇

∂f

∂c

)
= ∇ ·

(
D

fcc
∇∂f
∂c

)
= ∇ ·

(
D

fcc

(
∂fc
∂c
∇c+

∂fc
∂φ
∇φ
))

= ∇ ·
(
D

(
∇c+

fcφ
fcc
∇φ
)) (B.24)

The derivative of the free energy density equation (B.1) with concentration is

∂f

∂c
=
∂W

∂c
g + h

(
∂fL
∂c
− ∂fS

∂c

)
+
∂fS
∂c

(B.25)

and,

∂2f

∂c∂φ
=
∂W

∂c

∂g

∂φ
+
∂h

∂φ

(
∂fL
∂c
− ∂fS

∂c

)
(B.26a)

∂2f

∂c2
= h

(
∂2fL
∂c2

− ∂2fS
∂c2

)
+
∂2fS
∂c2

(B.26b)
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if W is not a function of a phase variable. Then, the equation (B.24) can be rewrite as

∂c

∂t
= ∇ ·

(
D

(
∇c+

∂W
∂c

∂g
∂φ + ∂h

∂φ
∂
∂c(fL − fS)

h ∂2

∂c2
(fL − fS) + ∂2fS

∂c2

∇φ

))
(B.27)

By using the free energy density function (B.20), solute diffusion equation (B.27) will be

∂c

∂t
= ∇ ·D (φ)

 ∇c+∂g∂φ (WB−WA)+ ∂h
∂φ

{
LB

TB
M

(TBM−T )− LA

TA
M

(TAM−T )+(1−2c)(ΩL−ΩS)

}
RT
vm

1
c(1−c)−2ΩS−2h(ΩL−ΩS)

∇φ

 (B.28)

for regular binary alloys, and

∂c

∂t
= ∇ ·D(φ)

 ∇c+
vm
RT c(1− c)

[
∂g
∂φ(WB −WA) + ∂h

∂φ

{
LB

TBM
(TBM − T )− LA

TAM
(TAM − T )

}]
∇φ


(B.29)

for ideal binary alloys.

Model parameters

For the phase-field simulation of solidification using the phase-evolution equation (B.9,

B.28, or B.29) and the diffusion equation (B.13 and/or B.27, B.28, or B.29), we need to define

model parameters such as the chemical free energy barrier height, W , the gradient energy

penalty coefficient, ε, and the phase-field mobility, Mφ, as functions of measurable physical

parameters. Those measurable parameters could be the diffused interface thickness, δ, and

solid/liquid interface energy, σ.

First, δ can be defined from the equilibrium phase-field profile. When we consider the

equilibrium state, fS equals to fL, and no phase evolution occurs. In this case the phase

evolution equation (Eq. 4.4) becomes

∂φ

∂t
= Mφ

[
ε2∇2φ−W ∂g

∂φ

]
= 0 (B.30)
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i.e.

W
∂g

∂φ
= ε2∇2φ (B.31)

Considering one-dimensional coordination, the multiplication of dφ/dx on both sides of

equation (B.31) and integration by x give

∫ ∞
0

W
dg

dφ

dφ

dx
dx =

∫ ∞
0

ε2
d2φ

dx2

dφ

dx
dx (B.32)

After canceling the terms in the left hand side and integral by part of right hand side, above

equation can be rewritten as following:

∫ ∞
0

Wdg =
ε2

2

(
dφ

dx

)2

(B.33)

Therefore, the solution of equation (B.31) for g is

g =
ε2

2W

(
dφ

dx

)2

(B.34)

If we use the equation (B.2) for g, rewriting the equation (B.34) for x gives

x =
ε√
2W

∫
dφ
√
g

=
ε√
2W

∫
dφ

φ(1− φ)
=

ε√
2W

ln
φ

1− φ
(B.35)

and the figure B.3 shows this relationship between x and φ.

Interface region can be arbitrarily defined. If the interface region is defined as the region

for φ = 0.5±∆, then, using equation (B.35), δ is given by

δ = xφ=0.5+∆ − xφ=0.5−∆ ≈
a0ε√
2W

(B.36)

where the value of a0 is determined by ∆ (Figure B.3). In the case of ∆ = 0.4, a0 = 4(ln 3).

The interface energy, σ, for the equilibrium state is given by Allen and Cahn [101] and
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Figure B.3 Phase-field variable distribution as a function of the distance
from the interface position where φ = 0.5, calculated with equa-
tion B.36. δ represents the interface thickness when ∆ = 0.4.

others as

σ = ε2
∫ +∞

−∞
(∇φ)2dx = ε

√
2
∫ 1

0

√
fdφ =

ε
√
W

3
√

2
(B.37)

where g has a form of equation (B.2).

