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Abstract

In this thesis, we theoretically study the electromagnetic wave propagation in several passive
and active optical components and devices including 2-D photonic crystals, straight and
curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs
are also presented like organic photovoltaic (OPV) cells and solar concentrators.

The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based
transfer (scattering) matrix method (TMM) is briefly described with a short review of
photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM,
the numerical method itself is investigated in details and developed in advance to deal with
more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to
study curved nanoribbon waveguides. The problem of a curved structure is transformed into
an equivalent one of a straight structure with spatially dependent tensors of dielectric
constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are
introduced to locally represent electromagnetic field in photonic crystals as alternative to

planewave basis.

The second part of the thesis focuses on the design of optical devices. First, two examples of
TMM applications are given. The first example is the design of metal grating structures as
replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second
one is the design of the same structure as above to enhance the light extraction of OLEDs
(chapter 7). Next, two design examples by ray tracing method are given, including applying a
microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle
wide-wavelength design of solar concentrator (chapter 8).

In summary, this dissertation has extended TMM which makes it capable of treating complex
optical systems. Several optical designs by TMM and ray tracing method are also given as a
full complement of this work.



Chapter 1. Introduction

1.1 Photonic crystal and its properties

The concept of photonic crystals (PCs) was first introduced by Eli Yablonovitch® and Sajeev
John? in 1987, under the inspiration of crystals. The periodic dielectric nanostructures of PCs
affect photon motion in the similar way as the periodic potential in a crystal affects electron

motion.

PCs have photonic band gaps just like crystals have band gaps. Photons of which the
wavelengths are in the photonic band gap are prohibited to propagate in PCs. A diamond
structure with three dimensional (3-D) band gaps was theoretically predicted by Kai-Ming
Ho® and coworkers in 1990, and a 3-D PC in microwave regime was fabricated by
Yablonovitch and coworkers in 1991. Photonic band gap is the most important property of
PCs, and gives rise to many applications such as control of spontaneous emission?,

high-reflecting omni-directional mirrors®, low-loss-waveguiding® and etc.

1.2 Numerical approaches

Several numerical methods have been applied to study the light propagation in PCs. Most of
these methods are developed not only for PCs, but also for other microscopic optical devices.
In the following we introduce some widely used numerical methods:

1.2.1  Plane wave expansion method (PWE)

PWE?® is a frequency-domain method to solve the Maxwell’s equations for a periodic



structure by formulating an eigenvalue problem out of the equation. It is popular as a method
of solving for the band structure of PCs. It can be combined with transfer matrix method
(TMM) to solve a wide range of problems like the transmittance, reflectance, absorption,
mode profiles and emission for passive or active photonic devices. It can also be used for a

non-periodic structure like a single waveguide through a supercell technique.

1.2.2  Finite difference time domain method (FDTD)

FDTD’ is a popular computational electrodynamics modeling technique in time domain. The
time-dependent Maxwell’s equations are discretized using central-difference approximations
to the space and time partial derivatives. The electric and magnetic fields are calculated
everywhere in the computational domain as they evolve in time. FDTD is considered easy to
understand and easy to implement in software. However, it often requires a big memory to

solve a 3-D structure.

1.2.3  Localized function approach

Numerical methods using localized functions such as optical Wannier functions® and
tight-binding approaches® are used to study PCs. These methods, both adopted from the
electronic theory of solids, provide an alternative basis to plane waves to efficiently study the
localized state of light in PCs. They are often more efficient than PWE in terms of computing
speed, but the construction of the characteristic localized functions are not so easy to

understand and to implement as plane waves.

1.2.4  Ray tracing method

Ray tracing is a method for calculating the optical path through a system with regions of



varying propagation velocity, absorption characteristics, and reflecting surfaces. In a ray
tracing program, a big number of rays are “tracked” as they travel through the medium. Ray
tracing method is valid as long as the light waves propagate through and around objects
whose dimensions are much greater than the light’s wavelength. It can not deal with
interference and diffraction, so it cannot be used to study nanostructures where coherent
optical phenomena dominate. However, it is powerful in designing imaging and lighting

systems and is widely used in industry.
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Chapter 2. The plane-wave-based transfer (scattering) matrix
method — A short review

We will apply the plane-wave-based transfer matrix method (TMM) in design and simulation
in Chapter 4 and 5. In Chapter 6 TMM will be extended to curvilinear coordinates to deal
with curved waveguide. This chapter is like a literature review part, in which we describe
briefly how to derive the transfer and scattering matrix from Maxwell’s equations. Most of
the content has been published by Dr. Zhi-Yuan Li as a series of journal papers*®. An
efficient parallel simulation software based on TMM has been developed for 3-D photonic
crystal by Dr. Ming Li, under cooperation with Canon Inc. The TMM software package has
already been used in actual device design at Canon and commercialized by lowa State

University Research Foundation.

2.1 Maxwell’s equations

The most general form of Maxwell’s equations

VxH=="—+—"7, 2.1)

can be written in



Vx E(F) = ik,H (),

Vx H () = —ik,e(F)E(F),
Ve[ £(N)E(r) ] =0,

VeH (r) =0,

(2.2)

where k,=w/c, and we have assumed a time harmonic dependence, E(r,t)=E(r)e™,

H(r,t)=H(r)e™ and no free charges or currents. The last two equations in Egs. (2.2) are

automatically satisfied given the first two equations. So the first two equations are only to be

considered. They are vector differential equations, and there are altogether 6 equations with

respect to the (x,y,z) component of E(r) and H(r). If optical waves are assumed to be
propagating along z axis, and E,,H, can be expressed in terms of E ,E H,H ,

Maxwell’s equations can be written in terms of differential equations relating to the

transverse components of fields:

y!

op _ 1 ol 1 (M oH,
oz " ik, ox| e(F) ox oy

oH
g o[ 1ot )
oz ' ik, oy s(F)\ ox oy )]

X!

(2.3)
oE
In =L 05 By enE,
674 ik, Ox\ ox oy
oE
9 y=_ii % %, +ik,e(F)E,.
0z ik, oy ox oy
2.2 Fourier space expression

We consider a 3-D device shown in Fig. 2-1. Suppose electromagnetic (EM) wave is



propagating along z axis towards the device, and the device is periodic in (x,y) plane. It

can be periodic along both x and 'y, or, periodic along one direction and uniform along the

other direction, or uniform along both directions. We slice the 3-D structure in such a way

that in each layer, it is uniform along z. In other words, the refractive index is a function

dependent only on the transverse coordinates (x,y) in each layer (see Fig. 2-1).

FIGURE 2-1. Schematic of a 3-D structure which is periodic along X and Yy directions.

From Bloch theorem’, the EM fields at an arbitrary point F can be written into the
superposition of Bragg waves (or plane waves) when a plane wave is incident from the left

side with a wave vector k, = (k,,k;,,k;,):

E.(r)= Z Eij,x (Z)ei(k”*“ku,yy),
ij

Ey (r) = z Eij,y (Z)ei(kij,xﬂkij‘yy) ’
” e (2.4)

H, (1) = 3 Hy, ()6,
ij

H, ()= X H,, (e
1



where the Bragg wave vector k; =(k;,.k; )= (kOX,kOy)+Ib1+jb2, b, and b, are the

reciprocal lattice constant, E;,,E; ,H; H; are unknown expansion coefficients of the

transverse electric and magnetic fields. At the same time, since &(F) is also periodic in

(x,y) plane, it can be also expanded on plane wave basis:

_zg (Z)el(kljxx+kljyy)
(r) ]

| (2.5)
£() =Y (2)e 7,

where gij‘l(z) and ¢;(z) is the Fourier expansion coefficients of 1/&(r) and &(r)

respectively in a specific layer. Substituting Egs. (2.4) and (2.5) into Eq. (2.3), we can

transform the partial differential equations to Eq. (2.6):

aEi"x iki',X -1
G—ZJ:_ kj) %é}—m,j—n(Hmn,ykmn,x_HmnX mn, y)+|k H'Jy’
OE;
%: Uyz EiZm,j- n mny m”X_Hm”vka”*y)_ikoHij'w
2.6
. (2.6)

X u X i
- Z im, Jn mny mnx Emn,kan,y) Ikogi—m,j—nEij,y’

aHi' ij x
TJyzk_Jogé‘im,jn(Emn,ykmn,x EmnX mn, y)+|k Eiom,j- ”E'J X

We define two column vectors E =(...,E; ,,E;,...)", H = (..., H; ., H; ,....) to represent the

unknown coefficients of E; ,E; ,H;,, H; . Then Eg. (2.6) can be written in a concise

]

form Eq. (2.7):



Je-tH, Zh-TE
0z 0z
-I-lij,mn — L( ku xgl_lm j- nkmn Y% ku Xgl m,j— nkmn X + k é‘lm Jnj (2 7)
-1 ) .
k kuy |mJnkmny ké‘lmjn kuyglmj nkmnx
2
-I-2ij,mn — L( ku xé‘lm jnkmn y ku xé‘lm Jnkmn X kO gi—m,j—n}
2 .
k klj yé’lm Jnkmn y + kO i-m, j-n klj y5|m Jnkmn X

From Eq. (2.7) we finally obtain an eigenproblem for the electric field in a specific layer,

2
;;E (T.T,)E = PE = —QE. 2.8)
Suppose we truncate the number of plane waves to be N, in the expansion, then
T,T,,P,Q are all (2N,)x(2N,) matrices. We can find the eigenvalue and eigenvector of

Q. With the eigenvalue B calculated [Eq. (2.9)], Eq. (2.8) can be expressed by Eq. (2.10)

with each element of the unknown coefficients in vector E a function of z.

QE = B°E. (2.9)

82

a—E+ﬁ E=0. (2.10)
Solutions of Eq. (2.9) will give 2N, eigenvalues g%,i=12,..,2N,. A (2N,)x(2N,)

matrix S,, whose jth column is the eigenvector corresponding to the eigenvalue A7, can

also be obtained simultaneously. The eigenmode corresponding to 37
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E(z2)=E'(2)+E (z)=E'e" +E e, (2.11)

where E’,E; are both variables to be determined. We further define column vector

B=0C.B.,.)  E'=(.,E(2),.),E =(..,E (2),..)". The electric field column vector

E is now expressed in the superposition of all eigenmodes,
+ - E+
E=S,(E"+E )=(sa,sa)(E_}. (2.12)

The corresponding magnetic field column vectors are obtained from Eq. (2.7),

H :Tl’lEE :TllSa%(E +E7)

=TS, A(E" —E)=(Ta,—Ta)[Ei], (2.13)

where T, =iT,'S, 3.

We combine Egs. (2.12) and (2.13), and write down the electric and magnetic fields at an

arbitrary point into a concise form:

o) 3E) e
H(z) T, -T,\E

Inside a slice, the macroscopic medium is homogeneous along z axis,and E*, E™ are sets

of eigenmodes of this slice propagating along +z and -z separately. So we have
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[E+(Z+h)]=[ewh 0 J[E(Z)} (2.15)
E (z+h) 0 eI E(2)

2.3 Transfer matrix to connect slices

In previous section, we have solved the eigenmodes of a single slice which is uniform along
z axis, and expressed the electric and magnetic fields in terms of these eigenmodes. Next

we will connect a series of 2-D slices into a whole 3-D structure.

Z
Q; Q
—P> ——P
» o
Q, n
iy, Z
Q' > > QF
O, < Q;
the i-th slice

FIGURE 2-2. Schematic of TMM for a single slice and a series of slices.

The scheme of TMM is illustrated in Fig. 2-2. For each 2-D slice, it is assumed that there are
two infinitely thin air films (or any homogeneous medium) around it. These air films are used
as a “glue” to connect all slices. The artificial air films will have no impact on the problem
since it is extremely thin. The purpose of them is to allow the boundary condition (tangential

EM field is continuous across an interface) be applied in a convenient way.
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Fist consider the left surface of a single slice i(i=1,2,...,n). To the left of surface (z<z ,)

is the air film, and the electric and magnetic fields can be expressed in a way similar to Eq.

(2.14),

(E(z)j:[so s, j(SL] (2.16)
H(z) T T )\,

where S,,T, are corresponding S,,T, in air, and Q,,Q , are the coefficients of
eigenmodes in air (i.e. plane waves). To the right of surface (z>z_,) is the ith slice, the

electric and magnetic fields can be expressed as,

a6 3)E)
H(z) T. -TJLE

where S;, T, are corresponding S_,T, in slice i. From the continuity of EM fields at the

interface z =z, ,, we have

{So S J[erjz(si S, j(Ei+(Zil)jl (2.18)
TO _TO Qi—l T T Ei (Zi—l)

Similarly, at the right interface z = z,, we have

So So Qi+ _ Si Si Ei+(zi) (2 19)
To _To Q; - Ti _Ti Eii(zi). .
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Inside the slice, from Eqg. (2,15) we have,

LE:(Zi)j — (eiﬂh jLE'+ (7 1)}, with z, =z_, +h. (2.20)
E (z) 0 e \E(z,)

Combining Egs. (2.18)-(2.20), we get the transfer matrix T, for slice i,

(o)

T.:(au AN
I a 0 e Ay Ay , (2.21)

==(8"8, +T,'T, ) 2, =2y,

r\J|I—‘ |\>||—\

(-15 T‘lT) L =a,.

After we connect the right surface to the left surface for slice i by T,, we can get the
overall transfer matrix T for the whole structure by connecting all n slices together:
T=TT,, T, However, the transfer matrix T proved to be numerically unstable when the
structure is thick, due to the fact that the evanescent wave components in the planewave

expansion will increase exponentially if entire T, matrices are multiplied.

One solution to the numerical unstability of transfer matrix method is to adopt the scattering

matrix S, the components of which can be directly calculated from T matrix. The overall

S matrix can be computed by connecting S, for each slice through an iteration algorithm.

The expression of S matrix is given by,
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a5 (a)

- ( Pt + Pt P, + pztlj
I pltZ + pZtl pltl + p2t2 ,

~1,iph

P = I:ail - eiﬂhaizau e ay, :I_l '

_ ~-1.iph
P, =a,;€" a5,
~1,iph ~1,iph

L =a,e"a, [au - eiﬁhalzane a, Tl '
t, =-a,.

