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ABSTRACT

In this dissertation we focus on the investigation of the pairing mechanism in the recently
discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic
instability of the system, we considered short-range spin fluctuations as the major mediating
source to induce superconductivity. Our calculation supports the magnetic fluctuations as a
strong candidate that drives Cooper-pair formation in this material. We find the corresponding
order parameter to be of the so-called ss-wave type and show its evolution with temperature as
well as the capability of supporting high transition temperature up to several tens of Kelvin.
On the other hand, our itinerant model calculation shows pronounced spin correlation at the
observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure
in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate
both in the magnetic and in the superconducting properties. Our work shows that the interplay
between magnetism and superconductivity plays an important role to the understanding of the
rich physics in this material.

The magnetic-excitation spectrum carries important information on the nature of mag-
netism and the characteristics of superconductivity. We analyze the spin excitation spectrum
in the normal and superconducting states of iron pnictides in the magnetic scenario. As a
consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode
appears below the superconducting transition temperature. The calculated resonance energy,
scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelas-
tic neutron scattering (INS) measurements. More interestingly, we find a common feature of
those short-range spin fluctuations that are capable of inducing a fully gapped s$ state is the
momentum anisotropy with elongated span along the direction transverse to the antiferromag-
netic momentum transfer. This calculated intrinsic anisotropy exists both in the normal and in

the superconducting state, which naturally explains the elliptically shaped magnetic responses



xi

observed in INS experiments. Our detailed calculation further shows that the magnetic reso-
nance mode exhibits an upward dispersion-relation pattern but anisotropic along the transverse
and longitudinal directions. We also perform a qualitative analysis on the relationship between
the anisotropic momentum structure of the magnetic fluctuations and the stability of super-
conducting phase by intraorbital but interband pair scattering to show the consistency of the
magnetic mechanism for superconductivity.

As discussed for cuprates, an important identification of the mediating boson is from the
fermionic spectrum. We study the spectral function in the normal and superconducting state.
Not only do we extract the gap magnitude on the electron- and hole-pockets to show the momen-
tum structure of the gap, but also find a peak-dip-hump feature in the electron spectrum, which
reflects the feedback from the spin excitations on fermions. This serves as an interpretation of

the kink structure observed in ARPES measurements.



CHAPTER 1. INTRODUCTION

1.1 Superconductivity: 100 Years Old

2011 is special in physics as it marks the 100th anniversary of the discovery of superconduc-
tivity. In April 1911, Onnes’s group first observed the sudden vanishing of the electrical resis-
tance in mercury at a finite temperature 4.2 K [Onnes (1911)], which opens a whole new chapter
in physics: superconductivity. As a great success in theoretical physics, Bardeen, Cooper, and
Schrieffer (BCS) developed a microscopic theory that contains the key ingredients of supercon-
ductivity: there appears an effective attraction between the charged quasiparticles such that
two fermionic quasiparticles form a composite boson—Cooper pair [Cooper (1956); Bardeen et al.
(1957)|. In the early 60 years, superconductivity was mostly discovered in metals and alloys that
could be described by BCS theory in its generalized version by Eliashberg (1960); Schrieffer et al.
(1963). A variation of this situation began when superconductivity was found in heary fermion
system CeCusSis by Steglich et al. (1979) and in organic compounds (TMTSF),PFg by Jerome
et al. (1980) [Jerome (1994)]. Later the discovery of high-temperature cuprate superconductors
[Bednorz and Muller (1986)] elevated this research field to an unprecedented heyday. 15 years
after the searching for exotic superconducting mechanism, MgBs updated the understanding
of conventional superconductors with a surprisingly high transition temperature 7, = 39 K
[Nagamatsu et al. (2001)]. The thrilling moments in superconductivity never disappears over
the 100 years. The discovery of Fe-based superconductors by Hosoto’s group kicked off a new
surfing in this field in early February 2008 [Kamihara et al. (2008)].

The antisymmetric property when exchanging two identical fermions in Cooper pair requires
the coupled symmetry characters in spin and spacial wave functions: If the two members in a

Cooper pair form a spin singlet, the spacial parity should be even, e.g., s-wave or d-wave; On



the other hand, the spin triplet pairing matches odd parity, e.g., p-wave or f-wave. Bardeen
et al. (1957) specifically discussed the phonon-mediated pairing interaction that is typically neg-
ative at the relevant energy-momentum transfer, called “attractive”, which induces an s-wave
state without sign change in superconducting order parameter although it can have varying
magnitude. We refer the phonon-mediated superconductors as “conventional” and consider the
mediating degree of freedom other than phonons to be “unconventional”. Phonon-induced su-
perconductors are not necessarily low-7, materials, as strong electron-phonon coupling can push
the transition temperature above 30 K well demonstrated by strong-coupling calculations for
MgB;, [Kortus et al. (2001); Choi et al. (2001, 2002)|, which also shows multiple gaps with
different magnitude but still obeys s-wave symmetry. Non-phonon mechansim might be able to
support other symmetries like p-wave, d-wave, f-wave et al. For example, the spin-spin inter-
action [Berk and Schrieffer (1966)| can be positive at the relevant energy-momentum transfer,
called “repulsive”, which is therefore capable to flip the phase of the Cooper-pair wave function as
will be shown later. Experimentally, phase-sensitive measurements on SroRuQOy4 appear to show
a spin-triplet p-wave pairing in this multiband layered transition oxide [Nelson et al. (2004)].
Experiments on cuprates, Ce 115 series, and organics exhibit evidence for d-wave symmetry. A
recent phase-sensitive measurement using Josephson tunnel junctions on heavy-fermion UPt3
indicates a possible f-wave pairing state in one of its superconducting phases [Strand et al.
(2010)]. In the above mentioned p-, d- and f-wave states, the superconducting order parameter
experiences sign change on the Fermi surface, has nodal lines or points where its magnitude
vanishes, and exhibits directional m-phase shift. However, there could be another exotic symme-
try: there is no sign change of the order parameter on each connected Fermi surface sheet under
rotational operation, that is, belonging to s-wave symmetry, but there is relative w-phase differ-
ence of the order parameter between disconnected Fermi surface sheets, that is, the nodal line
locating between disconneted Fermi surface sheets. It is also possible that the nodal line crosses
one set of Fermi surface sheet but leaves the other set intact. These are the so-called extended
s-wave, or, st-wave states, which have the possibility to be realized in the newly-discovered

iron-based superconductors.



1.2 Iron-based Superconductors

As the youngest (3-year-old) family of superconductors, facilitated by the almost-one-century
study of superconductivity especially a broad spectrum of techniques developed for early un-
conventional superconductors [Sigrist and Ueda (1991); Dagotto (1994); Harlingen (1995)], a
great amount of work has been carried out in a short time period on the likely unconventional
iron-based superconductors [Ishida et al. (2009); Mazin and Schmalian (2009); Mazin (2010);
Canfield and Bud’ko (2010); Paglione and Greene (2010); Johnston (2010); Wen and Li (2011);
Wang and Lee (2011)]. The superconducting transition temperature was quickly promoted from
26 K |[Kamihara et al. (2008)] to 55-56 K [Ren et al. (2008); Wang et al. (2008); Cheng et al.
(2009)|. Significant understanding has been achieved with the material complexity in sight.
And it remains to be an active and rapidly developing research field as there are still many

puzzling aspects.

1.2.1 Materials and Structures

Thus far six different structures of iron pnictides and chalcogenides as shown in Fig. 1.1
have been fabricated [Wen and Li (2011)]. According to their chemical formulae, they are
called 11, 111, 1111, 122, 21311/42622, and 32522. Five of them except the last one are
found superconducting with the highest transition temperatures 55-56 K in the 1111 structure.
A common feature associated with all the structure types is the existence of a tetrahedral
Fe-pnictogen (P, As) or Fe-chalcogen (Se, Te) layer in which iron atoms form a plane with
pnictogen or chalcogen residing alternatively above and below the plane. These tetrahedral
layers are separated by alkali, alkaline-earth, or rare-earth and oxygen/fluorine layers. It is
widely believed that this iron-based layer plays a major role to superconductivity in this family

of materials.
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Figure 1.1 (a) Six structures of iron-based material ref.[Wen and Li (2011)]. (b) A The tetra-

hedral layer containing iron and pnictogen or chalcogen. (b)B shows the structural
deformation direction with respect to the spin direction when the system under

structural transition. Ref.[Wang and Lee 2011].

1.2.2 Phase Diagrams and Tuning Parameters

In the most studied structures 1111, 122, and 11, phase diagrams that show induced su-
perconductivity have been produced. Figure 1.2 summarizes several available phase diagrams

measured in the 1111 structure (the first row of Fig. 1.2) including F-doped LaOFeAs [Luetkens
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et al. (2009)] (left), F-doped CeFeAsO [Zhao et al. (2008)| (middle), and F-doped SmFeAsO
[Drew et al. (2009)] (right), where fluorine substitutes oxygen in all cases, and in the 122
BaFeaAsy system (the second row) with K substitutes Ba [Wen and Li (2011)] (left), which
is nominally hole doping, Co substitutes directly the active iron [Canfield and Bud’ko (2010)]
(middle), which is nominally electron doping, and P substitutes As [Jiang et al. (2009)] (right),
which is nominally isovalent doping, as well as in the 11 Fe; g3Te system with Se doping (the
bottom row) [Khasanov et al. (2009)]. Also intercalating metal K in between FeSe layers pro-
motes the transition temperature from 8 K to above 30 K [Guo et al. (2010)]. Besides the
various chemical substitutions or intercalation, external presure is another tuning parameter
that drives superconductivity. The inspection of the phase diagrams infers us the following
information: most of the iron-based superconductors evolve from parent compounds that locate
on a spin density wave (SDW) order; the SDW transition is often coupled with a structural tran-
sition from the high-temperature tetragonal to the low-temperature orthorhombic phase either
simultaneously or separately; the SDW state and superconducting state are intimately related
by either closely neighbouring (as in LaOFeAs and CeFeAsO systems), or interpenetrating to
each other in a mesoscopic phase separation manner (as in K-doped BaFesAsy system [Goko
et al. (2009)] and possibly in SmFeAsOF [Drew et al. (2009)]) or even in a microscopic coexis-
tence pattern as indicated by NMR [Laplace et al. (2009)] and neutron scattering measurement
[Pratt et al. (2009)] on Co-doped BaFeaAsy system. This intimacy is taken into account by

many experimental and theoretical study of the origin of superconducity.

1.2.3 Electronic Structure

Soon after Hosono group’s discovery, density functional theory was applied to calculate the
band structure and density of state [Singh and Du (2008); Mazin et al. (2008); Kuroki et al.
(2008)|. They found that the parent compounds are semimetallic and the density of state near
Fermi surface is mainly contributed by the Fe-3d electrons and all five of the 3d-electrons crosses
Fermi surface. The electronic structure of this family of materials is characterized by two sets
of disconnected Fermi surface sheets with two or three hole-pockets centered at the Brillouin

zone (BZ) center (I-point) and two electron-pockets centered at (0, £7) and (£, 0) (M-point)



in the tetragonal unit cell with one iron atom. The calculations show that 2 hole-pockets and 2
electron-pockets are likely more two dimensional with more or less cylindrical shape as shown in
Fig. 1.3 [Singh and Du (2008); Mazin and Schmalian (2009)]. The quasi-2D feature in the elec-
tronic structure typically supports large fluctuation effect [Mermin and Wagner (1966)] when
the system has the tendency to develop long-range order. Another important feature associ-
ated with the two well-separated sets of hole- and electron-pockets stems from fermiology: the
nesting between matching hole and electron FS pieces, which can drive the system into certain
particle-hole instabilities, e.g. the SDW instability. Angle-resolved photoemission spectroscopy
(ARPES) [Ding et al. (2008); Kondo et al. (2008); Lu et al. (2008)] and quantum oscillation
[Shishido et al. (2010)] measurements consistent with the predicted electronic structure. The
nesting between hole and electron pockets in Ba(Fe;_xCoy)2Asg is observed by ARPES in a
systematic study [Brouet et al. (2009); Terashima et al. (2010)]. No doubt that there appear
three-dimensional pockets in the complicated band structure of the materials, which affect the
physical properties and necessarily need to be taken into account to understand some experi-
mental data. But the existence of quasi-2D structure may play a crucial role in the magnetic

and superconducting phenomena.

Figure 1.3 Fermi surface configuration calculated for 1111 system (left) ref.[Singh and Du
(2008)], 122 system (middle), and 11 system (right) ref.[Mazin and Schmalian

(2009)], respectively.



(a) (b)

aT"lllar.f
Q,,=(1/20),=(1720),,

Q,=(1/21/2),=(10)

7

Figure 1.4 (a) The magnetic structure in 1111 and 122 systems. (b) The magnetic structure
in 11 system. Ref. [Lumsden and Christianson (2010)].

1.2.4 Magnetic Structure

Neutron scattering quickly resolved the magnetic structures in these materials [de la Cruz
et al. (2008); Lumsden and Christianson (2010)]. As illustrated in Fig. 1.4, most iron-based su-
perconducting materials share an antiferromagnetic long-rangle order in the parent compounds
with two interpenetrated Neel spin lattices such that antiferromagnetic stripes form along one
direction which ferromagnetic stripes along the perpendicular direction as shown in Fig. 1.4
(a). This type of magetic order has an ordering wave vector at (7, ) that matches the nesting
wave vector. Therefore it is a major opinion that this magnetic state is a SDW state arising
from the particle-hole instability due to nesting, which is itinerant in nature. This point of view
is supported by optical spectroscopy measurement on single crystals of BaFes Asy and SrFegAso

[Hu et al. (2008)], where they observed the formation of energy gaps when lowering the tem-



perature of the clearly metallic system down below the SDW transition temperature, and is
also supported by a recent first-principle calculation combining density functional theory and
dynamical mean-field theory (DFT+DMFT) [Yin et al. (2011)]. An interesting exception is
the 11 system Fe(Se,Te), in which the nesting is still at (7, 7) but the static magnetic ordering
vector is rotated by 45°, i.e., different from the nesting vector [Bao et al. (2009); Qiu et al.
(2009)]. However, the observation of magnetic resonance mode corresponds to the nesting wave
vector instead of the long-range magnetic ordering vector [Qiu et al. (2009); Wen et al. (2010)].
This interesting discrepancy indicates that nesting might be directly related to superconduc-
tivity through dynamical magnetism (spin fluctuations) while there is other stronger source to

dominate static magnetism.

1.2.5 Pairing Symmetry and Gap Structure

Next we discuss the superconducting properties. Scanning tunneling spectroscopy found a
coherence length &€ = 27.642.9 A for Ba(Feg 9Coq.1)2As [Yin et al. (2009)], while the measured
London penetration depth at the same composition is A(0) = 1820 A [Gordon et al. (2010)].
Unlike in a conventional type I superconductor &€ ~ 3000 A and A ~ 500 A [Tinkham (1996)],
it is strongly type II with the Ginzburg-Landau parameter x = % 67> %

The pairing symmetry and gap structure are among the most interesting topics as they
contain most relevant information on pairing mechanism. Nuclear magnetic resonance (NMR)
measurements have been conducted on 1111 material LaFeAsOg 9Fg1 |Grafe et al. (2008)] and
PrFeAsOg g9Fp.11 [Matano et al. (2008)], 122 material BaFe; Cog 2Ass [Ning et al. (2008)], and
11 structure FeSeg 5Teg 5 [Shimizu et al. (2009)]|. All of them showed the Knight shift decreasing
blow T, which indicates spin-singlet Cooper pairing, and no evidence for a Hebel-Slichter
coherence peak [Hebel and Slichter (1959)] in the nuclear spin-lattice relaxation rate 1/77, which
is associated with traditional s-wave due to its constructive coherence factor in superconducting
state. They confirm the singlet pairing therefore rule out odd-parity symmetries such as p-
wave state. The lack of Hebel-Slichter coherence peak seems to against conventional s-wave
symmetry. Therefore, st-wave and d-wave are more likely according to NMR.

Both d-wave and st-wave have internal m-phase shifts. The difference is if the w-phase
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shift is direction-dependent or not. Also they belong to different symmetry classes. Scanning
SQUID microscopy measurement on NdFeAsO;_.Fy did not observe 7 phase shifts between
tunneling in different directions, which is against d-wave order [Hicks et al. (2009)]. Meanwhile,
the observation of c-axis Josephson coupling in measurement on Baj_ K FesAss also rules out
d-wave pairing symmetry [Zhang et al. (2009b)]. Chen et al. (2010) provided a phase-sensitive
measurement through the observation of both integer and half-integer flux-quantum transitions
in a composite Nb — NdFeAsOg gsFg.12 superconducting loop to establish a 7w-phase shift in the
order parameter. This supports a sign change in the gap structure against conventional s-wave.
These phase-sensitive experiments show strong evidence of the sign-reversed s-wave symmetry.

Another phase-sensitive measurement using scanning tunneling microscopy on the 11 struc-
ture Fe(Se,Te) to image the quasi-particle scattering interference patterns in the superconduct-
ing state was reported [Hanaguri et al. (2010); Hoffman (2010)]. By observing the magnetic-field
dependence of the quasiparticle scattering strength, Hanaguri et al. (2010) found the sign of the
gap is reversed between the hole and the electron pockets, favoring st+-wave. Zeng et al. (2010)
measured the electronic specific heat in a rotating magnetic field on the same material and
observed a fourfold oscillation of the specific heat as a function of the in-plane field direction,
suggesting a significant gap anisotropy on the electron pockets. This seemingly discrepancy can
be resolved by the nodal st-wave which shows full gap on the hole pockets but nodal structure
on the electron pockets.

An important experimental fact that closely relates to the sign-reverse feature in gap struc-
ture is the emergence of a magnetic resonance mode in the superconducting state which can
be directly measured by inelastic neutron scattering (INS). This resonance mode is due to a
constructive coherence factor different from but related to the coherence factor that responsible
for the Hebel-Slichter peak in NMR 1/7). We write down the two coherence factors in a simple
version as 1 F AxAys / Ex Ex where the minus sign belong to the magnetic channel observed in
INS and plus sign to the charge channel observed in NMR. If Ay and Ay have opposite signs,
the first coherence factor is constructive giving rise to the magnetic resonance mode while the
second coherence factor is destructive resulting in the absence of Helbel-Slichter peak. If Ay

and Ay have the same signs, the opposite happens: there is no resonance mode but there is an
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enhanced NMR peak, which are the observations for the conventional s-wave superconductors.
As for iron superconductors, we have mentioned that no Hebel-Slichter peak observed in NMR.
Meanwhile, the magnetic resonance mode is observed in 1111 material [Shamoto et al. (2010)],
more in 122 material [Christianson et al. (2008); Chi et al. (2009); Lumsden et al. (2009)], and
in 11 system |[Qiu et al. (2009); Wen et al. (2010)]. The observation of magnetic resonance mode
points to a sign-reversed gap structure.

ARPES experiments mostly observed fully gaped structure, but other techniques |Johnston
(2010)] like penetration depth experiments, thermal conductivity measurements, et. al., showed
evidence for the appearance of in-plane nodes in at least some members of the family. Also
more evidence showed nodes along c-axis. Recently, ARPES reported the observation of three-
dimensional gap [Xu et al. (2011)]. Therefore, the gap structure in iron superconductors is
complex and diverse. Large amount of experiments are consistent with st-wave symmetry,
which can be fully gaped or nodal st-wave. Therefore the observation of in-plane nodes does
not conflict with this symmetry type. At the end of the discussion we need to keep in mind

that the gap symmetry is not conclusive yet.

1.2.6 Pairing Mechanism

Phonons alone were quickly showed to be unable to explain the high transition temperature
as the electron-phonon coupling constant is too small [Boeri et al. (2008)]. Even later Boeri et al.
(2010) showed that the magnetism enhances the total electron-phonon coupling by ~ 50%, up
to A < 0.35, still not enough to explain the transtion temperature, which suggests a non-phonon
mechanism [Monthoux et al. (2007)]. NMR measurement reported a correlation between T, and
the strength of antiferromagnetic spin fluctuations [Ning et al. (2010)]. In light of the proximity
to magnetic instabilities, strong spin fluctuations are active and might play a role in Cooper pair
formation. Mazin et al. (2008) first proposed the spin-fluctuation-induced superconductivity
scenario for iron pnictides and predicted st+-wave state in this material. If the gap symmetry

is indeed st-wave, it indicates the pairing interaction is repulsive. As shown in the follow
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expression from Eliashberg equation,

Ak/ Ek/
A=-> V(kK tanh
k ; (k)5 g, tan (QkBT)’

a positive interaction V (k, k') would lead to a sign change in the gap A.

