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ABSTRACT

The London penetration depth has been measured in various doping levels of single crystals

of Ba(Fe1−xTx)2As2 (T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors by utilizing a tunnel

diode resonator (TDR) apparatus. All in-plane penetration depth measurements exhibit a

power law temperature dependence of the form ∆λab(T ) = CT n, indicating the existence

of low-temperature, normal state quasiparticles all the way down to the lowest measured

temperature, which was typically 500 mK. Several different doping concentrations from the

Ba(Fe1−xTx)2As2 (T=Co,Ni) systems have been measured and the doping dependence of the

power law exponent, n, is compared to results from measurements of thermal conductivity and

specific heat. In addition, a novel method has been developed to allow for the measurement of

the zero temperature value of the in-plane penetration depth, λab(0), by using TDR frequency

shifts. By using this technique, the doping dependence of λab(0) has been measured in the

Ba(Fe1−xCox)2As2 series, which has allowed also for the construction of the doping-dependent

superfluid phase stiffness, ρs(T ) = [λ(0)/λ(T )]2. By studying the effects of disorder on these

superconductors using heavy ion irradiation, it has been determined that the observed power

law temperature dependence likely arises from pair-breaking impurity scattering contributions,

which is consistent with the proposed s±-wave symmetry of the superconducting gap in the

dirty scattering limit. This hypothesis is supported by the measurement of an exponential

temperature dependence of the penetration depth in the intrinsically clean LiFeAs, indicative

of a nodeless superconducting gap.
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CHAPTER 1. Introduction

The discovery of a new superconducting material can have a tremendous impact on the

scientific community. When cooled below a critical temperature, Tc, these materials conduct

electricity without any losses in addition to other technologically desirable and interesting

magnetic properties. In February of 2008, such a discovery was realized by the report of super-

conductivity as high as 26 K in LaFeAsO1−xFx along with other unusual physical properties

[Kamihara et al. (2008)]. This compound is just a member of one class from a family of su-

perconductors known as the iron pnictides or more generally the iron-based superconductors.

An astonishing amount of effort has been put forth thus far by both experimental and the-

oretical physicists to understand the fundamentals of superconductivity in these materials to

gain a greater understanding of the phenomenon in general and on a larger scale the hope is

to some day design a material with superconductivity at room temperature, which could be an

amazing technological achievement. The goal of this work was to gain a better understanding

of the physical nature of the superconducting state in the iron-based superconductors through

experimental measurements of the London penetration depth.

Although great progress has been made since the initial finding of superconductivity below

4.2 K in Hg by the research team of H. K. Onnes in 1911 [Onnes (1911)], much remains

a mystery of this incredible state of matter. It took nearly 50 years after this discovery

for a theory to be introduced that could account for interactions at the microscopic level

to aid in the understanding of how superconductivity is even possible in materials like Hg

having low transition temperatures. This work is arguably the most successful theory of

superconductivity and is commonly referred to as the Bardeen-Cooper-Shrieffer (BCS) theory

[Bardeen et al. (1957)]. After the BCS formulation, most people believed that the basic
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fundamental principles involved with understanding superconductivity had been developed,

perhaps with the exception of unconventional superconductivity in UPt3 [Sigrist and Ueda

(1991)], UBe13 [Ott et al. (1983)] and CePt2Si2 [Hiebl and Rogl (1985)], but a Nobel prize

winning discovery in 1986 by IBM researchers G. Bednorz and K. Müller would change all of

that [Müller and Bednorz (1987)].

High-temperature superconductivity was discovered in what later became known as the

high-Tc cuprates and many of the properties of these materials went against the rules for-

mulated by B. Matthias that he used to discover many new superconductors [Matthias et al.

(1963)]. These materials, which exhibit superconductivity far above 100 K, are insulators in

their parent state with long range antiferromagnetic order. However, when these materials are

doped away from this parent state with either holes or electrons, the antiferromagnetism can

be weakened and for specific dopants superconductivity can then emerge for a critical doping

concentration. The Tc rises through a maximum and eventually superconductivity is absent as

the doping concentration is increased further. They can also be very two-dimensional materi-

als, meaning that in some cases nearly all of the electric charge flows through CuO2 planes that

exist in the lattice structure, which can create a resistivity anisotropy as large as 100 [Ginsberg

(1994)]. The temperature-doping phase diagram for the high-Tc cuprates contains some very

rich physics, including a strange metallic phase where the electrical resisitivity has an unusual

linear temperature dependence that persists over two decades in temperature, a partial gap of

unknown origin in the density of states that occurs at temperatures much higher than Tc that

is known as the pseudogap [Basov and Timusk (2005)], and the recovery of a Fermi liquid state

in the electrical resistivity for doping concentrations near the overdoped edge of the supercon-

ducting dome and beyond. Also, the pairing symmetry, which is related to the symmetry of the

superconducting order parameter, in the high-Tc cuprates is dx2−y2-wave [Harlingen (1995)],

in contrast to BCS superconductors which have s-wave pairing symmetry. This may be due

to a fundamentally different pairing mechanism, with this being strongly linked to phonons in

BCS superconductors as confirmed by the isotope effect [Pippard (1953)] and quite possibly

spin fluctuations [Monthoux et al. (2007)] in the high-Tc cuprates for which there has not
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yet been smoking gun evidence. During the period from 1986 to 2001, over 100,000 scientific

papers were published on the cuprates [Buchanan (2001)], so many of the experimental tech-

niques that were developed to study them were already prepared for the discovery of high-Tc

superconductivity in the iron-based superconductors [Kamihara et al. (2008)].

The family of iron-based superconductors can be grouped into at least five different classes

up to this date. The parent compounds for these classes are the RFeAsO (where R=rare

earth, denoted the “1111” system), AEFe2Pn2 (where AE=alkaline earth and Pn=pnictogen,

denoted the “122” system), AFeAs (where A=alkali metal, denoted the “111” system),

Fe1+ySe (denoted the “11” system) and Sr3Sc2O5Fe2As2 classes of iron-based superconducting

compounds [Hosono (2010); Paglione and Greene (2010); Canfield and Bud’ko (2010); Johnston

(2010); Wen and Li (2011)]. These compounds can be doped in various different ways to achieve

superconductivity. Structurally, similar to the cuprates, these classes all have planes consisting

of Fe and Pn or Ch atoms, but unlike the cuprates these materials likely have a pronounced

three-dimensional band structure. In the parent compounds, the iron-based superconductors

are poor metals [Canfield and Bud’ko (2010); Ni et al. (2008b); Sefat et al. (2008); Tanatar et al.

(2009); Kamihara et al. (2008); Ren et al. (2008)], most of which undergo antiferromagnetic

and structural phase transitions below room temperature. Although the community has not

yet come to a general consensus, it is quite likely that the antiferromagnetism in the iron-based

superconductors is of itinerant character [Cvetkovic and Tesanovic (2009)], in contrast to the

localized magnetism in the cuprates. Similar to the cuprates, these transitions are suppressed

by doping and superconductivity emerges out of this instability and eventually disappears for

high enough doping levels. The fact that there are some similarities between the cuprates

and the iron-based superconductors prompts one to consider that there may be a common

underlying physical principle responsible for their observed properties [Taillefer (2010)]. One

popular idea is that both are examples of spin fluctuation mediated superconductors, with

dx2−y2-wave symmetry of the order parameter [Harlingen (1995)] in the cuprates and the

recently proposed s±-wave symmetry in the iron-based superconductors [Mazin et al. (2008);

Mazin and Schmalian (2009)].
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The structure of the momentum dependent superconducting gap, ∆(k), is an experimen-

tally accessible quantity that can provide valuable information about the physical interactions

responsible for electronic pairing in a superconductor. Uncovering the structure of the order

parameter can be a very challenging task experimentally. One way to address this is by piecing

together the information obtained from several experimental techniques that are sensitive to

∆(k), such as penetration depth, thermal conductivity, nuclear magnetic resonance, angle-

resolved photoemission spectroscopy and tunneling measurements, just to name a few. The

experiment that provided the smoking gun evidence for dx2−y2-wave symmetry in the cuprates

[Harlingen (1995)] took advantage of the phase difference of the superconducting wave function

at a corner junction. The results of this experiment were relatively simple to understand be-

cause the Fermi surface of the cuprates arises from a single electronic band crossing the Fermi

level and a single superconducting gap. This same type of experiment for the iron-based su-

perconductors is complicated by the fact that there are as many as five different bands crossing

the Fermi level and it is possible that the phase of the gap changes sign between the sheets

that comprise the Fermi surface. Because the Fermi surface of the iron-based superconduc-

tors is composed of several different sheets having both hole- and electron-like character, it

is widely accepted that there are multiple superconducting gaps [Mazin et al. (2008)], which

indeed have been observed experimentally [Evtushinsky et al. (2009a); Liu et al. (2009); Ding

et al. (2008)]. The existence of multiple superconducting gaps creates additional complications

for understanding the role of impurity scattering because there are both inter- and intraband

scattering processes that may be important for superconductivity.

The experimental quantity that has been used in this work to study the momentum depen-

dence of the superconducting gap(s), ∆i(k), in the iron-based superconductors is the London

penetration depth [Prozorov and Giannetta (2006)]. The penetration depth is sensitive to

∆i(k) through an integral which is taken over the entire Fermi surface, thus making this mea-

surement technique insensitive to the actual phase of the gap. The apparatus that was used to

make the penetration depth measurements is known as a tunnel diode resonator, which made

use of a radio frequency oscillating circuit powered by a tunnel diode [VanDegrift (1975a,b)].
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The temperature dependence of the penetration depth can show the existence of normal state

quasiparticles at low temperatures, which makes it a well suited tool for detecting nodes in

the superconducting gap or for observing pair-breaking impurity scattering effects. The nor-

malized superfluid density, ρs(T ) = [λ(0)/λ(T )]2, is another important experimental quantity

used to analyze temperature dependent penetration depth data. It is especially useful for

observing effects associated with multigap superconductivity or anisotropies of the supercon-

ducting gap(s) [Kogan et al. (2009)], but it does require λ(0), which can be a difficult quantity

to measure. Penetration depth measurements have proven to be very useful for studying the

order parameter symmetry in superconductors, especially in the high-Tc cuprates where the

linear temperature dependence of the penetration depth in very clean single crystals of YBCO

was taken as the first piece of strong evidence to suggest line nodes in the superconducting

gap [Hardy et al. (1993)].

The class of iron-based superconductors on which the penetration depth measurements to

be reported here have focused is Ba(Fe1−xTx)2As2 with T being Co, Ni, Ru, Rh Pd, Pt and

also co-doping with Co and Cu. One reason why these series were chosen is because large,

high quality single crystals can grown [Ni et al. (2008b)]. The parent compound for these

materials is a poor metal having a high temperature tetragonal phase with no long range

magnetic order and undergoes structural and magnetic transitions around 140 K into a low

temperature orthorhombic phase with long range antiferromagnetic order [Rotter et al. (2008);

Canfield and Bud’ko (2010)]. Transition metal doping onto the iron site serves to suppress the

structural and magnetic transition temperatures and superconductivity emerges after these

phases have been weakened. These features can be seen in Fig. 1.1 for the Ba(Fe1−xTx)2As2

(T=Co,Ni,Pd,Ru) series.

The variation of the in-plane penetration depth with respect to its zero temperature value,

∆λab(T ), has been measured at various doping levels in single crystals of Ba(Fe1−xCox)2As2

[Gordon et al. (2009b,a)] and Ba(Fe1−xNix)2As2 [Martin et al. (2010a)]. Although fewer dop-

ings were studied, ∆λab(T ) has also been measured for Ba(Fe1−xPtx)2As2, Ba(Fe1−xPdx)2As2

and Ba(Fe1−xRux)2As2 and Ba(Fe1−x−yCoxCuy)2As2 [Martin et al. (2010b)]. In addition,
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Figure 1.1 Temperature versus doping phase diagram for Ba(Fe1−xTx)2As2
(T=Co,Ni,Ru,Pd) as determined from electrical resistivity mea-

surements [Canfield and Bud’ko (2010); Ni et al. (2008b);

Thaler et al. (2010); Ni et al. (2010a,b)]. The solid squares

show the position of the magnetic and structural phase transi-

tions and the half filled squares show the location of the super-

conducting transition.
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the c-axis component of the penetration depth has been measured for one underdoped and

two overdoped concentrations of the Ba(Fe1−xNix)2As2 series. A procedure has also been de-

veloped to measure the absolute value of the in-plane penetration depth, λab(T ), involving

an aluminum coating technique for the samples along with the usual tunnel diode frequency

shift measurements. This method has been used to measured λab(0) as a function of dop-

ing in the Ba(Fe1−xCox)2As2 series and also to construct the normalized superfluid density,

ρs = [λab(0)/λab(T )]2, in order to study its evolution with doping. Also, the results of an exten-

sive collection of the penetration depth prefactor, β from ∆λab(T ) = βT n, for many different

iron-based superconductors is presented [Gordon et al. (2010b)] with a theoretical attempt to

explain its dependence on Tc based on pair-breaking impurity scattering arguments [Kogan

(2009)]. The following chapters serve to summarize the results of the above mentioned experi-

ments and the inferred properties of the superconducting state in the Ba-based 122 compounds

in addition to supplying the necessary information to understand the experimental procedures

and penetration depth analyses.
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CHAPTER 2. The London penetration depth in superconductors

2.1 The behavior of superconductors in applied magnetic fields: London

theory

After the discovery that certain metals, when cooled below a characteristic temperature,

Tc, exhibit perfect conductivity [Onnes (1911)], it was found that they also expel applied mag-

netic fields from their bulk below this temperature, now known as the Meissner effect [Meissner

and Ochsenfeld (1933)]. In order to account for these two fascinating electromagnetic proper-

ties, F. and H. London proposed a set of equations containing a phenomenological parameter

that is now known as the London penetration depth, λ [London (1950); London and London

(1935)]. This length scale characterizes the distance over which external electromagnetic fields

decay inside of a superconductor and it is one of the two fundamental length scales of these

materials, with the other being the coherence length, ξ, which characterizes the distance in

real space over which the superconducting wave function varies appreciably [Pippard (1953)].

Experimental measurements of the temperature dependence of the London penetration depth

in superconductors can also be used to gain information about the structure of the supercon-

ducting gap function, ∆(k), which is related to the symmetry of the many body interactions

that give rise to the electronic pairing.

Historically, the first observation of magnetic field penetration effects that were predicted

by the London equations were made by Shoenberg in 1940 [Shoenberg (1940)], where the mag-

netic susceptibilities of mercury colloids were measured as a function of temperature. The

penetration of the magnetic field into each droplet in the colloid decreased the magnitude of

the diamagnetic susceptibility of the sample as a whole. Thirteen years later, measurements,

performed by A. B. Pippard [Pippard (1953)], of the penetration depths in a series of tin-indium
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alloys by microwave techniques were taken as evidence that the electrons in a superconductor

have a long range influence on each other. It was in this report that the idea of a supercon-

ducting coherence length was first introduced mathematically. These early measurements were

useful for giving direction to the field of superconductivity and over the years, penetration

depth measurements have contributed greatly to our understanding of the phenomenon.

The behavior exhibited by superconducting materials in applied magnetic fields naturally

allows them to be placed into two basic categories: type I and type II superconductors. Below

Tc, in the absence of an applied magnetic field, the superconducting free energy, Fs(T,H = 0),

is less than the normal state free energy, Fn(T,H = 0). However, there is a critical value of

the applied magnetic field, Hc, such that Fn becomes less than Fs and it becomes energetically

favorable for the system to revert back to its normal electronic state. This critical field is a

function of temperature and its value increases as the temperature of the superconductor is

lowered below Tc. The following summary applies only to a demagnetization-free scenario to

exclude a complicated discussion of the intermediate state of a type I superconductor.

For a type I superconductor, a single critical field suffices to describe its behavior. Below

Hc the applied magnetic field penetrates the material with a screening length of λ and when

H > Hc, the entire sample becomes normal, corresponding to the limit where λ→ ∞. However,

for type II superconductors there are two associated critical fields: Hc1 and Hc2. For H > Hc2,

the entire sample enters the normal state. For H < Hc1, the magnetic field penetrates only

up to λ and is screened from deep within the bulk. However, for Hc1 < H < Hc2, known as

the mixed state, in addition to the usual London penetration, magnetic flux also penetrates

the sample in the form of vortices, which are normal state regions around which screening

supercurrents swirl [Abrikosov (1957)]. These vortices have a characteristic radius on the

order of ξ and the magnetic field decays away from them with a screening length of λ. Often

the vortices form a periodic lattice in the bulk of the material and have been studied extensively

for many different superconductors [Abrikosov (2004)]. The measured penetration depth in

the mixed state, λmeas, not only has a Meissner component, λL, but also there is a component

from the response of the vortex lattice as well, known as the Campbell penetration depth, λC .
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The relationship between them has the form of λ2
meas = λ2

L + λ2
C [Prozorov et al. (2009c)].

The ratio of the London penetration depth to the coherence length, κ ≡ λ/ξ, known as

the Ginzburg-Landau parameter, allows one to see through a calculation of the surface energy

between normal and superconducting regions if a superconductor is classified as type I or type

II. For a type I superconductor, λ << ξ and the positive surface energy is unfavorable for

the formation of vortices in the bulk, whereas for a type II superconductor λ >> ξ and the

negative surface energy is favorable for the formation of flux vortices. In the original paper

outlining this idea [Abrikosov (1957)], Abrikoxov showed that materials with κ > 1/
√

2 are

type II superconductors and materials with κ < 1/
√

2 are type I. Regardless of whether a

superconductor is classified as type I or II, information about the superconducting pairing

symmetry is inferred in the same way from penetration depth measurements. In this work, all

experiments were performed in zero applied dc magnetic fields, so all samples remained in the

Meissner state.

As previously mentioned, one of the first attempts to describe the electrodynamic behavior

of superconductors, namely the loss of electrical resistance below Tc and the Meissner effect,

was done by F. and H. London in 1935 [London and London (1935)]. They considered this

problem by starting with the essential results of the Drude theory [Drude (1900); Ashcroft and

Mermin (1976)] to describe how scattering of electrons from defects can lead to a reduction in

the electrical transport:

m
dv

dt
= eE − mv

τ
, (2.1)

where m is the mass of the charge carriers, e is the magnitude of each carrier’s charge, v is

the average or drift velocity of the charge carriers and τ is the average scattering time between

collisions. The first term on the right side of Eqn. 2.1 is the accelerative term describing how

an electric field will accelerate charge carriers and the second term accounts for scattering

processes decreasing their average acceleration. This leads to a steady state drift velocity

given by v = eEτ/m and if there are n conduction electrons per unit volume, we obtain the

familiar form of Ohm’s law: J = nev = (ne2τ/m)E = σE. The altered form of this result
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that the Londons started with, which asserted that a certain density of the charge carriers, ns,

contributes to an accelerative supercurrent that undergoes no scattering, was

m
dvs

dt
= eE (2.2)

and this equation leads to an expression for the total supercurrent, Js, which is governed by

the relation

dJs

dt
=
nse

2

m
E =

c2

4πλ2
E. (2.3)

Eqn. 2.3 is known as the first London equation and it is important because with the use of

Maxwell’s equations and further manipulations it leads to ∇2E = E/λ2, which implies that

time-varying electric fields are screened out of a superconductor by a supercurrent that will

accelerate out to infinity in response to a strictly dc electric field. Eqn. 2.3 also implies that

time-varying magnetic fields are screened from a superconductor up to a distance of λ.

The second London equation cannot be derived from classical arguments like Eqn. 2.3 was.

From the observations made regarding the Meissner effect, the screening of time-independent

magnetic fields must be accounted for. Let us consider taking the curl of one of the Maxwell

equations:

∇× (∇× H) =
4π

c
(∇× J) (2.4)

and making the substitution ∇× J = −cH/4πλ2, which leads to

∇2H =
1

λ2
H (2.5)

where λ2 = mc2/4πnse
2. Eqn 2.5 is known as the second London equation and implies that

time-independent magnetic fields are also screened from the bulk of a superconductor, in agree-

ment with the Meissner effect. The two London equations that were obtained by arguments

based on experimental observations are useful, but they lack a microscopic origin for the ex-

planation of the superconducting state. This type of a theory would not come together until

1957 [Bardeen et al. (1957)], many years after the work done by the Londons.
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Equation 2.5 is also referred to as the isotropic London equation, which has proven to

be unsuccessful for describing superconductors that have significant band mass anisotropies.

Anisotropic type II superconductors have been described quite well by a set of Ginzburg-

Landau equations, with a phenomenological mass tensor, near Hc2 [Morris et al. (1972)].

Moving away from Hc2 this type of analysis is not possible due to these equations becom-

ing non-linear. Near Hc1 it is helpful to apply the London model [Kogan (1981)], which

provides a reasonable approximation at least for large κ superconductors. Although it has low

accuracy, this approach nevertheless makes it possible to predict the existence of a transverse

magnetic field in a vortex. This justifies the use of the London model, despite the fact that

many important aspects, such as temperature dependencies and the origin of the anisotropic

superconducting properties, remain beyond the scope of the theory. This approach begins by

minimizing the energy given by

ǫ =

∫

[H2 + (λ0∇×H)2]dV/8π, (2.6)

which is just the sum of the magnetic and kinetic contributions. For the isotropic case, λ2
0 ∝

M0, where M0 is the mass. The generalization to the anisotropic situation replaces M0 with

the mass tensor in such a way that the kinetic term remains invariant:

8πǫ =

∫

[H2 + λ2mij(∇i × H)(∇j × H)]dV . (2.7)

where λ2 ∝ mave, with mave being some mean mass. The components mij represent the

effective masses divided by mave. The tensor mij is diagonal if its principal directions are

chosen as coordinate axes (m0
xx = m1/mave,m

0
yy = m2/mave,m

0
zz = m3/mave). It is convenient

to choose m3
ave = m1m2m3 so that detmij = 1. By minimizing this energy, the resulting

anisotropic London equations are given by

Hi = λ2mklǫlsiǫktj
∂2Hj

∂xs∂xt
, (2.8)

where ǫikl is the Levi-Civita tensor. In the isotropic case by using mij = δij , the usual London

equations are recovered from Eqn. 2.8.
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In an earlier work, C. J. Gorter and H. B. G. Casimir interpreted the thermodynamics of

superconductors in terms of a two fluid model in which a ”normal” electronic fluid coexisted

with a ”condensed” fluid of superconducting electrons [Gorter and Casimir (1934); Gorter

(1935)]. Using this model a temperature-dependent form of the penetration depth has been

derived through measured temperature dependencies of the specific heat and upper critical

field. This form, known as the two-fluid temperature dependence, is given by

λ(T ) ≈ λ(0)
√

1 − (T/Tc)4
. (2.9)

Although it has no microscopic justification, this form has been used when a simple analytical

approximation for λ(T ) over the full temperature range below Tc was needed. Some successful

attempts were made to generalize the Gorter-Casimir result to better fit the results of mea-

surements [Lewis (1956)], but this was before any microscopic theory of superconductivity had

been developed. In order to make this equation more practical, the full BCS equations have

been solved for s- and two dimensional d-wave superconducting gap symmetries [Poole et al.

(2007)], which will be introduced later. The results are

λs−wave(T ) =
λ(0)

√

1 − (T/Tc)2
(2.10)

and

λd−wave(T ) =
λ(0)

1 − (T/Tc)4/3
. (2.11)

It is important to note here that these equations are quite good approximations over the full

temperature range, but they are not accurate at low temperatures.

2.2 Microscopic theory of superconductivity and the connection to λ

In 1957 John Bardeen, Leon Cooper and Robert Schrieffer published a microscopic theory

of superconductivity, commonly referred to as the BCS theory, that remains the most successful

theory of superconductivity to this day [Bardeen et al. (1957)]. In this work, their goal was to
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formulate a theory to describe the unusual experimental observations made on superconductors

in terms of the interactions between electrons. The list of main observations that they set out

to explain was: (1) a second-order phase transition at Tc, (2) an electronic specific heat varying

as exp(-T0/T ) near T=0 K and other evidence for an energy gap for individual particle-like

excitations, (3) the Meissner effect, (4) effects associated with infinite conductivity and (5) the

dependence of Tc on isotopic mass (isotope effect), Tc

√
M = constant.

The source of the attractive interaction that can result between electrons stems from the

motion of the ionic lattice. The repulsive Coulomb interaction between electrons near the Fermi

level having opposite spin and momenta is screened by an attractive interaction that exists

between electrons and lattice vibrations known as phonons, which results in a net attractive

interaction for the pair of electrons, known collectively as a Cooper pair. These bound state

electron pairs condense into a ground state where they all share the same wave function, which

was provided by the BCS theory. BCS assumed that the total wave function could be built

of products of pair wave functions between individual electrons, where the two electrons in

the pair have opposite spin and the orbital parts are symmetric, i.e. they are singlet states.