(2.22)

Finally a numerical stable scattering matrix S can be obtained for the whole 3-D structure.
S matrix is only decided by the dielectric distribution of the 3-D structure (assume it is not
magnetic). For different applications, such as computation of spectrum, photonic band
structure, or mode profile, desired initial condition and boundary condition are applied to the

S matrix.
2.4 An example: Spectrum calculation

From Eq. (2.22), we have such a relation Eq. (2.23) which connects the field column vector

at the left and right side of the 3-D structure shown in Fig. 2-2. When an EM wave expressed

in Qg is incident from the left, Q_ is set to be zero since there are no backward waves to

the right side of the 3-D structure. The transmitted field E' and reflected field E" can be

calculated as follows,

Q: =S Q; — S11 S12 Qg
Q; Q) (Sy Sy)la ) (2.23)

E'=Q'=S5,Q), E'=Q,=5,Q;, withQ, =0.
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After we get the transmitted field E' and reflected field E", the transmittance T or
reflectance rate R, defined as the ratio of energy flux of transmitted wave or reflected wave

to the energy flux of incident wave respectively, can be calculated in Eq. (2.24), with the

summation of i, j for propagating modes k; +k: <k;. The absorptance A, defined as

the ratio of the energy absorbed by the whole 3-D structure to the incident energy, can be

calculated from T and R.

=
Z|E i/
15| M
” |EO| |kOZ| (2.24)
A=1-T-R.

2.5 Summary

In this chapter of introduction of TMM, we reviewed the core knowledge of this numerical
tool. We gave a numerical example for spectrum calculation of transmittance, reflectance,
and absorptance. Beyond that, TMM has a lot of applications like computation of photonic
band structure and field mode profiles. It can deal with active devices as well as passive ones.
It can be extended to curvilinear coordinates to deal with curved structures. Some of these
topics will be discussed in this thesis later on. Although the core algorithms have been well
developed for TMM, some parts of it are still under development, and we are looking

forwards to new strategies and applications of it.
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Chapter 3. TMM extension to curvilinear coordinate system
to study guided modes in curved nanoribbon waveguides

The planewave based transfer (scattering) matrix method is developed in curvilinear
coordinates to study the guided modes in curved nanoribbon waveguides. The problem of a
curved structure is transformed into an equivalent one of a straight structure with spatially
dependent tensors of dielectric constant and magnetic permeability. We investigate the
coupling between the eigenmodes of the straight part and those of the curved part when the
waveguide is bent. We show that curved sections can result in strong oscillations in the
transmission spectrum similar to the recent experimental results of Lawet al. [Science 305,

1269 (2004)].

3.1 Introduction

Semiconductor nanowires and nanoribbons are emerging as important building blocks for
nanoscale opto-electronics. Much attention has been drawn towards their optoelectronic
applications such as waveguides®, lasers?, optical switches and sensors®. Among those
applications nano waveguides are especially important as links between optoelectronic

elements.

Nanoscale ribbon-shaped crystals of binary oxides exhibit extreme mechanical flexibility"
and can be synthesized into various shapes of nanoribbon waveguides used in a nanoscale
optical circuit. The simplest shape of straight waveguide has been widely studied either
analytically or numerically. However, it is much more complicated to study a waveguide and
its eigenmode properties when it is bended into various shapes. The guided modes in a

bended waveguide present different propagation properties from a straight one.
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An example is in a recent work by M.Law et al.l. They found strong regular oscillations in
the output spectrum when light is traveling in a curved nanoribbon waveguide. The largest
amplitude of oscillations is about 50% of the maximum output intensity. The period of the
oscillations is about 20 nm. These strong oscillations can not be explained by traditional
coupling theory. In this chapter we will present a model in curvilinear coordinates to simulate

the curved nanoribbon waveguide.

3.2 Transform of TMM into curvilinear coordinates

In previous chapter, the planewave based transfer matrix method (TMM)*° is mainly used in

Euclidian coordinate system (x,y,z). For TMM, any applicable structures are all straight

along the propagation direction (z axis). Although non-orthogonal lattice is allowed in the

xy plane, it is not possible to deal with any structure that has any curvature along z axis.

To study the properties of curved waveguides, we need to develop the TMM algorithm in

curvilinear coordinate system (x',y',s) following a previous work on curvilinear coordinate

system®.

The relation between the Euclidian coordinates (x,y,z) and the curvilinear coordinates

(x',y',s) is illustrated in Fig. 3-1. For Euclidian coordinates, each of XJy,Z is
perpendicular to the other two. The light is propagating straightly along z axis. For
curvilinear coordinates (x',y',s), each of X"y’ s is also perpendicular to the other two. s

is the propagation direction and X' is always pointing to the center of the curvature of
radius R . The relation between the Euclidian coordinates and curvilinear coordinates can be

expressed by Eq. (3.1).
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&
— X

FIGURE 3-1. Coordinate system (a) Euclidian (b) curvilinear

X= x'cosi+ R 1—cosi ,
R R

y=Y 3.1)

.S .S
Z=-X'sin—+Rsin—.
R R

Let (x',x* x%) be the coordinates of Euclidian system and (q',q* q°) be the coordinates

of curvilinear system. The curvilinear coordinate system can be characterized by its covariant

basis vector a.

and metric tensor §; which are defined by

1 2 3
g =| & O ) (3.2)
a9 09" oq'

and

e X oax

i = A A (3:3)
' &30 g
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From Eqg. (3.1), & and g; can be calculated for the curvilinear coordinate system shown

in Fig. 3-1(b) as

~ S .S
a, =|cos—,0,—sin—|,
(=g o-sn)
a, =(0,1,0), (3.4)
~ X'. s .S X' S S
a, =| ——sin—+sin—,0,——cos—+cos— |.
( R R R R R j

and

g,=|0 1 0o | (3.5)

A well known form of Maxwell’s equations in general curvilinear coordinates can be written

in the absence of free electric currents as®

E' H
0—— 0—=
£(q",o” Ol")—*/gTii N N i
Y act Jo aq'
H E (3.6)
O 0
1 .2 3 ;i 1 ijk g
- ) ’ = e
#(0,9°,9%) ot 5° oy

Substituting Egs. (3.4) and (3.5) into Eg. (3.6), we can get Maxwell’s equations in terms of

differential equations relating to the transverse components of electromagnetic field in our

curvilinear coordinates:
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[ 1(eH, .
T &y, +ikou,Hy
s —ik, X' g5\ ox' oy g

[1(0H, N .
Op Lo ofifoH, A
0s —ik, oy'| g, ox' oy’
- _ 3.7)
oE.,.
i . :ii i y _aEX' _ikongy',
0s iky OX'| g3\ OX" Oy
S N
LR S Y R |
0s iky Oy'| a5\ OX"  Oy' )]
where
£ =&, =¢qa,
= H, = Ha,
&=¢la, (3.8)
My =l a,

By comparing Eq. (3.7) with Eqg. (2.3), we note that the curved structure in Fig. 3-1(b) can be
viewed as a straight one in Fig. 3-1(a) with effective & and & tensors depending on the

transverse coordinate Xx':

g 0 0 0 0
E=|0 ¢ Of, =0 u 0] (3.9)
0 0 g 0 0 g

For a straight structure of R — o (a=1), the above formulas reduce to Eg. (1.?). By

transforming curvilinear coordinates into Euclidian coordinates, the problem of a curved
structure is transformed into an equivalent one of a straight structure with spatially dependent

tensors of dielectric constant and magnetic permeability as shown in Fig. 3-2:
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FIGURE 3-2. Transform a curved section into a straight one.

We note that equations (3.8) and (3.9) have almost the same form as in Sacks’ uniaxial

perfectly matched layer (UPML), i.e., no reflection occurs at a plane interface between two

media with the same (g, ) but different o in Egs. (3.8) and (3.9). The difference lies in

that « of UPML is a complex constant which can give absorption at boundaries. Here «
is a real number and varies with transverse coordinate x'. This indicates that the curved part

of the waveguide is perfectly matched with the straight part in the s direction, but not in the

X" and y' directions. When light travels from straight part to curved part, the reflection

will be very little if the bend is not so sharp. In the straight waveguide the dispersive curves
are nearly parallel lines, while in the curved one some of them intersect others, i.e., the group

velocities are different for these modes.

3.3 Curved waveguide simulation

The simulation results presented in this section have been published in Ref. 10. When the

curved waveguide is effectively considered as a straight one with (&(x’), Z(x")) given by
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Egs. (3.8) and (3.9), we can apply the well-developed plane wave TMM (Refs. 4,5) to
calculate the dispersion relations and eigenmode profiles in the curved waveguide in the

same way as in a straight waveguide®. In the following, we consider a nanoribbon with a

cross section of 360 nm (x")x250nm(y") on a substrate, where the refractive indices

n,=10,n,=2.1n,=15 (see Fig. 3-3, these parameters are close to the ones in Ref. 1).

n0=1
250 _
nmI r11_2-1

360nm

n2=1.5

FIGURE 3-3. Geometry illustration of nanoribbon waveguide.

Figures 3-4(a) and 4(b) show respectively the dispersion relations for a straight waveguide

and a curved one with R=2 um; the insets give the |E,| (|Ey|) distribution of the first

(second) eigenmode with E, (E,) polarization at 600 nm. 19x19 plane waves for

dispersive relation, 41x41 plane waves for the mode profile are used. The guided modes

move downwards for a bent waveguide and the modal field shifts outwards from the center of

curvature (—x" direction)®. The first and fourth modes are E, polarized, and the second and
third modes are E, polarized. Modes after the fifth mode are not as highly polarized as the

first four modes.
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FIGURE 3-4. Dispersions of guided modes for (a) a straight waveguide and (b) a curved waveguide with

R =2 um. The dashed line is the light line in substrate: K, =n,k, (k, =2z /1) . The left (right) insets

are |EX| (|Ey| ) distribution of the first (second) mode at 4 =600 nm.

We consider the transmission coefficients for a curved waveguide joint between two straight
waveguides. The transmission and reflection coefficients can be computed following the

steps in Refs. 8. Here we only present the self-transmission coefficients of guided eigenmode

i (i=12,...), which are defined as the ratio of the transmission energy flux particular mode
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i and the incident energy flux (only mode i incident). The reason for doing this is that in
propagation along the straight waveguide, we expect that some guided modes are much more
sensitive to waveguide imperfections (such as sidewall roughness) than others. These

sensitive modes are much more likely to disappear during propagation.

We start from a simple “U” shape structure, made of two semi-infinite straight waveguides

connected by a semicircular waveguide [see the inset in Fig. 3-5(a)]. First we set R to be

10 um . The self-transmission of the first six guided eigenmodes is shown in Fig. 3-5(a). One
can see regular fluctuations in transmission like in Ref. 1 but with much weaker amplitude.
Our calculation shows that the reflection is very small (<10, not shown here). That agrees
well with the UPML form of & and & in Egs. (3.8)-(3.9), which indicates little reflection

if the bend is not very sharp.

Then we try a “L” structure, made of two semi-infinite straight waveguides connected by a

quarter-circular waveguide with R=20 zm. The result is shown in Fig. 3-5(b). The

amplitude of transmission fluctuation is even weaker, but the position of the transmission

peaks and bottoms of the first four modes are about the same compared to Fig. 3-5(a). It is

interesting that the first two E, -polarized modes (the 1st and 4th modes) have almost the

same period, and the first two E, -polarized modes (the 2nd and 3rd modes) also do so.
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FIGURE 3-5. Self-transmission of the first six modes for: (a) a “U” structure of R =10 xm, (b) an “L”

structure of R =20 #m, and (c) a “U” structure of R=4 um.

We tested structures with different curvatures and different span lengths. We found that: (i)
the amplitude of transmission fluctuation decreases as R is increased and (ii) the period of

transmission fluctuation is only related to the span length of the arc part and decreases as we
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extend the arc part. The first rule is natural to understand. Smaller radius of curvature

enlarges the perturbation to the system, causing the transmission to fluctuate more intensively
(see Figure 3-5 (c), where R is set to be 4 um). The second rule is like Fabry-Pérot (FP)

effect at first view. However, it cannot be expained by FP effect since the reflection is so

weak. Actually the mode conversion is responsible.

Let us begin from a simple model. Suppose there are two eigenmodes in the waveguide

marked i and j for the straight part and i' and j' for the curved part. In the straight

section, the two eigenmodes i and | propagates separately and there is no coupling

between them. However, after they enter the curved part, they couple to each other and form

two new eigenmodes i' and j'. If the arc part has length L , we can write down the

self-transmission of mode i when the reflection is very small and can be neglected:
. i 2 4 4 2 2 .
i exp(ik; Lt +t; exp(ik; Lty | = [t +]t; | +2Jt. [ |t; | cos(ak L) (3.10)

where Ak =k, —k;; t.. t;, t., t, are the conversion coefficients from mode i to i, i

iis bio Yy i

*

to i, i to j', j' to i, respectively, and t; =t 1, :t;.i . Because Ak  is not very
sensitive to R, the period of transmission fluctuation is mainly related to the span length L
of the curved section. The conversion between modes with the same polarization is much
stronger than that between different polarization modes. So the first and fourth modes have

similar self-transmission periods and the second and third modes also have similar periods.

We calculate Ak  as a function of wavelength between the first and fourth (the second and

third) modes, from which we compute the period of transmission fluctuation. At 400 nm the
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calculated period is 22.4nm for the first and fourth modes, and 38.1nm for the second

and third modes, which agrees well with the values of 23nm and 39 nm in Figs. 3-5(a)

and (b).

However, higher order modes are not highly polarized in either the Xx or the y direction,

i.e. one of |EX| and |Ey| is not much bigger than the other. The conversion rates between

different polarized modes are not small. So their self-transmissions do not show fluctuations

as regular as the first four modes [see the bottom plots of Figs. 3-5(a) and (b)].