Many theoretical approaches have been used to address the pairing problem in iron-based
superconductors, including random phase approximation (RPA) [Kuroki et al. (2008); Graser
et al. (2009)], renormalization group (RG) analysis [Chubukov et al. (2008); Wang et al. (2009)],
fluctuation exchange (FLEX) approximation [Yao et al. (2009); Sknepnek et al. (2009); Zhang
et al. (2009a, 2010)], and variational Monte Carlo calculation [Yang et al. (2011)]. All of these
theoretical calculations found that strong antiferromagnetic (AF) correlation (spin fluctuation)
triggers s+ pairing next to the antiferromagnetism. The match between spin fluctuation struc-
ture and fermiology might drive superconductivity in at least some of these materials. Therefore,
antiferromagnetic spin fluctuations could possibly be the major mediating glue in the iron-based
superconductors.

In this thesis, we consider the interactions between electrons by exchange of fluctuations to
explore the pairing mechanism using fluctuation exchange approximation in the superconducting

state as well as the interplay between magnetism and superconductivity.
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CHAPTER 2. FLUCTUATION EXCHANGE APPROXIMATION

2.1 Cooper Pair due to Fluctuation Exchange

It was first proposed for the superfluidity of fermionic atom 3He that Cooper pair can be
formed by exchanging spin fluctuations. Unlike the Cooper pair of charged electrons that leads
to superconductivity, He is neutral and there is strong hard-core repulsion between the atoms
which prevents s-wave pairing. The condensation of p-wave triplet Cooper pairs by exchanging
ferromagnetic spin fluctuations gives rise to the well-known anisotropic superfluid phase in liquid
3He [Nakajima (1973); Brinkman et al. (1974); Leggett (1975)]. This mechanism was considered
later to be possibly relevant to superconductivity on the border of itinerant ferromagnetism |Fay
and Appel (1980)].

Starting from late 1970s, superconductivity was found on the border of antiferromagnetism
in a family of heavy electron compounds [Steglich et al. (1979)], organic charge transfer com-
plexes [Jerome et al. (1980); Jerome (1994)], high-temperature cuprates, and iron-based super-
conductors. This motivated the proposal for Cooper pair mediated by antiferromagnetic spin
fluctuations.

As one of the strong-coupling theories of superconductivity, fluctuation exchange approxi-
mation was first introduced by Bickers, Scalapino, and White [Bickers et al. (1988); Bickers and
Scalapino (1989)] as one of the conserving approximations [Baym and Kadanoff (1961); Baym
(1962)| with free energy functional is diagrammatically demonstrated in Fig. 2.1. In this work,
they only considered approaching superconductivity in the normal state. Later, the FLEX cal-
culation for superconducting state was performed by Pao and Bickers (1994); Monthoux and

Scalapino (1994). Takimoto et al. (2004) generalized this method to multiorbital systems.



14

Dy px = G + 88 o

+.+.+ .

Figure 2.1 Diagrammatic demonstration of the free energy functional for the FLEX approxi-
mation.

2.2 Single-band FLEX Formalism

The conserving approximation formalism introduced by Baym and Kadanoff can be extended
to treat exchange of the simplest particle-hole and particle-particle fluctuations. FLEX as
such an extension is capable of treating possible competitions between superconductivity and
charge or spin density ordering at low temperatures. And this is one of the simplest infinite-
order conserving approximations that deal with competing normal-state instabilities in multiple
channels, allowing the analysis of electronic charge- and spin-ordering transitions on the same

footing.

2.2.1 Introduction

Now let us go through the self-consistent treatment of collective fluctuations by starting
with a general interacting fermion system. Following Bickers and Scalapino (1989), we express

the interaction theory in terms of an effective action and assume the action written as

S = S0+ Sint
So = B () (887_ + H0> co ()
St = 38 Y vlw — )eol@en (o (@) (2),
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The notations used here are = (x,7) with x a discrete lattice point and 7 the imaginary
time, >, = g7} foﬂ dr ), with g = kBLT the inverse temperature, and o (o’) refers to some
internal degrees of freedom such as spin. The quantities ¢ and ¢ are anticommuting c-numbers,
e., Grassmann numbers. Hj represents the noninteracting Hamiltonian and v is a general
interaction which depends only on the coordinate difference. For on-site interactions, such as
Hubbard model, it can be expressed in terms of a coupling constant U as v(z1 — x2) = Udgy s,
or in abbreviated notation v(1 —2) = Udj2.
For a simple lattice, i.e., a single-band model, the action may be rewritten using the Fourier-

transformed quantities

[

ez - = zka:
o(2) \ﬁZ

e (x — L fzk-:p
o() \F§
v(@) = Y (g,

where N is the number of lattice points. And sum over k contains the sum over k in momentum

space restricted to the Brillouin zone and over the Matsubara frequencies wy,, i.e.,

(2n+ 1)7T fermions
kE=(kw), w,= .

2nwT bosons

with n being an integer. The resulting expression in momentum space is
So = BZ —iwn, + ex)Cs (K)o (k)
Sint = 75 Z CU k + Q)CU (k/ - Q)CU/(k/)CU(k)v
kk'oo’
with e the single-particle energy determined by Hy. The prefactor % in the interaction part
removes a double counting from indistinguishability of particles.
When we self-consistently determine the single-particle Green’s function, the interaction

effect can be coded in an external field, the self-energy term X, by adopting certain approxima-

tions. In this way, the approximate interaction action becomes
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Ssc = /8 Z ch<k)éa(k)ccr(k) + BF(G, v)
ko

where F is a free energy term that does not depend on the fermion variables and the irre-
ducible self-energy 3 is determined self-consistently through the dressed Green’s function G:
Y (G;v). By judiciouly choosing ¥(G;v), we are able to treat the residual AS = Sj,s — Ss¢ as a
perturbation.

The simplest self-consistently approximation is Hartree-Fock approximation. One can sim-

ply decouple the interaction term into quadratic forms
v(q)Co (k + q)er (K' = q)cor (K )co (k) = [v(0)(n(K)) — v(k = k)(na(K))] & (k)co k),

where the density (nqs(k')) = (¢,(k")co(K')) and (n(k")) = >, (ns(k")). The first term is typi-
cally called the “direct” interaction and the second the “exchange” interaction. Then the Hartree-

Fock self-energy can be analytically expressed as

So(k) = ) [p0)(nk)) — vk — k){ne (k)]
k/
= 3 {[0(0) — vk — k)] Gol) + v(0)G o ()} 40"
k/

with the self-consistent Green’s function

T
Wpy, — €k — Eg(k‘)’

Go(k) = —(co(k)es(k)) =

and we used the relation (ng(K)) = Go (k' )e™n?". Note that for the Hubbard model, because
v(q) = U/N =constant, the equal-spin contribution to ¥, (k) drops out.

Next, let us consider the scattering of collective fluctuations in the normal state. In a
spin-rotationally invariant system, the possible particle-hole scattering channels are spin-singlet
channel which corresponds to charge density ordering and spin-triplet channel which corre-
sponds to spin density ordering. These channels can be further subdivided according to orbital
symmetry. In order to write down the collective propagators, we discuss the decoupling of the

interaction term in terms of charge density and spin density variables in two independent cases.
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e Equal-spin particle-hole scattering. In this case, construct the equal-spin fluctuation vari-

ables
A1) = = 3060 (e (1) = = [ox(er(l) + 21y (1] =

1 _ 1 _ _
mo(1) = =37 0T (eo (1) = = [ (1)ey (1) =8 Der (1)] = ()75 (1),
(2.1)
where 7¢ is the Pauli matrix. The commuting variable d and mg represent normalized
creation operators for charge density fluctuation and the zero-component of spin density
fluctuation. Within a constant and with the convention of repeated index performing

summation, the four fermion interaction term can be decoupled in terms of the above

fluctuation variables as
v(z — 2")¢s (2)Cor (2") o () co ()
— v(x — 2" () o (7)o (2 cor (2) — v(x — 2')E (2)co () En (') o (1)
=o(1 —1)2d(11)d(1'1") —v(1 = 1") [d(11")d(1'1) + mo(11")mo(1'1)]

= d(lQ)(Ud)12734d(34) + m0(12)(vm)12,34m0(34)

where the scattering vertices are

(va)123¢ = v(1 —3) (2012034 — 614023)

(Um)12,34 = _’U(1—3)514523.

e Opposite-spin particle-hole scattering. In this case, construct the opposite-spin fluctuation

variables

me(1) = & (De (V) = & (1)

mo(11) = e (Ves(l) = & (1)

o (1) = ¢,(1) S} cor (1),

ceor (1) = E5(1)S, icor (1), (2.2)

These operators creat spin fluctuations with spin projection S, = +1. Again decouple the
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interaction into fluctuation scattering form

v(@ = 2')eq(2)Cor (2")cor (2) o (@)

=02 — )0 () (1) oo (2o (2) + V(2 — )0 ()80 (2 ) (2 ) o ()

= —v(1=1") [my(11)m_(1'1) + m_(11)m4 (1'1)] + v(1 — 1")&,(1)é5(1")co (1')co (1)

= [m4(12)(vm)12,38m— (34) + m—(12) (vm)12,34m4 (34)] + v(1 — 1)e(1)co (1) co (1) e (1)

where the last term is a residue.

In a summary, we can write down the charge and spin fluctuation scattering terms as

d(12)(vd)12,34d(34)+m0(12)(vm)12734m0(34)+m+(12)(vm)12734m, (34)+m,(12)(vm)12734m+(34)
(2.3)
where in Hubbard model

vg=U, wv,=-U.

Alternatively, in the (S, Sy, S-) reprentation, since
mg = \/iSz, mMoUmMo = 25,0,
and
my+m_ = 25, my—m_ =2iS,,
M4 UM + m_vypmy = (Sz + 1Sy)m (Sz — 1Sy) + (Sz — iSy)vm(Sz + 1Sy)
= 2(SzUm Sy + SyvmSy),

combining with (2.1) (2.2) and (2.3), the four fermion interaction terms are more clearly decou-

pled in the spin and charge channels as

1

20mS-S = §vm7'010—4 . 70203031022003%4,
1 t ot
vgd-d = §vd5010450203001002603004. (2.4)

Therefore the vertices v,,,, vq directly correspond to the spin-spin and charge-charge interaction.

Later we will extend the represenation (2.4) to the multi-band case.
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Prepared with the above fluctuation-interaction terms, we first derive the expressions for
the collective propagators within a random phase approximation (RPA). Such an approximation
is conserving when the single-particle Green’s functions are treated within Hartree-Fock. For
normal state, consider the particle-hole channels only. Let r = d, mg, m+, then 7 = r for r = d

or my. The RPA propagators take the form

Ripga = (r(12)7(34)FpA"! = (r(12)7(34)) rpa — (r(12)) rPA(F(34)) RPA

— < (12)7:(34) connected BZ conn(vr)lIQI 3/4/< (3/4) (34)>conn 4.

where the subscript “sc” indicates that the average is to be evaluated using the self-consistent
single-particle action S, rather than the non-interacting action Sy and the superscript “con-
nected” requires the summation over only connected Feynman diagrams in the diagrammatic

expansion. Define the irreducible correlation function

Riy g4 = (r(12)7(34))52"! = (r(12)7(34)) sc — (r(12))se(7(34)) sc,

then the RPA propagators become
0 0 0 0 0y—1
Ri234 = 312,34 -p Z 312,1'2'(Ur)l’Z',3’4’R3'4/,34 +o= [R (1+ BvRY) }12734 )
il

where in the last step we took the sum over a geometric series of interaction vertices and
irreducible propagators. As always, it is most convenient to work with Fourier-transformed
propagators in a translational-invariant system. The bare interaction matrix may be written in
a way which emphasizes the total momentum ¢ carried by the particle-hole or particle-particle

pair:

[Ud(q”klkg,kgm = [2U(q) - U(kl - k4)] 5k1,k2+q5k3+q,k4

Wi (D] kg kgks = —V(K1 — Ka)Oky oy +gOks+q.ha-

Thus, the Fourier-transformed RPA propagators can be written as

R(q) = R%(q) [1 + Bu,(¢)R°(q)] "
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Specifically, the irreducible charge-fluctuation propagator is calculated through the single-particle

Green’s function

(DD iy ks = (d(Rrka)d(kska)) s U6, ky4q

= —G(k2+ q)G(k2)0k ks OkoksOks kotq

in the normal state, and it can be shown that the spin-fluctuation part is the same in this case:
MPY(q) = D°(q). Note that in the self-consistent approximation, the single-particle propagators
in the irreducible fluctuation correlation function R° are those dressed, or say renormalized,
rather than the bare ones.

In the normal state, the susceptibility corresponding to a perturbation which couples to

operator r with momentum transfer ¢ is just

o) = S G+ )GH), r=dm
k

x2(q)
1+ Nv(9)xP(q)

XT(Q) =

For example, Hubbard model gives

va(q) = U/N, vm(q) = =U/N,

thus

x"(q) (@) = x"(q)

xa(q) = = W-

1+ UXg)’

These are the RPA charge susceptibility x4 = x¢ and spin susceptibility x,, = x°, respectively,
for Hubbard model.

These susceptibilities are subsequently used to construct a Berk-Schrieffer-like interaction
describing the exchange of spin and charge fluctuations [Berk and Schrieffer (1966)|. This
interaction then provides the basis for calculating the single-particle self-energies in fluctuation
exchange approximation. It is convenient to write the expression for self-energy as a sum of
contributions

Y,(11) = 22 (11") + 2" (11'),

where £ is the full contribution of O(v?), SP™) arises from exchange of collective particle-

hole fluctuations of O(v3) and higher. The O(v?) contribution consists of one-bubble diagram
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and vertex correction diagram which gives the analytical expression
TP (1) = -8 v(1-2)v(1'-3) [2G(1 - 1)G(2 - 3)G(3 - 2) — G(1 - 3)G(3 - 2)G(2 — 1')]
23

where the factor 2 in the first term comes from the sum over spin in the loop and the minus sign
is due to the fermion loop in the first diagram. Accordingly, the momentum-space expression is
S (k) =8 v(g) [20() —v(k — K — )] Gk = C(K + )G (K').
K .q
The contribution from particle-hole exchange after subtracting the O(v?) terms is given by

P k) =Y Gk —q) Bvd(D — D%)vg + gvm(M = M) | .
q

Note that the factor 3 in front of spin fluctuation part results from the three spin components:
mg, m+. Thus we can express the fluctuation-exchange self-energy via an effective interaction

V’n
SEMk) = B Glk—q)V (k)

with the normal effective interaction contains charge-fluctuation exchange and spin-fluctuation
exchange

Vi(k) = VE(k) + V(k),

1 3
Ve = Zva(D = D%va, V= Som(M = M )vy,.

For instance, in the Hubbard model the self-energy contribution is simply as
1
_ - _ (2 (p—h)
k) = G —0 V() + V)],
where the vertices are in terms of the particle-hole susceptibility

vV (q) = U (a),
oy 1 1 3 1
V() = §U2X0(Q> [l—l—UXO(q) - 1] + §U2X0(Q) [l—Uxo(q) - 1] ;

with the bare susceptibility defined as
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That is, we have the normal interaction vertex in the self-energy as

1 3

1
Vi) = VN0 e T T i

2

We can see that for U > 0, the spin fluctuation sector dominates the effective interaction.

In above we have introduced a general procedure to self-consistently determine the self-
energy Y (G;v), single-particle propagator G(X), and the irreducible fluctuation propagator
RY(@) or susceptibility x°(G). Fluctuation exchange approximation takes into account a subset
of Feynman diagrams including bubble and ladder series to describe the effective interaction by
exchange of charge and spin fluctuations, which would play a major role when the system is
close to a charge or spin instability. Thus far we only considered the non-superconducting state.
To investigate the fluctuation-induced superconductivity, we need to extend our formalism to
a charge condensate state. In order to perform a quantitative discussion, let us develop our
formalism and carry out numerical evaluations for the two-dimensional Hubbard model on a

square lattice.

2.2.2 2D Hubbard Model on a Square Lattice

Let us briefly introduce the single-band Hubbard model here. The two-dimensional Hubbard

model is expressed as,

H=— Z t; (CIJCJ'O + h.C.) + Uznnn“,_
<i7j>?o. Z'

Here we consider the square lattice and take into account the nearest neighboring hopping only,
ie.,

t, for nearest neighbors;

0, otherwise.

Perform Fourier transform

1 .
ik-r;
Cic = —F—= E € 'Ckos
N k
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where NV is the number of lattice sites and we have chosen the lattice spacing to be unity. Then
the kinetic part becomes
— Z tij (c;racjg + h.c.) = -2t Z(cos ky + cos ky)clTwcka,
<i7j>,U k,o

which gives rise to the tight-binding dispersion,
e(k) = —2t(cos ks + cos ky).

Then we can write the whole Hamiltonian as

H = Z s(k)cLackg + UZ"z‘TniL. (2.5)
k,o 7

This is the so-called minimal Hubbard model, which serves as the starting point of the following

analysis.

2.2.3 FLEX Formalism for Hubbard Model in the Superconducting State

Here the Dyson-Gor’kov equation and Eliashberg theory are used to discuss superconduc-
tivity. The formulation is suitable for applying diagrammatic quantum field theory. In this
approach the superconducting state is described by introducing the normal and anomalous
Green’s functions, symbolically expressed as G and F', respectively. In the homogeneous sys-
tem, they are well-defined in momentum space as

5
Gk iwy) = — / dr €™ (Ty e (7). ),
0

g A

F(k,iw,) = /dTeW"T<TTckT(T)c_k¢>,
0
B .

Pk, iwy) = / dr e (Tyel  (F)el),
0

— eHT HT

where ¢y, (7) ckoe” Y7 with ‘H being the grand canonical Hamiltonian H = H — ulN,
B =1/T, and w, = (2n + 1)7T with an integer n is the fermionic Matsubara frequency. (...)
refers to the statistical average and T, is the ordering operator with respect to 7. In the
following, we use the four-momentum convention, i.e., k = (k, iw,) and ¢ = (q, iv;,), where

wn = (2n 4 1)xT is the fermion frequency and vy, = 2mnT is the boson frequency.
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The Green’s functions are expressed by normal (¥) and anomalous (®) self-energies through

the Dyson-Gor’kov equation which is written in the matrix form as

G = Go+GoxG
Go = G = (G;! - )1

(1-Go2)G =
where the bare Green’s function has only diagonal term Gy (k) = iwn—sl(k) e Explicitly Dyson-
Gor’kov equation reads

-1
G(k)  F(k) Go(k)~! — (k) —®(k)
Fi(k) —G(—k) —*(k) —Go(=k)~ L+ X3(—k)
it +e(k)+3(—k) o(k)
_ D(k) D(k)
®* (k) iton —e(k)—S (k)
D(k) D(k)
with
(k) — B(—k)\? (k) + 2(—k)\?
O O C2) S AR TS 1

Now we parametrize the self-energy matrix ¥ in the Nambu space as

A

S(k) = Y(k)7° + X (k)7 + B(k)(r + i) /2 + & (k) (" — ir¥) /2

so that
iwn e (k) (X=Y)(k ok
o rwy | [ o)
P*(k iwn—e(k)—(X+Y)(k
Fi(k) —G(—k) D((k)) e( g 15:) +Y) (k)
with
D(k) = (iwn — Y(k))? = (e(k) + X(k))* — |@(K)[*.

Define a function Z(k) via Y (k) = iwy, (1 — Z(k)) so that
= (iwnZ(k))* — (e(k) + X(K))* — @ (k)%

D(k)
oy ) [emgmen
N @* (k) o Z(k)—e (k) —X (k)
D(k)

D)
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The renormalization parameter Z(k), the energy shift X(k), and the gap parameter ®(k) will
be determined by the effective interactions constructed from the irreducible spin and charge

susceptibilities. From the parametrization we have the relations

Note that in the superconducting state, the self-consistent action becomes
Sse = BY [0 (k)eq (k)co (k) + @ (k)co(k)c—o (k) + ®f(k)e—o(—k)eo (k)] + BF(G; v),
ko

where the off-diagonal terms result from the condensation of Cooper pairs. Therefore, the
anomalous self-energy ® can serve as the superconducting order parameter.

As shown in the last section, fluctuation exchange approximation can also be considered
as one of the modifications of the RPA, in the sense that the renormalized Fermion Green’s
functions are used in the evaluation of the irreducible susceptibility, effective interactions and
the normal and anomalous self-energies in a self-consistent way. We have obtained the general

formula for the normal self-energy in FLEX

Similarly, the anomalous self-energy is expressed as
O(k) =D Valg)F(k —q).
q

Here the summation is defined as ) = (T/N) Zq’m. In the case of superconductivity arising
from electron correlations, the irreducible vertex V,(¢) in the particle-particle channel is derived
from the many-body effects. In analogy with the electron-phonon mechanism, this vertex is
regarded as the effective interaction for the pairing. It is considered that the unconventional
superconductivity arises from the momentum dependence in the effective interaction V,(q). The
theoretical search for the pairing mechanism is then reduced to the identification of the effective

interaction.