According to the equation (B.36) and (B.37), both δ and σ are functions of ε and W .

Therefore, we can express ε and W in terms of δ and σ as following:

W =
3a0σ

δ
(B.38)

and

ε2 =
6σδ
a0

(B.39)

where σ is a material parameter and δ is a model parameter that we can choose. As mentioned

in chapter 4.2, in the sharp-interface limit model, δ should be comparable to the capillary

length, for physically reliable simulation results .

The only undecided parameter is the phase-field mobility, Mφ. This parameter is deter-
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mined by mapping the steady-state one-dimensional phase field equation to the Gibbs-Thomson

condition. At the steady state where the interface moves with a constant velocity, V , we can

consider a moving boundary system in which the velocity of moving frame is V . The ve-

locity, V, is (−dz/dt) where z represents the coordination of the moving frame. Then, the

one-dimensional steady state version of the phase-field equation (B.9) is

−V ∂φ
∂z

= Mφ

[
ε2(

d2φ

dz2
)−W ∂g

∂φ
− ∂h

∂φ

L

TM
(TM − T )

]
(B.40)

Since the equilibrium state is assumed, the equation (B.31) gives,

V
∂φ

∂z
= Mφ

∂h

∂φ

L

TM
∆T (B.41)

where ∆T = TM − T . Multiplying by dφ/dz, and integrating with z give

∫ +∞

−∞
V

(
∂φ

∂z

)2

dz =
∫ +∞

−∞

[
Mφ

∂h

∂φ

∂φ

∂z

L

TM
∆T
]
dz =

∫ 1

0

[
Mφ

L

TM
∆T
]
dh

= Mφ
L

TM
∆T

∫ 1

0
dh = Mφ

L

TM
∆T [h(φ)]10 = Mφ

L

TM
∆T

(B.42)

Here, we take advantage of simplicity of the sharp-interface limit model: the temperature

across the interface region is uniform, i.e. ∆T =constant. Using equation (B.37), equation

(B.41) yields
V σ

ε2
=
MφL

TM
∆T (B.43)

i.e.

V =
ε2MφL

TMσ
∆T (B.44)

Because the interface velocity is generally considered as V = µ∆T where µ is an interface

mobility, the phase-field mobility for pure materials, Mφ, becomes

Mφ =
µσTM
Lε2

=
a0µTM

6Lδ
(B.45)

Note that the phase-field mobility can be expressed only with the material parameters and
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input value of µ.

In case of binary alloys, Mφ and ε2 in equation (B.21) and (B.22) can be expressed as

concentration-weighted values, as following:

Mφ = (1− c)MA
φ + cMB

φ

ε2 = (1− c)εA2
+ cεB

2
(B.46)

MA
φ and MB

φ are the phase field mobilities of pure A and B, and εA
2 and εB

2 are gradient

penalty coefficients of pure A and B, respectively, which are expressed by equations (B.39) and

(B.45), i.e.

MA
φ =

a0µ
ATAM

6LAδ

MB
φ =

a0µ
BTBM

6LBδ

εA
2

=
6σAδ
a0

εB
2

=
6σBδ
a0

(B.47)

The thin-interface limit model formulation

Pure materials

In the thin-interface limit model, temperature and/or concentration variations across the

interface region are considered. That allows quantitative calculations even with rather unrealis-

tically thick interface while δ should be comparable with the capillary length for quantitatively

valid simulations in the sharp-interface limit.

To obtain the phase-field mobility, Mφ, in the thin-interface limit, the steady state diffusion

equation in a moving frame is considered:

−V∇T = α∇2T +
V∆Hf

CP

∂h(φ)
∂φ
∇φ (B.48)

where V is the steady state interface velocity, and z is in moving coordination frame with
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velocity V, i.e. V = dx/dz. z = 0 at the middle of the interface region. This yields

∇T = −α
V
∇2T −

∆Hf

CP

∂h(φ)
∂φ
∇φ (B.49)

At the thin-interface limit where the interface thickness is much thinner that the thermal

boundary length, i.e. α/V >> δ, the temperature difference across the interface is negligibly

small. Then, the right-side therms are assumed as zero. Integration of this terms gives

T (x) = T0 +Az − ∆H
CP

V

α

∫ z

0
h(φ)dz (B.50)

where T0 is the temperature at z = 0, and A is an integration constant.

