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ABSTRACT

The London penetration depth has been measured in various doping levels of single crystals
of Ba(Fe;_,T,)2Asy (T'=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors by utilizing a tunnel
diode resonator (TDR) apparatus. All in-plane penetration depth measurements exhibit a
power law temperature dependence of the form AMN,(T) = CT", indicating the existence
of low-temperature, normal state quasiparticles all the way down to the lowest measured
temperature, which was typically 500 mK. Several different doping concentrations from the
Ba(Fe;_,T;)2Asy (T'=Co,Ni) systems have been measured and the doping dependence of the
power law exponent, n, is compared to results from measurements of thermal conductivity and
specific heat. In addition, a novel method has been developed to allow for the measurement of
the zero temperature value of the in-plane penetration depth, A4 (0), by using TDR frequency
shifts. By using this technique, the doping dependence of A\;;(0) has been measured in the
Ba(Fe;_,Co,)2Ass series, which has allowed also for the construction of the doping-dependent
superfluid phase stiffness, ps(T) = [A(0)/A(T)]?. By studying the effects of disorder on these
superconductors using heavy ion irradiation, it has been determined that the observed power
law temperature dependence likely arises from pair-breaking impurity scattering contributions,
which is consistent with the proposed si-wave symmetry of the superconducting gap in the
dirty scattering limit. This hypothesis is supported by the measurement of an exponential
temperature dependence of the penetration depth in the intrinsically clean LiFeAs, indicative

of a nodeless superconducting gap.



CHAPTER 1. Introduction

The discovery of a new superconducting material can have a tremendous impact on the
scientific community. When cooled below a critical temperature, T, these materials conduct
electricity without any losses in addition to other technologically desirable and interesting
magnetic properties. In February of 2008, such a discovery was realized by the report of super-
conductivity as high as 26 K in LaFeAsO;_,F, along with other unusual physical properties
[Kamihara et al. (2008)]. This compound is just a member of one class from a family of su-
perconductors known as the iron pnictides or more generally the iron-based superconductors.
An astonishing amount of effort has been put forth thus far by both experimental and the-
oretical physicists to understand the fundamentals of superconductivity in these materials to
gain a greater understanding of the phenomenon in general and on a larger scale the hope is
to some day design a material with superconductivity at room temperature, which could be an
amazing technological achievement. The goal of this work was to gain a better understanding
of the physical nature of the superconducting state in the iron-based superconductors through
experimental measurements of the London penetration depth.

Although great progress has been made since the initial finding of superconductivity below
4.2 K in Hg by the research team of H. K. Onnes in 1911 [Onnes (1911)], much remains
a mystery of this incredible state of matter. It took nearly 50 years after this discovery
for a theory to be introduced that could account for interactions at the microscopic level
to aid in the understanding of how superconductivity is even possible in materials like Hg
having low transition temperatures. This work is arguably the most successful theory of
superconductivity and is commonly referred to as the Bardeen-Cooper-Shrieffer (BCS) theory

[Bardeen et al. (1957)]. After the BCS formulation, most people believed that the basic



fundamental principles involved with understanding superconductivity had been developed,
perhaps with the exception of unconventional superconductivity in UPts [Sigrist and Ueda
(1991)], UBejs [Ott et al. (1983)] and CePt2Sis [Hiebl and Rogl (1985)], but a Nobel prize
winning discovery in 1986 by IBM researchers G. Bednorz and K. Miiller would change all of
that [Miiller and Bednorz (1987)].

High-temperature superconductivity was discovered in what later became known as the
high-T, cuprates and many of the properties of these materials went against the rules for-
mulated by B. Matthias that he used to discover many new superconductors [Matthias et al.
(1963)]. These materials, which exhibit superconductivity far above 100 K, are insulators in
their parent state with long range antiferromagnetic order. However, when these materials are
doped away from this parent state with either holes or electrons, the antiferromagnetism can
be weakened and for specific dopants superconductivity can then emerge for a critical doping
concentration. The T, rises through a maximum and eventually superconductivity is absent as
the doping concentration is increased further. They can also be very two-dimensional materi-
als, meaning that in some cases nearly all of the electric charge flows through CuOs planes that
exist in the lattice structure, which can create a resistivity anisotropy as large as 100 [Ginsberg
(1994)]. The temperature-doping phase diagram for the high-T, cuprates contains some very
rich physics, including a strange metallic phase where the electrical resisitivity has an unusual
linear temperature dependence that persists over two decades in temperature, a partial gap of
unknown origin in the density of states that occurs at temperatures much higher than 7, that
is known as the pseudogap [Basov and Timusk (2005)], and the recovery of a Fermi liquid state
in the electrical resistivity for doping concentrations near the overdoped edge of the supercon-
ducting dome and beyond. Also, the pairing symmetry, which is related to the symmetry of the
superconducting order parameter, in the high-T, cuprates is d,>_,»-wave [Harlingen (1995)],
in contrast to BCS superconductors which have s-wave pairing symmetry. This may be due
to a fundamentally different pairing mechanism, with this being strongly linked to phonons in
BCS superconductors as confirmed by the isotope effect [Pippard (1953)] and quite possibly

spin fluctuations [Monthoux et al. (2007)] in the high-T, cuprates for which there has not



yet been smoking gun evidence. During the period from 1986 to 2001, over 100,000 scientific
papers were published on the cuprates [Buchanan (2001)], so many of the experimental tech-
niques that were developed to study them were already prepared for the discovery of high-T,
superconductivity in the iron-based superconductors [Kamihara et al. (2008)].

The family of iron-based superconductors can be grouped into at least five different classes
up to this date. The parent compounds for these classes are the RFeAsO (where R=rare
earth, denoted the “1111” system), AEFey Pny (where AFE=alkaline earth and Pn=pnictogen,
denoted the “122” system), AFeAs (where A=alkali metal, denoted the “111” system),
Fej,Se (denoted the “11” system) and SrzScoOsFeaAsy classes of iron-based superconducting
compounds [Hosono (2010); Paglione and Greene (2010); Canfield and Bud’ko (2010); Johnston
(2010); Wen and Li (2011)]. These compounds can be doped in various different ways to achieve
superconductivity. Structurally, similar to the cuprates, these classes all have planes consisting
of Fe and Pn or Ch atoms, but unlike the cuprates these materials likely have a pronounced
three-dimensional band structure. In the parent compounds, the iron-based superconductors
are poor metals [Canfield and Bud’ko (2010); Ni et al. (2008b); Sefat et al. (2008); Tanatar et al.
(2009); Kamihara et al. (2008); Ren et al. (2008)], most of which undergo antiferromagnetic
and structural phase transitions below room temperature. Although the community has not
yet come to a general consensus, it is quite likely that the antiferromagnetism in the iron-based
superconductors is of itinerant character [Cvetkovic and Tesanovic (2009)], in contrast to the
localized magnetism in the cuprates. Similar to the cuprates, these transitions are suppressed
by doping and superconductivity emerges out of this instability and eventually disappears for
high enough doping levels. The fact that there are some similarities between the cuprates
and the iron-based superconductors prompts one to consider that there may be a common
underlying physical principle responsible for their observed properties [Taillefer (2010)]. One
popular idea is that both are examples of spin fluctuation mediated superconductors, with
dy2_,2-wave symmetry of the order parameter [Harlingen (1995)] in the cuprates and the
recently proposed si-wave symmetry in the iron-based superconductors [Mazin et al. (2008);

Mazin and Schmalian (2009)].



The structure of the momentum dependent superconducting gap, A(k), is an experimen-
tally accessible quantity that can provide valuable information about the physical interactions
responsible for electronic pairing in a superconductor. Uncovering the structure of the order
parameter can be a very challenging task experimentally. One way to address this is by piecing
together the information obtained from several experimental techniques that are sensitive to
A(k), such as penetration depth, thermal conductivity, nuclear magnetic resonance, angle-
resolved photoemission spectroscopy and tunneling measurements, just to name a few. The
experiment that provided the smoking gun evidence for d,2_,2-wave symmetry in the cuprates
[Harlingen (1995)] took advantage of the phase difference of the superconducting wave function
at a corner junction. The results of this experiment were relatively simple to understand be-
cause the Fermi surface of the cuprates arises from a single electronic band crossing the Fermi
level and a single superconducting gap. This same type of experiment for the iron-based su-
perconductors is complicated by the fact that there are as many as five different bands crossing
the Fermi level and it is possible that the phase of the gap changes sign between the sheets
that comprise the Fermi surface. Because the Fermi surface of the iron-based superconduc-
tors is composed of several different sheets having both hole- and electron-like character, it
is widely accepted that there are multiple superconducting gaps [Mazin et al. (2008)], which
indeed have been observed experimentally [Evtushinsky et al. (2009a); Liu et al. (2009); Ding
et al. (2008)]. The existence of multiple superconducting gaps creates additional complications
for understanding the role of impurity scattering because there are both inter- and intraband
scattering processes that may be important for superconductivity.

The experimental quantity that has been used in this work to study the momentum depen-
dence of the superconducting gap(s), A;(k), in the iron-based superconductors is the London
penetration depth [Prozorov and Giannetta (2006)]. The penetration depth is sensitive to
A;(k) through an integral which is taken over the entire Fermi surface, thus making this mea-
surement technique insensitive to the actual phase of the gap. The apparatus that was used to
make the penetration depth measurements is known as a tunnel diode resonator, which made

use of a radio frequency oscillating circuit powered by a tunnel diode [VanDegrift (1975a,b)].



The temperature dependence of the penetration depth can show the existence of normal state
quasiparticles at low temperatures, which makes it a well suited tool for detecting nodes in
the superconducting gap or for observing pair-breaking impurity scattering effects. The nor-
malized superfluid density, ps(T) = [A(0)/A(T)])?, is another important experimental quantity
used to analyze temperature dependent penetration depth data. It is especially useful for
observing effects associated with multigap superconductivity or anisotropies of the supercon-
ducting gap(s) [Kogan et al. (2009)], but it does require A(0), which can be a difficult quantity
to measure. Penetration depth measurements have proven to be very useful for studying the
order parameter symmetry in superconductors, especially in the high-7,. cuprates where the
linear temperature dependence of the penetration depth in very clean single crystals of YBCO
was taken as the first piece of strong evidence to suggest line nodes in the superconducting
gap [Hardy et al. (1993)].

The class of iron-based superconductors on which the penetration depth measurements to
be reported here have focused is Ba(Fe;_,T,)2Ase with T being Co, Ni, Ru, Rh Pd, Pt and
also co-doping with Co and Cu. One reason why these series were chosen is because large,
high quality single crystals can grown [Ni et al. (2008b)]. The parent compound for these
materials is a poor metal having a high temperature tetragonal phase with no long range
magnetic order and undergoes structural and magnetic transitions around 140 K into a low
temperature orthorhombic phase with long range antiferromagnetic order [Rotter et al. (2008);
Canfield and Bud’ko (2010)]. Transition metal doping onto the iron site serves to suppress the
structural and magnetic transition temperatures and superconductivity emerges after these
phases have been weakened. These features can be seen in Fig. 1.1 for the Ba(Fe;_,T),)2As
(T=Co,Ni,Pd,Ru) series.

The variation of the in-plane penetration depth with respect to its zero temperature value,
AMXgp(T), has been measured at various doping levels in single crystals of Ba(Fe;_,Co,)2Aso
[Gordon et al. (2009b,a)] and Ba(Fe;_,Ni;)2Asy [Martin et al. (2010a)]. Although fewer dop-
ings were studied, AAg,(7") has also been measured for Ba(Fe;_,Pt,)2Ass, Ba(Fej_,Pd;)2Ase

and Ba(Fe;_,Ru;)2Asy and Ba(Fe;_,_,Co,Cuy)2Asy [Martin et al. (2010b)]. In addition,
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the c-axis component of the penetration depth has been measured for one underdoped and
two overdoped concentrations of the Ba(Fe;_,Ni,)oAs, series. A procedure has also been de-
veloped to measure the absolute value of the in-plane penetration depth, A\ (7T'), involving
an aluminum coating technique for the samples along with the usual tunnel diode frequency
shift measurements. This method has been used to measured Ay (0) as a function of dop-
ing in the Ba(Fe;_,Co,)2Ass series and also to construct the normalized superfluid density,
ps = [Aap(0)/Aap(T)]?, in order to study its evolution with doping. Also, the results of an exten-
sive collection of the penetration depth prefactor, 5 from AX,(T) = ST, for many different
iron-based superconductors is presented [Gordon et al. (2010b)] with a theoretical attempt to
explain its dependence on T, based on pair-breaking impurity scattering arguments [Kogan
(2009)]. The following chapters serve to summarize the results of the above mentioned experi-
ments and the inferred properties of the superconducting state in the Ba-based 122 compounds
in addition to supplying the necessary information to understand the experimental procedures

and penetration depth analyses.



CHAPTER 2. The London penetration depth in superconductors

2.1 The behavior of superconductors in applied magnetic fields: London

theory

After the discovery that certain metals, when cooled below a characteristic temperature,
T., exhibit perfect conductivity [Onnes (1911)], it was found that they also expel applied mag-
netic fields from their bulk below this temperature, now known as the Meissner effect [Meissner
and Ochsenfeld (1933)]. In order to account for these two fascinating electromagnetic proper-
ties, F. and H. London proposed a set of equations containing a phenomenological parameter
that is now known as the London penetration depth, A [London (1950); London and London
(1935)]. This length scale characterizes the distance over which external electromagnetic fields
decay inside of a superconductor and it is one of the two fundamental length scales of these
materials, with the other being the coherence length, £, which characterizes the distance in
real space over which the superconducting wave function varies appreciably [Pippard (1953)].
Experimental measurements of the temperature dependence of the London penetration depth
in superconductors can also be used to gain information about the structure of the supercon-
ducting gap function, A(k), which is related to the symmetry of the many body interactions
that give rise to the electronic pairing.

Historically, the first observation of magnetic field penetration effects that were predicted
by the London equations were made by Shoenberg in 1940 [Shoenberg (1940)], where the mag-
netic susceptibilities of mercury colloids were measured as a function of temperature. The
penetration of the magnetic field into each droplet in the colloid decreased the magnitude of
the diamagnetic susceptibility of the sample as a whole. Thirteen years later, measurements,

performed by A. B. Pippard [Pippard (1953)], of the penetration depths in a series of tin-indium



alloys by microwave techniques were taken as evidence that the electrons in a superconductor
have a long range influence on each other. It was in this report that the idea of a supercon-
ducting coherence length was first introduced mathematically. These early measurements were
useful for giving direction to the field of superconductivity and over the years, penetration
depth measurements have contributed greatly to our understanding of the phenomenon.

The behavior exhibited by superconducting materials in applied magnetic fields naturally
allows them to be placed into two basic categories: type I and type II superconductors. Below
T., in the absence of an applied magnetic field, the superconducting free energy, Fs(7, H = 0),
is less than the normal state free energy, F,, (T, H = 0). However, there is a critical value of
the applied magnetic field, H., such that F}, becomes less than F; and it becomes energetically
favorable for the system to revert back to its normal electronic state. This critical field is a
function of temperature and its value increases as the temperature of the superconductor is
lowered below T,.. The following summary applies only to a demagnetization-free scenario to
exclude a complicated discussion of the intermediate state of a type I superconductor.

For a type I superconductor, a single critical field suffices to describe its behavior. Below
H, the applied magnetic field penetrates the material with a screening length of A and when
H > H_, the entire sample becomes normal, corresponding to the limit where A — co. However,
for type II superconductors there are two associated critical fields: H. and Heo. For H > Ho,
the entire sample enters the normal state. For H < H.j, the magnetic field penetrates only
up to A and is screened from deep within the bulk. However, for H.y < H < Hg, known as
the mixed state, in addition to the usual London penetration, magnetic flux also penetrates
the sample in the form of vortices, which are normal state regions around which screening
supercurrents swirl [Abrikosov (1957)]. These vortices have a characteristic radius on the
order of £ and the magnetic field decays away from them with a screening length of A. Often
the vortices form a periodic lattice in the bulk of the material and have been studied extensively
for many different superconductors [Abrikosov (2004)]. The measured penetration depth in
the mixed state, Apeqs, not only has a Meissner component, Ay, but also there is a component

from the response of the vortex lattice as well, known as the Campbell penetration depth, Ac.
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The relationship between them has the form of \2,.,, = A% + A% [Prozorov et al. (2009¢)].

The ratio of the London penetration depth to the coherence length, k = A/§, known as
the Ginzburg-Landau parameter, allows one to see through a calculation of the surface energy
between normal and superconducting regions if a superconductor is classified as type I or type
II. For a type I superconductor, A << £ and the positive surface energy is unfavorable for
the formation of vortices in the bulk, whereas for a type II superconductor A >> £ and the
negative surface energy is favorable for the formation of flux vortices. In the original paper
outlining this idea [Abrikosov (1957)], Abrikoxov showed that materials with x > 1/v/2 are
type II superconductors and materials with x < 1/4/2 are type I. Regardless of whether a
superconductor is classified as type I or II, information about the superconducting pairing
symmetry is inferred in the same way from penetration depth measurements. In this work, all
experiments were performed in zero applied dc magnetic fields, so all samples remained in the
Meissner state.

As previously mentioned, one of the first attempts to describe the electrodynamic behavior
of superconductors, namely the loss of electrical resistance below T, and the Meissner effect,
was done by F. and H. London in 1935 [London and London (1935)]. They considered this
problem by starting with the essential results of the Drude theory [Drude (1900); Ashcroft and
Mermin (1976)] to describe how scattering of electrons from defects can lead to a reduction in

the electrical transport:

where m is the mass of the charge carriers, e is the magnitude of each carrier’s charge, v is
the average or drift velocity of the charge carriers and 7 is the average scattering time between
collisions. The first term on the right side of Eqn. 2.1 is the accelerative term describing how
an electric field will accelerate charge carriers and the second term accounts for scattering
processes decreasing their average acceleration. This leads to a steady state drift velocity
given by v = eE7/m and if there are n conduction electrons per unit volume, we obtain the

familiar form of Ohm’s law: J = nev = (ne’7/m)E = oE. The altered form of this result
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that the Londons started with, which asserted that a certain density of the charge carriers, ng,

contributes to an accelerative supercurrent that undergoes no scattering, was

dvg

™

= ¢E (2.2)

and this equation leads to an expression for the total supercurrent, J,, which is governed by

the relation

alJS_nse2 B c? E
dt m  AwA2T

(2.3)
Eqn. 2.3 is known as the first London equation and it is important because with the use of
Maxwell’s equations and further manipulations it leads to V2E = E/A2, which implies that
time-varying electric fields are screened out of a superconductor by a supercurrent that will
accelerate out to infinity in response to a strictly dc electric field. Eqn. 2.3 also implies that
time-varying magnetic fields are screened from a superconductor up to a distance of A.

The second London equation cannot be derived from classical arguments like Eqn. 2.3 was.
From the observations made regarding the Meissner effect, the screening of time-independent
magnetic fields must be accounted for. Let us consider taking the curl of one of the Maxwell
equations:

Vx(VxH)=

%(v < J) (2.4)

and making the substitution V x J = —cH /472, which leads to
9 1

V*‘H = ﬁH (2.5)
where \2 = mc? /4nnge?. Eqn 2.5 is known as the second London equation and implies that
time-independent magnetic fields are also screened from the bulk of a superconductor, in agree-
ment with the Meissner effect. The two London equations that were obtained by arguments
based on experimental observations are useful, but they lack a microscopic origin for the ex-
planation of the superconducting state. This type of a theory would not come together until

1957 [Bardeen et al. (1957)], many years after the work done by the Londons.
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Equation 2.5 is also referred to as the isotropic London equation, which has proven to
be unsuccessful for describing superconductors that have significant band mass anisotropies.
Anisotropic type Il superconductors have been described quite well by a set of Ginzburg-
Landau equations, with a phenomenological mass tensor, near H. [Morris et al. (1972)].
Moving away from H.y this type of analysis is not possible due to these equations becom-
ing non-linear. Near H. it is helpful to apply the London model [Kogan (1981)], which
provides a reasonable approximation at least for large x superconductors. Although it has low
accuracy, this approach nevertheless makes it possible to predict the existence of a transverse
magnetic field in a vortex. This justifies the use of the London model, despite the fact that
many important aspects, such as temperature dependencies and the origin of the anisotropic
superconducting properties, remain beyond the scope of the theory. This approach begins by

minimizing the energy given by

€= /[H2 + (AoV x H)?]dV/8r, (2.6)

which is just the sum of the magnetic and kinetic contributions. For the isotropic case, A3 o
My, where My is the mass. The generalization to the anisotropic situation replaces My with

the mass tensor in such a way that the kinetic term remains invariant:

8me = / [H? + Nmy;(V; x H)(V; x H)|dV. (2.7)

where A2 o Mgpe, With mgye being some mean mass. The components m;; represent the

effective masses divided by mgue. The tensor m;; is diagonal if its principal directions are

chosen as coordinate axes (mQ, = m1/Mape, md

gy = M2 /Mave, M2, = M3/Mape). It is convenient

3

to choose m;,,

= mymamg so that detm;; = 1. By minimizing this energy, the resulting

anisotropic London equations are given by

0’H;

0x0x;’ (2:8)

2
H; = Nmy€si€pej

where €, is the Levi-Civita tensor. In the isotropic case by using m;; = d;;, the usual London

equations are recovered from Eqn. 2.8.
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In an earlier work, C. J. Gorter and H. B. G. Casimir interpreted the thermodynamics of
superconductors in terms of a two fluid model in which a "normal” electronic fluid coexisted
with a ”condensed” fluid of superconducting electrons [Gorter and Casimir (1934); Gorter
(1935)]. Using this model a temperature-dependent form of the penetration depth has been
derived through measured temperature dependencies of the specific heat and upper critical

field. This form, known as the two-fluid temperature dependence, is given by

A(0)
V1= (T/T)"

Although it has no microscopic justification, this form has been used when a simple analytical

MNT) ~ (2.9)

approximation for A(T) over the full temperature range below T, was needed. Some successful
attempts were made to generalize the Gorter-Casimir result to better fit the results of mea-
surements [Lewis (1956)], but this was before any microscopic theory of superconductivity had
been developed. In order to make this equation more practical, the full BCS equations have
been solved for s- and two dimensional d-wave superconducting gap symmetries [Poole et al.

(2007)], which will be introduced later. The results are

_ M9
As—wave(T) = N E (2.10)
and
Ad—wave(T) AO) (2.11)

T 1 (T
It is important to note here that these equations are quite good approximations over the full

temperature range, but they are not accurate at low temperatures.

2.2 Microscopic theory of superconductivity and the connection to A

In 1957 John Bardeen, Leon Cooper and Robert Schrieffer published a microscopic theory
of superconductivity, commonly referred to as the BCS theory, that remains the most successful

theory of superconductivity to this day [Bardeen et al. (1957)]. In this work, their goal was to
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formulate a theory to describe the unusual experimental observations made on superconductors
in terms of the interactions between electrons. The list of main observations that they set out
to explain was: (1) a second-order phase transition at T, (2) an electronic specific heat varying
as exp(-1p/T) near T=0 K and other evidence for an energy gap for individual particle-like
excitations, (3) the Meissner effect, (4) effects associated with infinite conductivity and (5) the
dependence of T, on isotopic mass (isotope effect), T./M = constant.

The source of the attractive interaction that can result between electrons stems from the
motion of the ionic lattice. The repulsive Coulomb interaction between electrons near the Fermi
level having opposite spin and momenta is screened by an attractive interaction that exists
between electrons and lattice vibrations known as phonons, which results in a net attractive
interaction for the pair of electrons, known collectively as a Cooper pair. These bound state
electron pairs condense into a ground state where they all share the same wave function, which
was provided by the BCS theory. BCS assumed that the total wave function could be built
of products of pair wave functions between individual electrons, where the two electrons in
the pair have opposite spin and the orbital parts are symmetric, i.e. they are singlet states.
Cooper showed that in the presence of a Fermi sea where Pauli exclusion effects are important,
two electrons can form such a bound state no matter how weak the attractive interaction is
[Cooper (1956)].