26

In the superconducting state, due to the existence of the anomalous Green’s function, there
are more terms contributing to the fluctuation propagators. First, we want to find the irreducible

correlation x? = (r(11')7(22'))¢omnected  The irreducible charge correlation is calculated as

(d(11")d(22' ))Connected

= % [ (€0, (1)C05 (2))se(Cos (2') oy (1)) se + oy (1803 (2)) se{Co (2') oy (1)) sc]
= % [_(Ccr(1/)50(2)>SC<CU<2/)EU(1)>SC + <éa(1)5—0(2)>SC<C—U(2/>CU(1,)>SC]

=-G1'=2)G2 -1)+ F*(1-2)F(2' - 1).

where we have considered all possible contractions. And for the zero-component magnetic

correlation we have

(mo(11")mg(22"))connected

= % [_‘7102 (€1 (1)205(2)) se(Co (2)Co1 (1)) se + 0102(C0, (1)C0, (2)) s (€5 (2) o (1/)>SC]
= % [_<CU(1/)50(2)>SC<CU(2/)EU(1)>SC - <50(1)570(2)>SC<670(2/)CU(1/)>80]

=-G(1' =2)G(2' —1) - F*(1 =2)F(2' - 1),
as well as other magnetic correlations

(m (11’ )ij(QQ )>connected

= —(c—o(1) e=5(2))sclco(2)er (1)) se = (Co(1)E=5(2))sc(c—o(1)ea(2'))se

= —G(I'=2)G(2 —1) - F*(1-2)F(1' — 2).

In this case, the three magnetic correlations are identical.
If ®(k) = ®(—k), F(k) = F(—k), and ® = &*, F* = F, we have the irreducible charge and
spin susceptibilities in momentum space
Xelq) = *Z (k+q)G(k) — F(k + q)F(k)),

X2q) = —Z (k+q)G(k) + F(k + q)F(K)).
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Note that the different relative sign in the charge and spin channel corresponding to the coher-
ence factor giving the Hebel-Slichter peak in NMR and the coherence factor that gives rise to
the magnetic resonance mode in INS, respectively. And due to vy = U, v,, = —U the charge-

and spin-fluctuation propagators are simply

x2(q)
X%
@ = T

Next let us consider the self-energies in the superconducting state:

(k) = Y Va(@)Glk—q),
k) = > Val@)F(k—q).

Essentially we need to evaluate the contribution from charge- and spin-fluctuation exchange
channels to V,, and V,. First we calculate the normal self-energy owing to the charge fluctuations

by evaluating the interacting effect on the single particle propagator

Go(1—1") = —(Treo(1)es (1))

== (—n1!)n (%)”<co(1) d(23)v4d(45) - - - d(67)v4d(89) &, (1")).

n

In terms of fluctuation propagator we obtain

1

Go(1-1) =35 Y (1) ea ()0, (2)){coy (3)2ny (8)) (o (9)65 (1)) v (A(45)d(67)) pLEx

01,02

= Ga(l - 2) |:;GO'(3 - 8)7)(21Xc(45ﬂ 67) Ga(g - 1/)7

which gives rise to the charge-fluctuation contribution

1

Vii(a) = 5U% [xe(a) = xe(@)] = V(9)-

We have subtracted the lowest-order term in the above expression as a separate evaluation of

the O(U?) terms will be performed later. Then that owing to the spin-fluctuation is derived in
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the same way

Go(1—1") = —(Trcy(1)es (1))

=-> (_nl;)n (3)" (e (1) mo(23)umo(45) - mo(67)mmo(89) (1)

—G,(1-2) [;Ga@ ~ 8)02xa(45,67)| Gy(9 — 11

which yields
1
Vi (a) = 5U% [xs(e) = x3(a)]

And

Go(1=1") = —(Tre,(1)e, (1)

== (_nl!)n (%)"(ca(l) 14 (23) UM (45) - - - s (67)vmma(89) r (1))

= Go(1 - 2) [G-o (3 — 8)vp,xs(45,67)] G (9 — 1)
yields
Vi (q) = U2 [xs(q) = x2()] -
Therefore the total contribution from spin fluctuations is
s 3 2 0 — 1/s
Vile) = 507 [xs(9) = xs(@)] = V(a).
Again we have subtracted the lowest-order terms in the above expressions. Thus
Valg) = Vi + Vi = V3(q) + V(q).

Note that we have not included the O(U?) terms here.
Now let us consider the anomalous interaction vertex V,,. Following the similar strategy,
we consider the interaction effect of the charge-fluctuation exchange on the anomalous Green’s

function

Fo(1-1) = —(Treo(L)eo(1))

-y (_n1!)n (%)%(,(1) d(23)v4d(45) - - d(67)vqd(89) c_o (1))
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Similarly we have the contraction as

Fo(1-1)= (—1)3% Y —(eo(1)ea, (2)){eo1 (3)o (9)) (s (8)c— (1)) 03 (d(45)d(67)) FrEx

o102

1
= Gr(1-2) |- 3 Fo(3 - (45,67 6T (- 1)
It indicates the charge-fluctuation contribution to the anomalous vertex
c 1 2 0 c
Vila) = =5U% [xe(@) = xe(@)] = =V*(a),

where the lowest order term has been subtracted. And the interaction effect of spin-fluctuation

exchange is given by

Fo(1=1") = ~(Treo(1)e—o(1'))

== Z (—nl')” (%)n<ca(1) mo(23)vmmo(45) - - mo(67)vmmo(89) c_ (1))

1
=Gy(1-2) [ZFU(S — 9)v2,x4(45,67) GT_U(S -1,

which yields
m 1
Vo' (a) = 50 [xa(e) = x3(a)]
As well as

Fy(1— 1/) = *<TTCJ(1)070(1/)>

--y (_nllw(;)%au) 4 (23)Ugm(45) - - - s (67)vym=(89) ¢ (1))

= G, (1—2) [Fy(9 — 3)02xs(45,67)] GT (8 — 1')

indicates
Vi (q) = U [xs(q) — x9(a)] -
Therefore the total contribution from spin-fluctuation exchange is

Vi) = ;UQ [xs(q) = x2(a)] = V*(0).

Thus we have

Va(q) = V?(q) — V<(q).
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Note that here we have subtracted the lowest order out, which will be evaluated separately.
The subtracted terms remove a double counting that occurs in second order.

The above expressions contain the order of O(U?) and higher-order contributions. What left
are the two lowest order parts including the order of O(U), the Hartree-Fock self-energy, and the
second order diagrams. Since the Hartree-Fock term is momentum and frequency independent,
it can be treated as a renormalization of the chemical potential u.

On the order of O(U?), the related terms are

U5, (1) (1) (1) oy (1) (2)0y (2)¢04 (2)¢0s (2) = U0 (1)(Es (1) (1)ea (1)e5(2)E0s (2)¢oy (2)) 60 (2),

—G(1-2)[-G(2-1)G(1 - 2)]

and in the anomalous channel

Therefore we obtain the second-order normal self-energy

SO (k) =)

q

Gk —q).

U2 (_ Z [G(K' + q)G(K') + F(K + q)F(k’)]>

k/

This gives the second-order contribution to the normal effective interaction

V2 (q) = U*x%(q).

In similar procedure, it can be shown that the second-order contribution to the anomalous

effective interaction takes the same form
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Finally we have all-order contributions, with the O(U?) and higher-order contribution under

FLEX approximation in mind, to the normal and anomalous effective interaction vertices as

Valg) = Vilq) + Ve(q),

Va(q) = Vilq) — Velq).

Here the spin- and charge-interaction vertices are redefined to include the O(U?) parts as

I N e C) I T
Vsla) = U7 000 U\(g) 2 Xs(9),
_ 1o X(c)(Q) Lo 0

Note that if we approach the superconducting transition from the normal state: x2 = x? = x?,

we see that
3 XO(Q) 1 2 0 1 9 XO(Q) 1.2 0
v, = Al Typy g p—"E VA
(q) 2V T Uy 2 Xs(0) + 35U T Ux(g) 2 Xe(q)
3.2 X%q) 1o x"(q) 2.0
- = - -U
2° 1-Uxq) 2 14+Ux%q) x(a)
and
_ 3.9 XS(Q) 1 90 1 9 X(C)(Q) 1.2 0
Va(Q) - 2U 1 o ng(q) 2U XS(Q) 2U 1 + ng(q) + 2U XC(Q)
- §U2 x°(q) _ 1. x°(q)
2° 1-Ux%q) 2 1+Ux%)

Those are the expressions in the normal state. Clearly the second-order subtraction is cancelled
in the anomalous interaction. However, if we approach the transition from the superconducting

state: X2 # x2, we have

0 0
Valg) = ;UQ% + ;U21+X5(Xq§@) - %UZ [XS(Q) + XQ(Q)] )
0 0
Valq) = ;Uz% - ;UQ% - %UQ [XS(Q) - XS(Q)] :

In this case the second-order subtraction is not cancelled due to the non-vanishing F'(k), since
1
SUP @ +x(@] = —U?) G+ 9)Gh),
k

%Uz @) = xd@)] = ~U?Y F(k+q)F(k).
k
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In the above, we have derived all the analytical expressions for the many-body quantities
in the superconducting state under FLEX approximation in the single-band Hubbard model
on a square lattice. The next step is to numerically evaluate these quantities and to study the
characteristics of the magnetic and superconducting properties when the microscopic parameters
are varied. Our numerical work found the well-known d-wave solution for the single-band

Hubbard model.

2.2.4 Numerical Solution: d-wave Superconductivity

We briefly list the numerical steps in below. Please refer to Appendix B.1 for the relevant
numerical tricks.

1. Choose the parameters ¢, U, T, and n.

2. Set a starting value for the normal self-energy, e.g., ¥ (w,) = —il'sign(w,). It is even
possible to start with ¥y (w,) = 0 as the Green’s function on the imaginary axis is always well
defined. And set the trial anomalous self-energy ®y(w;,) according to a certain symmetry, e.g.,
s-wave or d-wave.

3. Determine the Green’s functions G (wy) and Fy(wy,).

4. Usingn =14 3>, G(r") =1+ 5 > kn Gx(wy) determine the chemical potential
1 to obtain the correct particle number n. Start with an initial value of the chemical potential
chosen such that the corresponding Green’s function Gy (wy;p) yields the desired number of
carries at each stage of the iteration.

5. Determine Gj(7) and F;(7) via Fourier transform and determine x{(7) = —G;i(7)Gi(—7)—
R(r)Fi(r) and x{(7) = —Gy(r)Gi(—7) + F(r) R (7).

6. Fourier transform x{“(7) back to momentum and energy space to obtain xg*(vm).

7. Determine V,,(q, vy,) and Vo (q, vm).

8. Fourier transform V, 4(q, vy,) to obtain V;, 4(i, 7) and determine the self-energies X (i, 7) =
G(i,7)V,(i,7) and ®(i,7) = F(i,7)V,(, 7).

9. Fourier transform X (i, 7), ®(i, 7) back to X(k,wy,), ®(k,wy) and check whether they are
indentical to the results of the previous iteration. If yes, finish the calculation. If not, go to

item 3.
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The above loop is iterated until the relative difference between the new self-energy matrix
element and the old one is less than 1076, Then the convergence is considered to be achieved.
The form of the survival anomalous self-energy indicates the allowed superconducting order
parameter symmetry and by observing its decay with rising temperature we can identify the
corresponding transition temperature. Meanwhile, the resultant susceptibility delivers the in-
formation of the fluctuation type that drives the superconductivity.

Now we show the numerical solution solved for the superconducting state of single-band
Hubbard model on square lattice. It turns out that the system develops strong antiferromag-
netic spin correlation at (7, 7) and supports a d-wave superconducting state with sign change
between different pieces of the Fermi surface. The effective pairing interaction V, is dominated
by spin-fluctuation exchange. Figure 2.2 shows the static spin susceptibility x*(q,0) in the su-
perconducting state, which is peaked at (7, 7) in the normal state but becomes incommensurate
in the superconducting state. The finite order parameter ®(q,7T) is shown in Fig. 2.3 with an

intraband sign-reverse feature.
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Figure 2.2 Plot of x(q,0) in the superconducting state of the single-band Hubbard model on
a square lattice. The antiferromagnetic spin fluctuation centered at (m,7) in the
normal state becomes incommensurate below 7.
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Figure 2.3 The superconducting order parameter in the single-band Hubbard model on a
square lattice. It exhibits d-wave symmetry with sign change by 90 degree ro-
tation.
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CHAPTER 3. MULTIORBITAL FLEX FORMALISM: THE
SUPERCONDUCTING STATE

In this chapter we present a detailed derivation of the FLEX formula in 2D multi-orbital
Hubbard model and apply it to explore the possibility of fluctuation-induced superconductivity
in FeAs-based superconductors. It can easily be extended to other multi-band Hubbard super-
conductors. The appearance of orbital degrees of freedom requires more careful treatment since
all the quantities and expressions have complicated structures now due to orbital dependence.
And accordingly, the physics becomes richer with the additional orbital-fluctuation channel and

more types of microscopic interactions.

3.1 Unperturbed Hamiltonian

In the multi-orbital Hubbard model, the quadratic Hamiltonian is expressed through a
tight-binding description
Hy = Z (—tgh — §6;;6%)dl, v,
ij,ab,o
where d; ., is the annihilation operator of electrons in orbital a with spin o on site 4, t;’;?
represents the hopping of electron with spin ¢ from obital b on site j to obital a on site ¢, and
the chemical potential is . This yields in momentum space
Ho= > (e = 16 dfpy i
k,ab,o
For a two-orbital problem, which is the simplest multi-orbital model, diagonalizing the

Hamiltonian gives the dispersions of two bands, if €2 = £2!, as

e = () + (@) -
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where

(eic — ) -

N | =

1 _
eif = B (511(1 +si2), € =

The quadratic coefficient of the Hamiltonian determines the inverse of the bare single-particle
Green’s function,

éo(k, iwn)_l = jw,1 — (ék — ui) .
where det (GO)_1 = (iwp, — E™)(iwy, — E7). Thus the Green’s function can be explicitly written

as a matrix in the orbital space

iwn—(ell(l —u) —5}1(2

(iwn—BE ) (iwn—Ey ) (iwn—E) (iwn—Ey)

GOk, iwy,) =

—e! iwn—(e22—p)
(iwn—BE ) (iwn—Ey ) (iwn—E) (iwn—Ey)

Since €2 = €2, the non-interacting Green’s function is symmetric in orbital space ng = Gg“.
In the compact form we can write the non-interacting Green’s function as

Wy, — (51f — ,u)) 1-— €. T3 — 611(2%1
(iwy, — By (iwn — Ey)

GOk, iw,) = (
3.2 Interaction Hamiltonian

We start with a general multi-orbital Hubbard interaction,

1
Hint = 1 Z Ugrazisos dT dT di,agcrs di,a4cr4'

01020304 71,4101~ 1,42092
1;01020304;01020304

The prefactor % is to eliminate the symmetry of 1 +— 2 and 3 +— 4. Due to the SU(2)
symmetry in spin space, the interaction potential can be typically parametrized as

1

1
ailazazas _ _ - rraias,azas ) L r7a1a4,020a3
Ugioioaos = 2Us T T o104 Togos T 2Uc 29051040090

where U and U, are two scalar potentials, which, if ignoring spin-orbit coupling, are defined as

.
U if ag=ay=a3=a4

U if ag =a3#as =ay
[Ja104,02a3 _
S

JH if a1:a47éa2:a3
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and

U if a1 =a2=a3=ay

—U’—I—QJH if alzag#agzm

[J@104,02a3
C

2U/—JH ifa1:a47$a2:a3

J/ ifalzag#agzcu
Notice that Ust"**** are invariant under the exchange of any two set of indices such as 1 +—
23 «— 4,1 +— 3()2 «— 4 and 1 «— 4()2 «— 3, that is, in group language, they
are invariant under the following permutations of indices (12)(34), (13)(24) and (14)(23). Also
1 <— 2 is equivalent to 3 <— 4, etc, and the following equalities hold
1
§<3US . Uc)1234 _ U02134 — U01243,
1
§(US + Uc)l234 — U2134 U1243
QU1 _ 123 123 (3U U,)1%4,
By making use of the SU(2) identity
Toyo4 " Togog = 25010350204 - 60104502037
the interaction potential becomes

Ua1a2a3a4 — _Ua1a47(12(135 Uala47a2a3 + Ua1a47a2a3
(&

01020304 s 010350204 + 5 ( s )5010450203'
Then the Hamiltonian can be expressed as

1
Hiyy ==~ Z [ Ua1a2a3a4dT dT dz,a3odz‘,a4o (Ua1a2a3a4 + Ua1a2a3a4) dT d dz,ago’dz‘,a4o

4 1,010 ’Lazo’ 1,410 ’LdQO’
— aia2azaq
- § : U dz aladl adgdz a0’ d21a40/
where we used the identity
5 (U U = aiaasas,
Or more physically we can express it as

1
Hiny = 5 Z [U NjaoNiao’ + U,niaaniba’ - JHd:Ii-7ao'di,aO'ldj7ba-/di7bU + J/d;r agd;r ao’ dz,ba’di,bo]

i,a#b,o0’
1
=U Z NiatNia, + U’ Z NiaMiy — JH E <25m - Sip + 2nmnib> +J' Z dlmdz aydi b dipr
i,a i,a>b i,a>b i,a7%£b



39

through the relations

1 1
Sl + 25557 = > (1 +00")dlydaod), dyor
= Z dlgdao'dzgdbaa
and
2(STSF 4+ 8YSY) = = Z (1 - o0")dl,dusd] . dys
= Z dagda(—,dla_dbo.

Then the physical Hamiltonian is writen as

1
Hing =U Y nigtniay+U" Y nignap—Jg Y <2Sia “Sip + 2n$anzb> +7) d] asz aydipl dipr-
i,a 1,a>b i,a>b 1,a7b

(3.1)
Clearly, the on-site interactions contain intra-orbital and inter-orbital Coulomb repulsions U, U’,
Hund’s rule coupling Jg, and the inter-orbital pair hopping term .J’. Besides the usual intra-

orbital interaction, the last three terms are all between different orbitals.
But in order to simplify the calculation we use different equivalent form of the interaction

Hamiltonian for different derivations later. To evaluate the low-order diagrams in perturbation

theory, we adopt the form

mt Z U‘l1a2a3a4dl alddl ago'd,[/ Jazo’ dz,a4a’ (3.2)

i,ai,00’
and to derive the FLEX interaction vertices we apply the following form
Hipp = 5 Z 0100 (UL 2% bgs0, (—q) + Mg o, (@) (U 2%) mg . (—aq)] (3.3)
(Lawa
where a = x, y, 2, bap(q) and m&; (q) are charge- and spin-fluctuation type operators which are

defined as
1
=5 Z lef( aadk+q7ba’
\/§ k,o ,

and

mab(q \[ Z Jdk aadk+q7b0"

k,o
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mab(q \/‘ Z dk ao’dk“rq,bﬂ'?
- Z(_i‘j)d;[( a0 Uk-+q,b5-
\/i k,o ’

Note that since the orbital a, b in the fluctuation variable could be different, the above definitions
are generalized charge- and spin-fluctuation variables. b, is sometimes called orbital fluctuation
in the literature and mg; for a # b sometimes called higher-order moment fluctuations.

Here we show how we can achieve the effective interaction Hamiltonian in terms of fluctu-
ations (3.3). The interaction may be rewritten in four different ways to simplify perturbation
theory in the various channels. (1) For equal-spin particle-hole scattering, considering all the

contributions from the Hamiltonian, effectively we have

1
Hipe = 5 Z Ua1a2a3a4dT dZ,aaod;azgldi,mo’

2 i,a10
i,ai,00"

_ 1 parazazas  op. b _ at adt d

- 2 s 1,a103Y1,0204 i,a10 4,340 00,030
4,04 o

— § aiaza4az ailaza3aq
= — 2U - U ! ) bz a1a4bz a2a3 +m;

1,a;

( Ua1a2a3a4)m

1,01 04 1,a203 "

Since the relation 2U1243 — U124 = {71234 holds it becomes

1
. R — . ajaz2a3a4 . z ai1a2a3a4
mt T 5 1,a104 c 1,a203 1,010 i,a2a
Hiny 5 b (U, )b +mm; 410, (—Us ) s
1,04

(2) For opposite-spin particle-hole scattering we have

1

4 — § : arazazaq jf i
Hiny = 5 U dz aladl»GSUdi,aga’diyaw'
i,ai,00"
— a1a2a30a4 .
= = g —Ug dl arodi, awdz azodisazo + (residual)
i,ai,0
= 1 mil (—U80200 Y s pomy (=T 2192939 4 (residual)
- 92 1,a104 s 1,203 1,104 S 1,a203
z‘,ai

where

—d _diy, mi,=dl diy.

m; ab i,aT i,ab i,ad
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Thus in momentum space we have the following effective interaction Hamiltonian

1

Hint = 5 D [baras (@) (UL“2) bagay (—q) + 5,4, (@) (U2 g, (—a)

q,a;

+ 10,0, (@) (UL 25) mg (—a) + Mg, g, () (UL 2%) mg, 0, (—a)]

Here and later we group the orbital indices as 14,23 in U234,

3.3 Fluctuation Variables

In order to evaluate the interaction mediated by fluctuation exchange, we define two types
of electronic fluctuations, density or charge and spin fluctuations, in momentum space. There
are two equivalent set of definitions, either in the 4 representation for the transverse spin

fluctuations

bav(at, ™ Z b o (T)dicqbe (7).
mg Zadk a0 (T) 4,60 (T),
mb(q,7) = Z df, o (7)dicrq 01, (7),

k

moy(a,7) =Y d o (7)dirqur(7),
k

or in the (x,y) representation for the transverse part

bab CIa Z dk ag dk+q,bo( )
me( = Z o dk a0 (T) 4,60 (T),
Mg Z dk a0 (T)dictq,65(T),

mgb(q7 T) = \}5 Z(_ia)d;aa (T)dk+q7b5' (7—)7
k,o

where bgp(q, 7) is the annihilation operator of density fluctuation and m$;(q, 7) is the annihi-
lation operator of spin fluctuations. We will use the second set of notation in the following

calculation.
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3.4 Properties of Green’s Functions

To simplify formula derived later, we need to first study the symmetry properties of normal
and anomalous Green’s functions under various transformations. Let us define the following

orbtial-dependent Green’s functions: the normal Greens’ function

k7)) = —(Trdiao(7)dl,(0)),
Gk, m) = —(Trdl,, (7)dise (0)),
where
Gopl(k,7) = =G, (k, =),

and the anomalous Green’s functions

bU/ k,7) = —(Trdkao(T)d-xbo'(0)),

Py (kr) = —(Tndl, (1)dL,, (0).