Our numerical results suggest a possible explanation for the strong regular oscillation in the

output spectrum observed by Law et al*. The oscillation period in Fig.1(c) in Ref. 1 is about

20 nm. From our previous calculation, 30 #m span length of curved nanoribbon gives
about 20 nm oscillation period. However, the oscillation amplitude is around one half of the
peak value of the intensity, which corresponds to below 4 xm radius of curvature according
to our previous calculation. The length of the curved section can not be as long as 30 xm

regarding the 4 um radius of curvature. So we expect there is a rippling section of

nanoribbon [as shown in Fig. 3-6(a)], which has a small bending radius for the curved part.

We calculate the structure in Fig. 3-6(a) for different parameters, and one of the results is
shown in Fig. 3-6(b). The parameters are R=3um, L =1um, and L,=5um, and two
periods of fluctuations [Figure 3-6(a) only shows one period]. The self-transmission diagram

exhibits similar strong oscillations in the third, fourth, and fifth modes as in Ref. 1. Although

the real structure is not like Fig. 3-6(a), since there is an air film between the rippling
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nanoribbons and substrate, the calculation in Fig. 3-6(b) can be a rough estimation of the real
structure and point out a very like possible origin of the strong regular intensity oscillations

in Ref. 1.
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FIGURE 3-6. (a) Illustration of a waveguide containing a rippling section. (b) Self-transmission

of the first six modes for the structure in (a) but of two periods of fluctuation,

when R=3um, L =1um,and L, =5um.

3.4 Summary

In summary, we have developed an improved TMM method in culvilinear coordinates to

study bended nanoribbon waveguide. A curved section is equivalent to a straight one with

effective ¢ and i as tensors and functions of transverse position. Tensors & and &

have the form of anisotropic PML but without absorption. Our method can be applied to any
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shape of bended waveguide, which can be approximated by combination of many curved

sections with different spans and curvatures.

The transmission spectra of straight-curved-straight waveguides are calculated and examined.

We ended up by calculating a rippling section and pointed out that such a section in the

nanoribbon waveguide is probably the origin of the strong regular intensity oscillations

observed in Ref. 1.
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Chapter 4. Go beyond planewave basis: localized optical orbital
approach to photonic crystals

A new set of localized basis orbitals are introduced to locally represent electromagnetic field
in photonic crystals. These orbitals are different from the optical Wannier functions. They are
the optical parallelism of quasi-atomic orbitals in the context of electronic problems. We
demonstrate the utility of these localized optical orbitals by recapturing eigenmodes in
defected structures. Calculations for cavity modes and dispersion relations for waveguides
agree well with the results from plane wave expansion calculations. This approach also offers
interesting physical insight to understand the state of light in ideal photonic crystals as well

as defected structures.

4.1 Introduction

One major aspect of all photonic crystal devices is that one or several highly localized defects
are embedded in the perfect periodic photonic crystal background. In photonic crystal devices
design, we usually need to simulate many different localized defect configurations (for
example different shape, size or position) within the same perfect periodic photonic crystal
structure. Therefore, a natural question to ask is: Can we treat the defects part and perfect

periodic part separately first and then combines two parts together?

Before we answer this question, let’s overview how traditional simulation tools works. Most
traditional simulation tools such as planewave based transfer matrix method (TMM)? and
finite difference time domain (FDTD)® will treat the photonic crystal devices (both the
defects and the background) as a whole structure to calculate which means any change (even
very slight change) of the defects will lead to a brand new calculation. For example, if 100

different cavity structures embedded in the woodpile structure are needed to simulate, TMM
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and FDTD will need 100 times one cavity structure calculation time. And each one cavity
structure calculation is not short for TMM and FDTD on three dimensional (3-D) cavity
woodpile structures. A linear increase of calculation time will be expected for TMM and

FDTD simulation as the number of cases studied increases.

One other thing need to emphasis is that both TMM and FDTD will increase simulation time
as the calculation domain goes larger, and the defects size is relatively small compared to the
whole device structure (usually less than 1/10 of the device). Or in other words, for each
repeated different defect structure calculation, most calculation effort is devoted to the
non-defect part which is a waste of time if we can separate the defect part and perfect part.
This also leads to our natural question: Can we modify TMM or FDTD to realize the idea of
separation? The answer is No. No modification is available for TMM and FDTD because

both methods have to treat the structure as a whole.

Other methods can realize the idea of separation, such as localized Wannier functions
(WFs)*® and localized optical orbitals method (LOO) which will be presented in this chapter.
The concept of these methods is to separate the photonic crystal devices at the very beginning:
photonic crystal device = perfect photonic crystal + defects. First the perfect photonic crystal
part can be calculated once for all. Then localized light orbitals are generated once for all
variations of certain defects (for example variation of size, shape, location and refractive
index). For any combination of those variations on defect, LOO can simulate much faster
(detailed data later) than TMM or FDTD because only the variation part (only a fraction of
whole domain) is re-calculated. Much better performance will be expected for LOO
compared with TMM or FDTD especially when a lot of variations are studied, which is the

inevitable task of industry design.

4.2 Localized optical orbitals v.s. optical Wannier funtions
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Numerical methods using localized functions such as optical WFs and tight-binding
approaches® ™ have proven to be powerful tools to study the localized states in defected PCs.

Optical Wannier functions, adopted from the electronic theory of solids'*™®

, provide an
alternative basis to plane waves to study the localized state of light in PCs. Much interest has
been focused on WFs for its highly localized characteristic and usefulness for studying the
defected systems. However, considerable steps of iteration are needed to get the maximally
localized WFs>. In addition, a suitable set of trial functions to start the iteration is essential in
this approach. To get these trial WFs, one has to guess the shapes and locations of them. Even
with suitable trial WFs, one does not know what the final WFs will look like after iteration,
since the iteration process is like a black box and the output WFs may be very different from

the input trial functions. As a consequence, these uncertainties make the construction of WFs

complex and not so direct.

In this chapter we suggest a different basis of highly localized functions as an alternative to
WFs. The idea comes from the quasiatomic minimal basis orbitals (QUAMBOS) in the
context of electronic theory of solids*® 2. Like WFs, QUAMBOs are the linear combinations
of Bloch orbitals. However, WFs are constructed through minimizing the transverse spread

functional*®

, yet QUAMBOs are obtained to let themselves be mostly like the free atomic
orbitals. The QUAMBOs attained from this scheme contain the adaptation of the basis to the
environments such as molecules or crystals, while keeping the essentially quasiatomic
character in these environments'®. The purpose of this chapter is to adapt the concept of
QUAMBO:s to optical systems. Ideal PCs or periodic alternate dielectric materials are like
molecules while individual dielectric layers/columns/spheres that build up PCs are like atoms.

The optical QUAMBOs should contain information of both “atoms” (individual dielectric

blocks) and “molecules” (lattice of these blocks).

To construct these QUAMBO-like localized optical orbitals (LOOs), we project Bloch wave
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solutions to optical states, which are analogous to free atomic orbitals, and orthogonize these
projections to make them satisfy the general orthogonalization relation of WFs. Since LOOs
and WFs share the same characteristic of localization and orthogonality, theoretically any

WF-based scheme can be adapted to LOO method to study defected structures.

By comparison between the construction processes of these two bases, we see that LOOs are
constructed through direct projection and orthogonalization, while WFs are constructed
through iteration. The advantage of projection and orthogonalization lies in that they require
much less computer time than iteration. Meanwhile, LOOs and the atomlike orbitals to be
projected are very alike, and we can anticipate roughly what the LOOs will look like before
they are constructed. But WFs and the trial functions to start iteration may be very different.
We do not know what comes out when we put in trial functions. Another superiority of LOOs
is its straightforward construction. We do not need to guess anything such as the shape of

trial functions.

To illustrate our idea, LOOs are constructed to quantitatively describe the electromagnetic
wave localization and propagation in one-dimensional (1-D) systems. We chose a 1-D system
as our first example because this simplest structure offers a most straightforward description
of LOO concept. Then this approach is extended to two-dimensional (2-D) case, where
cavities and straight waveguides are studied. Numerical calculations by other methods'*#
are also given as a comparison to testify our method. This work also suggests a possibility of

using these optical QUAMBO:s to study 3-D PCs.
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FIGURE 4-1: Structure of (a) a 1-D PC of dielectric layers in air, and (b) one dielectric layer with a perfect

conducting boundary.

4.3 Construction of localized optical orbitals in 1-D systems
Consider a 1-D PC shown in Fig. 4-1(a). It is a 1-D lattice of dielectric layers in air with

dielectric constant & =13. The thickness of the dielectric layers is one half of the lattice

constant a. The light that propagates in the z direction can be expressed by the electric

field E(Z), which obeys the wave equation
o? PN
(o

where we have assumed a time harmonic dependence, E(z,t) = E(Z)exp(-iwt), of the
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electric field with the frequency . ¢,(z) is the dielectric index of the periodic structure

e, (Z+ R) =¢,(2Z) and R is the lattice vector. Equation (4.1) has solutions to as the Bloch

functions, which satisfies the Bloch-Floquet theorem?

E,.(Z+R)=¢e""E . (2), (4.2)

where n and k indicate the photonic band index and the wave vector.

To adapt the concept of QUAMBO:s to this system, we first need to find solutions which are
analogous to free atomic orbitals. However, the scattering nature of light does not allow such
localized solutions unless a boundary is enforced to restrain photons from escaping. As Fig.
4-1(b) shows, we apply a perfect conducting boundary at both sides of a dielectric layer,
which is like an “atom”. We set the distance L between two ends to be 1.4a. Note that the
value of L cannot be too large compared to a, otherwise the atomlike optical orbitals are
not well localized. Neither can L be smaller than a, to allow interaction between “atoms”
(dielectric layers) to give a modulation of light. From our calculation, we find that the
optimal value of L ranges from 1.2 to 1.5a. In this range, the results are not sensitive to

this boundary.

There are four solutions E®(z) (m=12,..,N,N =4) in the normalized frequency range

wal (27¢)=0.0~0.9, as shown in Fig. 4-2(a). By projecting E©® to E__, we get the

nk'’

projections®>%*

E. (2) =ZCm’n'EEn’E(Z), (4.3)
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_are defined as follows:

where coefficients ¢_ .

Conic = (Eni 16, |EN) = [ €2, (2) £, (D EP (2). (4.4)

The integration runs over the entire space. Here we use Bloch waves E . in the first four

bands (n=1,2,...,N, N =4). We take 11 k points in the first Brillouin zone (BZ). Then we

orthonormalize E,, to get a basis E, *°%, which satisfy the relation (E, |, |E, )=,

,m"?

and where E (2)=) (z). We pick up the k component of E_ after the

n,lZCm,n,lZ En,l?

above orthogonalization

E;n,p(z) = ZC;’n,n,R E.« (D) (4.5)

and orthonormalize E . for each k to get a basis E _ , which satisfies

m,k m,k

(z). Summing up E_. over k

<Er;,|z l&, | E;,YE>:5mm., and where E (2)=) c.  .E .

we can finally get a set of localized functions E._ (Z) = le E;‘E(Z), which can be satisfy the

following orthogonality relation

(En(z-R)|£,(2)| Ef(2=R)) =5 Sg - (4.6)

Following the above steps we construct an orthonormal basis E, (), i.e., LOOs. Note that

here we follow the projection process in the works by Lu et al. *** But QUAMBOSs in these
works are not an orthogonal set. Beyond projection, we also need an orthogonalization

process to make LOOs be an orthonormal basis like WFs. One can easily see that LOOs
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shares two major characteristics with WFs: the welllocalized property and the orthogonality,
which is inherited from Bloch functions. Equation (4.6) has exactly the same form with the

orthogonality equation in Refs. 4 and 5.
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FIGURE 4-2. (a) The first four modes for one dielectric layer with boundary as shown in Fig. 4-1(b);
(b) LOOs constructed from the four modes in (a) and Bloch wave solutions in the first four bands.

The horizontal axis is the scale in the unit of lattice constant a.
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In Fig. 4-2(b) we plot E (z) (m=12,..,N, N =4), which are obtained from the “free atom

orbitals” shown in Fig. 4-2(a). We see that wiggling tails appear in E_(z) as a result of

projection and orthogonalization. Instead of jumping to zero from finity at the boundary in
original orbitals [see Fig. 4-2(a)], the magnetic field H ~ gE naturally undulates steadily
z

to zero in Fig. 4-2(b). In some cases the wiggling tails extend to long distances and thus
break the well-localized property of LOOs. Then we need to introduce virtual orbitals to

reduce or get rid of these undesirable wiggling tails®’.

Since E_(z) owes the orthogonality relation to Eqg. (4.6) just as WFs, we can directly

transplant the method, which uses the same orthogonality relation of WFs to calculate the

photonic band structure*®. The electric field in Eq. (4.1) can be expanded in the basis of

E,.(2)
E.(2)=).C,e*"E.(z-R), (4.7)

where C_ are undetermined coefficients. By substituting Eq. (4.7) into Eqg. (4.1) and

applying the orthogonality of E (z) [EQ. (4.6)], we obtain the following eigenvalue

equation:

Z(Z g mﬁm'ijv = (ETCW (4.8)

m' R’

where
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m' _ [ E (s _ P _a_z =" (5 _ P
Aﬁﬁ.—<Em<z R)‘ HEL R)>

(4.9)

2
a R [ .
- = dk elk-(RfR) C B n,k c. .
272_ BZ nzz; m,n,k C m',n,k
By solving the eigenvalue matrix in Eq. (4.8), we reproduce the photonic band structure in

the LOO basis. The result is shown in Fig. 4-3. As Eq. (4.9) indicates, there are two ways to

calculate the matrix AZr . One is to integrate over z in real space, the other is to integrate

over k . They both can yield exact reproduction of the photonic band structure. The band

structure shown in Fig. 4-3 is computed from the integral in k space. Solid lines indicate

the band structure calculated by plane-wave expansion (PWE) method, and dots by using

LOO basis. It can be seen that our method agrees quite well with PWE in the first four bands.
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FIGURE 4-3. Band structure of 1-D PC in Fig. 4-1(a) calculated by PWE (solid line) method

and reproduced by LOO (dots) method.