For phonon mediated superconductivity, the attractive interaction between electrons of op-
posite spin and momentum centered about the Fermi energy leads to an energy gap of width
2A(T) in the spectrum of single particle excitations, which drastically modifies the electronic
density of states. This gap serves as the superconducting order parameter and its momen-
tum dependence is an important, experimentally measurable quantity. Most known phonon
mediated superconductors have been assumed to be single gap superconductors, referring to
the fact that they possess a single isotropic or weakly anisotropic superconducting gap that
exists over the entire Fermi surface in momentum space. In analogy to electronic orbitals, this
situation where the gap magnitude is the same in every direction is known as an s-wave super-

conducting gap function. There is compelling evidence to suggest that some phonon mediated
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superconductors, for example MgBs [Bouquet et al. (2001a)], LusFesSis [Gordon et al. (2008)]
and V3Si [Kogan et al. (2009)], possess two different superconducting gaps that exist on dif-
ferent regions of their Fermi surfaces that both exhibit s-wave symmetry. Many other classic
superconductors may well possess multiple superconducting gaps or modest gap anisotropy
and these systems should be carefully revisited in future studies.

For the case of a superconductor possessing a single s-wave superconducting gap where
impurity scattering is negligible (clean limit), the temperature dependence of the variation in
the penetration depth with respect to its zero temperature value can be obtained from the
BCS theory [Muhlschlegel (1959)] and found to have the following dependence up to roughly

a value of T,/3:

wA(0) A(0)

ANT) =~ X(0) ST eXp_k:B—T'

(2.12)

This form of the penetration depth is exponentially saturated at very low temperatures, which
appears very flat and essentially zero, and this activated temperature dependence is the charac-
teristic signature of a nodeless superconducting gap function from the penetration depth data.
Fig. 2.1 shows the in-plane London penetration depth data taken for Nb, a single gap BCS
superconductor, using a tunnel diode resonator circuit and the temperature dependence agrees
with Eqn. 2.12 quite well. Any deviation from this behavior at low temperatures indicates the
presence of low-temperature normal state quasiparticles that can arise from either nodes in the
superconducting gap function or from pair-breaking scattering. Magnetic impurity scattering
acts as a strong pair-breaking mechanism in s-wave superconductors, but non-magnetic impu-
rities do not alter the low-T behavior of the penetration depth much, which can be understood
from Anderson’s “theorem” [Anderson (1959)].

For multigap superconductors like MgBo, AX(T") exhibits the same temperature dependence
as in the single gap case, but only up to a temperature of (T../3)(Amin/Amaz) due to scattering
processes associated with the multigap behavior, where A, and A,,;, are the magnitudes
of the largest and smallest gaps, respectively. Fig. 2.1 shows in-plane penetration depth data

taken on MgBs and indeed one can see that the exponentially saturated region persists up to
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a lower temperature than it does for single gap Nb, keeping in mind that the horizontal axis

is the reduced temperature, T'/T..
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Figure 2.1 The variation with temperature of the in-plane London penetra-
tion depth with respect to its zero temperature value, A\, (7"),
for three different superconductors: Nb (s-wave), MgBy (multi-
-gap s-wave) and Bi-2212 (d-wave). These data were all taken
with a tunnel diode resonator circuit.

There are also some superconductors that have been suggested to be mediated by mech-
anisms other than phonons. Many believe that one such example is the family of high-T,
cuprates, which are antiferromagnetic insulators in the parent state that when doped with
either holes or electrons become superconductors with 7, as high as ~140 K [Miiller and Bed-
norz (1987)]. These materials can be very two dimensional, where nearly all of the conduction
occurs in the CuOq planes that exist throughout the structure. The transport anisotropy can
be as high as =10,000 but as low at 10 for conduction in these planes compared to conduction
along the c-axis, which is perpendicular to the CuOs planes [Ginsberg (1994)]. Because of the
proximity of the superconducting phase in these materials to a magnetic state in the doping

phase diagram, it is widely believed that spin fluctuations may play a similar role for pair
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mediation to phonons in the case of s-wave superconductors [Monthoux et al. (2007)].

As previously mention, the order parameter symmetry of the cuprates is d,2_,2-wave. For

—y
this type of symmetry, the order parameter changes sign from having a positive amplitude to a
negative one on four different points of the Fermi surface. At the points where the gap changes
sign its value must go through zero. Any point where the superconducting gap goes to zero with
respect to the Fermi surface is known as a node. In the case of d;2_,2-wave symmetry, lines of
nodes that run parallel to the c-axis are present. Due to this unusual momentum dependence of
the order parameter and also the proximity of the superconducting phase to an antiferromagetic
one, it is widely believed that the mechanism responsible for giving rise to Cooper pairing in
the high-T, cuprates is electronic in origin, quite possibly mediated by spin fluctuations, which
could make them fundamentally different than the BCS superconductors that are mediated by
phonons. There are other families of superconductors believed to be good candidates for spin
fluxuation mediated pairing, with those being the heavy fermion superconductors, the organic
Bechgaard salts and the recently discovered iron-based superconductors [Taillefer (2010)].
Nodes in the superconducting gap structure drastically alter the low temperature behavior
of any material property which depends on the electronic density of states and therefore they
can be detected with the use of several experimental techniques. At absolute zero, the Fermi
surface represents the set of highest occupied electronic energy levels in momentum space. At
T=0 for an s-wave superconductor in the clean impurity scattering limit, where the coherence
length is shorter than the mean free path, this set of energy levels is fully gapped with respect
to the unoccupied levels and as the temperature is increased, the unoccupied electronic states
which lie just above the occupied ones are populated exponentially fast and this effect gives rise
to the activated behavior observed in many of the materials properties, like the penetration
depth, spin lattice relaxation rate and ultrasonic attenuation just to name a few. For the case
of a superconducting gap function containing nodes, as the temperature is increased, normal
quasiparticle states at much lower temperatures are able to become occupied as a result of
the zeros in the gap structure. The population of these low energy normal states alters the

temperature dependence of all quantities dependent on the electronic density of states and
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thus the presence of such a node is experimentally detectable.
In the clean limit, the vertical line of nodes in the superconducting gap function of a

dy2_2-wave superconductor produce a linear temperature dependence of A\, with

A(0)21n 2 A(0)21n 2
ANT) =~ T
)\( ) dA/d¢|¢_’¢node QA(O) ’

(2.13)
where A is the momentum dependent superconducting gap and ¢ is the azimuthal angle
[Annett et al. (1991)]. This linear dependence in the penetration depth was first observed
by the pioneering measurements of the Hardy group using a microwave cavity apparatus to
measure single crystals of the cuprate superconductors known as YBCO at the University of
British Columbia in 1993 [Hardy et al. (1993)]. From Fig. 2.1, actual tunnel diode resonator
measurements confirm that the in-plane penetration depth of the high-T, cuprate known as
BSCCO-2212 exhibits the linear temperature dependence in the low-temperature region, shown
in Eqn. 2.13.

In contrast to the s-wave case where non-magnetic impurity scattering does not alter much

the low-T behavior of A\, both magnetic and non-magnetic scattering effects in a d 2_,2-wave

—y
superconductor change this linear dependence of the penetration depth to a quadratic depen-
dence up to a temperature T, which depends on the concentration of impurities in the system
[Hirschfeld and Goldenfeld (1993)]. In fact, from Fig. 2.1 the A\, (T) data for BSCCO-2212
shows a slight upturn near the lowest temperature of the experiment, which is likely due to a
small concentration of impurities in the sample. This quadratic temperature dependence was
initially observed in the penetration depth of films and impure crystals of high-T, supercon-
ductors before high quality single crystals became available [Hardy et al. (1993)].

With the advent of the ability to make precision measurements of the temperature de-
pendence of the penetration depth in superconductors, these experiments have become very
valuable for determining the structure of the momentum dependent superconducting gap. By
knowing the gap structure, theoretical models for the pairing mechanism can be tested. The

formal connection between the momentum dependence of the superconducting gap, A(k), and

the temperature dependence of the penetration depth are given in the following section.
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2.3 Calculating \(T') for a general Fermi surface with an arbitrary

superconducting gap structure A(k)

As it has been indicated from the previous section, by measuring the temperature depen-
dence of the London penetration depth, one can learn about the structure of the supercon-
ducting gap in momentum space. It is the goal of this section to provide a formal connection
between A(T') and A(k) for a general Fermi surface geometry by following the approach of
Chandrasekhar and Einzel [Chandrasekhar and Einzel (1993)].

Recall that in the original effort to understand external field penetration into a supercon-
ductor, the Londons arrived at the following form of the penetration depth in relation to other

properties of the metal:

2 mc?

In a real metal, though, it is known that there can be drastic deviations from a spherical Fermi
surface, which can in principle lead to mass anisotropies. Differences between the free electron
mass and the band mass can lead to large deviations from the penetration depth calculated
using Eqn. 2.14 with the free electron mass. The general form of the electronic band mass

tensor is

-1 _ a2€k

Mim = 2ok 0k,

(2.15)

The existence of such anisotropic effects has lead to the necessity of using different band masses,
me and Mg, to be used in attempt to calculate the different components of the penetration
depth with respect to the crystalline axes, A\. and Ay, respectively.

Another factor that can lead to deviations from the London result in the Free electron case
is a variation of the superconducting gap A(k) in momentum space. As it was pointed out
in the previous section, vertical line nodes in the gap function can produce a linear temper-
ature dependence in \(T') at low temperatures, which is quite different than the exponential

saturation that would arise from a superconducting gap that is isotropic in momentum space.
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Measurements that are capable of resolving such differences in the penetration depth are useful
for probing the symmetry of the superconducting interactions, but nonetheless one must be
able to understand the connection between A(k) and A(T") for the sake of the data analysis.

Due to these deviations, namely anisotropies in the Fermi surface or a superconducting gap
magnitude that changes about the Fermi surface in momentum space, the need for a general
formalism that can account for such effects is obvious. Such formalism has been provided by
the semiclassical approach to calculating all three spatial components of the penetration depth
put forth by Chandrasekhar and Einzel [Chandrasekhar and Einzel (1993)].

By considering the response of a superconductor to an externally applied magnetic field,
they arrived at the following relationship between the supercurrent density, Js, and the vector

potential, A, of the applied magnetic field:

§ d of (E
Js=e [(dvpvi +dv_gv_y) = _47er3c /d3k< - % + J(;SE:))(Vka) -A=T-A. (2.16)

This is just the generalization of the original London equation to a BCS superconductor with a
general dispersion relation and at finite temperature T. This allows us to define the symmetric

response tensor

_ e? 3 on,  Of(Ey)
']I‘:47T36/d k:(—8—€k+ oF, >(Vkvk). (2.17)

It should be noted that charge conservation is violated in Eqn. 2.16 unless an additional

backflow term is added giving

J, = —(’]I‘ . W) A (2.18)

where q is a wavevector pointing along the direction of the applied magnetic field. The backflow
term depends only on the direction of q and not its magnitude.

Thus, Eqn. 2.17 and Eqn. 2.18 together with the Maxwell equation

4
VxB= %TJS (2.19)
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form the complete solution to the problem of a superconductor at temperature T, with arbitrary
e(k) and A(k), in an applied magnetic field.
The penetration depth components along a specific direction with respect to the crystalline

axes can be computed by using the relationship

A ¢\, 2.20
22—(471_]—;2) U =2,Y, 2 ( )

and it should be noted that the A; are not the components of a vector or a tensor, but rather
are the different penetration depths with respect to the crystalline axes. However, the effective

mass can be defined by

2

ne
;= — 2.21
mii = (2.21)

which gives us the familiar London relation
02\ 1/2
miic

Ni = < = ) . (2.22)

Consider now the structure of the response tensor, T, shown in Eqn. 2.17. This tensor can
be broken into two terms which are usually referred to as the diamagnetic and paramagnetic

contributions and are written in form

T=Tp-Tsr (2.23)

with

N i
TD = 47T36/d k( 8Ek)(vkvk) (2.24)

and

Tp— /d3k<— %}i’“))(vkvk) (2.25)
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By considering the fact that the derivatives in Eqns. 2.24 and 2.25 are zero unless e — p| <
A(k) and also that A(k) < p, the value of the tensor vivy can be replaced by its value at

€k = i, which is vpvp. For this same reason, we can make the substitution

dSFdsk

A3k
= Thlvel

(2.26)

where dSF is a constant energy surface element and v is the magnitude of the Fermi velocity.

These approximations give us

e? e Ong\ VEVE VEVE
Tp = d d — 2.2
b 47T3hcj{ SF/O Ek( 86k> v 47T3h }{ P ve (227)
and
2 0o E E
Tpe2. jq{dspm aB( - o ’f)) L— (2.28)
4m3he |VF| A(k) 8Ek E2 _ Az(k)

AsT —0,Tp - 0and as T — T, Tp — Tp. If A(k) is isotropic, the anisotropy of Tp is
temperature-independent and its anisotropy is the same as the anisotropy of Tp. If A(k) is
anisotropic, then the anisotropy of Tp is affected by the anisotropies of both ¢ and A(k), and
is temperature-dependent.

In summary, with the formalism provided in this section, the spatial components of the
penetration depth, A\;, can be computed for a general Fermi surface geometry and an arbitrary

momentum dependent superconducting gap function, A(k).

2.4 Behavior of the superfluid density for different superconducting

pairing symmetries

Consider a superconducting metal with a fixed total density of conduction electrons, nioq;-
Below T, some fraction of the electrons in myu, will become superconducting, ng(7'), and
this fraction will increase as T — 0. Let the fraction of electrons that remains normal below

T. be n,(T). In the clean impurity scattering limit, all of the electrons will enter into the
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superconducting state, which implies ns(T = 0) = 4ot For a general temperature 0 < T < T,

the relationship

Niotal = Ns(T') + nn(T') (2.29)

holds true for no impurity scattering, with n;., being a constant. The normalized superfluid
density, ps(T), is the ratio of the concentration of superconducting electrons to the total

concentration of available charge and can be related to the penetration depth by

ns(T)  ng(T)  A%(0) [1 N M(T)}‘Q (2.30)

Pl = e = T =0) ~ N(T) A0)

with the use of the London relation shown in Eqn. 2.14. By using Eqn. 2.20 this can be

extended even further:

(2.31)

where generally we have

’ "F"F * 0f(E) N(E)
Ty = 47T3h 7{ SF o 1+2/A(k) o N(O)dE)] (2.32)

The quantity ps(7) is often used to analyze penetration depth data all the way up to T, and is
useful for accentuating effects related to multigap or anisotropic superconductivity [Prozorov
and Giannetta (2006)]. Also, ps(7T") can be derived for a given superconducting gap symmetry
with the use of the formalism of Chandresekhar and Einzel [Chandrasekhar and Einzel (1993)].
It is very important to emphasize here that in order to properly normalize the superfluid
density, one must have the zero temperature value of the London penetration depth, A(0),
which can be difficult to determine experimentally.

By using Eqn. 2.31 and 2.32, the superfluid density can be calculated in terms of the
superconducting gap, A, and the single particle excitation energy with respect to the Fermi
level, €, in a straightforward way for a general Fermi surface geometry. Let us consider two

examples to illustrate this. First, consider the case of a two-dimensional cylindrical Fermi
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surface, which would be an approximation to the one of the high-T, cuprates. For this geometry

the components of the superfluid density are given by

I SN o (VEH AT,
Paa =1 — 3T J, sin (b/o cosh (T)dsd(b (2.33)
and
127 o [Py (VAT
pop =1 — 3T J, cos <;5/0 cosh <T>dad¢>, (2.34)

As a second example consider the case of a three dimensional spherical Fermi surface. The

superfluid density components are given by

3 o [T © /e + AT, 9)
Paa =1 — T J, (1-=2 )/0 cos ((b)/o cosh 5T dedpdz (2.35)

and

1 27 e’ 2 A2 T
pop =1 — 3 (1- z2)/ 0082(¢)/ cosh™2 Vel + AT 6, 9) dedpdz (2.36)
4T 0 0 0 20T

For a BCS superconductor, where there exists a single, isotropic superconducting gap about
the Fermi surface, the normalized superfluid density in the clean impurity scattering limit can

be found by inserting Eqn. 2.12 into Eqn. 2.30, which gives

A)\(T)]—2 “fi- 2AA(T)] _ . [2mA0) o A0) (2.37)

po= 1+ 20) 20) T P T
which can be derived easily with the use of Eqn. 2.12. This function is plotted in Fig. 2.2 as the
blue solid line. Impurity scattering effects have not been taken into account in this function,
so it represents the normalized superfluid density of a single gap s-wave superconductor in
the clean limit of impurity scattering. Nonmagnetic impurity scattering for an s-wave super-
conductor does not change the low-temperature behavior of the superfluid density, as can be

understood within Anderson’s theorem for impurity scattering in s-wave superdonductors [An-

derson (1959)], but the presence of magnetic impurities does lead to strong deviations from this
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case. Notice that the characteristic exponential saturation at low temperatures for an s-wave
superconductor that is evident in the penetration depth is also present at low temperatures in

the superfluid density by the flat region existing below roughly T./3.
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Figure 2.2 Theoretical curves for the normalized superfluid density plotted
as a function of reduced temperature for the clean s-wave, clean
d-wave and dirty d-wave impurity scattering limits.

For a d,»_,2-wave superconductor with vertical line nodes in its gap function, as in the

high-T, cuprates [Harlingen (1995)], the normalized superfluid density has the form

2in2

which shows the same linear slope with temperature that one finds in the penetration depth
data. This is constructed in the same way as Eqn. 2.37 by using Eqn. 2.13. The orange
solid line in Fig. 2.2 represents a plot of the normalized superfluid density for a d,2_,2-wave
superconductor in the clean impurity scattering limit. For a d 2_,2-wave superconductor, both
nonmagnetic and magnetic impurities act as pair-breaking scatterers, in contrast to the case

of an s-wave superconductor [Anderson (1959)]. The black solid line in Fig. 2.2 represents
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the normalized superfluid density for a d-wave superconductor in the dirty impurity scattering
limit, where the penetration depth exhibits a characteristic quadratic temperature dependence
in the low-temperature region [Hirschfeld and Goldenfeld (1993)].

Together, the penetration depth and the normalized superfluid density offer valuable in-
formation about the structure of the gap in a superconductor. The low temperature region
of A(T") can show whether or not there are normal state quasiparticles activated by nodes or
pair-breaking scattering, while ps(7") can show effects associated with multigap superconduc-
tivity or anisotropy of the superconducting gap over the whole temperature range up to 7.
However, it is crucial to know A(0) to properly normalize ps(T) and there are times when
it is unavailable experimentally. The uncertainty in knowing A(0) for a superconductor has
provided motivation for a technique through which it can be measured by using tunnel diode
resonator frequency shifts along with an aluminum coating procedure that is discussed at great

length in a different section of this thesis [Gordon et al. (2010a)].

2.5 Multigap superconductivity and the superfluid density

Many superconductors discovered in recent years are multiband materials with complex
Fermi surfaces and unconventional order parameters, for example MgBs and V3Si. Not long
after the idea that these materials may be well described by a model that takes into account
multiple gaps and the associated scattering processes, the a model was introduced and has been
widely used to fit specific heat [Bouquet et al. (2001a)] and penetration depth [Bouquet et al.
(2001b)] data for alleged multigap superconductors. However, it is now known that this model
is not the best one for the job because it takes a shortcut by assigning the BCS temperature
dependence to both gaps A2 in order to fit the total superfluid density p = zp; + (1 — x)pa.
Here, p; 2 are evaluated by using Ay = (a1,2/1.76)Apcs(T) with x being the contribution
from one of the bands. Although the a model has played an important role for providing
convincing evidence for two-gap superconductivity in MgBo, it is intrinsically inconsistent for
describing the actual temperature dependences of the specific heat and superfluid density.

The major problem is that one cannot a priori assume temperature dependences for the gaps
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in the presence of arbitrarily weak interband coupling, which imposes the same T, for both
bands. In the unlikely situation that the interband coupling is zero, both gaps would have BCS

temperature dependences, but generally would not have the same T, illustrated in Fig. 2.3.
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Figure 2.3 Calculated superfluid density and both gaps (inset) vs. reduced
temperature for zero interband coupling Ao = 0. In this cal-
culation, A1; = 0.5, A92=0.45, n; = ne=0.5 and y=0.5, where
each is defined in the text.

The full blown microscopic approach based on the Eliashberg theory [Golubov and Mazin
(1997)] is too cumbersome for analyzing actual experimental data and hence the need for a
relatively simple, self-consistent theory accessible to experimentalists is obvious. The weak
coupling model provides the framework for such a starting point, which over the years has
proven to be very successful for describing superconductivity related phenomena. What follows
is based on the “renormalized BCS” model [Nicol and Carbotte (2005)], which incorporates the
Eliashberg corrections into the effective coupling constants of the weak-coupling theory. The
following approach has been referred to as the “weak-coupling two-band scheme” [Kogan et al.
(2009)] and the applicability of the model of the superfluid density and specific heat data is

broader than the traditional weak coupling theory. A self-consistent procedure is developed also
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by following the procedures outlined in the seminal publications of Ref. [Moskalenko (1959);
Suhl et al. (1959)], where the s-wave weak coupling multigap model was originally proposed.
Perhaps the simplest formal weak coupling approach is based on the Eilenberger quasiclas-
sical formulation of superconductivity, which is valid for general Fermi surface geometries and
applies when the order parameter is anisotropic [Eilenberger (1968)]. Eilenberger functions

f, g for clean materials obey the system

0=2Ag/h — 2wf (2.39)

¢ =1—f? (2.40)

A((k) = 27TN(0) Y <V(k,k’) f(k’,w)>k,. (2.41)
w>0

Here, k is the Fermi momentum, A is the gap function, N(0) is the total density of states at
the Fermi level per one spin, wp is the Debye frequency and the Matsubara frequencies are
defined by hiw = 7T (2n + 1). The quantity in the brackets <> represents an average taken
over the Fermi surface.

Now consider a model material with the gap given by

A(k) = ALQ, k e FLQ, (2.42)

where F} o are two separate sheets of the Fermi surface. Assume that the gaps are constant on
each band. With the density of states on the two sheets given by INj o, the average over the

Fermi surface for the quantity X is given by

<X> _ (X1N1 + XoNo)

=mX X 2.4
N ) n1X1 + neXo, (2.43)

where nj 2 = Ny 2/N(0) = n1 X1 + n2Xs, and hence ny +ng = 1.

Equations 2.39 and 2.40 are easily solved, which within the two-band model results in
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S ﬁ@ B2 = A2 + h%w?, (2.44)

where v = 1,2 is the band index.

The self-consistency equation 2.41 takes the form

Ay= )" A, Z 2l (2.45)

pn=1,2

where \,, = N(0)V (v, ) are the dimensionless effective interaction constants. It is worth
noting here that for a given coupling matrix A,,, relative density of states n,, and known wp,
equation 2.66 determines T, and A ».