First, performing complex conjugate results in

gb(va) = _<Tﬂ'dkaa(7—) kbo’( )>

= —O(r)Tr [ K DKo KTal, | 4 O(=r)Tr [e 7]

bo—eKTdkaaeiKT}

:< o(r )Tr[ BK—Q) Krg KleT(b"r +0(— )Tr[ AE=D gl e KTdkaae_KT:|T>*

- (_G(T)Tr [dkbae KTdLaa a e_ﬁ(K_Q)} + @(_T)Tr[ KTdLao KTdkbae_B(K_Q)})*

where K = H — N, e P? = Tre A% Upon permution in the trace it becomes

Go(k,7) = (—@(T)Tr [efﬁ(K*Q)eKTdkb e Kdl

kao

} +O(—7)Tr {e BIK=) gt

kao©

KTdkboefKTi| ) *
—(Tydwo (T)d},, ) = GE,(k, 7)".
and similarly we find

7 (k, 7)
—(Trdyas (T)d_xpor (0))

= (—@(T)Tr [dT_kb e KTl KT e*B(K*Q)} +O(—7)Tr [ —Kr gt

kacf kacr

Krd’r_kbglef,B(KfQ)} ) *
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gives

(k)

= (—@(T)Tr [e*B(K*Q)eKTdT kba,efKTdT

kao

} +O(—7)Tr [efﬁ(K*Q)alJr

Kt 4t “Kkr1\*
kao € d—kba’e })

= (Tpd' (7)) =Ty (k7).

kao

Also we have for the simultaneous exchange of spin and orbital indices

— F% (k=)
= @(—T)TI‘ [eiﬁ(Kiﬂ)efKTd_kbgleKTdkag] - @(T)TI‘ [eiﬁ(Kiﬂ)dkageiKTd_kbgleKT]

= —0O(7)Tr [6_5(K_Q)eKTdkaUe_KTd,kbgz] + O(—7)Tr [e‘ﬂ(K_Q)d,kbazeKTdk,we_KT}

which yields
—FZ7(—k, —7) = —(Tydyao (T)d—xpo’) = F (k, 7).

Under the rotation of m degree about y axis in spin space, UY(7) = —ic?, the relation holds
27 (k,7) = oo’ F (k7).

Transforming to Mastubara frequency, the above equalities are expressed in frequency space
as

Gy (k, iw,) = Gy, (k, —iw,)* = G(k,iw,)" = G(k, —iwy)*
where T refers to the transpose operation, and
o (s iwn) = Ty, (k, —in)",
(K, iwn) = —Fi” (=k, —iwn),

as well as

2 (K, iwp) = 00’ F97 (K, iwp).
Then the following equalities hold for the anomalous Green’s function
gba(k’iwn) - g}f(k, iwn) = _ngg(_k) _an) = Fbc(rf(_ky _’iWn)

_ ! P
FY (K, iwy) = FZ o (k, —iwn)* = —F57 (=K, iwp)* = —00'F7 (<K, iw, )"
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Among them the most important equalities we are going to use later are
G(k,iw,)T = G(k, —iwy)*,

and
99 (K, iw,) = —FI7 (K, iwy,),

FU (K, iwn) = Fo7 (=K, iwn)*.

a

For singlet pairing, F' is time-reversal invariant, when performing time-reversal transforma-

tion, it becomes

gbal(k’ T) = _<T7'dkaa (T)d—kba’(o»

1, —O(r)Tr [oa'dlbye_KTdT_ka&eKTe‘B(K_Q)} +O(—7)Tr [aa’e_KTdT_kaﬁeKTdLbye_B(K_Q)}

=00’ (—@(T)Tr {e*B(K*Q)eKTdJr e Krqt

K] 0 )

yields
7 () = —o0(Trd} (7)d! ;) = 00'Fp” (k7).
Then in frequency representation

gb”’ (k,iwy,) = O‘O'IFZ(;U(—k, iwn).

Similarly for G

~(Trdiao (T)d, (0))

—(Tyd s (7)d' 1,2 (0)

gb(k7 T)

=

= ga(_kﬂ T)

which yields
Goy(k,iwy) = Gga(—k, iwn).

The above time-reversal transformation properties gives rise to
G . —=00 . —=00 .
o (kyiwy) = —Fp, (=k,iw,) = F g (k, —iwy,)

— FO) (K, iwn) = Fo7 (K, —iwp),
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and

Goy(k,iwy) = Gga(—k, iwn).

Combining with the earlier results under complex conjugate and spin rotation,
Fop(k,iw,) = Fo7 (—k,iw,)*,
Go (k,iwy,) = Gy, (k, —iwy,)™,

we obtain the following identities
w (k,iwn) = F7 (=k, —iwn)"

a

If we further assume inversion invariant, G and F' are both even functions of k. Then Fyp(7), Gap(7)

are both real and

Gab (7—) = Gha (T) )

Fup(r) = Fpo(—71).

That is

G = G :>GT =G,

Fu(k iwy) = Fpol—k, —iwy) = Fpo(k,iwy)* = FT = F*, F = F'.

G is symmetric matrix and F' is Hermitian matrix under the above assumptions.
Here the phase convention for Fourier transformation of the Green’s functions to imaginary
frequency space is defined as

B .
Goy(k,iw,) = /dTng(k,T)e““"T
0

/ B , .
o (kyiwyn) = / drFyy (k, 1)e™n"
0

70'0'/ ﬁ 70'0'/ y
Fo (kyjiwy) = /0 drF, (k,7)e™"7,
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with the inverse transformation
ok, 7) = TZG" (K, iwy e wnT
7 (k,T) = TZ (K, iwy e T

Fgg/(k,T) = TZF kzwn TinT

3.5 Susceptibilities

3.5.1 Irreducible Susceptibilities

As in single-band case, the irreducible density-fluctuation correlation can be evaluated

straightforwardly

Xglga’b’ (q> 7—) = <TTbab(q7 7—)ba’b/ (_CL 0)>
1

2 Z (T dk ao (T )dk+qva(T)dL’+q,a’a’(O)dk/,b/a’(O)>
kk' oo’
1
- 5 Z [_<TTdk+q’bU(T)di’+q,a’a’(0)><T7'dk’,b’g’(0)dLag(T)>
kk’ o0’

+ <T7dk+q,b0 (T)dk’,b’a’ (0)> <T d;r(’—i-q a’o’ (O)d;rc ao( )>]

1 v
= 5 Z |:_ ga/(k +q, T)Gg’a(k7 _T)ék,k/(sa',a" + be/ (k +q, T)Fg/g<k7 _T)(S—k—q,k’ .
kk' o0’

Transforming to frequency space, we have

70 y
chtb,a’b’ (q,i€2n)
T
N <
k,iwn,

where Q,, = 2n7T and w, = (2n + 1)77T, N is the number of sites on the lattice.

Gpor (kK + q,iwp, + 2, Gra (K, iw,) — Z 0 k + q, iwp + 12, Fo (k, zwn)]

Similarly the irreducible longitudinal spin-fluctuation propagator is given by

m~?,0
Xab a’b! (q’ )

=(Trmiy(a, 7)my (—q,0))

1 i
:5 Z [_ Za/ (k +q, T)Glo;;a(ka _T)ék,kléa,al + o0 be/ (k +q, T)FZ/Z(k, _T)(S*k*(Lk,]
kk/ o0’
:_7ZG k+(l7 Gb/ - Z UOJ bb’ k+q7T)Fg/;7(k7 —7’)'

kcro
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Then the frequency form becomes

z0 .
Xﬁ,a/b/(% i§dy) =
T
N

k,iwn,

Gpo (k + q, iwy, + Q) Gro (K, iwy) — Z oo FgY k + q, iwp + i, Fo (k, iwn)] )
Similarly we find the transverse form for the z-component is

170 .
XZ}L)’a’b’ (q7 ZQH) =

T

N

k,iwn,

Gy (k4 q, iwp, + 12, Gy (K, iw,) — Z W k + q, iwy, + i, Fo (k, zwn)]

0(7’

The same procedure for y-component propagator gives
Y0 .
XZZ’a/b/ (q7 ZQn) =

—%Z

k,iwn,

1
Gy (k + q, iwy, +1Q)Gro(k, iwy) + 3 Z(UO‘ 0 (k + q, iwp, + 12, Fy, (k, zwn)] .

oo’

It can be shown that

(Tybap(a )Gy (—a, 0)) = (TrmSy(a, Tmly (~q,0)) =0, a # 8
that is, there is no mix of different fluctuations in the propagators. For example

(Trmigymgy )

—1

= 5 (T (di,ai(T)korq,bT(T)dI(’,a’T<O)dk/+q7b/¢(0) = dLaT(T)dk+q,b¢(T)dL,af¢(O)dk'+q,b%(0))>

—i _ =
= S [Flb 0t @ Pl k=) = Bk a, ) Fila(k, —7)] |
Since F%7 (k,iwy,) = —F57 (k,iwy), we have (TrmZ,m’, ) = 0.

For singlet pairing, ¢’ = &, the above expressions become

90 y
XZb,a’b/ (q,82)

T

N

k,iwn

G (k + q, iwn, + 1) Gro (K, iwy) — Z 77 (k + q, iwy, + an)fZ,Ua(k, zwn)]

for the irreducible charge susceptibility and the longitudinal irreducible spin susceptibility

beomes

Z,O .
X;r;)’a’b’ (q? ZQ?’L)
r
N

k,iwn

G (kK + q, iwn + 19, Gy o (k, iwy,) Z F57 (k + q, iwy, + iQn)FZf'a(k, iwn)] ,
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as well as the transverse ones

(L"O .
x’;;,,a,b«q,mn)

=-_ Z [Gba k + q,iw, + 12,) Gy a(k, iwy,) — Zbe/ k + q, iwn + i) Fory (K, iwn)]

k JiWn,
and
my,0 .
Xab,a’b’ <q7 ZQn)

=—— Z [Gba k + q, iw, + 1) Gya(k, iwy,) — Z by ( k+q,iwn+i9n)FZ/2(ka lwn)] :

k ,iWn,

As derived in the last section, the following relation holds
97 (K, iwy) = —FI7 (K, iwy,)
F‘;;’(k, iwy) = F77 (k, —iwy,)

which yields x™ = ™" = x™’. Therefore, we simply have two types of irreducible suscepti-

bilities: the charge irreducible bubble

,0 .
XZb,a’b’ (q,i€2n)

-3 X

k,iwn,

Gpo (k + q, iwp, + 12, Gro (K, iwy,) — Z 77 (k + q, iwn, + i) FI2 (k, —iwn)]

(3.4)

and the spin irreducible bubble

70 y
XZb,a'b' (q, i€2)
T
N

k. iwn

Ghrar (K + @, iy + 1) Gy a (K, iwy) Z 97 (k + q, iwy + i) F7 (K, —iwn)] :

(3.5)

Again we notice the relative sign is different in the two channels indicating the constructive

effect in one channel whileas destructive in the other.
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3.5.2 FLEX Susceptibilities

Next we need to evaluate the renormalized fluctuation propagator in FLEX approximation,

in which we take into account all the bubble and ladder diagrams as demonstrated in Fig. 3.1.

""‘*\ Ve *’\ & : : :
AR == 2 (e L e
bubbledlagrams ladder diagrams

Figure 3.1 Diagrammatic demonstration of the renormalized fluctuation propagator. The
higher-order diagrams contain bubble and ladder series with the double line refer-
ing to the renormalized single-particle propagator and the dashed line indicates the

bare interaction, here is the Hubbard U-matrix.

Recall that the interaction Hamiltonian can be expressed as

1
Hmt - 5 Z [balM(_q)Ug1a4,a2a3ba2a3 (CI) + mglm(_q) (_Ugla4,a2a3) mgzag (Q)] :
qQ,a;,x

Note that the prefactor 3 eliminates the symmetry between b(m)i4 and b(m)se3, that is the
exchange between the two fluctuation legs. The renormalized propagator can be obtained in

the standard perturbation theory

XZ’I)I;L’IEX@L 7) = (Trbap(q, )by (—9,0)) FLEX

1 B
= Z ' <> d7'1 x / dTn
n.: 2 0 0

n

T bab q7 Z a1a4 —q1, Tl)Ua1a4’a2a3ba2a5 (Cl1, Tl))

q1,a;

Z (bb1b4 QH,Tn)Uglb4’b2b3bb2b3 (qann)) bay (—4,0))

an;b;
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in terms of fluctuation correlators it becomes

c,FLEX
ab,a’t’ (q’ )

= <T7-bab(q7 T)ba/b/ (_q’ 0)>+

B
+ (—1)/ dry Z (Trbap (A, T)bayas (—ar1, 7)) UL %29 [(Trbayas (A1, T1)bay (=4, 0)) FLEX]
0

q1,a;
that is
CFLEX a1a4,a20a: CFLEX
Xab a’b’/ (q7 ) Xzzb a’b’(q’ / dTl Z Xab ,a1a4 q’ )Uc ranaz 3Xa2a3 a'b’ (Q7 Tl)
0 q,a;
Then we obtain the Dyson series
c . c,0 . c,0 . aja4,a2a
Xab@’b’ (q7 ZVTL) = Xab,a’b’ (q7 “/n) - Xab,a1a4 (q7 ZVTL)UC 164,82 Bxagad a'b! (q, ’Ll/n)

This pattern obviously applies to the spin-fluctuation propagator as well. So finally we have

together

b . , - . o c,0 .
[511 ,a203 +Xab a1a4(q7zyn)Ug1a4 azaa} ngag,a’b’(q’ ZVn) = Xab,a'b'<q7“’n)v

) ,0 . . ,0 .
|:(Sab7a2@3 B XZb,a1a4 (q> Zyn)Ugla47a2a3:| XZzCLS,a’b’ (qv ZVn) - XZb,CL'b' (q’ Zl/n) ’ (36)

In terms of matrix form, they can be written as

~ ~ \—1
laive) = (T+Xam)0°) X (a,ivn).

- —1
Playive) = (1—)25’0(q,iun)U5> 0(q, ivn). (3.7)

3.6 Self-energies and Effective Interaction Vertices

In this section we calculate the single-particle self-energy (including normal and anomalous
self-energies as shown in Fig. 3.2) in FLEX approximation, which incorporates the contribution
of the interaction from the third and higher orders. FLEX formula has double counting problem
on the second order, so we need to subtract it in the FLEX formula. We will calculate the first-

and second-order diagrams exactly and add them to the interaction vertices later.
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Figure 3.2 Diagrammatic illustration of the normal and anomalous self-energies. In FLEX
approximation, the internal interaction line (double curved line) is the renormalized
fluctuation propagator and the internal particle line is the renormalized/dressed

quasiparticle propagator.

Since there are four fluctuations involved in the intermediate interactions, we are working

on them separately for G and F'.

3.6.1 Normal Self-energy

Using perturbation expansion, the normal Green’s function renormalized by charge fluctu-

ation is obtained as
7 (k. 7) = —(Trdlieqo (T)dl,, (0))

1™ /1\" 1P
- — Z ( ) <2> ‘/0 dTl e dTn<TTdkaU(T) Z (ba1a4(—(h; Tl)Ug1a47a2a3ba2a3 (QL 7_1))

q1,a;

’ Z (bblb4(_qn’ Tn)Uéjlb47b2b3bb2b3 (qm Tn)) dibcr(O»
An,b;

In terms of FLEX propagator it becomes

B
7 (k,7) = —(—1)2 / dridr, Y Umeaeasyhbubbey

0 q,a4,b;
<TTdkaU (T)ba1a4 (_CL Tl)bbgbg (Cb Tn)dLba (0)> [(TTba2a3 (q7 Tl)bb1b4 (_qv Tn)>FLEX]

where

(T dicao (7)basas (= T1)bbaty ()i, (0))
1
= 5 Trtheao (T)di g, (7)) (Trhema. s (7)o (7)) (Tl () (0).
Thus we have in frequency space the expression

Goy(k, iwy) =

aal a4bo

1
Z G?,.. (k,iwy,) [2Ug1“4’“2“3xg2a37b1b4(q,iun)Ué’lb4’b2b3G" (k — q,iwn —ivy) | Gpp(k,iwy).

Q,Vn,ai,b;
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In a general notation of indices, it is written as

ng(kv an) =
Z G? . (k,iwy) [ e O‘Bxaﬁ (9 i) UR™ GO (k — q, iwn — ivy) Gk, iwy,).
qﬂ’n

We subtract the forms of the self-energy and interaction vertex from it

29V (K, iwy,) Z Z Va e "b (d, ivn) G (k — q, iwy, — ivy,),

q,Vn Mm,N

Vjilflctl4,bzb3 (q’ iVn) _ Z Ua m, aﬁXaﬁ o (q’ ZVn)Ué“”nb/_
aﬁ,/w

Similarly the interaction mediated by the longitudinal spin fluctuation gives

»(k, 7) / dT1/ dry(— (M0, (a0 T1)MG 3, (—9, T0)) FLEX]

> ymesazasybibabobs (T dy o (1YmE, o, (—d, 7MLy, (a4 ) dl, (0))
q,a;b;

where

<TTdkaa (T)m21a4 (—a, Tl)migbg (a, Tn)dii-(bo' (0))

1

= 5‘72 (Trdxao (T)di’alg ()N (Trdk—q,as0(T1 )dI{—q’bQU (T ) (Trdi b0 (Tn)d;r(bg (0))

Therefore we have
ng(k, an) =

. 1 o . . o ;
Z Gam k an) |:2Ua1a4’a2a3Xa2a3 b1by (quVn)Ublb47b2b3Ga4 2(k — QW — ZVTL):| Gbgb(kv lwn)‘

q,Vn,a:b;

It can be shown that the z-transverse fluctuation contribution results in
ng(k, an) =

S Gy i) | GBI (i) UG (O = i )| G0 ).

q,Vn,a;:b;

And for the y-transverse fluctuation
Goy(k, iwy) =

) 1 ) ) ) ) )
Z Goa, (k,iwy) [2U51a4’“2“3xz§237b1b4(q,zun)Ub1b4’b2b3Gg4 ,(k —q,iw, — wn)] G,‘)’Sb(k, iwn).

