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ABSTRACT 

 

Stimuli-responsive end-capped MSN materials are promising drug carriers that 

securely deliver a large payload of drug molecules without degradation or premature release.  

A general review of the recent progress in this field is presented, including a summary of a 

series of hard and soft caps for drug encapsulation and a variety of internal and external 

stimuli for controlled release of different therapeutics, a discussion of the biocompatibility of 

MSN both in vitro and in vivo, and a description of the sophisticated stimuli-responsive 

systems with novel capping agents and controlled release mechanism. 

The unique internal and external surfaces of MSN were utilized for the development 

of a glucose-responsive double delivery system end-capped with insulin.  This unique system 

consists of functionalized MSNs capable of releasing insulin when the concentration of sugar 

in blood exceeds healthy levels.  The insulin-free nanoparticles are then up taken by 

pancreatic cells, and release inside of them another biomolecule that stimulates the 

production of more insulin.  

The in vivo application of this system for the treatment of diabetes requires further 

understanding on the biological behaviors of these nanoparticles in blood vessels.  The 

research presented in this dissertation demonstrated the size and surface effects on the 

interaction of MSNs with red blood cell membranes, and discovered how the surface of the 

nanoparticles can be modified to improve their compatibility with red blood cells and avoid 

their dangerous side effects.  

 



 vii	
  

In order to optimize the properties of MSN for applying them as efficient intracellular 

drug carriers it is necessary to understand the factors that can regulate their internalization 

into and exocytosis out of the cells.  The correlation between the particle morphology and 

aggregation of MSNs to the effectiveness of cellular uptake is discussed and compared with 

different cell lines.  The differences in the degree of exocytosis of MSNs between healthy 

and cancer cells is reported and found to be responsible for the asymmetric transfer of the 

particles between both cell types. 

The fundamental studies on the hemocompatibility, endo- and exocytosis of MSN 

along with its ability to sequentially release multiple therapeutics in response to different 

stimuli, allow us to propose MSN as an intravascular vehicle with a great potential for 

various biomedical applications. 
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CHAPTER 1. DISSERTATION ORGANIZATION 

 

This dissertation is organized in seven chapters.  The first chapter describes the 

organization of the dissertation.  Chapters 2 to 6 are published journal articles and chapter 7 

concludes this dissertation with summaries of the results. 

 Chapter 2 is a literature review describing the current state of the intravascular 

application of MSNs to the field of stimuli-responsive controlled release and intracellular 

drug/gene delivery, and the directions that research is expected to take in the following years.  

My personal contribution represents 90% of the work. 

 Chapter 3 presents a glucose-responsive double-delivery system for a sequential 

release of insulin and cyclic adenosine monophsphate (cAMP).  This therapeutic system is 

highly appealing for its ability to simultaneously sense and regulate blood glucose levels.  

My personal contribution represents 90% of the presented research. 

 However, such system cannot be a candidate for clinical use unless its interactions 

with blood cells have been evaluated and controlled.  Herein, chapter 4 describes the size- 

and surface-dependent interaction of MSNs with human red blood cell membranes, and 

shows, for the first time, how MSNs are internalized by red blood cells.  My personal 

contribution represents 90% of the presented research. 

 A preliminary condition for using MSNs as controllable intracellular carriers is to 

understand the factors that regulate the efficiency of their cellular uptake and retention inside 

the cells.  Chapters 5 and 6 are the studies that address these questions.  Chapter 5 describes 

the effects of size and morphology of MSNs on their uptake by normal and cancerous cells.  
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Chapter 6 compares the abilities of healthy and cancerous cells to exocytose out MSNs.  My 

personal contribution represents 20% of the work presented in each chapter. 

This dissertation finished in chapter 7 with a general conclusion on the results and the 

significance of the research. 
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CHAPTER 2.  CAPPED MESOPOROUS SILICA 

NANOPARTICLES AS STIMULI-RESPONSIVE NTROLLED 

RELEASE SYSTEMS FOR INTRACELLULAR DRUG/GENE 

DELIVERY 

A paper published in Expert Opinion on Drug Delivery, 2010, 7, 1013-1029. 

Yannan Zhao, Juan L. Vivero-Escoto, Igor I. Slowing, Brian G. Trewyn and Victor S.-Y. Lin 

 

ABSTRACT 

Importance of the field: The incorporation of stimuli-responsive properties into 

nanostructured systems has recently attracted significant attention in the research of 

intracellular drug/gene delivery.  In particular, numerous surface functionalized, end-capped 

mesoporous silica nanoparticle (MSN) materials have been designed as efficient stimuli-

responsive controlled release systems with the advantageous “zero premature release” 

property.   

Areas covered in this review: Herein, the most recent research progress on the design 

of biocompatible, capped MSN materials for stimuli-responsive intracellular controlled 

release of therapeutics and genes is reviewed.  A series of hard and soft caps for drug 

encapsulation and a variety of internal and external stimuli for controlled release of different 

cargoes are summarized.  Recent investigations on the biocompatibility of MSN both in vitro 

and in vivo are also discussed.  

What the reader will gain: The reader will gain an understanding of the challenges 

for the future exploration of smart and biocompatible stimuli-responsive MSN devices. 
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Take home message: With a better understanding of the unique features of capped 

MSN and its behaviors in biological environment, these multifunctional materials will find a 

wide variety of applications in the field of drug/gene delivery. 

 

1.  Introduction 

The parallel developments in the design of pharmaceutical drugs and in the controlled 

manipulation of materials at the nanometer scale have recently begun to merge in order to 

produce new generations of diagnostic and therapeutic agents.  Many agents used for 

pharmacotherapy, such as antitumor drugs, show side effects and limited effectiveness that 

restrict their clinical application.  To maximize therapeutic efficacy and minimize side 

effects, numerous efforts have been made on the design of target-specific drug delivery 

systems that can securely transport the medications to targeted cells and tissues, without 

degradation or untimely release. 

Of the various drug nanocarriers explored, stimuli-responsive end-capped 

mesoporous silica nanoparticle (MSN) materials have demonstrated to be excellent 

candidates to fulfill the abovementioned requirements owing to their advantageous “zero 

premature release” property.  This property is particularly useful when the drug to be 

delivered is toxic or its therapeutic dosage requires precise control.  Conventional polymer-

based drug delivery systems suffer from inherent problems including limited capacity of drug 

loading and poor stability in blood after injection and the difficulty in temporally controlling 

the release of matrix-encapsulated compounds, since it usually takes place immediately on 

dispersion of these materials.  In contrast to traditional polymer-based “soft” nanomaterials, 

these highly stable inorganic MSN drug carriers are able to deliver a large payload of drug 
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molecules with much lower degradation kinetics.  The use of capping agents controls the 

pore opening and closing so that the encapsulated cargoes could be released with precise 

temporal control.  In addition, the unique internal and external surfaces of these materials 

make them ideally suited to the design of sophisticated drug delivery systems by 

incorporating one or more different diagnostic and therapeutic capabilities into a single 

vehicle with precise release control in response to one or more stimuli, either reversibly or 

non-reversibly.  As illustrated in Figure 1, the internal mesopores of these materials can serve 

as a safe microenvironment where molecules can be loaded and protected from degradation 

or deactivation before entering target cells.  Upon drug loading, the openings of the 

mesoporous channels can be blocked with a series of hard caps such as iron oxide (Fe3O4), 

cadmium sulfide (CdS) and gold nanoparticles (Au NPs), or soft caps including organic 

molecules, biomolecules and supramolecular assemblies, to prevent the drugs from leaching 

before reaching the targeted site.  The external surface can be functionalized further with 

ligands capable of cell targeting and diagnosing disease.1  In addition, the fact that these 

materials are readily taken up by animal and plant cells at low concentrations without posing 

any in vitro cytotoxicity,2-4  or any apparent negative health effects in vivo,5-8  makes these 

multifunctional nanoparticles promising candidates for target-specific stimuli-controlled 

delivery of therapeutics. 

This review focuses on the latest developments of biocompatible, capped MSN with 

special attention given to sophisticated stimuli-responsive systems with newl capping agents 

and controlled release mechanisms designed for intracellular drug/gene delivery. 
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Figure 1. (a) Schematic representation of a MSN loaded with drugs and capped with hard 
and soft caps highlighted in this review.  Transmission electron micrographs of (b) a MSN 
along the axis of the mesopores, (c) capped with hard (Au NP) and (d) soft (polymer) caps. 
 

2.  Intracellular delivery and biocompatibility of MSN 

The first hexagonally ordered mesoporous silica material (designated as MCM-41) 

reported by researchers at the Mobil Oil Company consisted of micron-sized particles with 

variable morphology.9  Whereas mesoporous silica microparticles are potentially useful for 

many non-biological applications such as adsorption, catalysis and chemical separations, they 

are not ideally suited for biotechnological and biomedical devices due to the large particle 

size and irregular morphology.  For example, for these materials to serve as intracellular 

carriers for drug/gene delivery, they have to be efficiently internalized by mammalian cells, 

which require the particle size of the materials to be on the submicron scale.10,11  In addition, 

microparticles are within the size window of many pathogens and could potentially trigger 

(b) (c) (d) 

Hard Caps Soft Caps 

Au 

Fe3O4 

CdS 

Insulin 

Dendrimer 

Antibody 

Nanovalve 

(a) 
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acute immune responses when introduced in vitro.  In the pursuit of biocompatible materials 

for controlled release and drug delivery applications, extensive research effort has been 

devoted to achieve control over particle size and morphology. 

Mesoporous silica nanoparticles are prepared by a simple and rapid synthetic 

approach characterized by uniform particle size (80-500 nm) adjustable particle morphology, 

high surface areas (900–1100 m2/g), large accessible pore volumes (0.5–1.5 cm3/g), tunable 

pore size (2-10 nm), and a wide variety of surface functional groups that can be attached on 

the internal and external surfaces of MSNs to manipulate surface properties for drug loading 

and release.12  The MSN shown in Figure 1b, for example, has a particle size around 150 nm 

with a hexagonal mesoporous structure, and pores around 2 nm in diameter, this material has 

a surface area around 900 m2/g, and pore volume around 0.9 cm3/g.  Some reviews on the 

synthesis, size and morphology control and surface functionalization of MSN have been 

recently published.13,14 

2.1.  Intracellular uptake of MSN and in vitro biocompatibility 

2.1.1.  Intracellular uptake of MSN 

After the first discovery by Lin and co-workers that MSNs were readily internalized 

by eukaryotic cells without inducing cytotoxicity and were capable of delivering DNA,2  

intensive efforts have been directed to understanding the mechanism of cellular uptake and 

various biological applications of MSN in vitro.  Many different research groups have 

demonstrated that MSN can be rapidly and efficiently endocytosed by a variety of 

mammalian cells including cancer cells (HeLa, CHO, lung, PANC-1, breast cancer MCF-7, 

pancreatic RIN-5F), noncancer cells (neural glia, liver, endothelial, skin fibroblast), 

macrophage, stem cells (3TL3, mesenchymal) and others.2,3,15-23 
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To determine the efficiency and mechanism of the cellular uptake of MSN, several 

spectroscopic techniques have been used, including flow cytometry, confocal fluorescent 

microscopy, transmission electron microscopy (TEM), and differential interference contrast 

microscopy (DIC).2,3,15-17,22,24  The uptake efficiency (EC50) of MSN by mammalian cells 

range from 1 to 50 µg/ml, dependent upon the surface properties of the particles.  The uptake 

occurs in a relatively short time frame, usually within 30 min of introduction of MSN into the 

culture medium.3,25  By using confocal fluorescence microscopy, MSNs can be observed 

inside the cells and capable of escaping from endosomes to reach the cytosol (Figure 2d-f).3  

TEM micrographs also provide direct evidence on the internalization and subcellular 

localization of the particles (Figure 2a-c).2  Recently, Lin, Yeung and co-workers followed 

the uptake of individual MSNs into single cells by DIC, in real time.24 

 

Figure 2. (a-c) Transmission electron microscopy images of CHO cell with endocytosed 
MSN.  (d-f) Confocal fluorescence images of fluorescein labeled MSN (green, panel d) 
endocytosed by HeLa cells co-stained with an endosome marker (FM 4-64, red, panel e).   
The merged images (panel f) show little coincidence of green and red spots (giving yellow), 
indicating that MSN (green) have already escaped from the (red) endosomes. 

(a)          (b)                (c) 

 (d)          (e)    (f) 
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As outlined below, various factors have been demonstrated to influence the 

efficiency, kinetics and mechanism of the intracellular uptake of MSN materials. 

(1). Surface property of MSN.  Lin and co-workers showed that the functionalization 

of the external surface of MSNs affects not only the efficiency of their internalization, but 

also the uptake mechanism and their ability to escape from the endosomal entrapment.3  In 

general, positively charged MSNs have a higher endocytosis efficiency compared to 

negatively charged materials owing to the higher affinity to the negatively charged cell 

surface.  The uptake of MSN has been found to take place mainly through a clathrin-

mediated endocytosis, whereas some surface-functionalized MSNs, such as amine- and 

guanidinium-functionalized MSNs enter the cells through a clathrin- and caveolae-

independent mechanism.  In addition, a notable increase in the endocytosis efficiency by 

cancer cells was observed for folic acid grafted MSN by means of folic acid receptor-

mediated endocytosis.  It has also been observed that MSNs with a highly negatively charged 

surface can easily escape from endosomal entrapment as depicted in Figure 2d-f, probably 

attributed to the ‘proton sponge effect’.  Similar results were reported later by Mou and co-

workers, and Linden and co-workers.16,26 

2. Particle size and aggregation ability.  The particle shape, size and agglomeration 

effect on the endocytosis of MSN has been investigated by the Lin research group.21  The 

smaller particles with higher dispersibility in aqueous solution were shown to be endocytosed 

with a higher efficiency and faster kinetics than the larger particles.  Later, Mou and co-

workers also studied the effect of particle size on cellular uptake of MSNs, showing that the 

maximum uptake by Hela cells occurs at a particle size of 50 nm.23 
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3. Particle morphology.  Lin and co-workers also reported that the cellular uptake of 

MSNs is morphology and cell line dependent.21  A cancer cell line showed a higher 

endocytosis efficiency and rate for both spherical and tubular particles compared to a normal 

cell line.  Interestingly, tubular MSNs achieved a more efficient uptake by cancerous and 

non-cancerous cells than the spherical ones. This was later confirmed by Tang and co-

workers.27  

All these factors lead to the conclusion that intracellular uptake of MSN can be 

regulated by choosing an appropriate nanoparticle formulation, which opens the possibilities 

of achieving high specificity and efficacy of the intracellular controlled delivery of 

therapeutic agents. 

2.1.2.  In vitro biocompatibility 

The biocompatibility of MSN with cellular systems has been tested by different 

methods.  Studies on the viability and proliferation of various mammalian cells indicate that 

these properties are not affected by MSN at dosages < 100 µg/ml even after 6 days of 

incubation.2,3  Cell morphology and membrane integrity are conserved after the 

internalization of MSN as determined by microscopic analysis and selective DNA staining 

followed by flow cytometry.3  Colorimetric assay with 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT) shows that mitochondrial activity remains at normal 

levels after uptake of MSN.16  However, the effects of MSN on diverse aspects of cellular 

metabolism still need to be more carefully and deeply evaluated.  For example, although a 

number of studies have indicated that MSN internalization does not affect human 

mesenchymal stem cell (hMSC) morphology, viability, proliferation, and differentiation 

capacities,25,28 Chen and co-workers have recently observed that the internalization of MSN 
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induces a significant but transient protein response (actin polymerization, small GTP-bound 

protein RhoA activation) and the generation of osteogenic signals in hMSCs.29  Meanwhile, 

Goodisman, Asefa and co-workers also reported on the physical property-, concentration- 

and time-dependent effects of MSNs on cellular bioenergetics (cellular respiration and ATP 

content).30  These findings suggest that more research efforts should be directed to the 

detailed characterizations of cellular activities with MSN internalization to provide 

comprehensive baseline information for the use of MSN as therapeutic drug carriers. 

2.2.  In vivo biocompatibility 

Any clinical application of MSN is contingent on good biocompatibility.  The small 

particle size of MSN allows for their use as intravenous drug delivery systems.  However, 

one prerequisite for intravenous administration of MSN drug carriers is their biocompatibility 

with red blood cells.  Lin and co-workers have recently reported that in contrast to the 

pronounced hemolytic activity of amorphous silica, MSNs exhibit high biocompatibility 

towards red blood cells at concentrations up to 100 µg/ml as shown in Figure 3.4  By 

comparing the hemolytic activities of different surface functionalized MSNs and amorphous 

silica with the same surface functional groups, it was demonstrated that the enhanced 

biocompatibility of MSN with red blood cells is related to its unique honeycomb-like 

structure with arrays of mesopores where most silanol groups are hidden in the interior of the 

particles, resulting in a low surface density of silanols accessible to the cell membranes of red 

blood cells. 
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Figure 3. Hemolysis assay for amorphous silica (red lines) and MSN (green lines), compared 
with water as a positive control (blue lines) and PBS as a negative control (dashed black 
lines).  The presence of hemoglobin (red) in the supernatant was detected visually (a, b) and 
by absorption at 541nm (c, d) after centrifugation of the cells.  The materials were suspended 
at (a, c) 60 and (b, d) 100 mg/ml. 
 

Additionally, recent investigations on the biodistribution and circulation properties of 

MSN in mice and rats demonstrated that the intravenous administration of these 

nanoparticles did not cause observable toxicity at doses < 200 mg/kg.5-8,31  However, when 

the dosage is increased to > 200 mg/kg, toxic effects start to appear, as reported by Kohane 

and co-workers.31  It should be noted that the dosage (1200 mg/kg) used in Kohane’s study is 

two orders of magnitude higher than the one that would be necessary for drug delivery 

applications, especially considering the high drug loading capacity of MSN.  Nevertheless, 

the biocompatibility of MSN could be further enhanced by surface functionalization.  For 

example, PEGylated mesoporous silicates have been shown to be non-toxic in peripheral 

lung tissue.32  Such surface coating strategy may also mitigate any systemic toxicity. 
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Hyeon and co-workers studied the biodistribution of the NPs (< 200 nm) in murine 

models of cancer, observing the accumulation of the NPs in tumors 24 h after injection.  The 

authors attributed the localization to the enhanced permeability and retention (EPR) effect.  