AsT — T., Ao — 0 and f — hw. The sum over w in equation 2.66 is readily evaluated:

27TT 2th 2hwp
S = = =1 2.46
Z Tore ' 1.76T, (246)
with v being the Euler constant. this relation can also be written as
1.76T, = 2hwpe™® (2.47)
The system given by the self-consistency relation from equation 2.66 is linear:
A1 = S(niA11A1 + naAi2Ag) (2.48)
Ay = S(?’Ll/\lgAl + ’I’LQ/\QQAQ). (249)
It has nontrivial solutions A 5 if its determinant is zero:
S*ningn — S(nid + nadag) + 1 =0, (2.50)
where 11 = A1 A9 — )\%2. The roots of this equation are
g_ niA11 + nedes £ v/ (n1A11 + n2dag)? — 4ninan (2.51)

2n1nan
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which can be written as

niA11 + nadaa £ /(N1 — noda2)? + dngnaA?,

S = 2.52
2ninan (2:52)

Denoting the properly chosen root as S = 1/\ we have:
1.76T. = 2hwp exp —1/\ (2.53)

One can easily check that for all As equal, this yields the standard BCS result. Among various

possibilities, let us mention here the case 7 = A1\ + 22 — A2, = 0, for which

N = niA11 + NaXgg = </\> (2.54)

This case corresponds to a popular model with factorizable coupling potential V(k,k’) =
Vo(k)Q(k?).
Since the determinant of the system is zero, the two gap equations are equivalent and give

near T.:

& o )\/ — ’I’L1/\11
Ay noAiz

(2.55)
When the right-hand side is negative, the As are of opposite signs. Within the single band
BCS theory, the sign of A is a matter of convenience; in fact for one band the self-consistency
equation determines only |A|. For two bands, A; and Ay may have opposite signs.

Turning to evaluate A, (T"), note that the sum in Eqn. 2.66 is logarithmically divergent. To
deal with this, it is useful to employ Eilenberger’s idea of replacing fwp with the measurable
T.. These are related by Eqn. 2.53, which can be written as

1 T &2nT

—=In—+

ST DS Y (2:56)

Now add and subtract the last sum from one in Eqn. 2.66:

WD

Ay =S A, [f: (% = %) +3 %] (2.57)
. " "
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which can be expressed as

o0

A= mdd| Y @Z - %) + % ~In %] (2.58)
m -

The last sum over w is fast-converging and one can repace wp with co. Numerically, the upper

limit of the summation over n can be set to include a few hundred terms and suffices even for
low temperature.

Now, introducing the dimensionless quantity

A A, 1
Oy = — = 2.

2nT T, 2nt (2.59)

with ¢t = T'/T,, so now we can write Eqn, 2.58 as:
1 T,
b= D mududu (55 +In 5 — Ay) (2.60)
n=1,2

with

A=Y < ! ! ) (2.61)

o \nt1/2 - \/534- (n+1/2)2
For given coupling constant \,,, and densities of states n, and therefore obtain the gaps
A, =27T$,(t). Two simple examples of these solutions are given in insets to Figs. 2.3 and 2.4
Having formulated the way to evaluate A(T), we turn to the London penetration depth

given for a general Fermi surface:

16m2e2N(0)T A2
OB = S (R ) (2.62)

where v; is the Fermi velocity. We consider here only the case of currents in the ab-plane of a
uniaxial or cubic material having two deparate Fermi surface sheets, for which a simple algebra

gives for the superfluid density:

o0

p= (5% > [5% + (n+ 1/2)2} ey asyy [55 +(n+ 1/2)2} _3/2) /(1 +a), (2.63)

n=0
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Figure 2.4 Calculated superfluid density and the gaps (inset) vs. reduced
temperature. Inset: Calculated with A2 = 0.1, A\;; = 0.5,
Aog = 0.45, n; = no = 0.5 and v=0.5.

with a = ngv?y /niv

This equation can be rewritten to mimic the o model as

p=7p1+ (1 —7)pe, (2.64)
po = 23162+ (n+ 1/2)2] 7% (2.65)
n=0
and
n1VEy
v (2.66)

nlv%l + ngv%Q '

The formal similarity of the first line here to the « model prompts the name v model for
these results. Note, however, that v determines the partial contributions from each band and
is not just a partial densities of states like n; from the o model, which instead involves the

band’s Fermi velocities.
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The fitting parameters were A\j; = 0.23, A22=0.08,

(inset).

A2 = 0.06, n1=0.44 and

v = 0.56

0.75

1.00




34

Now these results are used to fit the data for the superfluid density obtained in MgBs
crystals from penetration depth measurements. Fig. 2.6 shows the result of the fitting with

three free parameters: i1, Ago and Aqo.
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Figure 2.6 The data and fits of the superfluid density for V3Si single crystal
and corresponding temperature dependent gaps (inset). The
fitting parameters were: Aij; = 0.1, Ap=0.1, A1 = 1 x 1075,
n1=0.47 and v = 0.4.

For V3Si, we do not have detailed information regarding the band structure, partial densities
of states and Fermi velocities on separate sheets of the Fermi surface of this material. Hence,
all of these were taken as free parameters in the fitting procedure. The conclusions thus are
less reliable for this material than for MgBs. By mapping onto a two band model, V3Si results
in having two nearly decoupled bands with an extremely weak interband coupling, but still
sufficient to give a single T.. The results and the best fittng parameters are shown in Fig...
Note that the long linear tail in p(t) as T'— T is a direct manifestation of a very small gap,

which in this case is A1, in this temperature range.
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CHAPTER 3. Principles of a tunnel diode resonator circuit

3.1 Introduction

Due to the great precision with which the frequency of an oscillator can be measured,
they have proven to be very useful for making extremely sensitive measurements of material
properties. Compared to other popular transducers, for example ac bridges, oscillators provide
a sensitivity that is a few orders of magnitude higher, but bridge techniques typically have much
better accuracy. Bridges usually have a better ability to selectively measure particular physical
quantities, while frequency shifts of an oscillating circuit reflect the net effect of all quantities in
the circuit which contribute to the shift in the resonance. The ability for oscillators to operate
in the radio frequency range makes them more attractive for studying physical processes in
solids than ac bridges, which typically operate anywhere from the dc range to a few kilohertz.

One such oscillator, known as a tunnel diode resonator (TDR) [VanDegrift (1975b,a)], has
been carefully optimized for operation at low temperatures, i.e. below about 30 K, by allowing
for the detection of changes in its resonance frequency with 0.001 ppm sensitivity and has
proven to be an excellent tool for determining the temperature dependence of the London
penetration depth in superconductors through its ability to make precision measurements of
the ac magnetic susceptibility of materials. What follows is a detailed description of exactly
how this device has been implemented to make such measurements in our laboratory.

The principle components for understanding the operation of the TDR are an LC tank
circuit that is formed by an inductor coil and a capacitor, which has a natural resonance
frequency near 10 MHz for our setup, and a tunnel diode, which has a very narrow pn junction
that is heavily doped. These special features of the tunnel diode alter its current-voltage (I-

V) dependence away from that of a normal diode, most importantly by introducing a region
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of negative differential resistance for which an increase in bias voltage leads to a decrease in
output current, which is shown in Fig. 3.1. When the bias voltage across the tunnel diode is
adjusted to be within this region of the I-V curve, it serves as an ac power supply for the LC
tank circuit that effectively locks onto its natural resonance frequency by nearly compensating
for all of its losses. A sample to be studied is placed at the center of the inductor coil of the
tank circuit via a sapphire stage. Any changes in the inductance value of the sense coil brought
about from the sample serve to shift the corresponding natural resonance frequency of the tank
circuit. By measuring the TDR resonance frequency as a function of the sample temperature,

one can in principle extract different material properties, such as thermal expansion, surface

impedance, and electric and magnetic susceptibilities.
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Figure 3.1 I-V curve for an actual tunnel diode measured in the lab. The
region of negative differential resistance, where for increasing

V there is a decrease in I, allows the diode to act as a power

source for the LC tank circuit of the TDR.
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Table 3.1 Values of the circuit components used to achieve a noise level of
0.05 Hz along with a 60 turn primary inductor having a 2 mm
diameter, a 20 turn tap inductor having a 2 mm diameter and a
tunnel diode having a power rating of BD-3.

Component | Value
Ry 1500 ©
Ro 300 Q
C. 22 pF
Cg 0.012 uF
R, 300 Q2

C (tank) 120 pF

3.2 Optimization for precision measurements

A standard circuit diagram is shown in figure Fig. 3.2, containing all of the TDR circuit
components. This design of the TDR circuit has been optimized for use at temperatures below
30 K. This is because the tunnel diode I-V characteristics become nearly temperature inde-
pendent below this temperature as a consequence of its heavy doping level, which is favorable
for stability in the resonance frequency. In general, the TDR resonance is also field dependent,
but since measurements of the London penetration depth require that both the circuit and the

sample are in zero applied magnetic field, this topic will have no further elaboration here.

To |_ D R, L
Cﬂm TR

Figure 3.2 A standard TDR circuit diagram [Vannette (2008)].

The dc signal that acts to bias the tunnel diode is fed to the circuit through the same coaxial

cable that the ac signal travels back up through to reach the room temperature electronics used
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for analysis. The two resistors R; and Rs together form a voltage divider so that the proper dc
bias can be achieved across the tunnel diode. Since R; is large it serves as an additional source
of r f isolation, while still allowing the dc signal to pass through. The bypass capacitor, Cp, is
chosen to be very large so as to act as a short for frequencies in the range of the TDR operating
frequency, which is near 10 MHz. The small output coupling capacitor, C., allows only a small
portion of the ac signal to pass back up the coax to the room temperature electronics. A tap
coil, which is chosen to have roughly 1/3 of the inductance of the primary or top portion of
the inductor, is used in order to damp away higher harmonics of the resonance frequency. The
value of the tapping fraction depends on the impedance of the LC tank circuit at resonance
and is generally chosen such that the tap inductance is just beyond the critical value that will
allow the tank circuit to resonate. The parasite resistor, 12, located between the tunnel diode
and the LC tank circuit, serves to kill stray oscillations that can be set up between the small
capacitance of the diode itself and the tap coil. All of the grounding connections for the circuit
were done so by attachment to the circuit chassis, which in turn was routed to a secure Earth
ground through the coaxial cable from the top of the cryostat.

The coils used for both the primary and tap inductors were comprised of 40 gauge copper
wire that was held together by stycast 1266 epoxy. A small coil winding machine was used to
facilitate their construction. The winding process began by inserting a 2 mm diameter drill
bit into the winding apparatus to serve as a surface onto which the turns are wound. Next,
a thin layer of grease was applied to the outside of the bit so that removing the finished coil
could be done more easily. After that, a single turn of very thin mylar was wound around the
greased bit that would later be removed from the inside of the finished coil. After the mylar
was in place, the winding process was ready to commence. In order to reduce the intrinsic
capacitance of the inductors themselves, the copper wire was doubly wound onto the drill bit
so each turn in the finished coil was separated from the next by a distance equal to the wire
diameter itself. After the winding process was completed, which involved making 60 full turns
for the primary coil and 20 full turns for the tap coil, a thin layer of GE varnish was used to

coat all of the turns and allowed to dry for 15 minutes. Once dry, one of the doubly wound
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turns was removed and the remaining turns on the bit were coated with a very thin layer of
stycast 1266 epoxy. After the epoxy cured, the mylar was removed from the inside by pulling
on it gently with tweezers.

All circuit components were mounted inside of compartments that were drilled out of the
inside of a large piece of gold plated copper known as the circuit block that was mounted
to the end of a 3He cryostat. In order to minimize drifts in the resonance frequency that
could arise from variations in the temperature of its components, utmost care was taken to
ensure that all components were thermally anchored to the circuit block as best as possible.
In turn, the temperature of the circuit block itself was controlled by using the proportional-
integral-derivative (PID) function of a Lakeshore temperature controller. The voltage divider,
consisting of Ry and Rs, as well as C. and Cp were all surface mount circuit components that
were soldered to a mounting board with an electrically insulating back and the proper electrical
pathways were carved into it by using a handheld grinding wheel. This small sheet was firmly
mounted to the wall of one of the circuit block compartments so as to achieve the best possible
thermalization of the mounted components. A separate compartment leading off of this one
housed the tunnel diode and the parasite resistor. This compartment lead to another which
housed the capacitor of the tank circuit and the tap coil. The primary coil was located inside of
a thin copper tube protruding out of the circuit block to allow for the insertion of the sample,
which was mounted to the thin sapphire rod of the sample holder. All components and leads
were thermally anchored to the circuit block as best as possible using either direct contact or
Apiezon N grease, while avoiding electrical shorts to ground through to the circuit block itself.

The ac signal from the LC tank circuit passed up to the room temperature electronics for
analysis through the same coaxial cable that delivered the dc bias voltage. Once the signal
had passed up to the room temperature eletronics it was amplified, mixed to be in the 1-3
kHz region, filtered, amplified again and then counted. Under the best operating conditions,
the drift in the measured TDR frequency was roughly A f ~0.05 Hz over the course of several
hours, which was achieved for a circuit built using the components specified in Table I. When

considering that the resonance frequency of the TDR is fy ~ 14 MHz, this translates into
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a sensitivity of Af/fo ~ 0.003 ppm, which implies that the TDR measurement technique is
capable of measuring changes in the London penetration depth on the order of 1 A by applying

the standard calibration used to change frequency shifts into length.

3.3 Calibration of the penetration depth from measured TDR frequency
shifts

The penetration depth of a superconductor is measured using the TDR by placing a sample,
typically being plate-like with a rectangular cross section, onto the end of a sapphire rod and
inserting it into the inductor coil of the LC tank circuit. The temperature of the circuit was
held as constant as possible, typically to (5 + 0.001) K, by using the proportional-integral-
derivative (PID) control function of a Lakeshore model 340 temperature controller to supply
heat to the copper block onto which the circuit components were mounted. The sapphire
sample stage was mounted inside of a small copper piece, known as a heater block, with a
heater and a thermometer attached to its sides. This allows for the monitoring and controlling
of the sample temperature without providing a direct thermal contact between the sample
and the TDR circuit. Once inside the coil, a superconducting sample acts to change the
resonance frequency of the TDR by directly changing the inductance of the sense coil through
its diamagnetic screening of the ac magnetic field of the coil, which has a magnitude near 10
mOQOe.

To see how exactly this shift in inductance caused by the superconductor propagates
through to the resonance frequency, let us consider the situation where a sample is placed

inside of the coil of a TDR that has an empty coil resonance frequency given by

1
2mvVLC'

where L is the inductance of the empty primary coil and C is the tank capacitance. The

fo= (3.1)

diamagnetic response of the superconductor to the applied magnetic field of the primary coil
will shift the inductance by some amount, AL, which in turn will shift the TDR resonance

frequency by some amount, A f, so then one can write



41

1
+Af= . 3.2
fot+ Af 91\/(L + AL)C (3.2)
By using a binomial expansion of the square root and factoring, the result is
A 1AL
Af 1Al (3.3)
fo 2 L

Consider now the case where the primary coil is empty. The value of the applied field from the
TDR, H, in this case will be the same throughout the primary coil and the integrated magnetic

flux, ®, can be expressed as

o= HV,, (3.4)

where V, is the volume of the coil. The flux is related to the inductance through the relation

%

L=—. .
I (3.5)
The integrated magnetic flux when the sample is inserted, ®’, has the form
' = H(V.— Vi) + BV, (3.6)

where V; is the volume of the sample and B is the magnetic field inside of the sample. By

using B = H + 4w M, with M being the magnetization of the sample, Eqn. 3.6 takes the form

&' = HV, + 4wV, M. (3.7)

The inductance for the case when the sample is inside of the coil, L', now takes the form

d®  d®' dH d(HV.) dM dH
r_ 2= = - = ¢ T =
V= = oo = S LV S S — L4 AL (3.8)

and so now it can be understood that

— = X (3.9)
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with y being the ac magnetic susceptibility of the sample. Finally, an expression relating the

susceptibility and the resonance frequency can be written:

Af Vs
f 2w

4my. (3.10)

It is now our goal to understand how the susceptibility can be related to the penetration

depth. Generally speaking, the penetration depth is defined as

1 o
A= Fo/o B(z)dz, (3.11)

which is only applicable to semi-infinite systems, with Hy being the field at the interface and
B(x) being the field inside of the superconducting half-space. In actual samples, finite size
effects and demagnetization, which can really only be defined for a sphere, complicate this
problem and we are forced to rely on models relating the susceptibility and the penetration
depth that are only applicable to certain geometries. One such model has been developed to
relate Ay, the in-plane penetration depth, to y, the dynamic magnetic susceptibility, for thin
slabs of rectangular cross section with the magnetic field oriented perpendicular to the plane

of the slab [Prozorov et al. (2000a)]. The relation

4y = ﬁ [1 - % tanh (%)} (3.12)

is valid only for the case of a slab with thickness 2d in the z-direction, 2w in the y-direction and
infinite in the z-direction with the field applied along the y-direction, with N being the effective
demagnetization factor. An effective dimension R is used to map finite sample dimensions onto
this geometry. The most successful solution for rectangular slabs having dimensions 2a x 2b
with b > a and thickness 2d has been found by mapping these dimensions onto a disc of radius
w and thickness 2d. This is done by using

w

e 21+ [1 + (2)2] arctan (&) — 2] (3.13)

with
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(3.14)

For actual samples, R >> Ay and so tanh (R/)\y) — 1 and by using Eqns. 3.10 and 3.12 it

can be shown straightforwardly that

Mab(T) = Aa(Tyngn) = %{M[Aﬂmm) — AS(T)] = GIAS (Toin) — AF(T)] (3.15)

where T},,;,, is the base temperature for the experiment. The constant of proportionality G can
be measured directly by removing the sample from the coil at T},,;, with the use of an extraction
mechanism and thus allowing one to exactly measure the empty coil resonance frequency, fy.

Alternatively, G can be determined by using the normal state electromagnetic skin depth

_ [z
-Z o0

The general expressions relating the frequency shifts of the resonator to the skin depth in
the normal state and the penetration depth in the superconducting state for an applied ac

magnetic field perpendicular to the c-axis are given by

Af Vs tanh ac
e 1— A
fo 2V, { Re[ ac ” (3.17)
and
Vi tanh ae
A(1/Q) = chm[ - } (3.18)
where c is the sample thickness. For a normal metal
(1-i)
= 3.19
o=t (3.19)
and for a superconductor we have
1
=, 2
=7 (3.20)
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If we define 0f/fy and 6(1/Q) to be values relative to the values for zero penetration into the
sample we have §(1/Q) = A(1/Q) and 6f/fo = Af/fo — Vs/2V.. In the limit where the skin

depth is much less than the sample thickness we have for the normal metal case

of Vsd

and for the superconducting case
of VsA
= e (3.22)

Hence it is enough to know the value of the resistivity at 7, to calibrate the penetration depth

by using these relations.

3.4 Measuring the absolute value of A\, (7))

The TDR technique described up to this point is able to precisely measure the variation
of the London penetration depth with temperature, ANT) = ANT) — AT ynin), but not its
absolute value, \(T') [Prozorov and Giannetta (2006)]. This can be understood by considering
the effect of introducing a superconducting sample into the primary TDR inductor coil. We can
imagine that before the sample is introduced, the TDR has some natural resonance frequency
fo, and after the sample is inside fy shifts to some value that depends on the properties of
the superconductor. The magnitude of this frequency shift is ultimately affected by how the
sample perturbs the field of the inductor coil, which is dependent on the ability of the sample
to screen the field from the inductor. Since this is a function of the detailed characteristics
of the superconductor, e.g. the pairing symmetry, which are usually unknown, calculating the
value to which the resonance will shift due to the samples presence is practically impossible.

On the other hand, one might think that it is not necessary to know the absolute value of
A(T) because the exact functional form of AN(T") can be calculated for a given order parameter
symmetry and this is all that is really needed to analyze the data. This is partly true, but
the absolute value of A(0) is required for the proper normalization of the superfluid density,

ps = [MO)/A(T)]?. This quantity is important for studying effects associated with multigap
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and/or anisotropic superconductivity and is also related to the phase stiffness of the wave
function of the superconducting condensate [Kogan et al. (2009)].

A method for obtaining the absolute value of A(7') must provide an accurate and reliable
way to extract a calibration point. Once a calibration point has been established, all other
values of A are automatically known. The procedure for the method used in this work to
calibrate A\ was initially proposed in Ref. [Prozorov et al. (2000b)]. It is based on the basic
idea that if A is unknown for a given sample, then it can be determined at a single temperature
by coating its entire surface with a thin film of a different, conventional superconductor having
a much lower T, and a known value of A\(0). The film thickness must be less than the rf skin
depth at the TDR operating frequency of ~10 MHz so that once it reaches the normal state,
it will be virtually transparent to the ac magnetic field of the coil because it will contribute
negligibly to the screening of the ac electromagnetic field, which a normal metal usually would
do in its bulk state.

To understand exactly how this method allows for the determination of the absolute value of
the penetration depth of a superconductor, let us consider the case where a bulk superconductor
with a given T, is coated with a thin film of a conventional superconductor having a much
lower transition temperature, which we will assume is aluminum. Region 1 corresponds to
the film and region 2 is the bulk superconductor. The film thickness will be taken as d4;
and the external magnetic field is taken to be in the form of H(r,t) = Ho(r)e™'y, which is
parallel to the interface plane between the film and bulk superconductor. The Z-direction is
perpendicular to the interface between the film and the bulk superconductor and points toward
the interior of the bulk material, which can be seen in Fig. 3.3. Our goal is to evaluate the
effective penetration depth into the system consisting of the film and the bulk superconductor
in terms of known parameters that will allow us to solve for the unknown penetration depth
of the bulk superconductor. The well known London equation

1

V2H = Fﬁ (3.23)

will be taken as being valid inside of both the superconducting film and the bulk superconduc-



Before Al coating After Al coating
c c

T<T.(Al) T> T,(Al)

|

>
X X

hy (T < T = 2, (| 2D+ ADtanh(d,, /m»]

Aly _
M (T)+ Ay(Tytanh(d,, / 3,(T)) A>T =dy + 1D

Figure 3.3 Schematic diagram of the sample before and after the aluminum
coating procedure.

tor. Therefore, we have the following solutions for the magnetic field inside of regions 1 and

2:
Hi(z) = [Ae™ + Be )¢ty (3.24)

-

Hy(z) = C’e_%ewg]. (3.25)

In addition, the following boundary conditions apply for this setup:

Hy(x = 0) = Hoj, (3.26)

ﬁl(az = dAl) = ﬁg(x = dAl) (327)

and

E\(x=da) = Eax(x = da). (3.28)
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To utilize the boundary condition in Eqn. 3.28 we must make use of the relation

VxH=J=0E, (3.29)
and for superconductors with T' << T, we have

J(w) = Zf}f;&g (3.30)

So the boundary condition in Eqn. 3.28 reduces to

! Ox 2 Ox ’

(3.31)

The equations that result from applying the boundary conditions in Eqns. 3.26, 3.27 and 3.31

to the solutions in Eqns. 3.24 and 3.25 are:

A+ B = Hy, (3.32)
dAL _dar _dal
Ae* 4+ Be »1 =(Ce *2 (3.33)
and
_dal dal A _dar
Be % — Aeh = (—2)Ce % (3.34)
A1

Solving for A, B and C using Eqns. 3.32, 3.33 and 3.34 results in:

2 1)
e™ (52
— _ )\1
A= Holl 2[cosh 44L + 22 ginh M]} (3.35)
>‘1 >‘1 )\1
dar
B_ Hpe ™t (52 +1)
~ 2fcosh AL 4 (22)ginh da]’ (3.36)
A1 A1 A1
and
1.1 cosh AL — ginh %A
C = HoedAl{)\l +)\2 < A1 A1 (337)

dai 4 (X2Y)giph 44/’
cosh At + (52) sinh 52
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Having now solved for A, B and C, we have the full solutions of the magnetic fields H;(z)
and Hy(z), which can be used to calculate the effective penetration depth inside of the film

and bulk superconductor combination. This is calculated using the definition

o0

1

1 00 da
Mt = o1 /0 H(:L")dm:m( [ @+ Hy(z)d). (3.38)

dai

After some algebra, it can be shown that the resulting value for Acsy is

A9 + Ay tanh d)\—‘il>

3.39
A1 + Ao tanh d)\—‘zl ( )

Aeff = )\1(

This result has been used to calibrate experimental penetration depth data on a number
of different compounds [Kim et al. (2010b); Gordon et al. (2010a)]. As an example of how
this is done, the following analysis is used for a member of the Ba(Fe;_,Co,)2Ass series with
x=0.074 and T, ~ 22.7 K and no value of A\;;(0) that had been reliably determined before the
measurement. The process began by selecting the best looking single crystal of this material
from a bigger batch that had a plate-like rectangular cross section. A typical basal dimension
for such a sample was 0.5-1 mm. Once chosen, A\, (T') was measured for the sample before
it was coated with any superconducting films. This allowed for the determination of useful
parameters pertaining to the low temperature functional form of the penetration depth that
are unaccessible after the sample has been coated. Once clean data was taken for the uncoated
sample, the next step was to coat its entire surface with a thin film of a superconductor having
a much lower T, and a known value of \(0). For this study, aluminum was chosen as the
material for the superconducting film, which has T4 ~ 1.2 K, A\(0) ~ 500 & 100 A and was
deposited with a thickness of d4; = 1000 4 100 A. See Fig. 5.1 for an SEM image of the sample
after it was coated and a detailed explanation about the coating procedure explained in the
text. A typical value for the resistivity of an aluminum film just above T, is p4; ~ 10 uQ-cm.
To determine the skin depth for a metal having this resistivity in the presence of an applied
field having a frequency w = 27 (14 MHz), corresponding to the TDR frequency, we can use

the formula given by Eqn. 3.16 to calculate the normal state electromagnetic skin depth for
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aluminum at this frequency, which gives a value of § = 75 pm. Since § >> d4;, the aluminum
film is effectively transparent to the magnetic field of the TDR coil.