Cooper showed that in the presence of a Fermi sea where Pauli exclusion effects are important,

two electrons can form such a bound state no matter how weak the attractive interaction is

[Cooper (1956)].

For phonon mediated superconductivity, the attractive interaction between electrons of op-

posite spin and momentum centered about the Fermi energy leads to an energy gap of width

2∆(T ) in the spectrum of single particle excitations, which drastically modifies the electronic

density of states. This gap serves as the superconducting order parameter and its momen-

tum dependence is an important, experimentally measurable quantity. Most known phonon

mediated superconductors have been assumed to be single gap superconductors, referring to

the fact that they possess a single isotropic or weakly anisotropic superconducting gap that

exists over the entire Fermi surface in momentum space. In analogy to electronic orbitals, this

situation where the gap magnitude is the same in every direction is known as an s-wave super-

conducting gap function. There is compelling evidence to suggest that some phonon mediated
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superconductors, for example MgB2 [Bouquet et al. (2001a)], Lu2Fe3Si5 [Gordon et al. (2008)]

and V3Si [Kogan et al. (2009)], possess two different superconducting gaps that exist on dif-

ferent regions of their Fermi surfaces that both exhibit s-wave symmetry. Many other classic

superconductors may well possess multiple superconducting gaps or modest gap anisotropy

and these systems should be carefully revisited in future studies.

For the case of a superconductor possessing a single s-wave superconducting gap where

impurity scattering is negligible (clean limit), the temperature dependence of the variation in

the penetration depth with respect to its zero temperature value can be obtained from the

BCS theory [Muhlschlegel (1959)] and found to have the following dependence up to roughly

a value of Tc/3:

∆λ(T ) ≈ λ(0)

√

π∆(0)

2kBT
exp−∆(0)

kBT
. (2.12)

This form of the penetration depth is exponentially saturated at very low temperatures, which

appears very flat and essentially zero, and this activated temperature dependence is the charac-

teristic signature of a nodeless superconducting gap function from the penetration depth data.

Fig. 2.1 shows the in-plane London penetration depth data taken for Nb, a single gap BCS

superconductor, using a tunnel diode resonator circuit and the temperature dependence agrees

with Eqn. 2.12 quite well. Any deviation from this behavior at low temperatures indicates the

presence of low-temperature normal state quasiparticles that can arise from either nodes in the

superconducting gap function or from pair-breaking scattering. Magnetic impurity scattering

acts as a strong pair-breaking mechanism in s-wave superconductors, but non-magnetic impu-

rities do not alter the low-T behavior of the penetration depth much, which can be understood

from Anderson’s “theorem” [Anderson (1959)].

For multigap superconductors like MgB2, ∆λ(T ) exhibits the same temperature dependence

as in the single gap case, but only up to a temperature of (Tc/3)(∆min/∆max) due to scattering

processes associated with the multigap behavior, where ∆max and ∆min are the magnitudes

of the largest and smallest gaps, respectively. Fig. 2.1 shows in-plane penetration depth data

taken on MgB2 and indeed one can see that the exponentially saturated region persists up to
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a lower temperature than it does for single gap Nb, keeping in mind that the horizontal axis

is the reduced temperature, T/Tc.
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Figure 2.1 The variation with temperature of the in-plane London penetra-

tion depth with respect to its zero temperature value, ∆λab(T ),

for three different superconductors: Nb (s-wave), MgB2 (multi-

-gap s-wave) and Bi-2212 (d-wave). These data were all taken

with a tunnel diode resonator circuit.

There are also some superconductors that have been suggested to be mediated by mech-

anisms other than phonons. Many believe that one such example is the family of high-Tc

cuprates, which are antiferromagnetic insulators in the parent state that when doped with

either holes or electrons become superconductors with Tc as high as ≈140 K [Müller and Bed-

norz (1987)]. These materials can be very two dimensional, where nearly all of the conduction

occurs in the CuO2 planes that exist throughout the structure. The transport anisotropy can

be as high as ≈10,000 but as low at 10 for conduction in these planes compared to conduction

along the c-axis, which is perpendicular to the CuO2 planes [Ginsberg (1994)]. Because of the

proximity of the superconducting phase in these materials to a magnetic state in the doping

phase diagram, it is widely believed that spin fluctuations may play a similar role for pair
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mediation to phonons in the case of s-wave superconductors [Monthoux et al. (2007)].

As previously mention, the order parameter symmetry of the cuprates is dx2−y2-wave. For

this type of symmetry, the order parameter changes sign from having a positive amplitude to a

negative one on four different points of the Fermi surface. At the points where the gap changes

sign its value must go through zero. Any point where the superconducting gap goes to zero with

respect to the Fermi surface is known as a node. In the case of dx2−y2-wave symmetry, lines of

nodes that run parallel to the c-axis are present. Due to this unusual momentum dependence of

the order parameter and also the proximity of the superconducting phase to an antiferromagetic

one, it is widely believed that the mechanism responsible for giving rise to Cooper pairing in

the high-Tc cuprates is electronic in origin, quite possibly mediated by spin fluctuations, which

could make them fundamentally different than the BCS superconductors that are mediated by

phonons. There are other families of superconductors believed to be good candidates for spin

fluxuation mediated pairing, with those being the heavy fermion superconductors, the organic

Bechgaard salts and the recently discovered iron-based superconductors [Taillefer (2010)].

Nodes in the superconducting gap structure drastically alter the low temperature behavior

of any material property which depends on the electronic density of states and therefore they

can be detected with the use of several experimental techniques. At absolute zero, the Fermi

surface represents the set of highest occupied electronic energy levels in momentum space. At

T=0 for an s-wave superconductor in the clean impurity scattering limit, where the coherence

length is shorter than the mean free path, this set of energy levels is fully gapped with respect

to the unoccupied levels and as the temperature is increased, the unoccupied electronic states

which lie just above the occupied ones are populated exponentially fast and this effect gives rise

to the activated behavior observed in many of the materials properties, like the penetration

depth, spin lattice relaxation rate and ultrasonic attenuation just to name a few. For the case

of a superconducting gap function containing nodes, as the temperature is increased, normal

quasiparticle states at much lower temperatures are able to become occupied as a result of

the zeros in the gap structure. The population of these low energy normal states alters the

temperature dependence of all quantities dependent on the electronic density of states and
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thus the presence of such a node is experimentally detectable.

In the clean limit, the vertical line of nodes in the superconducting gap function of a

dx2−y2-wave superconductor produce a linear temperature dependence of ∆λ, with

∆λ(T ) ≈ λ(0)2 ln 2

d∆/dφ|φ→φnode

T ≡ λ(0)2 ln 2

α∆(0)
T, (2.13)

where ∆ is the momentum dependent superconducting gap and φ is the azimuthal angle

[Annett et al. (1991)]. This linear dependence in the penetration depth was first observed

by the pioneering measurements of the Hardy group using a microwave cavity apparatus to

measure single crystals of the cuprate superconductors known as YBCO at the University of

British Columbia in 1993 [Hardy et al. (1993)]. From Fig. 2.1, actual tunnel diode resonator

measurements confirm that the in-plane penetration depth of the high-Tc cuprate known as

BSCCO-2212 exhibits the linear temperature dependence in the low-temperature region, shown

in Eqn. 2.13.

In contrast to the s-wave case where non-magnetic impurity scattering does not alter much

the low-T behavior of λ, both magnetic and non-magnetic scattering effects in a dx2−y2-wave

superconductor change this linear dependence of the penetration depth to a quadratic depen-

dence up to a temperature T ∗, which depends on the concentration of impurities in the system

[Hirschfeld and Goldenfeld (1993)]. In fact, from Fig. 2.1 the ∆λab(T ) data for BSCCO-2212

shows a slight upturn near the lowest temperature of the experiment, which is likely due to a

small concentration of impurities in the sample. This quadratic temperature dependence was

initially observed in the penetration depth of films and impure crystals of high-Tc supercon-

ductors before high quality single crystals became available [Hardy et al. (1993)].

With the advent of the ability to make precision measurements of the temperature de-

pendence of the penetration depth in superconductors, these experiments have become very

valuable for determining the structure of the momentum dependent superconducting gap. By

knowing the gap structure, theoretical models for the pairing mechanism can be tested. The

formal connection between the momentum dependence of the superconducting gap, ∆(k), and

the temperature dependence of the penetration depth are given in the following section.
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2.3 Calculating λ(T ) for a general Fermi surface with an arbitrary

superconducting gap structure ∆(k)

As it has been indicated from the previous section, by measuring the temperature depen-

dence of the London penetration depth, one can learn about the structure of the supercon-

ducting gap in momentum space. It is the goal of this section to provide a formal connection

between λ(T ) and ∆(k) for a general Fermi surface geometry by following the approach of

Chandrasekhar and Einzel [Chandrasekhar and Einzel (1993)].

Recall that in the original effort to understand external field penetration into a supercon-

ductor, the Londons arrived at the following form of the penetration depth in relation to other

properties of the metal:

λ2 =
mc2

4πnse2
. (2.14)

In a real metal, though, it is known that there can be drastic deviations from a spherical Fermi

surface, which can in principle lead to mass anisotropies. Differences between the free electron

mass and the band mass can lead to large deviations from the penetration depth calculated

using Eqn. 2.14 with the free electron mass. The general form of the electronic band mass

tensor is

m−1
im =

∂2εk
~2∂ki∂km

. (2.15)

The existence of such anisotropic effects has lead to the necessity of using different band masses,

mc and mab, to be used in attempt to calculate the different components of the penetration

depth with respect to the crystalline axes, λc and λab, respectively.

Another factor that can lead to deviations from the London result in the Free electron case

is a variation of the superconducting gap ∆(k) in momentum space. As it was pointed out

in the previous section, vertical line nodes in the gap function can produce a linear temper-

ature dependence in λ(T ) at low temperatures, which is quite different than the exponential

saturation that would arise from a superconducting gap that is isotropic in momentum space.
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Measurements that are capable of resolving such differences in the penetration depth are useful

for probing the symmetry of the superconducting interactions, but nonetheless one must be

able to understand the connection between ∆(k) and λ(T ) for the sake of the data analysis.

Due to these deviations, namely anisotropies in the Fermi surface or a superconducting gap

magnitude that changes about the Fermi surface in momentum space, the need for a general

formalism that can account for such effects is obvious. Such formalism has been provided by

the semiclassical approach to calculating all three spatial components of the penetration depth

put forth by Chandrasekhar and Einzel [Chandrasekhar and Einzel (1993)].

By considering the response of a superconductor to an externally applied magnetic field,

they arrived at the following relationship between the supercurrent density, Js, and the vector

potential, A, of the applied magnetic field:

Js = e ∫(dνkvk + dν−kv−k) = − e2

4π3c

∫

d3k
(

− ∂nk

∂εk
+
∂f(Ek)

∂Ek

)

(vkvk) ·A ≡ T · A. (2.16)

This is just the generalization of the original London equation to a BCS superconductor with a

general dispersion relation and at finite temperature T. This allows us to define the symmetric

response tensor

T ≡ e2

4π3c

∫

d3k
(

− ∂nk

∂εk
+
∂f(Ek)

∂Ek

)

(vkvk). (2.17)

It should be noted that charge conservation is violated in Eqn. 2.16 unless an additional

backflow term is added giving

Js = −
(

T − (T · q)(q · T)

q · T · q
)

· A (2.18)

where q is a wavevector pointing along the direction of the applied magnetic field. The backflow

term depends only on the direction of q and not its magnitude.

Thus, Eqn. 2.17 and Eqn. 2.18 together with the Maxwell equation

∇× B =
4π

c
Js (2.19)
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form the complete solution to the problem of a superconductor at temperature T, with arbitrary

ε(k) and ∆(k), in an applied magnetic field.

The penetration depth components along a specific direction with respect to the crystalline

axes can be computed by using the relationship

λii =
( c

4πTii

)1/2
, i = x, y, z (2.20)

and it should be noted that the λii are not the components of a vector or a tensor, but rather

are the different penetration depths with respect to the crystalline axes. However, the effective

mass can be defined by

mii ≡
ne2

cTii
, (2.21)

which gives us the familiar London relation

λii =
(miic

2

4π2

)1/2
. (2.22)

Consider now the structure of the response tensor, T, shown in Eqn. 2.17. This tensor can

be broken into two terms which are usually referred to as the diamagnetic and paramagnetic

contributions and are written in form

T = TD − TP (2.23)

with

TD =
e2

4π3c

∫

d3k
(

− ∂nk

∂εk

)

(vkvk) (2.24)

and

TP =
e2

4π3c

∫

d3k
(

− ∂f(Ek)

∂Ek

)

(vkvk) (2.25)
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By considering the fact that the derivatives in Eqns. 2.24 and 2.25 are zero unless |εk − µ| .

∆(k) and also that ∆(k) ≪ µ, the value of the tensor vkvk can be replaced by its value at

εk = µ, which is vF vF . For this same reason, we can make the substitution

d3k → dSF dεk
~|vF |

(2.26)

where dSF is a constant energy surface element and vF is the magnitude of the Fermi velocity.

These approximations give us

TD =
e2

4π3~c

∮

dSF

∫ ∞

0
dεk

(

− ∂nk

∂εk

)vF vF

|vF |
∼= e2

4π3~c

∮

dSF
vF vF

|vF |
(2.27)

and

TP
∼= 2 · e2

4π3~c

∮

dSF
vF vF

|vF |

∫ ∞

∆(k)
dEk

(

− ∂f(Ek)

∂Ek

) Ek
√

E2
k − ∆2(k)

. (2.28)

As T → 0, TP → 0 and as T → Tc, TP → TD. If ∆(k) is isotropic, the anisotropy of TP is

temperature-independent and its anisotropy is the same as the anisotropy of TD. If ∆(k) is

anisotropic, then the anisotropy of TP is affected by the anisotropies of both εk and ∆(k), and

is temperature-dependent.

In summary, with the formalism provided in this section, the spatial components of the

penetration depth, λii, can be computed for a general Fermi surface geometry and an arbitrary

momentum dependent superconducting gap function, ∆(k).

2.4 Behavior of the superfluid density for different superconducting

pairing symmetries

Consider a superconducting metal with a fixed total density of conduction electrons, ntotal.

Below Tc, some fraction of the electrons in ntotal will become superconducting, ns(T ), and

this fraction will increase as T → 0. Let the fraction of electrons that remains normal below

Tc be nn(T ). In the clean impurity scattering limit, all of the electrons will enter into the
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superconducting state, which implies ns(T = 0) = ntotal. For a general temperature 0 < T < Tc

the relationship

ntotal = ns(T ) + nn(T ) (2.29)

holds true for no impurity scattering, with ntotal being a constant. The normalized superfluid

density, ρs(T ), is the ratio of the concentration of superconducting electrons to the total

concentration of available charge and can be related to the penetration depth by

ρs(T ) =
ns(T )

ntotal
=

ns(T )

ns(T = 0)
=
λ2(0)

λ2(T )
=

[

1 +
∆λ(T )

λ(0)

]−2
(2.30)

with the use of the London relation shown in Eqn. 2.14. By using Eqn. 2.20 this can be

extended even further:

ρs(T ) =
λ2

ii(0)

λ2
ii(T )

=
Tii(T )

Tii(0)
, (2.31)

where generally we have

Tij =
e2

4π3~c

∮

dSF

[vi
F vj

F

|vF |
(

1 + 2

∫ ∞

∆(k)

∂f(E)

∂E

N(E)

N(0)
dE

)]

. (2.32)

The quantity ρs(T ) is often used to analyze penetration depth data all the way up to Tc and is

useful for accentuating effects related to multigap or anisotropic superconductivity [Prozorov

and Giannetta (2006)]. Also, ρs(T ) can be derived for a given superconducting gap symmetry

with the use of the formalism of Chandresekhar and Einzel [Chandrasekhar and Einzel (1993)].

It is very important to emphasize here that in order to properly normalize the superfluid

density, one must have the zero temperature value of the London penetration depth, λ(0),

which can be difficult to determine experimentally.

By using Eqn. 2.31 and 2.32, the superfluid density can be calculated in terms of the

superconducting gap, ∆, and the single particle excitation energy with respect to the Fermi

level, ε, in a straightforward way for a general Fermi surface geometry. Let us consider two

examples to illustrate this. First, consider the case of a two-dimensional cylindrical Fermi
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surface, which would be an approximation to the one of the high-Tc cuprates. For this geometry

the components of the superfluid density are given by

ρaa = 1 − 1

2πT

∫ 2π

0
sin2 φ

∫ ∞

0
cosh−2

(

√

ε2 + ∆2(T, φ

2T

)

dεdφ (2.33)

and

ρbb = 1 − 1

2πT

∫ 2π

0
cos2 φ

∫ ∞

0
cosh−2

(

√

ε2 + ∆2(T, φ

2T

)

dεdφ, (2.34)

As a second example consider the case of a three dimensional spherical Fermi surface. The

superfluid density components are given by

ρaa = 1 − 3

4πT

∫ 1

0
(1 − z2)

∫ 2π

0
cos2(φ)

∫ ∞

0
cosh−2

√

ε2 + ∆2(T, θ, φ)

2T
dεdφdz (2.35)

and

ρbb = 1 − 3

4πT

∫ 1

0
(1 − z2)

∫ 2π

0
cos2(φ)

∫ ∞

0
cosh−2

√

ε2 + ∆2(T, θ, φ)

2T
dεdφdz (2.36)

For a BCS superconductor, where there exists a single, isotropic superconducting gap about

the Fermi surface, the normalized superfluid density in the clean impurity scattering limit can

be found by inserting Eqn. 2.12 into Eqn. 2.30, which gives

ρs =
[

1 +
∆λ(T )

λ(0)

]−2
≈

[

1 − 2∆λ(T )

λ(0)

]

= 1 −
√

2π∆(0)

kBT
exp (−∆(0)

kBT
), (2.37)

which can be derived easily with the use of Eqn. 2.12. This function is plotted in Fig. 2.2 as the

blue solid line. Impurity scattering effects have not been taken into account in this function,

so it represents the normalized superfluid density of a single gap s-wave superconductor in

the clean limit of impurity scattering. Nonmagnetic impurity scattering for an s-wave super-

conductor does not change the low-temperature behavior of the superfluid density, as can be

understood within Anderson’s theorem for impurity scattering in s-wave superdonductors [An-

derson (1959)], but the presence of magnetic impurities does lead to strong deviations from this
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case. Notice that the characteristic exponential saturation at low temperatures for an s-wave

superconductor that is evident in the penetration depth is also present at low temperatures in

the superfluid density by the flat region existing below roughly Tc/3.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 s-wave
 d-wave (clean)
 d-wave (dirty)s(T
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2 (0

)/
2 (T

)

T/T
c

Figure 2.2 Theoretical curves for the normalized superfluid density plotted

as a function of reduced temperature for the clean s-wave, clean

d-wave and dirty d-wave impurity scattering limits.

For a dx2−y2-wave superconductor with vertical line nodes in its gap function, as in the

high-Tc cuprates [Harlingen (1995)], the normalized superfluid density has the form

ρs ≈ 1 − 2ln2

∆(0)
T, (2.38)

which shows the same linear slope with temperature that one finds in the penetration depth

data. This is constructed in the same way as Eqn. 2.37 by using Eqn. 2.13. The orange

solid line in Fig. 2.2 represents a plot of the normalized superfluid density for a dx2−y2-wave

superconductor in the clean impurity scattering limit. For a dx2−y2-wave superconductor, both

nonmagnetic and magnetic impurities act as pair-breaking scatterers, in contrast to the case

of an s-wave superconductor [Anderson (1959)]. The black solid line in Fig. 2.2 represents
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the normalized superfluid density for a d-wave superconductor in the dirty impurity scattering

limit, where the penetration depth exhibits a characteristic quadratic temperature dependence

in the low-temperature region [Hirschfeld and Goldenfeld (1993)].

Together, the penetration depth and the normalized superfluid density offer valuable in-

formation about the structure of the gap in a superconductor. The low temperature region

of λ(T ) can show whether or not there are normal state quasiparticles activated by nodes or

pair-breaking scattering, while ρs(T ) can show effects associated with multigap superconduc-

tivity or anisotropy of the superconducting gap over the whole temperature range up to Tc.

However, it is crucial to know λ(0) to properly normalize ρs(T ) and there are times when

it is unavailable experimentally. The uncertainty in knowing λ(0) for a superconductor has

provided motivation for a technique through which it can be measured by using tunnel diode

resonator frequency shifts along with an aluminum coating procedure that is discussed at great

length in a different section of this thesis [Gordon et al. (2010a)].

2.5 Multigap superconductivity and the superfluid density

Many superconductors discovered in recent years are multiband materials with complex

Fermi surfaces and unconventional order parameters, for example MgB2 and V3Si. Not long

after the idea that these materials may be well described by a model that takes into account

multiple gaps and the associated scattering processes, the αmodel was introduced and has been

widely used to fit specific heat [Bouquet et al. (2001a)] and penetration depth [Bouquet et al.

(2001b)] data for alleged multigap superconductors. However, it is now known that this model

is not the best one for the job because it takes a shortcut by assigning the BCS temperature

dependence to both gaps ∆1,2 in order to fit the total superfluid density ρ = xρ1 + (1 − x)ρ2.

Here, ρ1,2 are evaluated by using ∆1,2 = (α1,2/1.76)∆BCS(T ) with x being the contribution

from one of the bands. Although the α model has played an important role for providing

convincing evidence for two-gap superconductivity in MgB2, it is intrinsically inconsistent for

describing the actual temperature dependences of the specific heat and superfluid density.

The major problem is that one cannot a priori assume temperature dependences for the gaps
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in the presence of arbitrarily weak interband coupling, which imposes the same Tc for both

bands. In the unlikely situation that the interband coupling is zero, both gaps would have BCS

temperature dependences, but generally would not have the same Tc, illustrated in Fig. 2.3.

Figure 2.3 Calculated superfluid density and both gaps (inset) vs. reduced

temperature for zero interband coupling λ12 = 0. In this cal-

culation, λ11 = 0.5, λ22=0.45, n1 = n2=0.5 and γ=0.5, where

each is defined in the text.

The full blown microscopic approach based on the Eliashberg theory [Golubov and Mazin

(1997)] is too cumbersome for analyzing actual experimental data and hence the need for a

relatively simple, self-consistent theory accessible to experimentalists is obvious. The weak

coupling model provides the framework for such a starting point, which over the years has

proven to be very successful for describing superconductivity related phenomena. What follows

is based on the “renormalized BCS” model [Nicol and Carbotte (2005)], which incorporates the

Eliashberg corrections into the effective coupling constants of the weak-coupling theory. The

following approach has been referred to as the “weak-coupling two-band scheme” [Kogan et al.

(2009)] and the applicability of the model of the superfluid density and specific heat data is

broader than the traditional weak coupling theory. A self-consistent procedure is developed also
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by following the procedures outlined in the seminal publications of Ref. [Moskalenko (1959);

Suhl et al. (1959)], where the s-wave weak coupling multigap model was originally proposed.

Perhaps the simplest formal weak coupling approach is based on the Eilenberger quasiclas-

sical formulation of superconductivity, which is valid for general Fermi surface geometries and

applies when the order parameter is anisotropic [Eilenberger (1968)]. Eilenberger functions

f, g for clean materials obey the system

0 = 2∆g/~ − 2ωf (2.39)

g2 = 1 − f2 (2.40)

∆((k) = 2πTN(0)

ωD
∑

ω>0

〈

V (k,k’)f(k’, ω)
〉

k’

. (2.41)

Here, k is the Fermi momentum, ∆ is the gap function, N(0) is the total density of states at

the Fermi level per one spin, ωD is the Debye frequency and the Matsubara frequencies are

defined by ~ω = πT (2n + 1). The quantity in the brackets
〈

...
〉

represents an average taken

over the Fermi surface.

Now consider a model material with the gap given by

∆(k) = ∆1,2, k ∈ F1,2, (2.42)

where F1,2 are two separate sheets of the Fermi surface. Assume that the gaps are constant on

each band. With the density of states on the two sheets given by N1,2, the average over the

Fermi surface for the quantity X is given by

〈

X
〉

=
(X1N1 +X2N2)

N(0)
= n1X1 + n2X2, (2.43)

where n1,2 = N1,2/N(0) = n1X1 + n2X2, and hence n1 + n2 = 1.

Equations 2.39 and 2.40 are easily solved, which within the two-band model results in
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fν =
∆ν

βν
, gν =

~ω

βν
, β2

ν = ∆2
ν + ~

2ω2, (2.44)

where ν = 1, 2 is the band index.

The self-consistency equation 2.41 takes the form

∆ν =
∑

µ=1,2

nµλνµ∆µ

ωD
∑

ω

2πT

βν
(2.45)

where λνµ = N(0)V (ν, µ) are the dimensionless effective interaction constants. It is worth

noting here that for a given coupling matrix λµν , relative density of states nν , and known ωD,

equation 2.66 determines Tc and ∆1,2.