Q,Vn,a;b;
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Since x™ = x™" = x™ = x*, in a general notation they read

Gav(k,iwn) =Y Gaar (K, i) 57 (K, itwn, ) Gy (K, iwn),
a't!

with

S (kiwn) = 3 V™™ (A ivn) Gonn (K — g iy — i)

q,Vn Mm,N

where the effective interaction vertex contains two terms
'm,nb’ . ’ / . ’ / .
Vﬁ]m n (q7 Zl/n) — V;a m,nb (q? ZVn) + Vca m,nb (q7 'an)y
with the charge term

’ ’ . 1 ’ . 0 . /
va m,nb (q,ivy) = 3 Z U m,af [Xgﬁ,;w(q’ W) — ng,uy<qv“/n)} Uéﬂ/,nb ,

af,uv
and the spin term
’ ’ . 3 ’ . 0 . 4
Vi) = § S U [\ i) <X )] U2
aﬁvﬂ”

3.6.2 Anomalous Self-energy

Now we evaluate the anomalous self-energy as well as the pairing interaction associated with

it. Similar to the above, start with the density-fluctuation contribution
o (K, 7) = =(Trdiao (T)d—1b07 (0))

—1™ /1\" rP
Z—Z( ) <> /0 dry - - drp (Trdiaes (T) Z (bayaq (—a1, 7)) U929 h, 0 (A1, T1))

n! 2
q1,a;

: Z (bb1b4(—qn7Tn)U51b4’b2b3bb2b3(qn7Tn)) d—xbo(0))

An,;b;

n

Again in terms of the fluctuation propagators it becomes

, B
a (k,7) :/ dridry Yy US2% [(bagay (Q, 71)Byby (0 7)) PLex] U002
0
q,a:b;

(—1)*(Trdicao (T)bayas (— s T1)bbsbs (A Tn ) d—kbor (0))

where

<T‘rdkaa (T)ba1a4 (_qv Tl)bebg (q, 7_n)d—kbo” (0)>

<T7'dkaa (T)dLalg (Tl )> <T7'dk—q,a4a (Tl ) d—k—i—q,bga’ (Tn)> <TTdT,k7b20/ (Tn)d—kbo’ (0)>

1
2
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yields the frequency representation
ot (K, iwn)

Z Goa, (K, iw,) X

Q,Vn,aib;
1 ) . . / .
[—2U31a4’a2a3xg2a37b1b4 (q, wn)Ublb“’b2b3}7’c‘l’4‘73 (k — q,iw, —ivp) | Gy, (—k, —iwy).
Follow the same procedure we have for the longitudinal-magnetic-fluctuation mediation

/ .
o (K iwn)

Z Goa, (K, iwp) X

Q,Vn,a;b;

1 z . . / .
[2<—o—a’>U§1“4v“2a3xggag,m<q,wnw;’lb‘hb?bs 7k i, = i) | G (ki)

and the transverse z-fluctuation

(k iwp) = Z Goa, (K, iw,) X

Q,Vn,aib;
1 @ . b1ba,bob . . / -
X [—2U8a1“4’a2a3xgéa37blb4(q,wn)U 194,02 3}7’6‘;4‘73(k —q, 1w, — ivy) | G, (—k, —iwy).
as well as the y-fluctuation part

/ .
ab (Kyiwn)

Z Goa, (K, iwn) x

q,Vn,a:b;

1 /
[2<aa’>U:1“4*“2a3xzzig,blb4<q7m)rf;’l“v*’?”s Tk i = i) | G (i i)

Again in singlet pairing, o’ = &, we have the charge contribution

o (kiwn) =— > Gy (K, iwn)

Q,Vn,aib;
1 Ua1a4,a2a3 c - Ubl by,b2b3 FO’O’ k - - GE’ k .
_§ c Xazag,b1b4 (q’ ZVTL) aqb 3( —q,Wn — ZVTL) bbo (_ ) _/Lwn)7

and the longitudinal spin contribution

99 (k, iwy) = Z Goa, (K, dwp) x

q,Vn,a;:b;

agbs

1 _
|:2Ua1a4’a2a3Xa2a3 b1ba (qv ZVH)Ublb47b2b3FUU (k —-q, Wy, — ZVn):| Gl?lm (_kv _iwn)7
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as well as the transverse spin contributions

99 (K, iw,) = Z Goa, (K, iwy) X

Q,Vn,a;b;

1 P . . . 5 .
|:_2Usala4,a2a3x7;12a3’blb4 (q, ZVn)U§1b4’b2b3FaiU3 (k — q,iwy — ZVn)] ngQ(—k, _an)’

99 (K, iwp) = Z Goa, (K, iwp) X

q,Vn,a:b;
a4 3

1 _
|:_2Usala47a2a3xg§~;37b1b4 (q’ iVn)Ub1b4’b2b3FUU (k — q, iwn — Zl/n):| ngg(_k’ —iwn).

Since the anomalous Green’s function has the property shown before

(fl)&(kﬂ iwn) = - gbg(kv iwn)

we are left with two types of contributions

99 (K, iwy,) = Z Goa, (K, dwy) X

Q,Vn,a;b;

1 _
|:_2Ucala47a2a3X22a3,b1b4 (q, iVn)Ub1b4’be3FUU (k — q,iwy — Zl/n>] ngz(—k, —iwn),

agbs

and

99 (k, iwy) = Z Goa, (K, iwy,) x

qvl/Thalb

3 _
|:2Ugla4’a2a3X22a3,b1b4 (q7 iVn)U£1b4’b2b3Fgo (k — q, iwn — ZVn):| ng2(_k7 —iwn),

asbs

from density and spin fluctuation channels, respectively.

Therefore in terms of the general notation of indices it reads

5 (K iwn) = — Y Gy (K, i) 7Y (K, iwn) Gy (—k, —iwn,),

a’bt/
7Y (k,iwn) = Y > VI (@, ivn) FIG (k — @ iwn — ivn),
q,Vn m,n

where the effective pairing interaction contains two contributions

Vz’m,b’n(q’ Zl/n) _ V;a,m’b/n(q, ZVn) _ V;a’m,b'n (q, ’Ll/n)
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3.6.3 Self-energies and Higher-order Interaction Vertices

We summarize all the results from the last two sections here for convenience. The expressions

for the normal and anomalous self-energies are writen as

't (k,iwy,) = Z Z Va m,nbf (A, i) G (k — qQ, iwy, — ivy),

q,un m,n

7Y (k. iwy,) = =N Z Z VI (i, ) FI0 (K — q, iwn — ivy),

q,Vn m,n

with the following definitions for the effective interaction vertices
Vﬁf’m,nb/((% iVn) _ ‘/Sa’m,nb’(q7 iVn) + V;a’m,nb’ (q’ iVn),

'm. b . . .
VX m, "(q,wn) _ Vsa,m’b/n(q,lyn) _ V;a'ml)’n(q’,byn),

where the charge and spin interaction vertices are due to exchange of fluctuations

Vca/m’nb (q,ivy) = Z U“ m,af [Xag (A i) — ng W(q, wn)} Uc*“””b/,
a,B N7

’ 0 . /

Ve m,nb’ (q, ivp) = Z Ua m,af [Xaﬁ NV(q’ ivp) — XZz,B,,uu(q’ zyn)} Uéw,nb ‘
a,B uv

3.7 Low-order Diagrams

As we mentioned earlier, FLEX formula have double counting problem in the second order
and they don’t include the first order contribution. Therefore we need to evaluate them by
applying the basic perturbation theory. To calculate the lower-order diagrams, it is much easier
to employ the following expression of the interaction Hamiltonian

Hip = Z U@l | d; yod] aporiase
i,a4,00"
as we showed before. In momentum space it is nothing but
Hipt = Z U a1a2a3a4dkl aroy Tksazon dlizyazgi iy 040} Ok +ko,ka+ka -
kz,al,Ulol
Due to the lengthy steps, we present the detailed derivation in Appendix A.1 and just show

the final results in below.
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3.7.1 First Order Contribution — Hartree-Fock Terms

The first order contribution is static without energy-momentum dependence, i.e., Hartree-

Fock terms. The Hartree-Fock term in the normal self-energy is obtained as

ng(k7 Zw'fl) = Z GCLO/ (k7 iwﬂ)Z%l};Gb'b(k7 iwﬂ)?
a’,b’

with

/ / T .
(}{% = ZVXI THnlgbb Omn + N Z Gmn(k/azw;) )

K W,
Va m,nb’ (SU U )a’m,nb’
NHF = s c :
And in the anomalous self-energy it is
! a'b / .
(K, iwy,) = ZG (K, iw,) DY " Gy (—k, —iwy,),
/ b/
with
(I)JU’,a’b’ o Va’m,b’n T Fo-g’ K. i
HF = AHF N mn (K iwp) |
m,n kl7w'£7,

’ / 1 ’ /
VIR = 0

Note that in the multi-orbital case, Hartree-Fock contributions can not be simply absorbed into

chemical potential any more due to their matrix structure in orbital space.

3.7.2 Second Order Diagrams

In the second order contributions, the normal self-energy is obtained as
/ 'mnb . .
DS Z)’ (k, iwy) Z Z Vﬁ,g)" (a, i) Grn (k — q, iwy, — ivy)
q,Vn M,N

with

T . 3
V]:I/',gsn (q7 ZVH) = Z [ Ua i aBXaﬁ uv (qv “/n)U/W i + Ua ™ aﬁXaB ,u,l/(q7 ZVTL)UW/ b
aﬂ,ﬁw

3 ’ v, v /
+ §Ug m’aBXa/J’ ,ul/(q> ZVH)UM n Ua " aﬁXaB ,uy(qv Zyn)U(lf b ]
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Gathering the subtracted second-order contributions in the last section, the total second-order

contribution to normal interaction vertex is

a’'m,nb’ . 3 ~ ~s ~c
Vi @) (q,zun)—§ U, —fU 00,

— Z [ Ua maﬁxaﬁ w/(q’“/n)U;w ,nb’ Ua maﬂxaﬁ uy(qJVn)Uéw’nb
af,pv

3 . ~ -
= —ZU5>~<1US L XU,

where

And the anomalous self-energy reads

<1>‘(’§)’“” (K, iwy) = ZZV“mb”q,wn)FW(k Q. i — V),

q,Vn m,n

with

I 7b/ . v / v,
VZ,Z;L) n(q7 Zl/n) = Z [< Ua ™ aﬁXaﬁ uv (q7 “/TL)UE A Ua ™ aﬁXaﬁ /u/(q> ZVH)UM 4 n)
af,pv

3. 1. . /
+ EU; m’aBon,B uu(qa an)UuV bn ZUC(L m’QBX§B,MV(q7 /LVTL)U&LW’b n]

Gathering the subtracted second-order contributions in the last section, the total second-order
contribution to the anomalous interaction vertex is
a'm,b'n . 35 507 L~ _cop
VA’(2) (q,ivpn) — B sX 7 Us + *UcX U

— Z Ua m, aBXaﬁ w](q’ an)ij b'n Ua m, aﬁXaB W((L Zl/n)UéW’b n
af,uv

3.8 FLEX Interaction Vertices

Finally, we can write the expressions for the particle-hole and particle-particle scattering
vertices (diagrammatically demonstrated in Fig. 3.3) from second- to infinite-order in FLEX

approximation.
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particle-particle scattering %

Figure 3.3 Diagrammatic demonstration of the effective particle-particle and particle-hole in-

particle-hole scattering

VAVAVAVA

teraction by the exchange of fluctuations. The double curved line refers to the

renormalized fluctuation propagator and the single line represents single-particle

propagator.

Adding the specific expressions of the low-order diagrams to the FLEX vertices, we find for
the particle-hole scattering vertex

V;\zf’m,nb/ (q’ Zl/n)

af,pv

—Z[

af,uv

1 ’ X ’
Z |: Ua m, aBXocB uy(q7 ZVn)U'uV ,nb’ 5Uvéz m,aﬁxgﬁ’uy (q’ ”/n)Uc;w,nb :|

/ 1 / /
Ua m, a,BXa/B ;w(q’ an)USm/’nb Ua m, aﬁXaB o (q’ ,“/n)Uéw,nb :| + 5(?)U _ Uc)a m,nb
and for the particle-particle scattering

vy (i)

3 / /
Z |: Ua e aﬁXa,B ,u,u(qa ZVH)U£V7nb Ua " aIBonB /,LI/(q’ Zyn)Ué“/’nb :|
af,pv

/ 1 /
B Z [ Ua " aﬁXaﬂ ;w((I, ivp ) UL ey Ua " aﬂXaB,/ﬂ/(CI, Z‘Vn)Uc“V’nb] i(U + U )a b
af,uv

In matrix form they are written as

4 3. .o 1. N D 70
VN(‘L“’n) = 5 sX (qy'“/n)Us 5 (qJVn)U Z sX U Z ch c+t 5 (3Us - Uc)
~ ) 3~ Lo~ 1~ N 3. o~ 1~ o~ 1/~ -
Va(aq,iv,) = iU xX°*(q,ivy)Us — §U X(a,ivy)U, — ZU XU — ZUCX U, + B ( .+ Uc> .

Meanwhile, the self-energies are given by

2 (,iwn) = DS V™™ (i) G (k — @it — ivy),

qQ,Vn MmN

7% (K iwy,) = Z Z VX m. "(q,ivn) F22 (k — q, iwpn, — ivp).

q,Vn m,n
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The building blocks in this formula are the electron Green’s functions, G and F, and the
coupling constants, Uy and U,. We have known the specific form of the coupling constants
when we discuss the interaction Hamiltonian. Also the early discussion of the non-interacting

Hamiltonian gives the bare matrix Green’s function as

Go(k, iwy) ! = iw,1 — (x — /ﬁ) .

3.9 Renormalized Matrix Green’s Function

Then when we take into account the effective interaction due to the exchange of fluctuations,
the single-particle Green’s functions are renormalized and there appear the anomalous compo-
nents as a consequence of the interaction-driven phase transition to superconducting state.

In Nambu space, the matrix form of the Green’s function is given by

dkaa(T)
Gk, T)ap = —(Tr dl, (0) d_ 5(0) )
T et | L 0
gb(k? T) gb&(kv T)

Fgg(k7 T) _Gga(_k7 _T>
Transforming to Matsubara frequency it becomes
G, (k,iwp) F7 (k, iwy,)
G(k,iwp)ap =
Foy (k,iwn) —GE (—k, —iwy)
Since we have the transformation properties for Green’s function matrices obtained earlier
G(k,iw,)! = G(k, —iw,)*
ng(k’ iwn) = gba(*kv iwn)*v
it holds
ng(k7 iwn) Fgl?(k’ iwn)
Gk, iwp)ap =

Fgf(—k, iwn)* —G‘;b(—k7 iwnp)*



61

That is
G(k)ay = =

where k = (k,iwy,), K’ = (—k, iwy,).

The full Green’s function is a composite matrix in the sense that it is a 2 X 2 matrix in the
fermion space as shown above, and meanwhile it is an M x M matrix in the orbital space. The
two subspaces are independent of each other. Therefore we can either treat the whole matrix
as an M x M matrix with each matrix element to be a 2 x 2 matrix with the specific orbital
indices as we did above, or treat it as a 2 x 2 matrix with each element to be an M x M matrix

with the specific type: G or F'. For the latter, we write the matrix Green’s function as

E(K) —G(k)*
where G and F are M x M matrices in the orbital space, k = (k,iw,), k' = (=k, iwy,).
Then the matrix form of the Dyson-Gorkov equation becomes
G(k) = Go(k) + Go(k)S()G(k)
= (1-Go(k)D(k)) G(k) = Co(k)
-1

— G(k) = [Go(k)’l - 2(1@}

where

(i)aa(k/)* —i(k/)* ('I’)(k/)* _2(]{/)*

and the bare Green’s function is diagonal in Nambu space
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since F'(k) = 0 on the quadratic level.
Solving the matrix equation formally we obtain two independent equations which are coupled

matrix Dyson-Gorkov equaitons

G(k) [Go(e)™ = S(k)| = PR)B(R)" =1,

~ *

Gk (k) + F(k) [ég(—k)*l - i(k')] — 0.

Which can be diagrammatically demonstrated in Fig. 3.4.

—» — ++gm:++gs-:-:

> = = + (=
2 d

Figure 3.4 Diagrammatic demonstration of the Dyson-Gorkov equations. The double-line

refers to the renormalized or dressed single-particle propagator, while the single-line

indicates the bare one.

In this way, the 2M x 2M matrix equation is simplified into two M x M matrix equations.

From the second equation we solve for F'

~ ~ -1
(k) = ~G(R)®(k) [G5() ™" = =*()]
substitute it into the first equation
~ ~ ~ ~ ~ ~ ~ -1 .
G(k) [Gok)™" = S()| + G(RY®(R) [Go(k) =7k @Gk = 1
~ ~ - ~ ~ ~ -1 . -
— G(k) [Go(k:)‘l — S (k) + B(k) [Gg;(k')—l - E*(k’)] @(k’)*] — i

we find the expression for G

G(k) = mel—iw+®wﬂ%wvl—ﬁ%ﬂ (k)"

= [mni — (B — p2) = S(k) = B(k) [iwnd + (B — ul) + 5 ()] B @(k’ﬂ ;
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where k = (k,iwy,), k' = (—k, iwy,).
It is easy to check that the above matrix formula can reproduce the expressions in the the
single-band case
(ex + X(k)) + (iw, — Y(K))
(iwn — Y(K))? = (exc + X(k))? — |B(k)[*’

®(k)
(iwn = Y(k))* = (exc + X(k))* — [@(K)[*

where
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CHAPTER 4. SELF-CONSISTENT SOLUTION

To perform the calculation for iron-based superconductors, we consider a Hamiltonian de-

scribed by a 2-orbital tight-binding model and on-site multiorbital electronic interactions,

H=>" etdl  die+ U niatniay + U D nianap

k,ab,0 7,0 i,a>b
+Ju Z dj‘-agdjbgldiaa’diba
i,a>b,o0’
+ 0 dl el dipydiny (4.1)
i,a7#b
where ne = dzaadmg is the occupation number of the orbital a with spin ¢ at site ¢ and

Nia = Y., Niac With the orbital index a(b) standing for the Fe orbitals d,, and d,,. The
tight-binding description [Raghu et al. (2008)] is given by &Y = /" = —4t4sink, sink, and
ept = —2ty cos k, — 2ty cos ky, — 4t3 cos kg, cos ky — 1 where a, b = z(y) stand for d,.(dy) orbitals
and the momentum components with a # b. We use the tight-binding parameters ¢; = —0.33,
to = 0.385, t3 = —0.234, and t4 = —0.26. [Sknepnek et al. (2009); Zhang et al. (2009a, 2010)]
Near half filling this tight-binding model gives rise to the F'S that contains two hole pockets
and two electron pockets for which we refer to the hole pockets around (0,0) and (7, 7) as
ap and ay sheets, respectively, and the electron pockets around (m,0) and (0,7) as 1 and
B2 sheets, respectively, in the unfolded (1 Fe per unit cell) Brillouin zone (BZ). As noted by
Kuroki et al. [Kuroki et al. (2009)] and Kemper et al. [Kemper et al. (2010)], the appearance
of a hole pocket around the (7, 7) point of the unfolded BZ is crucial to the formation of fully
gapped sT state. The predominant Fe-orbital character distribution on each FS sheet has been
analyzed in Ref. [Graser et al. (2009)]. In the 5-orbital tight-binding description, [Kemper et al.

(2010)] a third orbital d,, predominantly contributes to the hole pocket at the (, ) point and
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partially to the (m,0) and (0,7) electronic pockets. Although the 2-orbital model does not
include the third predominant orbital composition on the FS, as we will show later, the intra-
orbital nesting configuration of it remains similar to that of the 5-orbital description, which is
believed to play an important role for the magnetic fluctuation and the superconductivity in
the itinerant picture. Thus this simplified 2-orbital description qualitatively captures the key
features of the electronic structure near the Fermi energy, serving as a good starting point for
the understanding of the interplay between magnetism and superconductivity in the Fe-based
superconductors.

The on-site interactions consist of the intra- and inter-orbital Coulomb repulsion controlled
by the coupling constant U and U’, the inter-orbital Hund’s rule coupling Jz and pair hopping
term J'. For the bare Coulomb interaction, due to rotational symmetry, the coupling constants
are related by U = U’ + 2J and J = Jyg = J'. However, as discussed in the Ref. [Zhang et al.
(2009a)|, when they are parameters in an approximate theory such as FLEX which ignores
vertex corrections, they are not identical to the bare Coulomb matrix elements but should
be considered as low energy coupling parameters that have been renormalized by high energy
excitations. Therefore we study cases with various parameter values and present the typical
results here.

Within the framework of the self-consistent fluctuation exchange approximation, we search
for stable SC solution using the above itinerant model at different coupling constants, doping
levels and temperatures. Further we examine the features of the magnetic response for systems
that develop superconductivity induced by exchange of short-range fluctuations. In FLEX
formalism both spin and charge/orbital fluctuations contribute to the pairing interaction, but
the major contribution to the pairing glue comes from spin fluctuations for the parameter regime
we are studying. The nested structure of the FS leads to peak in the magnetic susceptibility
near the AFM wave vector Qapy = (0,7), (m,0), which is strongest at half-filling, n = 2.0 per
site, indicating its correspondence to the parent compound.

The calculations are performed on imaginary frequency axis for a lattice of 64 x 64 sites
with 8192 Matsubara frequencies. When self-consistently solving the FLEX equations, the

convergence of iterations is considered achieved when the maximum relative difference between
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two consecutive iterations of the self-energy element, $%(k,iw,) or ®®(k,iw,), is less than
1076, Please refer to Appendix B.2 for the information of numerical implementation.

It turns out that compared with the single-band case the search for self-consistent solution
in multiorbital model is a much more difficult task: (1) it is more sensitive to the Fermi surface
configuration and the spin flucutation structure; (2) it takes much longer time to find a stable
solution. The iteration number can be on the order of ten thousands before a convergence
is reached. Having tested order parameters with different symmetry type, we only found one
type of symmetry, the s+ state associated with commensurate short-range spin fluctuations,
surviving. Below we briefly describe our solution regarding the magnetic structure and the

order parameter function in this model.