Fig. 3.4 shows the temperature dependence of the variation of the London penetration
depth for the Ba(Fep 926 Cop.g74)2As2 compound for the magnetic excitation field of the TDR
coil oriented so that it was parallel to the crystallographic c-axis of the sample and super-
currents flowed only in the ab-plane, A\, (7). For the Ba(Fe;_,Co,)2Asy series, it has been
well established by several techniques [Gordon et al. (2009b,a, 2010b)] that the low temper-
ature region of the London penetration depth exhibits a power law temperature dependence,
AXgp(T) = CT™, where n is greater than 2. The inset to Fig. 3.4 shows a zoomed in view of
the low temperature region, i.e. below T./3, for A\ (T) along with a power law fit shown by
the solid red line. Taking high quality data in the low temperature region before the aluminum
coating procedure is important because the lowest portion of this region is hidden after the
aluminum is deposited and the functional form of the penetration depth in that portion for
the bulk superconductor is useful for data analysis. The exact form of the fitting function used
was Ay (T) = CT™, where C' = 2.936 x 10~* and n = 2.48.

The main frame in Fig. 3.5 shows the full superconducting transition before the aluminum
coating (black circles) as well as the low temperature data after coating (green triangles).
The inset to Fig. 3.5 shows a zoomed-in view of the full aluminum transition, which occurs
from T}, ~ 0.5 K up to TcAl ~ 1.2 K. The quantity identified in the inset of Fig. 3.5 as
L= AXef(TA) — AXesf(Tonin) is useful for calibrating the absolute value of the penetration
depth.

Let us now consider the quantity L= AX¢s(TAY) — AXesf(Tonin), which is identified in the

inset of Fig. 3.5. We have

L= Mg (T2) = Aeg g (Tonin) = Aegp(T2) = Acy s (Tonin) (3.40)

where A.¢y is given by Eqn. 3.39, which in terms of the present parameters defined takes the

form of
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Figure 3.4 TDR measurements of A\, (T) for a Ba(Fe;_,Co,)2Ase com-
pound with £=0.074 before it was coated with an aluminum film

for the absolute calibration of the London penetration depth.
The inset shows a zoomed-in view of the low-temperature re-
gion, i.e. below T./3, and the red line is a power law fit.
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Figure 3.5 Ay (T') before and after the same compound shown in Fig. 3.4
was coated with an aluminum film.



Aepf(T) = )\AI(T)( (3.41)

Aab(T) + Aai(T )tanh v (T)
Aai(T) + Aap(T) tanh 5 j;yT) ) ’
with A;(T) being the penetration depth of only the aluminum, A\, (7") being the ab-plane
penetration depth of only the bulk superconductor and d 4; being the thickness of the aluminum
film. Now let us consider what happens when T = TcAl. Because the aluminum film has
gone into the normal state and because dy; is much less than the skin depth of aluminum

at 14 MHz, 4, the TDR field penetrates completely through the aluminum film and into the

Ba(Feg 926 Cop.074)2As2 up to a thickness of Ay, (7"), which gives us

Aefr (TAY = dag + Aap(TA). (3.42)

We know from the measurements on the Ba(Feq 926Cop.074)2As2 compound before it was coated

with aluminum that

Aa(T) = Aap(T) — Aap(0) = COT™ (3.43)

so Eqn. 3.42 becomes

Aef (T = dag + C(TAY™ + A (0) (3.44)

Consider now what happens when T' = T,,,;,,. At this temperature, both the aluminum film
and the Ba(Fep 926Cop.074)2As2 superconductor participate in the screening of the externally
applied rf magnetic field from the TDR and the resulting penetration depth is given by the
expression in Eqn. 3.41. In order to evaluate A 4;, we can use the BCS [Bardeen et al. (1957);

Poole et al. (2007)] estimate for it at T' = Ty, namely

TA(0) — 240 0.85)7T Al ~(.DT!
/\glCS(Tmin) ~ /\AI(O) (1 + %BA#G kp mm) = /\Al(o) (1 + (%e Trin >,

(3.45)
where the expression for 2A 4;(0)/kpTA'=3.4 Ashcroft and Mermin (1976) was used and

Aa:(0) = 500 £+ 100 A . Now, using the expression given in Eqn. 3.40 we obtain
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\n BCS . d
C(Tmm) + Aab(o) + )‘Al (Tmm) tanh WM >
- d
NS (Tin) + (C(Tin)" + Aap(0)) tanh spesii—s
(3.46)

L = dai+C (T2 + X (0)~ NS (Tnin) (

with the only unknown being Ay, (0) since the quantity L itself can be measured directly from

Fig. 3.5. To solve for A\ (0), we can use the quadratic equation in the form

—b—Vb?2 — 4dac

= A4
)\ab(o) 24 (3 7)
where the coefficients are given by
dai
a = —tanh ———— 3.48
)\Al(Tmin) ( )
_ Alyn n dai
b=I[L—dy—CT7")" — C(Tyn)"] tanh ———— (3.49)
)\Al(Tmin)

and

¢ = —a[(L—d 4)C(Trmin)"—C*(TA Trin) "+ N5 (Trnin )|+ X a1 (T ) [L—d 41— C(TA) " 4+-C (T ).

(3.50)
For L =~ 0.333um, this procedure produces a value of A\g(0) ~ 270 nm, which is in quite
reasonable agreement with values of A\;(0) that were obtained later using other techniques
[Williams et al. (2010); Luan et al. (2010); Nakajima et al. (2010)].

In summary, a new procedure has been developed to measure the zero temperature value
of the penetration depth by using the TDR technique, which is useful for the proper normal-
ization of the superfluid density, ps(7"). This procedure takes advantage of the calibration
point provided by coating the entire surface of the sample under study with a thin film of a
conventional superconductor with a lower 7, and a known value of A\(0). By using the analysis
provided in this section along with the TDR frequency shift data, A(0) can be determined for

a superconductor.
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CHAPTER 4. Penetration depth measurements in Ba(Fe;_,7,)2As,
(I'=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu)

4.1 Introduction

After the initial discoveries of superconductivity with 7, ~ 26 K in LaFeAs(O,_,F,) [Kami-
hara et al. (2008)], which was soon after shown to be as high as 55 K in SmFeAs(O;_,F;) [Ren
et al. (2008)], an intense flurry of activity aimed at understanding the fundamental physics
governing this new family of superconductors has been put forth. Up to this date there have
been at least five new classes of iron-based superconductors discovered. Due to the availability
of mainly the 1111 and 122 classes of these materials at the time of this work, these will be
focused on in the following report of experimental results in this section.

The symmetry of the superconducting order parameter (OP) is of crucial importance for
determining the pairing mechanism in any superconductor. This was demonstrated by the
experimental uncovering of the d,2_,2-wave symmetry of the OP [Harlingen (1995)] in the
high-T, cuprates, and many comparisons have been made between them and the iron-based
superconductors. However, there are several differences between these two families of materi-
als, such as a single band crossing the Fermi level in the cuprates versus multiple bands crossing
in the iron-based superconductors, the cuprates are very two-dimensional materials whereas
the iron-based superconductors are likely three-dimensional, the cuprates have a single super-
conducting gap while the iron-based superconductors likely have multiple ones and the parent
compounds of the cuprates are anitferromagnetic insulators compared to the poor metallic
parent state of the iron-based superconductors. Perhaps the main reason for this juxtaposition
is that the parent state of both exhibit some type of antiferromagnetic ordering at finite tem-

perature that is suppressed as the system is doped away and superconductivity emerges out of



95

this instability of the magnetic phase for some critical doping concentration [Taillefer (2010)].
It is only natural to suggest that there may be an underlying physical principle which is com-
mon to both families, namely that the superconducting pairing mechanism is strongly linked
to spin fluctuations, analagous to the role played by phonons in BCS superconductors. Since
their discovery, conflicting experimental reports have lead to confusion about the actual OP
structure in the iron-based superconductors, which may be due to the unconventional nature
of many of their superconducting properties.

As for the 1111 system, point-contact Andreev-reflection (PCAR) spectroscopy experiments
have reported the existence of two distinct superconducting gaps in NdFeAs(Og 9F¢.1) [Samuely
et al. (2009)] and SmFeAs(Ogg5Fo.15) [Wang et al. (2009)], with evidence for a pseudogap
above T, as well as a zero bias conductance peak, which has been interpreted as evidence for
an OP that changes sign between Fermi surface sheets. However, other PCAR measurements
in the SmFeAs(Og 9F¢.1) compound have shown evidence for a single superconducting gap that
exhibits a BCS temperature dependence [Chen et al. (2008)].

Nuclear magnetic resonance (NMR) measurements have indicated the lack of a coherence
peak in the spin lattice relaxation rate of the 1111 system and a 7 power law behavior
at low temperatures, interpreted as either a nodal superconducting gap or the presence of
strong impurity scattering [Grafe et al. (2008); Nakai et al. (2008)]. On the other hand optical
spectroscopy measurements have reported the observation of a coherence peak just below T,
in the 122 system and it has been proposed that these two different techniques see different
results because they may be coupling over different length scales of the Fermi surface [Aguilar
et al. (2010)].

Angle-resolved photoemission spectroscopy (ARPES) experiments in the NdFeAs(Og.9F.1)
[Liu et al. (2008); Kondo et al. (2008)] and NdFeAsOy g5 [Aiura et al. (2008)] compounds have
observed isotropic superconducting gaps in the ab plane for both the inner and outer hole
pockets centered about the I' point as well as the electron pocket centered about the X point
of the Brillouin zone. Not all ARPES experiments on the Nd-1111 compounds observe all

reported gaps stated previously, but the superconducting gap amplitude observed about the
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inner I' point has been reported to have values from 12 to 20 meV.

Measurements of the London penetration depth, A, in the 1111 system originally reported
claims of exponential behavior at low temperatures, indicative of a nodeless OP, but after
many careful measurements have been done since then, the consensus of the community has
changed. Initial measurements of Pr-1111 taken with a microwave cavity technique reported
that the penetration depth was flat at low temperatures, which was interpreted as evidence for
a nodeless OP, but later it was found that this flat dependence is likely from a very low signal
to noise ratio [Hashimoto et al. (2009)]. Transverse field muon spin rotation measurements
(TF-uSR) of A in La-1111 [Luetkens et al. (2008)] and Sm-1111 [Drew et al. (2008)] initially
reported that A exhibited exponential behavior at low temperatures, but later after more
careful studies were done it was found that the effects of magnetic order and/or random frozen
disorder of the vortex lattice in iron-based superconductors introduce considerable uncertainty
in their ability to determine A from TF-uSR data [Sonier et al. (2010)]. Tunnel diode resonator
(TDR) measurements of A in the Sm-1111 [Malone et al. (2009)] and the Nd-1111 [Prozorov
et al. (2009b)] originally reported exponential behavior at low temperatures, but later it was
shown by comparison to TDR measurements of the non-magnetic La-1111 compound and
also by fitting the Sm-1111 and Nd-1111 data to a function that accounts for the additional
contribution from the local moments that this exponential dependence is most probably an
effect arising from the localized magnetism from the rare earth ions [Martin et al. (2009b)],
which was also found to be the case for the electron-doped cuprate NCCO [Prozorov et al.
(2000¢)].

As for the 122 system, the initial claims of the measured gap symmetry from different
experiments seemed just as conflicting as they were in the 1111 system. PCAR measurements
performed on the K-doped Ba-122 compound are consistent with two nodeless superconducting
gaps in the ab plane, while ARPES experiments in the same series have found the existence of
multiple superconducting gaps on various sheets with differing amplitudes [Ding et al. (2008);
Evtushinsky et al. (2009a)]. Before much of the data to be reported here, there was little done

on the 122 system in terms of the magnetic penetration depth, but works that were performed
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later [Bobowski et al. (2010); Luan et al. (2011)] are consistent with the data that are to be
shown later in this chapter. Thermal conductivity and specific heat measurements performed
as a function of the doping level in the Ba(Fe;_,Co,)2Ass series have indicated that the
superconductivity at optimal doping in this compound is nodeless [Reid et al. (2010); Gofryk
et al. (2009)], but near the edges of the superconducting dome they suggest the development
of a significant gap anisotropy or the development of nodes in the gap that are not imposed
by symmetry (accidental nodes).

All of the samples measured in this study were large single crystals grown out of Fe-As
flux using standard high temperature solution growth techniques [Ni et al. (2008a,b)]. They
were selected from several different batches that have been characterized by various techniques,
including resistivity, magnetization and heat capacity. The actual doping concentrations were
determined by wavelength dispersive x-ray spectroscopy (WDS) in the electron probe micro-
analyzer of a JEOL JXA-8200 Superprobe. Magneto-optical imaging was also used to insure
that the Meissner screening in the samples was homogeneous down to a length scale of ~ 1um,
which can be seen in Fig. 4.1. The temperature-doping phase diagram for several different

transition metal doped 122 compounds is shown in Fig. 1.1.

4.2 AX,(T) at optimal doping in Ba(Fe;_,Co,),As;

The first measurements to be discussed here were performed on three different samples, all
near optimal doping, of the Ba(Fe;_,Co,)2Asy series [Gordon et al. (2009b)]. These samples
were all thin slabs having rectangular cross sections and typical dimensions of & 1x1x0.8 mm?.
WDS analysis has shown that the actual cobalt concentration for these samples, averaged over
six measurements, is Co/(Co+Fe)=7.4%+ 0.2%. Doping at this level completely suppresses
the antiferromagnetic and structural transitions that exist in the parent compound. Powder
x-ray diffraction on ground crystals has yielded tetragonal lattice constants of a = 3.9609 +
0.0008 A and ¢ = 12.9763 + 0.004 A. As mentioned previously, single crystal x-ray diffraction
measurements have found no evidence for a tetragonal-to-orthorhombic structural transition,

as can be seen from panels (a) and (b) in Fig. 4.2. In particular, the orthorhombic splitting
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Figure 4.1 A magneto optical image of a Ba(Fe;_,Co,)2Asy sample show-
ing that the trapped flux is uniformly distributed indicating
homogeneous superconductivity.
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observed in the (v v 0) scans for the parent compound [Ni et al. (2008a)] with a value of
Av =~ 0.005 at 10 K should be clearly observable as illustrated by the arrows in Fig. 4.2 (b).
Furthermore, the similarity of the diffraction peak widths for the Co-doped and the parent
BaFeyAsy compound indicates that the Co doping is homogeneous. Fig. 4.2 (c) shows the
T-dependent in-plane resistivity, dc magnetization and penetration depth. The T, as defined
by zero resistivity, coincides with the onset of diamagnetic magnetization and is close to the
beginning of a sharp decrease in A\(T).

The low-temperature behavior of the in-plane penetration depth, A (T) = Aep(T) —
Aap(0) and the superfluid density, ps(T) = [A(0)/A(T)]?, are commonly used to determine
the symmetry of the superconducting pairing state [Prozorov and Giannetta (2006)]. In the
case of a fully gapped Fermi surface for a clean, homogeneous superconductor that is in the
local limit, ANT)/A(0) ~ /7A(0)/2kpT exp (—A(0)/kpT), which for the BCS (isotropic)
case is applicable for T" < T./3. This fully gapped form is also valid for the cases of an
anisotropic gap and two-gap superconductivity if one allows A(0) /7. to be a free parameter and
A(0) = Apin(0), the magnitude of the smaller gap. This behavior is consistent with our TDR
measurements of the penetration depth in Nb, a well known, conventional BCS superconductor,
as well as the multigap s-wave superconductor MgBs, both shown in Fig. 4.3. For the case
of a superconductor having d,»_,2-wave pairing, as for the high-T:. cuprate superconductors
[Harlingen (1995)], in the clean impurity scattering limit AX(T)/A(0) =~ [2In(2)/aA(0)]T,
where a = A71(0)|dA(¢)/dé| as ¢ — Prode- This linear T-dependence changes to a quadratic
dependence from T'= 0 K up to a characteristic temperature 7™ if impurity scattering effects
are non-negligible, where T™* depends on the concentration of impurity scatterers in the system
[Hirschfeld and Goldenfeld (1993)]. The expected linear T-dependence for a clean d,2_,2-wave
superconductor has indeed been observed from TDR penetration depth measurements in the
high-T, cuprate superconductor Bi-2212 with a T, of 90 K, also shown in Fig. 4.3. Non-magnetic
impurity scattering does not affect the s-wave gap much, but it does suppress the d,2_ 2-wave
gap. However, the superfluid density does change in both cases if non-magnetic impurity

scattering is significant, as shown in Fig. 4.3. The functional form of the superfluid density
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for an s-wave superconductor in the dirty limit is ps(7") = A(T)/A(0) tanh (A(T)/2kpT)
[Tinkham (1996)].

The observed low-temperature behavior of the in-plane London penetration depth, Ay (7T),
in Ba(Feq.93Cog.07)2As2 is clearly non-exponential, as can be observed in Fig. 4.3. The inset of
Fig. 4.3 shows the data plotted as a function of (T'/T.)?* for three samples at this doping level
from different batches, all having unequal sizes and aspect ratios. The linear dependence shown
in the inset indicates that the power law is close to 2.4 for each sample and the uncertainty
in the penetration depth prefactor is reflected through the differences in the slopes of these
curves. The bottom curve (orange triangles) corresponds to the smallest sample and therefore
the smallest filling factor for the TDR coil, which explains why the data for that curve are
noisier on average than the other two curves in the inset to Fig. 4.3.

The fitting function that was used to analyze the T-dependence of each A\, curve had the
general form of AXy(T) = CT™. The low temperature end of the fitting interval was always
fixed at the base temperature of the experiment, which corresponds to T}, /T. = 0.02, and
the fitting parameters C' and n were determined by varying the high temperature end of the
fitting interval up to as high as T},4. /T = 0.4. This analysis has given values for the exponent
n in the range of 2.15 to 2.42. To compare different curves, the maximum temperature of the
fitting interval is always fixed at T,./3. For these samples, this procedure yields n = 2.4 £+ 0.1,
where the error reflects the scatter of the values of the exponents between different samples.

Fig. 4.4 shows ps(T) for one of the optimally doped Ba(Feg 93Cog o7)2Ase samples along with
the known s-wave (clean case) and d,2_,2-wave (both clean and dirty cases) calculated curves.
The values of \(0) that were used to construct the Ba(Fep.93Cop.07)2As2 ps(T') curves shown
in Fig. 4.4 are 200 nm and 300 nm. A value of A(0)=208 nm was inferred from measurements
of H.i, obtained from M(H) loops taken using a Quantum Design (QD) magnetic property
measurement system (MPMS). This was done by increasing the maximum field of the M(H)
measurements until a non-linear region due to the penetration of vortices into the sample
appeared to determine H.; and by utilizing H. = ®¢/[(47A2)(In(\)/€ + 0.05)] [Tinkham

(1996)], with a value for the coherence length of {=2.76 nm at 6 K as measured by scanning
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tunneling microscopy experiments [Yin et al. (2009)]. This value of A(0)=208 nm is quite
close to other reported measurements at the time [Luetkens et al. (2008); Drew et al. (2008)]
and was before the A(0) values were measured in the Ba(Fe;_,Co,)2Ass series by using an
aluminum coating procedure along with TDR frequency measurements [Gordon et al. (2010a)]
that will be discussed later in this thesis, which also gave roughly 200+75 nm. The curve for
A(0)=300 nm produces ps(T') closer to the standard curves shown, but no value of A\(0) can
change the low-T dependence to an exponential one. The inset to Fig. 4.4 shows a zoomed-in
view of the low-T region and clearly shows that the non-exponential behavior persists down to
~0.027,.. At intermediate temperatures, the experimental ps(7") shows a significant departure
from the d,2_,2-wave and s-wave curves shown in the main panel of Fig. 4.4. Such behavior
in ps(7) could be due to a significant anisotropy of the superconducting gap or multigap
superconductivity.

Now let us turn to a discussion of the possible implications of the observed A oc T" depen-
dence with 2.15 < n < 2.42. If the upper temperature of the fitting interval is fixed at exactly
T./3, then for these three samples it has been found that n = 2.3. For a BCS superconductor
(single gap s-wave) in the clean limit and in the case where there are non-magnetic impurities,
a power law fit to A(T") up to a maximum temperature of T,./3 yields a value for the power
of n > 3, which would correspond to the Nb data shown in Fig. 4.3. For a d,2_,2-wave state,
n = 1 in the clean case but for the dirty case the highest that can be found is n = 2. Point
nodes can give n = 2, but probably the best explanation for the observed power law is a
pair-breaking mechanism. For the clean case of the proposed si-wave state, an exponential
T-dependence in the penetration depth is expected [Chubukov et al. (2008); Vorontsov et al.
(2009); Mazin et al. (2008)], but non-magnetic impurity scattering for an si-wave OP acts
as a pair-breaking mechanism, which we believe at this point is the best explanation for the
observed power law behavior in the penetration depth.

Initially it was thought that the 1111 and 122 classes of the iron-based superconductors
showed different temperature dependencies of the penetration depth, but later after a more

careful analysis it was discovered that A(T) is likely to be qualitatively the same [Martin et al.
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(2009b)]. The source of this initial confusion was a paramagnetic contribution to the measured
penetration depth arising from the localized Nd ions in the lattice, which make a Curie-Weiss
type of addition to the penetration depth. Both by accounting for this paramagnetism and
by comparison to A(7") measurements of the non-magnetic La-1111 system, these suspicions
were verified. After all, both classes share the Fe-As planes as key structural building blocks,
electronic structure calculations have demonstrated that the states at the Fermi energy for
both classes of compounds are dominated by the Fe-3d states and the resistivity values are
similar for both classes. Therefore, the results discussed here will be examined with the premise
that there is a common pairing mechanism and the same fundamental pairing symmetry in
both classes of materials.

Previously, it has been argued that the inferred moderate anisotropy of the superconducting
gap A(¢) [Kondo et al. (2008); Prozorov et al. (2009b)] can be understood in terms of an OP
that changes sign between Fermi surface sheets, which would be in line with the proposed s4-
wave superconducting gap Mazin et al. (2008) in which the OP passes through zero somewhere
between the I" and X points of the Brillouin zone [Chubukov et al. (2008)]. If the actual shape
of the Fermi surface deviates much from being perfectly cylindrical, its equator may possibly
reach the points where the OP changes sign and an accidental node is formed. This type of a
node is not enforced by symmetry like in the cases of d,2_,2-wave or p-wave superconductivity.
Evidence for such accidental nodes has been found in recent measurements of the thermal
conductivity [Reid et al. (2010)] in the Ba(Fe;_,Co,)2Ass series as a function of the doping
level, z, and will be discussed in greater detail along with penetration depth measurements as
a function of x later in this thesis.