As T → Tc, ∆1,2 → 0 and β → ~ω. The sum over ω in equation 2.66 is readily evaluated:

S =

ωD
∑

ω

2πT

~ω
= ln

2~ωD

Tcπe−γ
= ln

2~ωD

1.76Tc
(2.46)

with γ being the Euler constant. this relation can also be written as

1.76Tc = 2~ωDe
−S (2.47)

The system given by the self-consistency relation from equation 2.66 is linear:

∆1 = S(n1λ11∆1 + n2λ12∆2) (2.48)

∆2 = S(n1λ12∆1 + n2λ22∆2). (2.49)

It has nontrivial solutions ∆1,2 if its determinant is zero:

S2n1n2η − S(n1λ11 + n2λ22) + 1 = 0, (2.50)

where η = λ11λ22 − λ2
12. The roots of this equation are

S =
n1λ11 + n2λ22 ±

√

(n1λ11 + n2λ22)2 − 4n1n2η

2n1n2η
(2.51)
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which can be written as

S =
n1λ11 + n2λ22 ±

√

(n1λ11 − n2λ22)2 + 4n1n2λ2
12

2n1n2η
. (2.52)

Denoting the properly chosen root as S = 1/λ′ we have:

1.76Tc = 2~ωD exp−1/λ′ (2.53)

One can easily check that for all λs equal, this yields the standard BCS result. Among various

possibilities, let us mention here the case η = λ11λ+ 22 − λ2
12 = 0, for which

λ′ = n1λ11 + n2λ22 =
〈

λ
〉

. (2.54)

This case corresponds to a popular model with factorizable coupling potential V (k,k’) =

V0Ω(k)Ω(k’).

Since the determinant of the system is zero, the two gap equations are equivalent and give

near Tc:

∆2

∆1
=
λ′ − n1λ11

n2λ12
. (2.55)

When the right-hand side is negative, the ∆s are of opposite signs. Within the single band

BCS theory, the sign of ∆ is a matter of convenience; in fact for one band the self-consistency

equation determines only |∆|. For two bands, ∆1 and ∆2 may have opposite signs.

Turning to evaluate ∆ν(T ), note that the sum in Eqn. 2.66 is logarithmically divergent. To

deal with this, it is useful to employ Eilenberger’s idea of replacing ~ωD with the measurable

Tc. These are related by Eqn. 2.53, which can be written as

1

λ′
= ln

T

Tc
+

ωD
∑

ω

2πT

~ω
(2.56)

Now add and subtract the last sum from one in Eqn. 2.66:

∆ν =
∑

µ

nµλνµ∆ν

[

ωD
∑

ω

(2πT

βµ
− 2πT

~ω

)

+

ωD
∑

ω

2πT

~ω

]

(2.57)
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which can be expressed as

∆ν =
∑

µ

nµλνµ∆µ

[

∞
∑

ω

(2πT

βmu
− 2πT

~ω

)

+
1

λ′
− ln

T

Tc

]

. (2.58)

The last sum over ω is fast-converging and one can repace ωD with ∞. Numerically, the upper

limit of the summation over n can be set to include a few hundred terms and suffices even for

low temperature.

Now, introducing the dimensionless quantity

δν =
∆ν

2πT
=

∆ν

Tc

1

2πt
, (2.59)

with t = T/Tc, so now we can write Eqn, 2.58 as:

δν =
∑

µ=1,2

nµλνµδµ

( 1

λ′
+ ln

Tc

T
−Aµ

)

(2.60)

with

Aµ =
∞
∑

n=0

( 1

n+ 1/2
− 1

√

δ2µ + (n + 1/2)2

)

. (2.61)

For given coupling constant λνµ and densities of states nν and therefore obtain the gaps

∆ν = 2πTδν(t). Two simple examples of these solutions are given in insets to Figs. 2.3 and 2.4

Having formulated the way to evaluate ∆(T ), we turn to the London penetration depth

given for a general Fermi surface:

(λ2
L)−1

ik =
16π2e2N(0)T

c2

∑

ω

〈∆2
0

v i
vkβ

3
〉

. (2.62)

where vi is the Fermi velocity. We consider here only the case of currents in the ab-plane of a

uniaxial or cubic material having two deparate Fermi surface sheets, for which a simple algebra

gives for the superfluid density:

ρ =
(

δ21

∞
∑

n=0

[

δ21 + (n+ 1/2)2
]−3/2

+ aδ22
∑

[

δ22 + (n + 1/2)2
]−3/2)/

(1 + a), (2.63)
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Figure 2.4 Calculated superfluid density and the gaps (inset) vs. reduced

temperature. Inset: Calculated with λ12 = 0.1, λ11 = 0.5,

λ22 = 0.45, n1 = n2 = 0.5 and γ=0.5.

with a = n2v
2
a2/n1v

2
a1

This equation can be rewritten to mimic the α model as

ρ = γρ1 + (1 − γ)ρ2, (2.64)

ρν = δ2ν

∞
∑

n=0

[δ2ν + (n+ 1/2)2]−3/2 (2.65)

and

γ =
n1v

2
F1

n1v2
F1 + n2v2

F2

. (2.66)

The formal similarity of the first line here to the α model prompts the name γ model for

these results. Note, however, that γ determines the partial contributions from each band and

is not just a partial densities of states like n1 from the α model, which instead involves the

band’s Fermi velocities.
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Figure 2.5 The data and fits of the superfluid density for a MgB2 sin-

gle crystal and the corresponding temperature-dependent gaps

(inset). The fitting parameters were λ11 = 0.23, λ22=0.08,

λ12 = 0.06, n1=0.44 and

γ = 0.56
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Now these results are used to fit the data for the superfluid density obtained in MgB2

crystals from penetration depth measurements. Fig. 2.6 shows the result of the fitting with

three free parameters: λ11, λ22 and λ12.

Figure 2.6 The data and fits of the superfluid density for V3Si single crystal

and corresponding temperature dependent gaps (inset). The

fitting parameters were: λ11 = 0.1, λ22=0.1, λ12 = 1 × 10−5,

n1=0.47 and γ = 0.4.

For V3Si, we do not have detailed information regarding the band structure, partial densities

of states and Fermi velocities on separate sheets of the Fermi surface of this material. Hence,

all of these were taken as free parameters in the fitting procedure. The conclusions thus are

less reliable for this material than for MgB2. By mapping onto a two band model, V3Si results

in having two nearly decoupled bands with an extremely weak interband coupling, but still

sufficient to give a single Tc. The results and the best fittng parameters are shown in Fig...

Note that the long linear tail in ρ(t) as T → Tc is a direct manifestation of a very small gap,

which in this case is ∆1, in this temperature range.
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CHAPTER 3. Principles of a tunnel diode resonator circuit

3.1 Introduction

Due to the great precision with which the frequency of an oscillator can be measured,

they have proven to be very useful for making extremely sensitive measurements of material

properties. Compared to other popular transducers, for example ac bridges, oscillators provide

a sensitivity that is a few orders of magnitude higher, but bridge techniques typically have much

better accuracy. Bridges usually have a better ability to selectively measure particular physical

quantities, while frequency shifts of an oscillating circuit reflect the net effect of all quantities in

the circuit which contribute to the shift in the resonance. The ability for oscillators to operate

in the radio frequency range makes them more attractive for studying physical processes in

solids than ac bridges, which typically operate anywhere from the dc range to a few kilohertz.

One such oscillator, known as a tunnel diode resonator (TDR) [VanDegrift (1975b,a)], has

been carefully optimized for operation at low temperatures, i.e. below about 30 K, by allowing

for the detection of changes in its resonance frequency with 0.001 ppm sensitivity and has

proven to be an excellent tool for determining the temperature dependence of the London

penetration depth in superconductors through its ability to make precision measurements of

the ac magnetic susceptibility of materials. What follows is a detailed description of exactly

how this device has been implemented to make such measurements in our laboratory.

The principle components for understanding the operation of the TDR are an LC tank

circuit that is formed by an inductor coil and a capacitor, which has a natural resonance

frequency near 10 MHz for our setup, and a tunnel diode, which has a very narrow pn junction

that is heavily doped. These special features of the tunnel diode alter its current-voltage (I-

V) dependence away from that of a normal diode, most importantly by introducing a region



36

of negative differential resistance for which an increase in bias voltage leads to a decrease in

output current, which is shown in Fig. 3.1. When the bias voltage across the tunnel diode is

adjusted to be within this region of the I-V curve, it serves as an ac power supply for the LC

tank circuit that effectively locks onto its natural resonance frequency by nearly compensating

for all of its losses. A sample to be studied is placed at the center of the inductor coil of the

tank circuit via a sapphire stage. Any changes in the inductance value of the sense coil brought

about from the sample serve to shift the corresponding natural resonance frequency of the tank

circuit. By measuring the TDR resonance frequency as a function of the sample temperature,

one can in principle extract different material properties, such as thermal expansion, surface

impedance, and electric and magnetic susceptibilities.
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Figure 3.1 I-V curve for an actual tunnel diode measured in the lab. The

region of negative differential resistance, where for increasing

V there is a decrease in I, allows the diode to act as a power

source for the LC tank circuit of the TDR.
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Table 3.1 Values of the circuit components used to achieve a noise level of

0.05 Hz along with a 60 turn primary inductor having a 2 mm

diameter, a 20 turn tap inductor having a 2 mm diameter and a

tunnel diode having a power rating of BD-3.

Component Value

R1 1500 Ω

R2 300 Ω

Cc 22 pF

CB 0.012 µF

Rp 300 Ω

C (tank) 120 pF

3.2 Optimization for precision measurements

A standard circuit diagram is shown in figure Fig. 3.2, containing all of the TDR circuit

components. This design of the TDR circuit has been optimized for use at temperatures below

30 K. This is because the tunnel diode I-V characteristics become nearly temperature inde-

pendent below this temperature as a consequence of its heavy doping level, which is favorable

for stability in the resonance frequency. In general, the TDR resonance is also field dependent,

but since measurements of the London penetration depth require that both the circuit and the

sample are in zero applied magnetic field, this topic will have no further elaboration here.
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Figure 3.2 A standard TDR circuit diagram [Vannette (2008)].

The dc signal that acts to bias the tunnel diode is fed to the circuit through the same coaxial

cable that the ac signal travels back up through to reach the room temperature electronics used
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for analysis. The two resistors R1 and R2 together form a voltage divider so that the proper dc

bias can be achieved across the tunnel diode. Since R1 is large it serves as an additional source

of rf isolation, while still allowing the dc signal to pass through. The bypass capacitor, CB, is

chosen to be very large so as to act as a short for frequencies in the range of the TDR operating

frequency, which is near 10 MHz. The small output coupling capacitor, Cc, allows only a small

portion of the ac signal to pass back up the coax to the room temperature electronics. A tap

coil, which is chosen to have roughly 1/3 of the inductance of the primary or top portion of

the inductor, is used in order to damp away higher harmonics of the resonance frequency. The

value of the tapping fraction depends on the impedance of the LC tank circuit at resonance

and is generally chosen such that the tap inductance is just beyond the critical value that will

allow the tank circuit to resonate. The parasite resistor, Rp, located between the tunnel diode

and the LC tank circuit, serves to kill stray oscillations that can be set up between the small

capacitance of the diode itself and the tap coil. All of the grounding connections for the circuit

were done so by attachment to the circuit chassis, which in turn was routed to a secure Earth

ground through the coaxial cable from the top of the cryostat.

The coils used for both the primary and tap inductors were comprised of 40 gauge copper

wire that was held together by stycast 1266 epoxy. A small coil winding machine was used to

facilitate their construction. The winding process began by inserting a 2 mm diameter drill

bit into the winding apparatus to serve as a surface onto which the turns are wound. Next,

a thin layer of grease was applied to the outside of the bit so that removing the finished coil

could be done more easily. After that, a single turn of very thin mylar was wound around the

greased bit that would later be removed from the inside of the finished coil. After the mylar

was in place, the winding process was ready to commence. In order to reduce the intrinsic

capacitance of the inductors themselves, the copper wire was doubly wound onto the drill bit

so each turn in the finished coil was separated from the next by a distance equal to the wire

diameter itself. After the winding process was completed, which involved making 60 full turns

for the primary coil and 20 full turns for the tap coil, a thin layer of GE varnish was used to

coat all of the turns and allowed to dry for 15 minutes. Once dry, one of the doubly wound
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turns was removed and the remaining turns on the bit were coated with a very thin layer of

stycast 1266 epoxy. After the epoxy cured, the mylar was removed from the inside by pulling

on it gently with tweezers.

All circuit components were mounted inside of compartments that were drilled out of the

inside of a large piece of gold plated copper known as the circuit block that was mounted

to the end of a 3He cryostat. In order to minimize drifts in the resonance frequency that

could arise from variations in the temperature of its components, utmost care was taken to

ensure that all components were thermally anchored to the circuit block as best as possible.

In turn, the temperature of the circuit block itself was controlled by using the proportional-

integral-derivative (PID) function of a Lakeshore temperature controller. The voltage divider,

consisting of R1 and R2, as well as Cc and CB were all surface mount circuit components that

were soldered to a mounting board with an electrically insulating back and the proper electrical

pathways were carved into it by using a handheld grinding wheel. This small sheet was firmly

mounted to the wall of one of the circuit block compartments so as to achieve the best possible

thermalization of the mounted components. A separate compartment leading off of this one

housed the tunnel diode and the parasite resistor. This compartment lead to another which

housed the capacitor of the tank circuit and the tap coil. The primary coil was located inside of

a thin copper tube protruding out of the circuit block to allow for the insertion of the sample,

which was mounted to the thin sapphire rod of the sample holder. All components and leads

were thermally anchored to the circuit block as best as possible using either direct contact or

Apiezon N grease, while avoiding electrical shorts to ground through to the circuit block itself.

The ac signal from the LC tank circuit passed up to the room temperature electronics for

analysis through the same coaxial cable that delivered the dc bias voltage. Once the signal

had passed up to the room temperature eletronics it was amplified, mixed to be in the 1-3

kHz region, filtered, amplified again and then counted. Under the best operating conditions,

the drift in the measured TDR frequency was roughly ∆f ≈0.05 Hz over the course of several

hours, which was achieved for a circuit built using the components specified in Table I. When

considering that the resonance frequency of the TDR is f0 ≈ 14 MHz, this translates into
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a sensitivity of ∆f/f0 ≈ 0.003 ppm, which implies that the TDR measurement technique is

capable of measuring changes in the London penetration depth on the order of 1 Å by applying

the standard calibration used to change frequency shifts into length.

3.3 Calibration of the penetration depth from measured TDR frequency

shifts

The penetration depth of a superconductor is measured using the TDR by placing a sample,

typically being plate-like with a rectangular cross section, onto the end of a sapphire rod and

inserting it into the inductor coil of the LC tank circuit. The temperature of the circuit was

held as constant as possible, typically to (5 ± 0.001) K, by using the proportional-integral-

derivative (PID) control function of a Lakeshore model 340 temperature controller to supply

heat to the copper block onto which the circuit components were mounted. The sapphire

sample stage was mounted inside of a small copper piece, known as a heater block, with a

heater and a thermometer attached to its sides. This allows for the monitoring and controlling

of the sample temperature without providing a direct thermal contact between the sample

and the TDR circuit. Once inside the coil, a superconducting sample acts to change the

resonance frequency of the TDR by directly changing the inductance of the sense coil through

its diamagnetic screening of the ac magnetic field of the coil, which has a magnitude near 10

mOe.

To see how exactly this shift in inductance caused by the superconductor propagates

through to the resonance frequency, let us consider the situation where a sample is placed

inside of the coil of a TDR that has an empty coil resonance frequency given by

f0 =
1

2π
√
LC

, (3.1)

where L is the inductance of the empty primary coil and C is the tank capacitance. The

diamagnetic response of the superconductor to the applied magnetic field of the primary coil

will shift the inductance by some amount, ∆L, which in turn will shift the TDR resonance

frequency by some amount, ∆f , so then one can write
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f0 + ∆f =
1

2π
√

(L+ ∆L)C
. (3.2)

By using a binomial expansion of the square root and factoring, the result is

∆f

f0
≈ −1

2

∆L

L
. (3.3)

Consider now the case where the primary coil is empty. The value of the applied field from the

TDR, H, in this case will be the same throughout the primary coil and the integrated magnetic

flux, Φ, can be expressed as

Φ = HVc, (3.4)

where Vc is the volume of the coil. The flux is related to the inductance through the relation

L =
dΦ

dI
. (3.5)

The integrated magnetic flux when the sample is inserted, Φ′, has the form

Φ′ = H(Vc − Vs) +BVs, (3.6)

where Vs is the volume of the sample and B is the magnetic field inside of the sample. By

using B = H + 4πM , with M being the magnetization of the sample, Eqn. 3.6 takes the form

Φ′ = HVc + 4πVsM. (3.7)

The inductance for the case when the sample is inside of the coil, L′, now takes the form

L′ =
dΦ′

dI
=
dΦ′

dH

dH

dI
=
d(HVc)

dI
+ 4πVs

dM

dH

dH

dI
= L+ ∆L, (3.8)

and so now it can be understood that

∆L

L
=

4πVs

Vc
χ, (3.9)
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with χ being the ac magnetic susceptibility of the sample. Finally, an expression relating the

susceptibility and the resonance frequency can be written:

∆f

f
≈ − Vs

2Vc
4πχ. (3.10)

It is now our goal to understand how the susceptibility can be related to the penetration

depth. Generally speaking, the penetration depth is defined as

λ =
1

H0

∫ ∞

0
B(x)dx, (3.11)

which is only applicable to semi-infinite systems, with H0 being the field at the interface and

B(x) being the field inside of the superconducting half-space. In actual samples, finite size

effects and demagnetization, which can really only be defined for a sphere, complicate this

problem and we are forced to rely on models relating the susceptibility and the penetration

depth that are only applicable to certain geometries. One such model has been developed to

relate λab, the in-plane penetration depth, to χ, the dynamic magnetic susceptibility, for thin

slabs of rectangular cross section with the magnetic field oriented perpendicular to the plane

of the slab [Prozorov et al. (2000a)]. The relation

−4πχ =
1

1 −N

[

1 − λab

R
tanh

( R

λab

)]

(3.12)

is valid only for the case of a slab with thickness 2d in the x-direction, 2w in the y-direction and

infinite in the z-direction with the field applied along the y-direction, with N being the effective

demagnetization factor. An effective dimension R is used to map finite sample dimensions onto

this geometry. The most successful solution for rectangular slabs having dimensions 2a x 2b

with b > a and thickness 2d has been found by mapping these dimensions onto a disc of radius

w and thickness 2d. This is done by using

R ≈ w

2[1 + [1 + (2d
w )2] arctan ( w

2d ) − 2d
w ]

(3.13)

with
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w =
ab

a+ b
(3.14)

For actual samples, R >> λab and so tanh (R/λab) → 1 and by using Eqns. 3.10 and 3.12 it

can be shown straightforwardly that

λab(T ) − λab(Tmin) =
2VcR(1 −N)

f0Vs
[∆f(Tmin) − ∆f(T )] ≡ G[∆f(Tmin) − ∆f(T )] (3.15)

where Tmin is the base temperature for the experiment. The constant of proportionality G can

be measured directly by removing the sample from the coil at Tmin with the use of an extraction

mechanism and thus allowing one to exactly measure the empty coil resonance frequency, f0.

Alternatively, G can be determined by using the normal state electromagnetic skin depth

δ =

√

2ρ

µω
. (3.16)

The general expressions relating the frequency shifts of the resonator to the skin depth in

the normal state and the penetration depth in the superconducting state for an applied ac

magnetic field perpendicular to the c-axis are given by

∆f

f0
=

Vs

2Vc

[

1 −Re
[tanhαc

αc

]]

(3.17)

and

∆(1/Q) =
Vs

Vc
Im

[tanhαc

αc

]

, (3.18)

where c is the sample thickness. For a normal metal

α =
(1 − i)

δ
(3.19)

and for a superconductor we have

α =
1

λ
. (3.20)
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If we define δf/f0 and δ(1/Q) to be values relative to the values for zero penetration into the

sample we have δ(1/Q) = ∆(1/Q) and δf/f0 = ∆f/f0 − Vs/2Vc. In the limit where the skin

depth is much less than the sample thickness we have for the normal metal case

δf

f
= − Vsδ

4Vcc
(3.21)

and for the superconducting case

δf

f0
= − Vsλ

2Vcc
. (3.22)

Hence it is enough to know the value of the resistivity at Tc to calibrate the penetration depth

by using these relations.

3.4 Measuring the absolute value of λab(T )

The TDR technique described up to this point is able to precisely measure the variation

of the London penetration depth with temperature, ∆λ(T ) = λ(T ) − λ(Tmin), but not its

absolute value, λ(T ) [Prozorov and Giannetta (2006)]. This can be understood by considering

the effect of introducing a superconducting sample into the primary TDR inductor coil. We can

imagine that before the sample is introduced, the TDR has some natural resonance frequency

f0, and after the sample is inside f0 shifts to some value that depends on the properties of

the superconductor. The magnitude of this frequency shift is ultimately affected by how the

sample perturbs the field of the inductor coil, which is dependent on the ability of the sample

to screen the field from the inductor. Since this is a function of the detailed characteristics

of the superconductor, e.g. the pairing symmetry, which are usually unknown, calculating the

value to which the resonance will shift due to the samples presence is practically impossible.

On the other hand, one might think that it is not necessary to know the absolute value of

λ(T ) because the exact functional form of ∆λ(T ) can be calculated for a given order parameter

symmetry and this is all that is really needed to analyze the data. This is partly true, but

the absolute value of λ(0) is required for the proper normalization of the superfluid density,

ρs = [λ(0)/λ(T )]2. This quantity is important for studying effects associated with multigap
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and/or anisotropic superconductivity and is also related to the phase stiffness of the wave

function of the superconducting condensate [Kogan et al. (2009)].

A method for obtaining the absolute value of λ(T ) must provide an accurate and reliable

way to extract a calibration point. Once a calibration point has been established, all other

values of λ are automatically known. The procedure for the method used in this work to

calibrate λ was initially proposed in Ref. [Prozorov et al. (2000b)]. It is based on the basic

idea that if λ is unknown for a given sample, then it can be determined at a single temperature

by coating its entire surface with a thin film of a different, conventional superconductor having

a much lower Tc and a known value of λ(0). The film thickness must be less than the rf skin

depth at the TDR operating frequency of ≈10 MHz so that once it reaches the normal state,

it will be virtually transparent to the ac magnetic field of the coil because it will contribute

negligibly to the screening of the ac electromagnetic field, which a normal metal usually would

do in its bulk state.