4.4 Defect structures in 1-D photonic crystals
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In the presence of a defect e(z) over the periodic permittivity function ¢ (z), the electric

field Maxwell wave equation Eq. (4.1) should be rewritten as

—872 E(z) =(ﬁj £(2)E(2), (4.10)

c

where ¢£(2) = ¢,(2) +0¢(z) . We expand the electric field in Eq. (4.10) as follows:
E(z)=).C,:E.(z-R), (4.11)

where C . are coefficients to be determined. By substituting Eq. (4.11) into Eq. (4.10) and

applying the orthogonality of E,’; (2) , we obtain the following tight-binding matrix equation:

2
mm' w mm'
ARC. 5= (?j 2 A0 e+ Dage 0 s (4.12)
m',R"

=M

el

m

where

D' =(E (-R)| 5(2) | E, (Z—RY)), (4.13)

RR'

and A is defined as before in Eq. (4.9). The above is the scheme in Refs. 4 and 5 except

that LOOs are used as basis instead of WFs.
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Field

Electric

FIGURE 4-4. The first three cavity modes from PWE (solid/black) and LOO (dashed/red)

calculations. The horizontal axis is the scale in the unit of a.

As a numerical example, we study a structure with one dielectric layer missing. Figure 4-4
shows the first three eigenmode profiles computed from plane-wave expansion method*® and
our method. In this calculation, we use six LOOs that are constructed from 66 Bloch wave
solutions in the first six bands. Exact agreement is achieved in the mode shape and we can
hardly see any error. Normalized frequencies for these three cavity modes are 0.24056,
0.37649, 0.67364 / 0.23991, 0.37615, and 0.67186 given by LOO / PWE calculations,

respectively. The maximum relative difference is 0.27%.
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4.5 Localized optical orbitals in 2-D photonic crystals and defected structures

In sections 4.2 and 4.3, we illustrate the concept of LOOs by a 1-D example. In this example,
each dielectric layer in air can be compared to an isolated atom. These atomlike layers are
connected to form a crystal. The state of light that propagates in the crystal can be expanded
in the quasiatomlike basis. The basis constructed in this way contains information of both the
isolated atoms and lattice made of the atoms. After this 1-D example, it is expected to extend

our LOO method to 2-D cases, where each dielectric pole can be regarded as an atom.

0Q00
OO0O0O0
O0O0O0
000¢

E=0

(b)

FIGURE 4-5. Structure for (a) a 2D PC with a square lattice of dielectric rods in air, and (b) one dielectric

column with a cylindrical perfect conducting boundary.

Consider a square lattice of dielectric columns in air as shown in Fig. 4-5(a). The cylinder
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has a dielectric constant 9.0 and a radius r =0.35a, where a is the lattice constant. This
structure has a 2-D photonic band gap from 0.251 to 0.29 for transverse magnetic

(TM)-polarization and another gap from 0.425 to 0.493 in the normalized frequency

QPO

wal (2rc).

BDO

FIGURE 4-6. (a) The first six modes for one dielectric column with a cylindrical
boundary as shown in Fig. 4-5(b); (b) LOOs constructed from the six modes in

(a) and Bloch wave solutions in the first six bands.

To find solutions corresponding to free atomic orbitals, again a boundary is needed to restrain

light from escaping. We apply a cylindrical perfect conducting boundary to the dielectric
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cylinder as shown in Fig. 4-5(b). The radius of the boundary R is set to be 0.7a. This value

is chosen for the same reason as in 1-D case. For the structure in Fig. 4-5(b), there are six

TM-polarized solutions E, (z is along the direction of dielectric columns) in the

normalized frequency range wa/ (27c)=0.0~1.0, as shown in Fig. 4-6(a). All of these

solutions are products of Bessel functions of first/second kind, and an angular functione™

where m is an integer. In finding these solutions, we need to consider the symmetry. The
second and third solutions are twofolded, while the fourth and fifth fourfolded, and they all

appear in pairs.

From these six solutions and Bloch eigenstates of PC in the first six bands, we construct six

E, LOOs using the same technique developed in 1-D case. We take 7x7 Kk points in the

whole BZ, when constructing the LOOs. As indicated in Fig. 4-6(b), their localization
properties as well as the symmetries of the underlying PC structure are clearly visible. We
note that through this way of construction, all the LOOs are localized at dielectric rods. This
property is different from that of optical WFs, where some of the WFs are localized at air

regions™®.

In Fig. 4-7, we show the photonic band structure in black points reproduced by the E -field
LOOs. Solid lines indicate the photonic band structure calculated with 441 plane waves by
the PWE method. The solid lines (PWE) and the dots (LOO method) coincide. We use the

same method in Refs. 4 and 5 in reproducing the band structure by LOOs.
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FIGURE 4-7. Band structure (TM polarized) of the 2-D PC in Fig. 4-5(a), calculated by PWE

(solid line) method and reproduced by LOO (dots) method.

We consider a cavity with one dielectric cylinder removed from the ideal PC. We apply the
E -field LOO method to the calculation of the cavity mode. We take six LOOs in the
calculation. As before, the scheme is the same as in Refs. 4 and 5, except that we use LOOs

instead of optical WFs. The resonant frequency of the cavity mode in the second band gap is

0.48303 by LOO method versus 0.48017 in normalized frequency wa/ (27zc) by transfer

matrix method (TMM) (see Refs. 2 and 21). The relative difference is 0.60% .

In Fig. 4-8(a), we plot the cavity mode profile computed by LOO method. Mode shape
computed by TMM is also plotted as a comparison in Fig. 4-8(b). A 7x7 supercell and
105 plane waves are taken to do the TMM calculation. As we can see in Fig. 4-8, the mode
shapes calculated by the two methods look alike but there is still visible difference. The
difference around the edges of supercell can be explained by the interaction between
supercells in TMM calculation and thus can be neglected. However, there is noticeable

difference in the central and the third peaks that can only be explained by the inaccuracy of
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LOO method. After testing, we ascribe this error to the inadequate LOOs. If we increase the
number of LOOs, the difference is reduced and the whole mode shape is more like what is

obtained by TMM.

0.15 VY

0.10

Electric Field

0.05

0.00E

(b)

FIGURE 4-8. Cavity mode profile. (a) Electric field distribution (magnitude) calculated by LOO method;

(b) magnitude of electric fieldat y =0 calculated by TMM (solid/black) and LOO (dots/red) methods.

Next, we consider a waveguide consisting of one removed line of dielectric rods. We use the

method in Refs. 4 and 5 to calculate the guided mode. Figure 4-9 shows the dispersion
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relation of the guided mode in the first gap in the LOO method (dots) and in PWE (solid
lines). As indicated in the figure, the solid lines and the dots coincide very well. We take six

LOOs in LOO calculation, anda 7x1 supercell and 105 plane waves in PWE calculation.
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FIGURE 4-9. Dispersion relation of guided mode calculated by PWE (solid line) and LOO (dots) methods.

4.6 How much computation time can LOO method save?

— Disorder simulation comparison between LLO and TMM

To get a better understanding of how LOO deals with disorder, we perform a set of
simulation on dielectric variation disorder on the cavity the Figure 4-8(a). This disorder is
simulated by varying the dielectric constant of neighborhood cylinders around the cavity: H
means increase the dielectric constant to 10, and L means decrease the dielectric constant
to 8 for that particular cylinder (Figure 4-10). A total of 15 cases are studied by both
TMM and LOO: TMM requires 15600 seconds, and LLO requires 1720 seconds. The

results are summarized in Table 4.1.

The resonant frequencies for each case are compared and the scatter plot is shown in Fig.
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4-11. Almost linear response to y=x is observed in this particular simulation which

indicates systematic consistency has been achieved between LOO and TMM.
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FIGURE 4-10. Types of disorders around the cavity
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FIGURE 4-11. Scatter plot of cavity resonant frequencies (LOO v.s. TMM)
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Table 4.1. Computation time of TMM and LOO for 15 case studies

Method Computation time for each case Total computation time for 15
(seconds) cases (seconds)
TMM 1040 15X1040 = 15600
LOO 20 1420* + 15X 20 = 1720

* 1420 seconds are needed to construct LOOs, which needs to be done only ONCE.

4.7 Conclusions

In conclusion, we develop a QUAMBO-like, E -field LOO method to study localized states
of defected PCs. We have demonstrated the applicability, precision, and efficiency of LOO
method to 1-D and 2-D PCs with planar, point, and line defects. The structures that we took
as examples both have analytical solutions corresponding to free atomic orbitals. However,
for those structures that do not have analytical free-atomlike solutions such as lattice of
arbitrary shaped poles, we need to use numerical methods such as FDTD?® to find these
solutions. This will add little to calculation burden, since it is over a region that is

comparable to one unit cell.

Our method can be extended to the description of optical waves in 3-D PCs, by applying the
same scheme of optical WFs in Ref. 5. The reason which allows us to do so is that the only
difference between LOO and optical WF method lies in the way of construction of
LOOs/WFs. Since the two bases share the same characteristic of localization and
orthogonality, theoretically any WF-based scheme (e.g., see Refs. 4, 5, and 7) can be adapted
to LOO method. Our future work includes study of propagation of electromagnetic waves in
3-D PCs by applying LOO method. Some numerical results in this chapter were published in
Ref. 1.
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For this 1-D structure, since the bands are separate from each other, actually the

projection can be simplified as projecting E\” to E, - Thatis, calculating a LOO

only requires the states in one band. However, for the more general case of 2-D and

3-D structures, the bands are always entangled. So we need to project E to E,

for all (m,n)s. Here we write down the general form of projection [Eq. (7.3)] to

accommodate 2-D and 3-D structures.

In this projection, all bands are included. Yet our method is exact not only in the limit
that all bands are included in the projection but also in cases that only some of bands
are included, as far as a perfect crystal is considered.

We define a general linear transformation T for the basis ® to go to a new basis

o' O'=0T . The basis Q! will be orthonormal if

(@' ®")=(OT |PT)=T"(®|D)T =1. Define a Hermitian matrix M =(d|D).

The matrix T=M">=VD"*/ ", where D is the diagonal matrix of eigenvalues

of M and V is the full matrix whose columns are the corresponding eigenvectors,
gives an orthonomal transformation. For more details on this symmetric
orthogonalization, see Ref. 27.

V. Srivastava, “A unified view of the orthogonalization methods”, J. Phys. A 33,
6219 (2000).

To get virtual orbitals, we use the same method as in Ref. 16. In this paper all orbitals

are real/occupied, which is a specific case of the method in Ref. 16 [there are no

virtual Bloch orbitals ¢, in Eg. (1) in Ref. 16].
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Chapter 5. Emission enhancement of organic light emitting diodes

with microlens array: Numerical simulation

We theoretically investigate the enhancement in the emission of organic light emitting diodes
(OLEDS) in the forward direction using a microlens array. We show that a microlens array
significantly larger than the OLED pixel can extract a large part of the light guided in the
glass substrate into the front direction. An enhancement as much as ~140% can be achieved.
The content of this chapter is a part of an ongoing project in cooperation with
experimentalists. Our role is to numerically simulate the OLEDs with or without microlens
array. This chapter will focus on theoretical investigation and simulation only. A short

description of fabrication method will be attached in the appendix after this chapter.

5.1 Introduction

Organic light emitting diodes, or OLEDs, are among the best candidates for the next
generation light source. In an OLED, the emissive electroluminescent layer is a film of
organic compounds which emit light in response to an electric current. Compared to other
display technologies like liquid crystal displays (LCDs) or plasma displays, OLEDs have the
advantage of light and thin, excellent color, high contrast ratio, and expected low cost in the

future?.

However, there is an inherent limitation to light extraction due to the difference between the
refractive indices of the organic light-emitting materials and air. Only a small part of the

emitted light from the active layers can escape into the air, The fraction of light which

escapes in the forward direction is ~ (1—cos QC),3 where @, is the critical angle for the

active layer. In OLEDs, the refractive index of the organic layer (the emitting material) is

~1.8 and the fraction of the extracted light is only ~17%. For inorganic LEDs, this
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number is ever lower. As a result, most light is guided in the active layers or the substrate.

The majority of this trapped light is either reabsorbed or leaks out from the device edges.

Several approaches to enhance the light extraction have been developed*’. Among them one
promising approach is the use of microlens arrays®’. However, the microlens array is often
confined to an area directly under the OLED pixel. As a result, only a limited part of the light
guided in substrate can escape through the microlens, and the outcoupling enhancement is

constrained to~50% to 80%.

(a) Pixel
I
TAV . VAVE
R

AV
R =t

FIGURE 5-1. Schematic of an OLED with a microlens array confined to an area (a) only

3

(b)

directly under the pixel, (b) much larger than the pixel.

To illustrate it, let’s consider an OLED shown in Fig. 5-1. If the microlens array is only
confined to an area directly under the pixel as shown in Fig. 5-1(a), some of light trapped in
glass will not be outcoupled via microlens like beam 3 and 4. However, if we extend the area

covered by the microlens to a sufficient large scale [see Fig. 5-1(b)], a large part of the
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trapped light like beam 3 and 4 will be extracted via microlens.

Let’s consider the extreme case of an infinite large area covered by microlens array and also
an infinite large metal cathode. A beam trapped in the substrate would either be coupled out
through a microlens or bounce back with a changed or unchanged incident angle when it hit
the glass/microlens or glass/air interface. If it bounces back, it will also bounce back at the
metal cathode and reach the glass/microlens or glass/air interface again. Then it would still
have a chance to be coupled out through a microlens at the second time. In a sum, this beam
can always “find” a microlens to help it escape after several bounces in between the cathode
and glass. In this extreme case, all the light trapped in glass can be coupled out through the
microlens array, if we neglect absorption in materials and assume 100% reflection at the

metal cathode.

In this work we propose a microlens array design for OLEDs with the patterned microlens
array significantly larger than the pixels. We numerically investigate the effect of microlens
array on the extraction of the trapped light in glass by a statistic ray tracing method. We also
study in detail how big the microlens-covered area should be compared to the pixel to extract

most of the trapped light.