To summarize this section, the low-temperature (" < 7T./3) in-plane London penetra-
tion depth, Algpy = Awp(T) — Aap(0), has been measured in three different single crystals of
Ba(Feg.93Cop.07)2As2 and it has been found to exhibit a power law of the form A\, o< T" with
n ~ 2.4+0.1. This nonexponential behavior of A\ (T') is indicative of the presence of normal
state quasiparticles down to as low as 0.027,, which could arise from either nodes in the su-

perconducting gap function, A(k), or from some type of pair-breaking scattering mechanism,
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which will be discussed in more detail later.

4.3 Doping dependence of A\, (7") in the Ba(Fe,_,Co,),As, series

After the Ay (T) measurements were performed on the three crystals near optimal doping
in the Ba(Fe;_,Co,)2Asy series, a study was undertaken to determine the doping dependence
of Agp(T) in the same series [Gordon et al. (2009a)]. For this study of the concentration
dependence, samples with doping levels of x=0.038, 0.047, 0.058, 0.074 and 0.10 were studied,
which range from far underdoped to beyond optimal doping in this series, as can be seen in
Fig. 4.5.

Microscopic, thermodynamic and transport measurements in the Ba(Fe;_,Co,)2Ass crys-
tals used in this study have shown that superconductivity coexists with the orthorhombic
phase in the underdoped regime of this particular system [Ni et al. (2008b); Pratt et al. (2009)].
Fig. 4.5 shows TDR frequency shifts as a function of temperature for scans running from below
T, to =120 K for two samples with x= 0.038 and 0.058. The data for the £=0.058 sample have
been divided by a factor of 5 for clarity. In the normal state, the magnetic penetration depth is
limited by the skin depth, which depends on the normal state resistivity. The overall variation
of Af through the transition region is about 20 Hz, which corresponds to a variation of about
45 nm in the skin depth. This should be compared to the 13300 Hz change corresponding to
the superconducting transition of the sample. The temperature at which the structural tran-
sition, T, occurred was defined to be at the position of the minimum in Af(7"), as illustrated
in Fig. 4.5. The superconducting T, was defined at the onset of the transition. Fig. 4.6 shows
that by differentiating the TDR frequency shift data with respect to temperature, we are able
to observed T, Ts and the magnetic transition, T),, by using the same criteria used in [Pratt
et al. (2009)]. Fig. 4.7 shows the ac susceptibility constructed from the TDR frequency shifts
in Ba(Fe;_,Co,)2Ass for all measured concentrations. Optimal doping for this series occurs
for a concentration between £=0.058 and 0.074.

The low-temperature variation of the penetration depth is examined in Fig. 4.8. For all

superconducting samples, a power law T-dependence of the form A\, (T) = CT™ has been
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Figure 4.7 4mx(T') constructed from TDR frequency shifts for H,.||c-axis
in single crystals of Ba(Fe;_,Coy)2Ase for different x.

observed. All of the fits to be discussed have been performed over the temperature range from
the minimum temperature of the experiment up to 7,./3 unless stated otherwise. For these
samples, it has been found that the power law exponent varies from n = 240.1 for underdoped
samples to n = 2.5 & 0.1 for the overdoped samples. To examine how close the overall power
law behavior is to quadratic, the fitting function A\, = AT? has been used to fit all data
curves for these samples up to T../3, with A being the only free parameter. In Fig. 4.9, A\, (T)
has been scaled by the prefactor A and plotted as a function of reduced temperature squared,
(T/T.)%. At a gross level, all samples follow the A\ (T) o< T? dependence remarkably well.

To summarize the observed power law behavior, the upper panel of Fig. 4.10 shows the
exponent n that was obtained from the best fit with two free parameters, Ay (1) = CT™.
The lower panel of Fig. 4.10 shows the doping dependencies of the prefactor C' obtained by
using the above fit, as well as the prefactor A, which was obtained by fitting to a function with
purely quadratic behavior, A\g(T) = AT?. There is a clear change of regime at x ~ 0.06
for n, C' and A. One possible explanation for this change of regime below x ~ 0.06 could be

some type of interaction between the itinerant antiferromagnetic and superconducting phases,
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Figure 4.8 Low-temperature behavior of A\, (7") for all studied concen-
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which have been shown to coexist homogeneously [Laplace et al. (2009); Ni et al. (2008b);
Pratt et al. (2009); Gordon et al. (2010a)]. From Fig. 4.10, the upper panel shows that the
power law exponent n changes from 2.0+0.1 to 2.5+0.1 as x changes from underdoped to
overdoped concentrations, whereas the lower panel shows that from x=0.047 to 0.058, the
prefactors suddenly drop by approximately one order of magnitude. The uncertainty of +0.1
was determined from the difference in n obtained by measuring more than one sample with
the same doping concentration.

In what follows, comments are given on the viability of various scenarios that could yield a
power law behavior of A(T"). If the impurity scattering rate in a superconductor is low and it
is in the local limit, then anisotropic pairing with line or point nodes in the superconducting
gap function give rise to a power law behavior in A(7T'), with n = 1 for line nodes and n = 2
for point nodes. Thus, the most direct interpretation of these results would be in terms of
point nodes in the superconducting gap, as for example in PrOsySbiy [Einzel et al. (1986);

Izawa et al. (2003)]. However, this conclusion would only make sense if these materials were
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in the clean impurity scattering and local limits. A A\ (T) o< T? dependence is consistent
with line nodes in the gap if impurity scattering [Hirschfeld and Goldenfeld (1993)] is included
or non-local corrections are made [Kosztin and Leggett (1997)]. In regard to the case of line
nodes, unitary impurity scattering creates a state with a quadratic temperature dependence
below some characteristic temperature T*, such that kgT™* oc I', where I' is the impurity
scattering rate [Hirschfeld and Goldenfeld (1993)]. For these materials, the requirement would
be I' 2 kpT./3 since the power law dependence persists to such a high temperature, which
would imply that the impurity scattering rate is high with a strong unitary component.

A power law temperature dependence of A\ could possibly be the result of strong impurity
scattering in a superconductor that is fully gapped in the clean limit. The exponential behavior
in the clean limit transforms to a quadratic one if the impurity scattering fills in the gap, causing
a finite residual density of states for all energies [Abrikosov and Gor’kov (1960); Kogan (2009)].
As in Refs. [Chubukov et al. (2008); Parker et al. (2008)], such a power law dependence would
require a scattering rate, I, on the order of the smallest gap, Anin, and a relatively fine balance

between unitary and Born scattering. Another problem with this explanation is that there is
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not a dependence of AX(T) on the concentration of impurities, but rather an abrupt change

of regime as the structural/magnetic region is crossed into Fig. 4.10.
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Figure 4.10 Doping dependence of the exponent n (upper panel) and of the
fitting prefactors A and C, as defined in the text (lower panel).
The inset shows that the expected exponential behavior for a
single-gap BCS superconductor is well described by a power
law function with exponent n ~ 4.

It should also be mentioned that another mechanism that can transform the linear temper-
ature dependence of AX(T') in the case of line nodes in the OP to a quadratic dependence for
T < T* ~ A(0)§/A(0) could be based on nonlocal effects [Kosztin and Leggett (1997)], where
&o is the coherence length. In these materials, however, T* would be less than 1 K.

The observed power law behavior in A(7") could also be a consequence of inhomogeneities
in the materials. While the observation of a smearing of the jump in the heat capacity at
T, in under- and overdoped samples [Ni et al. (2008b)] may be considered a hint for such a
scenario, the jump in C), is doping dependent [Bud’ko et al. (2009)] and it is unlikely that
any inhomogeneity can explain the universal behavior shown in Fig. 4.8 for all concentrations.

Also, if these materials were homogeneous, it is unlikely that the Meissner screening would be
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as homogeneous as has been observed [Prozorov et al. (2009a)].

In view of this discussion, it is tempting to search for an explanation on the phenomenologi-
cal level that would not rely on impurity scattering as a crucial element changing the functional
dependence of A(7"). Indeed, any excitation coupled to electrons with an energy larger than
27kpT is pairbreaking, including regular phonons. Moreover, for an si-wave or a d,2_,2-wave
state, even phonons with arbitrarily small energies can be pairbreaking. The same reasoning
holds for coupling to other bosonic modes, such as antiferromagnetic spin fluctuations. Since
thermally excited bosons are needed for pairbreaking, the scattering rate, I', is temperature
dependent [Abanov et al. (2001)]. In the case of line nodes, where a T-dependent I" yields an
exponent n = 2, strong scattering off of the thermally excited bosons would always yield a
smaller exponent. Given the special role that may be played by the antiferromagnetic critical
point, the possibility exists that the pairbreaking fluctuations are associated with an intermedi-
ate range dynamic ordering, like the dynamic domains speculated in Ref. [Mazin and Johannes
(2009)]. These will have very small energies and a potential to be strong scatterers. A clear
derivation of the exponent n that results from such a picture is still missing.

To summarize, the temperature dependence of the in-plane London penetration depth,
AN (T), has been measured in single crystals of Ba(Fe;_,Co,)2Ass for concentrations of
x=0.038, 0.047, 0.058, 0.074 and 0.1, which range from the underdoped to overdoped regimes.
A robust power law for all measured dopings of the form A, (7T") oc T™ has been observed,
with n ranging from ~ 2 for underdoped sample to =~ 2.5 in overdoped samples. The pen-
etration depth prefactors C' and A, determined from low temperature fits to the functions
AXp(T) = CT™ and ANy (T) = AT?, have been observed to increase by as much as an order
of magnitude when passing into the region of the doping phase diagram where superconduc-
tivity and antiferromagnetism likely coexist.

It should be noted that the power law temperature dependence that has been observed
in the Ba(Fe;_,Co,)2Asy series was later confirmed by at least two different measurement
techniques, one of which was a surface probe method using a magnetic force microscope Luan

et al. (2010) and the other was a microwave cavity resonator technique Bobowski et al. (2010).
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4.4 Doping dependence of A\, (T) and AN (T) in the Ba(Fe;_,Ni,),As;

series

The doping dependence of the variation with temperature of both the in-plane, A\, as
well as the out-of-plane, A\, London penetration depth components have been measured for
several concentrations, x, in single crystals of the electron doped Ba(Fe;_,Ni, )2 Ase material
spanning the superconducting region of the doping phase diagram [Martin et al. (2010a)]. The
measured concentrations had WDS values of £=0.033, 0.046, 0.054, 0.065 and 0.072. Since
each Ni atom contributes two electrons to the charge environment, half as much is needed to
completely suppress superconductivity than in the Ba(Fe;_,Co,)2As, system, meaning that
the Ni doped compounds should be less disordered

The single crystals of the Ba(Fe;_,Ni, )2Asy samples were all grown using the same proce-
dure used in Ref. [Canfield et al. (2009)]. Each sample was prescreened before the penetration
depth measurements to ensure that the superconducting transition widths were as sharp as
possible, as seen in the inset of Fig. 4.11 (a). The overall quality of the samples studied was
determined by using x-ray diffraction, resistivity, magnetization, magneto-optics and WDS
analysis. The Ni content was found to have a small variation within each of the samples
tested.

The temperature versus doping phase diagram for the Ba(Fe;_,Ni,)2As, series is shown in
the main panel of Fig. 4.11 (a) and the superconducting transitions for each of the samples from
this study are visible from the A\, (7T") curves shown in the inset. The location of Ty, shows
roughly where the structural and magnetic transitions are and were taken from resistivity data
[Ni et al. (2010b)]. The low-temperature region, T < T' < Ti./3, of each ANy (T") curve was
fit to a function of the form Ay, (T) = CT™ in order to extract the power law exponent n to
study its evolution with the doping level, x. The low-temperature region of A\, (T') is shown
as a function of (T'/T.)? for all samples in Fig. 4.11 (b) and the fact that these curves are very
close to being linear on this scale indicates that the power law exponent n is close to 2 over
this range for these samples. The exact value of n obtained from the fits is shown as a function

of the Ni doping level in the inset to Fig. 4.11 (b), where it has values from ~2.3 for =0.033
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Figure 4.11 (a) Temperature-doping phase diagram for Ba(Fe;_,Ni, )2 As,.
The inset shows the full superconducting transition deter-
mined from in-plane penetration depth measurements. (b)
ANy (T) for different doping levels plotted versus (T/7.)2,
where the curves are shifted vertically for clarity. The in-
set shows the doping dependence of the power law exponent n
obtained from fits described in the text.
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(underdoped) to ~1.6 for =0.072 (overdoped).
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Figure 4.12 The main panel shows A\ (7)) for an overdoped sample with
2=0.072 measured down to T =~ 60 mK in a dilution refriger-
ator. The upper inset shows the agreement between A\, (7))
for the same sample but with different TDR circuits, with one
mounted in a 3He cryostat and the other in a dilution refrig-
erator. The lower inset shows that the power law behavior in
AN (T) persists down to 60 mK for underdoped, optimally
doped and overdoped samples of Ba(Fe;_,Ni,)oAss.

To examine how far down in temperature the power law behavior persists in Ay (7T),
three samples having x=0.033 (underdoped, T,=15 K), 0.046 (optimally doped, 7.=19.4 K)
and 0.072 (overdoped, T,=7.5 K) were measured down to a temperature of T},;, ~ 60 mK by
using a TDR mounted inside of a dilution refrigerator. The main panel of Fig. 4.12 shows that
the power law behavior persists in A\, (7T') for the overdoped sample down to T < 0.037.
Also shown in the main frame is a fit to the function A (T) = CT™ (dashed line), which gives
n=1.62. The upper inset to Fig. 4.12 shows very good agreement between A\, (T') data taken

with two different circuits, one in a >He cryostat and the other in a dilution refrigerator, for
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the same sample. The lower inset to Fig. 4.12 shows that the power law behavior in A\, (T)

persists down to 1" =60 mK for all three samples measured in the dilution refrigerator.
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Figure 4.13 Main panel: A\,;; obtained from measurements with H,.||l
for an overdoped sample with x=0.072 and T,=7.5 K before
(A) and after (B) the sample was cut so that 2w — w. Inset:
Az Tor an underdoped sample with £=0.033 and T.= 15
K before (A) and after (B) cutting. Above: Schematics of
the magnetic field penetration into the sample for H,. applied
along [ before (A) and after (B) it is cut.

In addition to measuring the in-plane component of the penetration depth, A\, (T), the
out-of-plane component, A\.(T'), has also been measured for three different Ba(Fe;_,Ni; )oAso
samples: one with £=0.033 (underdoped) and two having 2=0.072 (overdoped). The following
is a brief description of how A\, (T") was extracted from the TDR measurements.

Let us consider a plate-like sample having a rectangular cross section and dimensions 2t
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(thickness) x 2w (width) x [ (length), with [ > 2w. For the iron-based superconductors
studied here, the c-axis of all samples points perpendicular to their largest flat face. The
temperature dependence of the variation of the in-plane penetration depth, which arises only
from supercurrents flowing in the ab-plane, is constructed from the TDR frequency shifts,

Afau(T), by using the relation

Afpullout

Afab(T) = ( R 7

>A/\ab(T), (4.1)

where Ry is an effective radius for the sample constructed from its dimensions and A fpuout
is the shift in the TDR resonance frequency measured by extracting the sample from the
primary coil at the base temperature of the experiment. This situation corresponds to the
case where H,. is aligned parallel to the c-axis of the sample, with H,. being the excitation
field generated in the TDR primary coil. If H,. is oriented perpendicular to the c-axis, then
not only in-plane supercurrents are excited, but out-of-plane supercurrents as well. For this
case, the TDR frequency shifts, A .., contain components from AM,, as well as AX.. More

specifically,

Gav
2t

)ara() + (5

Afmia(T) = ( S ) AN(T) (4.2)

with G4 and G, being geometrical calibration factors constructed from the sample dimensions.
By only performing a single measurement with H,. perpendicular to the c-axis, it is often
impossible to extract AA.(T") from Eqn. 4.2 since for most samples 2t << 2w and hence the
contribution to A f(T') from AM.(T) is very weak. However, by measuring the sample once
with H,.||l and then cutting it so that 2w — w and all other dimensions remaining the same,
AM.(T) can be obtained. After the cutting procedure, the TDR frequency shifts, A f¢4t (T'),

are given by

Gab
2t

G

c
w

AST) = (S2) () + (=2) Ad(T). (4.3)

By subtracting Eqn. 4.2 from Eqn. 4.3, the difference of the frequencies allows one to access

only the out-of-plane component of the penetration depth:
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ATGLT) ~ AfialT) = (52) (D). (4.4)

The main panel of Fig. 4.13 shows the measured penetration depth, A\ ¢ A finie, for
H,. applied perpendicular to the c-axis along the longest sample side, [, both before (A) and
after (B) an overdoped sample with x=0.072 (7,=7.5 K) was cut so that 2w — w. The inset
shows the same comparison for measurements before and after cutting for an underoped sample
with £=0.033 (7.=15 K). The schematics shown above the main panel of Fig. 4.13 are to help
clarify the field orientation with respect to the crystal axes and show the contributions from
ANy and AN to A finie both before (A) and after (B) a sample is cut for these measurements.
Notice that for both samples shown in Fig. 4.13, there is a clear change in A\, after the

sample is cut, indicating that the A\, contribution is strengthened after the cutting procedure.
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Figure 4.14 The c-axis component of the penetration depth, A\, plot-
ted versus reduced temperature, T/T., for three different
Ba(Fe;_,Ni;)2Asy samples. Two of them are overdoped with
2=0.072 and one of them is underdoped with x=0.033.

By using the Af,i.(T) and Af¢% (T) data obtained with H,.||l along with Eqn. 4.4,

mix

AM(T) has been constructed for three different samples: one with 2=0.033 and 7,=15 K (un-
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derdoped) and two different samples with 2=0.072 and 7,=7.5 K and 6.5 K (both overdoped).
The resulting AX.(T') curves are shown in Fig. 4.14 for these samples. The two overdoped
samples shown clearly exhibit a linear variation in A\, with temperature up to 7./3, which
strongly suggests the presence of line nodes in the superconducting gap on portions of the
Fermi surface which contribute to c-axis conduction, consistent with the findings of thermal
conductivity measurements for different dopings in the Ba(Fe;_,Co,)2Ass series for concentra-
tions close to the edges of the superconducting dome of the temperature-doping phase diagram
[Reid et al. (2010)].

To summarize, AX,(T") has been measured for five different samples from the
Ba(Fe;_,Ni; )2 Ass series with doping levels ranging from x=0.033 (underdoped) to z=0.072
(overdoped). It has been found to exhibit a power law temperature dependence for all mea-
sured concentrations, where the power law decreases from n ~2.3 at =0.033 to n ~1.6 at
x=0.072. This doping dependence of n is different from what has been measured in the
Ba(Fe;_,Co,)2Ass series, where it n has been found to increase from ~2 for underdoped sam-
ples and increases to 2.5 beyond optimal doping. A possible explanation for the power law
temperature dependence indicates that it arises from disorder effects, which will be elaborated
on in more detail later in this thesis. In addition, the out of plane component, AX.(T"), has
been measured for two overdoped concentrations, both with £=0.072, and one underdoped
concentration with £=0.033. For these samples near the edges of the superconducting dome,
A has been found to have a linear temperature dependence, in agreement with the existence
of line nodes in the superconducting gap of Ba(Fe;_,Ni,)oAss on portions of the Fermi surface

responsible for c-axis conduction.

4.5 AXp(T) in Ba(Fe;_,T,)2As; (T=Ru,Rh,Pd,Pt,Co+Cu)

The variation of the in-plane London penetration depth, A\,,, has been measured as a
function of temperature for various dopings in single crystals of Ba(Fe;_,T,)2Ass
(T=Ru,Rh,Pd,Pt,Co+Cu). All samples show a non-exponential penetration depth, or more

precisely a power law temperature dependence of the form Ay (7T) o< T™, where n has been
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found to be as small as ~1.5 and as large as ~2.5 for these samples. A collection of measure-
ments such as this allows for one to study the effects of transition metal substitution for Fe
on the superconducting properties of doped BaFesAsy. All of the samples for which data are
shown in this section were obtained from the same source as in Ref. [Ni et al. (2008b)] with the
exception of the Ba(Fe;_,Pt;)2Ase, which came from the laboratory of Prof. H. H. Wen at
the National Laboratory for Superconductivity, Institute of Physics and National Laboratory

for Condensed Matter Physics, People’s Republic of China.
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Figure 4.15 Main frame: the full superconducting transitions from the in-
-plane penetration depth for four Ba(Fe;_,Ru,)2Asy samples,
two with £=0.18 and the other two have £=0.27. Inset: The
low temperature region of the in-plane penetration depth for
the same four samples. The legend shows the resulting power
law exponent values for these samples.

The first material to be discussed is Ba(Fe;_,Ru,)2Ass. Ru is an isovalent substitution for
Fe, meaning that it nominally donates no extra electrons to the system. A temperature-doping
phase diagram for this material can be seen in Fig. 1.1. The in-plane penetration depth was

measured in four different samples, two with £=0.18 and the other two with £=0.27. The
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in-plane penetration depth data can be seen from Fig. 4.15, where the inset shows a zoomed-in
view of the low-temperature region. By fitting this region of the data for each sample to a
power law function it has been determined that the power laws are n=2.13 and 2.07 for the

+=0.18 samples and n=2.0 and 2.01 for the samples with x=0.27.
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Figure 4.16 Top panel: power law exponent values, n, from low-T in-plane
penetration depth fits plotted versus doping concentration, x,
in the
Ba(Fe;_,Ru;)2Ase series. Bottom panel: T, versus x in the
same series obtained from electrical resistivity data [Thaler
et al. (2010)].

Fig. 4.17 shows the variation of the in-plane penetration depth for two Ba(Fe;_,Rh;)oAss
samples, x=0.057 and £=0.010, where the inset shows the low-temperature region along with
the power law fits, which yielded n=2.5 and n=2.01. The superconducting portion of the
phase diagram can be seen along with the resulting power law exponents in Fig. 4.18. The
substitution of Rh for Fe donates the same number of carriers as the substitution of Co for Fe.

Two different samples, both overdoped with concentrations of £=0.053 (7, ~14 K) and
x=0.067 (T, ~9 K), have been measured from the Ba(Fe;_,Pd,)2Asy series and can be seen

in Fig. 4.19. The substitution of Pd for Fe donates the same number of electrons as the
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Main frame: the full superconducting transitions from the in-
-plane penetration depth for two Ba(Fe;_,Rh,)2Ass samples
having £=0.057 and x=0.10. Inset: The low temperature re-
gion of the in-plane penetration depth for both samples along

with the determined power law exponents.
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Figure 4.18 Top panel: power law exponent values, n, from low-T in-plane
penetration depth fits plotted versus doping concentration, x,
in the
Ba(Fe;_,Rh;)oAss series. Bottom panel: T, versus x in the
same series obtained from electrical resistivity data [Ni et al.
(2010a)]
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Ba(Fe, Pd ),As,

The main frame shows the superconducting transitions
through A (T) of two different Pd doped samples having
x=0.053 (near optimal doping) and =0.067 (overdoped). The
inset shows a zoomed-in view of the low-temperature region of
ANy versus T/T, for both samples.