They also observed NP accumulation in the rest of the organs, including liver and kidney, 

with no apparent toxicity.6  In another study recently reported by Mou and co-workers,8 the 

intravenous injection of MSN (50-100 nm, surface modified with positively charged groups) 

led to accumulation of the NPs mainly in the liver (35.3%), followed by the kidney (9.0%), 

lung (8.3%), spleen (8.0%), and heart (4.5%).  In a long-term biodistribution study, they also 

observed the accumulation of MSNs in the liver for up to 3 months without any apparent 

toxicity, suggesting that MSNs are resistant to decomposition and biocompatible in vivo at 

low concentrations.5  These interesting findings are promising steps towards the in vivo 

biomedical application of these multifunctional nanoparticles. 

In a few words, MSN materials have demonstrated to be biocompatible drug carriers 

at dosage < 100 µg/ml for up to 1 week in vitro and < 200 mg/kg in vivo for up to 3 months.  

The final fate and long-term toxicity of MSNs should be investigated continuously before 

biomedical applications.  Surface modifications should also be explored to reduce toxicity for 

applications in drug delivery and other biomedical fields. 

 

3.  Capped MSN-based stimuli-responsive controlled release systems 

Since Vallet-Regí proposed using mesoporous silica materials for drug loading and 

release,33 many mesoporous silica-based drug delivery systems have been studied and 

research efforts directed to attaining controlled release.  The first capped mesoporous silica 

material for controlled release was reported by Tanaka and coo-workers.34  A reversible 
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photo-triggered controlled release was developed by taking advantage of a photodimerization 

reaction of coumarin to control the opening and closing of the mesopores.  However, these 

early applications were based on MCM-41 materials without defined shapes or 

monodispersed sizes.  Short after Tanaka’s report, Lin’s research group prepared a CdS NP 

capped MSN for drug release, the uncapping of which was triggered by disulfide reducing 

agents.35  The same research group later developed the first examples of using biocompatible 

MSNs as drug carriers and nanoparticles as capping agents for stimuli-responsive controlled 

release, the caps including chemically or physically removable nanoparticles such as Fe3O4 
17 

and Au NPs.18,36  In related works, Tseng, Nguyen and co-workers, designed a variety of 

stimuli-responsive nanovalves for the controlled release of dyes.37-39  Although many of their 

early, established capping and release systems operated exclusively in non-aqueous solvents, 

they presented challenges in terms of the operational applicability under physiological 

conditions.  Cyclodextrin (CD) and cucurbit[n]uril (CB[n]) were later used to increase the 

biocompatibility of the nanovalve systems.40,41  However, intracellular drug delivery 

behaviors of these systems are still under investigation.  Nevertheless, these systems greatly 

improved the diversity of capped mesoporous silica materials for stimuli-responsive 

controlled release with their “on-off” reversible control.  Many excellent reviews of 

nanovalve-based mesoporous silica materials for controlled release have been written by 

Liong and co-workers.42-44 

The cellular uptake and intracellular drug/gene delivery property of a capped MSN 

system was demonstrated for the first time by Lin and co-workers using G2-PAMAM-coated 

MSN as a vehicle to deliver plasmid DNA into astroglia, human and hamster cancer cells.2  

This system proved to be able to protect plasmid DNA against enzymatic digestion and 
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induce the expression of enhanced green fluorescent protein (EGFP) in cells more effectively 

than commercial transfection reagents.  This work opened the door to the design of many 

stimuli-responsive polymer based soft caps and the investigation of drug delivery behavior of 

capped MSN systems inside cells.  So far, only a few capped MSN systems have been 

applied to cellular systems for controlled drug/gene delivery and biocompatibility 

investigations,2,17-20,36 which is fundamental for future cell- and organ-specific delivery of 

therapeutics and other in vivo applications. 

In this review, the capping agents that were introduced onto mesoporous silica 

materials are classified as hard caps such as CdS, Fe3O4 and Au NPs and soft caps including 

organic molecules, biomolecules and supramolecular assemblies.  This review is focused on 

those capped MSNs that have been designed and/or applied to the intracellular controlled 

release of drugs and genes (Table 1 and Figure 1a).  Interestingly, among the various caps 

that have been exploited, biomolecules have emerged only recently as a new type of 

biocompatible capping agents for highly specialized tasks, including insulin for diabetes 

treatment, antibody for target-specific controlled release, and biotin-avidin for cell targeted 

drug delivery, as will be described later. 

In general, stimuli-responsive capped MSN systems have the following three features 

that distinguish them from other drug delivery materials: 

(1) Capped MSN can encapsulate a large payload of unmodified therapeutic 

compounds to achieve high intracellular concentrations, reducing undesired side effects 

resulting from leaching of the cargoes, and protecting the therapeutics from degradation by 

the environment.  The mesoporous structure of MSN with tunable pore size offers the 

possibility of loading a large quantity of biogenic molecules, including antitumor drugs,  
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Table 1. Stimuli and triggers applied in capped MSNs for intracellular drug/gene delivery. 

Stimuli Trigger Cap Responsive moiety of 
linker or stalk Ref 

Acid 
Poly-

(dimethydiallylammonium 
chloride) (PDDA) 

Carboxylic acid 45 

Acid Cyclodextrin (CD) Polyethyleneimine (PEI) 46 

Acid Cucurbit[6]uril (CB[6]) Trisammonium 47 

Acid CB[6] Dialkyl-4,4’-bipyridinium 
(viologen) 

48 

pH 

Acid Borate Saccharide 49 

Temperature Temperature increase Poly(N-isopropylacrylamide) 
(PNIPAM) 

Thermoresponsive 
polymer 

50,51 

Dithiothreitol (DTT), 
Mercaptoethanol (ME) CdS NP Disulfide 35,52 

DTT, Dihydrolipoic 
acid (DHLA) Fe3O4 NP Disulfide 17* 

DTT Au NP Disulfide 36* 
DTT, tris(2-

carboxyethyl)phosphin
e (TCEP) 

Polyamidoamine (PAMAM) 
dentrimer Disulfide 2,52* 

DTT crosslinked Poly(N-
acryloxysuccinimide) (PNAS) Disulfide 53 

Redox 

DTT Polyelectrolyte multilayers  
PEM-aptamer Disulfide 20* 

Porcine liver esterase 
(PLE) α-CD Ester-linked adamantyl 

stopper 
41 

β-D-Galactosidase Lactose Glycosidic bond 54 Enzyme 

Protease (trypsin) Biotin–Avidin Avidin 55 

Blood sugar Glucose G-Insulin Phenylboronic acid 19* 

In
te

rn
al

 S
tim

ul
i 

B
io

m
ol

ec
ul

e 

Antigen Sulfathiazole (STZ) Antibody Hapten 56 

UV light                Au NP o-Nitrobenzyl ester 18* 

UV light                β-CD o-Nitrobenzyl ester 57 Light 

UV light                Py-β-CD Azobenzene stalks 58 

ultrasound ultrasound ferrocene Amide 59 E
xt

er
na

l s
tim

ul
i 

Electric field Voltage β-CD Ferrocene 60 

Visible light, pH Carboxylate-terminated 
G1.5 PAMAM Spiropyran 61 

UV, pH  Au NP Phenylboronic acid 62 

UV, pH  CB[6],  
Azobenzene Nanoimpeller  Trisammonium 63 

UV, DTT, α-CD cross-linked β-CD-bearing 
PNAS Diazo, Disulfide 64 

Double/Multiple 
Stimuli 

α-amylase, lipase, UV β-CD CD, ester,  
o-nitrobenzyl ester 

65 

* Intracellular drug/gene release and in vitro biocompatibility have been tested with mammalian/plant cells. 
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imaging dyes, DNA, proteins and other chemicals of pharmaceutical interest, and in 

particular those that are cell membrane-impermeable or incompatible with biological fluids.  

In a typical cargo loading process, MSNs functionalized with organic groups (linkers) are 

incubated with concentrated drug solution to facilitate the diffusion of drug molecules into 

the mesopores of MSN.  Capping agents are then added to the solution to block the pore 

entrance by forming covalent bonds or through electrostatic interaction with the linkers on 

the surface of MSN, so that loaded cargoes are prevented from leaching out of the 

mesopores.  Physisorbed drug molecules could be washed off and the loading could be 

calculated by subtracting the amount of cargoes remaining in the solution and that has been 

washed off from the initial concentrated drug solution.  Typically, the amount of cargoes that 

can be loaded in the mesoporous channels of MSN varies from 0.2 to 50 µmol/g.  In contrast 

to conventional drug carriers that require covalent attachment of therapeutic compounds to 

their matrices, capped MSN system does not require any modification of the drug molecules 

but physically traps them inside the mesopores.  Capping prevents the loaded species from 

leaching out and allows drug release only in the presence of specific stimuli that trigger the 

removal of the caps.  In this aspect, the structural integrity and consequently the 

pharmacological property of encapsulated drugs can be retained.  These encapsulation 

methods make possible the simultaneous delivery of one or more therapeutic agents to 

achieve synergistic therapeutic outcomes.  Furthermore, the pharmacokinetic properties and 

biodistribution of the payloads can be controlled by manipulating the surface properties of 

the capped MSN carrier. 

(2) The capping agent can provide extra functionality to the MSN drug carrier, such 

as cell targeting, facilitating endosomal escape, loading more therapeutics and serving as 
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diagnostic agents.  For example, by using superparamagnetic iron oxide nanoparticles as 

removable caps for MSN,17 Lin and co-workers were able to manipulate cells that had 

internalized Fe3O4-MSN by applying an external magnetic field.  The combination of this 

magnetic motor effect with the stimuli-responsive controlled release property, also 

demonstrated for this capped MSN, showed that it was possible to direct therapeutic agents 

to cells or tissues of interest by loading them inside of the material.  Gold nanoparticles have 

also been well established as hard caps for MSN.18,36  Besides their role as biocompatible 

caps, AuNPs can also increase the density of individual MSN to enable their use with a gene 

gun system.  In that way Lin, Wang and co-workers were able to demonstrate for the first 

time the ability of AuNP capped MSN to act as a co-delivery agent of a gene and its 

promoter into plant cells (Figure 4).36  The laser-induced plasmonic heating property of 

AuNPs was utilized for triggering drug release in addition to other stimuli-cleavable 

chemistries.  This has been demonstrated recently by Martínez-Máñez in a pH and NIR laser-

controlled delivery system.62  The local plasmonic heating induced by a NIR laser resulted in 

the cleavage of the boronic ester linkage between the AuNPs and the MSN, allowing the 

release of entrapped Safranine O molecules.  The cap itself could also play a role in 

therapeutic treatment.  For example, insulin is known to regulate blood glucose level in the 

treatment of diabetes.  In a glucose-responsive double delivery system recently published by 

the Lin group, gluconic acid modified insulin (G-Insulin) was employed both as a cap to 

control the delivery of cyclic AMP to pancreas beta-cells and as a therapeutic agent to 

directly regulate blood glucose levels (Figure 5).19  
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Figure 4. Schematic representation of a series of surface-functionalized MSNs for 
intracellular controlled release of genes and chemicals into plant cells triggered by addition 
of reducing agent, DTT. 
 

 

Figure 5. Schematic representation of the glucose-responsive MSN-based double delivery 
system for controlled release of bioactive G-Ins and cyclic AMP.  The controlled release 
mechanism was achieved by means of the displacement reaction between blood glucose and 
G-Ins based on reversible boronic acid-diol complexation.  High glucose concentration 
triggers the G-Ins uncapping and the release of cyclic AMP sequentially to diminish the 
higher than normal level of blood glucose. 
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(3) The versatile and selective surface functionalization of MSN allows pore 

uncapping and drug release with a high degree of control.  The introduction of one or more 

types of stimuli-responsive functional groups to the capped MSN system enables them to 

perform a series of special tasks on command, as will be described in the next section.  The 

diffusion of encapsulated molecules can be controlled by selectively decorating the interior 

surface and by choosing appropriate caps; in other words, the release kinetics of drugs can be 

tuned to match the needs of the biological system of interest.  For example, by using real-

time imaging, Yeung, Lin and co-workers demonstrated that the kinetics and amounts of 

ATP encapsulated in MSN could be tuned by using different types of caps.  The study 

revealed that hard nanoparticle caps such as CdS are more suitable for the fast release of 

relatively small amounts of payloads, whereas flexible soft caps such as PAMAM 

dendrimers are more convenient for slow and sustained release of larger amounts of 

cargoes.52 

Above all, the ability to independently functionalize each section of capped-MSN 

(interior surface, exterior surface and caps), along with the good biocompatibility and tunable 

endocytosis efficiency, makes these capped-MSN materials with multiple, orthogonal and 

controllable functions for biomedical applications. 

 

4.  Stimuli-responsive controlled release mechanisms 

To achieve precise spatial and temporal delivery of therapeutic agents to target sites, a 

variety of stimuli-responsive groups have been introduced to MSN, including groups that 

respond to stimuli found in the interior of biological systems (pH, temperature, redox 

potential, and biomolecules) and stimuli that can be applied externally from biological 
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systems (light, ultrasound, electrical field).  Various responses to stimuli are feasible, 

including bond cleavage, competitive binding, and conformational changes.  Capped-MSN 

systems are designed to take advantage of these responses and to trigger the release of 

encapsulated molecules.  An overview of stimuli and triggers that have been applied to 

capped mesoporous silica materials for controlled release and intracellular drug/gene delivery 

are given in Table 1.  In this section, we analyze the most recent stimuli-responsive 

controlled release systems found in the literature, with a particular focus on biomolecule, 

light and double responsive controlled release systems. 

4.1.  Internal stimuli-responsive controlled release 

Stimuli-responsive controlled release systems are especially advantageous when the 

triggering stimuli are unique to the targeted pathology.  This allows the drug carriers to 

respond specifically to the desired species and release drugs in a self-regulated fashion.  

Examples of internal stimuli that have been exploited for intracellular drug and gene delivery 

include pH, temperature, redox state and some specific biomolecules such as enzymes, 

carbohydrates and antigens. 

4.1.1.  pH 

The acidic pH found in tumor and inflammatory tissues (pH ~ 6.8) as well as in the 

endosomal and lysosomal compartments of cells (pH ~ 5-6) provides a potential internal 

trigger for the release of drugs from a pH-responsive drug carrier .66  To exploit this 

condition the carrier must be stable at physiological pH (~7.4) but release their encapsulated 

payload in acidic environments.  A series of pH-responsive caps including polyelectrolyte, 

pseudorotaxanes and organic molecules have been used for controlling the release of drug 

molecules, as summarized in Table 1.45-48  Although exciting, none of these systems have 
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been tested with cells or animals for intracellular pH-responsive controlled release; Possibly 

due to the weak response of these systems at mildly acidic conditions. 

4.1.2.  Temperature 

Temperature is another internal stimulus that can be exploited for triggering 

drug/gene release at specific sites.  For example, it has been shown that the local temperature 

in many tumors is slightly higher than normal body temperature.  Therefore, a temperature-

responsive drug carrier that releases drugs only at temperatures > 37 °C but keeps the drugs 

encapsulated while in circulation is highly desirable.  Poly-(N-isopropylacrylamide) 

(PNiPAM) is a well-studied thermoresponsive polymer for controlled release studies.  By 

growing PNiPAM on the external surface of MSN, Lin and co-workers were able to control 

thermally its partition between water and toluene, which could lead to applications in 

temperature dependent phase transfer and thermoresponsive controlled release in different 

solution environments.67  López and co-workers prepared PNiPam coated mesoporous silica 

microparticles and demonstrated that the coated particles were able to absorb fluorescein 

from an aqueous solution at high temperature and release their cargo to a fresh solution upon 

temperature increase.50,51  However, it should be noted that depending on the pore size of the 

particle, the drug loading and release behavior could be different.68,69 

4.1.3.  Redox potential 

It is known that intracellular glutathione (GSH) levels in most tumor cells are 100–

1000 fold higher than the extracellular levels, therefore the naturally occurring redox 

potentials between the mildly oxidizing extracellular space and the reducing intracellular 

space can be utilized as a stimulus to trigger the release of encapsulated molecules from drug 

carriers.70  The potential of disulfide bonds to reduce into free thiols as a response to this 
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reductive condition has attracted much attention for the design of redox-responsive 

controlled release systems.  This has been well established by the use of disulfide linked 

nanoparticles (CdS, Fe3O4 and Au NP)17,18,35,36 and PAMAM dendrimers2,52 as capping 

agents.  Remarkably, these redox-responsive capped-MSN systems have been utilized as 

intracellular delivery devices for dyes, drugs and genes into mammalian and plant cells.17,20,36 

In an effort to extend the applications of MSN as an intracellular delivery agent for 

plant cells, Lin and co-workers were able to deliver DNA and chemicals into plants by the 

use of Au NP-capped redox-responsive MSNs as depicted in Figure 4.36  The MSN materials 

were first loaded with β-estradiol, which is a promoter for the activation of a green 

fluorescent protein (GFP) encoding plasmid DNA (GFP pDNA) to be delivered into the plant 

cells, and the pore entrances were then capped with Au NPs by means of a disulfide bond.  

The Au NP-capped MSN was then coated with the GFP pDNA and introduced into the plant 

cells by a gene gun.  Interestingly, the plant cells could express the delivered gene only when 

the reducing agent was added by perfusion to induce the release of the entrapped β-estradiol 

for DNA activation.  This demonstrated for the first time that MSN has the ability to co-

deliver different chemicals into plant cells with a precise control of location, time and the 

sequence of release. 