4.1 Comensurate Antiferromagnetic Correlation

Figure 4.1 Magnetic susceptibility in momentum space. It shows strongly enhanced antiferro-
magnetic fluctuation.

We find strongly enhanced comensurate antiferromagnetic correlation in this system as

shown in Fig. 4.1. Clearly we see that the spin susceptibility is peaked at the antiferromag-
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netic wave vector (£m,0) and (0, £7), which is consistent with the experimentally established
magnetic structure in 1111 and 122 structures as discussed in Chapter 1.

For certain parameter sets, the system can develop incommensurate magnetic peak. How-
ever, the incommensurate spin fluctuation structure does not support superconductivity. In our
calculation, this kind of structure can not provide sufficient pairing condition. As we will see
later in Fig. 5.1, in the superconducting state Fermi surface is not perfectly nested, commen-
surate fluctuations match better the pair scattering between hole- and electron-pocket. This is

different from the magnetic splitting in the d-wave case where the pair scattering is intraband.

4.2 Superconducting Order Parameter: s+ wave

0.15

01

0.05

-0.05

-0.1

Figure 4.2 Supercoducting order parameter structure in momentum space. It has the sign-re-
versed s-wave symmetry.

A finite superconducting order parameter develops associated with the antiferromagnetic
spin fluctuations, exhibiting sign-reversed s-wave, or say st-wave, symmetry as shown in Fig.

4.2. This indicates that spin fluctuations are capable to serve as the mediating glue for Cooper
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pairing formation in this system. And the antiferromagnetic spin flucatuation structure supports
st-wave symmetry. Based on a systematic study applying different-symmetry order parameters
as the initial values, we did not find other symmetry type survive the iterations. Therefore, we

suggest that st-wave state is most favourable in this system.
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Figure 4.3 The temperature dependence of the superconducting order parameter is shown by
the red points. The order parameter is also very sensitive to Hund’s coupling and
the pair hopping term J as shown in the inset by the blue points.

Besides a temperature dependence of the order parameter as shown in Fig. 4.3 we also find
that the superconducting order is sensitive to the Hund’s coupling Jy; as shown in the inset of
the figure. Only when the Hund’s coupling is strong enough can superconducting emerge. Since
here we take the pair hopping term J' = Jg, we suspect that the pairing hopping term might
be also important for superconductivity. Both Jy and J’ are interorbital couplings, therefore

they could enhance superconductivity by increasing interorbital transitions.

4.3 Interorbital Coupling

Indeed, we find that interorbital may help gap formation as can be clearly seen in Fig.
4.4. In this figure, we compare two cases: in case I (the upper row) the system develops huge
magnetic peak in the intraorbital channel but a very tiny peak in interorbital channel. In case II

(the lower row) the intraorbital peak is much less than that in case one but it develops a similar
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interorbital peak. Case II is obviously less magnetic than case I. However, with the assistance of
the mild interorbital interaction, case II establishes an order parameter with similar magnitude
as that in case I. This might happen in real material given that the system does not have

gigantic magnetic fluctuations.

intra-orbital Vi inter-orbital Va

ceo2t82888EEE

coB85888B8E5EE
co2t828888EE

Figure 4.4 We compare two cases: in case I (the upper row) the system develops huge magnetic
peak in the intraorbital channel but a very tiny peak in interorbital channel. In
case II (the lower row) the intraorbital peak is much less than that in case one
but it develops a similar interorbital peak. Case II is obviously less magnetic than
case I. However, with the assistance of the mild interorbital interaction, case II
establishes an order parameter with similar magnitude as that in case I.
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CHAPTER 5. SPECTRAL INFORMATION

5.1 Introduction

The magnetic excitation spectrum carries important information on the nature of magnetism
and the characteristics of superconductivity. For the latter, it has been discussed in the context
of cuprates that an observation of a sharp quasiparticle-like resonance peak in the spin fluc-
tuation spectrum with the onset of superconductivity may strongly indicate a sign change in
the gap structure due to the superconducting coherence factors. And the analogous discussion
has been applied to the iron pnictides based on the random phase approximation (RPA) and
the mean-field BCS approximation, showing that a strong spin resonance occurs in the s*-wave
SC state. This indicates that the spin resonance phenomenon is compatible with the s*-wave
SC gap. Meanwhile, as a momentum resolved probe of the spin correlation, inelastic neutron
scattering (INS) experiments have reported the observation of resonance mode in the supercon-
ducting state. Notice that the spin resonance is a consequence of the sign-reversed gap opening
in the quasiparticle spectrum not an evidence for the magnetic pairing glue. In order to reveal
the relationship between AFM fluctuations and superconductivity in the iron-based materials,
more detailed inspections on the structure of the spin fluctuations are needed. Recently, INS
measurements observe the same type of anisotropic feature in the magnetic spectrum both in
the normal and in the SC state of the 122 system. [Lester et al. (2010); Diallo et al. (2010);
Li (2010)] This anisotropy is characterized by larger broadening along the transverse direc-
tion with respect to the AFM wave vector Qapy in momentum space. Ref. [Li (2010)] also
shows no changes observed in the spatial correlations through 7., which is consistent with the
magnetic scenario in that the onset of superconductivity does not change magnetic correlation

length. Early theoretical exploration on the short-range spin-fluctuation induced superconduc-
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tivity has argued that magnetic fluctuations throughout an extended momentum region near
AFM wave vector Qapn are relevant to superconductivity. Thus it raises a question: Is the
observed anisotropic feature of the spin fluctuations, i.e., larger broadening along the transverse
direction in momentum space, consistent with superconductivity in this system?

On the other hand, as discussed for cuprates, [Abanov and Chubukov (1999); Abanov et al.
(2001); Eschrig (2006)| an important identification of the mediating boson, if it exists, is from
the fermionic spectrum which can be observed by angle-resolved photoemission spectroscopy
(ARPES). Indeed, ARPES has reported the observations of kink feature in the electronic dis-
persion for the hole-doped 122 system. |Richard et al. (2009); Wray et al. (2008); Koitzsch et al.
(2009)| However there is discrepancy in its vanishing temperature among the observations from
different groups. If it is unique to the SC state, i.e., vanishing above T,, and the subtracted
bosonic mode energy coincides with the resonance energy, it would be a strong evidence for
magnetic pairing mechanism.

Motivated by these experimental facts, we perform a detailed investigation of the spin and
charge spectra in the normal and superconducting states, in which the magnetic susceptibility
and the SC gap function are determined within the self-consistent fluctuation exchange (FLEX)
approximation using a 2-orbital model for iron pnictides. This itinerant model calculation
finds a fully gapped s*-wave SC state driven by the enhanced commensurate AFM correlation.
Based on a systematic study on the momentum structure of the short-range spin fluctuations,
we find the same type of anisotropy as that observed in INS measurements. To understand
the interplay between the fluctuation anisotropy and the s superconductivity, we present a
qualitative analysis through the orbital contents and the deviation from perfect nesting of
the electronic structure for the 2-orbital and a more complete 5-orbital model. Meanwhile,
the calculated dispersion of the magnetic resonance mode exhibits an anisotropic propagating
pattern. And the calculated fermionic spectral function shows the fingerprint of electron-mode
coupling as observed in ARPES.

The magnetic susceptibility is theoretically calculated using the Matsubara frequency as

Xs ((L iVn) = Z X?a’bb ((L iVn) s (51)
aa,bb
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with bosonic Matsubara frequency v, = 2naT . Carrying out the analytical continuation
from Mastubara frequencies to the real frequencies numerically using Padé approximant, the

dynamical spin susceptibility is given by
Xs(qa W) = Xs (qa Wy — W+ Zé) ) (5'2)

whose imaginary part Imy, directly relates to INS intensity. Simultaneously the quasiparticle

spectral function is obtained as
1
Ak,w) = —=Im | > G (k, iwy, = w +i0) | , (5.3)
@ a

which corresponds to ARPES intensity.

5.2 Superconducting Gap Structure

For the current model we only find stable SC solutions in the hole doped regime, with the
particle density 1.85 < n < 1.90 per site, driven by short-range spin fluctuations for certain
range of coupling constants. The achieved SC states are of s*-wave symmetry: Fully gapped
on each FS sheet with an overall sign change between the a and 8 sheets. To illustrate the
momentum structure of the gap function, we show the results for a typical set of coupling
constants U = 1.5, U’ = 1.2 and J = J' = 0.8 with particle density n = 1.88 at T' = 0.001.
In this case the system exhibits a transition from the paramagnetic normal state to the SC
state at T, = 0.0075 and the static spin susceptibility xs(q,w = 0) shows well pronounced
peaks at the commensurate wave vector Qapy = (0,7), (7,0) both in the normal and in the
SC state. Note that we do not assign specific units to the parameters and quantities: The
coupling constants scale with the hopping parameters and all energies scale with the SC gap
magnitude while the temperatures scale with T.. In Fig.5.1 (a), we show the renormalized FS
configuration obtained from the intensity projection of the Cooper-pair wave function F'(k,w).
Taking the small damping parameter § = 0.002 in the analytical continuation for the 7" = 0.001
solution and subtracting the gap magnitude from the spectral function A(w) at the Fermi wave
vectors kg for each FS sheet, the variation of the gap magnitude on each separated FS sheet
is plotted in Fig. 5.1 (b). Clearly in this case the gap is nearly isotropic on each pocket. The

ratio 2A /T, ~ 6 — 8 implies a strong coupling system.
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Figure 5.1 (a) The renormalized Fermi surface in the superconducting state. (b) Gap magni-
tude versus angle around each F'S sheet. There is an overall sign change in between

the hole and electron pockets.

5.3 Magnetic Spectrum

In this section we investigate the momentum structure of the short-range magnetic fluctua-
tions that mediate superconductivity and make connection with the magnetic response measured

in INS experiments. Our main points are as follows:

e The short-range spin fluctuations that are capable of driving the fully gapped s* su-
perconductivity generally exhibit an anisotropy in momentum space with g-width larger
along the direction transverse to Qapym than along the longitudinal direction. This can
be understood by examining the intra-orbital scattering processes in systems away from

perfect nesting.

e The momentum structure of the spin excitations exhibits the same type of anisotropy,
which, in the SC state, gives rise to an elliptical shape of the spin resonance mode.
Further, the resonance mode disperses with increasing energy in the pattern broadening
more rapidly along the transverse than along the longitudinal direction. This anisotropic

dispersion of the resonance mode associated with the intrinsic anisotropy of the mode
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leads to more elliptically shaped g-image.

e The dispersion of the magnetic resonance shows an upward pattern with increasing energy
in the nearly isotropic s* state with commensurate magnetic peak. But the weight of the

mode decays dramatically and vanishes above the particle-hole threshold.

e In the strong coupling approach, the resonance energy is affected by the SC gap magnitude

and the magnetic correlation strength.

To illustrate these points, we present the results for the magnetic susceptibility xs (q,w) cal-
culated using the typical set of parameters mentioned in the previous section followed with
discussions. As J. T. Park et al. [Park et al. (2010)| show that the unfolded BZ description of
the magnetic spectrum in the paramagnetic state is justified, our spin-fluctuation spectrum cal-
culated in the BZ with 1 Fe ion is discussed below. The qualitative agreement of the calculated
anisotropy with that observed in INS, in turn, suggests that the magnetic spectrum originates
predominantly from the Fe-sublattice. In the following we refer to the transverse (TR) or lon-
gitudinal (LO) direction as the direction transverse or longitudinal to the corresponding AFM

momentum transfer Qapm.

5.3.1 Results

To analyze the momentum structure of the spin fluctuations, we begin with the static spin
susceptibility Rexs(q,w = 0). As shown in Fig.5.2, besides that the static response achieves
strongest enhancement at Qapwm, spins are correlated spatially in an anisotropic manner with
the largest span along the TR direction and smallest along the LO direction in momentum
space. This results in an elliptically shaped momentum structure. Our systematic study shows
that the degree of anisotropy increases with the deviation from the perfect nesting in the elec-
tronic structure. Moreover, the calculation for the temperature right above and right below the
transition temperature shows that the spatial correlation does not change through T, reflecting
the fact that spin-fluctuation induced superconductivity does not modify magnetic correlation
length when entering SC phase, although it is the same electrons that contribute to the magnetic

and SC properties. This is in agreement with the INS observations. [Li (2010)]
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Figure 5.2 The g-anisotropy of the static spin susceptibility. (a) is the intensity plot of in the
momentum space and (b) shows the scans along the TR (red solid circle) and LO

(blue solid triangle) direction, respectively.

The imaginary part of the spin susceptibility Imys(q,w) contains information on the mag-
netic excitations. As discussed for a sign-reversed SC gap structure, the most striking feature of
the magnetic spectrum is the appearance of a resonance mode at the characteristic momentum
transfer Qarm when entering SC phase in spite of no long-range magnetic order. This sharp

mode is of spin-excitonic type in our model, originated from the Stoner enhancement factor

[det ’i — Xs0 (q, ivn) Us ]71. [Abanov and Chubukov (1999); Eschrig (2006)| Indeed, our cal-
culation indicates a well-pronounced quasiparticle-like peak as shown in Fig. 5.3. In this figure,
the results for the spin susceptibility Imys(Qarm,w) as a function of frequency at the momen-
tum transfer Qapy for temperatures T ~ 1.17,, T ~ 0.97, and T' =~ 0.17, are presented. In
the normal state the magnetic spectrum exhibits a broad continuum associated with the over-
damping feature of the spin fluctuations. The transition to SC state modifies the spectrum by
pushing the spectral weight to higher energy and rapidly developing a resonance mode as the
temperature decreasing. The fact that this mode is made out of a particle-hole bound state in
the excitonic form leads to an energy threshold taking the minimal value of sums of two gap

magnitudes on any pair of F'S points connected by the momentum transfer Qary. Here we refer

to this threshold as © = miny (|Ax| + [AktQ,py|)- For the parameter set under discussion, the
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ratio of the resonance energy to the threshold and to the SC transition temperature are roughly
Wres/ =~ 0.6 and wyes/kpTe ~ 4, which agrees with the experimental values measured for K-

and Co-doped BaFeaAsy. [?Lumsden et al. (2009)]
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Figure 5.3 Magnetic spectrum at the momentum transfer Qapn slightly above (7' = 1.17,)
and below (7" = 0.97;) the transition temperature T, as well as deep in the super-

conducting state (T' = 0.1T).

Next we analyze the momentum dependence of the magnetic spectrum at the resonance
frequency wyes. Figure 5.4 shows the results for Imxs(q, wyes) Where a zoom-in g-image of the
mode at (m,0) is given in the middle. Similar to the static magnetic response, the g-shape
of the resonance mode is also elliptical with maximal broadening along the TR direction and
minimal along the LO direction. This is an intrinsic anisotropy of the magnetic spectrum not
only in the SC state but also existing in the normal state, which has been observed in the INS

measurements. [Lester et al. (2010); Li (2010)]
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Figure 5.4 The g-anisotropy of the spin resonance mode. (a) is the intensity plot of
Imxs(q,wres) at the resonance energy in the momentum space and (b) gives a
zoom-out image of the resonance mode at (m,0). (c) shows the scans along the TR
(red solid circle) and LO (blue solid triangle) direction, respectively. (d) shows the
observed g-anisotropy of the spin resonance mode in two inelastic neutron scatter-

ing experiments.

More interestingly, the propagation of the resonance mode also exhibits an anisotropic be-
havior. Figure 5.5 shows the dispersion of the resonance mode along the TR and LO direction
at T~ 0.17, deep in the SC state. Two features are associated with the propagating behavior
of the quasiparticle-like magnetic excitations in a fully gapped nearly isotropic s* state driven
by commensurate short-range spin fluctuations: First, the resonance mode disperses with in-
creasing energy in an anisotropic pattern broadening most rapidly along the TR rather than the

LO direction as clearly seen in Fig. 5.5 (a) and (c), reminiscent of the anisotropic propagation
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of spin waves in the spin density wave state of the 122 parent compound; [Matan et al. (2009)]
second, the resonance mode disperses upwards in energy with dramatically decreasing weight
and vanishes above the particle-hole threshold €2 as shown in Fig. 5.5 (b) and (d). This upward

dispersion is in contrast to the downward pattern in the d-wave cuprate. [Eremin et al. (2005)]

Transverse dispersion
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Figure 5.5 The anisotropic dispersive behavior of the resonance mode along the TR and LO
direction with respect to Qarm. (a) and (c) are the intensity plot along the TR
and LO direction, respectively, while (b) and (d) show the weight decay of the
propagating mode.

The anisotropy of the dispersion relation enhances the image ellipticity of the measured
magnetic response, if we consider a frequency average of the spectrum over a small window

- A
through the resonance energy, i.e., 5 = Wres+Ow

T80 Joe Ay dwlmys (q,w), mimic the observation in INS.

This enhanced ellipticity due to the combination of the intrinsic and dispersing anisotropy of

the resonance mode is shown in Fig. 5.6, where we take Aw = wyes/4.
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Imy<(a)
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Figure 5.6 The dynamical spin susceptibility averaged over a small frequency window of

Aw = wyes/4 through the resonance energy here.

5.3.2 Discussion of the Spin-fluctuation Anisotropy and the s* Superconductivity

A systematic study of the 2- and a 3-orbital [Daghofer et al. (2010)] models, both in hole
and in electron doped regions for a variety of coupling constants, draws our attention to the
connection between the momentum anisotropy of the magnetic fluctuations and the s* su-
perconductivity. Our normal-state calculations show that different anisotropic pattern of the
fluctuations occurs at different parameter set in different model system, either transversely or
longitudinally lengthened. But the development of short-range spin fluctuations centered at
Qarnm does not necessarily lead to superconductivity. For the various systems we have studied,
the establishment of a stable s state is generally associated with the transversely lengthened
fluctuations. This is the characteristic momentum structure of the static correlations and of the
magnetic spectra both in the normal and in the SC state. It poses a question: Is superconduc-
tivity sensitive to the momentum structure of the magnetic glue?

Here we discuss how the specific momentum structure of the spin fluctuations affects the
st superconductivity in the magnetic scenario where the same electrons contribute to both
the magnetic and the SC properties. We gain the insight by recognizing the important role

played by the orbital weight on the FS sheets. As pointed out by Kemper et al., [Kemper

et al. (2010)] the dominant pairing processes involve intra-orbital scattering. The intra-orbital
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effective pairing interaction vertex Iy is dominated by the processes of exchanging spin-1

fluctuations as

I (kX ivy) ~ g > U@t (k — K ivy,) U
aa,bb

where a, b, c are orbital indices and I‘i‘c’w becomes significant when the momentum transfer
k — k' ~ Qapm. It gives rise to the intra-orbital Cooper-pair formation through
cc - T cc,cc ! . - ! cC o]
Ok, iwy,) = N Z I (kK dw, — iwy,) F (K, iw),)
k/7w47.
which scatters a pair of c-orbital electrons on «(f) sheets to a pair of c-orbital electrons on S(«)

sheets, i.e., an inter-band scattering.
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Figure 5.7 Schematic illustration of the intra-orbital pair scattering processes with momentum
transfer for the 2-orbital and a more complete 5-orbital model. In the lower part,
by translating Q, the Si-pocket is moved to the position of the aq-pocket. For
intra-orbital, but inter-band, scattering to happen, the effective scattering vertices,
depicted by the small dark-blue ellipses, should be able to cover the same orbital
pieces on the two deviated FS sheets, i.e., the sheet and the shifted sheet (dashed
line). One can perform similar operation for the a;(a2) and £1(52) sheets in the
2-orbital model and for the aq () and £1(82) sheets in the 5-orbital model. Clearly,
the transversely lengthened vertices are more capable of inducing the intra-orbital,
but inter-band, pair scattering processes.
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A schematic demonstration of the FS configuration, with predominant iron d-orbital dis-
tribution indicated, for the current 2-orbital model and for a more complete 5-orbital model
are shown in Fig. 5.7, which were analyzed by Graser et al. |Graser et al. (2009)] and Kemper
et al. [Kemper et al. (2010)]. To illustrate the pair scattering between two bands with the
typical momentum transfer, 51 pocket is translated by Qapm to overlap with «; pocket. As
the electronic structure is away from perfect nesting, the intra-orbital scattering is more sup-
ported by the transversely lengthened pairing vertices than the longitudinally lengthened ones
which are depicted by the small dark-blue ellipses in the figure. One can perform the same
translation for other pairs of pockets separated by Qarnm in both models and draw the same
conclusion. Therefore, due to the orbital character of the microscopic electronic structure and
the deviation from perfect nesting, this type of anisotropic momentum structure of short-range
spin fluctuations favor the formation of s* SC state, since the intra-orbital pairing processes

are made more plausible driven by transversely lengthened fluctuations.

5.3.3 Factors Affecting the Resonance Energy

In the strong coupling approach, the factors affecting the resonance mode energy involve the
SC gap magnitude |A| and the magnetic correlation length & [Abanov and Chubukov (1999)].
Our systematic study indicates that the resonance energy wyes increases with increasing gap

magnitude but decreases with increasing correlation length.