5.2 Statistic ray tracing method

The numerical method we are going to use in this chapter is similar to a traditional
non-sequential tray tracing method. The term *“non-sequential” means that there is no
pre-defined path for any ray. A ray is launched and hits whatever object is in its path, and it
may then reflect or refract. In commercial software like ZEMAX® designed for optical
engineers, when a ray hits the surface of an object, the fraction of energy transmitted and

reflected at the interface is computed. Then the ray is split into two: a reflected and a
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transmitted ray, with the corresponding fraction of energy. Non-sequential ray-tracing is a far
more general technology than sequential ray-tracing. However, it is also far slower since at

each intersection a ray is split into two child rays.

To avoid the slow tracing speed, we are going to use a statistic ray-tracing method. Instead of
splitting rays, at each intersection we let the ray randomly “choose” to reflect or refract with
the probability equal to the calculated reflectance or transmittance. For each initial ray, there
is one but only one ray from the beginning to the end. However, the ray undergoes a path that
is randomly selected instead of predefined. This method is a compromise between sequential
and non-sequential ray-tracing. We want it to achieve what the latter does, while we want a

tracing speed comparable to the former.

In the following we explain the statistic ray-tracing step by step:

1. Generate a ray from a random position (x,,Y,,Z,) in pixel area, with random direction

(6,,9,) and an initial intensity of A, =1. The polarization is also randomly selected to be TE

or TM.

2. From (x,,Y,.2,) and (6,,¢,), calculate the ray path and then the intersection
(x.,Y,,z,) where the ray hits whatever object is in its path. If the ray was propagating in an

absorptive medium, calculate the exponential decay and update the intensity A,

accordingly.

3. Decide the plane of incidence, the incident angle ¢;. Then calculate the angle of

transmission ¢, from Snell's law. The reflectance R and transmittance T can be
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obtained from Fresnel's equations. The formula to calculate «,, R and T is listed in Eq.

(5.1),

a, =a,

. 4 nsing,
a, =sin :
nt

N, cosa; —Nn, Cosa,

e = '
n, coS @, + N, COS
_ n,cosa, —n, Cosa,
™ " ncosq, +n cosa; (5.1)
t, = 2n, cos ¢, |
n, COSq; + N, COS ¢,
Lo 2ncose,
n, coS @, +N, COS
R,
T=1-R,

where n, and n, are the refractive indices of the medium where the light is propagating

from and the medium where the light is propagating to, respectively.

4. Randomly generate a number X inthe range of (0,1).If x<R, let the ray be reflected.

Otherwise let the ray be transmitted. Update (x,,Y,,z,) and (6,,¢,) accordingly. Return

to step 2, and repeat steps 2-4 until beam escapes to the air, or totally absorbed by the

material.

5. Record the intensity of the escaped beam. Return to step 1 to generate another ray, and

repeat steps 1-5 until enough rays (usually >10,000) are generated.
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5.3 Light extraction from a flat OLED (no microlens)

The green OLED structure that we are going to model is shown in Fig. 5-2. The thickness of
glass, ITO, organic layers and aluminum cathode is labeled. The light sources (origin of

beams) are marked in yellow dots and set to be 1 nm above the interface of NPD and Alg3.

1
Al 100 nm
I
LiF 1nm_
I
Alg3 50 nm
I
I
NPD 45 nm
I
CuPc 5nm
1
ITO 130 nm
I
Glass 700 um

FIGURE 5-2. Schematic of OLED with sources (yellow dots) embedded 1 nm above

the interface of NPD and Alg3.

In our ray tracing simulation, the absorption loss in materials and the reflection loss at the
metal cathode are both considered. The simulation gives an extraction of 15.3% which is a

little smaller than 17% by taking solid angles smaller than the critical angle without any
absorption. In this simulation, the refractive indices of materials at 525 nm are used. We
plot a ray tracing diagram for 50 rays in Fig. 5-3 (in real simulation the extraction is
obtained by tracing 10,000 rays), to give a view of how ray tracing works. Each source is

marked by red dot. In the plot, we can only see the glass substrate. Other layers such as ITO,
organic layers, aluminum are too thin compared to glass to be recognized in the figure. As we

can see, a lot of rays are trapped in the glass, and only a small part of them escape to the air.
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In ray tracing program, we confine the sources to a pixel area ~3x3mm?. Actually the

calculated extraction will not depend on the size of pixel as well as the pixel is small enough

compared to the whole OLED structure.

Al .
OLED pixel

Glass —
FIGURE 5-3. Ray tracing diagram for a flat OLED.

54 Light extraction from an OLED with microlens array
I
Al 100|nm
LiF 1nm_
Alg3 50:nm
NPD 45:nm
CuPc 5nm
ITO 130:nm
Glass 700 um
MM/ lym
-2 um-

FIGURE 5-4. Schematic of an OLED covered with a microlens array.

5.4.1 Infinite large microlens array.
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A microlens-covered OLED structure is shown in Fig. 5-4. The radius of microlens is set to

be 1um. The pitch is 2 um, which means there is no spacing between adjacent microlens.

We again assume a pixel area of ~3x3mm?®. Then we assume an infinite large area of
microlens array. Ray tracing simulation indicates that this configuration would yield a

39.3% extraction, i.e. ~150% outcoupling enhancement at 525 nm.

FIGURE 5-5. Ray tracing diagram for an OLED covered with a microlens array.

We plot a ray tracing diagram for 50 rays in Fig. 5-5. By comparing Fig. 5-5 with Fig. 5-3,
it can be seen that more rays are extracted when glass is covered with microlens array. It is
interesting to notice that some rays escape via microlens that are located not directly under
the pixel or even far away from the pixel. As a result, the light trapped in glass becomes less
and less as it propagates along the glass away from the pixel since some light escapes
through microlens on the way. However, for a flat OLED with no microlens array, most
extracted light is confined to an area directly under the pixel. This finding suggests that a
microlens array significantly larger than the pixel size is preferred to extract the guided light

trapped in glass.

5.4.2  Afinite area of microlens array.
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From the above ray tracing simulation, we know that a microlens array can help the
outcoupling of the light trapped in glass. We also know that the larger area covered by
microlens, the more the trapped light escape. A natural question is: how big an area should

the microlens array cover to extract most of the trapped light?

To answer this question, we gradually increase the area covered by microlens from
3x3mm’® to 25x25mm?* in ray tracing simulation. The dependence of out-coupling

enhancement on the size of microlens is plotted in Fig. 5-6. As shown in the plot, the

extraction is enhanced ~ 30% if the microlens only covers the pixel. The enhancement can
be increased to ~80% if the microlens array is 5x5mm? and ~130% with 15x15mm?®.

After that, the enhancement will not increase much even if we increase the size of microlens
array. As reported in the last section, the maximum enhancement that can be achieved is

~150% with an infinite large microlens array.

150% [

100%

50%

Outcoupling enhancement

L L L L L
0 5*5 10*10 15*15 20*20 25%25

Microlens covered area (mm®)

FIGURE 5-6. Dependence of out-coupling enhancement on the size of microlens.
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5.4.3  Dependence on thickness of glass substrate.

When microlens array only covers a fixed area, the enhancement of light extraction is
dependent on the thickness of glass substrate. We expect the light bounce forth and back
between the microlens and the upper surface of OLED for more times with a thin glass than
with a thick one. For example, let’s check Fig. 5-7. The beam in Fig. 5-7(a) bounces on
microlens for twice before it goes out of microlens range. However, if we double the
thickness of glass, it bounces only once on microlens. Each time it reaches a microlens, it has
a chance to escape. So the probability of the beam to escape in the configuration in Fig. 5-7(a)

is larger than in (b).

@) pixel

glass \/\/

microlens

(b) pixel
[

glass

microlens

FIGURE 5-7. An OLED embossed with fixed area of microlens array and

(a) a thin glass substrate, (b) a thick glass substrate.

We simulate an OLED with fixed pixel size 3x3mm? and fixed microlens area 6x6 mm?,

but with different thickness of glass substrate. The ray tracing results are summarized in Fig.

5-8, in which we plot dependence of the out-coupling enhancement on thickness of glass. As
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expected, the out-coupling enhancement goes down as the ITO-coated glass substrate goes

thicker (Fig. 5-8).
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FIGURE 5-8. Dependence of out-coupling enhancement on thickness of glass substrate.

5.4.4  Dependence on integrating sphere apertures.

In section 5.3.2 and 5.3.3, we have discussed the role of microlens array area and glass
thickness on extraction of trapped light. At the same time, attention should also be drawn to
another important parameter in experiments: the aperture of integrating sphere for measuring
the extraction efficiency. The question is, if other parameters (such as the pixel size, the
microlens area and glass thickness) are fixed, how does the measured light extraction change

if we use integrating spheres with different apertures?

We simulate an OLED with fixed pixel size 3x3mm?, fixed microlens area 15x15mm?,

and glass substrate with fixed thickness of 1.1mm . However, we only count the

out-coupling beams in a confined aperture. In Fig. 5-9, we plot the out-coupling enhancement
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v.S. integrating sphere aperture diameter d. From this plot, we can see that the integrating

sphere needs to be big enough (d >10 mm) to collect most of the extracted light. If we use

an integrating sphere of which the size is comparable to the pixel, the measured extraction of

light should be dramatically undeestimated.
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FIGURE 5-9. Extraction efficiency enhancement v.s. integrating sphere aperture diameter.

5.4.5 Profiles of extracted light at the surface of glass

If we record the position and intensity of each beam when it escapes to the air from glass or
microlens, we can obtain the field intensity distribution at the top surface of the glass

substrate with or without microlens array. In Fig. 5-10, we plot the field intensity distribution

of the exit light for 4 cases: (a) a flat glass substrate which is 0.7 mm thick, (b) a 0.7 mm
thick glass substrate embossed with an infinite microlens array, (¢) a 1.1 mm thick glass
substrate embossed with an infinite microlens array, and (d) a 0.7 mm thick glass substrate

embossed with a 3x3mm? microlens array. The pixel is 3x3mm? in all cases as before.
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(a) Glass=0.7mm. Flat (b) Glass=0.7mm. Inf microlens

(c) Glass=1.1mm. Inf microlens (d) Glass=0.7mm. Microlens 3x3 mm>

FIGURE 5-10. Field intensity distribution of exit light.

From Fig. 5-10, we see that the microlens array does enhance the light extraction [compare
Fig. 5-10(b)-(d) to Fig. 5-10(a)]. When the microlens array covers about the same area as the
pixel, the exit light is enhanced [Fig. 5-10(d)]. However, if a much larger microlens array is
used, much more glass-guided light can be extracted [Fig. 5-10(b)]. At the same time, we
recognize an image blurring. As glass substrate goes thicker, this blurring is even remarkable

[Fig. 5-10(c)]. A red hue can be clearly noticed even at the edge of the black square area.

An OLED device can be desired for both display and lighting. Displays often require a high
image resolution. As we have seen, imprinting a microlens array on substrate causes an
image blurring, while extracting more light. From this point of view, there is a trade-off for

microlens enhanced OLED display. However, for pure lighting purpose, there is not such a
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trade-off. We can use a microlens array that is significantly larger than the OLED pixel to

extract most of that waveguided light into the front direction.

54.6 Multiple pixels

We present the last numerical example of ray-tracing method. We consider a case of multiple

pixels covered by a large microlens array. It is interesting to check what the out-coupled light

look like. The glass substrate is 0.7 mm thick, and there are 9 2x2mm? pixels. The

spacing between neighbor pixels is 2 mm. The substrate is embossed with a 20x 20 mm?

microlens array.

(b)

FIGURE 5-11. Intensity of out-coupled light for 9 2*2 mmz2 pixels with (a) a flat glass substrate, and

(b) a glass substrate imprinted with a 20*20 mmz2 microlens array.

We plot the exit light intensity in Fig. 5-11. Compared to the case of no microlens array, it
can be seen apparently that more light exit. Not only does more light exit under pixels, but
also considerable light exit in regions which are not directly under pixels [Fig. 5-11(b)]. As a

result, the total area (the big square) is lightened.
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55 Simulation and experiment

In section 5.3, we theoretically investigate the enhancement in the emission of OLEDs in the
forward direction using a microlens array. The simulation is done by a statistic ray-tracing
method. In this section, we are going to simulate the exact device in experiments, and

compare the simulation results with the experimental measurements.

In laboratory, the microlens arrays are fabricated by crossed laser beams interference

patterning and soft lithography imprinting. Some details of fabrication process are listed in

the appendix after this chapter. The 2 xm -pitch square microlens array is embossed on the
blank side of a 1.1mm thick ITO-coated glass. The patterned microlens array is of

15x15 mm?, significantly larger than the 3x3mm?® OLED pixels. The SEM image of the
2-D patterns of photoresist [Fig. 5-12(a) in Appendix] suggests that the microlens is not an
ideal semi-sphere. Instead it is more like a semi-ellipsoid with 1.2 um height and 1.6 xm

diameter.

We simulate the OLED device with parameters same as in experiments. The simulation
results and experimental measurements are summarized in Table 5.1. We also include the

simulation results for different values of the microlens array area and glass thickness in Table

5.1. The simulations show that, if the glass thickness decreases from 1.1 to 0.7 mm, and

microlens area increases from 15x15 to 25x25mm® , the calculated efficiency

enhancement increases from 97% to 140%.
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Table 5-1. (a)—(c) calculated and (d) experimental extraction efficiency enhancements with
various microlens array areas, glass thickness, and integrating sphere apertures.

Integrating sphere aperture diameter d (mm) 5 10 25

() 15x15 mm? microlens array, 1.1 mm thick glass (calc.) | 21% | 73% | 97%

(b) 25x25 mm? microlens array, 1.1 mm thick glass (calc.) | 23% | 75% | 121%

(c) 25x25 mm? microlens array, 0.7 mm thick glass (calc.) | 48% | 96% | 140%

(d) 15x15 mm? microlens array, 1.1 mm thick glass (exp.) 18% | 54% | 92%

5.6 Discussions and summary

In this chapter we use a statistic ray-tracing method to simulate an OLED device. A uniform

microlens array is embossed on the blank glass side of an ITO-coated glass, to enhance light

extraction. Although the pitch of the microlens array is only 2 um, not significantly larger

than the wavelength of 525nm, a previous work® by Y. Sun and S. R. Forrest shows that a

3-D ray tracing method is able to simulate this microlens structure accurately. A 3-D finite
difference time domain method (FDTD) can also be used for simulation, but it is much more
time consuming than ray tracing. We do not use transfer matrix method (TMM) since TMM

assumes a periodic boundary condition, which is not applicable for our device.