In the region of δ
2 ≤ |z| <<

α
V , at z < − δ

2 ,

∫ z

0
h(φ)dz ≈ −

∫ 0

−∞
h(φ)dz (B.51)

, and at z > δ
2 ∫ z

0
h(φ)dz ≈ z −

∫ 0

−∞
h(φ)dz (B.52)

. These yield

T (z) = T0 +Az +
∆H
CP

V

α

∫ 0

−∞
h(φ)dz (B.53)

at z < − δ
2 , and

T (z) = T0 +
(
A− ∆H

CP

V

α

)
z +

∆H
CP

V

α

∫ 0

−∞
h(φ)dz (B.54)

at z > δ
2 . Extension of these two temperature distributions should match at z = 0, i.e.

T (0) = T ∗0 = T0 +
∆H
CP

V

α

∫ 0

−∞
h(φ)dz (B.55)

where T ∗0 is the extended temperature at z = 0 from |z| > δ
2 . Then, the equation (B.50) as a

function of T ∗0 is

T (z) = T ∗0 +Az − ∆H
CP

V

α

∫ z

−∞
h(φ)dz (B.56)
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This is the temperature profile in the thin-interface limit.

Using the temperature distribution in equation (B.56), the phase-field mobility parameter,

Mφ, will be calculated. While ∆T across an interface for the sharp-interface limit condition is

constant in equation (B.41), it is a function of z for this thin-interface limit, i.e. ∆T = TM−T (z)

where T (z) as in the equation (B.56). Multiplied by dφ/dz, integrated with z, and applied

with the equation (B.56) for T (z), the equation (B.41) yields

∆T = TM − T ∗0 = V

[
TMσ

Mφε2∆H
− ∆H
CPα

ε√
2W

∫ 1

0

h(φ) [1− h(φ)]√
g(φ)

dφ

]
(B.57)

Since this undercooling is the kinetic undercooling which equals V β, this gives the expression

for Mφ as following

M−1
φ =

ε2∆H
TMσ

[
β +

∆H
CPα

ε√
2W

∫ 1

0

h(φ) [1− h(φ)]√
g(φ)

dφ

]
(B.58)

Binary alloys

In case of alloys, the phase-field mobility parameter, Mφ, can be calculated by the same way

as the pure material case, by using a solute diffusion equation instead of a thermal diffusion

equation. The difference of solutal diffusivities in solid and liquid phases are, however, several

orders, and this is much bigger than the difference of thermal diffusivities. As a thick interface

is used, this big diffusivity difference between two adjacent phases causes several spurious

interface kinetics and solute trapping. Karma [113] resolved this problem by introducing the

anti-trapping current term in the phase-field evolution equation. This term gives a counterflux

against unphysical solute trapping flux. Although this work is for the specific case of a dilute,

one-sided binary alloys, Tong et al. showed that the same forms of the governing equations

can be effectively valid for non-dilute alloys. Their governing equations are as following [122]:

τ(T )η(n̂)2∂φ

∂t
= ∇·

[
W (T )2η(n̂)2∇φ

]
+φ−φ3−λ(T )(1−φ2)2U+∇·

(
|∇φ|2W (T )2η(n̂)

∂η(n̂)
∂(∇φ)

)
(B.59)
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(
1 + k(T )

2
− 1− k(T )

2
φ

)
∂U

∂t
= ∇ ·

(
D(T )

1− φ
2
∇U +

1
2
√

2
{1 + [1− k(T )]U} ∂φ

∂t

∇φ
|∇φ|

)
+

1
2
{1 + [1− k(T )]U} ∂φ

∂t
(B.60)

where φ = +1 in solid phase, φ = −1 in liquid phase, τ is the time scale parameter related to the

interface kinetic attachment, η is the anisotropy term, W is the interface thickness parameter

which corresponds to δ/4, λ is the coupling parameter between the phase-field and chemical

diffusion dynamics, and U is the normalized supersaturation. According to the thin-interface

limit analysis [115], the relationship between λ, τ , and W is

W =
d0λ

a1
(B.61)

and

τ =
a2λ

D
W 2 (B.62)

where the capillary length, d0 = Γ/∆T , Γ = σT/L, ∆T = T eL(ceS) − T , a1 = 0.8839, and

a2 = 0.6267 [113]. U = (eu − 1) / [1− k], and u = ln {(2c/ceL) / (1 + k − [1− k]φ)}.