Later, the strategy of introducing disulfide bonds for redox-responsive controlled 

release was also used by Yang, Wang and co-workers, when they used it for the reversible 

crosslinking of a polyelectrolyte multilayer-coated MSN (MSN-PEM).20  On addition of 

disulfide reducing agent dithiothreitol (DTT), they were able to observe the release of loaded 

fluorescein. Interestingly, a cancer-specific DNA aptamer was also attached to the MSN-

PEM for targeted drug delivery.  By comparing the endocytosis efficiency of aptamer-bound 
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MSN-PEM with the aptamer-free system, as well as the viability of cancer and the non-

cancerous cells when incubated with these two materials loaded with anticancer drugs, they 

demonstrated cell-targeted redox-responsive controlled release ability of the aptamer-bound 

MSN-PEM. 

4.1.4.  Biomolecules 

Biomolecules have recently emerged as a new type of internal stimulus that has 

attracted a growing interest owing to their biocompatibility and interesting biological 

activities.  So far, the types of biomolecules that have been introduced to capped mesoporous 

silica materials include enzymes, blood sugars and antigens. 

In a first proof-of-concept, Patel et al. developed an enzyme-responsive capped 

mesoporous silica material.41  The material was loaded with luminescent rhodamine B (RhB) 

and capped with a [2]-rotaxane by threading β-cyclodextrin onto a polyethylene glycol stalk 

and held with an ester-linked adamantyl stopper.  The release of RhB was observed only 

upon the addition of porcine liver esterase (PLE) resulting in the hydrolysis of the adamantyl 

ester, which led to the dethreading of the [2]-rotaxane.  In another example, Bein and co-

workers exploited biotin-avidin as a protease-responsive cap to encapsulate fluorescein 

molecules.55  The controlled release was achieved by addition of the protease trypsin leading 

to the hydrolysis of the attached protein avidin and the release of the entrapped fluorescein 

dyes.  Recently, Bernardos et al. developed a lactose-capped mesoporous silica support with 

RhB dye encapsulated and capped by a network of lactose linked by hydrogen bonding 

interactions.54  The presence of β-D-galactosidase caused the hydrolysis of glycosidic bond 

in the anchored lactose leaving only a glucose derivative on the surface.  This decrease in the 

size of the capping agent induced the release of the entrapped dye.  In addition, β-amylase 
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and lipase have also been employed as triggers in a multiresponsive controlled release 

system, as will be described later. 

Blood sugars have shown to be excellent biomolecular triggers by the Lin group in 

the development of a glucose-responsive double delivery system for sequential delivery of 

insulin and cyclic adenosine monophosphate (cAMP), as illustrated in Figure 5.19  As 

mentioned above, G-insulin was exploited to encapsulate cyclic AMP inside mesopores and 

also served as a therapeutic agent to regulate blood glucose level.  Phenylboronic acid linkers 

on the external surface of MSN could sense the glucose level and regulate the pore opening 

and closing.  A competitive binding between G-insulin and saccharides with phenylboronic 

acid resulted in the G-insulin uncapping once a higher-than-normal blood glucose level was 

encountered.  Surface zeta-potential change upon the G-insulin uncapping enhanced the 

cellular uptake of the material for efficient intracellular cAMP delivery.  The fast insulin 

release (within 30 min) is especially important for diabetic patients requiring high dosage of 

insulin after meals, and the sustained intracellular release of cAMP can induce insulin 

production from pancreas beta cells in between meals for a long term effect.  This co-

delivery system with control over the sequence of release is particular attractive for 

biomedical applications. 

Also, antigens were also exploited as biomolecule-based stimuli for triggering drug 

release from an antibody-capped mesoporous silica nanocarrier.56  Martínez-Máñez and co-

workers attached a hapten linker to the external surface of a Ru(bipy)3
2+ dye loaded 

mesoporous silica and capped the pores with a polyclonal antibody.  A selective uncapping 

of the pores with consequent release of the dye was observed by addition of sulfathiazole 
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(STZ) antigen by means of a displacement reaction.  The use of bio-controlled drug delivery 

systems is highly appealing for a wide variety of biomedical applications. 

4.2.  External stimuli-responsive controlled release 

4.2.1.  Light 

Light is very attractive as a remote control for the site-specific delivery of drugs. In 

principle, the release of entrapped molecules can be rapidly induced on exposure to light at a 

specific time and location without any change in the chemical environmental.  Suitable 

chromophores, such as azobenzene,58,63,64 spiropyran,61 and a photocleavable linker o-

nitrobenzyl ester18,57,65 have been incorporated into capped MSN systems to render them 

susceptible to light for photo-responsive controlled release. 

Recently, Kim and co-workers have reported a photoresponsive cyclodextrin-capped 

MSN by the introduction of a photocleavable o-nitrobenzyl ester linker.  On irradiation at 

350 nm this system was able to release preloaded calcein.57  At the same time, a 

photoresponsive Au NP-capped MSN was reported by Lin et al, as shown in Figure 6.18  The 

gold nanoparticles were functionalized with the photocleavable linker thioundecyl-

tetraethyleneglycoestero-nitrobenzylethyldimethyl ammonium bromide (TUNA), and were 

incorporated onto the MSN surface by means of electrostatic interaction.  On irradiation with 

UV light, TUNA is converted to the negatively-charged thioundecyltetraethyleneglycol- 

carboxylate (TUEC), leading to the dissociation of the Au NPs from the MSN surface owing 

to charge repulsion, with the consequent release of the cargo from the mesopores.  This 

system was then loaded with the anticancer drug paclitaxel and administered to fibroblast and 

liver cells.  The drug loaded MSN were readily endocytosed by the cells without inducing 

any cytotoxicity, indicative of “zero premature release”.  On irradiation under biocompatible 
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conditions, the preloaded drugs were released leading to significant cell death.  An 

alternative approach by Ferris et al. took advantage of the difference between the binding 

affinity of β-CD with the cis and trans isomers of azobenzene to control the release of cargo 

molecules from MSN.58  Irradiation of azobenzene stalks with 351 nm light induced the 

isomerization from the trans to the cis isomer, resulting in the β-CD rings dethreading from 

the stalks and releasing a previously loaded cargo. 

 

Figure 6. Schematic representation of a photoresponsive gold nanoparticle-capped MSNs. 
Upon UV irradiation, the photolabile linker on the Au NPs was cleaved, changing the surface 
charge property (zeta-potential) of these gold nanoparticles from positive to negative.  The 
charge repulsion between the Au NPs and MSN would then uncap the mesopores and 
allowed the release of guest molecules. 
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4.2.2.  Other external stimuli 

Ultrasound can also serve as a stimulus to trigger the release of drugs and to achieve 

the targeted delivery by local sonication.  An ultrasound-responsive MSN system was 

recently developed by Kwon and Lee by means of amide bond coupling of a carboxy 

substituted ferrocene complex and an aminopropyl functionalized MSN.59  They 

demonstrated that the complex could be cleaved on ultrasound irradiation, consequently 

opening the pores of MSN. 

Redox-responsive drug carriers may also find applications in the externally controlled 

release of drugs by applying electric current.  For example, Khashab et al. used the inclusion 

complex between β-CD and ferrocene to encapsulate Rhodamine B.60  By applying a voltage 

(+1 V) to the solution, ferrocene threads were oxidized to the positively charged ferrocenium 

ions, resulting in the dethreading of the β-CD macrocycles and release their cargo. 

4.3.  Double stimuli-responsive controlled release 

Dual-controlled or multiresponsive controlled release systems are able to use two or 

more stimuli either in an independent or in a synergistic fashion, which opens the possibility 

for developing more complex controlled release behaviors. 

The first dual-controlled system was reported by Martínez-Máñez and co-workers 

based on the use of a spiropyran photochrome.  The compound they used can be reversibly 

transformed from a neutral spiropyran structure into a positively charged merocyanine by 

irradiation with UV light.  The merocyanine form is stable when kept in the dark but converts 

into the spiropyran on irradiation with visible light or by heating.61  The researchers anchored 

the positive merocyanine moieties to the pore entrance of mesoporous silica and added 

carboxylate-terminated G1.5 PAMAM to block the pores via electrostatic interaction.  Two 
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responses were established for this system: photo-responsiveness, achieved through 

merocyanine transformation to the neutral spiropyran form by irradiation with visible light; 

and pH-responsiveness by decreasing the pH to neutralize the carboxylate groups of the 

dendrimer.  Both stimuli proved to be capable of disrupting the electrostatic interaction 

between the negatively charged dendrimer and the positively charged merocyanine-

functionalized surface, leading to the release of preloaded dye molecules.  The same authors 

demonstrated recently a pH and photoresponsive Au NP-capped mesoporous silica 

material.62  The interaction between boronic acid functionalized Au NP and saccharide-

derivatized mesoporous silica surface could be reversibly regulated by pH due to the 

formation of boronic esters.  The laser-induced plasmonic heating properties of Au NP 

account for the photoresponsiveness of this system. 

Another pH and photo-responsive controlled release system based on the combination 

of pH-responsive nanovalves and light-responsive nanoimpellers was reported recently by 

Angelos et al.63  They demonstrated that the release of the encapsulated molecules requires 

activation of both stimuli, acting as an AND logic gate.  Feng and co-workers published a 

multiresponsive supramolecular capped mesoporous silica system by grafting β-CD-bearing 

polymer on the surface of mesoporous silica and cross-linking by the addition of disulfide-

groups to form a polymeric network that blocked the pores.64  They demonstrated the release 

of preloaded calcein dye on UV irradiation, on addition of α-CD and on the introduction of 

disulfide reducing agents such as DTT, causing the isomeric transformation of azobenzene 

groups, displacement of β-CD by α-CD, and cleavage of disulfide bond between β-CD and 

polymer main chains, respectively.  In addition, an enzyme- and photoresponsive 

cyclodextrin-capped MSN was established by Kim and co-workers.65  The CD was anchored 
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on the MSN surface through an o-nitrobenzyl ester containing stalk, which could be ruptured 

by UV irradiation or hydrolyzed by lipase.  Besides, the CD caps could also be degraded by 

α-amylase, allowing enzyme- and photoresponsive controlled release of guest molecules. 

 

5.  Conclusion 

The development of several capped MSN systems containing stimuli-responsive 

linkers has shown promising properties for the intracellular delivery of drugs and nucleic 

acids.  Capped MSN-based controlled release systems are continuously evolving, giving rise 

to newer, more sophisticated multifunctional devices that are gradually approaching a state at 

which their biomedical application is imminent.  It is particularly encouraging to witness the 

fast expansion of capping agents and controlled release mechanisms introduced to MSN drug 

carriers, which now includes the use of bioactive molecules (insulin, antibody and biotin-

avidin) as capping agents and biomolecules of pharmaceutical interest (blood sugar, antigens, 

and enzymes) as triggers.  It is also remarkable to observe that one or more types of stimuli, 

drugs or other functionality have been integrated into single MSN carriers to achieve highly 

specialized delivery tasks.  The recent studies on the biocompatibility of these materials both 

in vitro and in vivo also lead us to believe that these stimuli-responsive capped MSN 

materials will find a wide variety of applications in the field of cell targeted and organ 

specific drug and nucleic acids delivery. 

 

6.  Expert opinion 

Major efforts have been put forth to create increasingly sophisticated stimuli-

responsive MSN materials that release one or more therapeutics with ever more control.  
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Significant challenges remain, however, since the controlled release properties of many of 

the existing stimuli-responsive capped MSN systems are yet to be tested with living cells or 

tissues, and most of them have not been tested in organisms.  Furthermore, some systems 

have minimal potential to succeed as vehicles for therapeutics unless significant 

improvements are performed to increase their response to real biological conditions.  For 

example, some of the reported pH-responsive capped MSNs require relatively strong acidic 

environments (pH < 5) for pore opening and drug release, which is not compatible for in 

vitro or in vivo drug delivery.  Although there is now a large number of release mechanisms 

available, the field remains open for the discovery of even more internal and external stimuli 

to expand the diversity of triggers for release by capped MSN.  This progress will certainly 

provide even higher degrees of specificity and control in drug delivery by capped MSN.  It is 

worthwhile to highlight that biomolecules with advantageous biocompatibility and selectivity 

properties have been actively investigated both as triggers and as capping agents in the recent 

years.  Still, reports on biomolecular caps are rare throughout the literature.  More work is 

necessary to enlarge this promising area of the field.  

The introduction of switchable properties to these stimuli-responsive capped MSN is 

another subject for future development.  Many of the established systems release drugs on 

uncapping irreversibly, which limits their applications.  Besides using capping agents that 

can be reversibly controlled, switches could also be created by using guest molecules that 

interact with the capping agents or other sensing moieties once released, providing a closed 

feedback loop capable to self-regulating the amount and rate of the release.  Introducing such 

a reversible control to these materials will lead to active smart drug delivery devices.  
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It is also of particular interest to develop new biocompatible, capped MSN systems 

for intracellular delivery of bioactive molecules to reduce or enhance certain cellular 

activities.  Intracellular delivery of cyclic AMP to stimulate insulin production19 and the 

release of gene expression promoter β-estradiol inside cells for DNA activation36 are 

examples of such a goal.  Although a great number of anticancer drugs and imaging dyes 

have been loaded and released, the demonstration of controlled release of biogenic 

molecules, such as genes, enzymes and proteins, and other molecules of pharmaceutical 

interest are still scarce.  In the future, it will be highly desirable to design a drug carrier that 

could be efficiently internalized by specific cells and participate in a variety of biochemical 

or catalytic reactions inside of cells.  Much work still lies ahead in developing such smart and 

biocompatible, capped MSN devices.  

Despite recent encouraging progress in improving the biocompatibility of these 

materials, most of today’s materials are still investigated outside biological systems.  In other 

words, what sets today’s synthetic materials apart from in vivo biomedical applications of 

tomorrow are the lack of proof on biocompatibility, cellular uptake and intracellular 

controlled release properties of these capped MSN materials.  Further work is required in 

order to fully understand how these systems function both in vitro and in vivo.  As more 

biocompatibility and drug delivery data both in vitro and in vivo become available, it is 

envisaged that these multifunctional stimuli-responsive capped MSN systems will be playing 

a key role in clinical and other biomedical and biotechnological applications.   
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CHAPTER 3.  MESOPOROUS SILICA NANOPARTICLE-

BASED DOUBLE DRUG DELIVERY SYSTEM FOR 

GLUCOSE-RESPONSIVE CONTROLLED RELEASE OF 

INSULIN AND CYCLIC AMP  

A paper published in Journal of American Chemical Society, 2009, 131, 8398-8400. 

Yannan Zhao, Brian G. Trewyn, Igor I. Slowing, and Victor S.-Y. Lin 

 

Abstract 

A boronic acid-functionalized mesoporous silica nanoparticle-based drug delivery 

system (BA-MSN) was synthesized for glucose-responsive controlled release of both insulin 

and cyclic adenosine monophosphate (cAMP).  Fluorescein isothiocyanate-labeled, gluconic 

acid-modified insulin (FITC-G-Ins) proteins are immobilized on the exterior surface of BA-

MSN and also serve as caps to encapsulate cAMP molecules inside the mesopores of BA-

MSN.  The release of both G-Ins and cAMP was triggered by the introduction of saccharides.  

The selectivity of FITC-G-Ins release towards a series of carbohydrate triggers was 

determined to be fructose > glucose > other saccharides.  The unique feature of this double 

release system is that the decrease of FITC-G-Ins release with cycles could be compensated 

for by the release of cyclic AMP (cAMP) from mesopores of MSN that is regulated by the 

gatekeeper effect of FITC-G-Ins.  In vitro controlled release of cAMP was studied at two pH 

conditions (pH 7.4 and 8.5).  Furthermore, the cytotoxicity of cAMP-loaded G-Ins-MSN with 

four different cell lines was investigated by cell viability and proliferation studies.  The 

cellular uptake properties of cAMP-loaded FITC-BA-MSN with and without G-Ins capping 
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were investigated by flow cytometry and fluorescence confocal microscopy.  We envision 

that this glucose-responsive MSN-based double release system could lead to a new 

generation of self-regulated insulin releasing devices.  

 

ARTICLE 

Stimuli-responsive controlled release systems have attracted much attention for their 

potential applications in the area of drug and gene delivery.1-3  In particular, surface-

functionalized, end-capped mesoporous silica nanoparticle (MSN) materials have been 

demonstrated as efficient stimuli-responsive controlled-release systems having the 

advantageous “zero premature release” property.  The biocompatibility of MSN both in vitro 

and in vivo has been demonstrated by several recent studies.4-7  Furthermore, the literature 

reports on the biodistribution and circulation properties of MSN administrated in animals by 

intravenous injection have highlighted the promising potential of these multifunctional 

nanoparticles for in vivo biomedical application and organ-specific delivery of therapeutics.  

In contrast to nonporous nanoparticles, MSN offers both interior pore and exterior 

particle surfaces for loading different guest molecules.  This is particularly useful for 

controlling the sequence of release for different cargos, which is crucial for the efficacy of 

many codelivery applications.  These codelivery systems with control over the sequence of 

release could play a key role in overcoming several current challenges in therapy.  For 

example, conventional glucose-responsive insulin delivery systems suffer from the decrease 

of insulin release with repeated cycles.8,9  This problem could be overcome if the secretion of 

insulin from live cells could also be induced by sequential delivery of cyclic adenosine 

monophosphate (cAMP), which activates Ca2+ channels of pancreas beta cells and hence 
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stimulate insulin secretion.10,11  However, due to the poor membrane permeability of cAMP, 

many attempts have been made to develop cAMP analogues12 with good membrane 

permeability to study the insulin secretion mechanism.  Unfortunately, to the best of our 

knowledge, no report of intracellular cAMP delivery by any drug carriers to control insulin 

production has appeared in the literature.  