To understand exactly how this method allows for the determination of the absolute value of

the penetration depth of a superconductor, let us consider the case where a bulk superconductor

with a given Tc is coated with a thin film of a conventional superconductor having a much

lower transition temperature, which we will assume is aluminum. Region 1 corresponds to

the film and region 2 is the bulk superconductor. The film thickness will be taken as dAl

and the external magnetic field is taken to be in the form of ~H(r, t) = H0(r)e
iωtŷ, which is

parallel to the interface plane between the film and bulk superconductor. The x̂-direction is

perpendicular to the interface between the film and the bulk superconductor and points toward

the interior of the bulk material, which can be seen in Fig. 3.3. Our goal is to evaluate the

effective penetration depth into the system consisting of the film and the bulk superconductor

in terms of known parameters that will allow us to solve for the unknown penetration depth

of the bulk superconductor. The well known London equation

~∇2 ~H =
1

λ2
~H (3.23)

will be taken as being valid inside of both the superconducting film and the bulk superconduc-
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Figure 3.3 Schematic diagram of the sample before and after the aluminum

coating procedure.

tor. Therefore, we have the following solutions for the magnetic field inside of regions 1 and

2:

~H1(x) = [Ae
x

λ1 +Be
− x

λ1 ]eiωtŷ (3.24)

~H2(x) = Ce
− x

λ2 eiωtŷ. (3.25)

In addition, the following boundary conditions apply for this setup:

~H1(x = 0) = H0ŷ, (3.26)

~H1(x = dAl) = ~H2(x = dAl) (3.27)

and

~E1(x = dAl) = ~E2(x = dAl). (3.28)
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To utilize the boundary condition in Eqn. 3.28 we must make use of the relation

~∇× ~H = ~J = σ ~E, (3.29)

and for superconductors with T ≪ Tc we have

~J(ω) =
~E(ω)

iωµ0λ2
. (3.30)

So the boundary condition in Eqn. 3.28 reduces to

λ2
1

∂H1(x = dAl)

∂x
= λ2

2

∂H2(x = dAl)

∂x
. (3.31)

The equations that result from applying the boundary conditions in Eqns. 3.26, 3.27 and 3.31

to the solutions in Eqns. 3.24 and 3.25 are:

A+B = H0, (3.32)

Ae
dAl

λ1 +Be
−

dAl

λ1 = Ce
−

dAl

λ2 (3.33)

and

Be
−

dAl

λ1 −Ae
dAl

λ1 =
(λ2

λ1

)

Ce
−

dAl

λ2 . (3.34)

Solving for A, B and C using Eqns. 3.32, 3.33 and 3.34 results in:

A = H0

[

1 −
e

dAl

λ1 (λ2
λ1

+ 1)

2[cosh dAl

λ1
+ λ2

λ1
sinh dAl

λ1
]

]

(3.35)

B =
H0e

dAl

λ1 (λ2
λ1

+ 1)

2[cosh dAl

λ1
+ (λ2

λ1
) sinh dAl

λ1
]
, (3.36)

and

C = H0e
dAl{

1
λ1

+ 1
λ2

}
( cosh dAl

λ1
− sinh dAl

λ1

cosh dAl

λ1
+ (λ2

λ1
) sinh dAl

λ1

)

. (3.37)
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Having now solved for A, B and C, we have the full solutions of the magnetic fields H1(x)

and H2(x), which can be used to calculate the effective penetration depth inside of the film

and bulk superconductor combination. This is calculated using the definition

λeff ≡ 1

H0

∫ ∞

0
H(x)dx =

1

H0

(

∫ dAl

0
H1(x)dx+

∫ ∞

dAl

H2(x)dx
)

. (3.38)

After some algebra, it can be shown that the resulting value for λeff is

λeff = λ1

(λ2 + λ1 tanh dAl

λ1

λ1 + λ2 tanh dAl

λ1

)

. (3.39)

This result has been used to calibrate experimental penetration depth data on a number

of different compounds [Kim et al. (2010b); Gordon et al. (2010a)]. As an example of how

this is done, the following analysis is used for a member of the Ba(Fe1−xCox)2As2 series with

x=0.074 and Tc ≈ 22.7 K and no value of λab(0) that had been reliably determined before the

measurement. The process began by selecting the best looking single crystal of this material

from a bigger batch that had a plate-like rectangular cross section. A typical basal dimension

for such a sample was 0.5-1 mm. Once chosen, ∆λab(T ) was measured for the sample before

it was coated with any superconducting films. This allowed for the determination of useful

parameters pertaining to the low temperature functional form of the penetration depth that

are unaccessible after the sample has been coated. Once clean data was taken for the uncoated

sample, the next step was to coat its entire surface with a thin film of a superconductor having

a much lower Tc and a known value of λ(0). For this study, aluminum was chosen as the

material for the superconducting film, which has TAl
c ≈ 1.2 K, λ(0) ≈ 500 ± 100 Å and was

deposited with a thickness of dAl = 1000 ± 100 Å. See Fig. 5.1 for an SEM image of the sample

after it was coated and a detailed explanation about the coating procedure explained in the

text. A typical value for the resistivity of an aluminum film just above Tc is ρAl ≃ 10 µΩ-cm.

To determine the skin depth for a metal having this resistivity in the presence of an applied

field having a frequency ω = 2π(14 MHz), corresponding to the TDR frequency, we can use

the formula given by Eqn. 3.16 to calculate the normal state electromagnetic skin depth for
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aluminum at this frequency, which gives a value of δ = 75 µm. Since δ ≫ dAl, the aluminum

film is effectively transparent to the magnetic field of the TDR coil.

Fig. 3.4 shows the temperature dependence of the variation of the London penetration

depth for the Ba(Fe0.926Co0.074)2As2 compound for the magnetic excitation field of the TDR

coil oriented so that it was parallel to the crystallographic c-axis of the sample and super-

currents flowed only in the ab-plane, ∆λab(T ). For the Ba(Fe1−xCox)2As2 series, it has been

well established by several techniques [Gordon et al. (2009b,a, 2010b)] that the low temper-

ature region of the London penetration depth exhibits a power law temperature dependence,

∆λab(T ) = CT n, where n is greater than 2. The inset to Fig. 3.4 shows a zoomed in view of

the low temperature region, i.e. below Tc/3, for ∆λab(T ) along with a power law fit shown by

the solid red line. Taking high quality data in the low temperature region before the aluminum

coating procedure is important because the lowest portion of this region is hidden after the

aluminum is deposited and the functional form of the penetration depth in that portion for

the bulk superconductor is useful for data analysis. The exact form of the fitting function used

was ∆λab(T ) = CT n, where C = 2.936 x 10−4 and n = 2.48.

The main frame in Fig. 3.5 shows the full superconducting transition before the aluminum

coating (black circles) as well as the low temperature data after coating (green triangles).

The inset to Fig. 3.5 shows a zoomed-in view of the full aluminum transition, which occurs

from Tmin ≈ 0.5 K up to TAl
c ≈ 1.2 K. The quantity identified in the inset of Fig. 3.5 as

L= ∆λeff (TAl
c ) − ∆λeff (Tmin) is useful for calibrating the absolute value of the penetration

depth.

Let us now consider the quantity L= ∆λeff (TAl
c )−∆λeff (Tmin), which is identified in the

inset of Fig. 3.5. We have

L = ∆λeff (TAl
c ) − ∆λeff (Tmin) = λeff (TAl

c ) − λeff (Tmin), (3.40)

where λeff is given by Eqn. 3.39, which in terms of the present parameters defined takes the

form of
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λeff (T ) = λAl(T )
(λab(T ) + λAl(T ) tanh dAl

λAl(T )

λAl(T ) + λab(T ) tanh dAl

λAl(T )

)

, (3.41)

with λAl(T ) being the penetration depth of only the aluminum, λab(T ) being the ab-plane

penetration depth of only the bulk superconductor and dAl being the thickness of the aluminum

film. Now let us consider what happens when T = TAl
c . Because the aluminum film has

gone into the normal state and because dAl is much less than the skin depth of aluminum

at 14 MHz, δ, the TDR field penetrates completely through the aluminum film and into the

Ba(Fe0.926Co0.074)2As2 up to a thickness of λab(T ), which gives us

λeff (TAl
c ) = dAl + λab(T

Al
c ). (3.42)

We know from the measurements on the Ba(Fe0.926Co0.074)2As2 compound before it was coated

with aluminum that

∆λab(T ) = λab(T ) − λab(0) = CT n (3.43)

so Eqn. 3.42 becomes

λeff (TAl
c ) = dAl + C(TAl

c )n + λab(0) (3.44)

Consider now what happens when T = Tmin. At this temperature, both the aluminum film

and the Ba(Fe0.926Co0.074)2As2 superconductor participate in the screening of the externally

applied rf magnetic field from the TDR and the resulting penetration depth is given by the

expression in Eqn. 3.41. In order to evaluate λAl, we can use the BCS [Bardeen et al. (1957);

Poole et al. (2007)] estimate for it at T = Tmin, namely

λBCS
Al (Tmin) ≈ λAl(0)

(

1 +

√

π∆Al(0)

2kBTmin
e
−

∆Al(0)

kBTmin

)

= λAl(0)
(

1 +

√

(0.85)πTAl
c

Tmin
e

−(1.7)TAl
c

Tmin

)

,

(3.45)

where the expression for 2∆Al(0)/kBT
Al
c =3.4 Ashcroft and Mermin (1976) was used and

λAl(0) = 500 ± 100 Å . Now, using the expression given in Eqn. 3.40 we obtain



53

L = dAl+C(TAl
c )n+λab(0)−λBCS

Al (Tmin)
( C(Tmin)n + λab(0) + λBCS

Al (Tmin) tanh dAl

λBCS

Al
(Tmin)

λBCS
Al (Tmin) + (C(Tmin)n + λab(0)) tanh dAl

λBCS

Al
(Tmin)

)

(3.46)

with the only unknown being λab(0) since the quantity L itself can be measured directly from

Fig. 3.5. To solve for λab(0), we can use the quadratic equation in the form

λab(0) =
−b−

√
b2 − 4ac

2a
(3.47)

where the coefficients are given by

a = − tanh
dAl

λAl(Tmin)
(3.48)

b = [L− dAl − C(TAl
c )n − C(Tmin)n] tanh

dAl

λAl(Tmin)
(3.49)

and

c = −a[(L−dAl)C(Tmin)n−C2(TAl
c Tmin)n+λ2

Al(Tmin)]+λAl(Tmin)[L−dAl−C(TAl
c )n+C(Tmin)n].

(3.50)

For L ≈ 0.333µm, this procedure produces a value of λab(0) ≈ 270 nm, which is in quite

reasonable agreement with values of λab(0) that were obtained later using other techniques

[Williams et al. (2010); Luan et al. (2010); Nakajima et al. (2010)].

In summary, a new procedure has been developed to measure the zero temperature value

of the penetration depth by using the TDR technique, which is useful for the proper normal-

ization of the superfluid density, ρs(T ). This procedure takes advantage of the calibration

point provided by coating the entire surface of the sample under study with a thin film of a

conventional superconductor with a lower Tc and a known value of λ(0). By using the analysis

provided in this section along with the TDR frequency shift data, λ(0) can be determined for

a superconductor.
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CHAPTER 4. Penetration depth measurements in Ba(Fe1−xTx)2As2

(T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu)

4.1 Introduction

After the initial discoveries of superconductivity with Tc ≈ 26 K in LaFeAs(O1−xFx) [Kami-

hara et al. (2008)], which was soon after shown to be as high as 55 K in SmFeAs(O1−xFx) [Ren

et al. (2008)], an intense flurry of activity aimed at understanding the fundamental physics

governing this new family of superconductors has been put forth. Up to this date there have

been at least five new classes of iron-based superconductors discovered. Due to the availability

of mainly the 1111 and 122 classes of these materials at the time of this work, these will be

focused on in the following report of experimental results in this section.

The symmetry of the superconducting order parameter (OP) is of crucial importance for

determining the pairing mechanism in any superconductor. This was demonstrated by the

experimental uncovering of the dx2−y2-wave symmetry of the OP [Harlingen (1995)] in the

high-Tc cuprates, and many comparisons have been made between them and the iron-based

superconductors. However, there are several differences between these two families of materi-

als, such as a single band crossing the Fermi level in the cuprates versus multiple bands crossing

in the iron-based superconductors, the cuprates are very two-dimensional materials whereas

the iron-based superconductors are likely three-dimensional, the cuprates have a single super-

conducting gap while the iron-based superconductors likely have multiple ones and the parent

compounds of the cuprates are anitferromagnetic insulators compared to the poor metallic

parent state of the iron-based superconductors. Perhaps the main reason for this juxtaposition

is that the parent state of both exhibit some type of antiferromagnetic ordering at finite tem-

perature that is suppressed as the system is doped away and superconductivity emerges out of
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this instability of the magnetic phase for some critical doping concentration [Taillefer (2010)].

It is only natural to suggest that there may be an underlying physical principle which is com-

mon to both families, namely that the superconducting pairing mechanism is strongly linked

to spin fluctuations, analagous to the role played by phonons in BCS superconductors. Since

their discovery, conflicting experimental reports have lead to confusion about the actual OP

structure in the iron-based superconductors, which may be due to the unconventional nature

of many of their superconducting properties.

As for the 1111 system, point-contact Andreev-reflection (PCAR) spectroscopy experiments

have reported the existence of two distinct superconducting gaps in NdFeAs(O0.9F0.1) [Samuely

et al. (2009)] and SmFeAs(O0.85F0.15) [Wang et al. (2009)], with evidence for a pseudogap

above Tc as well as a zero bias conductance peak, which has been interpreted as evidence for

an OP that changes sign between Fermi surface sheets. However, other PCAR measurements

in the SmFeAs(O0.9F0.1) compound have shown evidence for a single superconducting gap that

exhibits a BCS temperature dependence [Chen et al. (2008)].

Nuclear magnetic resonance (NMR) measurements have indicated the lack of a coherence

peak in the spin lattice relaxation rate of the 1111 system and a T 3 power law behavior

at low temperatures, interpreted as either a nodal superconducting gap or the presence of

strong impurity scattering [Grafe et al. (2008); Nakai et al. (2008)]. On the other hand optical

spectroscopy measurements have reported the observation of a coherence peak just below Tc

in the 122 system and it has been proposed that these two different techniques see different

results because they may be coupling over different length scales of the Fermi surface [Aguilar

et al. (2010)].

Angle-resolved photoemission spectroscopy (ARPES) experiments in the NdFeAs(O0.9F0.1)

[Liu et al. (2008); Kondo et al. (2008)] and NdFeAsO0.85 [Aiura et al. (2008)] compounds have

observed isotropic superconducting gaps in the ab plane for both the inner and outer hole

pockets centered about the Γ point as well as the electron pocket centered about the X point

of the Brillouin zone. Not all ARPES experiments on the Nd-1111 compounds observe all

reported gaps stated previously, but the superconducting gap amplitude observed about the
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inner Γ point has been reported to have values from 12 to 20 meV.

Measurements of the London penetration depth, λ, in the 1111 system originally reported

claims of exponential behavior at low temperatures, indicative of a nodeless OP, but after

many careful measurements have been done since then, the consensus of the community has

changed. Initial measurements of Pr-1111 taken with a microwave cavity technique reported

that the penetration depth was flat at low temperatures, which was interpreted as evidence for

a nodeless OP, but later it was found that this flat dependence is likely from a very low signal

to noise ratio [Hashimoto et al. (2009)]. Transverse field muon spin rotation measurements

(TF-µSR) of λ in La-1111 [Luetkens et al. (2008)] and Sm-1111 [Drew et al. (2008)] initially

reported that λ exhibited exponential behavior at low temperatures, but later after more

careful studies were done it was found that the effects of magnetic order and/or random frozen

disorder of the vortex lattice in iron-based superconductors introduce considerable uncertainty

in their ability to determine λ from TF-µSR data [Sonier et al. (2010)]. Tunnel diode resonator

(TDR) measurements of λ in the Sm-1111 [Malone et al. (2009)] and the Nd-1111 [Prozorov

et al. (2009b)] originally reported exponential behavior at low temperatures, but later it was

shown by comparison to TDR measurements of the non-magnetic La-1111 compound and

also by fitting the Sm-1111 and Nd-1111 data to a function that accounts for the additional

contribution from the local moments that this exponential dependence is most probably an

effect arising from the localized magnetism from the rare earth ions [Martin et al. (2009b)],

which was also found to be the case for the electron-doped cuprate NCCO [Prozorov et al.

(2000c)].

As for the 122 system, the initial claims of the measured gap symmetry from different

experiments seemed just as conflicting as they were in the 1111 system. PCAR measurements

performed on the K-doped Ba-122 compound are consistent with two nodeless superconducting

gaps in the ab plane, while ARPES experiments in the same series have found the existence of

multiple superconducting gaps on various sheets with differing amplitudes [Ding et al. (2008);

Evtushinsky et al. (2009a)]. Before much of the data to be reported here, there was little done

on the 122 system in terms of the magnetic penetration depth, but works that were performed
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later [Bobowski et al. (2010); Luan et al. (2011)] are consistent with the data that are to be

shown later in this chapter. Thermal conductivity and specific heat measurements performed

as a function of the doping level in the Ba(Fe1−xCox)2As2 series have indicated that the

superconductivity at optimal doping in this compound is nodeless [Reid et al. (2010); Gofryk

et al. (2009)], but near the edges of the superconducting dome they suggest the development

of a significant gap anisotropy or the development of nodes in the gap that are not imposed

by symmetry (accidental nodes).

All of the samples measured in this study were large single crystals grown out of Fe-As

flux using standard high temperature solution growth techniques [Ni et al. (2008a,b)]. They

were selected from several different batches that have been characterized by various techniques,

including resistivity, magnetization and heat capacity. The actual doping concentrations were

determined by wavelength dispersive x-ray spectroscopy (WDS) in the electron probe micro-

analyzer of a JEOL JXA-8200 Superprobe. Magneto-optical imaging was also used to insure

that the Meissner screening in the samples was homogeneous down to a length scale of ≈ 1µm,

which can be seen in Fig. 4.1. The temperature-doping phase diagram for several different

transition metal doped 122 compounds is shown in Fig. 1.1.

4.2 ∆λab(T ) at optimal doping in Ba(Fe1−xCox)2As2

The first measurements to be discussed here were performed on three different samples, all

near optimal doping, of the Ba(Fe1−xCox)2As2 series [Gordon et al. (2009b)]. These samples

were all thin slabs having rectangular cross sections and typical dimensions of ≈ 1×1×0.8 mm3.

WDS analysis has shown that the actual cobalt concentration for these samples, averaged over

six measurements, is Co/(Co+Fe)=7.4%± 0.2%. Doping at this level completely suppresses

the antiferromagnetic and structural transitions that exist in the parent compound. Powder

x-ray diffraction on ground crystals has yielded tetragonal lattice constants of a = 3.9609 ±

0.0008 Å and c = 12.9763 ± 0.004 Å. As mentioned previously, single crystal x-ray diffraction

measurements have found no evidence for a tetragonal-to-orthorhombic structural transition,

as can be seen from panels (a) and (b) in Fig. 4.2. In particular, the orthorhombic splitting
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Figure 4.1 A magneto optical image of a Ba(Fe1−xCox)2As2 sample show-

ing that the trapped flux is uniformly distributed indicating

homogeneous superconductivity.



59

observed in the (ν ν 0) scans for the parent compound [Ni et al. (2008a)] with a value of

∆ν ≈ 0.005 at 10 K should be clearly observable as illustrated by the arrows in Fig. 4.2 (b).

Furthermore, the similarity of the diffraction peak widths for the Co-doped and the parent

BaFe2As2 compound indicates that the Co doping is homogeneous. Fig. 4.2 (c) shows the

T-dependent in-plane resistivity, dc magnetization and penetration depth. The Tc, as defined

by zero resistivity, coincides with the onset of diamagnetic magnetization and is close to the

beginning of a sharp decrease in λ(T ).

The low-temperature behavior of the in-plane penetration depth, ∆λab(T ) = λab(T ) −

λab(0) and the superfluid density, ρs(T ) = [λ(0)/λ(T )]2, are commonly used to determine

the symmetry of the superconducting pairing state [Prozorov and Giannetta (2006)]. In the

case of a fully gapped Fermi surface for a clean, homogeneous superconductor that is in the

local limit, ∆λ(T )/λ(0) ≈
√

π∆(0)/2kBT exp (−∆(0)/kBT ), which for the BCS (isotropic)

case is applicable for T 6 Tc/3. This fully gapped form is also valid for the cases of an

anisotropic gap and two-gap superconductivity if one allows ∆(0)/Tc to be a free parameter and

∆(0) = ∆min(0), the magnitude of the smaller gap. This behavior is consistent with our TDR

measurements of the penetration depth in Nb, a well known, conventional BCS superconductor,

as well as the multigap s-wave superconductor MgB2, both shown in Fig. 4.3. For the case

of a superconductor having dx2−y2-wave pairing, as for the high-Tc cuprate superconductors

[Harlingen (1995)], in the clean impurity scattering limit ∆λ(T )/λ(0) ≈ [2ln(2)/α∆(0)]T ,

where α = ∆−1(0)|d∆(φ)/dφ| as φ→ φnode. This linear T-dependence changes to a quadratic

dependence from T = 0 K up to a characteristic temperature T ∗ if impurity scattering effects

are non-negligible, where T ∗ depends on the concentration of impurity scatterers in the system

[Hirschfeld and Goldenfeld (1993)]. The expected linear T-dependence for a clean dx2−y2-wave

superconductor has indeed been observed from TDR penetration depth measurements in the

high-Tc cuprate superconductor Bi-2212 with a Tc of 90 K, also shown in Fig. 4.3. Non-magnetic

impurity scattering does not affect the s-wave gap much, but it does suppress the dx2−y2-wave

gap. However, the superfluid density does change in both cases if non-magnetic impurity

scattering is significant, as shown in Fig. 4.3. The functional form of the superfluid density
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Figure 4.2 Characterization of Ba(Fe0.93Co0.07)2As2 single crystals. (a)

Longitudinal x-ray scans through the position of the (0 0 8) re-

flection for indicated temperatures. (b) Transverse (ξ ξ 0) scans

through the position of the (1 1 8) reflection. Changes in the po-

sition of the peaks in (a) and (b) result from thermal expansion

of the lattice. The asymmetric peak shape in the (ξ ξ 0) scan

originates from a second grain with a slightly different orienta-

tion (sample mosaic) and is present at all temperatures. In (a)

and (b) the horizontal axes depict the reciprocal lattice vectors

relative to the alignment and lattice parameters at 300 K. The

vertical arrows in (b) depict the positions of the split diffrac-

tion peaks at 10 K in the parent BaFe2As2 compound (after

Ref. [Ni et al. (2008a)]). (c) In-plane resistivity (open circles),

dc magnetization (filled circles) and in-plane penetration depth

(squares).
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for an s-wave superconductor in the dirty limit is ρs(T ) = ∆(T )/∆(0) tanh (∆(T )/2kBT )

[Tinkham (1996)].

The observed low-temperature behavior of the in-plane London penetration depth, λab(T ),

in Ba(Fe0.93Co0.07)2As2 is clearly non-exponential, as can be observed in Fig. 4.3. The inset of

Fig. 4.3 shows the data plotted as a function of (T/Tc)
2.4 for three samples at this doping level

from different batches, all having unequal sizes and aspect ratios. The linear dependence shown

in the inset indicates that the power law is close to 2.4 for each sample and the uncertainty

in the penetration depth prefactor is reflected through the differences in the slopes of these

curves. The bottom curve (orange triangles) corresponds to the smallest sample and therefore

the smallest filling factor for the TDR coil, which explains why the data for that curve are

noisier on average than the other two curves in the inset to Fig. 4.3.

The fitting function that was used to analyze the T-dependence of each ∆λab curve had the

general form of ∆λab(T ) = CT n. The low temperature end of the fitting interval was always

fixed at the base temperature of the experiment, which corresponds to Tmin/Tc = 0.02, and

the fitting parameters C and n were determined by varying the high temperature end of the

fitting interval up to as high as Tmax/Tc = 0.4. This analysis has given values for the exponent

n in the range of 2.15 to 2.42. To compare different curves, the maximum temperature of the

fitting interval is always fixed at Tc/3. For these samples, this procedure yields n = 2.4 ± 0.1,

where the error reflects the scatter of the values of the exponents between different samples.

Fig. 4.4 shows ρs(T ) for one of the optimally doped Ba(Fe0.93Co0.07)2As2 samples along with

the known s-wave (clean case) and dx2−y2-wave (both clean and dirty cases) calculated curves.

The values of λ(0) that were used to construct the Ba(Fe0.93Co0.07)2As2 ρs(T ) curves shown

in Fig. 4.4 are 200 nm and 300 nm. A value of λ(0)=208 nm was inferred from measurements

of Hc1, obtained from M(H) loops taken using a Quantum Design (QD) magnetic property

measurement system (MPMS). This was done by increasing the maximum field of the M(H)

measurements until a non-linear region due to the penetration of vortices into the sample

appeared to determine Hc1 and by utilizing Hc1 = Φ0/[(4πλ
2)(ln(λ)/ξ + 0.05)] [Tinkham

(1996)], with a value for the coherence length of ξ=2.76 nm at 6 K as measured by scanning
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tunneling microscopy experiments [Yin et al. (2009)]. This value of λ(0)=208 nm is quite

close to other reported measurements at the time [Luetkens et al. (2008); Drew et al. (2008)]

and was before the λ(0) values were measured in the Ba(Fe1−xCox)2As2 series by using an

aluminum coating procedure along with TDR frequency measurements [Gordon et al. (2010a)]

that will be discussed later in this thesis, which also gave roughly 200±75 nm. The curve for

λ(0)=300 nm produces ρs(T ) closer to the standard curves shown, but no value of λ(0) can

change the low-T dependence to an exponential one. The inset to Fig. 4.4 shows a zoomed-in

view of the low-T region and clearly shows that the non-exponential behavior persists down to

≈0.02Tc. At intermediate temperatures, the experimental ρs(T ) shows a significant departure

from the dx2−y2-wave and s-wave curves shown in the main panel of Fig. 4.4. Such behavior

in ρs(T ) could be due to a significant anisotropy of the superconducting gap or multigap

superconductivity.

Now let us turn to a discussion of the possible implications of the observed λ ∝ T n depen-

dence with 2.15 ≤ n ≤ 2.42. If the upper temperature of the fitting interval is fixed at exactly

Tc/3, then for these three samples it has been found that n = 2.3. For a BCS superconductor

(single gap s-wave) in the clean limit and in the case where there are non-magnetic impurities,

a power law fit to λ(T ) up to a maximum temperature of Tc/3 yields a value for the power

of n > 3, which would correspond to the Nb data shown in Fig. 4.3. For a dx2−y2-wave state,

n = 1 in the clean case but for the dirty case the highest that can be found is n = 2. Point

nodes can give n = 2, but probably the best explanation for the observed power law is a

pair-breaking mechanism. For the clean case of the proposed s±-wave state, an exponential

T-dependence in the penetration depth is expected [Chubukov et al. (2008); Vorontsov et al.