Other Issues

General form of free energy density equation

In case of regular binary alloys, the Gibbs free energy equation which is calculated by

CALPHAD method can be used for the Phase-field simulation other than the using enthalpy

of mixing term. The free energy equation from CALPHAD is given as:

Gφ =
∑
i=A,B

xi◦Giφ +RT
∑
i=A,B

xi lnxi + xsGφ (B.63)

where xi represents the mole fraction, ◦Giφ is the molar Gibbs free energy for pure element i

with the structure φ, and xsGiφ is the excess molar Gibbs free energy, respectively. The excess
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molar Gibbs free energy can be given by

xsGφ = xAxB
n∑
j=0

jLA,Bφ (xA − xB)j (B.64)

For the liquid and solid phases, the free energy densities are

fL =

[xA◦GAL + xB◦GBL
]

+RT
[
xA lnxA + xB lnxB

]
+ xAxB

 n∑
j=0

jLA,BL (xA − xB)j

 /vm

(B.65)

and

fS =

[xA◦GAS + xB◦GBS
]

+RT
[
xA lnxA + xB lnxB

]
+ xAxB

 n∑
j=0

jLA,BS (xA − xB)j

 /vm

(B.66)

Therefore, the free energy density difference between solid and liquid phases for the function

of temperature and atomic fraction of concentration could be

fL − fS =


[
(1− c)(◦GAL − ◦GAS ) + c(◦GBL − ◦GBS )

]
+(1− c)c

[∑n
j=0(jLA,BL − jLA,BS )((1− c)− c)j

]
 /vm (B.67)

This can be used for the phase-field evolution equation (B.9) and for the Cahn-Hilliard equation

(B.27).

Anisotropy

Concerning the anisotropy of interfacial energy, the gradient energy penalty coefficient, ε, is

a function of the orientation of the interface normal, θ, which is the angle between the direction

of normal vector of interface and a reference coordination axis, i.e.

ε = ε̄η(θ) (B.68)

where ε̄ is an average gradient energy penalty coefficient, and η is an interface orientation-

dependent term. For an 4-fold symmetric anisotropy of cubic crystals in two-dimensional
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system,

η = 1 + ε4cos(4θ) (B.69)

. Considering more general three-dimensional anisotropies of interfacial stiffness, η can be a

function of the components of the interface normal, i.e.

η(n̂) = 1 + ε1

(
3∑
i=1

n4
i −

3
5

)
+ ε2

(
3

3∑
i=1

n4
i + 66n2

1n
2
2n

2
3 −

17
7

)
· · · (B.70)

With this ε in equation (B.68), the phase-field evolution equation for binary alloys for

two-dimensional growth in the sharp-interface limit (Eq. 4.4) can be

∂φ

∂t
= −Mφ

δF

δφ
= Mφ

[
∇ · (ε2∇φ)− ∂f

∂φ

]
= Mφ

[
−∂f
∂φ

+ ε̄2∇ · (η2∇φ)− ε̄2 ∂
∂x

(
ηη′

∂φ

∂y

)
+ ε̄2

∂

∂y

(
ηη′

∂φ

∂x

)] (B.71)

For a three-dimensional simulation of ideal binary alloys using the sharp-interface limit model,

the evolution equation for φ-field can be described by equation (B.22) and (B.68) as

∂φ

∂t
= −Mφ

 W ∂g
∂φ + ∂h

∂φ

{
(1− c) LA

TAM
(TAM − T ) + cL

B

TBM
(TBM − T )

}
− ε̄2∇ · (η2∇φ)

−ε̄2 ∂
∂x

(
|∇φ|2η ∂η

∂φx

)
− ε̄2 ∂

∂y

(
|∇φ|2η ∂η

∂φy

)
− ε̄2 ∂

∂z

(
|∇φ|2η ∂η

∂φz

)
 (B.72)

and for non-ideal binary alloys using the regular solution model, combining equations (B.21)

and (B.68) yields

∂φ

∂t
= −Mφ

 W ∂g
∂φ + ∂h

∂φ

{
(1− c) LA

TAM
(TAM − T ) + cL

B

TBM
(TBM − T ) + c(1− c)(ΩL − ΩS)

}
−ε̄2∇ · (η2∇φ)− ε̄2 ∂

∂x

(
|∇φ|2η ∂η

∂φx

)
− ε̄2 ∂

∂y

(
|∇φ|2η ∂η

∂φy

)
− ε̄2 ∂

∂z

(
|∇φ|2η ∂η

∂φz

)


(B.73)

Noise

On the purpose of provoking interface instability to produce complex dendrite shapes as

in the real nature, we can give some random noise to the free energy density distribution

within the interface region in a ad hoc way which is applied by Warren and Boettinger [108]
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as following;

∂φ

∂t
= Mφ(ε2∇2φ− ∂f

∂φ
)→ ∂φ

∂t
= Mφ

{
ε2∇2φ− ∂f

∂φ
(1− 16gαr)

}
(B.74)

where α is maximum degree of noise amplitude, r is a random number between -1 and +1,

and 16g has maximum value of unity at the interface and zero in the bulk phases.
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