Herein, we report on the synthesis of a glucose-responsive MSN-based double 

delivery system for both insulin and cAMP with precise control over the sequence of release.  

As depicted in Figure 1a, gluconic acid-modified insulin (G-Ins)8 proteins are immobilized 

on the exterior surface of MSN and also serve as caps to encapsulate cAMP molecules inside 

the mesopores of MSN.  The release of both G-Ins and cAMP from MSN can be triggered by 

the introduction of saccharides, such as glucose.  Also, we have demonstrated that the 

uncapped MSN could be efficiently endocytosed by live mammalian cells, leading to 

effective intracellular release of the cell-membrane-impermeable cAMP. 

We first synthesized an aminopropyl-functionalized (1.6 mmol g-1) mesoporous silica 

nanosphere material (AP-MSN) with an average particle diameter of 120 nm and MCM-41-

type channel-like mesoporous structure (BJH pore diameter = 2.3 nm) via a method that we 

previously reported.13  The particle size is small enough (≤ 200 nm) to evade rapid 

sequestration by phagocytotic cells of the spleen and to allow long blood circulation.14  As 

described in the Supporting Information (SI), 4-carboxyphenylboronic acid (0.15 g), N-

hydroxysuccinimide (0.10 g) and 1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide hydro-

chloride (0.2 g) were introduced to AP-MSN (400 mg) in DMSO (20 mL) to yield the 

boronic acid-functionalized (0.5 mmol g-1) BA-MSN material (Figure 1b).  The presence of 

both aminopropyl and phenylboronic acid groups stabilizes the formation of borates with 1,2 
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or 1,3 diols (Figure 1a).  A fluorescein isothiocyanate (FITC)-labeled G-insulin (FITC-G-

Insulin) was prepared according to a literature procedure.8  The bioactivity of G-Ins was 

demonstrated to be similar to that of unmodified insulin.8  The mesopores of BA-MSN (100 

mg) were loaded with cAMP (1 mM) in PBS buffer (10 mL, pH 7.4) and then capped with 

the FITC-G-Ins (200 mg) through reversible covalent bonding between phenylboronic acid 

and the vicinal diols of FITC-G-Ins, giving rise to the desired FITC-G-Ins-MSN material 

(Figure 1c).  The loadings of cAMP and FITC-G-Ins were determined to be 27 and 64 µmol 

g-1 by HPLC15 and fluorescence emission spectroscopy, respectively.  As detailed in the SI, 

the structures and surface properties of BA-MSN and FITC-G-Ins-MSN were characterized 

by powder X-ray diffraction (XRD), N2 surface analysis, ζ potential measurement, and 

transmission electron microscopy.  

 

Figure 1. (a) Schematic representation of glucose-responsive MSN-based delivery system 
for the controlled release of bioactive G-Ins and cyclic AMP (cAMP).  Transmission electron 
micrographs of (b) boronic acid-functionalized MSN and (c) FITC-G-Ins-capped MSN. 

(a) 

(c) 

(a) 
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As demonstrated in literature,16 phenylboronic acid forms much more stable cyclic 

esters with the adjacent diols of saccharides than with acyclic diols.  This means that the 

linkage between FITC-G-Ins and BA-MSN could be cleaved by introducing various 

saccharides.  Therefore, it was expected that the release of FITC-G-Ins would be sensitive to 

the chemical structures and concentrations of different carbohydrate triggers in forming 

stable cyclic boronic esters with BA-MSN.  Among different saccharide triggers, the release 

of FITC-G-Ins indeed showed a strong preference for fructose, followed by glucose, as 

shown in Figure 2a.  The observed high selectivity for fructose is consistent with other 

reported monoboronic acid-based sensors for saccharide recognition.17  It is known that 

saccharides can interconvert between their pyranose and furanose isomeric forms, and 

phenylboronic acid has a strong preference for binding with the hydroxyls of saccharides in 

their furanose form.  The high selectivity towards fructose could be explained by its high 

percentage of furanose form in water (25% for fructose vs. 0.14% for glucose).18  

 

Figure 2. (a) Dependence of FITC-G-Ins release from FITC-G-Ins-MSN (2 mg mL-1 in PBS, 
pH 7.4) on the concentration of saccharide triggers.  (b) The pH titration of insulin release 
from FITC-G-Ins-MSN (2 mg mL-1 in PBS) triggered by 50 mM glucose (solid line) and 50 
mM fructose (dashed line). 
 

(a) 

 

(b) 

 



 

	
  

45	
  

For monoboronic acids in water with 1:1 saccharide/boronic acid complexation, high 

selectivity for fructose and low selectivity for glucose were observed, and the difference was 

attributed to the relative percentage of the furanose forms of these carbohydrates.18  

Interestingly, our system was highly responsive toward fructose and glucose in comparison 

with other saccharides (Figure 2a).  This could be attributed to the heterogeneous spacing of 

boronic acid groups, which leads to the coexistence of 1:1 and 1:2 complexation, where the 

1:2 complexation is widely used in the design of diboronic acid systems for selective glucose 

sensing.19  In contrast, disaccharides (lactose and maltose) were not able to adopt a furanose 

form and hence could not serve as effective triggers for pore uncapping.  While a stronger 

preference for fructose than for glucose was observed, the FITC-G-Ins-MSN system is still 

suitable for glucose-responsive insulin release due to the much lower level of blood fructose 

(≤ 0.1 mM) than that of glucose (≥ 10 mM) in diabetic patients. 

The release of FITC-G-Ins triggered by all saccharides was found to be complete 

within 30 min, which is within the time frame of normal insulin secretion.  The complexation 

of fructose and glucose with phenylboronic acid and the corresponding release of FITC-G-

Ins exhibited a high pH dependency.  As shown in Figure 2b, the release of FITC-G-Ins 

triggered by 50 mM fructose reached 85% of maximum release at pH 7.4.  In contrast, 

significant release of FITC-G-Ins was only observed at pH values above 8 in the case of 

glucose.  This is likely due to the fact that the formation of tetrahedral borate intermediate 

requires a pH higher than the pKa of boronic acid.  The observed pH dependency in our 

material, which is indicative of the controlled release mechanism, is consistent with those of 

other literature-reported insulin delivery systems.20  

To further examine the applicability of this system, FITC-G-Ins released by a 



 

	
  

46	
  

stepwise treatment of glucose at two diabetic levels (50 and 100 mM) was monitored (Figure 

S6 in the SI).  A typical decrease in insulin release after the second cycle was observed.  

However, this problem of decreasing insulin level could be overcome by delivering the cell-

membrane-impermeable cAMP into the cytosol to stimulate insulin secretion from pancreas 

beta cells.  This double-release system sets up a new model for self-regulated insulin-

releasing devices. 

The glucose-triggered release of cAMP by FITC-G-Ins uncapping was determined by 

HPLC15 at pH 7.4 and 8.5, as shown in Figure 3.  In PBS (pH 7.4), the cAMP-loaded FITC-

G-Ins-MSN exhibited less than 10 % leaching in the absence of glucose trigger, suggesting a 

good capping efficiency of FITC-G-Ins.  The rate of cAMP release triggered by 50 mM 

glucose at pH 7.4 and 8.5 showed similar diffusion-controlled kinetic profiles.  Specifically, 

~ 80% of total release was obtained within 20 h.  Furthermore, 55 and 67% of the total 

loaded cAMP (27 µmol g-1) were released after 30 h at pH 7.4 and 8.5, respectively (Figure 

3a).  As shown in Figure 3b, the release of cAMP strongly depends on the concentration of 

glucose.  A significant cAMP release at pH 7.4 was observed when the concentration of 

glucose trigger was above 100 mM, whereas 50 mM glucose triggered almost 60% of 

maximum release at pH 8.5.  This pH dependency of cAMP release is consistent with that of 

FITC-G-Ins release from MSN. 

To correlate these in vitro results with the physiological concentrations for potential 

in vivo applications, the therapeutic dosage of this material was estimated.  Between meals, 

insulin level typically rises from a fasting level of 20-30 pM to a 30 min-maximum of 250-

300 pM depending upon the amount and quality of carbohydrates consumed, while the 

diabetic insulin level remains at 20-30 pM or below.  It has been reported in literature that at  
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Figure 3. Controlled release of cAMP from FITC-G-Ins-MSN (2 mg mL-1 in PBS) (a) 
triggered by 50 mM glucose at pH 7.4 (●) and pH 8.5 (▲), with control data at pH 7.4 in 
absence of glucose (■), and (b) triggered by different concentrations of glucose at pH 7.4 
(solid line) and 8.5 (dashed line) measured 48 h after glucose treatment. 

 

least 250-300 pM of insulin is needed to decrease the diabetic blood glucose concentration to 

the normal level.21  Our results indicate that 20 mM glucose indeed induced the release of 2 

µM G-Ins from 2 mg mL-1 of our material (Figure 2a).  Delivery of 250-300 pM of G-Ins 

would require only 0.25-0.3 µg mL-1 MSN material, which is 4 orders of magnitude lower in 

concentration than what we have demonstrated above.  As reported previously, the MSN 

dosage has minimal effect on viability and proliferation of mammalian cells at concentrations 

below 100 µg mL-1 after 6 days.22  Also, the maximum concentration of cAMP released from 

2 mg mL-1 of the G-Ins-MSN material was 30 µg mL-1 (Figure 3b).  On the basis of these 

results, we envision that the application of 0.25-0.30 µg mL-1 G-Ins-MSN in vivo could 

sufficiently deliver both G-Ins and cAMP for blood glucose regulation and insulin secretion, 

respectively, and would not pose any acute toxic effect. 

To examine the cytotoxicity of the cAMP-loaded G-Ins-MSN material, cell viability 

and proliferation profiles of four different cell lines [rat pancreatic islet tumor (RIN-5F), 

mouse liver, skin fibroblast, and human cervical cancer (HeLa) cells] were evaluated by 

(b) 

 

(a) 
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Guava ViaCount cytometry assay after 24 h inoculation with the material.  Good cell 

viability (> 90%) and proliferation (> 80%) were observed for all cell lines containing 5 or 

20 µg mL-1 G-Ins-MSN.  These results further indicate that this MSN-based double delivery 

system is biocompatible.  

The cellular uptake properties of the cAMP-loaded BA-MSN with and without G-Ins 

capping were investigated with RIN-5F cells.  As detailed in the SI, BA-MSN was labeled 

with FITC (FITC-BA-MSN) for this study prior to cAMP loading and G-Ins capping.  The 

endocytosis efficiency was quantified by flow cytometry after 1 h incubation with 10 µg mL-1 

of the materials (Figure S8).  Interestingly, the cAMP-loaded FITC-BA-MSN without G-Ins 

capping showed a 2-fold higher endocytosis efficiency than that of the G-Ins-capped 

material.  The result could be attributed to the difference in their surface charge properties: 

the ζ potentials were -28.3 mV for the uncapped material and -44.5 mV for the G-Ins-capped 

version.13  This difference between the endocytosis efficiencies of the capped and uncapped 

materials implies that the G-Ins-MSN could circulate in regulatory system before the 

glucose-induced G-Ins release, and the enhanced cellular uptake of cAMP-loaded BA-MSN 

after the pore uncapping would allow efficient intracellular cAMP delivery.  

To quantify the degree of intracellular release of cAMP from our system, the cAMP-

loaded BA-MSN was allowed to be internalized by RIN-5F cells.  After 6 hour of incubation, 

the total cellular concentration of cAMP was measured using a Millipore cAMP HTS 

immunoassay (see SI).  The result was compared with that of RIN-5F cells introduced to free 

solution cAMP.  As shown in Figure 4a, the total cellular concentration of cAMP indeed 

increased proportional to the dosage of cAMP-loaded BA-MSN.  In contrast, no significant 

elevation of the cellular concentration of cAMP was observed in the case of free solution 
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cAMP even at the high dosage of 20 µg mL-1, which is consistent with the poor cell-

membrane permeability of free solution cAMP. 

 

Figure 4. (a) Intracellular cAMP concentration of rat pancreatic RIN-5F cells treated with 
the cAMP-loaded BA-MSN (solid line) and with free-solution cAMP (dashed line), 
measured after 6 h of introduction.  (b) Fluorescence confocal micrograph of RIN-5F cells 
incubated with 20 µg mL-1 of Fluo-cAMP-loaded BA-MSN (green) for 6 h.  Cell nuclei were 
stained with DAPI (blue).  (c) The corresponding differential interference contrast (DIC) 
micrographs.  (d) Fluorescence confocal and DIC merged image.  Enlarged individual and 
merged images are shown in Figure S9 in the SI. 
 

To visualize intracellular delivery of cAMP, a membrane impermeable, fluorescence-

labeled cAMP (8-Fluo-cAMP)23 was loaded into the BA-MSN.  Fluo-cAMP-loaded BA-

MSN (20 µg mL-1) was incubated with RIN-5F cells for 6 h.  The fluorescence confocal 

micrographs (Figure 4b-d) clearly showed that Fluo-cAMP-loaded BA-MSN was indeed 

internalized by live RIN-5F cells.  Green fluorescence was observed for both Fluo-cAMP-

loaded BA-MSN particles and the free Fluo-cAMP molecules released from the MSN 

intracellularly. 

10 µm 

 

10 µm 

10 µm 

(b) (a) 

(d) (c) 
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In conclusion, we have successfully demonstrated that the phenylboronic acid-

functionalized MSN can serve as an efficient codelivery system for saccharide-responsive 

controlled release of insulin and cAMP.  The good biocompatibility, cellular uptake 

properties, and efficient intracellular release of cAMP set up the basis for future in vivo 

controlled-release biomedical applications.  
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Appendix: Supporting Information 

 

1.  Experimental 

1.1.  Synthesis of AP-MSN 

N-Cetyltrimethylammonium bromide (CTAB, 1.00 g, 2.74 mmol) was dissolved in 

480 mL of nanopure water.  Sodium hydroxide aqueous solution (2.00 M, 3.50 mL) was 

introduced to the CTAB solution and the temperature of the mixture was adjusted to 353 K. 

Tetraethoxysilane (TEOS, 5.00 mL, 22.4 mmol) was added dropwise to the surfactant 

solution under vigorous stirring.  The mixture was allowed to react for 2 h to give rise to a 

white precipitate.  This solid crude product was filtered, washed with nanopure water and 

methanol, and dried under high vacuum to yield the as-synthesized MSN.  To remove the 

surfactant template (CTAB), 1.50 g of the as-synthesized MSN was refluxed for 6 h in a 

methanolic solution of 1.50 mL HCl (37.2%) in 150 mL methanol.  The resulting material 

was filtered and extensively washed with nanopure water and methanol.  The surfactant-free 

MSN material was placed under high vacuum with heating at 333 K to remove the remaining 

solvent from the mesopores.  MSN (1.00 g) was refluxed for 20 h in 80.0 mL of anhydrous 

toluene with 1.00 mL (5.67 mmol) of 3-aminopropyltrimethoxysilane to yield the 3-

aminopropyl-functionalized MSN (AP-MSN) material.  The surface amine groups were 

quantified at 1.6 mmol/g by ninhydrin test.1 

1.2.  Synthesis of BA-MSN 

The purified AP-MSN (400 mg) was dispersed in 20 mL dimethyl sulfoxide (DMSO).  

0.15 g (0.90 mmol) 4-carboxyphenylboronic acid (CBA) was reacted with 0.10 g (0.87 mmol) 

N-hydroxysuccinimide (NHS) and 0.20 g (1.04 mmol) 1-ethyl-3-(3-dimethylaminopropyl) 
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carbodiimide hydrochloride (EDC) in 5.0 mL DMSO, stirring at room temperature for 15 

min before adding to the AP-MSN suspension.  The mixture was stirred at room temperature 

for another 24 h, followed by filtration and washing with DMSO, water and methanol.  The 

remaining surface amine groups were quantified at 1.1 mmol/g by ninhydrin test,1 and 

surface boronic acid groups were calculated to be around 0.5 mmol/g by subtracting the 

amount of remaining surface amine groups from that on AP-MSN surface. 

1.3.  Synthesis of FITC-G-Ins 

Gluconic acid modified insulin (G-Ins) was prepared according to the reported 

procedure,2 and was further labeled with FITC for in vitro controlled release study.  G-Ins 

(200 mg) was dissolved in 50 mL sodium carbonate buffer (0.1 M, pH 9), and 2.5 mL FITC 

in DMSO (1 mg/mL) was added in 5 µL aliquots while gently stirring the G-ins solution in 

dark.  The reaction was stirred for another 2 h at room temperature before adding NH4Cl (2.5 

mL, 1 M) to quench excess FITC.  After stirring for another 1 h, the solution was dialyzed in 

phosphate-buffered saline (PBS) (Spectra/Por 3, MWCO = 3500, Spectrum) and freeze dried 

to yield FITC labeled G-Ins (FITC-G-Ins).  The ratio of FITC to G-ins was estimated at 1.3 

by measuring the absorbance at 495 nm and 280 nm. 

1.4.  Synthesis of cAMP loaded FITC-G-Ins-MSN 

The purified BA-MSN (100.0 mg) was stirred in a solution of cAMP (1 mM) in PBS 

solution (10 mL, 154 mM, pH 7.4) for 24 h in dark.  Then, FITC-G-Ins (200 mg) was added 

to the suspension.  The mixture was stirred in dark for another 24 h, following by filtration 

and washing extensively with PBS to remove physisorbed, uncapped cAMP and uncoated 

FITC-G-Ins from the exterior surface of the material.  The resulting precipitate was isolated 

and dried under high vacuum.  The loading of cAMP (27 µmol/g) and FITC-G-Ins (64 
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µmol/g) was calculated by subtracting the amount of cAMP/FITC-G-insulin remaining in the 

phosphate buffer and combined washings from the amount of cAMP/insulin initially added to 

the reaction. 