We investigate several factors that have impact on the measured enhancement of light
extraction. These factors are the thickness of ITO-coated glass, the microlens array area, and
integrating sphere aperture. We show the calculated optical field intensity of the out-coupling
light from OLED. The calculated enhancements are compared to experimental measurements

and they agree well.
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Appendix: Microlens and OLED fabrication

photoresist

glass

metal

A
ITO coated glass e

Figure 5-12. (a) SEM image of the 2D patterns of photoresist, (b) Schematic of microlens fabrica-tion on
glass. A master template is covered with PDMS. The PDMS is removed from the master and filled with
PU and then pressed against another glass substrate. The PDMS is lifted off and the PU microlens array

remains on the glass substrate. (c) the resulting PU microlens array.

The microlens array was fabricated using soft photolithography. A master stamp was first
fabricated using a photoresist. Two-beam laser holography was used for patterning the
photoresist. A single exposure creates a 1-D pattern, and a 2-D pattern is achieved by a
second exposure after rotating the sample by 90°. After the master stamp was ready,

polydimethylsiloxane (PDMS) was poured onto the master stamp, to generate a temporary
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mold with the desired pattern of a spherical array. Then the microlens pattern is imprinted on

an 1TO-coated glass substrate by two-polymer microtransfer molding™.

Figure 5-12(a) shows the SEM image of the photoresist pattern after developing. Figure
5-12(b) shows the fabrication process of the microlenses on the glass surface and Figure
5-12(c) is an SEM image of the microlens array. This array covers only a portion of the

ITO/glass.

OLED pixels were fabricated on the ITO side of the glass. The ITO was patterned and etched
to form anode stripes. OLED fabrication on the ITO side of the glass is detailed
elsewhere'*2, Measurements were performed by placing the device on the opening of an

integrating sphere with 5, 10, 25 mm diameter opening.

Figure 5-13(a) shows two energized green tris (quinolinolate) Al (Alg3)-based OLED pixels
lit at the same current density. The left pixel is under a microlens array. Note the much larger
size of the microlens array in comparison to the OLED pixels. As seen, the left pixel appears
much brighter, but the light around them is diffuse. The pixel on the right appears much
sharper with a defined square shape. Figure 5-13(b) shows the EL spectra of the OLEDs,

taken with only one pixel energized and with different aperture diameter d, of the

integrating sphere. It can be seen that the EL intensity from the OLED pixel under the

microlens array increases with increasing d,, whereas it is unaffected by d, for the

a’
reference pixels. As d, increases, more of the light extracted by the microlenses from

outside the pixel area is collected, resulting in increased EL intensity. When d, =25mm, it

collects essentially all the light extracted by the microlenses and the enhancement is ~100%.

Check Ref. 12 for more details about experimental fabrication and measurements.
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FIGURE 5-13. (a) Image of OLED with green emitting Alg3. The left side pixel is under a microlens array
and the right one is reference pixel. (b) EL spectra of OLED with a PU microlens array measured with

different apertures of an integrating sphere.
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Chapter 6. Design of Nanoscale Metallic Structures as Transparent Electrodes for
Organic Photovoltaic Cells

We theoretically investigate the optical absorption in organic photovoltaic cells in which a
metallic grating replaces indium tin oxide (ITO) as transparent electrode. Numerical
simulations show that the grating produces broadband optical absorption enhancement. By
tuning the structure parameters, the overall absorption in the organic layers can be largely

enhanced.

6.1 History of solar technologies

The earliest development of solar technologies started in the 1860s, when people expect that
coal would soon become scarce. However in the early 20" century, development of solar
technologies stagnated in the face of the increasing availability and utility of coal and
petroleum. It is not until the recent decades that renewed attention was brought to developing
solar technologies by energy crisis. Solar powered electrical generation includes heat engines

and photovoltaics.

A solar cell, or photovoltaic cell, is a solid state device that converts the energy of sunlight
directly into electricity by the photovoltaic effect. There are currently three different types of
solar cells in production in today’s market place. They are the monocrystalline,
polycrystalline and amorphous. Other materials presently used include cadmium telluride,
copper indium selenide / sulfide, organic dyes, and organic polymers®. In this chapter, we are

going to study organic photovoltaic cells, or OPV cells.

OPV cells are a relatively novel technology. These cells can be processed from solution,

hence the possibility of a simple roll-to-roll printing process, which allows inexpensive, large
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scale production. They are different from inorganic semiconductor solar cells, which use a
PN junction to separate the electrons and holes. The active region of an organic solar cell
consists of two materials, one acting as an electron donor while the other as an acceptor.
When a photon is absorbed, an electron-hole pair is created, and then this pair is relaxed
remaining bound known as an exciton. The electron and the hole are separated when the

exciton diffuses to the donor-acceptor interface.

6.2 A replacement for ITO electrode

In an OPV cell, an indium tin oxide (ITO) front electrode is usually used (also in inorganic
devices and some electric lighting devices like LEDs). Indium is a scarce resource, which has
made the long-term availability and cost unreliable. Another drawback of ITO electrode is its
brittle nature?. We expect a new design a OPV cell transparent electrode to have (1) high
sheet conductivity; (2) high transparency in visible range; (3) low cost; (4) flexible and good

adhesion.

In this chapter, we propose a nanoscale metallic structure as a promising replacement of 1TO
electrode. This novel technique is based on the two polymer micro-transfer molding (2-P
uTM, see Ref. 3) to fabricate one dimensional (1-D) high or low aspect ratio nanoscale
metallic structure. Glancing angle metal deposition and physical argon ion milling (etching)
techniques were also employed in processing. Some details of fabrication are listed in the
appendix at the end of this chapter. Experimental measurements show that this metallic
structure has high sheet conductivity (R<@Jsq) and high transparency in visible range

(T>80%). It is easy to fabricate and low cost. It should be a good replacement for ITO

electrode in every aspect.
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FIGURE 6-1. (a) Top view of a 1-D metal grating with period a andslitsize A. (b) Side view of a

P3HT:PCBM based OPV cell, with the metal grating replacing ITO as the electrode.

Beyond the conductivity and transparency, we also want to optimize the system to get a
strong resonance field in the underneath OPV cell to largely enhance the absorption of
photons. Before us, several designs have been proposed using plasmon resonance to enhance
optical absorption. These works include using random metal nanohole films®, depositing
metal nanoparticles on a thin metal layer®, growing ITO-Ag—ITO multilayer electrodes® and
etc. In this chapter we propose a new structure shown in Figure 1, and we show that this
metal grating structure produces broadband optical absorption enhancement. With optimizing
grating parameters, the absorption can be enhanced by about 140% in the active region of
poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM™?)
blend compared to an OPV cell with a 100 nm ITO.

6.3 Numerical modeling and design
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A schematic of the high or low aspect ratio nanoscale metallic structure we propose is

presented in Fig. 6-1. An OPV cell based on P3HT:PCBM blend as the active layer of

thickness d, , with a thin conducting film of thickness d, of poly

(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS, Clevios P VP

Al 4083), sandwiched between a metal grating of thickness d, and an aluminum electrode

of thickness d;, is placed against a glass substrate of thickness d, [see Fig. 6-1(b)]. The

1-D metal grating has period a and the width of polyurethane (PU) block that filled in

between silver walls is A. Define filling ratio of metal: f =(a—A)/a. We are going to

optimize these parameters to enhance the optical absorption in P3HT:PCBM layer for the

wavelength range of 480 nm ~ 620 nm .

The numerical method we take to model the optical properties of the system is
plane-wave-based transfer matrix method (TMM)™®. TMM is chosen because of the

following reasons:

(1) Using TMM saves a lot of compute time. Basically TMM transfers a 3-D layer by layer
structure to a 2-D problem. Thus the compute time is largely reduced. (2) TMM works great
for metallic structure. Usually many more plane waves are needed to avoid convergence
problem for a system that contains metal. For a 3-D system, the number of plane waves that
are needed is often beyond the memory, or the computing process becomes extremely slow.
However, since TMM transfer a 3-D problem to a 2-D one, many less plane waves are
needed without raising convergence problem. (3) TMM is a frequency domain method and
reflection / transmission / absorption spectra can be calculated quickly and directly. Since the
whole system is to be optimized over a large wavelength range, spectra calculation is

essential for this design.
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6.3.1  Simplification of model

In this chapter, only linear absorption is considered in numerical simulation, and the

following simplification is applied to the construction of OPV cell shown in Fig. 6-1.

(1) In the following spectra calculation, the PEDOT:PSS film is neglected (d, =0, as shown

in Fig. 6-2) unless otherwise specified since it is thin (30 ~50 nm) compared to other layers.

Later in this chapter the PEDOT:PSS will be included, and we will show that this layer has

little effect in the overall design.

Al

P3HT:PCBM l
U

FIGURE 6-2. Schematic of a simplified OPV cell, with PEDOT:PSS removed and

glass to be infinite thick.

(2) The thickness of glass substrate is set to be infinite (d, =+c). That is, the whole

structure is deposited on a semi-infinite thick glass substrate, and light is incident from the
glass (see Fig. 6-2). The purpose of doing this is to remove the interference pattern in spectra
due to interference of light reflected at the upper and lower surfaces of glass substrate. To

illustrate this, we consider the absorption spectrum plotted (blue line) in Fig. 6-3 when glass

substrate is 700 gm thick. Other parameters: a=500nm, f =0.06, d,=500nm,



81

d, =150 nm, d; =800 nm, silver grating, the incident light is S-polarized (TE), and normal

incidence (#=0°) is considered, and 41 plane waves are used. There is a dramatic
fluctuation in spectrum due to interference. To remove the fluctuation, we need to remove
the air-glass interface. The absorption spectrum is plotted in red thick line in Fig. 6-3 when
the glass substrate is infinite thick. The absorption is calculated as the ratio of energy being
absorbed in P3HT:PCBM to the energy of incident light. This smoothed spectrum without

interference pattern does characterize the real absorption in the active layer.
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FIGURE 6-3. Absorption spectrum in P3HT:PCBM when glass is 700 um thick (blue)

and infinite thick (red).

6.3.2  Metal grating: gold, silver, or aluminum?

There are several candidates to be used in the metal grating like gold, silver, and aluminum.

It is to be decided which metal should be taken in the OPV cells. To examine the effect of

different metal grating on the optical absorption, we plot the absorption spectrum for the
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three metal gratings in Fig. 6-4. The parameters: a=360nm, f =0.12,d,=300nm,

d, =160 nm, d; =800 nm, and normal incidence is considered.
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FIGURE 6-4. Absorption in P3HT:PCBM and metal/PU grating for Aluminum (green), silver (blue),

and gold (green) based constructions.

It can be seen that silver grating has an overall lowest absorption, while bringing a strongest

absorption in the P3HT:PCBM layer for the interested wavelength range 480~ 620 nm.

Gold is highly absorptive for short wavelengths. Although aluminum is less absorptive than

silver for P-polarized (TM) light, its overall performance is worse than silver, i.e., it brings
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less absorption in the active layer than silver (high optical absorption in P3HT:PCBM is
preferred to enhance the current produced by absorption of photons). In the following we will

lock in silver in all calculations.

6.3.3  Absorption spectrum

In above sections, we have simplified the model and chosen silver grating as a replacement
of ITO electrode. Next optical design is to be performed to maximize the optical field

intensities in the organic layer to amplify the current produced by absorbed photons.

An enhanced optical field in the OPV cell is usually accompanied with a peak in the

absorption spectrum. So first we look for these peaks by adjusting the system parameters a,

d,, d, and A.We set d, =+ to remove the air-glass interface, and d, =0 to exclude
the thin PEDOT:PSS film. We set the thickness of aluminum d. to be thick enough to

absorb all the incoming light, with d, =800 nm (in experiments usually d, ~100 nm).

Secondly we move the peak(s) to the interested wavelength range 480~ 620nm by

carefully adjusting those parameters. This is not easy since we want the peaks appear in the
right wavelength range for both two polarizations. By adjusting period a we can usually

change the position of a peak in spectrum for S-polarized light. But if for one polarization a

peak appears 480 ~ 620 nm, while for the other polarization a peak appears out of range,

and you want to adjust parameters to get the second peak into the interested range, what

possibly happens is that the first peak will move too, often out of the interested range.
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FIGURE 6-5. Absorption spectra in P3HT:PCBM for S-polarization (blue), P-polarization (red),

average of the two (green), and 100 nm ITO (black).
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FIGURE 6-6. Enhancement of optical absorption in P3HT:PCBM.

As far as we try, a peak for S-polarization appears around 559 nm (blue line in Fig. 6-5),

and another one for P-polarization around 493 nm (red line). Averaging two polarizations,
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these two peaks give a plateau from 470nm to 570nm (green line). The parameters

a=360nm, f =0.12,d,=300nm, d,=160nm, d,=800nm, and normal incidence is
considered. As a comparison, the absorption spectrum is also plotted when a 100 nm thick
ITO glass acts as the electrode with other parameters same. The enhancement of optical

absorption with grating
absorption with ITO

absorption in P3HT:PCBM, defined as -1, is plotted in Fig. 6-6. In

the interested wavelength range of 480 ~ 620 nm, the enhancement monotonically increases

from 7% to 137%.
6.3.4 Electric field distribution

When only the linear absorption is considered, the absorption is proportional to the light

_ 12
intensity in that each layer'™: AbSOrption,,.r ey |E| dr. The field pattern is

P3HT:PCBM

interesting to explore, to tell how the optical field in the organic layer is enhanced and what

mechanism is responsible for this enhancement.

The electric field distribution at the resonant peaks in Fig. 6-5 is plotted in Fig. 6-7 (a) for

S-polarization at 559 nm, and in (b) for P-polarization at 493 nm. From Fig. 6-7 (), it can

be seen that the strongest field is in the middle of the active layer, which is preferred, since
higher optical absorption in the middle of the active layer will produce stronger electric
current. However, for P-polarization, a surface wave is excited. The optical field is
dramatically enhanced at the interface of PU/silver grating and P3HT:PCBM [Fig. 6-7(b)]. In
Fig. 6-7(b), the field profile is plotted using the same color map as in Fig. 6-7(a) (to allow the
two profiles plotted with the same scale). Actually the peak of field in Fig. 6-7(b) is much
stronger than in that in Fig. 6-7(a) by a factor of 10 (see Fig. 6-7(c) and (d) for a real
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comparison).