5.4 Fermionic Spectrum

As discussed for cuprates [Abanov and Chubukov (1999); Abanov et al. (2001); Eschrig
(2006)|, the impact of the mediating bosonic modes on fermions leaves fingerprint in the
fermionic spectrum, the SC spectral function, if the bosonic excitations are gapped quasiparti-
cles such as optical phonons in the conventional superconductors. This gives rise to the kink
feature in the electronic energy dispersion observed in ARPES measurements. The signature
of electron-mode coupling is believed to be linked to the pairing. If short-range spin fluctua-
tions mediate Cooper pairs, with the emergence of the gapped quasiparticle-like spin resonance

mode in the superconducting state, large fermionic decay occurs by exchange of the magnetic
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resonance mode in scattering processes. This leaves a dip in the electronic spectral function
at the energy waip = |Ak+Qapy| + Wres Where |Ayiq,upy| indicates the SC gap magnitude at
the Fermi point connected by the AFM wave vector. Indeed, our calculation does show the
dip feature in the electronic spectral function. As shown in Fig. 5.8, the spectral function at a
k-point on the «y sheet exhibits the characteristic peak-dip-hump behavior in Ay (w) with the
dip position wgip ~ 0.05 to be the sum of the resonance energy wres =~ 0.03 and the gap magni-
tude |AkyQupy| & 0.02 at the point on the other band connected by Qarm. The normal state
data at the same k-point is also plotted in Fig. 5.8 to show the conservation of spectral weight.
This calculated dip feature in the quasiparticle spectrum can explain the ARPES observation

[Richard et al. (2009)] as shown on the left of Fig.5.8.

Bag Ko .4FeaAso

1201

100+
—~ 30 T T T T T T T
% 80 01T, ——
E 251 1T, i
=60
3 -~
;l’ -8% 201 -
E 40- - E 3
20 :4 3 le I |
1 ]
_Oé, 10+
0 1 1 1 1 1 1 1
100 80 60 40 20 Ef sk
o (meV)
0 ,
R. Richard et al., PRL 102, 047003(2009) 0.2 015

Figure 5.8 (Right part) The fermionic spectral function at a k-point on the sheet in the SC
state (red solid line) as well as in the normal state (green dashed line). Notice the
peak-dip-hump feature in the negative frequency regime when the system becomes
superconducting. Comparing the SC state data with the normal state data, we see
that the spectral weight is conserved. And this calculated dip feature can explain

the ARPES observation as shown on the left.
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5.5 Summary

We have investigated the momentum structure of the short-range magnetic fluctuations

that drive the nearly isotropic s*

superconductivity using a microscopic model for the Fe-based
superconductors in the self-consistent fluctuation exchange approximation. The calculated mag-
netic response exhibits an anisotropic feature with largest momentum span along the direction
transverse to the momentum transfer Qarn, which gives rise to an elliptical image of the mag-
netic excitation. The calculated momentum anisotropy of the magnetic spectrum agrees with
the INS measurements. An analysis on the orbital character of the electronic structure associ-
ated with the deviation from perfect nesting shows that the transversely lengthened short-range
spin fluctuations enhance intra-orbital, but inter-band, pair scattering processes that play an
important role to the formation of s*-wave superconductivity in this system. Therefore, this
anisotropic momentum structure of the magnetic fluctuations favors the development of the SC
phase in the magnetic scenario for the iron-based superconductors.

Our detailed study on the resonance mode in the magnetic spectrum shows that the dis-
persion of the mode is also anisotropic with larger broadening along the transverse than the
longitudinal direction. Meanwhile, the mode propagates upwards with increasing energy in the
case of nearly isotropic s*-state and commensurate spin susceptibility, but vanishes above the
particle-hole threshold.

As the feedback from the spin excitations on fermions, the spectral function exhibits the
peak-dip-hump feature, which serves as one of the interpretations of the ARPES observation of

the kink feature.
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CHAPTER 6. FINAL THOUGHTS

In the light of our theoretcial results, we make a few comments at the end of the discussion.

e Combining with the band structure, our systematic study shows that superconductivity is
very sensitive to the momentum configuration of the short-range spin fluctuations. Only
when it matches the Fermi surface configuration in an efficient way, superconductivity
can be induced. Interestingly, it requires the weakening of nesting condition of the Fermi
surface, although it does need certain degrees of nesting to develop sufficient dynamical
antiferromagnetic correlations. This is also noticed by a recent DFT calculation [Wadati
et al. (2010)]. One of the roles played by many experimental tuning parameters is a
disruption of the nesting condition such that superconductivity wins over its competing

order, the magnetism.

e As we consider the itinerant SDW fluctuations as the superconducting mediating glue,
it seems like the itineracy nature of the spin fluctuations has some effect on the super-
conducting transition temperature. It might be one of the reasons why 7. stops rising so
far. Also our model takes account only on-site interactions which could be not enough to

explain some properties.

e Fluctuation exchange methods show that when the spin fluctuation structure matches
the Fermi surface configuration, the system can be driven from a magnetic state to the
superconducting state with its order parameter symmetry determined by them. In distin-
gushing from RPA calculations, FLEX calculation mainly found stable s+-wave solution,
without evidence for d-wave symmetry. Since FLEX is self-consistent in both charge and
spin sectors, we suspect d-wave is likely suppressed by the Fermi surface configuration.

In distinguishing from numerical RG calculation, FLEX has the advantage of study the
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full frequency-momentum structure that reveals the resonance mode and the anisotropic

fluctuation configuration.

FLEX method is cheaper than quantum Monte Carlo, but still it is quite time-consuming
when handling multiorbital system. The amount of calculation time and the cost of
memory increase significantly when one more orbital added. This is the main restriction
for generalizing to 5-orbital model. Especially the computing is hard to be parallelled in

MPI in more-orbital model since the calculation is not completely local any more.

Another disadvantage of FLEX is that it does not take into account vertex correction,
which might be important in the non-phonon mechanism as Migdal approximation is not

guaranteed in other cases.

As a future study, FLEX combining with other techniques may give better understanding

of the iron-based superconductors.
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APPENDIX A. ANALYTICAL DETAILS

A.1 Low-order Diagrams

In this appendix, we give the detailed derivation of the lower-order terms in multiorbital
FLEX formalism. To calculate the lower-order diagrams, it is much easier to employ the fol-

lowing expression of the interaction Hamiltonian

1
Hiny = - Z Ugla2a3a4dT di,a3ad;'[7a20/di,a4a’

9 1,010
i,a;,00"

as we showed before. In momentum space it is nothing but

1
= § ' arazazay gt i
Him = 9 Us dkl,alaldk&asal de,@g’l dk4,a4oi 5k1+k27k3+k4'

k;,a;,0107%
A.1.1 First Order Contribution — Hartree-Fock Terms

Insert the interaction once into the normal Green’s function we have

Gy (k, 7) = —(Trdias (T)d],, (0))
B8
S / A7y (T dicar () Hing(r1)dL,_(0))
0

LA |
_ / driy 30 UL Tdig ()d, o, i ason By gy iy, () (0))

0 /
k;,a;,0107

Applying different contractions we have

B
ok, T) = / dm Z UP @293 —G oo (K, T — 71)Gagay (K's 71 — 71)Gayp(k, 1)
0
+ 2Gaa1 (k, T — Tl)Ga4a2 (kla T — Tl)Gagb(k> Tl)]

A 1 a’'m,nb’ ! n—
= / dm Z Gaa/(k, T — T1) 5(3U5 — Uc) ’ Gmn(k ,0 ) Gb/b(k, 7’1)
0
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with

<T dkaa( )dkhal(fl alks,asrndirqmgl1 dk4,a4cr’1 (Tl)dibo'(O)>

=2 [_Gaal (k7 T — Tl)Ga3a2 (k/7 T — Tl)Ga4b(k> 7—1) + 2Gaa1 (k7 T 7_1)th4!l2 (k,? 1= Tl)GaSb(k’ Tl)]
where we used U234 = 2143 5pd 2U1234 Us1243 =

= %(SUS — U,)'?34, Therefore we have

ng(k, iwn) = Z Gaa/ (k, iwn)E%%Gb/b(k, iwn)
a' b

with

/ T
neb = Zvﬁggb S + 5 > Gn(K,iw
where

"m,nb’ "m.nb’
Vi = S@U, — U,

Next insert the interaction once into the anomalous Green’s function we have

&)U/ (kv T) - - <T7dkao (T)d—kba’ (0)>

B
(4 / A (T diea (7) Hint (71)d 1o (0))
0
A |
/0 d7'1§

Again different contractions give rise to

Z U§1a2a3a4 <T7'dkzzcr(T)dlt1,a101dk37a301d;r<z azo dk4 a40o (Tl)d kbo (0)>

ki7a17U101

o (k,7) = /0 dn 3 UmenaGe (7 — ) Foo (K, m — m)Go (—k, —71)

]. / / ! /
)[04 T 0 - )| G

k7 —T1 ) )
where

<T dkao( )dkhalo'l dks,asm dLLan/l dk4,a4a’1 (Tl)d—kba (0)>

= —2G7, (k,7 — 1) F25 (K, 71 — 71)Gg,, (~k, —1)
where we used U}?*3 = (U, + U,)'?34. Therefore we obtain

/
kzwn = ZG (k, iwy, )P UU ' bb’( k, —iw,),
/b/
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with

aa ra'b a’'m,b'n oo’ (I
E Vanr |~ g E27 (K, iw,) | ,
kl7w'£74

where

/ / 1 / /
VI = O U

Note that in the multi-orbital case, Hartree-Fock contributions can not be simply absorbed into

chemical potential any more due to the matrix structure.

A.1.2 Second Order Diagrams

Using the same strategy as in the first-order case, we honestly evaluate the second-order

diagrams. First for normal Green’s function we get

ok, ) = <T dkaf,(T )}y (0))

B8
- / | dra(T i (7) (7)o (), (0)

B B
= / dﬁ/ dr:
0 0

<TTdkaa (T)dLl ,a101 dk3,a301 d;r(27a20/1 dk4,a40”1 (Tl)dI{’l 1o dké,bgo’g d;r(/wby;é dkﬁl,b4aé (7-2)d;r<bg-(0)>

E Ual a2a3a4 E Ub1 babsby

k;,ai,0107 k ,bi,020%

%)
N | =

where

(Trdicar (T, 410, Dis 301 iyt Biesiaaot, () Al o, it s By 0 b acy (72l (0))
= 4G, (k, 7 — 71)Gpp(k, m2) X

[2Gasb, (K, 71 — T2)Gaghy (K3, T1 — T2)Ghgay (k2, 72 — 71)

— Gagby (Kay 11 — 72)Glagp, (K3, 71 — T2) Ghgay (2, 72 — 71)

— G, (ka1 — o) Fy ot (kg1 — )FZE;I (ko, 72 — 71)

+ Gy, (ka, 71 — T2)F25, (ks 71 — )Fgll;(kzﬁz — 1)

+ Gy.p, (k3,71 — Tg)Fa4b3 (kg, 11 — Tz)FbQ(m(kg, Ty — T1)

— Gy (kay Tt — T2)FI5, (k3,71 — T2) Fpan, (ka, 72 — 71)]
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Thus we have
Gk iwy) = Y UmaaayhbbhiG (K, iw,) Gy (K, iwn) X
[Gasp, (k — q,iwy, — ivy) (—Ga3b2 (X + q,iw), + ivy,)Gpya, (K, zw;))

+Gazb, (k — q,iw, — ivy) (_Ga4b1 (k/ +q, iw;z + iVn)Gb:saz (kla ZW;L))
1
2

1 ) ) ) ) )
_§Ga3b1 (k — q,iwy, —ivy (_Ga4b2 (k' +q, w},/1 + i) Ghaay (K, zw,’l))

Gasby (k — qiwpn — i) (—Gagp, (K + q, iw;, + ivy)Ghyay (K, iw),))

FOON K+ quiw, + v FO7 (K, z’w;))

a3b2 (k q7 ZW’I’L - ZVTL) a4b3 b1a2

+GY.p, (k — q, iw, —ivy) a4b3 7 (k' + q,iw], + zyn)Fb2a2 K iw

/
n
/
n
/

)

+G7 b, (k — q,iw, — ivy) ( abs (k' +q,iw], + 1Vn)Fbm2(k ) ))
(- (K, i)
( (l3b3 (k/ +aq, Zw + ZVTL)szaz (k 7iwn))

!

—|—Ga4b1 (k — q, iw, —ivy)
After some algebra we obtain
GOy (k,iw,) = Z Gaa (K, iwn) Gy (K, iwp ) G (k — q, iwy, — ivy,) X
oslaivg) (U5 mRUR g omesype )

X 3 ’ v.nb 1 ’ vnb!
xgula i) (UEmeSTY - Jprmesyp )|

Therefore
26 (kyiwn) = > Ve ™ (dy 10n) G (K — @ ieon — i)
q,Vn MmN
with
V]il[j(gsnb (qv ZVTL) = Z [ Ua ™ aﬁXa,B ,u,u((L ZV%)U£V7nb Ua " aBXa,B uu(qa Zyn)UgV,nb,

aﬁ,/w

3. /
+§Ug m’aﬁXaﬁ 77 (q.7 “/n)U,U«V i Ua " aﬁXaB ﬂl’(q7 ZVTL)UcMV’nb ]

Gathering the subtracted second-order contributions in the last section, the total second-order

contribution to normal interaction vertex is

R 3 on 1~ -
Vﬁﬁgsnb (q, ZVn) - 7U3XS70U5 - §UCXC70UC

= > [- U“maﬁxawy(q,wn)U“”"b U“’”“ﬁxamy(q,wn)U“””b
ap,uv

3~ 1A 1~~~
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where
5(8’0 _ >~<1 4 >~<2’ )ZC’O _ >~<1 B >~<2‘

Next we perform the same calculation for the anomalous Green’s function

7" (k, )

= —(Trdyao (T)d_Kpo' (0))

_ / ar, / drog Y Upewsl ST phb

! !
k%,aqHO'lo'1 ki ,b;,0207

<T7'dkao (T)dLl ,a101 dkg,a30'1 dL27a20/1 dk4,a4a’1 (Tl) dL/l 7b10—2 dkg,b30'2 dié’lmo—é dki,b40’é (T2>d—kb0'/ <0)>

where

<T7'dka0'<7—)d-1r{l7algl dis,a301 dLMQU/l iy 40} (T1) dL’l,blo—zdk?),bgO'szk/ oy i, bacy (T2)dxcbo (0))
— 4G, (k.7 = 71)Gr(—k, 72) X

[E75 (k3,71 — 72)Gagby (K4, 71 — 72)Giyay (K2, 72 — 71)

— 2F75 (k3,71 — 72)Gaypy (ka, 71 — 72)Gigay (Ko, 72 — 71)

a4b3 (k47 T — )Ga3b1 (k3; 1 — TQ)Gb4a2 (k2a T2 — 7—1)

+ a47,4(k4,71 72) G agp, (K3, 71 — 72) Goga, (K2, T2 — 71)

+F2% (ks, 71 — Q)FM,B (ka, 71 — m2) Fy 1o (Ko, 72 — 71)
— Fot kg, 7y = 1) i (ka1 = 1) Pyl (o, 2 = 71)]

thus in frequency space it becomes

o (ki) = Yo UmEeayhbbiGr (i iw,) (-G, (<, —iwn) ) %
[~ 75, (k — q, ity — i) Gagpy (K + @, iw], + i) Gpyay (K, i)
+2F7%, (K = qiwn — ivp)Gagp (K + @, i), + i0p) Ghya, (K, i)
+F2E (k= q,iwn — i) Gage, (K + @, i), + i) Gyay (K i)
asba (k Q, Wy, — W) Gagp, (K + Q,iw), + ivy) Gpgay (K, iw))

a3b4(k q, iwy — i) FON (K + q,iw!, + v Fy i K iw!)

aqbs bias

0'0'1
asbs

+F77 (k — q, iwy, — ivp) F7Y (K + q, iw!, + ivp ) Fy i K iw)))]

asby bias



91

After some algebra we obtain

7 (k, iwp) ZGam (k, iwn) (—GF, (—k, —iwp)) Fro (k — q, iwy, — ivp) X

3 , /
[Xa,b’ #V(q’ Zl/n) <2 Ua m aﬁU“V bn _ ,Uca m,ocﬁUéu/,b n)

+XO‘/BNV q,ZVn < UamaﬂUNVbn+ U(lmaﬂU,u,l/bn>]

Therefore
@?2’7) artf (k, iwy,) = Z Z VX,(”;)’I’ ", ivn)F20 (k — q,iw, — ivp),
q,Vn Mm,N
with
i ,b/ i 3 / ’
VX’E;) n(qv ZVH) - Z [( Ua o QBXQB ,uz/(qv ZVn)UéLMb " Ua o aBXa,B ,u,u(qa f“/n)Uélwb n>
af,uv

3. 1.
+1U§ m7aﬁXa,8 p,l/(q7 ZVTL)U!W Hn ZUca myaﬁXaﬂ ,uu(q7 ZVn)UuV ¥ n]
Gathering the subtracted second-order contributions in the last section, the total second-order
contribution to the anomalous interaction vertex is

’ / i 3~ ~ ~ 1~ _ ~
VX’(T;),I) n(q’ ZVn) _ 5 SXS,OUS + *UCXQOUC

3
= Z Ua i aBXaB ,uzz(qa ZV?L)UW/ bn _ Ua " aﬁXa,B ,u,z/(qa ZVTL)[]'MV n
aB,uv
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APPENDIX B. NUMERICAL DETAILS

B.1 Numerical Tricks

The key part of the numerical implementation is the Fourier transformation between the
momentum + frequency domain into the coordinate + time domain. The Fourier transform
from momentum space to coordinate space will be done using periodic boundary conditions and

are easily implemented. We evaluate

fi= % Ze_ik'ifk (B.1)
k
which yields explicitly:
;] NoiN-ro {
fini, = e Z Z e N (neiatnyin) (B.2)

Nz =0n,=0

The inverse transform is

fo=> ™ (B.3)
i
which is explicitly witten as
N-IN-1
Fromg = 30 3 e F i), (B.4)
i0=01y=0

The Fourier transformation from frequency to time and back is more subtle. First, functions
in frequency space decay very slowly (in some cases as 1/wy,). Second, important physical
information is contained in the values f; (7 =07%) and f;(r = 7). It turns out that both
phenomena are closely related to each other. As shown below, it holds for bosons as well as
fermions that

Flo) = _f0OD=F0O) 1 /OB P (1) e dr (B.5)

W, W,

Since féﬁ f" (1) €™ dr must vanishes for w, — o0 the second term vanishes vaster that 1/w,,

i.e. the dominant large w, behavior is due to the discontinuity at 7 = 0. In addition, we show
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below that a linear interpolation of f (7) between the discrete time points 77 = IA = [3/Ny,

yields
Np—1 A
flwn) =W D e fi4 (£ (0F) = £(07)) Ra, (B.6)
=0
where
1 — cos (Awy,)
Wn = 2oz
1 —iAw, — e Bwn
. = — ) B.
R Aw? (B.7)
For the 2+ 1-dimensional Fourier transform f;,_ ;, 1 = fi (1) we need to analyze the following
expression

(n) Ngz Z eI f(0,) (B8)

Suppose we know the large |w,| behavior for the function fi (wy):

e
fx (wy, — £00) = =, (B.9)
iwn,
This motivates to introduce (§ is an arbitrary factor):
e (@n) = fie (wn) — T (B.10)
iwy — &
which decays faster as 1/w, and we obtain!
eB—1)€ 1

Tl N2 Z Z i(k-itwnT) fk( ) ] — jie] Z —ik-i lfk (B.ll)

Shifting frequencies according to f;ix g = fk( — Ny, wT) finally yields for f; ;1 = fi(7)

the result

—_

Npy—1

i: —i2r ’ﬂzlz+ny y+ nl )~
(&

ey m

7ot () N-1 N
Jiigd = = Z

N2

=]

n. n=

=0ny=0

B-m)e 1 UL T o (ratetnuiy

¢ G );;jny. (B.12)
Nz =0n,=0

>
S ePEL 1 N2 Z

This result is valid for fermions (s = 1) and bosons (s = 0). We used w,, = (2n + s) 7T It turns

N
ny

out that the second, purely two dimensional Fourier transformation can always be performed

analytically.

!This result is only valid for fermions. We won’t need the result for bosons.
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Fourier transformation of Gy (w,) to Gj(7) It holds

ie. Gy° = 1. Thus, we introduce?.