(2009); Mazin et al. (2008)], but non-magnetic impurity scattering for an s±-wave OP acts

as a pair-breaking mechanism, which we believe at this point is the best explanation for the

observed power law behavior in the penetration depth.

Initially it was thought that the 1111 and 122 classes of the iron-based superconductors

showed different temperature dependencies of the penetration depth, but later after a more

careful analysis it was discovered that λ(T ) is likely to be qualitatively the same [Martin et al.
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(2009b)]. The source of this initial confusion was a paramagnetic contribution to the measured

penetration depth arising from the localized Nd ions in the lattice, which make a Curie-Weiss

type of addition to the penetration depth. Both by accounting for this paramagnetism and

by comparison to λ(T ) measurements of the non-magnetic La-1111 system, these suspicions

were verified. After all, both classes share the Fe-As planes as key structural building blocks,

electronic structure calculations have demonstrated that the states at the Fermi energy for

both classes of compounds are dominated by the Fe-3d states and the resistivity values are

similar for both classes. Therefore, the results discussed here will be examined with the premise

that there is a common pairing mechanism and the same fundamental pairing symmetry in

both classes of materials.

Previously, it has been argued that the inferred moderate anisotropy of the superconducting

gap ∆(φ) [Kondo et al. (2008); Prozorov et al. (2009b)] can be understood in terms of an OP

that changes sign between Fermi surface sheets, which would be in line with the proposed s±-

wave superconducting gap Mazin et al. (2008) in which the OP passes through zero somewhere

between the Γ and X points of the Brillouin zone [Chubukov et al. (2008)]. If the actual shape

of the Fermi surface deviates much from being perfectly cylindrical, its equator may possibly

reach the points where the OP changes sign and an accidental node is formed. This type of a

node is not enforced by symmetry like in the cases of dx2−y2-wave or p-wave superconductivity.

Evidence for such accidental nodes has been found in recent measurements of the thermal

conductivity [Reid et al. (2010)] in the Ba(Fe1−xCox)2As2 series as a function of the doping

level, x, and will be discussed in greater detail along with penetration depth measurements as

a function of x later in this thesis.

To summarize this section, the low-temperature (T < Tc/3) in-plane London penetra-

tion depth, ∆λab = λab(T ) − λab(0), has been measured in three different single crystals of

Ba(Fe0.93Co0.07)2As2 and it has been found to exhibit a power law of the form ∆λab ∝ T n with

n ≈ 2.4±0.1. This nonexponential behavior of ∆λab(T ) is indicative of the presence of normal

state quasiparticles down to as low as 0.02Tc, which could arise from either nodes in the su-

perconducting gap function, ∆(k), or from some type of pair-breaking scattering mechanism,
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which will be discussed in more detail later.

4.3 Doping dependence of ∆λab(T ) in the Ba(Fe1−xCox)2As2 series

After the λab(T ) measurements were performed on the three crystals near optimal doping

in the Ba(Fe1−xCox)2As2 series, a study was undertaken to determine the doping dependence

of λab(T ) in the same series [Gordon et al. (2009a)]. For this study of the concentration

dependence, samples with doping levels of x=0.038, 0.047, 0.058, 0.074 and 0.10 were studied,

which range from far underdoped to beyond optimal doping in this series, as can be seen in

Fig. 4.5.

Microscopic, thermodynamic and transport measurements in the Ba(Fe1−xCox)2As2 crys-

tals used in this study have shown that superconductivity coexists with the orthorhombic

phase in the underdoped regime of this particular system [Ni et al. (2008b); Pratt et al. (2009)].

Fig. 4.5 shows TDR frequency shifts as a function of temperature for scans running from below

Tc to ≈120 K for two samples with x= 0.038 and 0.058. The data for the x=0.058 sample have

been divided by a factor of 5 for clarity. In the normal state, the magnetic penetration depth is

limited by the skin depth, which depends on the normal state resistivity. The overall variation

of ∆f through the transition region is about 20 Hz, which corresponds to a variation of about

45 nm in the skin depth. This should be compared to the 13300 Hz change corresponding to

the superconducting transition of the sample. The temperature at which the structural tran-

sition, Ts, occurred was defined to be at the position of the minimum in ∆f(T ), as illustrated

in Fig. 4.5. The superconducting Tc was defined at the onset of the transition. Fig. 4.6 shows

that by differentiating the TDR frequency shift data with respect to temperature, we are able

to observed Tc, Ts and the magnetic transition, Tm, by using the same criteria used in [Pratt

et al. (2009)]. Fig. 4.7 shows the ac susceptibility constructed from the TDR frequency shifts

in Ba(Fe1−xCox)2As2 for all measured concentrations. Optimal doping for this series occurs

for a concentration between x=0.058 and 0.074.

The low-temperature variation of the penetration depth is examined in Fig. 4.8. For all

superconducting samples, a power law T-dependence of the form ∆λab(T ) = CT n has been
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Figure 4.5 (a) Raw data for x=0.038 (underdoped) and x=0.058 (near

optimal doping), where the data have been divided by a fac-

tor of five for the latter. The inset emphasizes the mag-

netic/structural transition for the sample with x=0.058. (b)

Phase diagram showing the structural, Ts, and superconduct-

ing, Tc, transitions determined from transport [Ni et al. (2008b)]

and TDR measurements.
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Figure 4.6 Top panel: raw frequency shift data for the x=0.038 sample

shown in Fig. 4.5. Bottom panel: the derivative with respect

to temperature shows that the TDR technique is able to detect

the superconducting transition, Tc, the structural transition,

Ts, and the magnetic transition, Tm, by using the same criteria

outlined in [Pratt et al. (2009)].
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Figure 4.7 4πχ(T ) constructed from TDR frequency shifts for Hac||c-axis

in single crystals of Ba(Fe1−xCox)2As2 for different x.

observed. All of the fits to be discussed have been performed over the temperature range from

the minimum temperature of the experiment up to Tc/3 unless stated otherwise. For these

samples, it has been found that the power law exponent varies from n = 2±0.1 for underdoped

samples to n = 2.5 ± 0.1 for the overdoped samples. To examine how close the overall power

law behavior is to quadratic, the fitting function ∆λab = AT 2 has been used to fit all data

curves for these samples up to Tc/3, with A being the only free parameter. In Fig. 4.9, ∆λab(T )

has been scaled by the prefactor A and plotted as a function of reduced temperature squared,

(T/Tc)
2. At a gross level, all samples follow the λab(T ) ∝ T 2 dependence remarkably well.

To summarize the observed power law behavior, the upper panel of Fig. 4.10 shows the

exponent n that was obtained from the best fit with two free parameters, ∆λab(T ) = CT n.

The lower panel of Fig. 4.10 shows the doping dependencies of the prefactor C obtained by

using the above fit, as well as the prefactor A, which was obtained by fitting to a function with

purely quadratic behavior, ∆λab(T ) = AT 2. There is a clear change of regime at x ≈ 0.06

for n, C and A. One possible explanation for this change of regime below x ≈ 0.06 could be

some type of interaction between the itinerant antiferromagnetic and superconducting phases,
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which have been shown to coexist homogeneously [Laplace et al. (2009); Ni et al. (2008b);

Pratt et al. (2009); Gordon et al. (2010a)]. From Fig. 4.10, the upper panel shows that the

power law exponent n changes from 2.0±0.1 to 2.5±0.1 as x changes from underdoped to

overdoped concentrations, whereas the lower panel shows that from x=0.047 to 0.058, the

prefactors suddenly drop by approximately one order of magnitude. The uncertainty of ±0.1

was determined from the difference in n obtained by measuring more than one sample with

the same doping concentration.

In what follows, comments are given on the viability of various scenarios that could yield a

power law behavior of λ(T ). If the impurity scattering rate in a superconductor is low and it

is in the local limit, then anisotropic pairing with line or point nodes in the superconducting

gap function give rise to a power law behavior in λ(T ), with n = 1 for line nodes and n = 2

for point nodes. Thus, the most direct interpretation of these results would be in terms of

point nodes in the superconducting gap, as for example in PrOs4Sb12 [Einzel et al. (1986);

Izawa et al. (2003)]. However, this conclusion would only make sense if these materials were
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to the low-temperature region of the form ∆λab(T ) = A(T/Tc)
2,

plotted versus reduced temperature squared, (T/Tc)
2.

in the clean impurity scattering and local limits. A ∆λab(T ) ∝ T 2 dependence is consistent

with line nodes in the gap if impurity scattering [Hirschfeld and Goldenfeld (1993)] is included

or non-local corrections are made [Kosztin and Leggett (1997)]. In regard to the case of line

nodes, unitary impurity scattering creates a state with a quadratic temperature dependence

below some characteristic temperature T ∗, such that kBT
∗ ∝ Γ, where Γ is the impurity

scattering rate [Hirschfeld and Goldenfeld (1993)]. For these materials, the requirement would

be Γ & kBTc/3 since the power law dependence persists to such a high temperature, which

would imply that the impurity scattering rate is high with a strong unitary component.

A power law temperature dependence of ∆λ could possibly be the result of strong impurity

scattering in a superconductor that is fully gapped in the clean limit. The exponential behavior

in the clean limit transforms to a quadratic one if the impurity scattering fills in the gap, causing

a finite residual density of states for all energies [Abrikosov and Gor’kov (1960); Kogan (2009)].

As in Refs. [Chubukov et al. (2008); Parker et al. (2008)], such a power law dependence would

require a scattering rate, Γ, on the order of the smallest gap, ∆min, and a relatively fine balance

between unitary and Born scattering. Another problem with this explanation is that there is
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not a dependence of ∆λ(T ) on the concentration of impurities, but rather an abrupt change

of regime as the structural/magnetic region is crossed into Fig. 4.10.
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Figure 4.10 Doping dependence of the exponent n (upper panel) and of the

fitting prefactors A and C, as defined in the text (lower panel).

The inset shows that the expected exponential behavior for a

single-gap BCS superconductor is well described by a power

law function with exponent n ≈ 4.

It should also be mentioned that another mechanism that can transform the linear temper-

ature dependence of ∆λ(T ) in the case of line nodes in the OP to a quadratic dependence for

T < T ∗ ≃ ∆(0)ξ0/λ(0) could be based on nonlocal effects [Kosztin and Leggett (1997)], where

ξ0 is the coherence length. In these materials, however, T ∗ would be less than 1 K.

The observed power law behavior in λ(T ) could also be a consequence of inhomogeneities

in the materials. While the observation of a smearing of the jump in the heat capacity at

Tc in under- and overdoped samples [Ni et al. (2008b)] may be considered a hint for such a

scenario, the jump in Cp is doping dependent [Bud’ko et al. (2009)] and it is unlikely that

any inhomogeneity can explain the universal behavior shown in Fig. 4.8 for all concentrations.

Also, if these materials were homogeneous, it is unlikely that the Meissner screening would be
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as homogeneous as has been observed [Prozorov et al. (2009a)].

In view of this discussion, it is tempting to search for an explanation on the phenomenologi-

cal level that would not rely on impurity scattering as a crucial element changing the functional

dependence of λ(T ). Indeed, any excitation coupled to electrons with an energy larger than

2πkBT is pairbreaking, including regular phonons. Moreover, for an s±-wave or a dx2−y2-wave

state, even phonons with arbitrarily small energies can be pairbreaking. The same reasoning

holds for coupling to other bosonic modes, such as antiferromagnetic spin fluctuations. Since

thermally excited bosons are needed for pairbreaking, the scattering rate, Γ, is temperature

dependent [Abanov et al. (2001)]. In the case of line nodes, where a T-dependent Γ yields an

exponent n = 2, strong scattering off of the thermally excited bosons would always yield a

smaller exponent. Given the special role that may be played by the antiferromagnetic critical

point, the possibility exists that the pairbreaking fluctuations are associated with an intermedi-

ate range dynamic ordering, like the dynamic domains speculated in Ref. [Mazin and Johannes

(2009)]. These will have very small energies and a potential to be strong scatterers. A clear

derivation of the exponent n that results from such a picture is still missing.

To summarize, the temperature dependence of the in-plane London penetration depth,

∆λab(T ), has been measured in single crystals of Ba(Fe1−xCox)2As2 for concentrations of

x=0.038, 0.047, 0.058, 0.074 and 0.1, which range from the underdoped to overdoped regimes.

A robust power law for all measured dopings of the form ∆λab(T ) ∝ T n has been observed,

with n ranging from ≈ 2 for underdoped sample to ≈ 2.5 in overdoped samples. The pen-

etration depth prefactors C and A, determined from low temperature fits to the functions

∆λab(T ) = CT n and ∆λab(T ) = AT 2, have been observed to increase by as much as an order

of magnitude when passing into the region of the doping phase diagram where superconduc-

tivity and antiferromagnetism likely coexist.

It should be noted that the power law temperature dependence that has been observed

in the Ba(Fe1−xCox)2As2 series was later confirmed by at least two different measurement

techniques, one of which was a surface probe method using a magnetic force microscope Luan

et al. (2010) and the other was a microwave cavity resonator technique Bobowski et al. (2010).
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4.4 Doping dependence of ∆λab(T ) and ∆λc(T ) in the Ba(Fe1−xNix)2As2

series

The doping dependence of the variation with temperature of both the in-plane, ∆λab, as

well as the out-of-plane, ∆λc, London penetration depth components have been measured for

several concentrations, x, in single crystals of the electron doped Ba(Fe1−xNix)2As2 material

spanning the superconducting region of the doping phase diagram [Martin et al. (2010a)]. The

measured concentrations had WDS values of x=0.033, 0.046, 0.054, 0.065 and 0.072. Since

each Ni atom contributes two electrons to the charge environment, half as much is needed to

completely suppress superconductivity than in the Ba(Fe1−xCox)2As2 system, meaning that

the Ni doped compounds should be less disordered

The single crystals of the Ba(Fe1−xNix)2As2 samples were all grown using the same proce-

dure used in Ref. [Canfield et al. (2009)]. Each sample was prescreened before the penetration

depth measurements to ensure that the superconducting transition widths were as sharp as

possible, as seen in the inset of Fig. 4.11 (a). The overall quality of the samples studied was

determined by using x-ray diffraction, resistivity, magnetization, magneto-optics and WDS

analysis. The Ni content was found to have a small variation within each of the samples

tested.

The temperature versus doping phase diagram for the Ba(Fe1−xNix)2As2 series is shown in

the main panel of Fig. 4.11 (a) and the superconducting transitions for each of the samples from

this study are visible from the ∆λab(T ) curves shown in the inset. The location of Tsm shows

roughly where the structural and magnetic transitions are and were taken from resistivity data

[Ni et al. (2010b)]. The low-temperature region, Tmin < T < Tc/3, of each ∆λab(T ) curve was

fit to a function of the form ∆λab(T ) = CT n in order to extract the power law exponent n to

study its evolution with the doping level, x. The low-temperature region of ∆λab(T ) is shown

as a function of (T/Tc)
2 for all samples in Fig. 4.11 (b) and the fact that these curves are very

close to being linear on this scale indicates that the power law exponent n is close to 2 over

this range for these samples. The exact value of n obtained from the fits is shown as a function

of the Ni doping level in the inset to Fig. 4.11 (b), where it has values from ≈2.3 for x=0.033
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Figure 4.11 (a) Temperature-doping phase diagram for Ba(Fe1−xNix)2As2.

The inset shows the full superconducting transition deter-

mined from in-plane penetration depth measurements. (b)

∆λab(T ) for different doping levels plotted versus (T/Tc)
2,

where the curves are shifted vertically for clarity. The in-

set shows the doping dependence of the power law exponent n

obtained from fits described in the text.
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(underdoped) to ≈1.6 for x=0.072 (overdoped).

Figure 4.12 The main panel shows ∆λab(T ) for an overdoped sample with

x=0.072 measured down to T ≈ 60 mK in a dilution refriger-

ator. The upper inset shows the agreement between ∆λab(T )

for the same sample but with different TDR circuits, with one

mounted in a 3He cryostat and the other in a dilution refrig-

erator. The lower inset shows that the power law behavior in

∆λab(T ) persists down to 60 mK for underdoped, optimally

doped and overdoped samples of Ba(Fe1−xNix)2As2.

To examine how far down in temperature the power law behavior persists in ∆λab(T ),

three samples having x=0.033 (underdoped, Tc=15 K), 0.046 (optimally doped, Tc=19.4 K)

and 0.072 (overdoped, Tc=7.5 K) were measured down to a temperature of Tmin ≈ 60 mK by

using a TDR mounted inside of a dilution refrigerator. The main panel of Fig. 4.12 shows that

the power law behavior persists in ∆λab(T ) for the overdoped sample down to T < 0.03Tc.

Also shown in the main frame is a fit to the function ∆λab(T ) = CT n (dashed line), which gives

n=1.62. The upper inset to Fig. 4.12 shows very good agreement between ∆λab(T ) data taken

with two different circuits, one in a 3He cryostat and the other in a dilution refrigerator, for
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the same sample. The lower inset to Fig. 4.12 shows that the power law behavior in ∆λab(T )

persists down to T ≈60 mK for all three samples measured in the dilution refrigerator.

Figure 4.13 Main panel: ∆λmix obtained from measurements with Hac||l
for an overdoped sample with x=0.072 and Tc=7.5 K before

(A) and after (B) the sample was cut so that 2w → w. Inset:

∆λmix for an underdoped sample with x=0.033 and Tc= 15

K before (A) and after (B) cutting. Above: Schematics of

the magnetic field penetration into the sample for Hac applied

along l before (A) and after (B) it is cut.

In addition to measuring the in-plane component of the penetration depth, ∆λab(T ), the

out-of-plane component, ∆λc(T ), has also been measured for three different Ba(Fe1−xNix)2As2

samples: one with x=0.033 (underdoped) and two having x=0.072 (overdoped). The following

is a brief description of how ∆λc(T ) was extracted from the TDR measurements.

Let us consider a plate-like sample having a rectangular cross section and dimensions 2t
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(thickness) x 2w (width) x l (length), with l > 2w. For the iron-based superconductors

studied here, the c-axis of all samples points perpendicular to their largest flat face. The

temperature dependence of the variation of the in-plane penetration depth, which arises only

from supercurrents flowing in the ab-plane, is constructed from the TDR frequency shifts,

∆fab(T ), by using the relation

∆fab(T ) =
(∆fpullout

Reff

)

∆λab(T ), (4.1)

where Reff is an effective radius for the sample constructed from its dimensions and ∆fpullout

is the shift in the TDR resonance frequency measured by extracting the sample from the

primary coil at the base temperature of the experiment. This situation corresponds to the

case where Hac is aligned parallel to the c-axis of the sample, with Hac being the excitation

field generated in the TDR primary coil. If Hac is oriented perpendicular to the c-axis, then

not only in-plane supercurrents are excited, but out-of-plane supercurrents as well. For this

case, the TDR frequency shifts, ∆fmix, contain components from ∆λab as well as ∆λc. More

specifically,

∆fmix(T ) =
(Gab

2t

)

∆λab(T ) +
(Gc

2w

)

∆λc(T ) (4.2)

with Gab and Gc being geometrical calibration factors constructed from the sample dimensions.

By only performing a single measurement with Hac perpendicular to the c-axis, it is often

impossible to extract ∆λc(T ) from Eqn. 4.2 since for most samples 2t << 2w and hence the

contribution to ∆fmix(T ) from ∆λc(T ) is very weak. However, by measuring the sample once

with Hac||l and then cutting it so that 2w → w and all other dimensions remaining the same,

∆λc(T ) can be obtained. After the cutting procedure, the TDR frequency shifts, ∆f cut
mix(T ),

are given by

∆f cut
mix(T ) =

(Gab

2t

)

∆λab(T ) +
(Gc

w

)

∆λc(T ). (4.3)

By subtracting Eqn. 4.2 from Eqn. 4.3, the difference of the frequencies allows one to access

only the out-of-plane component of the penetration depth:
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∆f cut
mix(T ) − ∆fmix(T ) =

(Gc

2w

)

∆λc(T ). (4.4)

The main panel of Fig. 4.13 shows the measured penetration depth, ∆λmix ∝ ∆fmix, for

Hac applied perpendicular to the c-axis along the longest sample side, l, both before (A) and

after (B) an overdoped sample with x=0.072 (Tc=7.5 K) was cut so that 2w → w. The inset

shows the same comparison for measurements before and after cutting for an underoped sample

with x=0.033 (Tc=15 K). The schematics shown above the main panel of Fig. 4.13 are to help

clarify the field orientation with respect to the crystal axes and show the contributions from

∆λab and ∆λc to ∆fmix both before (A) and after (B) a sample is cut for these measurements.

Notice that for both samples shown in Fig. 4.13, there is a clear change in ∆λmix after the

sample is cut, indicating that the ∆λc contribution is strengthened after the cutting procedure.

Figure 4.14 The c-axis component of the penetration depth, ∆λc, plot-

ted versus reduced temperature, T/Tc, for three different

Ba(Fe1−xNix)2As2 samples. Two of them are overdoped with

x=0.072 and one of them is underdoped with x=0.033.

By using the ∆fmix(T ) and ∆f cut
mix(T ) data obtained with Hac||l along with Eqn. 4.4,

∆λc(T ) has been constructed for three different samples: one with x=0.033 and Tc=15 K (un-
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derdoped) and two different samples with x=0.072 and Tc=7.5 K and 6.5 K (both overdoped).

The resulting ∆λc(T ) curves are shown in Fig. 4.14 for these samples. The two overdoped

samples shown clearly exhibit a linear variation in ∆λc with temperature up to Tc/3, which

strongly suggests the presence of line nodes in the superconducting gap on portions of the

Fermi surface which contribute to c-axis conduction, consistent with the findings of thermal

conductivity measurements for different dopings in the Ba(Fe1−xCox)2As2 series for concentra-

tions close to the edges of the superconducting dome of the temperature-doping phase diagram

[Reid et al. (2010)].

To summarize, ∆λab(T ) has been measured for five different samples from the

Ba(Fe1−xNix)2As2 series with doping levels ranging from x=0.033 (underdoped) to x=0.072

(overdoped). It has been found to exhibit a power law temperature dependence for all mea-

sured concentrations, where the power law decreases from n ≈2.3 at x=0.033 to n ≈1.6 at

x=0.072. This doping dependence of n is different from what has been measured in the

Ba(Fe1−xCox)2As2 series, where it n has been found to increase from ≈2 for underdoped sam-

ples and increases to ≈2.5 beyond optimal doping. A possible explanation for the power law

temperature dependence indicates that it arises from disorder effects, which will be elaborated

on in more detail later in this thesis. In addition, the out of plane component, ∆λc(T ), has

been measured for two overdoped concentrations, both with x=0.072, and one underdoped

concentration with x=0.033. For these samples near the edges of the superconducting dome,

∆λc has been found to have a linear temperature dependence, in agreement with the existence

of line nodes in the superconducting gap of Ba(Fe1−xNix)2As2 on portions of the Fermi surface

responsible for c-axis conduction.

4.5 ∆λab(T ) in Ba(Fe1−xTx)2As2 (T=Ru,Rh,Pd,Pt,Co+Cu)

The variation of the in-plane London penetration depth, ∆λab, has been measured as a

function of temperature for various dopings in single crystals of Ba(Fe1−xTx)2As2

(T=Ru,Rh,Pd,Pt,Co+Cu). All samples show a non-exponential penetration depth, or more

precisely a power law temperature dependence of the form ∆λab(T ) ∝ T n, where n has been
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found to be as small as ≈1.5 and as large as ≈2.5 for these samples. A collection of measure-

ments such as this allows for one to study the effects of transition metal substitution for Fe

on the superconducting properties of doped BaFe2As2. All of the samples for which data are

shown in this section were obtained from the same source as in Ref. [Ni et al. (2008b)] with the

exception of the Ba(Fe1−xPtx)2As2, which came from the laboratory of Prof. H. H. Wen at

the National Laboratory for Superconductivity, Institute of Physics and National Laboratory

for Condensed Matter Physics, People’s Republic of China.
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Figure 4.15 Main frame: the full superconducting transitions from the in-

-plane penetration depth for four Ba(Fe1−xRux)2As2 samples,

two with x=0.18 and the other two have x=0.27. Inset: The

low temperature region of the in-plane penetration depth for

the same four samples. The legend shows the resulting power

law exponent values for these samples.