86

26 T T T T T T T

1.8 } } } + } t } + '. + }
Ba(Fe, Pd ).As,

0.02 0.03 0.04 0.05 0.06 0.07 0.08
X

Figure 4.20 Top panel: power law exponent values, n, from low-T in-plane
penetration depth fits plotted versus doping concentration, x,
in the
Ba(Fe;_,Pd,)2Asy series. Bottom panel: T, versus z in the
same series obtained from electrical resistivity data [Ni et al.
(2010a)]
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substitution of Ni for Fe, but with a larger ionic radius. Fig. 4.19 shows the superconducting
transitions of both samples measured in the main frame and the inset shows the power law
fit of the form A), = CT" that was used to extract the value of n. The superconducting
portion of the phase diagram is shown in Fig. 4.20 along with the doping dependent power law

exponent values.
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Figure 4.21 The main frame shows A\ (7)) for three different Pt doped
samples, with the black curve being near optimal doping and
the red and green curves both being overdoped concentrations.
The inset shows a zoomed-in view of the low-temperature re-
gion of A\ plotted versus the reduced temperature 7'/T.

Yet another isovalent substitution for Ni exists, with that being the substitution of Pt for
Fe, which has an even larger ionic radius than Pd. The in-plane penetration depth of three
different Pt doped samples has been measured, where one was near optimal doping (z=0.07
with T7,=23 K) and two of them were overdoped (z=0.10 with 7,=14 K) samples. The main
frame of Fig. 4.21 shows the superconducting transitions of all three samples through the
penetration depth and the inset shows the low-temperature region along with the power law

exponents obtained from fits to AXy,(T) = CT™. Unfortunately, at the present time a phase
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diagram for this material was not available to be shown.
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Figure 4.22 Comparison of the power law exponent versus doping level for
the Ba(Fe;_,Co;)2Asy and Ba(Fej_,Rh;)2Asy series, where
Co and Rh are nominally isovalent substitutions for Fe.

By comparing the doping dependence of the power law exponent from the Ba(Fe;_,Co, )2 Ase
an Ba(Fe;_,Rh;)2Ass series, as shown in Fig. 4.22, we can see that there is some agreement.
The substitution of Co or Rh for Fe are nominally isovalent ones, so it is natural to search for
similarities between the two series. In fact, it is worth noting that these are the only two 122
systems reported here that do not show a decrease of n with increasing .

Also, a plot of n versus z is shown to compare the Ba(Fe;_,Ni,)2Asy and Ba(Fe;_,Pd;)2Ase
compounds in Fig. 4.23, with Ni and Pd being nominally isovalent substitutions for Fe. For
these two materials, n decreases with increasing doping level, as it does for several of the
other transition metal doped BaFey Ass superconductors reported here. Also shown is a global
phase diagram in Fig. 4.24 of the power law exponent versus the electron count, e, for the
Ba(Fe;_,T,)2Ase (T=Co,Rh,Ni,Pd) superconductors. Although there are no immediate visible

trends, it is worth noting such a comparison.
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Figure 4.24 The power law exponent plotted versus e, which is the electron
count, for the Ba(Fe;_,T,)2Ass (T'=Co,Rh,Ni,Pd) series.

The last series for which data will be shown in this section is Ba(Fe;_;_,Co,Cuy)2Ass.
The in-plane penetration depth has been measured for two samples, one with £=0.02 and
y=0.026 (T.=11 K) and another with 2=0.02 and y=0.033 (7.=9 K). The full superconducting
transitions are shown for these samples through the penetration depth in Fig. 4.25. The inset
of this figure shows the low-T region along with the power law exponent values for each sample
obtained from fitting. Doping with Cu alone in this series does not produce superconductivity
for any concentration, but by also including Co superconductivity can be induced. By fixing
the Co concentration at £=0.02 and increasing the Cu concentration y from 0.026 to 0.033,
the power law exponent decreases from n=2.04 to 1.91.

A power law temperature dependence of the penetration implies the existence of low-
temperature normal state quasiparticles, which can arise either from nodes in the super-
conducting gap or from pair-breaking impurity scattering mechanisms. A doping dependent
power law exponent would be consistent either with a doping dependent modulation of the

superconducting gap or from a pair-breaking impurity scattering mechanism that evolves
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Figure 4.25 The main frame shows the superconducting transitions
through A\, (T) for two samples that are doped with both
Co and Cu, but with different concentrations of Cu. The inset
shows a zoomed-in view of A\, versus T'/T, in the low-tem-
perature regions for both samples
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Figure 4.26 All power law exponent values, n, obtained from in—
plane penetration depth measurements in Ba(Fej_,T),)2Aso
(T'=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu). The background colors in-
dicate the ranges that n can have for different scenarios, in-
cluding impurity scattering within the si-, s; - and d-wave
superconducting gap symmetries.

with the level of impurities in the material. Fig. 4.26 shows all of the resulting power
law values obtained from the in-plane penetration depth measurements of Ba(Fej_, T}, )2Ass
(T'=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) plotted versus T.. Also shown on this graph through the
background colors are the ranges of the power law exponent that can be obtained for differ-
ent scenarios, including the effects of scattering on si-, sy .- and d-wave superconducting gap
symmetries.

In summary, the in-plane London penetration depth has been measured for several different
transition metal doped BaFeyAsy compounds. The low-temperature region of the in-plane
penetration depth for all studied compounds exhibits a power law temperature dependence
of the form AM, = CT™. Later in this thesis, it will be discussed that this power law
temperature dependence likely arises from pair-breaking impurity scattering contributions to
the penetration depth signal. For all studied samples, with the exception of the Rh doped
compound, the doping dependence of the power law exponent decreases with increasing dopant

concentration, in contrast to the observed behavior in the Ba(Fe;_,Co,)2Ass series.This may
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suggest that by doping with Co and Rh, the superconductivity responds differently than for

other transition metal substitutions.

4.6 Pair-breaking effects and the penetration depth prefactor

The variation of the in-plane London penetration depth, A, (T'), has been measured
over the low-temperature region, i.e. T < T./3, for several different classes of the iron-
based superconductors by using the standard TDR technique [Gordon et al. (2010b)]. The
main intentions of this study were to measure the prefactor 3, extracted from fits to the low
temperature penetration depth of the form A\, (T) = BT?, for different classes of the iron-
based superconductors. The materials measured for this study were Ba(Fe;_,Co,)2As, (6 con-
centrations), Ba(Fe;_,Ni,)2Asy (5 concentrations), (Bag7Ko.3)FeaAsa, Feq g1 (Seo.367Teo.632),
LaFeAs(Og.9Fp.1) and NdFeAs(OgoF¢.1).

The superconducting transitions of four of the the samples studied are visible through the
in-plane penetration depth data shown in the inset to Fig. 4.27 (a). The numbered curves
in Fig. 4.27 (a) correspond to: (1) Ba(Fep g42Co0.058)2A82, (2) Ba(Fep 941 Nig p59)2As2, (3)
Fey 001 (Seo.367Teo.632) and (4) LaFeAs(Og9Fg1). The low-temperature functional form of the
in-plane penetration depth for all of the samples has been fit to A\ (T) = 3T? in order to
extract the prefactor, 8, and AX;(T) = CT™ to determine the power law exponent, n, for
each sample measured. The main frame of Fig. 4.27 (a) shows A\, plotted versus the square
of the reduced temperature, (T/T,)?, and the resulting linear behavior on this scale illustrates
that the temperature dependence of the low-T penetration depth is very close to being purely
quadratic for these samples.

The resulting power law exponent, n, obtained from fits to the low-T region of Ay,
is shown for all samples and plotted versus the associated onset superconducting transition
temperature, T, for each sample in Fig. 4.27 (b). The criteria that was used to determine the
onset of the superconducting transition temperature can be seen in the inset to Fig. 4.28. From
Fig. 4.27 (b) one can see that the power law functional form of A\, (7") o< T™ with n =~ 2 holds

for superconductors from both the electron and hole doped 122 classes, two different members
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of the 1111 class as well as the 11 class of iron-based superconductors.

The penetration depth prefactor can offer valuable information about the zero temperature
value of the superconducting gap magnitude, A(0), the zero temperature value of the pene-
tration depth, A(0), or even the slope of the gap near a node, « = (dA/d¢) as ¢ — dnode,
as in the case of a d,2_,2-wave superconductor [Prozorov and Giannetta (2006); Poole et al.
(2007)]. This can be understood by considering the functional forms of the penetration depth
for the cases of an s-wave or a d,2_,2-wave superconductor, which in the clean limit take the

respective forms of

ANT) = A(0) g?;?exp(—%) (4.5)
and
CA0)2n(2) ,_ A0)2in(2)
AA(T)NdA/dtﬁlqswnodeT: aA(0) T' (49)

In addition to this information, the penetration depth prefactor can also provide clues to the
role played by pair-breaking scattering inside of a superconductor [Gordon et al. (2010b)].
The main source of motivation for looking at the penetration depth prefactor in the iron-
based superconductors came from a prediction about its dependence on T, which arises from
pair-breaking scattering. This predicted dependence came about from a theoretical model
based on the quasiclassical version of the weak-coupling Gor’kov theory that holds for a general
anisotropic Fermi surface and for any superconducting gap symmetry [Eilenberger (1964)],
which assumes a strong pairbreaking mechanism is present and has proven to be quite successful
for describing the specific heat jump, AC « T3, as well as the slopes of the upper critical field,
dHe/dT o T, in these materials [Bud’ko et al. (2009); Kogan (2009)]. According to this
model, if the penetration depth is written in the form of Ay, (T) = BT?2, then the prefactor

should take the form

1 ch 3< 4> -2
_ 4.
b (T?’) 8Tkt \/WezN(O) <0202 > (47)
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where 2 describes the variation of the superconducting gap, A, along the Fermi surface, v, is
the Fermi velocity and 7+ are the two scattering times that characterize scattering within the
Born approximation:

1 1 1

=4 4.8
T4+ T  Tm (48)

with 7 being the transport scattering time associated with normal conductivity and 7, is for
processes that break time-reversal symmetry (e.g. spin flip). Commonly, two dimensionless

parameters are used:

1
= 4.9
P 2nT,.T (4.9)
and
N (4.10)
Pm = 21T 1), '

or equivalently, p+ = p=+ p,,. Eqn. 4.7 was calculated assuming < €2 >= 0, corresponding to a
superconducting order parameter that has an amplitude that averages to zero about the Fermi
surface.

Fig. 4.28 shows the penetration depth prefactor, 3, obtained from low-T fits to Ay, = 5712,
plotted as a function of 7T, for all studied samples. Both axes are shown on a logarithmic
scale for clarity. The horizontal error bars on the values of § represent the fact that not all
samples had the same superonducting transition widths, so both the onset and the base of
the transition were used for the fitting procedures. The solid black line is a fit to the data of
the form 8 = 1/T3 and n = 8.8 £ 1.0 umK. For an additional check, by substituting v, ~107
ecm/s and N(0) =103 erg=tem ™3, this gives a rough estimate of 7, ~3x1071* s. This value
corresponds to py ~ b for T,=40 K and to larger values for lower values of T;, an observation
consistent with the major model assumption of p4 > 1.

The degree to which the experimental values follow the theory is remarkable, a substantial
scatter of the data points notwithstanding. It is worth noting that the 1/72 scaling in j

is a result of strong pair-breaking scattering and does not follow from any other model to
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for four different iron-based superconductors plotted versus
(T/T.)? to illustrate their nearly quadratic dependencies.

The numbers correspond to: (1) Ba(Feg942Cop.058)24s2, (2)
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Ba(Feg 941 Nig.059)2As2,

(3) Feq.001 (Se0,367Te0,632) and (4) LaFeAs(Oo.gFo.l). Inset: the
full superconducting transitions for these four samples as made
visible by in-plane penetration depth measurements. (b) The
power law exponent, n, resulting from low-T fits to A\, and
plotted versus the superconducting transition temperature, T,

for each sample.
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the author’s knowledge. On the other hand, a larger data set is required to verify that this
scaling holds for every class of iron-based superconductor. It should be stressed that the
penetration depth scalings discussed here and in Ref. [Gordon et al. (2010b)] as well as the
scalings for the specific heat jump [Bud’ko et al. (2009)] and for the slopes of H.o(T') [Kogan
(2009)] are approximate by design since their derivation involves a number of simplifying
assumptions. Still they are robust in showing that pair-breaking scattering is an important

factor for superconductivity in the iron-based superconductors.

1
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Figure 4.28 The penetration depth prefactor, 3, obtained from low-T fits
of the form A (T) = BT?, plotted as a function of the su-
perconducting critical temperature, T, on a log-log scale for
many different members of the iron-based superconductor fam-
ily. The solid black line is a fit of the form 8 = n/T? motivated
by the pair-breaking theory described in the text.

Still there are other questions to be addressed, like why do the Ba(Fe;_,Co,)2Ass samples
deviate on average more than any of the other compounds shown in Fig. 4.287 Another
problem to address is how to reconcile the strong pair-breaking, which in the isotropic case
leads to gapless superconductivity [Abrikosov and Gor’kov (1960)], with the in-plane thermal

conductivity data showing x/T — 0 as T'— 0 [Luo et al. (2009); Tanatar et al. (2010)]?
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The question arises whether or not one can have an iron-based superconductor free of
any pair-breaking scattering. If possible, these materials would have much higher critical
temperatures. For examples, if p; ~5 and T, ~20 K, the clean material would have a critical
temperature given by T,o = T.expt(ps+ +1/2) —1(1/2), which would be on the order of
room temperature. Obviously, the formalism used to derive the 3 o 1/T3 dependence does
not capture all of the physics at hand in the iron-based superconductors, but it is possible that
the same interactions responsible for pairing in these materials, presumably spin fluctuations,
may also lead to strong pair-breaking scattering contributions and a more successful theory

probably should account for both of these effects.
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CHAPTER 5. Doping dependence of )\;,(0) and p,(7T") in Ba(Fe;_,Co,)2Asy

5.1 Introduction

The zero temperature value of the London penetration depth is directly related to the
superfluid density in the ground state of a superconductor according to the relation A(0) oc
1/4/n5(0) [Tinkham (1996)]. In the clean, low scattering limit, n(0) is equal to the total
density of conduction electrons, ny. There are cases in which other phases, for example,
itinerant magnetism, can compete with superconductivity for the same conduction electrons,
thus reducing the overall number of carriers in the superconducting state at T'= 0. Given the
rich doping phase diagram of the newly discovered iron-based superconductors, in which a long-
range magnetically ordered state with itinerant character coexists with a superconducting state,
questions are raised regarding the effects of the competition between these states for the same
electrons [Canfield and Bud’ko (2010); Ni et al. (2008b); Drew et al. (2009); Pratt et al. (2009);
Christianson et al. (2004); Laplace et al. (2009); Goko et al. (2004); Fernandes et al. (2010)].
One way to approach this matter is to study the doping evolution of Ay (0) across the phase
diagram of these materials and use it to infer the corresponding change in the superfluid density,
especially in the regime of the phase diagram where these two phases coexist. Determination of
the absolute value of the London penetration depth is also important for the correct evaluation
of the normalized, temperature-dependent superfluid density, ps(T) = [A(0)/A(T)]?. This
quantity can be calculated from various models for different superconducting gap structures
and provide insight into the pairing mechanism.

For these experiments [Gordon et al. (2010a)], we focus on Ag(T = 0), which is the ground
state screening length associated with supercurrent flowing in the crystallographic ab plane as

a result of an external magnetic field applied along the c-axis. For x 20.047, the measured
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values of A\gp(0) have been found between 120£50 and 300+50 nm. A pronounced increase in
Aap(0) to a value as high as 950£50 nm for « < 0.047 has been observed. The increase in Ag(0)
for samples with z <0.047 has been interpreted as being due to the competition between the
superconducting and itinerant antiferromagnetic states for the same conduction electrons.

The experimental determination of \(0) is a rather challenging task since only finite tem-
peratures can be reached in the laboratory. There are techniques that are capable of obtaining
an estimate of its value by taking advantage of the small variation of A(T") at low temperatures,
which can be on the order of 1 nm/K, along with precision measurements. One such technique
is muon-spin rotation (uSR) [Sonier (2007)], which has produced estimates for \;;(0) of 320 nm
in (Ba;_,K;)FesAsy (T, ~32 K) [Khasanov et al. (2009); Evtushinsky et al. (2009b)], 470 nm
in (Bag.55Ko.45)FeaAse (T, ~30 K) [Aczel et al. (2008)], 230 nm in (BaggKo.4)FeaAsy (T, ~38
K) [Hiraishi et al. (2009)], 250 nm in La(O;_,F,)FeAs [Luetkens et al. (2009)], and values
ranging from 189 to 438 nm in the Ba(Fe;_,Co,)2Asy series [Williams et al. (2009, 2010)].

Another technique, magnetic force microscopy (MFM), has reported A\, (0)=325+50 nm in
Ba(Feg.95Co0.05)2As2 [Luan et al. (2010)]. In addition, optical reflectivity measurements have
been used to estimate Ay (0) in Ba(Fe;_, Co,)2Ase and have reported values of 277425 nm for
x=0.06 and 315430 nm for z=0.08 [Nakajima et al. (2010)]. It is important to compare the
values of A(0) obtained from as many different techniques as possible because each experiment
requires its own set of assumptions and modeling procedures.

Given the overall disparity between the measured values of A(0) from these different exper-
imental techniques, it is valuable to perform a systematic study of A\(0) as a function of doping
in the series of which large, high quality single crystals having homogeneous doping levels are
available, namely, the Ba(Fe;_,Co,)2Ass series. In this study, we utilized TDR frequency shift
measurements to extract the full temperature dependence of the London penetration depth
in these samples. The absolute values have been determined by using a technique in which
samples from this series were coated with aluminum in order to provide a reference point for
the penetration depth measurements. Having the absolute values, the normalized superfluid

density has been constructed as a function of temperature for various cobalt dopings in order
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to study the evolution of the superconducting gap structure across the phase diagram of this

series.

5.2 Aluminum coating procedure for determining \,(0) in

Ba(Fe;_,Co,)2As,

The TDR technique that is normally used to measure AX(T") in superconductors is quite
well suited for measuring the variation of the penetration depth with respect to its value at
the minimum temperature of the experiment, but under usual circumstances it is insensitive
to the absolute value of the penetration depth, A(T") [Prozorov et al. (2000b)]. However, as
proposed in Ref. [Prozorov et al. (2000b)], the TDR technique can be extended to obtain the
absolute value by coating the entire surface of the superconductor to be measured with a thin
film of a conventional superconductor having a lower critical temperature and a known value
of A(0). For this study, aluminum films were deposited onto the Ba(Fe;_,Co,)2Ass, where
TA! ~ 1.2 K and thicknesses of 100 nm, as shown in Fig. 5.1.

While the Al film is superconducting, it participates with the coated superconductor to
screen the magnetic field generated by the TDR coil. However, when it becomes normal it does
effectively no screening because its thickness, ¢, is much less than the normal state skin depth at
the TDR operating frequency of 14 MHz, where § 4; = 75um for p‘04l:10 u€-cm [Hauser (1972)].
By measuring the frequency shift upon warming from 7},;,, which was the base temperature
of the sample, to T > TA! the quantity L = Ay (TA) — Aeff(Tnin) can be obtained, as can
be seen in Fig. 5.2. This quantity can be used to calculate A(0) for the Ba(Fe;_,Co,)2Asy
series by utilizing the previously determined power law relation AXN(T) = CT™ [Gordon et al.
(2009a,b)] along with the formula for the effective magnetic penetration depth into both the
Al film and the coated superconductor for T' < TA!, which is given by

Aab(T) + A gy (T) tanh +—L—

AAI(T) (51)

Al + )\ab(T) tanh #(T)

where A\ (7') is the penetration depth of the coated superconductor and A 4;(7") is the penetra-

Aerf(T) = Aa(T)

tion depth of the Al film. As usual with the TDR technique, the variation in the penetration
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Figure 5.1 Scanning electron microscope images of the Al coated samples.
(a) Large scale view of the sample where the exposed top was
the broken edge. (b) and (c¢) Zoomed-in regions of the Al film
exposed after the sample was broken. (d) Close-up view of the
FIB trench showing the Al film and its thickness.
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depth with temperature, Acrr(T) = Aefr(T) — Xeff(Tinin), is measured. This method has
been successfully demonstrated on several high-T, cuprate superconductors [Prozorov et al.
(2000b)] and has shown agreement with measurements of A\(0) in Fe;1,(Te;_;Se,) crystals ob-
tained by different techniques [Kim et al. (2010b)]. Here we use an extended analysis obtained

by solving the appropriate boundary value problem.
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Figure 5.2 Main frame: the full superconducting transition of an opti-
mally doped Ba(Feg g3Coq.07)2Ase crystal before and after coat-
ing. Inset: zoomed-in view of the low-temperature region,
Tonin < T < TA!, before (green triangles) and after (red cir-
cles) the Al coating on the same sample. The overall frequency
shift through the Al transition, denoted as L, was used for the
calculation of A\ (0).

The aluminum film was deposited onto each sample while it was suspended from a rotating
stage by a fine wire in an argon atmosphere of a magnetron sputtering system. The formation of
nonuniform regions in the film was avoided by bonding the suspension wire to only a portion
of the narrowest edge of each sample. Each film thickness was checked using a scanning
electron microscope in two ways, both of which are shown in Fig. 5.1. The first method

involved breaking a coated sample after all measurements had been performed to expose its
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cross section. After this, it was mounted on a scanning electron microscope (SEM) sample
holder using silver paste, as shown in Fig. 5.1 (a). The images of the broken edge are shown
for two different zoom levels in Fig. 5.1 (b) and (c¢). The second method used a focused-ion
beam (FIB) to make a trench on the surface of a coated sample, with the trench depth being
much greater than the Al coating thickness, as shown in Fig. 5.1 (d). The sample was then

tilted and imaged by the SEM that was built into the FIB system, as shown in Fig. 5.1 (e).

5.3 Ba(Fe;_,Co,)2As; samples

The samples used for this study were all members of the Ba(Fe;_,Co,)2As, series, many
of which were the same samples measured in previous penetration depth studies [Gordon et al.
(2009a,b)], and were obtained from the same source as Ref. [Ni et al. (2008b)] using the same
growth procedure. The samples from these batches were characterized by magnetization and
resistivity measurements, which showed a robust superconducting response with sharp transi-
tions. In addition, magneto-optical imaging was used to probe the mesoscopic (in)homogeneity
of the samples, at least down to a length scale of 1 um [Prozorov et al. (2009a)].

The Co concentrations were all determined by WDS analysis and the uncertainty within
each batch can be as high as +0.0015. At the edges of the superconducting dome, where T,
changes quickly with z, this uncertainty is not negligible and brings about sizable variations in
T., as can be seen in Table I, for concentrations that are nominally the same. Many samples
were prescreened in order to select the best ones to be coated with aluminum. A distribution
of different Co doping levels, x, within a given sample would lead to a broadening of the
superconducting transition, so all samples were prescreened to ensure the sharpest possible
T.. The T, of a sample is an excellent way of determining the actual doping level by using
the previously determined doping phase diagram [Ni et al. (2008b)]. For highly overdoped
samples, the superconducting transitions were quite broad and none could be found with
transition widths comparable to that of the optimally doped compounds, which is why highly
overdoped samples were not included in this study. Table I summarizes the relevant properties

of all of the samples used in this study.
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Figure 5.3 Top panel: the zero-temperature in-plane London penetration
depth, A\g(0), as a function of the Co concentration, x. The
three dashed blue lines are theoretical curves obtained using a
model accounting for competition between sy -wave supercon-
ductivity and itinerant antierromagnetism representing three
different values of Ay(0) in the pure superconducting state.
The solid gray line is a fit to the TDR data only of the form
A+ B/x™. Also shown are values of Ay (0) obtained by other

experiments for comparison. Bottom panel: phase diagram for
Ba(Fe;_,Coy)2Ass.
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Table 5.1 Summary of the parameters for individual samples. The actual
error bar on the values of A(0) should consider the scatter be-
tween different samples, see Fig. 5.3.