FIGURE 6-7. Electric field distribution for (a) (c) S-polarization at 559 nm;

(b) (d) P-polarization at 493 nm.

6.3.5 Mechanism of field enhancement in PSHT:PCBM

6.3.5.1 S-polarization

By carefully examining the electric field distribution shown in Fig. 6-7(a), we notes that the

silver grating produces a field pattern in the underneath P3HT:PCBM similar to a cavity

resonant mode. Any adjacent two silver walls act as a pair of mirrors. They reflect light and



produce resonant fields in PU between them and also in the underneath P3HT:PCBM layer.

So it is expected that the peak in the spectrum due to cavity resonance should be sensitive to

the period a. As a verification, the absorption spectra are plotted for different a’s in Fig.

6-8(a) with other parameters fixed. When a is shortened to 320 nm, the peak in the

spectrum is weakened and red-shifted. When a is elongated to 400 nm, the resonant peak

is disappeared.
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FIGURE 6-8. Effect of parameters on the absorption spectra for S-polarized light with varied (a) period,

(b) thickness of P3HT:PCBM, (c) filling ratio of silver grating, and (d) height of silver grating.

The absorption spectra for different thickness of P3HT:PCBM are plotted in Fig. 6-8(b) with

other parameters fixed. Since the peak in the spectrum is produced by a resonance in
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P3HT:PCBM as a cavity, it should also be sensitive to the thickness of the cavity. The plot in

Fig. 6-8(b) illustrates this. Although the position of the peak keeps fixed at 559 nm, which is

decided by a, the strength of the resonance is strongly determined by the thickness of the

organic layer.

Then we check the influences of the thickness of silver walls (described by filling ratio f)

and the height of silver grating (d, ). Since the resonance is produced by the reflection from

adjacent silver walls, it is expected that thicker silver walls will induce stronger resonance,

which is confirmed by Fig. 6-8(c). We also note that when silver wall is not thick enough, the

resonant field cannot be excited [see red line in Fig. 6-8(c), f =0.04, the thickness of silver

is 14 nm, and the skin depth of silver at visible range is around 13 nm].

The effect of height of silver grating is plotted in Fig. 6-8(d). The resonance is not sensitive

to the height of silver grating (d,). A thinner d, gives a more transparent electrode, and
more absorption in the active layer. However, d, cannot be too small to allow high sheet

conductivity of silver/PU grating. So in experiments, we often set d, tobe >300nm.

6.3.5.2 P-polarization

For P-polarized light, the silver grating excites a surface plasmonic wave as shown in Fig.
6-7(b) and (d). Enhancement of transmission through subwavelength holes in thin metal films
has been widely studied**2. The basic mechanism is (1) an incident photon couples to a
surface plasmon (SP) on one side of a nanohole film, (2) the SP propagates within the hold to

the other side of the film, (3) the SP is converted back to a photon and radiated into the
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far-field.

However, our silver/PU grating structure is different from those nanohole films. In our
structure, metal has a very small filling ratio, in contrast to the nanohole films. It is a kind of
“inverted” structure. However, it shares some characteristic of SP studied in Ref. 4, 12. The

SP mode is only found for P-polarization (with magnetic field H parallel to the grating).
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FIGURE 6-9. Effect of parameters on the absorption spectra for P-polarized light with varied (a) period,

(b) thickness of P3HT:PCBM, (c) filling ratio of silver grating, and (d) height of silver grating.

The absorption spectra in Fig. 6-9 describe some characteristic of the SP mode. First, since

SP is excited along the surface of the metal, the SP mode is not sensitive to the period a,



90

which is confirmed by the spectra in Fig. 6-9(a). This property for P-polarization is very
different from S-polarization. Remember in previous discussion, the peak for S-polarization

is due to cavity resonance, so it is very sensitive to a.

Next, we investigate the effect of P3HT:PCBM of different thickness. The EM field is mostly
enhanced at the interface of metal/PU grating and P3HT:PCBM, where the SP is converted
back to a photon and radiated into the far-field. So we expect that changing the thickness of
the organic layer would not largely change the spectrum pattern (since a big part of
absorption is at the grating/organic interface). However, the thicker the organic layer is, the

more it should absorb the far-field radiation by SP-photon [see Fig. 6-9(b)].

The thickness of silver walls seems to have a big influence on the absorption pattern [Fig.
6-9(c)]. A possible reason is that the two SPs at the left and right surface of the metal
interfere with each other when the silver wall is thin. So the distance between the two

surfaces is important on deciding the absorption pattern.

The absorption spectrum is not sensitive to the height of silver/PU grating [Fig. 9(d)], except
at short wavelengths. For short wavelengths, a taller silver/PU grating absorbs more
incoming light so reduces the light that is transmitted to and absorbed in the organic layer.
The same trends is also seen in Fig. 6-9(c) when the filling ratio gets bigger at short

wavelengths.

6.3.6  Oblique incidence

All of above simulations are based on normal incidence of light, since we can always turn a

solar cell to face the sun with a tracing system. However, the effect of oblique incidence is

also interesting to inspect. The absorption spectra for oblique incidence of light are plotted in
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solid lines in Fig. 6-10. The spectra are the average of S-polarization and P-polarization. The
geometric parameters are the same as before. The absorption spectra of a structure with 100
nm thick ITO are also plotted as a comparison. Remember in our model, the light comes in
from a semi-infinite thick glass. The corresponding incident angles in air are calculated by

Snell’s law and listed in the legend.
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FIGURE 6-10. Absorption spectra for oblique incidence. Solid lines: silver/PU grating.

Dotted lines: 100 nm thick ITO.

From Fig. 6-10, it can be seen that at normal incidence (€ =0), the silver/PU grating
outperforms ITO in the interested wavelength range 480 ~ 620 nm. However, as the incident
angle becomes more oblique, the performance of silver grating is closer to that of ITO. It
makes sense since as light is obliquely incident, the silver walls tend to shelter the incoming

light, so the light that is transmitted through silver grating and absorbed by the active layer

becomes less.

6.3.7 Effect of a thin PEDOT:PSS film
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In the beginning, we simplified our model by neglecting the PEDOT:PSS film, since it is thin

compared to other layers. Now we add this PEDOT:PSS layer in our model. The thickness of

it is set to be 40nm. We repeat the spectra calculation described in Sec. 6.4.3, with

silver/PU grating and 1TO respectively, and calculate the enhancement of absorption in the
active layer. The enhancement is plotted in red line in Fig. 6-11. As a comparison, the
enhancement in previous calculation with NO PEDOT:PSS film is also plotted in blue line.

From Fig. 6-11, including PEDOT:PSS in simulation will weaken the enhancement a little,

not much (around 10% ~ 20% less in the interested wavelength range 480 ~ 620 nm). This

weakening is probably due to the SP mode excited for P-polarization. Since the absorption is
mostly enhanced at the surface of silver, when a PEDOT:PSS film is added between silver
grating and P3HT:PCBM, that highly-absorption range lies most in PEDOT:PSS, not
P3HT:PCBM.
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FIGURE 6-11. Enhancement of optical absorption in P3HT:PCBM compared to 100 nm ITO.

Blue: No PEDOT:PSS. Red: 40 nm thick PEDOT:PSS is considered.

6.4 Discussions
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In lab, the metal/PU grating that can be fabricated now has the period a~1.2um . It can

excite resonance modes only at inferred range, which can not be used in solar cell application.
To excite resonance in the visible range that can be used to enhance the absorption of sun
light in OPV cells, a needs to be largely reduced. In the present stage, the design described
in this chapter is based on theoretical calculation. I am going to cooperate with my fellow
experimentalists to carry out the design. To let calculation compatible with experiments, we
also need to update the data for materials like ITO, P3HT:PCBM and PEDOT:PSS. In this
chapter, we used the data from literature. However, the refractive index and extinction
coefficients of these materials are not fixed. For example, ITO glasses from various
commercial companies have different extinction coefficients. The extinction coefficients of
P3HT:PCBM and PEDOT:PSS are also highly dependent on how they are prepared. To make
theoretical results compatible with experimental ones, we need to measure the refractive

index and extinction coefficients ourselves, and use these “real” data in our modeling.

6.5 Summary

In this chapter we propose a metal/PU grating structure that replaces ITO electrode. The
optical absorption in the organic layer is largely improved via the enhancement of the
electromagnetic field. We show that both cavity resonance mode and surface plasma mode
are responsible for the field enhancement in the active layer. The mechanism that underlies
the field enhancement is analyzed in details. The influence of each geometric parameter on

the absorption spectra is carefully inspected and explained.
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Appendix: Fabrication of a metal grating electrode based OPV cell

PU grating
(a)
PU grating with metal sidewalls
Sacrificial layer Glass substrate #1
Glass substrate #1
Glass substrate #2
Al PU filling
P3HT:PCBM |
FEDOT:¥S3 Glass substrate #1 removal
Glass substrate #2

Glass subsirate #2

Figure 6-12. (a) SEM image of one-layer PU grating with 2.5 um periodicity and 40 nm gold sidewalls.

(b) Schematics for metal grating based OPV cell fabrication.

In our lab my colleagues fabricate the metal grating electrode based OPV cells in a
multi-stage process. First, a PU grating structure with a periodicity of 2.5 zm is imprinted
on glass substrate by two-polymer microtransfer molding®. Next, metal sidewalls are

thermally evaporated onto the sample via two oblique angle depositions. The sample is tilted

45° so one sidewall and top of the PU bars are coated (PU bars block the metal from being
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deposited on the bottom of the trench). Then this step is repeated and the other sidewall is
coated. In the end, argon ion milling, a physical etching technique is employed to physically
remove the metal on top of PU bars. The scanning electron microscope (SEM) image of gold

coated PU grating structure is shown in Fig. 6-12(a).

The above paragraph describes the fabrication of metal grating electrode. To realize an OPV
cells on our metal grating electrode platform, they need to fill the open trenches with PU to
provide a flat surface for organic layer deposition. A small droplet of PU prepolymer is
placed on the sample to fill in the trenches, and also acts as a glue to attach a second glass
substrate onto the sample. After the PU filling is cured, the sample is submerged in distilled
water to dissolve the sacrificial layer, and the first glass substrate is detached. Then the OPV
cell can be deposited on this structure through general process described in literature. Check

Ref. 13 for more details on the fabrication process.
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Chapter 7. Emission of organic light emitting diodes with metallic gratings

In chapter 5, we investigated the enhancement in the emission of OLEDs in the forward
direction using a microlens array. In chapter 6, we studied the optical absorption in OPV cells
in which a metallic grating replaces ITO as transparent electrode, and showed that the grating
produces broadband optical absorption enhancement. In this chapter, we will focus on an
interesting question: Will the emission of an OLED be enhanced when a metallic grating

similar to the one in chapter 6 replaces ITO?

7.1 Numerical method

Since the OLED with metallic grating is basically a periodic structure, the plane-wave based
transfer (scattering) matrix method (TMM) can be used for numerical modeling. However,
the TMM algorithm we presented in chapter 2 is only applicable for passive devices. To deal
with active devices like OLEDs, a new TMM algorithm needs to be developed™?. This
section addresses the problem of calculating the emission from an oscillating point dipole

placed inside the device. We start from the most general form of Maxwell’s equations [EQg.

(2.1)],

VxE=—£§,
c ot

vxA =125 (7.1)
c ot c

VD = 4np,

V.B=0

7.1.1  Description of a point dipole source
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We treat the source to be an oscillating point dipole, with harmonic time dependence, at

position (p,,z,), P, = (X, Y,). We do not consider Purcell effect’, so the amplitude of the

dipole is independent on the local fields. The spatial dependent of the current J s,

B
J :4_‘]05(,0_/00)5(2_20)
T

= YT 52 a,), (72)
Ko ij

=K = —i(ks K.
where Jjo = Jge ' (oank),

The Bragg wave vector k; = (K, K ,)=(Ky.Ke,)+ib + jb,, as defined in chapter 2. b,
and b, are the reciprocal lattice constants. In the presence of J, Maxwell’s equations can

be written in terms of differential equations relating to the transverse components of fields,

+ikoHy,

2T || -ik,H,,

(7.3)
0, _10(% e,

T Sy B | ik s(r)E, +25 3

oz " ik, ax[ X oy J o¢(FE, g
oE

LTI N L I T (o |

oz 7 ik, oyl ox oy c

Note that J =0 anywhere z#z,, so Eq. (2.3) holds, and we can use the normal TMM
algorithm presented in chapter 2. However, at z =z, we have to take Eq. (7.3) instead of Eq.

(2.3) to accommodate the point dipole source. We integrate both sides of Eq. (7.3) from z;
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to z,,and get,

gls-L o)1 ( 4237 j
% o OX| &() c
E,|% =— i{i_(—jzgdz—”azﬂ,
o —ik, oy | &(r) 2 c (7.4)
H,[* = igdz4—ﬂJy,
oy 7y c
% 5 4
H, |2 =—sz dzTJX.

Substituting Eq. (7.2) into Eq. (7.4), and applying Fourier expansion presented in chapter 2.2,
Eq. (7.4) yields,

E Za _ kij,X z Jko

X[z — |mJn mn,z !
0 ko mn
5 | 3

ij,y i{i Jyz |mjn‘Jm?12’
0 o mn (75)
25 _ 1%

ij.X | zg ‘]uy’
ZE — _ K

ij,y ‘Jux

Equation (7.5) shows that an oscillating point dipole at (x,,Y,,2,) would bring
discontinuities for the transverse electromagnetic fields E,,E ,H,,H, at z=z,. So we
need to incorporate the discontinuities in the boundary condition at z =z,. However, for

regions z=z,, we still apply continuities of the transverse electromagnetic fields as

boundary condition to connect different layers, as we did in chapter 2.
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7.1.2 Calculation of emission
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FIGURE 7-1. Schematic view of an active device with a point dipole located at z = 7.