1.5.  Saccharides triggered G-Ins and cAMP release study 

Cyclic AMP loaded FITC-G-Ins-MSN (6.00 mg) was dispersed in 3.00 mL of PBS 

with different concentrations of saccharides triggers.  Aliquots (1.5 mL) were taken after 2 

days stirring in dark at room temperature, followed by centrifuge (14000 rpm, 20 min).  The 

release of FITC-G-Ins was determined by fluorescence emission spectroscopy (exc. at 488 

nm, em. at 515 nm).  The release of cAMP was monitored by HPLC (Hitachi LC/3DQMS 

with a reverse phase C18 column (Vydac), 0.4 cm x 25 nm), according to the literature 

reported method.3  For the release kinetics study, cAMP loaded FITC-G-Ins-MSN (30.00 mg) 

was dispersed in 15.00 mL of PBS with 50 mM glucose.  Aliquots (1.2 mL) were taken 

periodically from the suspension, followed by centrifuge (14000 rpm, 20 min), and the 

release kinetics of FITC-G-Ins and cAMP were monitored by fluorescence emission 

spectroscopy and HPLC, respectively. 

1.6.  G-Ins release study by stepwise glucose treatment 

Cyclic AMP loaded FITC-G-Ins-MSN (20.00 mg) was dispersed in 10.00 mL of PBS 

and treated with 50 mM/ 100 mM glucose every 50 min.  The release of FITC-G-Ins was 

monitored after 10 and 30 min glucose treatment, immediately followed by washing with 

10.00 mL fresh PBS without glucose.  The concentration of FITC-G-Ins in the washing PBS 

was recorded as the data point 40 min after treatment.  The treatment was repeated until the 

release of FITC-G-Ins was stable without any increase (Figure S6). 
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2.  Characterization 

2.1.  Powder X-Ray Diffraction 

 X-ray diffraction patterns of the MSN materials were obtained in a Scintag XDS-

2000 powder diffractometer using Cu Kα irradiation. 

 

Figure S1. Powder X-Ray Diffraction patterns of AP-MSN, BA-MSN, and cAMP loaded 
FITC-G-Ins-MSN.  Both AP-MSN and BA-MSN exhibit the typical diffraction patterns of 
MCM-41 type mesoporous silica with hexagonal symmetry.  The changes in the cAMP 
loaded FITC-G-Ins-MSN diffraction pattern might be caused by pore filling and insulin 
coating effects. 
 

Table S1. Powder X-Ray diffraction patterns 
 

Material d100 (Å) a0 (Å) dpore wall (Å) 

AP-MSN 40.9 47.2 6.3 

BA-MSN 39.7 45.8 6.1 

 
The d100 numbers represent the d-spacing corresponding to the main (100) XRD peak. The unit-

cell size (a0) is calculated from the d100 data using the formula a0 = 2 d100/31/2. The pore wall thickness  
dpore wall = a0 - WBJH.  
 

AP-MSN 

BA-MSN 

cAMP loaded FITC-G-Ins-MSN 
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2.2.  Nitrogen adsorption/desorption isotherms 

 Surface analysis of the MSN materials was performed by nitrogen sorption isotherms 

in a Micromeritics Tristar 3000 sorptometer.  The surface areas were calculated by the 

Brunauer–Emmett–Teller (BET). 

 

  

Figure S2. (a) BET nitrogen adsorption/desorption isotherms and (b) BJH pore size 
distributions of AP-MSN, BA-MSN and cAMP loaded FITC-G-Ins-MSN. 
 

Table S2. BET and BJH parameters 

Material BET surface area 
SBET (m2/g) 

BET Pore Volume 
VP (cm3/g) 

BJH Pore diameter 
WBJH (Å) 

AP-MSN 708.2 0.652 23 
BA-MSN 634.6 0.520 21 

cAMP loaded  
FITC-G-Ins-MSN 93.8   

 

2.3.  Transmission Electron Micrographs (TEM) of BA-MSN and FITC-G-Ins-MSN 

 The TEM examination was completed on a Tecnai G2 F20 electron microscope 

operated at 200 kV to examine at electron optical magnification of 64,000 to 550,000. 

 

AP-MSN 

BA-MSN 

cAMP loaded  
FITC-G-Ins-MSN 

(a) (b) 
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Figure S3. TEM micrographs of (a) BA-MSN and (b) FITC-G-Ins-MSN. 
 

2.4.  Surface charge 

 The ζ-potential the MSN materials was measured in a Malvern Nano HT Zetasizer. 

200 µg/mL suspensions of each of the materials in PBS (20 mM, pH 7.4) were prepared for 

this measurement. 

   Table S3. ζ-potential results 

Material ζ -potential (mV) 
AP-MSN + 5.86 
BA-MSN - 14.6 

cAMP loaded FITC-G-Ins-MSN - 44.8 
 

2.5.  Alizarin Red S. (ARS) assay for boronic acid groups of BA-MSN 

The stability and binding ability of boronic acid groups on BA-MSN surface was 

examined using the fluorescent reporter Alizatin Red S. (ARS), according to published 

literature procedures.4,5  The fluorescence intensities were measured with an excitation 

wavelength of 468 nm and an emission wavelength of 572 nm.  A typical set of fluorescence 

spectra, which reflect the large changes in fluorescence intensity upon addition of BA-MSN 

to and ARS solution, is shown in Figure S4.  

(a) (b) 
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(a) 

 
(b) 

 

Figure S4. Fluorescent intensity increases (Exc. λ = 468 nm, Em. λ = 572 nm) with added 
BA-MSN (0 through 2.0 mg/mL) into a solution of ARS (a) 1.0×10-5 M (b) 1.0×10-4 M, in 
PBS (pH 7.4). 
 

2.6.  Competitive binding examination of BA-MSN with Alizarin Red S. and glucose 

When glucose was added to the mixture of BA-MSN and ARS, fluorescence intensity 

decreases were observed.  Titrating glucose into an aqueous solution of 1.0×10-4 M ARS and 

0.4 mg/mL BA-MSN caused a signification drop in fluorescence intensity at glucose 

concentration over 50 mM, and a measurable change down to 10 mM. 
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Figure S5. Titration of glucose into a solution of ARS (1.0×10-4 M) and BA-MSN (0.4 
mg/mL).  Fluorescence decreases (Exc. λ = 468 nm, Em. λ = 572 nm) with added glucose (0 
through 0.5 M), in PBS (pH 7.4). 
 

2.7.  FITC-G-Ins release by stepwise glucose treatment 

 

Figure S6. FITC-G-Ins release from FITC-G-Ins-MSN (2 mg mL-1 in PBS, pH 7.4) by 
stepwise treatment with 50 mM glucose (solid line) and 100 mM glucose (dashed line). 
Glucose was introduced every 50 min and removed by PBS washing 30 min post-treatment. 
 

3.  Biological studies 

Reagents and materials for biological studies 

Rat islet tumor (RIN-5F), mouse liver, skin fibroblast, HeLa cell line was obtained 

from American Tissue Culture Collection (ATCC).  Formaldehyde solution (37%, w/w) was 

purchased from Fisher.  4,6-Diamidino-2-phenylindole dihydrochloride (DAPI) and trypan 
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blue solution (0.4%, w/w) were purchased from Sigma-Aldrich.  Trypsin (1×, 0.25%) in 

0.1% EDTA-Na without calcium and magnesium was purchased from Fisher Scientific.  8-

(2-[Fluoresceinyl]aminoethylthio)-adenosine-3',5'-cyclic monophosphate (8-Fluo-cAMP) 

was purchased from Axxora, LLC. Cyclic AMP HTS Immunoassay kit was purchased from 

Millipore. 

Cell line maintenance 

Rat islet tumor (RIN-5F) cells were maintained in T75 flasks using ATCC formulated 

RPMI-1640 medium supplemented with 10% (v/v) fetal bovine serum, 100 U/mL penicillin, 

and 100 µg/mL streptomycin.  The medium was renewed every 3-4 days. Subculture was 

performed every 6-8 days at a ratio of 1:3-1:5. 

Mouse liver, skin fibroblast and HeLa cells were maintained in T75 flasks using the 

base medium DMEM (Dulbucco’s modified Eagle’s medium) supplemented with 2 mM l-

glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, and 1 mg/mL gentamycin.  To 

make the complete growth medium, 10% (v/v) fetal bovine serum is added for liver and skin 

fibroblast cells culture, and 10% (v/v) equine serum is added for HeLa cells.  Subculture was 

performed every 3-5 days for liver and skin fibroblast cell lines, and every 2-3 days for HeLa 

cells at a ratio of 1:3-1:5. 

3.1.  Cell viability and proliferation study 

To eliminate any interference caused by FITC, G-Ins was used instead of FITC-G-Ins 

for capping upon cAMP loading, and G-Ins capped BA-MSN (G-Ins-MSN) was used for 

cytotoxicity study described here. 

Rat islet tumor (RIN-5F), liver, skin fibroblast and HeLa cells were seeded in 6-well 

plates at the concentration of 1×105 cells/mL and were incubated for 48 h in standard culture 
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medium at 37 °C in 5% CO2.  After 48 h, the cells were inoculated with 5.0 µg/mL and 20.0 

µg/mL of cAMP loaded G-Ins-MSN, and grown for an additional 24 h.  As a control 

experiment, the cells were incubated with standard growth medium without cAMP loaded G-

Ins-MSN for another 24 h.  Finally, the cytotoxicity of this material with different cell lines 

was evaluated by Guava ViaCount cytometry assay (Guava Technologies, Inc.; Hayward, 

CA).  Cell viability was calculated as a percentage of viable cells 24 h post-treatment with 

cAMP loaded G-Ins-MSN compared with untreated cells.  Cell proliferation was calculated 

as a percentage of the total number of cells after G-Ins-MSN treatment out of the total 

number of untreated cells.  Figure S7 shows the results of the cell counts 24 post-treatment.  

The viability was found to be between 90 and 100%, and the proliferation to be between 80 

and 100%. 

 

Figure S7. (a) Cell viability and (b) proliferation study of cAMP loaded G-Ins-MSN with rat 
pancreatic RIN-5F (white), mouse liver (dark grey), skin fibroblast (light grey) and HeLa 
(black) cells.  The concentrations of the material used were 5 and 20 µg/mL.  
 

3.2.  Measuring the endocytosis efficiency with RIN-5F cells 

BA-MSN was labeled for this endocytosis study by reacting 200 mg of BA-MSN 

with 7.8 mg (0.1 mmol) fluorescein isothiocyanate (FITC) in 20 mL methanol at room 

(b) 

 

(a) 
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temperature for 2 h.  The resulting product was filtered and washed with methanol 

extensively to remove physisorbed FITC. cAMP loaded FITC-BA-MSN was then prepared 

by incubating 10 mg of FITC-BA-MSN with 1 mM cAMP in 2 mL PBS solution (154 mM, 

pH 7.4) at room temperature in dark for 24 h with stirring, and cAMP loaded G-Ins-FITC-

MSN was prepared by further capping with 20 mg of G-Ins in 2 mL of 1 mM cAMP PBS 

solution for another 24 h incubation, following by filtration and washing with PBS.  The zeta 

potential was determined to be -28.3 mV for the uncapped cAMP loaded FITC-BA-MSN 

material and -44.5 mV for the G-In-capped cAMP loaded G-Ins-FITC-MSN. 

The RIN-5F cells at a concentration of 1×105 cells/mL were grown in 6-well plates 

for 72 h at 37 °C in 5% CO2.  The cells were then treated with 10µg/mL of cAMP loaded 

FITC-BA-MSN and cAMP loaded G-Ins-FITC-MSN suspended in serum-free media and 

were incubated for another 1 h at 37 °C in 5% CO2.  After 1 h, the cells were washed once 

with PBS and trypsinized.  The cells were incubated in 830 mM trypan blue for 10 min to 

quench the fluorescence of any MSN nanoparticles adhered to the exterior of the cells.  The 

cellular uptake was measured by flow cytometry.  

	
  

Figure S8. Rat pancreatic RIN-5F cellular uptake of 10 µg/mL of cAMP loaded FITC-BA-
MSN (filled) and cAMP loaded G-Ins-FITC-MSN (open). 
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3.3.  Fluorescence confocal microscopy measurements 

To visually investigate the endocytosis and intracellular cAMP delivery by this material, 

fluorescence confocal microscopy measurement was employed.  A membrane impermeable 

cAMP analogue 8-Fluo-cAMP was loaded to BA-MSN for the visualization of drug delivery, 

same procedure as described above for cAMP loading.  Coverslips (22 mm2) were cleaned 

with 1.0 M HCl, nanopure water (3×), 50% ethanol, 70% ethanol, and 100% ethanol, and 

dried overnight at 60 °C.  Following cleaning, the coverslips were placed on the bottom of 

the wells of 6-well plates and covered with 3.0 mL of standard growth media.  RIN-5F cells 

(1.0×105 cells/mL) were grown for 72 h on the coverslips.  After 72 h, the cells were 

inoculated with 20.0 µg/mL of Fluo-cAMP loaded FITC-MSN, and grown for an additional 6 

h.  Afterwards, the growth media was removed, the cells were washed with PBS (2×), and the 

cells were then reincubated with a PBS solution of 3.7% formaldehyde and 57.0 mM 4,6-

Diamidino-2-phenylindole dihydrochloride (DAPI) for 30 min.  These coverslips were 

removed from the PBS solution and fixed to glass slides with liquid adhesive. 

3.4.  Quantification of intracellular cAMP delivery 

 The intracellular cAMP concentration was determined by a Millipore’s cAMP High 

Throughput Screening (HTS) Immunoassay kit according to the manufacturer’s directions.  

RIN-5F cells (1×105 cells/mL) were seeded in 48-well plates for 72 h at 37 °C in 5% CO2.  

The cells were then treated with incremental amounts (0, 1, 5, 10, 20 µg/mL) of cAMP 

loaded BA-MSN suspended in serum-free media for 6 h at 37 °C in 5% CO2.  After 6 h, 

Adherent cells were washed five times with PBS to remove extracelluar MSN particles and 

lysed for the intracellular cAMP assay or trypsinized for cell count by Guava ViaCount 

cytometry assay. The cellular cAMP levels were reported as pmoles/105 cells. 
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Figure S9. Fluorescence confocal micrographs of RIN-5F cells (a) internalized with 20 µg 
mL-1 suspension of Fluo-cAMP loaded BA-MSN (green) and (b) stained with 57.0 mM of 
DAPI (blue).  The corresponding Differential Interference Contrast (DIC) micrograph is 
displayed in image (c).  The image (a) and (b) merged micrograph and the image (a) (b) and 
(c) merged micrograph are shown in image (d) and (e), respectively. 
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CHAPTER 4.  INTERACTION OF MESOPOROUS SILICA 

NANOPARTICLES WITH HUMAN RED BLOOD CELL 

MEMBRANES: SIZE AND SURFACE EFFECTS 

A paper published in ACS Nano, 2011, 5, 1366-1375 

Yannan Zhao, Xiaoxing Sun, Guannan Zhang, Brian G. Trewyn, Igor I. Slowing, and Victor 

S.-Y. Lin 

 

ABSTRACT 

The interactions of mesoporous silica nanoparticles (MSNs) of different particle sizes 

and surface properties with human red blood cell (RBC) membranes were investigated by 

membrane filtration, flow cytometry and various microscopic techniques.  Small MCM-41-

type MSNs (~100 nm) were found to adsorb to the surface of RBCs without disturbing the 

membrane or morphology.  In contrast, adsorption of large SBA-15-type MSNs (~600 nm) to 

RBCs induced a strong local membrane deformation leading to spiculation of RBCs, 

internalization of the particles, and eventual hemolysis.  In addition, the relationship between 

the degree of MSN surface functionalization and the degree of its interaction with RBC, as 

well as the effect of RBC-MSN interaction on cellular deformability were investigated.  The 

results presented here provide a better understanding of the mechanisms of RBC-MSN 

interaction and the hemolytic activity of MSNs, and will assist in the rational design of 

hemocompatible MSNs for intravenous drug delivery and in vivo imaging. 
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1.  Introduction 

Recent advancements in particle size and morphology control of mesoporous 

materials have led to the creation of nano- and submicron-sized mesoporous silica 

nanoparticles (MSNs).1-5  The MSN materials with well-ordered cylindrical pore structures 

such as MCM-41 and SBA-15, have attracted special interest in the biomedical field.1  The 

large surface areas and pore volumes of these materials allow the efficient adsorption of a 

wide range of molecules, including small drugs,6-10 therapeutic proteins,11-13 antibiotics,14, 15 

and antibodies.16  Therefore, these materials have been proposed for use as potential vehicles 

for biomedical imaging, real-time diagnosis, and controlled delivery of multiple therapeutic 

agents.6-8, 10, 17-25   

Despite the considerable interest in the biomedical applications of MSNs, relatively 

few studies have been published on the biocompatibility of the two most common types of 

MSNs (MCM-41 and SBA-15).26-29  Asefa and co-workers reported that the cellular 

bioenergetics (cellular respiration and ATP levels) were inhibited remarkably by large SBA-

15 nanoparticles, but the inhibition was greatly reduced by smaller MCM-41 type 

nanoparticles.26  These differences in the disruption of cellular bioenergetics are believed to 

be caused by the different surface areas, number of surface silanol groups, and/or particle 

sizes of both types of material.  A recent study by Kohane and collaborators on the systemic 

effects of MCM-41 (particle size ~ 150 nm) and SBA-15 (particle size ~ 800 nm) MSNs in 

live animals revealed interesting findings regarding their biocompatibility.27  While large 

doses of mesoporous silicas administered subcutaneously to mice appear to be relatively 

harmless, the same doses given intravenously or intraperitoneally were lethal.27  A possible 
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reason for the severe systemic toxicity of MSNs when injected intravenously could be the 

interactions of the nanoparticles with blood cells.  