Sample | zwps | T. (K) | A(0) (nm)
1 0.038 |74 673
2 0.038 | 11.6 921
3 0.042 | 15.5 935
4 0.047 | 185 258
5) 0.047 | 18.3 285
6 0.054 | 20.5 305
7 0.058 | 23.3 195
8 0.063 | 234 150
9 0.063 | 23.5 217
10 0.074 | 22.8 270
11 0.088 | 21.1 121
12 0.088 | 21.0 140
13 0.100 | 17.2 182

5.4 Results and discussion

The values of A\;(0) that were obtained using the procedure described above for the
Ba(Fe;_,Co;)2Ase system are shown in the top panel of Fig. 5.3 for doping levels, x, across
the superconducting region of the phase diagram, shown schematically in the bottom panel of
Fig. 5.3. The size of the error bars for the A\, (0) points was determined by considering the film
thickness to be t=100£10 nm and A4;(0)=50+£10 nm. The discrepancy for the two samples
having £=0.038 is clearly beyond these error bars and this may possibly be due to cracks or
inhomogeneities in the Al film, even though great care was taken to eliminate them during the
coating process. Thus, the error bars represent the uncertainty of the known parameters and
the scatter in the data may arise from uncontrolled effects such as cracks or inhomogeneities in
the Al film. The discrepancy for the two £=0.038 samples could also arise from the uncertainty
in knowing the actual Co concentrations, which is supported by the sizable variation in T,
shown in Table I. The scatter in the A\, values shown in the upper panel of Fig. 5.3 has an
approximately constant value of £0.075 pum for all values of z, which probably indicates that

the source of the scatter is the same for all doping levels. For comparison, Fig. 5.3 also shows
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Aap(0) obtained from pSR measurements (red stars) [Williams et al. (2009, 2010)], the MFM
technique (black stars) [Luan et al. (2010, 2011)], which later confirmed the TDR values, and
optical reflectivity (purple stars) [Nakajima et al. (2010)], all in the Ba(Fe;_,Co,)2As, system,
most of which are consistent with the TDR results within the scatter. It may also be important
to note that the Ay, (0) values from other experiments are all on the high side of the scatter
that exists within the TDR A, (0) data set. This is probably because any cracks or voids in
the Al film will lead to underestimated values of A\y,(0). It should also be noted that the TDR
measurements did not show an increase in A\g(0) toward the overdoped regime that has been
reported by SR measurements [Williams et al. (2010)], although the values at optimal doping
do agree quite reasonably.

Specifically, an increase in Ag,(0) on the underdoped side below x 0.047 has been observed,
which is in the region where the itinerant antiferromagnetic and superconducting phases co-
exist, as is shown in the bottom panel of Fig. 5.3. The dependence of A\;(0) on carrier
concentration is A\g(0) o 1/4/75(0), where ng(0) is the superfluid density at T=0, which is
equal to the normal state carrier concentration in the clean impurity scattering limit. The
relationship between A\, (0) and ng(0) still holds if impurity scattering effects are included,
but ng is reduced due to a residual density of normal states within the gap. Overall, an in-
crease in A\ (0) is consistent with a decrease in the superfluid carrier concentration. There
is compelling evidence which suggests that the itinerant antiferromagnetic spin density wave
state in these materials acts to gap away a portion of the Fermi surface [Canfield and Bud’ko
(2010); Ni et al. (2008b); Drew et al. (2009); Pratt et al. (2009); Christianson et al. (2004);
Laplace et al. (2009); Goko et al. (2004); Fernandes et al. (2010)], which would remove mobile
charge carriers and this qualitative idea is consistent with our experimental observations of the
doping dependence of A4 (0). Changes in the Hall coefficient for these materials, moving from
doping levels that correspond to the pure superconducting region to the coexistence region,
have also been interpreted as being due to the interaction between these phases [Mun et al.
(2009); Fang et al. (2009)]. It has been shown that the opening of a superconducting gap in

the antiferromagnetic state transfers optical spectral weight from a mid-infrared Drude peak,
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even when the reconstructed Fermi surface would be fully gapped [Fernandes and Schmalian
(2010)]. As a result, the coexistence state has a finite ns, although smaller than in the pure
superconducting state.

In order to provide a more quantitative explanation for the observed increase in Ay (0) as
decreases in the underdoped region, we have considered the case of s4y-wave superconductivity
coexisting with itinerant antiferromagnetism [Fernandes et al. (2010)]. For the case of particle-
hole symmetry (nested bands), the zero temperature value of the in-plane penetration depth

in the region where the two phases coexist is

ATV (0) = (0 1+ 28, 52)
where )\gb(O) is the value for a pure superconducting system with no magnetism present, and
Aary and Ag are the zero-temperature values of the antiferromagnetic and superconduct-
ing gaps, respectively. Deviations from particle-hole symmetry lead to a smaller increase in
/\aSbC +SD W(O), making the result in Eqn. 5.2 an upper estimate. For more information on the
details of the calculation and the values of A4pps and Ay used, see Refs. [Fernandes et al.
(2010); Fernandes and Schmalian (2010)].

The three blue dashed lines shown in the top panel of Fig. 5.3, which were produced
using Eqn. 5.2, show the expected increase in A (0) in the region of coexisting phases below
x ~0.047 by normalizing to three different values of Ay, (0) in the pure superconducting state,
with those being 120, 180 and 270 nm. This theory does not take into account changes in
the pure superconducting state, so for x > 0.047 the dashed blue lines are horizontal. These
theoretical curves were produced using parameters that agree with the phase diagram in the
bottom panel of Fig. 5.3 [Fernandes et al. (2010); Nandi et al. (2010)], which includes a shift of
the coexistence region to lower values of z by an amount of 0.012, and given the simplifications
of the model, the agreement with the experimental observations is quite reasonable. A possible
reason for the required shift of 0.012 in the theoretical curves could be that the scatter in the

measured values of A\g,(0) is too large.

While the exact functional form was not provided by any physical motivation and merely
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serves as a guide to the eye, the solid gray line in Fig. 5.3 is a fit of the TDR A.4;(0) data to a
function of the form A + B/x", which does indeed show a dramatic increase in Ay (0) in the
coexistence region and also a relatively slight change in the pure superconducting phase. It
should be noted that a dramatic increase in \;(0) below x &~ 0.047 cannot be explained by
impurity scattering, which would only lead to relatively small corrections to the penetration
depth.

Values of A\ (0) obtained in this experiment can be used to calculate the actual penetra-
tion depth, Aep(T) = AXap(T) + Aap(0), where AX,(T) has been measured for most of the
Ba(Fe;_;Coy)2Ase crystals used in this study before Al coating [Gordon et al. (2009a,b)]. In
the top panel of Fig. 5.4, we examine A\ 2(T) oc ng(T)/m* as a function of temperature in
underdoped, optimally doped and overdoped samples, where the values of A\y;(0) used are the
corresponding values shown in Fig. 5.3 and Table I. Shown in the top panel of Fig. 5.4 are an
underdoped sample with 7. =7.4 K (z=0.038, sample no. 1), a sample close to optimal doping
with 7,=22.8 K (x=0.074, sample no. 10) and an overdoped sample with 7,=17.2 K (2=0.1,
sample no. 13). There is a clear evolution toward higher superfluid density approaching
optimal doping.

Using the same penetration depth data that was used in the top panel of Fig. 5.4, the
normalized superfluid density (phase stiffness), ps(T) = [A(0)/A(T)]?, has been constructed.
The bottom panel of Fig. 5.4 shows pg(T') for the same samples shown in the top panel.
Also shown for comparison are the ps(7') curves for a single band s-wave superconductor
(dotted blue line) and a d,>_,2-wave superconductor (dotted gray line), both in the clean
limit. From Fig. 5.4, ps(T — 0) and ps(T" — T.) behave quite differently for the members
of the Ba(Fe;_,Co,)2Asy series compared to the standard, single gap s-wave and d,2_,2-wave
clean limit cases. Impurity scattering would turn the d,2_,2-wave curve quadratic at low
temperatures, but would leave the s-wave curve nearly the same.

The data for all doping levels show an overall similar trend of the evolution of ps(T") across
the doping phase diagram. A special feature of these curves is the region of upward concavity

just below T.. This behavior suggests that below T, the superconducting gap develops more
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Top panel: )\;bQ(T ) for samples representing different dop-
ing regimes of the Ba(Fe;_,Co,)2Asy series. These curves
were constructed from previous measurements of AN (T)
with the measured values of A\;(0) using the relationship
Aab(T) = AXap(T') + Aap(0). Bottom panel: the normalized su-
perfluid density, ps(T) = [Aap(0)/Aap(T)]?, for the same samples
shown in the top panel along with the standard clean s-wave
and clean d-wave curves.
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slowly than it does in the case of a single superconducting gap, implying that there is likely
more than one gap [Kogan et al. (2009)]. Furthermore, the normalized ps(7T") curve for the
optimally doped sample over the entire temperature range stays above the curves for the heavily
underdoped and overdoped samples, though in the latter case the difference is on the order of
the statistical error in the measured values of \;;(0) (Fig. 5.3). The distinction between the
measurements on samples with different Co concentrations suggests that the gap anisotropy,
which is generally considered as being either the actual angular variation in k-space and/or the
development of an imbalance between the gaps on different sheets of the Fermi surface, increases
as x moves away from optimal doping in either direction. Although these measurements do
no go into the far overdoped regime, these results are consistent with the measurements of
the specific heat jump [Bud’ko et al. (2009)] and the residual density of states [Gofryk et al.
(2009)], as well as with measurements of the thermal conductivity in the same series [Tanatar
et al. (2010); Reid et al. (2010)]. In particular, thermal conductivity measurements with heat
flow along the c-axis actually suggest that nodal regions in the superconducting gap develop
for heavily underdoped and heavily overdoped compositions. This is also consistent with
measurements of \.(7T") performed in the closely related Ba(Fe;_,Ni,)2Asg series, where c-axis
nodes have been suggested by the linear temperature dependence of the c-axis component of

the penetration depth [Martin et al. (2010a)].

5.5 Summary

To conclude this chapter, the zero temperature value of the in-plane London penetration
depth, A\g(0), has been measured for the Ba(Fe;_, Co,)2Asy series across the superconducting
dome of the phase diagram using an aluminum coating technique along with TDR frequency
measurements [Gordon et al. (2010a)]. There is a clear increase in A, (0) below z ~0.047,
which is consistent with a reduction in the superfluid density, n4(T"), due to the competition
between itinerant antiferromagnetism and superconductivity for the same conduction electrons
[Fernandes et al. (2010); Fernandes and Schmalian (2010)]. The measured values of A;(0)

were used to construct the normalized superfluid density, ps(7'), and study its evolution with
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doping. The region of upward concavity in ps(7") just below T, for concentrations ranging
across the phase diagram suggests the importance of two-gap superconductivity for all doping
levels [Kogan et al. (2009)]. A notable suppression of ps(T") for heavily underdoped samples
and a minor suppression for overdoped samples suggests an evolution of the anisotropy of
the superconducting gaps as the doping level moves away from its optimal value, which is
consistent with the behavior found in specific heat [Bud’ko et al. (2009); Gofryk et al. (2009)]

and thermal conductivity [Tanatar et al. (2010); Reid et al. (2010)] studies.
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CHAPTER 6. Conclusion

6.1 Initial remarks

Up to this point, much of this thesis has been intended to show penetration depth data
taken on several different iron-based superconductors in an organized way, but this has not
facilitated a general discussion of all of the penetration depth results. The intention of this
chapter is not only to summarize what has already been shown, but also to provide a place for
a general, organized discussion of the penetration depth data and also to allow for results from
new experiments that have not yet been shown in this thesis to be introduced and included in

the discussion.

6.2 Penetration depth power laws from pair-breaking impurity scattering

in iron-based superconductors

At the present date the community has agreed upon the general idea that the power law
temperature dependence observed in the penetration depth at low temperatures in the iron-
based superconductors arises from pair-breaking impurity scattering effects. This claim has
gained substantial support from penetration depth measurements performed on
Ba(Fe;_,Co;)2As, and Ba(Fe;_,Ni,)2Ase samples that were irradiated with heavy ions [Kim
et al. (2010a)], so that contributions to the penetration depth from impurity scattering could
be separated in the best way possible. It has also gained support from measurements of an
exponential temperature dependence of the penetration depth in LiFeAs, which is believed to
be be an intrinsically clean iron-based superconductor having 7. ~18 K [Kim et al. (2010c)].

In the clean impurity scattering limit of the proposed si-wave superconducting gap structure
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one expects to recover an exponential dependence of the penetration depth [Vorontsov et al.
(2009)].

In order to study the contribution to the measured in-plane London penetration depth
in the iron-based superconductors from pair-breaking impurity scattering, optimally doped
single crystals of Ba(Fe;_,Co,)2Ase (T, ~ 22.5 K) and Ba(Fe;_,Ni,)2Asy (T, ~ 18.9 K) were
irradiated with 2°°Pb°0* jons at the Argonne Tandem Linear Accelerator System (ATLAS)
with an ion flux of ~5 x 10! ions s~! m~2 [Kim et al. (2010a)]. The Pb ions passed through
the samples parallel to the c-axis and created tracks in the form of columnar defects. These
defects act to increase impurity scattering in the crystals and their density can be monitored
in a very controlled way. For each series, large single crystals were selected and then cut
into several pieces preserving the widths and thicknesses. One piece from each series was left
unirradiated and all other pieces were irradiated with different dosages.

The in-plane London penetration depth was measured for each sample to observe the
effect of the heavy ion irradiation on the low-temperature behavior. For both series it has
been found that an increase of the irradiation dose results in a monotonic decrease of T,
without affecting much the transition width. For all 122 samples measured, a power law
temperature dependence of the low-T in-plane penetration depth has been observed of the
form Ay (T) o T™ with 2.2 < n < 2.8. As the irradiation dosage increases, it has been found
for both series that the power law exponent n decreases. This decrease in n as the concentration
of impurities increases is at qualitative odds with the expectations for both an s-wave and a
dy2_,2-wave superconductor. Both the decrease in 7. and the decrease in n as the irradiation
dosage increases can be explained by considering a model for si-wave superconductivity which
takes into account both intra- and inter-band impurity scattering effects through the t-matrix
approximation [Kim et al. (2010a)]. The superfluid density was constructed for this model
by considering two isotropic gaps and it has been shown to evolve from exponential at low
temperatures in the clean case to a power law dependence for samples in the dirty scattering
limit, which describes the penetration depth data quite well. The best agreement between the

theory and the experiment was for two isotropic gaps with Ay ~ —0.6A1, a strong interband
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scattering component and a phase shift of 6 = 60° between the born (6 —0°) and unitary
(0 —90°) scattering limits.

Since the Ba(Fe;_,Co,)2Ass and Ba(Fe;_,Ni,)2Asy systems are naturally impure because
they must be doped to achieve superconductivity, the predicted exponential temperature de-
pendence of the penetration depth, corresponding to the clean impurity scattering limit, has
not been observed. However, the stoiciometric LiFeAs compound has allowed for the hypoth-
esis that the iron-based superconductors show an exponential penetration depth in the clean
limit to be tested because it is an undoped superconductor with T, ~ 18 K. The statement
that LiFeAs is in the intrinsically clean limit is further supported by its relatively large resid-
ual resistivity ratio (RRR), which is a way of determining the purity level of a sample by
comparing the amount of scattering in the high and low temperature states. A large RRR
value usually corresponds to a very small resistivity at low temperatures, indicating that the
crystal has few imperfections. The RRR of LiFeAs has been found to be 50 for the measured
samples, compared to RRR~3 in the Ba(Fe;_,Co,)2Asy series [Ni et al. (2008b)], indicating
that LiFeAs has fewer imperfections that can contribute to scattering at low temperatures.

The in-plane London penetration depth has been measured in three different samples of
LiFeAs and the out-of-plane penetration depth was also measured for one of the samples [Kim
et al. (2010c)]. Remarkably, the low-temperature region of the in-plane penetration depth for
the LiFeAs samples exhibits an exponential temperature dependence, which is expected for an
s+-wave superconductor in the clean impurity scattering limit. By performing a power law
fit of the form A\, (T) = CT™, the resulting power law is n ~3.1, which is larger than any
other value obtained previously for an iron-based superconductor and would be consistent with
an exponential behavior. The out-of-plane penetration depth, which was measured with H,.
perpendicular to the c-axis, also shows evidence for saturation at low temperatures, although
the data are much noiser for that experiment.

A single gap BCS fit to the low-T region of the in-plane penetration depth for LiFeAs yields
values for the fit residuals that are as good as the previously mentioned power law fit. The

single gap BCS fit gives A(0) ~ 280 nm and a gap ratio of A(0)/7.=1.09. This value of A\(0)
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is comparable to values obtained in other iron-based superconductors [Gordon et al. (2010a)],
but the gap ratio is smaller than the expected weak coupling value of 1.76 for a single fully-
gapped s-wave superconductor. Such a small gap ratio has also been found by using a single
gap BCS fit on data from superconductors that are known to have multiple superconducting
gaps, like MgBs, V3Si and LusFesSis [Kogan et al. (2009); Martin et al. (2008)]. To see how
well the data may be described by a model accounting for multiple gaps, the two gap v-model
[Kogan et al. (2009)] was used to fit the LiFeAs superfluid density data, where both gaps were
computed self-consistently and both intra and inter-band impurtiy scattering effects were taken
into account. The best fit gave A1(0)/T.=1.885 and A»(0)/7,=1.111, which is in agreement
with the observation that the penetration depth data of all two gap superconductors, when
fit to the two gap self-consistent v model, produce one gap ratio that is larger than the weak
coupling BCS value and one that is smaller.

To summarize, heavy ion irradiation experiments on single crystals of Ba(Fe;_,Co,)2As,
and Ba(Fe;_,Ni,)2Asy superconductors have indicated that as the concentration of impurity
scatterers inside of the material increases, the power law exponent of the London penetration
depth decreases as does the T, of the material without changing the width by much. These ob-
servations are very well described by a model for sq.-wave superconductivity which accounts for
both intra- and inter-band impurity scattering, implying that in the clean impurity scattering
limit, the iron-based superconductors should display an exponential saturation of the in-plane
penetration depth at low temperatures. This hypothesis has been tested by measuring the
penetration depth in single crystals of clean and stoichiometric LiFeAs (7. ~18 K), which in-
deed do show an exponential saturation of the in-plane penetration depth at low temperatures

and the superfluid density data are well fit by the self-consistent two gap y-model.

6.3 The doping dependence of A\, in Ba(Fe;_,T,)As; (T=Co,Ni)

Let us now turn to a discussion of the doping dependence of the power law exponent, n, of
the low-temperature region of the in-plane London penetration depth in the Ba(Fe;_,Co,)2Ass

[Gordon et al. (2009b,a)] and Ba(Fe;_,Ni,)2Asy [Martin et al. (2010a)] compounds. For all



117

concentrations a power law temperature dependence of the form A\, o< T™ has been observed.
As explained previously, the power law exponent, n, was obtained by fitting the low-T region
of the penetration depth (T' < T./3) data to a function of the form AN, (T) = CT™. By
measuring several different doping concentrations, z, of both series, n has been studied as a
function of the doping level across different regions of their respective temperature-doping phase
diagrams. There is supporting evidence to suggest that the observed power law temperature
dependence of the penetration depth in the Ba-based 122 iron-based superconductors arises
from pair-breaking impurity scattering [Kim et al. (2010a)] and that in the clean scattering
limit these materials would exhibit an exponential temperature dependence in the penetration
depth, which is expected for a superconductor having an s-wave order parameter symmetry
and has actually been observed in the intrinsically clean LiFeAs [Kim et al. (2010c)]. In what
follows, possible explanations for the observed doping dependence of the power law exponent
in the Ba(Fe;_,Co,)2Ase and Ba(Fe;_,Ni;)2Ase compounds are discussed. Penetration depth
data do exist for other transition metal dopings of the BaFeyAss series, but none have been
studied as extensively as the Ni and Co doped members from a penetration depth perspective.

Recall that for the Ba(Fe;_,Co,)2Asg series, the in-plane penetration depth has been mea-
sured for samples with x=0.038,0.047, 0.058,0.074 and 0.10, with optimal doping being between
0.058 and 0.074. The x=0.10 sample is only slightly overdoped and higher concentrations were
not studied because large single crystals were not available at the time of these measurements.
A power law temperature dependence of the low-T in-plane penetration depth has been ob-
served for all concentrations, with n being as low as 2 for underdoped samples and climbing
as high as 2.5 for the highest measured overdoped concentration of z=0.10. There is a clear
change of regime at x ~0.06 where the power law, n, increases rapidly and the penetration
depth prefactor, C from A\, (T) = CT™, jumps by an order of magnitude, which both happen
while moving toward higher concentrations.

One possible reason for the change of regime that occurs at x ~0.06, where there are clear
signatures in the power law exponent n and the prefactor C, could be associated with the fact

that this is the portion of the phase diagram where the antiferromagnetic/structural phase
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transition lines intersect the superconducting dome. On the underdoped side of the dome, the
formation of structural domains may be able to account for why the external magnetic field is
being screened differently with respect to all other measured concentrations. Alternatively, the
change of regime at x ~0.06 could be explained by an interaction between the superconducting
and itinerant antiferromagnetic phases on the underdoped side of the dome. There have
been reports of evidence confirming that these two phases coexist in this region of the phase
diagram [Canfield and Bud’ko (2010); Ni et al. (2008b); Drew et al. (2009); Pratt et al. (2009);
Christianson et al. (2004); Laplace et al. (2009); Goko et al. (2004); Fernandes et al. (2010)]
and also measurements of the zero temperature value of the penetration depth, A;;(0), have
shown that it increases by an order of magnitude upon passing into the region of coexistence
in this series [Gordon et al. (2010a)], which has been shown to be in quantitative agreement
with a theoretical model accounting for competition between si-wave superconductivity and
itinerant antiferromagnetism for the same charge carriers [Fernandes et al. (2010); Fernandes
and Schmalian (2010)].

A different possible explanation for the change in regime at x ~0.06 in the Ba(Fe;_, Co,)2As,
series could be a modulation of the superconducting gap with Co doping. Thermal conductiv-
ity measurements [Tanatar et al. (2010)] performed as a function of doping in this series have
found that the superconductivity is fully gapped in the ab-plane for all doping levels, but the
application of a magnetic field indicates that quasiparticles are excited easitly. Because they
are excited easily by a magnetic field, it has been proposed that this is due to a significant
anisotropy in the superconducting gap.

Other measurements of the thermal conductivity in this series have been performed with
heat current applied both parallel and perpendicular to the c-axis for seven different Co con-
centrations ranging from x=0.038 (underdoped) to 2=0.127 (overdoped) [Reid et al. (2010)].
In zero applied magnetic field, the resulting thermal conductivity for heat current applied per-
pendicular to the c-axis, more specifically along the a-direction, shows no residual linear term
across the entire superconducting phase diagram. The residual linear term is the electronic

contribution to the thermal conductivity in the low-temperature limit and if it is a negligible
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fraction of the normal state value, then there are no normal state quasiparticles available to
transport heat along the measured direction. The situation for heat current applied along
the c-axis tells a different story though. Along the c-axis, in zero applied magnetic field, a
negligible linear term has been found at optimal doping, but as one moves toward either edge
of the superconducting dome, the linear term in the thermal conductivity rises to a significant
fraction of the normal state thermal conductivity. This implies that at optimal doping there
are no nodes in the gap anywhere on the Fermi surface, but as one moves away from optimal
doping, nodes in the gap are present on portions of the Fermi surface that are responsible for
c-axis conduction.

The thermal conductivity data taken in applied magnetic fields gives very useful informa-
tion because the magnetic field acts as another way to excite quasiparticles. For the thermal
conductivity measured along the a-axis it has been found that the application of a moderate
magnetic field, H.o/4, excites quasiparticles along the a-direction just as well as nodal quasipar-
ticles are excited along the c-axis in zero applied magnetic field. This would imply that along
portions of the Fermi surface that contribute to in-plane conductance the superconducting gap
magnitude is small, but nonzero. Altogether, the thermal conductivity study as a function of
doping in Ba(Fe;_,Co,)2Asy has been interpreted in terms of a strong k dependence of the gap
A(k) which produces nodes on a Fermi surface sheet with pronounced c-axis dispersion and
deep minima on the remaining, quasi two-dimensional sheets. Since the proposed c-axis nodes
disappear at optimal doping, it is most likely that they are accidental, meaning that they are

not enforced by symmetry, in contrast to the symmetry enforced line nodes in a d 2_,2-wave

—y
superconductor.