We consider an active device shown in Fig. 7-1 with a point dipole located at the i-th layer

(z=1z). From Eq. (7.5) we have,

(E(zr)J_[E(z;)J:[ej
H(z)) \H@E)) \R)
K. B k. i RV
where P, :( ;yngi—lm,j—nJri%,z!%zg P ] : (7.6)

i-m,j—-n%¥ mn,z
0 mn

o ‘mn
R :(‘Jif?y’_‘Jin?xY'

In the i-th layer, the electric and magnetic fields can be expressed as [Eq. (2.17)],
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From Eq. (7.6) and (7,7), we have Eq. (7.8). Suppose the scattering matrix to connect the 1,

2" .., and the i -th layeris S!, and the one to connectthe i +1 -th, i+ 2 -th, ..., and

+

N -th layer is S*. Then the relationin E*, E;,and E_ can be expressed in Eq. (7.9) and
(7.10).

Sw. S VEL) (S S \ET) (P
i+1 i+1 |:rl _ i i |7 — ) (78)
Ti+1 _Ti+l Ei+1 Ti _Ti Ei R
E-+ 1 1 E+
NS () (7.9)
Eo SZl Szz Ei
E+ 2 2 E-+
oo S S B (7.10)
Ei+1 S21 Szz E

n

Since there is no incident energy, E; =0 and E, =0 . There are 6 unknowns

E,,E " E ,,E;

0! =i i+l —n

in 6 equations (7.8-10). Solving these equations we obtain E, and E,,

which represents the emitting field from the device to the negative and positive side,
respectively.

E :(I _82218112)_1[(8221“/'11_ MZl)PZ +(8221M12 B MZZ) Fﬂ
E', =

M _(I —81128221)_1[(M11—5112M21)Pz +(M12 _Sllezz)Fﬂ

(7.11a)

(7.11b)
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Emission from OLEDs with metallic gratings

(7.11c)

(7.11d)

(7.11e)

In chapter 3, we present an OLED device with microlens array to enhance the light emission.

In chapter 4, we use a metallic grating to replace ITO as transparent electrode to enhance the

absorption for OPV cells. It is natural to think: can the metallic grating be transplanted to an

OLED to enhance the emission, just like it enhances the absorption in OPV cells?
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FIGURE 7-2. Schematic view of (a) a regular OLED, (b) an OLED with a metal/PU grating,

(c) an OLED with a metal/PU grating, and PEDOT:PSS in the place of ITO.

We propose a design of OLEDs with metal grating as shown in Fig. 7-2. Shown in Fig. 7-2(a)

is a regular OLED with green emitting Alg3 and 100 nm ITO. The emission of this device
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will be calculated as a reference. Shown in Figure 7-2(b) is an OLED with a metal/PU
grating that is fabricated on glass substrate. We cannot let the grating completely replace ITO
like we do in chapter 3, since ITO is needed to keep an effective contact and inject current to
OLED. Shown in Figure 7-2(c) is an OLED with a metal/PU grating and a thin PEDOT:PSS
film to take the place of ITO. Let d stand for the height of metal/PU grating, a for the
periodicity and t for the thickness of metal walls. These are the parameters that can be
optimized for an enhanced emission, while the thickness of other parameters is fixed, as

shown in the figure.

7.2.1  Emission from OLEDs with metallic gratings and ITO

As the first example, an OLED with silver grating and 100 nm ITO film is studied. The

parameters: a=1.25 um,t=70nm,d =300nm. In our lab metal gratings with similar

parameters have been fabricated and studied. In simulation, we assume infinite thick glass
substrate to eliminate possible interference pattern in emission spectrum. So the calculated
emission is the emission to glass but NOT to air. As investigated in chapter 3, microlens
arrays can be applied to enhance the extraction from glass to air. In this chapter, we will

focus the effect of the metal grating on the extraction from organic layers to glass only.

We plot the enhancement of emission relative to a regular OLED with 100 nm ITO in Fig.
7-3 (a) for an OLED with a metal/PU grating [as shown in Fig. 7-2(b)], and (b) for an OLED
with a metal/PU grating, and PEDOT:PSS in the place of ITO [as shown in Fig. 7-2(c)]. We
test 3 metals: gold (blue line with square marks), silver (red circle) and aluminum (green
triangle). Although the green light ranges from 490 to 560 nm, we extend the wavelength

range to 400~800 nm to have a big picture of the emission spectrum.
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FIGURE 7-3. Emission enhancement relative to a regular OLED with 100 nm ITO for an OLED

with (a) a metal/PU grating and ITO (b) a metal/PU grating and PEDOT:PSS.

As indicated in Fig. 7-3, silver grating seems to have a best overall performance. However,
the emission has the largest enhancement ~40% at ~625 nm, while the Alg3 based OLED has
an emission spectrum which peaks at ~525 nm. No significant enhancement is observed at
that wavelength. At short wavelengths <500 nm, there is a reduction in emission for metal

grating based OLED.

7.2.2  Effects of grating parameters
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There are 3 grating parameters: the period or pitch a, the thickness of metal wall t, and the

height of grating d. In the last section, the emission spectrum is calculated with a specific
combination of a,t,d . In this section, it is to be investigated how each parameter effect the
light emission. So we will aim the wavelength at 525 nm (the emission peak of the green

Alg3 based OLED) and only consider silver grating, change one parameter while keeping
other two fixed, and observe how the emission changes. In addition, in this section we only

consider OLEDs with silver/PU grating + 50 nm PEDOT:PSS as shown in Fig. 7-2(c).

7.2.2.1 Effect of period a

The emission is computed in dependence on a. The height of silver grating is set to be

d =300 nm. Instead of fixing the thickness t of silver walls, we fix the ratio t/a=0.056.

The reason is that with the filling ratio of silver t/a fixed, the effect of silver thickness t

relative to a is eliminated, and the pure dependence of emission on a can be studied.
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FIGURE 7-4. Dependence of emission enhancement on the period a.
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The dependence on a of emission enhancement relative to a 100 nm ITO coated OLED is
plotted in Fig. 7-4. The emission is suppressed for small a. The possible reason is, as a is
small, the PU channel between two silver walls is too narrow to allow light go through. As
a is big enough, the emission does not show substantial dependence on a. The largest

emission enhancement is ~10%. No significant enhancement is observed.

7.2.2.2 Effect of thickness t of silver walls

We calculate the emission in dependence on t with perioda and height d fixed:

a=1um,d =300 nm. The dependence of emission enhancement on t is plotted in Fig. 7-5.

As seen in the figure, the emission is not sensitive on t. Although there is enhancement

compared to OLED without silver grating, the enhancement is not significant (<10%).
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FIGURE 7-5. Dependence of emission enhancement on the silver thickness t.

7.2.2.3 Effect of height d of silver grating

We calculate the emission in dependence on height d of silver grating with period a and
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thickness t fixed: a=1um,t=6 nr. The dependence of emission enhancement on d is

plotted in Fig. 7-6. As seen, as d increases from 0 to 0.1 um, the enhancement reaches

the maximum 15%, because of the scattering by the grating. Thenas d keeps on increasing,

the enhancement decreases, since higher aspect ratio silver grating will absorb more light.

Emission enhancement

D

_5% 1 1 1 1 1 1 1 1 1
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FIGURE 7-6. Dependence of emission enhancement on the silver grating height d .

After investigation of a,t,d’s effect on OLED emission, we find there is no indication of
significant emission enhancement at 525 nm. Since the emission does not seem to be

sensitive to anyone of a,t,d, we expect that it is hard to find resonant modes like the ones in

chapter 4 to enhance the emission. The reason is, unlike chapter 4 where only normal
incidence is concerned, here we need to count the emission from the dipole source along all
directions. It is easy to find a resonant mode for a specific direction, however, it is hard to

find a resonant mode for all directions.

7.3 Summary
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In the first part of this chapter, TMM extension to light emitting system is represented in

details. The presence of an oscillating point dipole (x,,Y,,z,) gives rise to discontinuities
for the transverse electromagnetic fields at z =z,. A series of layers are connected by either

continuous (for z = z,) or discontinuous (for z = z,) boundary conditions.

Then we used TMM to investigate the emission of green OLEDs with metallic gratings. A
~40% enhancement was found at ~625 nm. However, only ~10% enhancement was found at
emission peak 525 nm. The emission is not sensitive to the geometric parameters of metal
grating at 525 nm. In future we are going to work on other wavelengths, to see if the

emission can be enhanced via surface plasma mode.
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Chapter 8. An example of sequential ray tracing:

solar concentrator design

In this chapter, a sequential ray tracing method is applied to design a solar concentrator.
Although the preliminary results were not good and the project was not completed, we
decided to put it in the thesis, as a record of what we have done and also as an example of
sequential ray tracing method. In future we may have a reaccess to this topic and we hope the

design can be improved and completed at that time.

8.1 Introduction

There are several designs of broad wavelength solar concentrators, like the ones using
parabolic trough®, dish stirling, Fresnel reflectors®. These systems use lenses or mirrors to
focus a large area of sunlight onto a small area. They require direct sunlight, and they must
use a tracking system to keep the devices face the sun. A drawback of these devices is that the

efficiency would be low if there is no direct sunlight, like in cloudy days.

To overcome this drawback, it is of interest to know if it is possible to design an all-angle
concentrator to collect sunlight even if it is scattered to all directions. We proposed the design
as shown in Fig. 8-1. The design was inspired by the idea of a fluorescent solar concentrator®,
where fluorophore absorbs the incident sunlight and re-emits photons which are trapped by
total internal reflection and directed towards the PV cells. In our proposed design, we want
the concentrator collect the incident sunlight from all directions and guide the light to the

edge, where PV cells are placed.
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FIGURE 8-1. Schematic view of a solar concentrator.

To realize such a design, we tried a 2-D layout as shown in Fig. 8-2. There are numerous
curved funnels to guide the incident light into the device. Then the light is directed in a
tapered waveguide on the bottom towards the edge [the shaded area in Fig. 8-2(b)]. A 2™
stage concentrator can be put there to further concentrate the light, like the one in Ref. 1.
However, in this chapter we only focused on the 1% stage concentrator. We assumed the walls

of funnels and waveguide are made of perfect mirrors to completely reflect light.

(a)

(b)

FIGURE 8-2. Construction of a 2-D solar concentrator. (a) side view, (b) 3-D view.
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8.2 Sequential ray tracing

In chapter 5 we applied a non-sequential ray tracing method to model OLEDs with microlens
arrays. Here we would use a sequential ray tracing approach to simulate the solar
concentrator in Fig. 8-2. The word “sequential” means that light travels from surface to
surface in a defined order. We used sequential ray tracing since all surfaces are assumed to be

perfect reflectors. Once the initial position and direction of a beam are set, the beam

\\

Y -&&\/

FIGURE 8-3. Diagram of sequential ray tracing.

undergoes a path that is predefined.

A diagram of sequential ray tracing method is plotted in Fig. 8-3. Only 5 rays with normal
incidence to a funnel are tracked in the figure. In actual simulations, numerous rays from all
directions are tracked and numbers of rays that reach the edge are recorded. Then we can

calculate the percentage of rays that reach the edge for a specific incident angle.

8.3 Simulation results

In the simulation, we set the initial position of every ray to be at the top of the concentrator

(as shown in Fig. 8-3). That is, all rays are already in the concentrator. We do not include the
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possible loss when light pass through the interface of air and concentrator. The focus is how
well the concentrator performs in leading the light to the edge after light comes in from the

air.

We modeled several shapes of mirrors, such as cylindrical, elliptical and parabolic. In Fig.
8-4 we showed the percentage of light that reaches the edge and is to be collected, as a

dependence of the incident angle &. This is for an elliptical mirror based concentrator. The

concentration ratio w/h=5, where w,h are the width and height of the concentrator

respectively [Fig. 8-2(b)]. For normal incidence 6 =0°, 90% of light would be collected.

However, for |6|>20° no light would be collected.
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FIGURE 8-4. The percentage of light collected vs the incident angle.

. . collected ener W .
We define the concentration factor as 7, = WX Given a specific angular

= incident energy h

distribution of incident sunlight, 7, can be calculated via a 3-D integration over solid angles.
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We consider an extreme case, where sunlight is completely scattered, and a uniform

distribution of incident angle is assumed. In this case 7, =1.44. This means that if we put

solar cells at the edge of concentrator, they collect 44% more sunlight than when they are

placed horizontally without concentrator.

At first glance, 44% is not a big improvement. However, a 2" stage concentrator can be
placed at the edge of the 1% concentrator to further concentrate light. The function of the 1%

concentrator is not only concentrating light, but also orienting light. The exit light is confined

to a zone with half angle ® =%tanl (Hj Itis ~5.7° for the configuration being studied.
W

Assumed that no loss occur in the 2" stage concentrator, the energy conservation principle

leads to the conclusion that the concentration factor 7, :% ~10.1. Several designs, such
sin

as compound parabolic concentrators* (CPCs) can approach this theoretical limit. If we

combine the 2 concentrators, the overall concentration factor would be 7 =7,+n, ~14.6.

8.4 Discussions

In previous simulations, we assumed that all reflectors in the concentrator are perfect ones,

I.e. 100% reflectance. However, the reflectance can not be 100% practically. We recalculated

n, provided 95% and 90% reflectance on average. The results are summarized in Table 8-1.

As seen 7, is dramatically reduced even if the reflectance is cut down from 100% to 90%.

The reason is that each ray undergoes multiple reflections in the concentrator before it finally

reaches the edge. For example, if a ray experiences 10 reflections given the average

reflectance of each one is 90%, its energy would be only (90%)10 =35% of its initial
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energy.

Table 8-1. The dependence of 7, on average reflectance of mirrors

Average r'eflectance 100% 95% 90%
of mirrors
n, 1.44 0.68 0.39

Another factor that should be taken into account is the length of the 2™ stage concentrator. If
we want to choose, for example, CPCs as the 2" concentrator, it should be very long to

achieve the theoretical limit. Usually a trade-off must be made to shorten the CPC. In this

case 7, would be less than its theoretical limit.
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