Our initial studies on the biocompatibility of MCM-41 type MSNs with red blood 

cells (RBCs), the dominant (99%) cell type in blood, suggested that this material was 

innocuous in comparison to the highly hemolytic amorphous silica.30  These results were later 

confirmed by Lin and Haynes, who demonstrated that the hemocompatibility of MSNs also 

depended on the size of the nanoparticles.31  These findings were mainly based on hemolysis 

assays performed by UV-Vis spectroscopy.  The lack of hemolysis, however, does not 

necessarily warrant the absence of interactions between the particles and the RBCs, which 

could lead to more subtle side effects.  Such side effects could eventually be the ones 

responsible for the enhanced systemic toxicity observed upon intravenous injection of these 

materials.27 Therefore, an in depth study of other possible biological side effects of these 

materials must be performed if they are intended to be applied as vehicles for drug delivery.   

In general, our knowledge of the biocompatibility, bioretention, and biodistribution of 

MSNs does not match with the rapid pace of research on their syntheses in numerous forms 

and structures.  To date, efforts have focused predominantly on exploiting multifunctional 

nanoparticles as intravascular drug carriers with different particle sizes ranging from a few 

tens of nanometers4,24,32 up to hundreds of nanometers,3,5 various pore diameters ranging from 

2 to 10 nm5,11,33 and assorted surface functionalities from small organic groups (e.g., 

amino,34,35 carboxyl,35 thiol,35 phosphate,19 etc) to large molecules (e.g., dendrimers,36 

polyethyleneimine (PEI),25,37 poly(ethylene glycol) (PEG),38 phospholipids,39 etc).  

Unfortunately, these endeavors are limited by a poor understanding of particle interactions 

with cells in circulation.  
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Herein, we report our investigations on the interactions of the two most common 

types of MSNs (MCM-41 and SBA-15) with RBC membranes using fluorescence and 

electron microscopies and cell biology techniques.  In addition to studying the effects of 

particle size and surface area on the hemolytic behavior of MSNs, we explored the effects 

that the chemical nature and degree of surface functionalization of the particles has on their 

interactions with RBCs.  Understanding these effects will not only offer a guide for the 

rational design of biocompatible particles, but will also provide an insight into how to control 

the circulation properties of MSNs in the bloodstream.  In fact, a prolonged circulation of 

polymeric nanoparticles has been recently demonstrated by means of their non-covalent 

attachment to the RBC membrane.40  Attachment to the RBC membrane, however, may 

affect one of its most important properties, namely its deformability (i.e. the ability of an 

erythrocyte to deform so it can flow through microcirculation).  To the best of our 

knowledge, this problem has not yet been addressed for any drug delivery system.  In this 

work, we examined the effect of RBC-MSN interactions on membrane deformability by the 

Nucleopore filtration technique,41 and established how size and surface properties can alter 

this important property.  Overall, we propose three fundamental criteria to assess the 

hemocompatibility of nanoparticles: (1) hemolytic potential, (2) propensity to induce RBC 

membrane deformation or morphological alteration, and (3) tendency to impair RBC 

deformability.  The evaluation of these conditions will enable a more adequate estimation of 

the hemocompatibility of many types of nanomaterials.  This study suggests a minimal set of 

criteria that must be met before performing in vivo studies involving the intravascular 

administration of nanoparticles. 
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2.  Results and Discussion 

2.1.  Size- and surface-dependent MSN interaction with RBC membranes 

While particle size effect of MCM-41 type MSNs has already been established with 

larger particles producing lower hemolysis on RBC,31 the question remains whether the 

typically larger SBA-15 type MSNs as hemocompatible.  A more critical issue is that the 

mechanism of how MSNs of different sizes and surface areas correlate and contribute to their 

hemocompatibility is unclear, although several biological rationales have been suggested.30,31  

To address these questions, we prepared two types of MSNs: MCM-41 and SBA-15, as 

described in the Methods section.  Scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) images showed particle sizes of 100 to 200 nm for the MCM-41-

type MSNs (referred to as s-MSN, Figure 1a,d) and ~600 nm by ~300 nm for the SBA-15-

type MSNs (referred as l-MSN, Figure 1b,e).  The hydrodynamic particle size distributions of 

the materials suspended in phosphate-buffered saline (PBS) (100 µg mL-1) were determined 

by dynamic light scattering (DLS), giving average sizes of 122 nm for s-MSN and 531 nm 

for l-MSN (Figure 1c).  XRD patterns showed that both s-MSNs and l-MSNs exhibit 2D 

hexagonal pore arrangements (Figure 1f).   

The hemolysis assay was used to evaluate the hemolytic behaviors of s-MSN and l-

MSN on human RBCs.  Human RBCs were first isolated by centrifugation and purified by 

five successive washes with sterile isotonic PBS, then diluted to 5% hematocrit with PBS 

before incubating with MSN suspensions of various concentrations.  Controls were prepared 

in the same manner as the above RBC samples except adding water (positive control) and 

PBS (negative control) instead of the MSN suspensions.  After a two-hour incubation at 

room temperature, the samples were spun down for the detection of hemoglobin released  
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Figure 1. Scanning electron (top) and transmission electron (bottom) images of (a, d) s-MSN 
and (b, e) l-MSN.  (c) Hydrodynamic size distributions of s-MSN (blue) and l-MSN (red) 
suspended in PBS (100 µg mL-1) measured by dynamic light scattering.  (f) X-ray diffraction 
patterns of s-MSN (blue) and l-MSN (red). 

 

from hemolyzed RBCs.  Surprisingly, contrary to the recently reported trend regarding size,31 

MSNs with larger particle size exhibited a higher hemolytic activity than the small particles 

(Figure 2).  The hemolytic activity of l-MSNs was first observed at 50 µg mL-1 with 5% 

hemolysis detected, while a good hemocompatibility (< 2% hemolysis) of s-MSN was 

confirmed at concentrations as high as 100 µg mL-1. While a larger particle size may be 

preferable for hemocompatible MSNs below 225 nm,31 increasing particle size of MSNs 

beyond this range will not necessarily improve the hemocompatibility as one might 

intuitively expect.  In addition to particle size, other factors such as the surface area are also 

expected to affect the hemolytic potential of MSNs. 

(a) (b) 

(d) 

(c) 

(e) 

 

(f) 
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Figure 2. Hemolysis assay for s-MSN (green lines) and l-MSN (red lines), using water as a 
positive control (blue lines) and PBS as a negative control (dashed black lines).  The 
materials were suspended at 50 (a, c) and 100 µg mL-1 (b, d).  The mixtures were centrifuged 
to detect the presence of hemoglobin in the supernatant visually (a, b) and by absorption at 
541 nm (c, d). 

 

To elucidate the mechanism of the observed difference in hemolysis and investigate 

the underlying particle size and surface effects, the interaction of MSNs with RBCs were 

visualized by SEM (Figure 3) and TEM (Figure 4).  A small proportion of s-MSNs were 

found to adsorb to the surface of RBC.  The cell membrane did not show any alteration upon 

particle binding and RBCs maintained normal biconcave shape compared to control RBCs 

(Figure 3B and Figure 4 top).  In contrast, a large proportion of l-MSNs attached to RBC 

membranes and induced a strong local membrane deformation, which frequently resulted in 

particle encapsulation by RBCs (Figure 3C and Figure 4 bottom).  The membrane wrapping 

(a) (b) 

(c) (d) 
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around l-MSNs led to an echinocytic (spiculated) shape transformation of RBCs and a 

reduction in the ratio of surface area to volume.42  This inability to maintain their normal 

surface area and control their cell volume can ultimately lead to the destruction of these 

cells,42 which explains the observed high hemolytic activity of l-MSNs.   

 

	
  

Figure 3. Scanning electron images of RBCs (5% hematocrit) incubated for 2 h at room 
temperature with (A) PBS as control, (B) 100 µg mL-1 of s-MSN and (C) 100 µg mL-1 of l-
MSN.  Images increase in magnification from left to right with features highlighted with 
white squares or arrows.  The nanoparticles attached on cell surface are distinguished by the 
particle shape and surface textural difference between the particles and RBCs.  (Additional 
high magnification images are shown in Figure S2.) 

A 

B 

C 



 

	
  

74	
  

	
  

Figure 4. Transmission electron images of RBCs (5% hematocrit) incubated for 2 h at room 
temperature with 100 µg mL-1 s-MSN (top) and l-MSN (bottom).  Images increase in 
magnification from left to right.  The presence of MSNs is confirmed by the visible pores in 
the higher magnification micrographs. 

 

Two main processes are involved in the interaction of MSN with the membrane of 

RBC: (1) binding of the silanol-rich surface of MSNs with the phosphatidyl choline-rich 

RBC membrane,30 and (2) bending of the RBC membrane to adapt to the rigid surface of 

MSNs (Scheme 1).43-47  The occurrence of the interaction depends on whether the amount of 

energy released from the binding of the MSNs with the RBC membrane (Ei) is able to 

overcome the amount of free energy required to bend the membrane and adapt to the surface 

of MSNs (Eb).  The former energy is associated with the external surface area (i.e., accessible 

silanols) of MSN,30 while the latter is proportional to the curvature or inversely proportional 

to the square of the radius (r) of the particle.43,44,47  The external surface areas of s-MSNs and 

l-MSNs, calculated from the t-plots of their N2 adsorption isotherms,48 were 81.6 and 155.4 

m2 g-1, respectively.  The relatively large external surface area of l-MSN (40% of total 
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surface area) in comparison to that of s-MSN (8% of total surface area) implies that l-MSN 

can have a larger binding energy (Ei) available for pulling the membrane to the particle 

surface.  In addition, since surface curvature decreases with particle size, the bending energy 

required to wrap the large particles (Eb) is lower than the one needed to wrap the smaller 

particles.43  This combination makes membrane wrapping and engulfment of l-MSN 

thermodynamically favorable.  On the contrary, in order for the RBC membranes to wrap 

around smaller s-MSNs, they would have to attain a larger curvature (steeper angles over 

smaller areas) than they need for wrapping around the larger particles.43  This would require 

investing a much higher Eb compared to the small amount of Ei, which thermodynamically 

prevents the membrane deformation or engulfment of s-MSN by RBC, and explains the 

lower hemolytic activity of s-MSNs.  Similar explanations on the effect of particle size on 

membrane wrapping have been reported elsewhere.43,44  Hence, the interaction of MSNs with 

RBC membranes and the hemolytic activity depends on not only particle size but on their 

external surface area as well. 

	
  

Scheme 1. A schematic illustration of the size- and surface-dependent interaction of MSN 
and RBC membrane.  MSN with radius r can be wrapped around or engulfed by RBC if the 
energy (Ei) released from RBC-MSN interaction is greater than the energy (Eb) required for 
membrane bending. 
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2.2.  Size- and surface-dependent engulfment of MSNs by RBCs 

Though the in vitro endocytosis of MSN has been systematically investigated with 

various mammalian cell lines,4,11,17,34,36,49-52 little is known about the uptake of nanoparticles by 

RBCs.  This is partly because the interactions between RBC and MSN are still poorly 

understood.  Before investigating the internalization of MSNs by RBC, it is necessary to 

establish the concentration at which the plasma membrane maintains its integrity and RBCs 

retain normal biconcave shape.  To do so, the RBCs were incubated with l-MSNs at different 

concentrations; and the hemolytic effects as well as the resulting cell morphologies were 

examined by UV-Vis spectroscopy (Figure S3 in Supporting Information) and SEM (Figure 

S4).  The hemolysis percentage of RBCs increased from 1% to 11% as the concentration of l-

MSN raised from 20 to 100 µg mL-1, and growing proportions of spiculated RBCs were 

observed with increasing concentrations of l-MSN.  As shown in Figure S4, almost 90% of 

RBCs exhibited spiculated shape with 100 µg mL-1 of l-MSN.  The proportion of spiculated 

RBCs decreased to 50% when 50 µg mL-1 of l-MSN was used.  Interestingly, only minor 

shape modifications (less than 10% spiculated cells) in RBCs were observed after incubation 

with 20 µg mL-1 of l-MSN, even if many particles were adsorbed to the membranes or 

underwent internalization (Figure S4 left).  Therefore, the cellular uptake process was 

examined at a concentration of 20 µg mL-1 of l-MSN (Figure 5).  It should be noted that the 

images in Figure 5 correspond to different cells at different stages of nanoparticle 

encapsulation.  A plausible interpretation of our observations is as follows.  The particle 

interacts with an initially flat cell membrane.  Driven by a local reduction in free energy 

(Scheme 1), the phospholipids in the immediate neighborhood of the site of contact are 

drawn to the surface of the particle, leading to membrane wrapping and eventual 
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encapsulation.  Such internalization is different from phagocytosis or endocytosis, since it 

appears to be driven by the balance of two opposing forces rather than by an active uptake of 

nutrients by the cell.  It should be stressed that even if almost no hemolysis or spiculation is 

observed at this concentration we cannot yet exclude the potential side effects of the 

internalization of l-MSN into RBC.  Nevertheless, this preliminary study on MSN 

engulfment by RBC is an important step toward establishing the plausibility of using MSNs 

as tools for the treatment of RBC related diseases or intravascular drug delivery.  We are 

currently conducting more studies to understand and control the internalization of MSNs and 

the delivery of therapeutic agents into RBCs to be published in subsequent manuscripts.  

 

Figure 5. Cellular uptake process (left to right) examined by transmission electron 
microscopy of RBCs (5% hematocrit) incubated with 20 µg mL-1 l-MSN.  Images increase in 
magnification from top to bottom, with features highlighted in white arrows.  These images 
(left to right) correspond to different cells at different stages of nanoparticle encapsulation.   

 

2.3.  Surface functionality effects on RBC-MSN interaction 
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The results from the size- and surface-dependent interactions of MSNs with RBCs 

have demonstrated a superior hemocompatibility of s-MSNs over l-MSNs.  This does not 

imply, however, that s-MSNs lack any interaction with the membranes of RBCs.  While the 

interactions of MSNs with the membranes of RBCs is known to be dependent on the 

presence of silanol groups on the surface of the particles,30,31 there is no quantitative 

information on the magnitude of this association.  Given the interest of utilizing s-MSNs for 

intravenous drug delivery it is necessary to be able to measure and control the degree of the 

abovementioned interactions and, thus, controlling the circulation of the particles in the 

bloodstream.40,53  

To study these interactions, s-MSNs were first labeled with fluorescein isothiocyanate 

(FITC), which enabled their tracking by flow cytometry and confocal fluorescence 

microscopy.  FITC-s-MSNs were then functionalized with different amounts of aminopropyl 

(AP), polyethylene glycol (PEG) and carboxyl (CA) groups, as described in the Methods 

section.  These functionalized materials are referred as APx-FITC-s-MSN, PEGx-FITC-s-

MSN and CAx-FITC-s-MSN, respectively; where the subscript x corresponds to the number 

of mmol introduced per gram of material.  The amount of functional groups (AP, PEG and 

CA) grafted on MSNs was quantified by TGA shown in Figure S5 bottom and summarized 

in Table S1.  The quantification of nanoparticle attachment to the membrane of RBCs was 

performed by flow cytometry.  Diluted suspensions of RBCs (5×106 cells mL-1) were mixed 

with equal volumes of nanoparticle suspensions to reach a final concentration of 10 µg mL-1 

of MSNs and incubated at room temperature for 2 h before flow cytometry analysis.  As 

shown in Figure 6, the functionalized nanoparticles exhibited lower affinity to RBC than 

FITC-s-MSNs, furthermore, the affinity decreased with increasing degree of functionality.  
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This trend was observed for each functionalized material, independent of the surface charge.  

In particular, AP and PEG groups (~25% of RBC bound with AP1.5-FITC-s-MSN and ~20% 

with PEG1-FITC-s-MSN) showed a significantly better ability to reduce the MSN binding 

with RBC than CA groups (~65% of RBC bound with CA1.5-FITC-s-MSN).  The inhibitory 

effect of PEG on the adsorption of MSN to RBC was not surprising, since PEGylation of 

nanoparticles is generally used to block nonspecific binding of nanoparticles to proteins.54  

On the contrary, the reduction of MSN binding to RBC due to aminopropyl group 

functionalization, was completely unexpected, since amines are well known to facilitate 

adsorption of several biomolecules to the surface of nanoparticles and facilitate many 

nanoparticle-cell interactions.34,55  The reduced binding of AP-FITC-s-MSN to RBC could be 

explained by the electrostatic interaction between amino groups on the surface of MSNs and 

surface silanols,56 which diminishes the accessibility of silanol groups to the cell membrane. 

	
  

Figure 6. Flow cytometry measurement of RBCs (5×106 cells mL-1) incubated with 10 µg 
mL-1 of (a) APx-FITC-s-MSN, (b) PEGx-FITC-s-MSN and (c) CAx-FITC-s-MSN.  
	
  

The results obtained by flow cytometry were further confirmed by examination of the 

mixtures of the derivatized MSNs with RBCs under confocal fluorescence microscopy.  For 

this purpose, RBCs were first labeled with PKH26 red fluorescent dye (Sigma) and incubated 
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with FITC labeled particles at the same conditions as in the flow cytometry experiment.  

FITC-l-MSNs, FITC-s-MSNs and CA1.5-FITC-s-MSNs (Figure 7a,b,e) were easily observed 

associated to PKH26-labeled RBCs.  Conversely, only a small proportion of AP1.5-FITC-s-

MSNs (Figure 7c) and PEG1-FITC-s-MSNs (Figure 7d) were found co-localized with 

PKH26-RBCs, while most of the particles were observed in the extracellular space.  A series 

of movies showing each one of these combinations of MSNs and RBCs were prepared from 

micrographs taken at different z-positions by changing the focal plane every 0.5 µm, these 

movies can be found in the Supporting Information.  The different affinities of each MSN for 

the RBCs were also confirmed by the different shifts of the green fluorescence intensities in 

the 2D dot plots from flow cytometry (Figure 7, bottom). 