G (wn) = G (wn) — o7 (B.14)
and obtain G; ;,; = Gi (1) via
(Npp—1
Tel< m=l)ml N=1 N=1 Np—1 oy (maibnyty Y o
G = T X 3 >0 e G
ng=0ny=0 n=0
6(/8_7_1)6
_m(six705iyvo (B15>
where

The Fourier transform only yields G  for 0 <1 < N, — 1. To obtain Gy, ;, N, We take

il 7’iy:

advantage of the fact that G; (07) — G; (07) = —6; 9, which yields

Gipiy Ny = —Gliyiy,0 — 0i,,00i,,0- (B.17)

Fourier transformation of x;(7) to xq(v,) We determine the particle hole bubble

Xi (1) = —=Gi (1) Gi (—7). It holds x; (1) = G; (1) Gi (8 — 7) which yields with x;,i,1 = xi (71):
Xiziyl = Gigiy Gy iy, Ny (B.18)

In order to determine x;,,; for I = 0 use Gy, ;, n,, determined above. It holds x; (07) =x; (07),

implying that Xn,n,n = Xq (¥n) Will always decay faster than 1/v,. Thus, it follows

Xngnyn = WnASC\nznyn (Blg)
where
R —1 N—-1 Npp—1 i2ﬂ(nziz+nyiy+Ll)
Xnznyn = Z Z € N Nm Xigiyl (Bzo)
ng=0ny=0 [=0

2Below we show that & = T'log (I*T") is a convenient choice for the arbitrary parameter £.
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and W,, = 9l=coslBrn) with A = B/Np, and v, = 2anT, i.e.

AZp2
W =2 (V) (1 cos (20 (B.21)
" T\ 2mn N,, '

An FFT evaluation of the above sum will only provide results for 0 < n < N,,, — 1. Because

of the implicit periodicity of Xp,n,n, negative frequencies can be obtained via:

WnAj(\nzn n if Vp > 0
Xnany (Vn) = Y (B.22)
WA Ramy N in i < 0

Eventually we need to determine the shifted frequency expression

Xnamym = X Un — NppmT') = X (Vn,NTm) (B.23)
This yields
W Nm AS(\ Nm lf O S n < N
Xopgn = § 2R ? (B.24)
) ) R . Nm
Wn_NTmAannyn_N?m if 52 <n< Ny —1

Fourier transformation of Vq (v,) to Vi (7). Once the particle hole bubble Xy n,n =
Xq (Vn) is known, Vg (v,) follows from the above equation. Since xq (v) decays faster than

1/vy, the same is true for Vg (v,). We shift the frequency as usual:

Ve =V (v — NprT) (B.25)

Ngz,My,N

and the Fourier transform is

N i YOy )y (B.26)

N, My, M °

The Fourier transformation only yields V; ; ; for 0 < [ < N, — 1. It holds however that

:Ealy7

Viasiy.N = Vig.i, 00 since Vg (v,,) decays faster than 1/v, it is continuous for 7 = 0, i.e. V;(87) =

Vi (07) = V3 (07) which corresponds to the above result for Vi, i, .

Fourier transformation of ¥;(7) to Xk (w,) The self energy is given as ¥ (7) =
Vi (7) Gi (7). Tt holds X5 (07) = V4 (07) G; (0%) and %; (07) = V4 (07) G; (07) = V3 (0%) (Gi (0T) + di0)-
Thus, it follows

5 (07) =% (07) = =V4(07) bi0 (B.27)
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This allows to write for the Fourier transform ¥, ,,,n = Xx (wn):
Enrnyn = WnAinznyn - %,O,ORH (B28>

with
N—1N—1Np—1

Snnn =323 > ¢

iz=01y=0 [=0
As before, the notation used is ¥;,;,; = ¥ (7). In addition holds that V500 = Vi—o (0™) is the

nacla.+7ly1y+ nl ) .

7l
€zm Eiziyl (B29)

effective interaction at 7 = 0 at the origin. Finally it holds:

5 1 — cos (Awy,)

W = A2w2
1 —iAw, — e Bwn
R, = - AL . (B.30)

with A = /N, and w, = (2n + 1) 7T.
Once again, an FFT evaluation of the above sum will only provide results for 0 < n < N,,—1.

Because of the implicit periodicity of inmnyn, negative frequencies can be obtained via:

WnAinrnyn + ‘/O,O,OR'I’L if Wp > 0
Engcny (wn) = . (B31)
WnAannmeJrn + %,O,ORn if w, <0

Eventually we need to determine the shifted frequency expression

Sy = oy (@0 = N ) = x (v, ) (B.32)

B.1.0.1 particle number calculation
The particle number is determined via

n=1+5 Zak + 32 Zak wn) (B.33)

The sum over Matsubara frequencies is formally divergent and requires regularization. We

introduce again

Gy (wn) = Gk (wn) — iw”l_ z (B.34)
which decays fast enough to ensure convergence. The sum 7') F £ is the performed using
the usual regularization of Matsubara functions

Ty - ! =g — 1 (B.35)
— in — 13
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where
I (B.36)
ne = —ge T .
This yields
T ~
n=ng+ 1o > G (wn) (B.37)
k,n
If we chose
1—
¢E=Tlog < n> (B.38)
n
it holds n = n¢ and the condition for the chemical potential becomes
T ~
~7 2 G (wn) =0 (B.39)

k,n

which is numerically well behaved.

Supression of aliasing We only know the time dependent functions f (7) for a finite
number of discrete points 7, = A, with A = 8/N,,, and [ =0, ..., N,;, — 1. For 7 between two

points (1 < 7 < 1141 = 71 + A) we interpolate linearly, i.e.

S — N

fn<t<mu)=fi+ N (1 —m)

Thus it holds for arbitrary 7:

Ny, —1
S 1= fi

= Z O(r—1)0(A—71+7) fl+7fl+A (1—7)

Here, we implicitly assumed that we know fy,, = f(67), even though the last point we have
available is fn, _1. We address this issue later. This is necessary to be able to interpolate in

the regime 8 — A < 7 < (. Fourier transformation yields

Nm—1 T1+A .
f(wn) _ Z / elwnT [fl+ fl—l—lA fl( _Tl):| dr

=0 “T
Nm 1

= an‘rl/ Pk [f +fl+1A Ji :|d$
Npp—1 . .
N i 1+ iAw, — edwn e (1 — iAwy,) — 1

= zz—% e [fl Aw? + fir1 Aw? (B.40)

we introduce I’ =1+ 1 in the second term and use 7, = 71 = 7 — A.
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Nm—1 . N, .
<~ o o iAW, — etAen T i o 1 iAWy, — e AN
flon) = ; e Aw? ;6 i AwZ
B Np—1 eiwn’f'l 2 — 2 COSs (Awn) f
B Aw? :
1=0
; 1 —iAw, — e~ Awn 1 —iAw, — e~ Awn
iwn B — n + n
+e“nP f(B7) AL — f(0%) AL (B.41)
It holds e™n? = 5 where 7 = 1 for bosons and 1 = —1 for fermions, respectively. In addition it
holds nf (87) = f (07) such that
Nm—1
fwn) =Wal Y e+ (f(07) = f(07)) Ra (B.42)
=0
where
1 — cos (Awy)
W = 277 Ra8
1 —iAw, — e Awn
. = — B.4
r Aw?2 (B43)

Thus, multiplying the Fourier sum by W,, and including the value of the discontinuity at 7 = +0

yields a significant increase in the accuracy of the calculation.

B.2 Numerical Implementation for the Multiorbital FLEX

In this section, we show the numerical steps to implement the Multiorbital FLEX calculation.
More complicated than the single-band case, we introduce all the parameters and quantities and

list the numerical steps as follows.
1. Choose the parameters U, U’, Jy, J', t1, to, t3, t4, T, n.

2. Generate U, s Uc, €x. Here the dispersion relation is given by

A
Ex =
21 22

€ Ei
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with
511<1 = —2tjcosk, — 2ty cos ky, — 4t3 cos k; cos ky,
5i2 = —2tycosk, — 2ty cos ky, — 4tz cos k; cos ky,
el = epl = —dtysink,sink,.

And initialize self-energy 2%(k,iw,) and ®*(k,iw,) or input self-energy from external

files with the self-energy data from another run.

. Using B%(k, iw,), ®®(k,iw,) and ?(k) to initialize G (k, iw,) and F®(k, iw,) to find
chemical potential. 3% is symmetric in orbital indices so we only need to store half of it,

and ®be = (@“b)* then we also store half of it

Glk) = [(z’wn 01— G- B0) — @(k) (i — ) T +2c+ ()] é*(k)] -

F(k) = GE)%) [(mn i+ 2*(@} -

Note that they are all matrix munipulations in orbital space. For each (kg, ky, wy) we
need a few temperary M x M matrices to store ®(k) {(zwn — )1+ &+ X(—F) o D (k),
G(k) and F(k) etc, where M is the number of orbitals. And they are all in the shifted
frequency scheme, i.e., w, — N,,mT. We find chemical potential and initialize G and F
together to save computation cost. The total particle number is determined via

1 _ 1 T )

= ZGaa(k,O )= M + ﬁZGaa(k’ 07) =M + e Z G*(k, iwy,).
k,a k,a kn,a

The sum over Matsubara frequencies is formally divergent and requires regularization. We

introduce again

. 5ab
ab . ab .
k n) — k7 n) — -
Gk, iw,) = G*(k,iwy,) -

1

which decays fast enough to ensure convergence. The sum 7°) TonE

is performed using

the usual regulariztion of Mastubara functions

1
T = —1
LS
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where ng = eﬁél nE This yields

T 3 .
n= Mng + W Gaa(k,’bwn).

k,n,a

szln(M—1>
n

the condition for the chemical potentical becomes

If we choose ng =n/M, i.e.

T ~aa -
W Z G (k, an) =0

k,n,a
which is numerically well behaved. Meanwhile we initialize G®(k, iw,) and F®(k,iw,)

for later use.

. Determine the Hartree-Fock contribution to the self-energy. Calculate the Hartree-Fock

ab ab
terms X%, and ®%n

. 3 - 1 am,bn T .
E}?F - Z <2Us_2 c> 5mn+mZGmn(k7zwn)

m,n k,wn

le.
. 3 1. am,bm 3. 1 - am,bn T
Se=% (30.-30)  + 2 (Go-3%) | 2 Gk fan)
) sWn

Since the Hartree energy always enters in the combination pd® — E‘}}’F, we can absorb
cpp " . . 1
the mean Hartree shift into a redefinition of the chemical potential: p/ = p— 57 >, X5 p.

Thus we only need to include the modified Hartree term

Tr [EHF} _ Eab _ 5ab Zc Z%F
M - HF 9

ab __ ywab ab
EHF,mod - EHF -0 M
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5. Forward Fourier transform G (k, iw,) and F®(k, iw,) to coordinate and imaginary time

demain to obtain G(i,7) and F(i, 7). Next we should fix them according to

Nm—1
" ( mmf 7rl N—-1 N-1 Np—1 iom nxzx+nyzy+ nl ) S ab e(ﬁ—n)ﬁ
A > > e Gingm — ogg 51 0010000
ngz=0ny=0 n=0
N, 1
z( m= >7rl N—1 N—1 Np—1 natatryiy | o
ab _ —227r +N1n > FS ab
Tayiy,l T € N, My,
nz=0n,=0 n=0
where 7, = Al and G5 nymn = Gnan,(Wn — NpmT), and the same for Fj. The Fourier

transform only yields G2 Fi‘ibiy  for 0 <1 < N,,—1. To obtain them at [ = N;,, we take

T yly,l0

advantage of the fact that G¢(07) — GE2(07) = —6;, 06;

Ty,

05ab7 Fiab(0+) - Fiab(o_) = 07

which yields

ab _ ab ab
Gizvinym - Gzz,zy 5%,057,3,,05 3

ab ___rnab

igyiy,Nm Tg,0y,0°

6. Now using G and F in real space we calculate Xz, .y (i, 7) and xg, . (1, 7) via

Xab,a't (D5 12n)

T . . . . . .
= _N [Gba’ (k + q, 1wy + ZQn)Gb’aa{’ an) + be’(k + q, 1wy + ZQn)Fa’aa{a _an)} )

k,iwn,

Xab,a't (D5 1€2n)

T
=% D [(Gowr(k + q,iwn + i) Grya(K, iwn) — Foy (K + q, it + i€ ) Fara (K, —iwy)] .

k,iwn
In order to simplify the programming by using the symmetry property, we switch the first

two indices in x*¢, accordingly switch the last two indices in Us..

— Xia,a’b/(i7 7’) = —Gba/(i, T)Gb/a(i, —7’) — be/(i, T)Fa/a(i, 7‘)

ch)a,a’b/(i? T) = —Gpo(1,7)Gpo(i,—7) + Fpp (i, 7) Fro (i, 7)



102

where we have switched the first two indices in x for convenience. Since Ggp = Gpg, We

have

XZﬁ)’,ba(L T) = _Ga’b(i7 T)Gab’(i7 _T) + Fa’a(i7 T)be’ (i7 T)
= —Gu/(i,7)Gyo(i, —7) F Foy (i, 7) Fro (i, 7) = XZ;;;O/b/ (i,7)

That is, x%5 = X3 4 are symmetric matrices in the composite orbital indices, which can

be stored in half. The fermionic Green’s function has the property that — f(—71) = f(5—71),
anti-periodic property in imaginary time. Then it holds

Xia,a’b’(iv 7') = Gba/(i, T)Gb/a(i, 5 — 7') - be/(i, T)Fa/a(i, 7’)

Xga,a’b’(iv 7') = Gba/(i, T)Gb/a(i, b — 7') + be/(i, T)Fa/a(i, 7’)

which yields

Xza,a/b/(ixa iyv l) = Gba’(ixvZ'yJ)Gb’a(ixviy,Nm - l) - be’(ixyiya Z)Fa’a(ixviya l)

Xga,a/b/(i:ca iya l) = Gba’(ixviyyl)Gb’a(ixviya Ny, — l) + be’(iwiya l)Fa’a(ixaiya l)
forl =0

Xia,a’b’ (iﬂﬁ iy? 0)

_Gba’ (/va iy, O)Gb’a(ixa 7;y7 O) - Gba’ (07 07 0)6iz,05iy,06b’,a - be’ (/va iy’ O)Fa’a(ixa iy7 0)

ch)a,a’b’ (2967 iy’ 0)

- _Gba’ (,Laia iy» O)Gb’a(il‘a iyv O) - Gba’ (07 07 0)5117

004,000 0 + Fopy (izy iy, 0) Forg(ie, iy, 0).
Now consider the discontinuity of x*¢ at 7 = 0. Since
GH0") ~G0T) = 00"
F(0%) - F*°(07) = 0

then

lea,a’b’ (’il? iy’ 0+) - Xga,a’b’ (iﬂ% Z‘y’ 0_)
_Gba’ (Zm iya 0+)Gb’a(ixa iy: 0_) - be’ (Zm iya 0+)Fa/a(ix7 iya 0+)
+Gba’ (Z:m iya 0_)Gb’a(ixa iya 0+) + be’ (Z:m iya 0_)Fa/a(ix7 iya 0_)

= [~Gpr(0,0,0)8 4 + Gra(0,0,0)8 4] 8,005, .0
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Therefore we have
. JF . — _
Xza,a’b’(L 0 ) - Xza,a’b’ (17 0 ) - Tba,a’b’(si,o
Xga,a’b’ (17 O+) - Xl(;a,a’b’ (ia 0_) = Tba,a’b’(si,o

where we define a matrix as
Tba,a’b’ = [_Gba’ (07 O)(sb’,a + Gya (07 O)éb,a’]

which represent the discontinuous jump at 7 = 0 in both x® and x¢ that is entering the
aliasing correction when transforming x’s from imaginary time to Matsubara frequency

space.

. Backward Fourier transform x“*(i, iy, [) to momentum-Mastubara-frequency domain x“*(n,, ny, n),
then we perform the aliasing correction and shuffle the frequency due to the fact that
FFT only provides the results for 0 < n < N, — 1 and the implicit periodicity of ¥,

X(—7) = x(B8 —7T) = , negative frequencies can still be obtained. Eventually we need to

determine the shifted frequency expressions

c,s;S
Xba,a'b’ (12, iy, M)

W= 3085 sy + ) + T Rl = ) 0 << B,

Wn—252) AR oy (nemy,n = 2320) + Yoo o Rin = 22) - B <n < N, — 1

Here the aliasing correction is

Npm—1
F(Q) = WA > M fi 4 (£(07) = £(07)) Ry
=0
with

1 — cos(2,A)

Wn 2 A2
1 —iQ,A — ¢ #¥A

Bn = - Q2A

where €, = 2n7nT is the bosonic Matsubara frequency. At n = 0, Wy—¢ = 1 and

>

Rn:(] == —9-
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8. Now x“* are in momentum-frequency domain, we calculate V](,‘ B (q,ivy,) and Vf’B(q, ivp)

via
SR CR
3~ /- N1 1 N1 -
:iUS (1 - Xs(q7 “/n)Us> XS(CL an)Us+§Uc(1 + Xc(q7 iVn)UC> Xc(qa iVn)Uc
3~ s . —c . o . —c . ~
*gUs[X (q,ivn) + X (q,ZVn)]UsngC[X (q,ivn) + X°(q, ivp)|Ue
+ VHE
where
1/ - -
W= (3US - Uc)
V"I a, iv)
3~ (= ~5 . 7S 71~s . 7 1~ /= ~c . rrC 71~c . 7
—QUs(l - X (Can)U) X°(q, iv,)Us 2UC(1+X (qv“/n)U> X(aq, wwy)Ue
3 =~ =8 . ~c . 7 e s 7
_gUS[X (q,ivn) — X°(q, i) |Us — ch[X (q,ivn) — X°(q,iv)]Ue
+VHE
where

. 1/~ .
A= 2 (Us +UC> .
Since we switched the the first two indices in y, we need to switch the last two indices in

U?®*¢. The corresponding matrix form of the coupling constants become

v 0 0 Jg U 0 0 U — Jy
- o U J o0 - 0 U +2Jy J’ 0
Us = ’ Uc:

o J U 0 0 J' U +2Jy 0

Jg 0 0 U 2U" — Jy 0 0 U

We calculate the (q, iv,)-dependant parts of Vy and V4 only here. Since Ug? 2B are sym-
metric matrices in A, B, XZ,CB are also symmetric matrices, V]é B and Vf’B are therefore

symmetric matrices, which means we can calculate and store half of them.
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Forward Fourier transform V]{? ’f (q,ivy,) to real space for A < B and fix the transformed

functions

Peint N1 N=1 N1

—ion nzlz+ny1y+ nl S:A.B
DIDISIY VL )

nz=0n,=0 n=0

VNA (ny Zya

Calculate self-energy in real space using

»(k, iwy) = Z Z Vi bn (a, i) Grn(k — q, iwy, — ivy,),

q,z/n m,n

T
UK, iwy,) = 5 SNV ivn) Fan (K — d iwn — ivy).

q,Vn Mm,N

Notice that we have switched the last two indices in Viy 4 to accorperate with the change

Of indices in U and X Then in real space
» § a .
ab 1 7_ ‘er bTL i, 7 (1’7_)’

<I>“b (i,7) ZVXm mb (i, 7) Fnn (1, 7).
m,n

Since G*(07) — G*(07) = —d;,,00;,,06°, F*(07) — F*(07) = 0 and Viy,4 is continuous

iz,

at 7 =0,
2,01 = D VY, 0T) Gan(3,07)
m,n
SPE,07) = D VN, 07) [Gan(3,07) + 8,003, 00m.n) -
m,n
It follows that

29(1,07) — 29(1,07) = —4;, 005, 0V

where

veb =3 " vemtmo,0) = vie.

m

Clearly 2% = 3% 3 is a symmetric matrix as we expected. And it can be checked that

Pbe = (®®)* i.e., ® should be hermitian matrix.
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11. Backward Fourier transform %%(i, 7) and ®(i, 7) to momentum-frequency space

N— —1Np—1

N "zlz"r’ﬂyly nl
ab o 127r + > N ab
Enz,ny,n B Z Z Z € N/ €t mzzxﬂyvl ’

1 =01y=0 [=0

1 N"L_l

N ”mlac‘f'nyly nl .
ab _ 127" N ) Z ab
W - XY S ) et )

1z=01y=0 [=0

and perform aliasing correction and frequency-shuffle

W, NmAzab W= V®R N, 0<n< Hm
S;ab _ n-— n:cvnyyn"‘ n 2
Mg, Ny, M~
ab ab N"L —
W, _ N Aan,ny,n— Now V RniN?m 5 <n < Np — 1.
W, ADT 0<n< i,
S;ab _ n— Ng,Ny,N+—5 Nm
Mg My, M~
ab Nm
W, _ New A@nz’ny’ N = <n< Np-—1
Here the aliasing correction is
Np—1
Fwn) = Wal 37 60 fy 4+ (F(07) = £(07)) Ra
1=0
with
1 — cos(w, A
Wn = 2——5— ( 5 ),
w2 A
R 1 — jw, A — e~ wnl
n — )
w2 A

where wy, = (2n + 1)7T is the fermionic Matsubara frequency.

12. Add the Hartree-Fock terms calculated earlier to the self-energy

ES;ab N ZS ab + EHF?

N, Ty, N, Ny, N

S;ab S;ab b
PSab -y pSab oy pab

Nz, Ny ,N Nz ,Ny,N

Compare them with the old self-energy. If not the same, go to step 3.
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