The proposed modulation of the superconducting gap with doping in the Ba(Fe;_,Co,)2Ass9
series from thermal conductivity data could explain the doping dependence of the power law
exponent from penetration depth measurements in the same series. Since A\, (7) mainly
gives information about the in-plane superconducting gap, it is likely that the decrease near

the underdoped edge of the superconducting dome is due to the development of a significant

in-plane gap anisotropy. Another question that can arise when comparing the thermal con-
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ductivity and penetration depth data in the Ba(Fe;_,Co,)2Asg series is if there are no nodes
on the Fermi surface at optimal doping, then why isn’t the penetration depth exponential?
The most probable answer to this question is that penetration depth measurements seem to
be more susceptible to impurity scattering than thermal conductivity measurements. The
heavy ion irradiation penetration depth study provides very strong evidence for a large con-
tribution to the 122 data from pair-breaking impurity scattering, but a negligible linear term
in the thermal conductivity for heat current applied both parallel and perpendicular to the
c-axis is very compelling evidence for fully gapped superconductivity at optimal doping in
Ba(Fe;_,Coy)2Ass.

Now let us turn to a discussion of the doping dependence of the penetration depth in the
Ba(Fe;_,Ni,)2As, series. Recall that AN, (T') was measured for five different concentrations
ranging from x=0.033 (underdoped) to £=0.072 (overdoped). A power law temperature de-
pendence has been observed for all samples measured and it decreases monotonically from
n ~2.2 at £=0.033 to n ~1.6 at x=0.072. Measurements performed in a dilution refrigera-
tor have indicated that this power law temperature dependence persists down to as low as
T = T,/100. In addition, for this series AX.(T") has been measured for two overdoped samples
(both £=0.072) and one underdoped sample (x=0.033) and it has been found that for these
concentrations near both edges of the superconducting dome the penetration depth exhibits a
linear temperature dependence.

First, let us consider the doping dependence of the in-plane penetration depth power law
exponent in the Ba(Fe;_,Ni;)2Asy series. Compared to the Ba(Fe;_,Co,)2Asy series the
relative change in n with doping for superconducting concentrations across the phase diagram is
quite different. This may seem surprising because both materials share many similar features in
their respective temperature-doping phase diagrams and both are the result of transition metal
substitutions in the same parent compound. For the Ni doped series, n decreases monotonically
from 2.2 for very far underdoped concentrations to 1.6 for very far overdoped ones, while for
the Co doped series n is roughly 2 near the underdoped edge and increases toward optimal

doping to a value as high as 2.5 for z=0.10. One major difference that exists between the
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Ba(Fe;_,Ni;)2Asy and Ba(Fej_,Co,)2Asy compounds is the amount of the dopant ion that
is needed to completely suppress superconductivity. Since Ni donates two electrons per ion
and Co donates only one per ion, roughly half as much Ni is needed to completely suppress
superconductivity in this system compared to Co doping [Canfield et al. (2009)]. Since we know
that doping in the Ba-based 122 series does induce pair-breaking scattering [Kim et al. (2010a)],
the fact that the Co doped crystals require more disorder to achieve superconductivity may
imply that the pair-breaking scattering in these two series is not playing exactly the same role.
If the doping dependence of the power law exponent is strongly influenced by pair-breaking
scattering in these materials, then one viable explanation for the observed difference in the
behavior of n(z) for the Co and Ni doped systems is that these two series lie in different regimes
of pair-breaking impurity scattering.

As for why the power law exponent n decreases as the Ni concentration is increased, per-
haps the best understanding of this can come from the result of the heavy ion irradiation study
done on the Ni and Co doped 122 systems. From this study it was found that as the impu-
rity concentration increases, the resulting power law exponent decreases for these materials.
This could explain why the power law exponent decreases as the Ni concentration increases
for those Ba(Fe;_,Ni;)2Ase samples on which the penetration depth measurements were per-
formed. However, applying this same logic to the Ba(Fe;_,Co,)2Ass series does not work,
but arguments may be invoked related to the fact that these materials may be in different
impurity scattering regimes. Another possible explanation, but albeit much more complicated,
is that the doping dependence of the superconducting gaps in Ni and Co doped 122 systems
is not the same, but before such complicated assertions are made it is perhaps wiser to search
for a simpler explanation where the superconductivity in these two very similar systems is
fundamentally the same.

The observed linear temperature dependence of AX.(T) in the Ba(Fe;_,Ni, )2 Ass series for
two samples near the overdoped edge of the phase diagram and one sample near its under-
doped edge has been interpreted as the formation of line nodes in the superconducting gap

on portions of the Fermi surface that contribute to c-axis conduction. This is consistent with
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the previously mentioned thermal conductivity data in Ba(Fe;_,Co,)2Ass, where their data
has been interpreted in terms of a full superconducting gap at optimal doping that is doping
dependent with the formation of c-axis nodes in concentrations that are near both edges of the
superconducting dome [Reid et al. (2010)]. Naturally, for this hypothesis to be tested further
AMN.(T) measurements should be performed on many different doping levels spanning the entire
superconducting region of the phase diagrams for both Ba-based 122 systems to confirm that
indeed there is not a linear temperature dependence at optimal doping, indicating that these
c-axis nodes are accidental and they disappear at optimal doping.

To conclude the discussion of the doping dependence of the London penetration depth in
Ba(Fe;_,T;)2Asy (T=Co,Ni) superconductors, a power law temperature dependence of the
form AMXg(T) o< T™ has been observed for all samples and the power n has been found to
change with the doping level = in the material. It is known that the origin of the power law
temperature dependence is pair-breaking impurity scattering, which is supported by heavy ion
irradiation measurements in Ba(Fe;_, T, )2Ase (T'=Co,Ni) and the observation of an exponen-
tial temperature dependence in the intrinsically clean LiFeAs superconductor. The doping
dependence of the power law exponent could arise from a doping-dependent pair-breaking im-
purity scattering mechanism or from a modulation of the superconducting gap with doping,
which is supported by thermal conductivity measurements in Ba(Fe;_;Co,)2Ase and consis-
tent with the linear temperature dependence of AX.(T') for concentrations near both edges of

the superconducting dome in Ba(Fe;_,Ni;)sAs,.

6.4 The doping dependence of A\, (7T') in Ba(Fe;_,T,)2Asy
(T’'=Ru,Rh,Pd,Pt,Co+Cu)

The in-plane London penetration depth has been measured in single crystals at various
doping levels from the Ba(Fe;_, T} )2Ass series with T=Ru,Rh,Pd,Pt,Co+Cu. For all measured
concentrations, the variation of the in-plane penetration depth from its zero temperature value
has been found to follow a power law behavior of the form A\, (T") o< T™ with n taking values

that range from 1.5 to 2.5. The power law exponent, n, for each sample was determined by
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fitting the penetration depth below T./3, which is usually referred to as the low-temperature
region of the data. Although the measurements done on the Ba(Fe;_,T,)2Ass compounds
are less complete in terms of doping levels studied than those done on the Co and Ni doped
materials discussed in the previous section, they are still useful for studying the effect of
transition metal doping on the Fe site of BaFesAss.

In general, it has been found for Ba(Fe;_,T})2Asy (T=Ni,Ru,Pd,Pt,Co+Cu) superconduc-
tors that as z increase, the power law exponent n decreases, which is at least qualitatively
consistent with the conclusions derived from the heavy ion irradiation penetration depth ex-
periment [Kim et al. (2010a)]. This is in contrast to the doping dependence of the power law
exponent in the Ba(Fe;_,Co,)2Ase and Ba(Fe;_,Rh,)2Asy series. It is interesting to note
that both systems that do not show a decrease of n with increaseing x, namely the Co and Rh
systems, both donate the same nominal number of carriers to the charge environment of the
crystal.

Most probably, the origin of the power law exponent in all transition metal substituted
Ba-based 122 iron-based superconductors is the same, with that being pair-breaking impurity
scattering [Kim et al. (2010a)]. It is believed that this power law dependence evolves into an
exponential one for an iron-based superconductor in the intrinsically clean limit [Kim et al.
(2010c)]. However, the doping dependence of the power law exponent for Ba(Fe;_,T,)2As:
(T'=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors has not yet been understood. For T'=Co
and Rh, the power law exponent has been found to display a different doping dependence than
all other transition metal substitutions and future measurements should be poised to address

why this is so.

6.5 The evolution of )\;,(0) and ps(7) in Ba(Fe;_,Co,)2As,

The ability to measure the absolute value of the London penetration depth in a supercon-
ductor is valuable because not only does it allow one to construct the normalized superfluid
density, but also it can be used to study the effects arising from interactions between the

superconductivity and other nearby phases. A novel procedure has been developed to allow
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for TDR frequency shift measurements to be calibrated to obtain the absolute value of the
penetration depth in a superconductor that takes advantage of the calibration point supplied
by a thin film of aluminum deposited onto the surface of the sample to be studied.

By using the aforementioned calibration procedure, the zero temperature value of the
in-plane London penetration depth has been measured as a function of Co doping level,
z, in Ba(Fe;_,Co,)2Ase for 13 samples with concentrations ranging from very underdoped
(£=0.038) to beyond optimally doped (z=0.10) [Gordon et al. (2010a)]. Far overdoped sam-
ples were not measured because at the time of these experiments, high quality single crystals
were not yet available in that range of the phase diagram. For xz > 0.047, A4(0) has been
found to have values in the range of roughly 200+75 nm, but for x < 0.047, A4 (0) statistically
increases by almost a factor of 5 to values as high as 935 nm, which was later verified by a
different type of measurement that is sensitive to the penetration depth [Luan et al. (2011)].
There appears to be a constant scatter in the data points of approximately +75 nm for all
concentrations, which probably means that the source of the scatter is the same for all samples.
Most likely, it arises due to inhomogeneities or imperfections in the Al film. Along with previ-
ous measurements in this same series [Gordon et al. (2009b,a)] of the variation of the in-plane
penetration depth with respect to its low-temperature value, A\, (T'), these values of Ay (0)
have been used to properly normalize the superfluid density, ps(T) = (1 4+ AX(T)/A(0))72, in
order to study the doping evolution of the superconducting gap, A(k).

The most likely explanation for the observed statistical increase in Ay (0) by a factor of 5
upon moving into the far underdoped region of the phase diagram is a competition between
the superconducting and itinerant antiferromagnetic phases for the same charge carriers. In
support of this hypothesis is the fact that many different experiments have shown that it is
very likely that these two phases coexist in Ba(Fe;_,Co,)2Asy [Canfield and Bud’ko (2010); Ni
et al. (2008b); Drew et al. (2009); Pratt et al. (2009); Christianson et al. (2004); Laplace et al.
(2009); Goko et al. (2004); Fernandes et al. (2010)]. In addition, a theoretical model [Fernandes
and Schmalian (2010)] has been developed in order to calculate the expected increase in Agp(0)

in the coexistence region based on a competition between an si-wave superconducting state
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and an itinerant antiferromagnetic phase for the same charge carriers. This theory has used
actual neutron scattering data to produce curves for the doping dependence of Ay (0), which
fit the experimental data quite well after considering the simplicity of the model.

Nearly all of the samples that were used in this study already had A (7") measurements
performed on them [Gordon et al. (2009b,a)], so the measured values of A\ (0) allowed for
the construction of the normalized superfluid density by using ps(T) = (1 + AX(T)/A(0))~2
for various superconducting concentrations across the phase diagram of Ba(Fe;_,Co,)oAss.
The superfluid density curves for all measured concentrations do share some common features,
mainly that there is a reduction of the superfluid density at all temperatures, especially in-
termediate ones, with respect to the standard curve for the single gapped, isotropic case and
there is a region of upward concavity just below T,.. This behavior of the normalized superfluid
density with temperature is qualitatively the same as what has been measured for two gap
superconductors like MgBy or V3Si [Kogan et al. (2009)]. The optimally doped superfluid
density curve remains above the superfluid density curves for underdoped samples as well as
for the sample that is beyond optimal doping. This could be explained by a modulation of
the superconducting gap with doping that is full at optimal doping, even though pair-breaking
scattering still produces a power law temperature dependence there, and the formation of
nodes for concentrations moving away from optimal doping. This picture would be consistent
with recent measurements of the in-plane and c-axis thermal conductivity in this same series

[Reid et al. (2010)].

6.6 Pair-breaking scattering effects from the penetration depth prefactor

Understanding the role of pair-breaking impurity scattering effects in superconductors is
vital to discovering the true superconducting gap symmetry in materials where these contri-
butions are not negligible. By measuring the prefactor of the penetration depth for various
iron-based superconductors [Gordon et al. (2010b)], a theoretical prediction was able to be
tested and it has been found to describe the data quite successfully. This result supports the

hypothesis that pair-breaking impurity scattering effects are important for understanding and
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interpreting the penetration depth data in iron-based superconductors.

The samples used in this study were six concentrations from the Ba(Fe;_,Co,)2Ass series,
five concentrations from the Ba(Fe;_,Ni, )2 Ass series, the hole doped (Bag g7Kg.30)Fea Ase com-
pound, Fej go1(Seo.367Teo.632), LaFeAs(OgoFo.1) and NdFeAs(OggFp1). With such a diverse
collection of iron-based superconductors, the results have been interpreted as being general to
all classes of these materials.

The variation of the in-plane penetration depth with temperature, Ay, (7"), was measured
for all of the previously mentioned samples. The low-temperature region of each data curve was
fit to a function of the form A\, = ST? in order to extract the prefactor 3 for each sample,
in contrast to fits of the form A, (T) = CT™ where the units on C' depend on the power
law value n. The prefactor 8 was determined for these samples in order to test a theoretical
prediction stating 3 oc 1/T3, which was derived from a quasiclassical version of the weak-
coupling Gor’kov theorgy that holds for a general Fermi surface geometry and requires that
the average value of the superconducting gap about the Fermi surface is very small. According
to this model, the previously stated dependence of 8 on T, arises only from pair-breaking
impurity scattering, making this an excellent way through which the pair-breaking impurity
scattering in these superconductors can be studied. This same model has been successful in
describing the specific heat jump versus T, and the slopes of the upper critical fields in these
materials [Kogan (2009); Bud’ko et al. (2009)].

The fact that the prefactors determined from the low-T fits are so well described by the
3 o< 1/T2 relationship is strongly in support of a non-negligible contribution to the penetration
depth data from pair-breaking impurity scattering, but no model is perfect and the weak
points of this theory should be reviewed. First of all, the assumption that the average value of
the order parameter is very small would be consistent with the proposed si-wave symmetry,
but it is still not clear if this is the true superconducting gap symmetry in the iron-based
superconductors. There are some who believe that many different ground states are close to
each other for these materials [Maier et al. (2011); Wang et al. (2011); Das and Balatsky (2011)],

i.e. s4-wave and nodeless d-wave states, and more than one has actually been realized in these
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materials, which could explain the reported experimental discrepancies. Another concern is
that the 3 o< 1/T2 dependence was derived under the assumption that the material is in the
strongly disordered limit. The problem with this assumption is that a rough calculation of the
T. that would correspond to the clean limit of the material would be on the order of room
temperature, which most people believe is highly unlikely.

Although this model has been scrutinized by many, it is still the result of a wonderful effort
to attempt to describe the physics of these materials. There are obvious problems that arise
when considering the simplifying assumptions of this model, but the ability for it to describe
the penetration depth prefactor versus T, [Gordon et al. (2010b)], the specific heat jump versus
T, [Bud’ko et al. (2009)] and the slopes of the upper critical fields [Kogan (2009)] is actually

quite amazing.

6.7 Closing remarks

Superconductivity has come a long way since its initial discovery in low T, materials that
are now considered to be ”conventional” [Onnes (1911)]. Many researchers hoped that the
discovery of high-T, superconductivity in the iron-based superconductors [Kamihara et al.
(2008)] would shed enough light to solve the perplexing puzzle that was put before us in 1986
with the discovery of the high-T, cuprates [Miiller and Bednorz (1987)], but to no avail this
hope has not yet been realized.

One major drawback for experimentalists after the discovery of the cuprates was the lack
of availability of large, high quality single crystals from which trustworthy experimental results
could be obtained. In fact, many people believed that the low-temperature penetration depth
in the cuprates was AX o T2 until it was shown that this observation was an artifact of
impurity scattering in samples of poor quality nearly seven years after their discovery [Hardy
et al. (1993)]. Fortunately for the iron-based superconductors, the sample quality for some
compounds became quite good just months after their initial discovery, making it a little
easier to trust experimental reports than it was for the case of the cuprates.

Just as it was the case for the cuprates, the initial reports of the temperature dependence
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of the low-T penetration depth in the iron-based superconductors were spurious [Malone et al.
(2009)]. These claims stated that an exponential saturation of the penetration depth at low-
temperatures had been observed in SmFeAs(O;_,F,), which was taken as evidence for fully
gapped superconductivity. According to our present understanding, the exponential temper-
ature dependence was actually a power law temperature dependence plus a low-T upturn
arising from contributions to the penetration depth from the rare earth ions. This has been
confirmed by performing a careful analysis on NdFeAs(Og oFg.1), where the rare earth ordering
temperature and moment size were both known, to account for the Nd magnetism and also by
measuring the non-magnetic LaFeAs(Og 9Fo.1), which indeed does show a power law behavior
with no upturn in the penetration depth at low temperatures. [Martin et al. (2009b)].

As for other iron-based superconductors, most measurements have indicated that the low-
temperature form of the in-plane penetration depth follows a power law relation of the form
AXgy o T™ [Gordon et al. (2009b,a, 2010b); Kim et al. (2010b,a)]. This power law dependence
was initially interpreted as arising from point nodes in the superconducting gap [Gordon et al.
(2009b)], but after more careful measurements were performed it is currently accepted that
it arises from pair-breaking impurity scattering effects. This claim has gained support from
penetration depth measurements done on samples that were irradiated with heavy ions in order
to study the effects of disorder in a very controlled way [Kim et al. (2010a)]. A decrease of
the power law exponent with increasing disorder was observed, in line with predictions for
the popular si-wave symmetry of the superconducting gap [Mazin et al. (2008)] if impurity
scattering effects are included [Chubukov et al. (2008)], which predicts that in the clean limit
it should saturate with temperature exponentially. In fact, the claim that pair-breaking effects
have a significant effect on the behavior of the penetration depth is further supported by
an exponential saturation of the penetration depth that has been observed in LiFeAs [Kim
et al. (2010c)], which is believed to be an iron-based superconductor in the intrinsically clean
limit. One last piece of supporting evidence for strong pair-breaking effects in the iron-based
superconductors comes from measuring the penetration depth prefactor, 3 from AXN(T) = 372,

which has been found to follow 3 o< 1/T}3, consistent with a theoretical result derived assuming
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a strong pair-breaking contribution [Kogan (2009)]. This behavior has been found to hold for
samples from the Ba(Fe;_,Co,)2Asg, Ba(Fe;_;Ni;)2Ass, (Baj—;K;)FeaAsy, Feryy (Sei—,Tey),
LaFeAs(O;_,F,) and NdFeAs(O;_,F,) classes of iron based superconductors [Gordon et al.
(2010b)]. Perhaps future measurements should focus on understanding the exact nature of
the pair-breaking scattering and how it can change between different classes of the iron-based
superconductor family.

Careful studies have also been done to measure the doping dependence of the power law
exponent, n, in the Ba(Fe;_,Co,)2Asy [Gordon et al. (2009b,a)] and Ba(Fe;_,Ni, )2Asy [Martin
et al. (2010a)] series. For the Ba(Fe;_,Co,)2Ass series, it has been found that n is a maximum
near optimal doping and decreases to a value as low as 2 for very underdoped concentrations.
This has been interpreted as being consistent with thermal conductivity studies that have found
evidence for the formation of c-axis accidental nodes that appear upon departure from optimal
doping [Reid et al. (2010)]. A linear temperature dependence of the out-of-plane component of
the penetration depth, A)\., in samples of Ba(Fe;_,Ni,)2As, that have dopings near the edges
of the superconducting dome has also been taken to be in support of this claim [Martin et al.
(2010a)]. However, for all other transition metal dopings studied, including Ni, the power
law has been found to decrease with increasing disorder, consistent with the observations
made during the heavy ion irradiation study [Kim et al. (2010a)]. From a penetration depth
standpoint, one major question to be answered is the exact role of pair-breaking impurity
scattering effects in these superconductors, which future measurements should be planned to
address.

Another question to be answered with respect to superconductivity in the iron-based su-
perconductors pertains to the exact role played by magnetism. One popular idea is that the
cuprates and the iron-based superconductors are both examples of superconductors mediated
by spin fluctuations, analagous to phonon-mediated pairing in BCS superconductors [Taillefer
(2010); Monthoux et al. (2007)]. From penetration depth measurements in Ba(Fe;_,Co,)2As,,
it has been found that A\, (0) increases upon moving from the pure superconducting state to

the region of coexistence by a factor of 5 in the temperature-doping phase diagram. Since



130

A2,(0) is inversely proportional to the density of superconducting electrons [Tinkham (1996)],
the most natural explanation for the increase in the coexistence region is a competition be-
tween the superconducting state and the itinerant antiferromagnetic state for the same charge
carriers, which has been well described by a theoretical model to account for such a compe-
tition [Fernandes and Schmalian (2010)]. Whether superconductivity and antiferromagnetism
are competing or not, it is still not clear what the role played by the magnetism is and this is
one question that future measurements should definitely address.

The same calibration procedure that allowed for the measurement of A\, (0) in
Ba(Fe;_,Coy)2As9 has also allowed for the construction of the normalized superfluid density by
using, ps(T) = [A(0)/\(T)]?, which has allowed for the study of the evolution of the supercon-
ducting gap with doping. This procedure was recently developed to allow for the measurement
of the absolute value of the London penetration depth in superconductors by using an alu-
minum coating procedure for the sample along with usual TDR frequency shift measurements.
For the Ba(Fej_,Co,)2Ass series, the pg(T') curves for all dopings show a suppression over the
entire temperature range from base to T, consistent with the behavior for multigap super-
conductors like MgBs and V3Si [Kogan et al. (2009)]. In addition, the optimally doped ps(T)
curve is larger over the whole temperature range than underdoped and overdoped samples.
This would be consistent with the formation of nodal regions in the gap for concentrations
moving away from optimal doping. These results are in support of multigap superconductivity
in the iron-based superconductors, as do many others, but still much is to be learned about
the gap structure possessed by these superconductors, so future measurements should also pay
close attention to these details.

To conclude, measurements of the London penetration depth have been performed on
several different materials from the family of iron-based superconductors with the hope of elu-
cidating the structure of the momentum-dependent superconducting gap to shed light on the
pairing mechanism in these materials. A strong pair-breaking impurity scattering contribution
to the penetration depth has been uncovered, which likely arise from effects associated with

multigap superconductivity. In addition, there is evidence to suggest that in the clean limit
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these materials display an exponential temperature dependence of the penetration depth at
low-temperatures. From doping dependent penetration depth measurements in the Ba-based
122 series, evidence has been found for the formation of c-axis accidental nodes in the supercon-
ducting gap for concentrations near the edges of the superconducting dome. Also evidence for
a competition between the superconducting and itinerant antiferromagnetic phases has been
found by measuring the doping dependence of \;;(0). Future measurements should focus on
understanding the exact structure of the superconducting gap in these materials and also to
pinpoint the pairing mechanism. The hope is that eventually not only will a better understand-
ing of superconductivity in the iron-based superconductors be achieved, but an understanding

of the phenomenon of superconductivity in general.
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