	
  
Figure 7. Confocal fluorescence micrographs (top) and dot plots from the flow cytometry 
analyses (bottom) of PKH26 labeled RBCs (5×106 cells mL-1) incubated with 10 µg mL-1 of 
(a, f) FITC-l-MSN, (b, g) FITC-s-MSN, (c, h) AP1.5-FITC-s-MSN, (d, i) PEG1-FITC-s-MSN 
and (e, j) CA1.5-FITC-s-MSN.  The axes correspond to the intensity of red fluorescence due 
to PKH26 labeling (horizontal axis) and green fluorescence due to the attachment of FITC-
MSNs onto PKH26-RBCs (vertical axis).  The plot was gated to show PKH26 labeled RBCs 
in area Q4 and FITC-fluorescent PKH26-RBCs in area Q2.  Individual channels for the 
merged confocal images and enlarged dot plots with PKH26-RBC control are shown in 
Figure S7 and Figure S8, respectively.  
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2.4.  Effect of RBC-MSN interaction on RBC deformability 

The attachment of nanoparticles to the surface of red blood cells has been suggested 

for extending the circulation time and sustained release of therapeutic agents.40,53  Such 

attachment, however, could have an impact on the properties of the membrane affecting the 

normal function of RBCs.  Surprisingly, this potential problem has not been addressed for 

any nanoparticle-based drug carrier, to the best of our knowledge.  One of the key properties 

of RBCs (6-8 µm in diameter) is their ability to undergo deformation to traverse the 

capillaries of the microvascular system (2-3 µm in diameter).  This remarkable deformability 

of RBCs is critical for effective blood flow, and depends strongly on the flexibility of the cell 

membrane.  This is the reason why it is important to assess the effects of MSN attachment on 

the deformability of RBCs. 

To study the deformability of RBCs, we used a literature reported method consisting 

of filtering the cells through polycarbonate membranes with straight channels of 3 µm pore 

diameter (Nucleopore).41  This technique is generally accepted as a relative indication of 

RBC deformability.41,57-59  We measured the filterability of fresh human RBCs (5% 

hematocrit) previously incubated with varying concentrations (10, 20, 50 µg mL-1) of MSN 

under a constant negative pressure (-20 cm H2O).  The time it took each RBC suspension to 

flow through the membrane was recorded and the deformability index (DI) was expressed as 

the volume (mL) of red blood cells filtered per minute.  As shown in Figure 8a, the 

deformability of RBC decreased with increasing concentrations of all MSN materials.  The 

RBC deformability was severely impaired by l-MSN at concentrations as low as 10 µg mL-1.  
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This result is not surprising given the strong affinity and shape altering effects already 

described for l-MSN.  As expected, the incorporation of AP and PEG groups to the surface of 

s-MSN preserved the elasticity of RBCs better than the non-functionalized s-MSN and the 

CA-s-MSN, especially at the higher concentrations (> 20 µg mL-1).  These results correlate 

well with the observed effects on the degree of RBC-MSN interactions (Figure 8b).  These 

observations suggest that the attachment of MSNs to the surface of RBCs restrict the 

flexibility of the membrane and lead to impairment in the deformability of RBCs.  

Conversely, the attachment of functional groups to the surface of MSNs reduces the affinity 

of the particles to the membrane of RBC and allows the cells to preserve their deformability. 

 

Figure 8. (a) Deformability Index (DI) of RBCs incubated with s-MSN (blue), AP1.5-s-MSN 
(green), PEG1-s-MSN (black), CA1.5-s-MSN (purple) and l-MSN (red).  (b) Flow cytometry 
analyses of RBCs incubated with FITC-l-MSN (red), FITC-s-MSN (blue), AP1.5-FITC-s-
MSN (green), PEG1-FITC-s-MSN (black), and CA1.5-FITC-s-MSN (purple). 

 

3.  Conclusion 

In this study, we investigated the interactions between MSNs of different particle 

sizes and surface properties and RBC membranes by using fluorescence and electron 

microscopies and cell biology techniques.  We compared the size- and surface-dependent 

hemocompatibility of two types of MSN materials (MCM-41 and SBA-15) and showed, for 

(b) (a) 
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the first time, how MSNs are engulfed by RBCs.  This size- and surface-dependent process is 

the resultant of two opposing forces, namely: the attractive interaction between MSNs and 

RBCs, and the bending of the cell membrane.  These results suggest that only small MCM-41 

type MSN materials (100-200 nm) may be considered as potentially safe candidates for 

intravascular drug delivery.  It must be noted that although RBCs are the dominant cells in 

blood, the interactions of these nanoparticles with other blood cells and components60,61 

should be also evaluated to ensure the safe use of these materials for biomedical applications.  

In addition, we demonstrated that the biocompatibility of these MSN materials with RBCs 

strongly depends on their surface derivatization to minimize their interaction with red blood 

cells.  Blocking the surface silanols of the particles with organic groups reduces their 

interactions with the membranes of RBCs.  Minimizing these interactions has a dramatic 

effect on preserving the deformability of RBCs, which is necessary to ensure effective blood 

circulation.  These findings suggest that it is possible to gain control over the interactions of 

MSNs with RBC membranes in order to regulate their circulation half lives for various 

therapeutic purposes, while minimizing their toxicity by carefully choosing and tuning their 

surface functionalities.  As new MSN-based drug delivery systems burgeon from many 

international research groups, our results will provide a practical guide to size and surface 

considerations when designing MSN-based drug carriers for delivery, diagnostic, and 

therapeutic applications.   

 

4.  Methods 

Synthesis of Mesoporous Silica Nanoparticles.  s-MSN was prepared by our 

previously reported method.33  In brief, N-cetyltrimethylammonium bromide (CTAB, 1.00 g, 
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2.74 mmol) was dissolved in 480 mL nanopure water, followed by the addition of 3.5 mL 

sodium hydroxide aqueous solution (2.0 M), and the mixture was heated to 80 °C.  

Tetraethoxysilane (TEOS, 5.0 mL, 22.4 mmol) was added dropwise to the surfactant solution 

under vigorous stirring.  The reaction mixture was stirred at 80 °C for another 2 h.  The 

resulting white solid was filtered, washed thoroughly with water and methanol, and dried 

under high vacuum at 80 °C overnight.  The fluorescent labeled MSN (FITC-s-MSN) was 

synthesized by reacting fluorescein isothiocyanate (FITC, 15 mg, 38.5 µmol) with (3-

aminopropyl)trimethoxysilane (APTMS, 10 µL, 57.3 µmol) for 2 hours in dimethyl sulfoxide 

(DMSO), and adding the resulting product following the addition of TEOS in the above 

synthesis.  The unlabeled FITC was removed by soxhlet extraction with methanol.  The 

amount of FITC labeled on FITC-s-MSN was quantified to be 20-30 µmol g-1 by TGA.  The 

functionalization of s-MSN and FITC-s-MSN with aminopropyl (AP), polyethylene glycol 

(PEG) and carboxylate (CA) groups was performed by refluxing a suspension of the as-made 

material (200 mg of s-MSN or FITC-s-MSN) with APTMS, 2-[methoxy(polyethylenoxy)-

propyl]trimethoxysilane (PEG-silane) and 3-(triethoxysilyl)propylsuccinic anhydride of 

various amount (x mmol) in anhydrous toluene (50 mL) for 20 h, followed by filtration and 

washing with toluene and methanol, and dried under high vacuum overnight.  The succinic 

anhydride groups were hydrolyzed by boiling the materials in water for 6 hours and 

measured by FTIR.  The CTAB surfactant was removed by refluxing the materials in 0.37% 

HCl methanol, followed by filtration and washing with abundant methanol and dried under 

high vacuum.  The amount of functional groups (AP, PEG and CA) grafted on MSNs was 

quantified by TGA shown in Figure S5 bottom and summarized in Table S1. 
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l-MSN was prepared by a modified literature procedure.5  Pluronic P104 (courtesy of 

BASF, 7.0 g) was dissolved in a mixture of water (164 g) and HCl (109 g, 4M) and stirred at 

55 °C for 1 hour.  Tetramethyl orthosilicate (10.64 g) was quickly added into the solution at 

55 °C.  After continuous stirring for 24 hours, the reaction mixture was moved to a teflon-

lined, high-pressure autoclave for further hydrothermal treatment at 150 °C for 24 h.  The 

product was isolated by filtration, washed with copious water and methanol, and dried at 80 

°C in air.  The Pluronic P104 surfactant was removed by calcination at 550 °C for 6 hours.  

The l-MSN was fluorescently labeled (FITC-l-MSN) by reacting FITC (15 mg, 38.5 µmol) 

with APTMS (10 µL, 57.3 µmol) for 2 hours in dimethyl sulfoxide (DMSO), and adding the 

resulting product to a suspension of l-MSN (1 g) in anhydrous toluene (100 mL) for 20 h, 

followed by filtration and washing with toluene and methanol.  The unlabeled FITC was 

removed by soxhlet extraction with methanol as the solvent.  The amount of FITC labeled on 

FITC-l-MSN was quantified to be around 30 µmol g-1. 

The products were characterized by X-ray diffraction in a Rigaku Ultima IV 

diffractometer, nitrogen sorption analysis in a Micromeritics Tristar 3000 surface area and 

porosity analyzer using Brunauer-Emmett-Teller (BET) equation to calculate apparent 

surface area and pore volume and the Barret-Joyner-Halenda (BJH) method to calculate pore 

size distribution, thermogravimetric analysis (TGA) in a TGA 2950 thermogravimetric 

analyzer with a temperature ramp of 5 °C/min in air, dynamic light scattering size analyses of 

particle suspensions in a Malvern Nano HT Zetasizer, scanning electron microscopy (SEM) 

of samples coated with gold in a FEI Quanta 250 FEG microscope, and transmission electron 

microscopy (TEM) of samples supported on copper grids in a Tecnai G2 F20 microscope 
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operated at 200 kV.  FTIR spectroscopy was performed using a Nicolet Nexus 470 (Madison, 

EI), equipped with a cooled CT/A detector and an Ever-Glo source. 

Isolation and labeling of red blood cells (RBCs).  Ethylenediamine tetraacetic acid 

(EDTA)-stabilized human blood samples were freshly collected in the Occupational 

Medicine Office of Iowa State University and Ames Laboratory.  Whole blood was 

centrifuged at 1600 rpm for 5 min and the plasma, buffy coat, and top layer of cells were 

decanted.  The remaining packed RBCs were washed five times with sterile isotonic PBS.  

For labeling with PKH26 (Red fluorescent cell linker kit, Sigma, USA), 100 µL of packed 

RBCs were resuspended in 1 ml diluent C™ and mixed with 1 ml diluent C™ containing 4 

µM PKH26.  Cells were incubated for 5 min at room temperature in the dark.  The reaction 

was stopped by adding 1 mL plasma (heat inactivated for 1 hour at 65°C beforehand) for 1 

minute and centrifuged at 1600 rpm for 5 min.  The stained RBCs were washed five times 

with PBS to remove free pKH26 dye. 

Hemolysis assay.  After cell washing, 200 µL of packed RBC was diluted to 4 mL 

with PBS (5% hematocrit).  The diluted RBC suspension (0.2 mL) was then mixed with s-

MSN and l-MSN suspensions in PBS (0.8 mL) at various concentrations.  PBS and water 

(0.8 mL) were used instead of MSN suspensions as negative and positive control, 

respectively.  The mixture was gently vortexed and incubated at room temperature for 2 h, 

followed by centrifuge (1600 rpm, 5 min) and the absorbance of the supernatant at 541 nm 

was measured by UV-Visible spectrometry.  The percent hemolysis of RBCs was calculated 

using the following formula: percent hemolysis = ((sample absorbance - negative control 

absorbance)/(positive control absorbance - negative control absorbance)) × 100. 
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Scanning electron microscopy (SEM).  The diluted RBC suspension (5% 

hematocrit, 0.2 mL) was mixed with s-MSN and l-MSN suspensions in PBS (0.8 mL) at 

various concentrations, and incubated at room temperature for 2 h.  The samples were then 

fixed by adding a 1% glutaraldehyde solution dropwise over 5 min and further incubated at 

37 °C for 1.5 h, followed by post-fixation with 1% osmium tetroxide in PBS for 1.5 h.  Cells 

were dehydrated in increasing concentrations of ethanol (50%, 60% 70%, 80%, 90%, and 

100%) for 15 min each.  The cell suspensions were dropped onto glass coverslips, dried, and 

coated with Au before viewing under a FEI Quanta 250 FEG scanning electron microscope. 

Transmission Electron Microscopy (TEM).  The samples were prepared, fixed and 

dehydrated as above, and stained with 2% uranyl acetate in 70% ethanol at room temperature 

overnight.  The cells were washed three times with acetone and embedded in Epon.  The 

embedded samples were sectioned in 60 nm thick slices on a sliding ultramicrotome.  Thin 

sections supported on copper grids were examined in a Tecnai G2 F20 microscope operated 

at 200 kV. 

Flow cytometry.  After cell washing, 200 µL of RBC suspension at 5×106 cells mL-1 

were mixed with 200 µL of FITC-MSN suspensions in PBS at 20 µg mL-1, and incubated at 

room temperature for 2 h before flow cytometry analysis in a BD FACSCanto instrument.  

Confocal Fluorescence Microscopy.  200 µL of PKH26 labeled RBC suspension at 

5×106 cells mL-1 were mixed with 200 µL of FITC-MSN suspensions in PBS at 20 µg mL-1, 

and incubated at room temperature for 2 h.  An aliquot of sample was mounted between 

plastic coverslips and imaged in a Leica SP5 X confocal system. 

Deformability assay.  1.5 mL of packed RBCs were washed and diluted to 30 mL 

with PBS (5% hematocrit).  The diluted RBC suspension (1 mL) was then mixed with MSN 
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suspensions in PBS (4 mL) at various final concentrations of 10, 20 and 50 µg mL-1 with 

PBS as control.  The mixture was gently vortexed and incubated at room temperature for 2 h 

before filtering through polycarbonate membrane with straight channels of 3 µm pore 

diameter (Nucleopore, Fisher, USA) under a constant negative pressure (-20 cm H2O).  The 

time for 0.5 mL RBC suspension to pass through the membrane was recorded and the 

deformability index (DI) was calculated as the volume of red blood cells filtered per minute.  

Data were presented as mean values of triplicate experiments.  The present method and 

apparatus for RBC filterability measurement have been described in detail elsewhere.41 
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Appendix: Supporting Information 

 

 

Figure S1. Linear plot of the nitrogen sorption isotherms and pore size distributions of (a) s-
MSN and (b) l-MSN.  Surface areas of s-MSN and l-MSN were calculated to be 1051.6 ± 2.2 
m2 g-1 and 387.0 ± 1.3 m2 g-1, respectively. 
 

 

Figure S2. Scanning electron micrographs (SEM) of RBCs (5% hematocrit) incubated with 
100 µg mL-1 s-MSN (top) and l-MSN (bottom).  Images increase in magnification from left 
to right with features highlighted with white squares or arrows, indicating the location of 
particles attached on RBC membrane. 

(a) (b) 
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Figure S3. Hemolysis assay for l-MSN using water as a positive control (blue lines) and PBS 
as a negative control (dashed black lines).  The materials were suspended at 20 (green), 50 
(yellow) and 100 (red) µg mL-1.  The mixtures were centrifuged to detect the presence of 
hemoglobin (red) in the supernatant visually (a) and by absorption at 541 nm (b). 

 

 

Figure S4. Scanning electron micrographs (SEM) of RBCs (5% hematocrit) incubated with 
20 µg mL-1 (left), 50 µg mL-1(middle), and 100 µg mL-1 of l-MSN (right).  Percent of 
spiculated RBCs were observed to be < 10%, ~50% and ~90% from left to right.  Images 

(a) 

	
  

(b) 
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increase in magnification from top to bottom with features highlighted with white squares or 
arrows, indicating the location of particles attached on RBC membrane. 

 	
  

Figure S5. X-ray diffraction patterns (top) and thermogravimetric analysis (bottom) of FITC-
s-MSN, APx-FITC-s-MSN (left), PEGx-FITC-s-MSN (middle) and  CAx-FITC-s-MSN (right) 
(x: amount of organic groups introduced in mmol g-1).  
 

Table S1. Characteristics of FITC-s-MSN, APx-FITC-s-MSN, PEGx-FITC-s-MSN and CAx-
FITC-s-MSN (x: amount of organic groups introduced in mmol g-1). 
 

Materials Surface groups 
(mmol g-1) 

Zeta potential 
(mV) 

Surface area 
(m2 g-1) 

Pore size 
(nm) 

FITC-s-MSN 0.02 -27.9 1043.4 ± 4.2 3.0 
AP0.2-FITC--sMSN 0.1-0.2 -22.9 948.3 ± 7.9 2.8 
AP0.5-FITC-s-MSN 0.4-0.6 -10.9 878.7 ± 11.7 2.8 
AP1-FITC-s-MSN 0.6-0.8 +3.2 796.8 ± 1.6 2.8 
AP1.5-FITC-s-MSN 1.2-1.6 +6.87 689.0 ± 29.0 2.7 
     

FITC-s-MSN 0.03 -29.3 1036.4 ± 11.2 2.6 
PEG0.2-FITC-s-MSN 0.03-0.04 -26.1 985.6 ± 9.0 2.6 
PEG0.4-FITC-s-MSN 0.1-0.2 -22.3 839.6 ± 9.3 2.4 
PEG0.8-FITC-s-MSN 0.2-0.3 -20.7 770.8 ± 1.6 2.4 
PEG1-FITC-s-MSN 0.4-0.5 -13.1 628.9 ± 2.6 2.4 
     

FITC-s-MSN 0.03 -28.6 1107.8 ± 8.6 2.7 
CA0.2-FITC-s-MSN 0.07-0.1 -34.3 967.4 ± 2.9 2.5 
CA0.5-FITC-s-MSN 0.3-0.4 -36.1 913.6 ± 19.2 2.4 

FITC-s-MSN 

AP0.2-FITC-s-MSN 

AP0.5-FITC-sMSN 

AP1-FITC-s-MSN 

AP1.5-FITC-s-MSN 

FITC-s-MSN 

PEG 0.2-FITC-s-MSN 

PEG 0.4-FITC-s-MSN 

PEG 0.8-FITC-s-MSN 

PEG 1-FITC-s-MSN 

 

FITC-s-MSN 

CA 0.2-FITC-sMSN 

CA 0.5-FITC-sMSN 

CA 1-FITC-sMSN 

CA 1.5-FITC-sMSN 
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CA1-FITC-s-MSN 0.5-0.7 -39.2 863.0 ± 9.2 2.4 
CA1.5-FITC-s-MSN 0.7-1 -42.7 779.2 ± 5.0 2.5 

 

Figure S6. (a) X-ray diffraction (XRD) patterns, (b) linear plot of the nitrogen sorption 
isotherms and (c) thermogravimetric analysis (TGA) of s-MSN (blue), AP1.5-s-MSN (red), 
PEG1-s-MSN (black)  and CA1.5-s-MSN (green).  
 