The first material to be discussed is Ba(Fe1−xRux)2As2. Ru is an isovalent substitution for

Fe, meaning that it nominally donates no extra electrons to the system. A temperature-doping

phase diagram for this material can be seen in Fig. 1.1. The in-plane penetration depth was

measured in four different samples, two with x=0.18 and the other two with x=0.27. The
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in-plane penetration depth data can be seen from Fig. 4.15, where the inset shows a zoomed-in

view of the low-temperature region. By fitting this region of the data for each sample to a

power law function it has been determined that the power laws are n=2.13 and 2.07 for the

x=0.18 samples and n=2.0 and 2.01 for the samples with x=0.27.
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Figure 4.16 Top panel: power law exponent values, n, from low-T in-plane

penetration depth fits plotted versus doping concentration, x,

in the

Ba(Fe1−xRux)2As2 series. Bottom panel: Tc versus x in the

same series obtained from electrical resistivity data [Thaler

et al. (2010)].

Fig. 4.17 shows the variation of the in-plane penetration depth for two Ba(Fe1−xRhx)2As2

samples, x=0.057 and x=0.010, where the inset shows the low-temperature region along with

the power law fits, which yielded n=2.5 and n=2.01. The superconducting portion of the

phase diagram can be seen along with the resulting power law exponents in Fig. 4.18. The

substitution of Rh for Fe donates the same number of carriers as the substitution of Co for Fe.

Two different samples, both overdoped with concentrations of x=0.053 (Tc ≈14 K) and

x=0.067 (Tc ≈9 K), have been measured from the Ba(Fe1−xPdx)2As2 series and can be seen

in Fig. 4.19. The substitution of Pd for Fe donates the same number of electrons as the
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Figure 4.17 Main frame: the full superconducting transitions from the in-

-plane penetration depth for two Ba(Fe1−xRhx)2As2 samples

having x=0.057 and x=0.10. Inset: The low temperature re-

gion of the in-plane penetration depth for both samples along

with the determined power law exponents.
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same series obtained from electrical resistivity data [Ni et al.

(2010a)]
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Figure 4.19 The main frame shows the superconducting transitions

through ∆λab(T ) of two different Pd doped samples having

x=0.053 (near optimal doping) and x=0.067 (overdoped). The

inset shows a zoomed-in view of the low-temperature region of

∆λab versus T/Tc for both samples.
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substitution of Ni for Fe, but with a larger ionic radius. Fig. 4.19 shows the superconducting

transitions of both samples measured in the main frame and the inset shows the power law

fit of the form ∆λab = CT n that was used to extract the value of n. The superconducting

portion of the phase diagram is shown in Fig. 4.20 along with the doping dependent power law

exponent values.
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Figure 4.21 The main frame shows ∆λab(T ) for three different Pt doped

samples, with the black curve being near optimal doping and

the red and green curves both being overdoped concentrations.

The inset shows a zoomed-in view of the low-temperature re-

gion of ∆λab plotted versus the reduced temperature T/Tc.

Yet another isovalent substitution for Ni exists, with that being the substitution of Pt for

Fe, which has an even larger ionic radius than Pd. The in-plane penetration depth of three

different Pt doped samples has been measured, where one was near optimal doping (x=0.07

with Tc=23 K) and two of them were overdoped (x=0.10 with Tc=14 K) samples. The main

frame of Fig. 4.21 shows the superconducting transitions of all three samples through the

penetration depth and the inset shows the low-temperature region along with the power law

exponents obtained from fits to ∆λab(T ) = CT n. Unfortunately, at the present time a phase
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diagram for this material was not available to be shown.
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Figure 4.22 Comparison of the power law exponent versus doping level for

the Ba(Fe1−xCox)2As2 and Ba(Fe1−xRhx)2As2 series, where

Co and Rh are nominally isovalent substitutions for Fe.

By comparing the doping dependence of the power law exponent from the Ba(Fe1−xCox)2As2

an Ba(Fe1−xRhx)2As2 series, as shown in Fig. 4.22, we can see that there is some agreement.

The substitution of Co or Rh for Fe are nominally isovalent ones, so it is natural to search for

similarities between the two series. In fact, it is worth noting that these are the only two 122

systems reported here that do not show a decrease of n with increasing x.

Also, a plot of n versus x is shown to compare the Ba(Fe1−xNix)2As2 and Ba(Fe1−xPdx)2As2

compounds in Fig. 4.23, with Ni and Pd being nominally isovalent substitutions for Fe. For

these two materials, n decreases with increasing doping level, as it does for several of the

other transition metal doped BaFe2As2 superconductors reported here. Also shown is a global

phase diagram in Fig. 4.24 of the power law exponent versus the electron count, e, for the

Ba(Fe1−xTx)2As2 (T=Co,Rh,Ni,Pd) superconductors. Although there are no immediate visible

trends, it is worth noting such a comparison.
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Figure 4.23 Comparison of the power law exponent versus doping level for

the Ba(Fe1−xNix)2As2 and Ba(Fe1−xPdx)2As2 series, where Ni

and Pd are nominally isovalent substitutions for Fe.
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Figure 4.24 The power law exponent plotted versus e, which is the electron

count, for the Ba(Fe1−xTx)2As2 (T=Co,Rh,Ni,Pd) series.

The last series for which data will be shown in this section is Ba(Fe1−x−yCoxCuy)2As2.

The in-plane penetration depth has been measured for two samples, one with x=0.02 and

y=0.026 (Tc=11 K) and another with x=0.02 and y=0.033 (Tc=9 K). The full superconducting

transitions are shown for these samples through the penetration depth in Fig. 4.25. The inset

of this figure shows the low-T region along with the power law exponent values for each sample

obtained from fitting. Doping with Cu alone in this series does not produce superconductivity

for any concentration, but by also including Co superconductivity can be induced. By fixing

the Co concentration at x=0.02 and increasing the Cu concentration y from 0.026 to 0.033,

the power law exponent decreases from n=2.04 to 1.91.

A power law temperature dependence of the penetration implies the existence of low-

temperature normal state quasiparticles, which can arise either from nodes in the super-

conducting gap or from pair-breaking impurity scattering mechanisms. A doping dependent

power law exponent would be consistent either with a doping dependent modulation of the

superconducting gap or from a pair-breaking impurity scattering mechanism that evolves
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Figure 4.25 The main frame shows the superconducting transitions

through ∆λab(T ) for two samples that are doped with both

Co and Cu, but with different concentrations of Cu. The inset

shows a zoomed-in view of ∆λab versus T/Tc in the low-tem-

perature regions for both samples
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Figure 4.26 All power law exponent values, n, obtained from in–

plane penetration depth measurements in Ba(Fe1−xTx)2As2
(T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu). The background colors in-

dicate the ranges that n can have for different scenarios, in-

cluding impurity scattering within the s±-, s++- and d-wave

superconducting gap symmetries.

with the level of impurities in the material. Fig. 4.26 shows all of the resulting power

law values obtained from the in-plane penetration depth measurements of Ba(Fe1−xTx)2As2

(T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) plotted versus Tc. Also shown on this graph through the

background colors are the ranges of the power law exponent that can be obtained for differ-

ent scenarios, including the effects of scattering on s±-, s++- and d-wave superconducting gap

symmetries.

In summary, the in-plane London penetration depth has been measured for several different

transition metal doped BaFe2As2 compounds. The low-temperature region of the in-plane

penetration depth for all studied compounds exhibits a power law temperature dependence

of the form ∆λab = CT n. Later in this thesis, it will be discussed that this power law

temperature dependence likely arises from pair-breaking impurity scattering contributions to

the penetration depth signal. For all studied samples, with the exception of the Rh doped

compound, the doping dependence of the power law exponent decreases with increasing dopant

concentration, in contrast to the observed behavior in the Ba(Fe1−xCox)2As2 series.This may
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suggest that by doping with Co and Rh, the superconductivity responds differently than for

other transition metal substitutions.

4.6 Pair-breaking effects and the penetration depth prefactor

The variation of the in-plane London penetration depth, ∆λab(T ), has been measured

over the low-temperature region, i.e. T < Tc/3, for several different classes of the iron-

based superconductors by using the standard TDR technique [Gordon et al. (2010b)]. The

main intentions of this study were to measure the prefactor β, extracted from fits to the low

temperature penetration depth of the form ∆λab(T ) = βT 2, for different classes of the iron-

based superconductors. The materials measured for this study were Ba(Fe1−xCox)2As2 (6 con-

centrations), Ba(Fe1−xNix)2As2 (5 concentrations), (Ba0.7K0.3)Fe2As2, Fe1.001(Se0.367Te0.632),

LaFeAs(O0.9F0.1) and NdFeAs(O0.9F0.1).

The superconducting transitions of four of the the samples studied are visible through the

in-plane penetration depth data shown in the inset to Fig. 4.27 (a). The numbered curves

in Fig. 4.27 (a) correspond to: (1) Ba(Fe0.942Co0.058)2As2, (2) Ba(Fe0.941Ni0.059)2As2, (3)

Fe1.001(Se0.367Te0.632) and (4) LaFeAs(O0.9F0.1). The low-temperature functional form of the

in-plane penetration depth for all of the samples has been fit to ∆λab(T ) = βT 2 in order to

extract the prefactor, β, and ∆λab(T ) = CT n to determine the power law exponent, n, for

each sample measured. The main frame of Fig. 4.27 (a) shows ∆λab plotted versus the square

of the reduced temperature, (T/Tc)
2, and the resulting linear behavior on this scale illustrates

that the temperature dependence of the low-T penetration depth is very close to being purely

quadratic for these samples.

The resulting power law exponent, n, obtained from fits to the low-T region of ∆λab,

is shown for all samples and plotted versus the associated onset superconducting transition

temperature, Tc, for each sample in Fig. 4.27 (b). The criteria that was used to determine the

onset of the superconducting transition temperature can be seen in the inset to Fig. 4.28. From

Fig. 4.27 (b) one can see that the power law functional form of ∆λab(T ) ∝ T n with n ≈ 2 holds

for superconductors from both the electron and hole doped 122 classes, two different members
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of the 1111 class as well as the 11 class of iron-based superconductors.

The penetration depth prefactor can offer valuable information about the zero temperature

value of the superconducting gap magnitude, ∆(0), the zero temperature value of the pene-

tration depth, λ(0), or even the slope of the gap near a node, α ≡ (d∆/dφ) as φ → φnode,

as in the case of a dx2−y2-wave superconductor [Prozorov and Giannetta (2006); Poole et al.

(2007)]. This can be understood by considering the functional forms of the penetration depth

for the cases of an s-wave or a dx2−y2-wave superconductor, which in the clean limit take the

respective forms of

∆λ(T ) ≈ λ(0)

√

π∆(0)

2kBT
exp(−∆(0)

kBT
) (4.5)

and

∆λ(T ) ≈ λ(0)2ln(2)

d∆/dφ|φ→φnode

T ≡ λ(0)2ln(2)

α∆(0)
T. (4.6)

In addition to this information, the penetration depth prefactor can also provide clues to the

role played by pair-breaking scattering inside of a superconductor [Gordon et al. (2010b)].

The main source of motivation for looking at the penetration depth prefactor in the iron-

based superconductors came from a prediction about its dependence on Tc which arises from

pair-breaking scattering. This predicted dependence came about from a theoretical model

based on the quasiclassical version of the weak-coupling Gor’kov theory that holds for a general

anisotropic Fermi surface and for any superconducting gap symmetry [Eilenberger (1964)],

which assumes a strong pairbreaking mechanism is present and has proven to be quite successful

for describing the specific heat jump, ∆C ∝ T 3
c , as well as the slopes of the upper critical field,

dHc2/dT ∝ Tc, in these materials [Bud’ko et al. (2009); Kogan (2009)]. According to this

model, if the penetration depth is written in the form of ∆λab(T ) = βT 2, then the prefactor β

should take the form

β =
( 1

T 3
c

) c~

8πkBτ±

√

3 < Ω4 > −2

πe2N(0) < v2
aΩ

2 >
(4.7)
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where Ω describes the variation of the superconducting gap, ∆, along the Fermi surface, va is

the Fermi velocity and τ± are the two scattering times that characterize scattering within the

Born approximation:

1

τ±
=

1

τ
± 1

τm
(4.8)

with τ being the transport scattering time associated with normal conductivity and τm is for

processes that break time-reversal symmetry (e.g. spin flip). Commonly, two dimensionless

parameters are used:

ρ =
1

2πTcτ
(4.9)

and

ρm =
1

2πTcτm
, (4.10)

or equivalently, ρ± = ρ± ρm. Eqn. 4.7 was calculated assuming < Ω >≈ 0, corresponding to a

superconducting order parameter that has an amplitude that averages to zero about the Fermi

surface.

Fig. 4.28 shows the penetration depth prefactor, β, obtained from low-T fits to ∆λab = βT 2,

plotted as a function of Tc for all studied samples. Both axes are shown on a logarithmic

scale for clarity. The horizontal error bars on the values of β represent the fact that not all

samples had the same superonducting transition widths, so both the onset and the base of

the transition were used for the fitting procedures. The solid black line is a fit to the data of

the form β = η/T 3
c and η = 8.8 ± 1.0 µmK. For an additional check, by substituting va ≈107

cm/s and N(0) ≈1033 erg−1cm−3, this gives a rough estimate of τ+ ≈3x10−14 s. This value

corresponds to ρ+ ≈ 5 for Tc=40 K and to larger values for lower values of Tc, an observation

consistent with the major model assumption of ρ+ ≫ 1.

The degree to which the experimental values follow the theory is remarkable, a substantial

scatter of the data points notwithstanding. It is worth noting that the 1/T 3
c scaling in β

is a result of strong pair-breaking scattering and does not follow from any other model to
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Figure 4.27 (a) Main frame: the low-T in-plane penetration depth

for four different iron-based superconductors plotted versus

(T/Tc)
2 to illustrate their nearly quadratic dependencies.

The numbers correspond to: (1) Ba(Fe0.942Co0.058)2As2, (2)

Ba(Fe0.941Ni0.059)2As2,

(3) Fe1.001(Se0.367Te0.632) and (4) LaFeAs(O0.9F0.1). Inset: the

full superconducting transitions for these four samples as made

visible by in-plane penetration depth measurements. (b) The

power law exponent, n, resulting from low-T fits to ∆λab and

plotted versus the superconducting transition temperature, Tc,

for each sample.
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the author’s knowledge. On the other hand, a larger data set is required to verify that this

scaling holds for every class of iron-based superconductor. It should be stressed that the

penetration depth scalings discussed here and in Ref. [Gordon et al. (2010b)] as well as the

scalings for the specific heat jump [Bud’ko et al. (2009)] and for the slopes of Hc2(T ) [Kogan

(2009)] are approximate by design since their derivation involves a number of simplifying

assumptions. Still they are robust in showing that pair-breaking scattering is an important

factor for superconductivity in the iron-based superconductors.
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Figure 4.28 The penetration depth prefactor, β, obtained from low-T fits

of the form ∆λab(T ) = βT 2, plotted as a function of the su-

perconducting critical temperature, Tc, on a log-log scale for

many different members of the iron-based superconductor fam-

ily. The solid black line is a fit of the form β = η/T 3
c motivated

by the pair-breaking theory described in the text.

Still there are other questions to be addressed, like why do the Ba(Fe1−xCox)2As2 samples

deviate on average more than any of the other compounds shown in Fig. 4.28? Another

problem to address is how to reconcile the strong pair-breaking, which in the isotropic case

leads to gapless superconductivity [Abrikosov and Gor’kov (1960)], with the in-plane thermal

conductivity data showing κ/T → 0 as T → 0 [Luo et al. (2009); Tanatar et al. (2010)]?
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The question arises whether or not one can have an iron-based superconductor free of

any pair-breaking scattering. If possible, these materials would have much higher critical

temperatures. For examples, if ρ+ ≈5 and Tc ≈20 K, the clean material would have a critical

temperature given by Tc0 = Tc expψ(ρ+ + 1/2) − ψ(1/2), which would be on the order of

room temperature. Obviously, the formalism used to derive the β ∝ 1/T 3
c dependence does

not capture all of the physics at hand in the iron-based superconductors, but it is possible that

the same interactions responsible for pairing in these materials, presumably spin fluctuations,

may also lead to strong pair-breaking scattering contributions and a more successful theory

probably should account for both of these effects.
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CHAPTER 5. Doping dependence of λab(0) and ρs(T ) in Ba(Fe1−xCox)2As2

5.1 Introduction

The zero temperature value of the London penetration depth is directly related to the

superfluid density in the ground state of a superconductor according to the relation λ(0) ∝

1/
√

ns(0) [Tinkham (1996)]. In the clean, low scattering limit, ns(0) is equal to the total

density of conduction electrons, nN . There are cases in which other phases, for example,

itinerant magnetism, can compete with superconductivity for the same conduction electrons,

thus reducing the overall number of carriers in the superconducting state at T = 0. Given the

rich doping phase diagram of the newly discovered iron-based superconductors, in which a long-

range magnetically ordered state with itinerant character coexists with a superconducting state,

questions are raised regarding the effects of the competition between these states for the same

electrons [Canfield and Bud’ko (2010); Ni et al. (2008b); Drew et al. (2009); Pratt et al. (2009);

Christianson et al. (2004); Laplace et al. (2009); Goko et al. (2004); Fernandes et al. (2010)].

One way to approach this matter is to study the doping evolution of λab(0) across the phase

diagram of these materials and use it to infer the corresponding change in the superfluid density,

especially in the regime of the phase diagram where these two phases coexist. Determination of

the absolute value of the London penetration depth is also important for the correct evaluation

of the normalized, temperature-dependent superfluid density, ρs(T ) = [λ(0)/λ(T )]2. This

quantity can be calculated from various models for different superconducting gap structures

and provide insight into the pairing mechanism.

For these experiments [Gordon et al. (2010a)], we focus on λab(T = 0), which is the ground

state screening length associated with supercurrent flowing in the crystallographic ab plane as

a result of an external magnetic field applied along the c-axis. For x &0.047, the measured
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values of λab(0) have been found between 120±50 and 300±50 nm. A pronounced increase in

λab(0) to a value as high as 950±50 nm for x . 0.047 has been observed. The increase in λab(0)

for samples with x .0.047 has been interpreted as being due to the competition between the

superconducting and itinerant antiferromagnetic states for the same conduction electrons.

The experimental determination of λ(0) is a rather challenging task since only finite tem-

peratures can be reached in the laboratory. There are techniques that are capable of obtaining

an estimate of its value by taking advantage of the small variation of λ(T ) at low temperatures,

which can be on the order of 1 nm/K, along with precision measurements. One such technique

is muon-spin rotation (µSR) [Sonier (2007)], which has produced estimates for λab(0) of 320 nm

in (Ba1−xKx)Fe2As2 (Tc ≃32 K) [Khasanov et al. (2009); Evtushinsky et al. (2009b)], 470 nm

in (Ba0.55K0.45)Fe2As2 (Tc ≃30 K) [Aczel et al. (2008)], 230 nm in (Ba0.6K0.4)Fe2As2 (Tc ≃38

K) [Hiraishi et al. (2009)], 250 nm in La(O1−xFx)FeAs [Luetkens et al. (2009)], and values

ranging from 189 to 438 nm in the Ba(Fe1−xCox)2As2 series [Williams et al. (2009, 2010)].

Another technique, magnetic force microscopy (MFM), has reported λab(0)=325±50 nm in

Ba(Fe0.95Co0.05)2As2 [Luan et al. (2010)]. In addition, optical reflectivity measurements have

been used to estimate λab(0) in Ba(Fe1−xCox)2As2 and have reported values of 277±25 nm for

x=0.06 and 315±30 nm for x=0.08 [Nakajima et al. (2010)]. It is important to compare the

values of λ(0) obtained from as many different techniques as possible because each experiment

requires its own set of assumptions and modeling procedures.

Given the overall disparity between the measured values of λ(0) from these different exper-

imental techniques, it is valuable to perform a systematic study of λ(0) as a function of doping

in the series of which large, high quality single crystals having homogeneous doping levels are

available, namely, the Ba(Fe1−xCox)2As2 series. In this study, we utilized TDR frequency shift

measurements to extract the full temperature dependence of the London penetration depth

in these samples. The absolute values have been determined by using a technique in which

samples from this series were coated with aluminum in order to provide a reference point for

the penetration depth measurements. Having the absolute values, the normalized superfluid

density has been constructed as a function of temperature for various cobalt dopings in order
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to study the evolution of the superconducting gap structure across the phase diagram of this

series.

5.2 Aluminum coating procedure for determining λab(0) in

Ba(Fe1−xCox)2As2

The TDR technique that is normally used to measure ∆λ(T ) in superconductors is quite

well suited for measuring the variation of the penetration depth with respect to its value at

the minimum temperature of the experiment, but under usual circumstances it is insensitive

to the absolute value of the penetration depth, λ(T ) [Prozorov et al. (2000b)]. However, as

proposed in Ref. [Prozorov et al. (2000b)], the TDR technique can be extended to obtain the

absolute value by coating the entire surface of the superconductor to be measured with a thin

film of a conventional superconductor having a lower critical temperature and a known value

of λ(0). For this study, aluminum films were deposited onto the Ba(Fe1−xCox)2As2, where

TAl
c ≈ 1.2 K and thicknesses of 100 nm, as shown in Fig. 5.1.

While the Al film is superconducting, it participates with the coated superconductor to

screen the magnetic field generated by the TDR coil. However, when it becomes normal it does

effectively no screening because its thickness, t, is much less than the normal state skin depth at

the TDR operating frequency of 14 MHz, where δAl ≈ 75µm for ρAl
0 =10 µΩ-cm [Hauser (1972)].

By measuring the frequency shift upon warming from Tmin, which was the base temperature

of the sample, to T > TAl
c , the quantity L ≡ λeff (TAl

c ) − λeff (Tmin) can be obtained, as can

be seen in Fig. 5.2. This quantity can be used to calculate λ(0) for the Ba(Fe1−xCox)2As2

series by utilizing the previously determined power law relation ∆λ(T ) = CT n [Gordon et al.

(2009a,b)] along with the formula for the effective magnetic penetration depth into both the

Al film and the coated superconductor for T < TAl
c , which is given by

λeff (T ) = λAl(T )
λab(T ) + λAl(T ) tanh t

λAl(T )

λAl + λab(T ) tanh t
λAl(T )

, (5.1)

where λab(T ) is the penetration depth of the coated superconductor and λAl(T ) is the penetra-

tion depth of the Al film. As usual with the TDR technique, the variation in the penetration
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Figure 5.1 Scanning electron microscope images of the Al coated samples.

(a) Large scale view of the sample where the exposed top was

the broken edge. (b) and (c) Zoomed-in regions of the Al film

exposed after the sample was broken. (d) Close-up view of the

FIB trench showing the Al film and its thickness.
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depth with temperature, ∆λeff (T ) = λeff (T ) − λeff (Tmin), is measured. This method has

been successfully demonstrated on several high-Tc cuprate superconductors [Prozorov et al.

(2000b)] and has shown agreement with measurements of λ(0) in Fe1+y(Te1−xSex) crystals ob-

tained by different techniques [Kim et al. (2010b)]. Here we use an extended analysis obtained

by solving the appropriate boundary value problem.
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Figure 5.2 Main frame: the full superconducting transition of an opti-

mally doped Ba(Fe0.93Co0.07)2As2 crystal before and after coat-

ing. Inset: zoomed-in view of the low-temperature region,

Tmin < T < TAl
c , before (green triangles) and after (red cir-

cles) the Al coating on the same sample. The overall frequency

shift through the Al transition, denoted as L, was used for the

calculation of λab(0).

The aluminum film was deposited onto each sample while it was suspended from a rotating

stage by a fine wire in an argon atmosphere of a magnetron sputtering system. The formation of

nonuniform regions in the film was avoided by bonding the suspension wire to only a portion

of the narrowest edge of each sample. Each film thickness was checked using a scanning

electron microscope in two ways, both of which are shown in Fig. 5.1. The first method

involved breaking a coated sample after all measurements had been performed to expose its
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cross section. After this, it was mounted on a scanning electron microscope (SEM) sample

holder using silver paste, as shown in Fig. 5.1 (a). The images of the broken edge are shown

for two different zoom levels in Fig. 5.1 (b) and (c). The second method used a focused-ion

beam (FIB) to make a trench on the surface of a coated sample, with the trench depth being

much greater than the Al coating thickness, as shown in Fig. 5.1 (d). The sample was then

tilted and imaged by the SEM that was built into the FIB system, as shown in Fig. 5.1 (e).

5.3 Ba(Fe1−xCox)2As2 samples

The samples used for this study were all members of the Ba(Fe1−xCox)2As2 series, many

of which were the same samples measured in previous penetration depth studies [Gordon et al.

(2009a,b)], and were obtained from the same source as Ref. [Ni et al. (2008b)] using the same

growth procedure. The samples from these batches were characterized by magnetization and

resistivity measurements, which showed a robust superconducting response with sharp transi-

tions. In addition, magneto-optical imaging was used to probe the mesoscopic (in)homogeneity

of the samples, at least down to a length scale of 1 µm [Prozorov et al. (2009a)].

The Co concentrations were all determined by WDS analysis and the uncertainty within

each batch can be as high as ±0.0015. At the edges of the superconducting dome, where Tc

changes quickly with x, this uncertainty is not negligible and brings about sizable variations in

Tc, as can be seen in Table I, for concentrations that are nominally the same. Many samples

were prescreened in order to select the best ones to be coated with aluminum. A distribution

of different Co doping levels, x, within a given sample would lead to a broadening of the

superconducting transition, so all samples were prescreened to ensure the sharpest possible

Tc. The Tc of a sample is an excellent way of determining the actual doping level by using

the previously determined doping phase diagram [Ni et al. (2008b)]. For highly overdoped

samples, the superconducting transitions were quite broad and none could be found with

transition widths comparable to that of the optimally doped compounds, which is why highly

overdoped samples were not included in this study. Table I summarizes the relevant properties

of all of the samples used in this study.
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Figure 5.3 Top panel: the zero-temperature in-plane London penetration

depth, λab(0), as a function of the Co concentration, x. The

three dashed blue lines are theoretical curves obtained using a

model accounting for competition between s±-wave supercon-

ductivity and itinerant antierromagnetism representing three

different values of λab(0) in the pure superconducting state.

The solid gray line is a fit to the TDR data only of the form

A + B/xn. Also shown are values of λab(0) obtained by other

experiments for comparison. Bottom panel: phase diagram for

Ba(Fe1−xCox)2As2.
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Table 5.1 Summary of the parameters for individual samples. The actual

error bar on the values of λ(0) should consider the scatter be-

tween different samples, see Fig. 5.3.

Sample xWDS Tc (K) λ(0) (nm)

1 0.038 7.4 673

2 0.038 11.6 921

3 0.042 15.5 935

4 0.047 18.5 258

5 0.047 18.3 285

6 0.054 20.5 305

7 0.058 23.3 195

8 0.063 23.4 150

9 0.063 23.5 217

10 0.074 22.8 270

11 0.088 21.1 121

12 0.088 21.0 140

13 0.100 17.2 182

5.4 Results and discussion

The values of λab(0) that were obtained using the procedure described above for the

Ba(Fe1−xCox)2As2 system are shown in the top panel of Fig. 5.3 for doping levels, x, across

the superconducting region of the phase diagram, shown schematically in the bottom panel of

Fig. 5.3. The size of the error bars for the λab(0) points was determined by considering the film

thickness to be t=100±10 nm and λAl(0)=50±10 nm. The discrepancy for the two samples

having x=0.038 is clearly beyond these error bars and this may possibly be due to cracks or

inhomogeneities in the Al film, even though great care was taken to eliminate them during the

coating process. Thus, the error bars represent the uncertainty of the known parameters and

the scatter in the data may arise from uncontrolled effects such as cracks or inhomogeneities in

the Al film. The discrepancy for the two x=0.038 samples could also arise from the uncertainty

in knowing the actual Co concentrations, which is supported by the sizable variation in Tc,

shown in Table I. The scatter in the λab values shown in the upper panel of Fig. 5.3 has an

approximately constant value of ±0.075 µm for all values of x, which probably indicates that

the source of the scatter is the same for all doping levels. For comparison, Fig. 5.3 also shows
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λab(0) obtained from µSR measurements (red stars) [Williams et al. (2009, 2010)], the MFM

technique (black stars) [Luan et al. (2010, 2011)], which later confirmed the TDR values, and

optical reflectivity (purple stars) [Nakajima et al. (2010)], all in the Ba(Fe1−xCox)2As2 system,

most of which are consistent with the TDR results within the scatter. It may also be important

to note that the λab(0) values from other experiments are all on the high side of the scatter

that exists within the TDR λab(0) data set. This is probably because any cracks or voids in

the Al film will lead to underestimated values of λab(0). It should also be noted that the TDR

measurements did not show an increase in λab(0) toward the overdoped regime that has been

reported by µSR measurements [Williams et al. (2010)], although the values at optimal doping

do agree quite reasonably.

Specifically, an increase in λab(0) on the underdoped side below x ≈0.047 has been observed,

which is in the region where the itinerant antiferromagnetic and superconducting phases co-

exist, as is shown in the bottom panel of Fig. 5.3. The dependence of λab(0) on carrier

concentration is λab(0) ∝ 1/
√

ns(0), where ns(0) is the superfluid density at T=0, which is

equal to the normal state carrier concentration in the clean impurity scattering limit. The

relationship between λab(0) and ns(0) still holds if impurity scattering effects are included,

but ns is reduced due to a residual density of normal states within the gap. Overall, an in-

crease in λab(0) is consistent with a decrease in the superfluid carrier concentration. There

is compelling evidence which suggests that the itinerant antiferromagnetic spin density wave

state in these materials acts to gap away a portion of the Fermi surface [Canfield and Bud’ko

(2010); Ni et al. (2008b); Drew et al. (2009); Pratt et al. (2009); Christianson et al. (2004);

Laplace et al. (2009); Goko et al. (2004); Fernandes et al. (2010)], which would remove mobile

charge carriers and this qualitative idea is consistent with our experimental observations of the

doping dependence of λab(0). Changes in the Hall coefficient for these materials, moving from

doping levels that correspond to the pure superconducting region to the coexistence region,

have also been interpreted as being due to the interaction between these phases [Mun et al.

(2009); Fang et al. (2009)]. It has been shown that the opening of a superconducting gap in

the antiferromagnetic state transfers optical spectral weight from a mid-infrared Drude peak,
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even when the reconstructed Fermi surface would be fully gapped [Fernandes and Schmalian

(2010)]. As a result, the coexistence state has a finite ns, although smaller than in the pure

superconducting state.

In order to provide a more quantitative explanation for the observed increase in λab(0) as x

decreases in the underdoped region, we have considered the case of s±-wave superconductivity

coexisting with itinerant antiferromagnetism [Fernandes et al. (2010)]. For the case of particle-

hole symmetry (nested bands), the zero temperature value of the in-plane penetration depth

in the region where the two phases coexist is

λSC+SDW
ab (0) = λ0

ab(0)

√

1 +
∆2

AFM

∆2
0

, (5.2)

where λ0
ab(0) is the value for a pure superconducting system with no magnetism present, and

∆AFM and ∆0 are the zero-temperature values of the antiferromagnetic and superconduct-

ing gaps, respectively. Deviations from particle-hole symmetry lead to a smaller increase in

λSC+SDW
ab (0), making the result in Eqn. 5.2 an upper estimate. For more information on the

details of the calculation and the values of ∆AFM and ∆0 used, see Refs. [Fernandes et al.

(2010); Fernandes and Schmalian (2010)].

The three blue dashed lines shown in the top panel of Fig. 5.3, which were produced

using Eqn. 5.2, show the expected increase in λab(0) in the region of coexisting phases below

x ≈0.047 by normalizing to three different values of λab(0) in the pure superconducting state,

with those being 120, 180 and 270 nm. This theory does not take into account changes in

the pure superconducting state, so for x > 0.047 the dashed blue lines are horizontal. These

theoretical curves were produced using parameters that agree with the phase diagram in the

bottom panel of Fig. 5.3 [Fernandes et al. (2010); Nandi et al. (2010)], which includes a shift of

the coexistence region to lower values of x by an amount of 0.012, and given the simplifications

of the model, the agreement with the experimental observations is quite reasonable. A possible

reason for the required shift of 0.012 in the theoretical curves could be that the scatter in the

measured values of λab(0) is too large.

While the exact functional form was not provided by any physical motivation and merely
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serves as a guide to the eye, the solid gray line in Fig. 5.3 is a fit of the TDR λab(0) data to a

function of the form A + B/xn, which does indeed show a dramatic increase in λab(0) in the

coexistence region and also a relatively slight change in the pure superconducting phase. It

should be noted that a dramatic increase in λab(0) below x ≈ 0.047 cannot be explained by

impurity scattering, which would only lead to relatively small corrections to the penetration

depth.

Values of λab(0) obtained in this experiment can be used to calculate the actual penetra-

tion depth, λab(T ) = ∆λab(T ) + λab(0), where ∆λab(T ) has been measured for most of the

Ba(Fe1−xCox)2As2 crystals used in this study before Al coating [Gordon et al. (2009a,b)]. In

the top panel of Fig. 5.4, we examine λ−2
ab (T ) ∝ ns(T )/m∗ as a function of temperature in

underdoped, optimally doped and overdoped samples, where the values of λab(0) used are the

corresponding values shown in Fig. 5.3 and Table I. Shown in the top panel of Fig. 5.4 are an

underdoped sample with Tc =7.4 K (x=0.038, sample no. 1), a sample close to optimal doping

with Tc=22.8 K (x=0.074, sample no. 10) and an overdoped sample with Tc=17.2 K (x=0.1,

sample no. 13). There is a clear evolution toward higher superfluid density approaching

optimal doping.

Using the same penetration depth data that was used in the top panel of Fig. 5.4, the

normalized superfluid density (phase stiffness), ρs(T ) = [λ(0)/λ(T )]2, has been constructed.

The bottom panel of Fig. 5.4 shows ρs(T ) for the same samples shown in the top panel.

Also shown for comparison are the ρs(T ) curves for a single band s-wave superconductor

(dotted blue line) and a dx2−y2-wave superconductor (dotted gray line), both in the clean

limit. From Fig. 5.4, ρs(T → 0) and ρs(T → Tc) behave quite differently for the members

of the Ba(Fe1−xCox)2As2 series compared to the standard, single gap s-wave and dx2−y2-wave

clean limit cases. Impurity scattering would turn the dx2−y2-wave curve quadratic at low

temperatures, but would leave the s-wave curve nearly the same.

The data for all doping levels show an overall similar trend of the evolution of ρs(T ) across

the doping phase diagram. A special feature of these curves is the region of upward concavity

just below Tc. This behavior suggests that below Tc the superconducting gap develops more
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Figure 5.4 Top panel: λ−2
ab (T ) for samples representing different dop-

ing regimes of the Ba(Fe1−xCox)2As2 series. These curves

were constructed from previous measurements of ∆λab(T )
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perfluid density, ρs(T ) = [λab(0)/λab(T )]2, for the same samples

shown in the top panel along with the standard clean s-wave

and clean d-wave curves.
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slowly than it does in the case of a single superconducting gap, implying that there is likely

more than one gap [Kogan et al. (2009)]. Furthermore, the normalized ρs(T ) curve for the

optimally doped sample over the entire temperature range stays above the curves for the heavily

underdoped and overdoped samples, though in the latter case the difference is on the order of

the statistical error in the measured values of λab(0) (Fig. 5.3). The distinction between the

measurements on samples with different Co concentrations suggests that the gap anisotropy,

which is generally considered as being either the actual angular variation in k-space and/or the

development of an imbalance between the gaps on different sheets of the Fermi surface, increases

as x moves away from optimal doping in either direction. Although these measurements do

no go into the far overdoped regime, these results are consistent with the measurements of

the specific heat jump [Bud’ko et al. (2009)] and the residual density of states [Gofryk et al.

(2009)], as well as with measurements of the thermal conductivity in the same series [Tanatar

et al. (2010); Reid et al. (2010)]. In particular, thermal conductivity measurements with heat

flow along the c-axis actually suggest that nodal regions in the superconducting gap develop

for heavily underdoped and heavily overdoped compositions. This is also consistent with

measurements of λc(T ) performed in the closely related Ba(Fe1−xNix)2As2 series, where c-axis

nodes have been suggested by the linear temperature dependence of the c-axis component of

the penetration depth [Martin et al. (2010a)].

5.5 Summary

To conclude this chapter, the zero temperature value of the in-plane London penetration

depth, λab(0), has been measured for the Ba(Fe1−xCox)2As2 series across the superconducting

dome of the phase diagram using an aluminum coating technique along with TDR frequency

measurements [Gordon et al. (2010a)]. There is a clear increase in λab(0) below x ≈0.047,

which is consistent with a reduction in the superfluid density, ns(T ), due to the competition

between itinerant antiferromagnetism and superconductivity for the same conduction electrons

[Fernandes et al. (2010); Fernandes and Schmalian (2010)]. The measured values of λab(0)

were used to construct the normalized superfluid density, ρs(T ), and study its evolution with
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doping. The region of upward concavity in ρs(T ) just below Tc for concentrations ranging

across the phase diagram suggests the importance of two-gap superconductivity for all doping

levels [Kogan et al. (2009)]. A notable suppression of ρs(T ) for heavily underdoped samples

and a minor suppression for overdoped samples suggests an evolution of the anisotropy of

the superconducting gaps as the doping level moves away from its optimal value, which is

consistent with the behavior found in specific heat [Bud’ko et al. (2009); Gofryk et al. (2009)]

and thermal conductivity [Tanatar et al. (2010); Reid et al. (2010)] studies.
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CHAPTER 6. Conclusion

6.1 Initial remarks

Up to this point, much of this thesis has been intended to show penetration depth data

taken on several different iron-based superconductors in an organized way, but this has not

facilitated a general discussion of all of the penetration depth results. The intention of this

chapter is not only to summarize what has already been shown, but also to provide a place for

a general, organized discussion of the penetration depth data and also to allow for results from

new experiments that have not yet been shown in this thesis to be introduced and included in

the discussion.

6.2 Penetration depth power laws from pair-breaking impurity scattering

in iron-based superconductors

At the present date the community has agreed upon the general idea that the power law

temperature dependence observed in the penetration depth at low temperatures in the iron-

based superconductors arises from pair-breaking impurity scattering effects. This claim has

gained substantial support from penetration depth measurements performed on

Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2 samples that were irradiated with heavy ions [Kim

et al. (2010a)], so that contributions to the penetration depth from impurity scattering could

be separated in the best way possible. It has also gained support from measurements of an

exponential temperature dependence of the penetration depth in LiFeAs, which is believed to

be be an intrinsically clean iron-based superconductor having Tc ≈18 K [Kim et al. (2010c)].

In the clean impurity scattering limit of the proposed s±-wave superconducting gap structure
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one expects to recover an exponential dependence of the penetration depth [Vorontsov et al.

(2009)].

In order to study the contribution to the measured in-plane London penetration depth

in the iron-based superconductors from pair-breaking impurity scattering, optimally doped

single crystals of Ba(Fe1−xCox)2As2 (Tc ≈ 22.5 K) and Ba(Fe1−xNix)2As2 (Tc ≈ 18.9 K) were

irradiated with 208Pb56+ ions at the Argonne Tandem Linear Accelerator System (ATLAS)

with an ion flux of ≈5 × 1011 ions s−1 m−2 [Kim et al. (2010a)]. The Pb ions passed through

the samples parallel to the c-axis and created tracks in the form of columnar defects. These

defects act to increase impurity scattering in the crystals and their density can be monitored

in a very controlled way. For each series, large single crystals were selected and then cut

into several pieces preserving the widths and thicknesses. One piece from each series was left

unirradiated and all other pieces were irradiated with different dosages.

The in-plane London penetration depth was measured for each sample to observe the

effect of the heavy ion irradiation on the low-temperature behavior. For both series it has

been found that an increase of the irradiation dose results in a monotonic decrease of Tc

without affecting much the transition width. For all 122 samples measured, a power law

temperature dependence of the low-T in-plane penetration depth has been observed of the

form ∆λab(T ) ∝ T n with 2.2 < n < 2.8. As the irradiation dosage increases, it has been found

for both series that the power law exponent n decreases. This decrease in n as the concentration

of impurities increases is at qualitative odds with the expectations for both an s-wave and a

dx2−y2-wave superconductor. Both the decrease in Tc and the decrease in n as the irradiation

dosage increases can be explained by considering a model for s±-wave superconductivity which

takes into account both intra- and inter-band impurity scattering effects through the t-matrix

approximation [Kim et al. (2010a)]. The superfluid density was constructed for this model

by considering two isotropic gaps and it has been shown to evolve from exponential at low

temperatures in the clean case to a power law dependence for samples in the dirty scattering

limit, which describes the penetration depth data quite well. The best agreement between the

theory and the experiment was for two isotropic gaps with ∆2 ≈ −0.6∆1, a strong interband
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scattering component and a phase shift of δ = 60◦ between the born (δ →0◦) and unitary

(δ →90◦) scattering limits.

Since the Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2 systems are naturally impure because

they must be doped to achieve superconductivity, the predicted exponential temperature de-

pendence of the penetration depth, corresponding to the clean impurity scattering limit, has

not been observed. However, the stoiciometric LiFeAs compound has allowed for the hypoth-

esis that the iron-based superconductors show an exponential penetration depth in the clean

limit to be tested because it is an undoped superconductor with Tc ≈ 18 K. The statement

that LiFeAs is in the intrinsically clean limit is further supported by its relatively large resid-

ual resistivity ratio (RRR), which is a way of determining the purity level of a sample by

comparing the amount of scattering in the high and low temperature states. A large RRR

value usually corresponds to a very small resistivity at low temperatures, indicating that the

crystal has few imperfections. The RRR of LiFeAs has been found to be ≈50 for the measured

samples, compared to RRR≈3 in the Ba(Fe1−xCox)2As2 series [Ni et al. (2008b)], indicating

that LiFeAs has fewer imperfections that can contribute to scattering at low temperatures.

The in-plane London penetration depth has been measured in three different samples of

LiFeAs and the out-of-plane penetration depth was also measured for one of the samples [Kim

et al. (2010c)]. Remarkably, the low-temperature region of the in-plane penetration depth for

the LiFeAs samples exhibits an exponential temperature dependence, which is expected for an

s±-wave superconductor in the clean impurity scattering limit. By performing a power law

fit of the form ∆λab(T ) = CT n, the resulting power law is n ≈3.1, which is larger than any

other value obtained previously for an iron-based superconductor and would be consistent with

an exponential behavior. The out-of-plane penetration depth, which was measured with Hac

perpendicular to the c-axis, also shows evidence for saturation at low temperatures, although

the data are much noiser for that experiment.

A single gap BCS fit to the low-T region of the in-plane penetration depth for LiFeAs yields

values for the fit residuals that are as good as the previously mentioned power law fit. The

single gap BCS fit gives λ(0) ≈ 280 nm and a gap ratio of ∆(0)/Tc=1.09. This value of λ(0)
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is comparable to values obtained in other iron-based superconductors [Gordon et al. (2010a)],

but the gap ratio is smaller than the expected weak coupling value of 1.76 for a single fully-

gapped s-wave superconductor. Such a small gap ratio has also been found by using a single

gap BCS fit on data from superconductors that are known to have multiple superconducting

gaps, like MgB2, V3Si and Lu2Fe3Si5 [Kogan et al. (2009); Martin et al. (2008)]. To see how

well the data may be described by a model accounting for multiple gaps, the two gap γ-model

[Kogan et al. (2009)] was used to fit the LiFeAs superfluid density data, where both gaps were

computed self-consistently and both intra and inter-band impurtiy scattering effects were taken

into account. The best fit gave ∆1(0)/Tc=1.885 and ∆2(0)/Tc=1.111, which is in agreement

with the observation that the penetration depth data of all two gap superconductors, when

fit to the two gap self-consistent γ model, produce one gap ratio that is larger than the weak

coupling BCS value and one that is smaller.

To summarize, heavy ion irradiation experiments on single crystals of Ba(Fe1−xCox)2As2

and Ba(Fe1−xNix)2As2 superconductors have indicated that as the concentration of impurity

scatterers inside of the material increases, the power law exponent of the London penetration

depth decreases as does the Tc of the material without changing the width by much. These ob-

servations are very well described by a model for s±-wave superconductivity which accounts for

both intra- and inter-band impurity scattering, implying that in the clean impurity scattering

limit, the iron-based superconductors should display an exponential saturation of the in-plane

penetration depth at low temperatures. This hypothesis has been tested by measuring the

penetration depth in single crystals of clean and stoichiometric LiFeAs (Tc ≈18 K), which in-

deed do show an exponential saturation of the in-plane penetration depth at low temperatures

and the superfluid density data are well fit by the self-consistent two gap γ-model.

6.3 The doping dependence of ∆λab in Ba(Fe1−xTx)As2 (T=Co,Ni)

Let us now turn to a discussion of the doping dependence of the power law exponent, n, of

the low-temperature region of the in-plane London penetration depth in the Ba(Fe1−xCox)2As2

[Gordon et al. (2009b,a)] and Ba(Fe1−xNix)2As2 [Martin et al. (2010a)] compounds. For all
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concentrations a power law temperature dependence of the form ∆λab ∝ T n has been observed.

As explained previously, the power law exponent, n, was obtained by fitting the low-T region

of the penetration depth (T < Tc/3) data to a function of the form ∆λab(T ) = CT n. By

measuring several different doping concentrations, x, of both series, n has been studied as a

function of the doping level across different regions of their respective temperature-doping phase

diagrams. There is supporting evidence to suggest that the observed power law temperature

dependence of the penetration depth in the Ba-based 122 iron-based superconductors arises

from pair-breaking impurity scattering [Kim et al. (2010a)] and that in the clean scattering

limit these materials would exhibit an exponential temperature dependence in the penetration

depth, which is expected for a superconductor having an s±-wave order parameter symmetry

and has actually been observed in the intrinsically clean LiFeAs [Kim et al. (2010c)]. In what

follows, possible explanations for the observed doping dependence of the power law exponent

in the Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2 compounds are discussed. Penetration depth

data do exist for other transition metal dopings of the BaFe2As2 series, but none have been

studied as extensively as the Ni and Co doped members from a penetration depth perspective.

Recall that for the Ba(Fe1−xCox)2As2 series, the in-plane penetration depth has been mea-

sured for samples with x=0.038,0.047, 0.058,0.074 and 0.10, with optimal doping being between

0.058 and 0.074. The x=0.10 sample is only slightly overdoped and higher concentrations were

not studied because large single crystals were not available at the time of these measurements.

A power law temperature dependence of the low-T in-plane penetration depth has been ob-

served for all concentrations, with n being as low as 2 for underdoped samples and climbing

as high as 2.5 for the highest measured overdoped concentration of x=0.10. There is a clear

change of regime at x ≈0.06 where the power law, n, increases rapidly and the penetration

depth prefactor, C from ∆λab(T ) = CT n, jumps by an order of magnitude, which both happen

while moving toward higher concentrations.

One possible reason for the change of regime that occurs at x ≈0.06, where there are clear

signatures in the power law exponent n and the prefactor C, could be associated with the fact

that this is the portion of the phase diagram where the antiferromagnetic/structural phase
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transition lines intersect the superconducting dome. On the underdoped side of the dome, the

formation of structural domains may be able to account for why the external magnetic field is

being screened differently with respect to all other measured concentrations. Alternatively, the

change of regime at x ≈0.06 could be explained by an interaction between the superconducting

and itinerant antiferromagnetic phases on the underdoped side of the dome. There have

been reports of evidence confirming that these two phases coexist in this region of the phase

diagram [Canfield and Bud’ko (2010); Ni et al. (2008b); Drew et al. (2009); Pratt et al. (2009);

Christianson et al. (2004); Laplace et al. (2009); Goko et al. (2004); Fernandes et al. (2010)]

and also measurements of the zero temperature value of the penetration depth, λab(0), have

shown that it increases by an order of magnitude upon passing into the region of coexistence

in this series [Gordon et al. (2010a)], which has been shown to be in quantitative agreement

with a theoretical model accounting for competition between s±-wave superconductivity and

itinerant antiferromagnetism for the same charge carriers [Fernandes et al. (2010); Fernandes

and Schmalian (2010)].

A different possible explanation for the change in regime at x ≈0.06 in the Ba(Fe1−xCox)2As2

series could be a modulation of the superconducting gap with Co doping. Thermal conductiv-

ity measurements [Tanatar et al. (2010)] performed as a function of doping in this series have

found that the superconductivity is fully gapped in the ab-plane for all doping levels, but the

application of a magnetic field indicates that quasiparticles are excited easitly. Because they

are excited easily by a magnetic field, it has been proposed that this is due to a significant

anisotropy in the superconducting gap.

Other measurements of the thermal conductivity in this series have been performed with

heat current applied both parallel and perpendicular to the c-axis for seven different Co con-

centrations ranging from x=0.038 (underdoped) to x=0.127 (overdoped) [Reid et al. (2010)].

In zero applied magnetic field, the resulting thermal conductivity for heat current applied per-

pendicular to the c-axis, more specifically along the a-direction, shows no residual linear term

across the entire superconducting phase diagram. The residual linear term is the electronic

contribution to the thermal conductivity in the low-temperature limit and if it is a negligible
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fraction of the normal state value, then there are no normal state quasiparticles available to

transport heat along the measured direction. The situation for heat current applied along

the c-axis tells a different story though. Along the c-axis, in zero applied magnetic field, a

negligible linear term has been found at optimal doping, but as one moves toward either edge

of the superconducting dome, the linear term in the thermal conductivity rises to a significant

fraction of the normal state thermal conductivity. This implies that at optimal doping there

are no nodes in the gap anywhere on the Fermi surface, but as one moves away from optimal

doping, nodes in the gap are present on portions of the Fermi surface that are responsible for

c-axis conduction.

The thermal conductivity data taken in applied magnetic fields gives very useful informa-

tion because the magnetic field acts as another way to excite quasiparticles. For the thermal

conductivity measured along the a-axis it has been found that the application of a moderate

magnetic field, Hc2/4, excites quasiparticles along the a-direction just as well as nodal quasipar-

ticles are excited along the c-axis in zero applied magnetic field. This would imply that along

portions of the Fermi surface that contribute to in-plane conductance the superconducting gap

magnitude is small, but nonzero. Altogether, the thermal conductivity study as a function of

doping in Ba(Fe1−xCox)2As2 has been interpreted in terms of a strong k dependence of the gap

∆(k) which produces nodes on a Fermi surface sheet with pronounced c-axis dispersion and

deep minima on the remaining, quasi two-dimensional sheets. Since the proposed c-axis nodes

disappear at optimal doping, it is most likely that they are accidental, meaning that they are

not enforced by symmetry, in contrast to the symmetry enforced line nodes in a dx2−y2-wave

superconductor.

The proposed modulation of the superconducting gap with doping in the Ba(Fe1−xCox)2As2

series from thermal conductivity data could explain the doping dependence of the power law

exponent from penetration depth measurements in the same series. Since ∆λab(T ) mainly

gives information about the in-plane superconducting gap, it is likely that the decrease near

the underdoped edge of the superconducting dome is due to the development of a significant

in-plane gap anisotropy. Another question that can arise when comparing the thermal con-
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ductivity and penetration depth data in the Ba(Fe1−xCox)2As2 series is if there are no nodes

on the Fermi surface at optimal doping, then why isn’t the penetration depth exponential?

The most probable answer to this question is that penetration depth measurements seem to

be more susceptible to impurity scattering than thermal conductivity measurements. The

heavy ion irradiation penetration depth study provides very strong evidence for a large con-

tribution to the 122 data from pair-breaking impurity scattering, but a negligible linear term

in the thermal conductivity for heat current applied both parallel and perpendicular to the

c-axis is very compelling evidence for fully gapped superconductivity at optimal doping in

Ba(Fe1−xCox)2As2.

Now let us turn to a discussion of the doping dependence of the penetration depth in the

Ba(Fe1−xNix)2As2 series. Recall that ∆λab(T ) was measured for five different concentrations

ranging from x=0.033 (underdoped) to x=0.072 (overdoped). A power law temperature de-

pendence has been observed for all samples measured and it decreases monotonically from

n ≈2.2 at x=0.033 to n ≈1.6 at x=0.072. Measurements performed in a dilution refrigera-

tor have indicated that this power law temperature dependence persists down to as low as

T = Tc/100. In addition, for this series ∆λc(T ) has been measured for two overdoped samples

(both x=0.072) and one underdoped sample (x=0.033) and it has been found that for these

concentrations near both edges of the superconducting dome the penetration depth exhibits a

linear temperature dependence.

First, let us consider the doping dependence of the in-plane penetration depth power law

exponent in the Ba(Fe1−xNix)2As2 series. Compared to the Ba(Fe1−xCox)2As2 series the

relative change in n with doping for superconducting concentrations across the phase diagram is

quite different. This may seem surprising because both materials share many similar features in

their respective temperature-doping phase diagrams and both are the result of transition metal

substitutions in the same parent compound. For the Ni doped series, n decreases monotonically

from 2.2 for very far underdoped concentrations to 1.6 for very far overdoped ones, while for

the Co doped series n is roughly 2 near the underdoped edge and increases toward optimal

doping to a value as high as 2.5 for x=0.10. One major difference that exists between the
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Ba(Fe1−xNix)2As2 and Ba(Fe1−xCox)2As2 compounds is the amount of the dopant ion that

is needed to completely suppress superconductivity. Since Ni donates two electrons per ion

and Co donates only one per ion, roughly half as much Ni is needed to completely suppress

superconductivity in this system compared to Co doping [Canfield et al. (2009)]. Since we know

that doping in the Ba-based 122 series does induce pair-breaking scattering [Kim et al. (2010a)],

the fact that the Co doped crystals require more disorder to achieve superconductivity may

imply that the pair-breaking scattering in these two series is not playing exactly the same role.

If the doping dependence of the power law exponent is strongly influenced by pair-breaking

scattering in these materials, then one viable explanation for the observed difference in the

behavior of n(x) for the Co and Ni doped systems is that these two series lie in different regimes

of pair-breaking impurity scattering.

As for why the power law exponent n decreases as the Ni concentration is increased, per-

haps the best understanding of this can come from the result of the heavy ion irradiation study

done on the Ni and Co doped 122 systems. From this study it was found that as the impu-

rity concentration increases, the resulting power law exponent decreases for these materials.

This could explain why the power law exponent decreases as the Ni concentration increases

for those Ba(Fe1−xNix)2As2 samples on which the penetration depth measurements were per-

formed. However, applying this same logic to the Ba(Fe1−xCox)2As2 series does not work,

but arguments may be invoked related to the fact that these materials may be in different

impurity scattering regimes. Another possible explanation, but albeit much more complicated,

is that the doping dependence of the superconducting gaps in Ni and Co doped 122 systems

is not the same, but before such complicated assertions are made it is perhaps wiser to search

for a simpler explanation where the superconductivity in these two very similar systems is

fundamentally the same.

The observed linear temperature dependence of ∆λc(T ) in the Ba(Fe1−xNix)2As2 series for

two samples near the overdoped edge of the phase diagram and one sample near its under-

doped edge has been interpreted as the formation of line nodes in the superconducting gap

on portions of the Fermi surface that contribute to c-axis conduction. This is consistent with
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the previously mentioned thermal conductivity data in Ba(Fe1−xCox)2As2, where their data

has been interpreted in terms of a full superconducting gap at optimal doping that is doping

dependent with the formation of c-axis nodes in concentrations that are near both edges of the

superconducting dome [Reid et al. (2010)]. Naturally, for this hypothesis to be tested further

∆λc(T ) measurements should be performed on many different doping levels spanning the entire

superconducting region of the phase diagrams for both Ba-based 122 systems to confirm that

indeed there is not a linear temperature dependence at optimal doping, indicating that these

c-axis nodes are accidental and they disappear at optimal doping.

To conclude the discussion of the doping dependence of the London penetration depth in

Ba(Fe1−xTx)2As2 (T=Co,Ni) superconductors, a power law temperature dependence of the

form ∆λab(T ) ∝ T n has been observed for all samples and the power n has been found to

change with the doping level x in the material. It is known that the origin of the power law

temperature dependence is pair-breaking impurity scattering, which is supported by heavy ion

irradiation measurements in Ba(Fe1−xTx)2As2 (T=Co,Ni) and the observation of an exponen-

tial temperature dependence in the intrinsically clean LiFeAs superconductor. The doping

dependence of the power law exponent could arise from a doping-dependent pair-breaking im-

purity scattering mechanism or from a modulation of the superconducting gap with doping,

which is supported by thermal conductivity measurements in Ba(Fe1−xCox)2As2 and consis-

tent with the linear temperature dependence of ∆λc(T ) for concentrations near both edges of

the superconducting dome in Ba(Fe1−xNix)2As2.

6.4 The doping dependence of ∆λab(T ) in Ba(Fe1−xTx)2As2

(T=Ru,Rh,Pd,Pt,Co+Cu)

The in-plane London penetration depth has been measured in single crystals at various

doping levels from the Ba(Fe1−xTx)2As2 series with T=Ru,Rh,Pd,Pt,Co+Cu. For all measured

concentrations, the variation of the in-plane penetration depth from its zero temperature value

has been found to follow a power law behavior of the form ∆λab(T ) ∝ T n with n taking values

that range from 1.5 to 2.5. The power law exponent, n, for each sample was determined by
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fitting the penetration depth below Tc/3, which is usually referred to as the low-temperature

region of the data. Although the measurements done on the Ba(Fe1−xTx)2As2 compounds

are less complete in terms of doping levels studied than those done on the Co and Ni doped

materials discussed in the previous section, they are still useful for studying the effect of

transition metal doping on the Fe site of BaFe2As2.

In general, it has been found for Ba(Fe1−xTx)2As2 (T=Ni,Ru,Pd,Pt,Co+Cu) superconduc-

tors that as x increase, the power law exponent n decreases, which is at least qualitatively

consistent with the conclusions derived from the heavy ion irradiation penetration depth ex-

periment [Kim et al. (2010a)]. This is in contrast to the doping dependence of the power law

exponent in the Ba(Fe1−xCox)2As2 and Ba(Fe1−xRhx)2As2 series. It is interesting to note

that both systems that do not show a decrease of n with increaseing x, namely the Co and Rh

systems, both donate the same nominal number of carriers to the charge environment of the

crystal.

Most probably, the origin of the power law exponent in all transition metal substituted

Ba-based 122 iron-based superconductors is the same, with that being pair-breaking impurity

scattering [Kim et al. (2010a)]. It is believed that this power law dependence evolves into an

exponential one for an iron-based superconductor in the intrinsically clean limit [Kim et al.

(2010c)]. However, the doping dependence of the power law exponent for Ba(Fe1−xTx)2As2

(T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors has not yet been understood. For T=Co

and Rh, the power law exponent has been found to display a different doping dependence than

all other transition metal substitutions and future measurements should be poised to address

why this is so.

6.5 The evolution of λab(0) and ρs(T ) in Ba(Fe1−xCox)2As2

The ability to measure the absolute value of the London penetration depth in a supercon-

ductor is valuable because not only does it allow one to construct the normalized superfluid

density, but also it can be used to study the effects arising from interactions between the

superconductivity and other nearby phases. A novel procedure has been developed to allow
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for TDR frequency shift measurements to be calibrated to obtain the absolute value of the

penetration depth in a superconductor that takes advantage of the calibration point supplied

by a thin film of aluminum deposited onto the surface of the sample to be studied.

By using the aforementioned calibration procedure, the zero temperature value of the

in-plane London penetration depth has been measured as a function of Co doping level,

x, in Ba(Fe1−xCox)2As2 for 13 samples with concentrations ranging from very underdoped

(x=0.038) to beyond optimally doped (x=0.10) [Gordon et al. (2010a)]. Far overdoped sam-

ples were not measured because at the time of these experiments, high quality single crystals

were not yet available in that range of the phase diagram. For x ≥ 0.047, λab(0) has been

found to have values in the range of roughly 200±75 nm, but for x < 0.047, λab(0) statistically

increases by almost a factor of 5 to values as high as 935 nm, which was later verified by a

different type of measurement that is sensitive to the penetration depth [Luan et al. (2011)].

There appears to be a constant scatter in the data points of approximately ±75 nm for all

concentrations, which probably means that the source of the scatter is the same for all samples.

Most likely, it arises due to inhomogeneities or imperfections in the Al film. Along with previ-

ous measurements in this same series [Gordon et al. (2009b,a)] of the variation of the in-plane

penetration depth with respect to its low-temperature value, ∆λab(T ), these values of λab(0)

have been used to properly normalize the superfluid density, ρs(T ) = (1 + ∆λ(T )/λ(0))−2, in

order to study the doping evolution of the superconducting gap, ∆(k).

The most likely explanation for the observed statistical increase in λab(0) by a factor of 5

upon moving into the far underdoped region of the phase diagram is a competition between

the superconducting and itinerant antiferromagnetic phases for the same charge carriers. In

support of this hypothesis is the fact that many different experiments have shown that it is

very likely that these two phases coexist in Ba(Fe1−xCox)2As2 [Canfield and Bud’ko (2010); Ni

et al. (2008b); Drew et al. (2009); Pratt et al. (2009); Christianson et al. (2004); Laplace et al.

(2009); Goko et al. (2004); Fernandes et al. (2010)]. In addition, a theoretical model [Fernandes

and Schmalian (2010)] has been developed in order to calculate the expected increase in λab(0)

in the coexistence region based on a competition between an s±-wave superconducting state
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and an itinerant antiferromagnetic phase for the same charge carriers. This theory has used

actual neutron scattering data to produce curves for the doping dependence of λab(0), which

fit the experimental data quite well after considering the simplicity of the model.

Nearly all of the samples that were used in this study already had ∆λab(T ) measurements

performed on them [Gordon et al. (2009b,a)], so the measured values of λab(0) allowed for

the construction of the normalized superfluid density by using ρs(T ) = (1 + ∆λ(T )/λ(0))−2

for various superconducting concentrations across the phase diagram of Ba(Fe1−xCox)2As2.

The superfluid density curves for all measured concentrations do share some common features,

mainly that there is a reduction of the superfluid density at all temperatures, especially in-

termediate ones, with respect to the standard curve for the single gapped, isotropic case and

there is a region of upward concavity just below Tc. This behavior of the normalized superfluid

density with temperature is qualitatively the same as what has been measured for two gap

superconductors like MgB2 or V3Si [Kogan et al. (2009)]. The optimally doped superfluid

density curve remains above the superfluid density curves for underdoped samples as well as

for the sample that is beyond optimal doping. This could be explained by a modulation of

the superconducting gap with doping that is full at optimal doping, even though pair-breaking

scattering still produces a power law temperature dependence there, and the formation of

nodes for concentrations moving away from optimal doping. This picture would be consistent

with recent measurements of the in-plane and c-axis thermal conductivity in this same series

[Reid et al. (2010)].

6.6 Pair-breaking scattering effects from the penetration depth prefactor

Understanding the role of pair-breaking impurity scattering effects in superconductors is

vital to discovering the true superconducting gap symmetry in materials where these contri-

butions are not negligible. By measuring the prefactor of the penetration depth for various

iron-based superconductors [Gordon et al. (2010b)], a theoretical prediction was able to be

tested and it has been found to describe the data quite successfully. This result supports the

hypothesis that pair-breaking impurity scattering effects are important for understanding and
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interpreting the penetration depth data in iron-based superconductors.

The samples used in this study were six concentrations from the Ba(Fe1−xCox)2As2 series,

five concentrations from the Ba(Fe1−xNix)2As2 series, the hole doped (Ba0.07K0.30)Fe2As2 com-

pound, Fe1.001(Se0.367Te0.632), LaFeAs(O0.9F0.1) and NdFeAs(O0.9F0.1). With such a diverse

collection of iron-based superconductors, the results have been interpreted as being general to

all classes of these materials.

The variation of the in-plane penetration depth with temperature, ∆λab(T ), was measured

for all of the previously mentioned samples. The low-temperature region of each data curve was

fit to a function of the form ∆λab = βT 2 in order to extract the prefactor β for each sample,

in contrast to fits of the form ∆λab(T ) = CT n where the units on C depend on the power

law value n. The prefactor β was determined for these samples in order to test a theoretical

prediction stating β ∝ 1/T 3
c , which was derived from a quasiclassical version of the weak-

coupling Gor’kov theorgy that holds for a general Fermi surface geometry and requires that

the average value of the superconducting gap about the Fermi surface is very small. According

to this model, the previously stated dependence of β on Tc arises only from pair-breaking

impurity scattering, making this an excellent way through which the pair-breaking impurity

scattering in these superconductors can be studied. This same model has been successful in

describing the specific heat jump versus Tc and the slopes of the upper critical fields in these

materials [Kogan (2009); Bud’ko et al. (2009)].

The fact that the prefactors determined from the low-T fits are so well described by the

β ∝ 1/T 3
c relationship is strongly in support of a non-negligible contribution to the penetration

depth data from pair-breaking impurity scattering, but no model is perfect and the weak

points of this theory should be reviewed. First of all, the assumption that the average value of

the order parameter is very small would be consistent with the proposed s±-wave symmetry,

but it is still not clear if this is the true superconducting gap symmetry in the iron-based

superconductors. There are some who believe that many different ground states are close to

each other for these materials [Maier et al. (2011); Wang et al. (2011); Das and Balatsky (2011)],

i.e. s±-wave and nodeless d-wave states, and more than one has actually been realized in these
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materials, which could explain the reported experimental discrepancies. Another concern is

that the β ∝ 1/T 3
c dependence was derived under the assumption that the material is in the

strongly disordered limit. The problem with this assumption is that a rough calculation of the

Tc that would correspond to the clean limit of the material would be on the order of room

temperature, which most people believe is highly unlikely.

Although this model has been scrutinized by many, it is still the result of a wonderful effort

to attempt to describe the physics of these materials. There are obvious problems that arise

when considering the simplifying assumptions of this model, but the ability for it to describe

the penetration depth prefactor versus Tc [Gordon et al. (2010b)], the specific heat jump versus

Tc [Bud’ko et al. (2009)] and the slopes of the upper critical fields [Kogan (2009)] is actually

quite amazing.

6.7 Closing remarks

Superconductivity has come a long way since its initial discovery in low Tc materials that

are now considered to be ”conventional” [Onnes (1911)]. Many researchers hoped that the

discovery of high-Tc superconductivity in the iron-based superconductors [Kamihara et al.

(2008)] would shed enough light to solve the perplexing puzzle that was put before us in 1986

with the discovery of the high-Tc cuprates [Müller and Bednorz (1987)], but to no avail this

hope has not yet been realized.

One major drawback for experimentalists after the discovery of the cuprates was the lack

of availability of large, high quality single crystals from which trustworthy experimental results

could be obtained. In fact, many people believed that the low-temperature penetration depth

in the cuprates was ∆λ ∝ T 2 until it was shown that this observation was an artifact of

impurity scattering in samples of poor quality nearly seven years after their discovery [Hardy

et al. (1993)]. Fortunately for the iron-based superconductors, the sample quality for some

compounds became quite good just months after their initial discovery, making it a little

easier to trust experimental reports than it was for the case of the cuprates.

Just as it was the case for the cuprates, the initial reports of the temperature dependence
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of the low-T penetration depth in the iron-based superconductors were spurious [Malone et al.

(2009)]. These claims stated that an exponential saturation of the penetration depth at low-

temperatures had been observed in SmFeAs(O1−xFx), which was taken as evidence for fully

gapped superconductivity. According to our present understanding, the exponential temper-

ature dependence was actually a power law temperature dependence plus a low-T upturn

arising from contributions to the penetration depth from the rare earth ions. This has been

confirmed by performing a careful analysis on NdFeAs(O0.9F0.1), where the rare earth ordering

temperature and moment size were both known, to account for the Nd magnetism and also by

measuring the non-magnetic LaFeAs(O0.9F0.1), which indeed does show a power law behavior

with no upturn in the penetration depth at low temperatures. [Martin et al. (2009b)].

As for other iron-based superconductors, most measurements have indicated that the low-

temperature form of the in-plane penetration depth follows a power law relation of the form

∆λab ∝ T n [Gordon et al. (2009b,a, 2010b); Kim et al. (2010b,a)]. This power law dependence

was initially interpreted as arising from point nodes in the superconducting gap [Gordon et al.

(2009b)], but after more careful measurements were performed it is currently accepted that

it arises from pair-breaking impurity scattering effects. This claim has gained support from

penetration depth measurements done on samples that were irradiated with heavy ions in order

to study the effects of disorder in a very controlled way [Kim et al. (2010a)]. A decrease of

the power law exponent with increasing disorder was observed, in line with predictions for

the popular s±-wave symmetry of the superconducting gap [Mazin et al. (2008)] if impurity

scattering effects are included [Chubukov et al. (2008)], which predicts that in the clean limit

it should saturate with temperature exponentially. In fact, the claim that pair-breaking effects

have a significant effect on the behavior of the penetration depth is further supported by

an exponential saturation of the penetration depth that has been observed in LiFeAs [Kim

et al. (2010c)], which is believed to be an iron-based superconductor in the intrinsically clean

limit. One last piece of supporting evidence for strong pair-breaking effects in the iron-based

superconductors comes from measuring the penetration depth prefactor, β from ∆λ(T ) = βT 2,

which has been found to follow β ∝ 1/T 3
c , consistent with a theoretical result derived assuming
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a strong pair-breaking contribution [Kogan (2009)]. This behavior has been found to hold for

samples from the Ba(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2, (Ba1−xKx)Fe2As2, Fe1+y(Se1−xTex),

LaFeAs(O1−xFx) and NdFeAs(O1−xFx) classes of iron based superconductors [Gordon et al.

(2010b)]. Perhaps future measurements should focus on understanding the exact nature of

the pair-breaking scattering and how it can change between different classes of the iron-based

superconductor family.

Careful studies have also been done to measure the doping dependence of the power law

exponent, n, in the Ba(Fe1−xCox)2As2 [Gordon et al. (2009b,a)] and Ba(Fe1−xNix)2As2 [Martin

et al. (2010a)] series. For the Ba(Fe1−xCox)2As2 series, it has been found that n is a maximum

near optimal doping and decreases to a value as low as 2 for very underdoped concentrations.

This has been interpreted as being consistent with thermal conductivity studies that have found

evidence for the formation of c-axis accidental nodes that appear upon departure from optimal

doping [Reid et al. (2010)]. A linear temperature dependence of the out-of-plane component of

the penetration depth, ∆λc, in samples of Ba(Fe1−xNix)2As2 that have dopings near the edges

of the superconducting dome has also been taken to be in support of this claim [Martin et al.

(2010a)]. However, for all other transition metal dopings studied, including Ni, the power

law has been found to decrease with increasing disorder, consistent with the observations

made during the heavy ion irradiation study [Kim et al. (2010a)]. From a penetration depth

standpoint, one major question to be answered is the exact role of pair-breaking impurity

scattering effects in these superconductors, which future measurements should be planned to

address.

Another question to be answered with respect to superconductivity in the iron-based su-

perconductors pertains to the exact role played by magnetism. One popular idea is that the

cuprates and the iron-based superconductors are both examples of superconductors mediated

by spin fluctuations, analagous to phonon-mediated pairing in BCS superconductors [Taillefer

(2010); Monthoux et al. (2007)]. From penetration depth measurements in Ba(Fe1−xCox)2As2,

it has been found that λab(0) increases upon moving from the pure superconducting state to

the region of coexistence by a factor of 5 in the temperature-doping phase diagram. Since
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λ2
ab(0) is inversely proportional to the density of superconducting electrons [Tinkham (1996)],

the most natural explanation for the increase in the coexistence region is a competition be-

tween the superconducting state and the itinerant antiferromagnetic state for the same charge

carriers, which has been well described by a theoretical model to account for such a compe-

tition [Fernandes and Schmalian (2010)]. Whether superconductivity and antiferromagnetism

are competing or not, it is still not clear what the role played by the magnetism is and this is

one question that future measurements should definitely address.

The same calibration procedure that allowed for the measurement of λab(0) in

Ba(Fe1−xCox)2As2 has also allowed for the construction of the normalized superfluid density by

using, ρs(T ) = [λ(0)/λ(T )]2, which has allowed for the study of the evolution of the supercon-

ducting gap with doping. This procedure was recently developed to allow for the measurement

of the absolute value of the London penetration depth in superconductors by using an alu-

minum coating procedure for the sample along with usual TDR frequency shift measurements.

For the Ba(Fe1−xCox)2As2 series, the ρs(T ) curves for all dopings show a suppression over the

entire temperature range from base to Tc, consistent with the behavior for multigap super-

conductors like MgB2 and V3Si [Kogan et al. (2009)]. In addition, the optimally doped ρs(T )

curve is larger over the whole temperature range than underdoped and overdoped samples.

This would be consistent with the formation of nodal regions in the gap for concentrations

moving away from optimal doping. These results are in support of multigap superconductivity

in the iron-based superconductors, as do many others, but still much is to be learned about

the gap structure possessed by these superconductors, so future measurements should also pay

close attention to these details.

To conclude, measurements of the London penetration depth have been performed on

several different materials from the family of iron-based superconductors with the hope of elu-

cidating the structure of the momentum-dependent superconducting gap to shed light on the

pairing mechanism in these materials. A strong pair-breaking impurity scattering contribution

to the penetration depth has been uncovered, which likely arise from effects associated with

multigap superconductivity. In addition, there is evidence to suggest that in the clean limit
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these materials display an exponential temperature dependence of the penetration depth at

low-temperatures. From doping dependent penetration depth measurements in the Ba-based

122 series, evidence has been found for the formation of c-axis accidental nodes in the supercon-

ducting gap for concentrations near the edges of the superconducting dome. Also evidence for

a competition between the superconducting and itinerant antiferromagnetic phases has been

found by measuring the doping dependence of λab(0). Future measurements should focus on

understanding the exact structure of the superconducting gap in these materials and also to

pinpoint the pairing mechanism. The hope is that eventually not only will a better understand-

ing of superconductivity in the iron-based superconductors be achieved, but an understanding

of the phenomenon of superconductivity in general.
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