Table S2. Characteristics of s-MSN, AP1.5-s-MSN, PEG1-s-MSN,  CA1.5-s-MSN and l-MSN. 
 
Materials Surface 

groups 
(mmol g-1) 

Zeta 
potential 

(mV) 

Surface 
area 

(m2 g-1) 

Pore size 
(nm) 

Hydrodynamic 
particle size (nm) 

s-MSN  -22.2 1051.6 ± 2.2 3.1 122 
AP1.5-s-
MSN 

1.1-1.5 +5.79 780.3 ± 9.0 2.4 142 

PEG1-s-
MSN 

0.3-0.4 -11.6 650.5 ± 2.9 2.7 122 

CA1.5-s-
MSN 

0.6-0.9 -43.1 792.9 ± 4.4 2.9 142 

l-MSN  -16.5 387.0 ± 1.3 9.0 531 
 

 

 

 

 

(a) (b) (c) 
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Figure S7. Confocal fluorescence micrographs of (A) RBCs (5×106 cells mL-1) incubated 
with 20 µg mL-1 of (B) FITC-l-MSN, (C) FITC-s-MSN, (D) AP1.5-FITC-s-MSN, (E) PEG1-
FITC-s-MSN and (F) CA1.5-FITC-s-MSN.  The channels from left to right correspond to red 
blood cells stained with PKH26 red fluorescence dye, FITC-MSNs and the merged images.   

 

Figure S8. Dot plot from the flow cytometry analysis of (a) PKH26 labled RBC incubated 
with (b) FITC-l-MSN, (c) FITC-s-MSN, (d) AP1.5-FITC-s-MSN, (e) PEG1-FITC-sMSN and 
(f) CA1.5-FITC-s-MSN.  The axes correspond to the intensity of red fluorescence due to 
PKH26 labeling (horizontal axis) and green fluorescence due to the attachment of FITC-
MSNs onto PKH26-RBCs (vertical axis).  The plot was gated to show PKH26 labeled RBCs 
in area Q4 and FITC-fluorescent PKH26-RBCs in area Q2.  
 

(a) (b) (c) 

(d) (e) (f) 
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CHAPTER 5.  BIOCOMPATIBLE MESOPOROUS SILICA 

NANOPARTICLES WITH DIFFERENT MORPHOLOGIES 

FOR ANIMAL CELL MEMBRANE PENETRATION 

A paper published in Chemical Engineering Journal, 2008, 137, 23-29. 

Brian G. Trewyn, Jennifer A. Nieweg, Yannan Zhao and Victor S.-Y. Lin 

 

Abstract 

Two MCM-41 type, fluorescein-labeled mesoporous silica nanomaterials (MSNs) 

consisting of spherical and tube-shaped particles were synthesized and characterized.  Both 

materials have hexagonally arranged mesopores with high surface area (> 950 m2/g) and a 

narrow distribution of pore diameters.  The cellular uptake efficiency and kinetics of both 

MSNs were measured in a cancer cell line (CHO) and a normal cell line (fibroblasts) by flow 

cytometry and fluorescence confocal microscopy.  The correlation between the particle 

morphology and aggregation of MSNs to the effectiveness of cellular uptake was 

investigated.  We envision that our study on the morphology dependent endocytosis of MSNs 

would lead to future developments of efficient transmembrane nanodevices for intracellular 

sensing and gene/drug delivery. 

 

 1.   Introduction 

Since the discovery of surfactant-templated synthesis of mesoporous silica materials 

in 1992,1,2 many reports in the literature have explored the functionalization and utilization of 

these structurally ordered materials for applications in a variety of areas, such as catalysis,3-5 
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separation,6,7 and sensor.8,9  The unique properties, such as high surface area (> 700 m2 g-1), 

large pore volume (> 0.9 cm3 g-1), tunable pore size with a narrow distribution (2-10 nm), 

and good chemical and/or thermal stability, of these silica materials also make them 

potentially suitable for several important biological applications, such as drug delivery, 

imaging, and controlled release/sequestration.10-16 

While several research groups worldwide have investigated the controlled release 

properties of various mesoporous silica materials, the amorphous nature of these materials 

make them difficult to handle under physiological conditions.  The random aggregation of 

the amorphous and polydisperse particles of mesoporous silicas in aqueous solutions with 

high ionic strength complicates their circulation lifetime and cell membrane permeability.   

Because of these issues, it is difficult to predict and regulate the biocompatibility of 

amorphous mesoporous silica materials both in vitro and in vivo.  In contrast, surface-

functionalized solid silica particles with spherical shape and narrow size distribution have 

been used for biological applications.17-20   

To construct mesoporous silica-based functional materials for practical applications 

in biotechnology and biomedicine, the ability of controlling the particle morphology and 

surface property of these materials is of fundamental importance.  Several recent reports on 

the morphology control and surface functionalization of mesoporous silica nanoparticle 

(MSN) materials have shown promising results in improving their in vitro biocompatibility 

and cell membrane permeability.9,21-24  In particular, the recent demonstrations on the 

endocytosis of these MSN particles into animal and plant cells highlight the possibility of 

designing nanodevices for controlling cell membrane traffic,23 which would allow efficient 

deliveries of a variety of biogenic molecules into cell bodies.   
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To date, only spherical MSNs with an average particle size around 100-200 nm have 

been investigated for the endocytosis of live cells.23  To further advance this burgeoning field 

of research, it is important to gain fundamental insight on how the different shapes and 

particle sizes would impact the cell membrane permeability of mesoporous silica materials.  

Herein, we report on the synthesis and characterization of two kinds of mesoporous silica 

particles with spherical and tube-like morphologies.  The cellular uptake efficiency and 

kinetics were measured and compared to particle size and aggregation occurrence in aqueous 

buffer as depicted in Figure 1.  We discovered that cancer cells endocytosed both MSNs 

more efficiently and at a faster rate than fibroblast cells.  We also discovered that the rate of 

endocytosis correlates with the degree of particle aggregation. 

 

Figure 1. Schematic representation of cell uptake and internalization of spherical and tube-
shaped FITC-MSN. 
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2.  Results and Discussion 

To prepare morphology controlled MSNs functionalized with fluorescein, we first 

reacted FITC with an aminopropyltrimethoxysilane in dry DMF to yield a 

trimethoxysilylated FITC.  By using this compound as a precursor, a tube-shaped, FITC-

labeled MSN (T-FITC-MSN) and a spherical FITC-labeled MSN (S-FITC-MSN) were 

successfully synthesized via our recently reported co-condensation method.8,25  As shown in 

the SEM micrographs (Figure 2a), the S-FITC-MSN is indeed a monodisperse material 

consisting of spherical particles and has a narrow size distribution ranging from 80 to 150 nm 

in particle diameter.  On the other hand, the SEM image of T-FITC-MSN confirmed the 

tube-like particle morphology with an average particle size of 600 nm in length and 100 nm 

in width (Figure 2b).  Upon removal of the surfactant template via acid/methanol extraction, 

both T- and S-FITC-MSNs comprised of MCM-41-type, hexagonally arranged pores as 

determined by TEM (Figure 3a,b) and low angle powder XRD (Figure 3c).  Powder XRD 

analysis confirms hexagonally arranged mesopores in the diffraction pattern of both MSN as 

evident by the intense d100 peak, along with a well-resolved d110 and d200 (Figure 3c).  

Nitrogen sorption analysis of both materials exhibited a Type-IV isotherm, typical of 

mesoporous material with BET surface areas measured at 951.7 ± 3.0 and 991.2 ± 3.8 m2/g 

for T-FITC-MSN and S-FITC-MSN (Figure 4), respectively.  The average pore diameters 

were determined to be 27 Å for both materials by the BJH method (Figure 4 inset). 
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Figure 2. Scanning electron micrographs of (a) S-FITC-MSN and (b) T-FITC-MSN, giving 
evidence of morphology control during MSN synthesis. 
 

	
  	
   	
  

	
  

Figure 3. Transmission electron micrographs of (a) S-FITC-MSN and (b) T-FITC-MSN, 
showing respective particle morphologies at high magnification, and the internal mesopore 
structure.  (c) Low angle X-ray diffraction spectra of S-FITC-MSN (blue) and T-FITC-MSN 
(red) measured after surfactant-template removal verifying hexagonal mesopore structures. 

(a) (b) 

(c) 

(a) (b) 

d100 

d110 d200 
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Figure 4. BET Nitrogen adsorption/desorption isotherms of S-FITC-MSN (blue) and T-
FITC-MSN (red).  BJH pore size distribution of S-FITC-MSN (blue) and T-FITC-MSN (red) 
(inset). 

 

The cellular uptake of both materials was analyzed by flow cytometry.  Both 

materials were covalently labeled with fluorescein as a fluorescent marker to determine the 

number of cells that internalized S-FITC-MSN and T-FITC-MSN.  Flow cytometry neasures 

the fluorescence of individual cells and counts the number of cells that are above the cellular 

autofluorescence at each concentration of MSN.  As the dosage of MSN increased, the 

number of cells showed a positive FITC signal also increased.  We discovered that the uptake 

of MSN was both morphology and cell line dependent.  Both materials showed more 

efficient uptake in the cancer cell line (CHO) than fibroblast cells (Figure 5a).  In fact, T-

FITC-MSN showed 100% efficient endocytosis between 50.0 and 100.0 µg mL-1 with an 

EC50 of 4.6 µg mL-1, while S-FITC-MSN did not reach 100% efficient endocytosis below the 

highest measured concentration of 100.0 µg mL-1 and an EC50 of 56.0 µg mL-1.  However, 
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both materials showed less efficient endocytosis for fibroblast cells (Figure 5b).  In fact, 

neither material reached 100% efficiency in fibroblast cells; specifically, T-FITC-MSN 

reached ~60% efficiency at 100.0 µg mL-1 with an EC50 of 82.0 µg mL-1.  S-FITC-MSN 

seemed to reach a maximum efficiency at 100.0 µg mL-1, where 21% of the fibroblast cells 

showed uptake of spherical MSN.  To avoid false positives, trypan blue was incorporated in 

the flow cytometry measurements to quench the fluorescence of MSN that were not 

internalized but may be attached to the outside of the cell. 

100

80

60

40

20

0

%
 C

H
O

 c
e
ll 

u
p
ta

ke

100806040200
Dosage (µg/mL) 	
  

60

50

40

30

20

10

0

%
 F

ib
ro

b
la

st
 c

e
ll 

u
p
ta

ke

100806040200
Dosage (µg/mL) 	
  

100

80

60

40

20

0

N
o
rm

a
liz

e
d
 %

 C
H

O
 c

e
ll 

u
p
ta

ke

350300250200150100500
Time (min) 	
  

100

80

60

40

20

0N
o
rm

a
liz

e
d
 %

 f
ib

ro
b
la

st
 c

e
ll 

u
p
ta

k
e

350300250200150100500
Time (min) 	
  

Figure 5. Dosage efficiency and kinetic measurements in CHO and fibroblast cells S-FITC-
MSN (blue) and T-FITC-MSN (red).  Dosage efficiency of (a) CHO and (b) fibroblast cells 
measured after 12 h incubation at 37 °C.  Normalized endocytosis kinetics of (c) CHO and 
(d) fibroblast cells of 50 µg mL-1 incubated at 37 °C. 
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In addition to investigating the efficiency of endocytosis, the kinetics of endocytosis 

for both MSNs was studied.  We discovered that the rates of endocytosis for both MSNs 

were similar and rapid for CHO cells (Figure 5c).   However, the rates of endocytosis for 

fibroblast cells were different for the MSN with different morphologies.  Specifically, the 

rate of endocytosis for S-FITC–MSN was significantly faster than that of T-FITC-MSN.  In 

the case of S-FITC-MSN, the endocytosis reached nearly 100% uptake in 180 min, while T-

FITC-MSN required 360 min to reach 100% endocytosis.  This difference in endocytosis 

kinetics may be attributed to two variables.  One is the particle size, S-FITC-MSN are much 

smaller as is evident from the SEM and TEM analyses (Figure 2a and 3a).  The particle size 

of S-FITC-MSN is on the order of 80-150 nm in diameter, while T-FITC-MSN have a 

similar width of 80-150 nm but can vary in length.  SEM and TEM data revealed that T-

FITC-MSN could reach 400-1000 nm in length.  This size variation may account for the 

difference in the rate of MSN endocytosis.   

The other variable, which can also explain the difference in endocytosis kinetics, is 

the different aggregation ability between the MSN particles with different shapes.  We have 

previously demonstrated that the uptake of S-FITC-MSN is a clathrin-mediated endocytosis 

process23 and there are numerous examples of enhanced uptake of cancer cells and receptor 

overexpressed cells over noncancerous cells.26,27 

To investigate the aggregation ability of these MSNs in aqueous solutions, the zeta 

potential (ζ-potential) of both materials were measured using a Malvern Nano Zetasizer to 

determine the surface charges that correspond to T-FITC-MSN and S-FITC-MSN.  The ζ-

potentials were measured to be -1.90 mV and -1.50 mV for T-FITC-MSN and S-FITC-MSN, 

respectively.  Since the surface charges of the MSN are statistically equivalent, we assumed 
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that endocytosis efficiency and rate were dependent exclusively upon morphology and 

particle aggregation.  The aggregation and particle sizes were measured using a dynamic 

light scattering technique.  Both morphologies were discovered to aggregate at 500.0 µg mL-1 

(Figure 6).  Specifically, S-FITC-MSN showed a rather sharp peak at 712 nm, representing a 

small aggregation distribution while T-FITC-MSN showed a broader distribution ranging 

from 955 to 1480 nm.  The fact that T-FITC-MSN aggregates into larger particles may be 

another reason for the slower cellular uptake of T-FITC-MSN. 

 

Figure 6. Dynamic light scattering data of S-FITC-MSN (blue) and T-FITC-MSN (red) 
measured at a concentration of 500 µg mL-1 in PBS. 
     

To further investigate the cellular uptake and biocompatibility of the MSNs, CHO 

cells (~1 × 105 cells mL-1) were incubated overnight (~12 h) with T-FITC-MSN and S-FITC-

MSN (50.0 µg mL-1).  The first fluorescence confocal micrographs in each series (Figure 

7a,d) showed the presence of healthy, round nuclei, stained blue by 4',6-diamidino-2-
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phenylindole (DAPI) and excited at 340 nm.  DAPI is a blue-fluorescent dye known to 

complex with double–stranded DNA.  Green fluorescence from T-FITC-MSN and S-FITC-

MSN were observed in the cell bodies of these CHO cells in Figure 7b and e.  The DAPI and 

green fluorescent excited micrographs were recorded at the same focal depth.  As we are able 

to clearly observe the nuclei, we can be assured that we are observing a focal plane that 

intersects the cell.  The existence of oval, seemingly healthy nuclei lead us to believe that 

these MSN are in fact biocompatible, and do not affect the cell cycles in a detrimental way 

during the endocytosis process.   

	
   	
   	
  

   

Figure 7. Fluorescence confocal micrographs of CHO cells incubated with 50 µg mL-1 T-
FITC-MSN (a-c) and S-FITC-MSN (d-f).  (a and d) Fluorescence image excited at 340 nm to 
visualize the cell nuclei stained with DAPI.  (b and e) Fluorescence image excited at 488 nm 
to visualize the FITC doped MSN that have been internalized by cells.  (c and f) Overlaid 
micrographs of a & b and d & e, respectively. 

 

(a) (b) (c) 

(d) (e) (f) 
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3. Conclusion 

In summary, we demonstrated the endocytosis of MSN with spherical- and tube-like 

morphology in cancer and normal cell lines.  These MSN have unique efficiencies of 

endocytosis, which are both morphology and cell line dependent.  We have rationalized the 

size and aggregation tendencies to be determining factors in endocytosis efficiency and 

kinetics.  We envision that understanding this difference in efficiency and kinetics may allow 

researchers to more accurately control the rate of drug and therapeutics delivery.    

 

4.  Methods 

Synthesis of Spherical Fluorescein Isothiocyanate-doped MSNs (S-FITC-MSN).   

The MSN material was prepared by the following procedures:  First, 1.0 mg fluorescein 

isothiocyanate was stirred for 30 min at room temperature with 5.0 mL 3-

aminopropyltrimethoxysilane (APTMS) in 500.0 mL anhydrous DMF.  Next, n-

cetyltrimethylammonium bromide (CTAB, 1.0 g, 2.7 × 10-3 mol) was dissolved in 480.0 mL 

nanopure water.  This solution was made basic by the addition of 3.5 mL 2.0 M NaOH, 

followed by adjusting the solution temperature to 353 K.  Tetraethyl orthosilicate (TEOS) 

(5.0 mL, 2.6 × 10-3 mol) was first introduced dropwise to the CTAB-containing solution, 

followed by the dropwise addition of the FITC-APTMS/DMF solution.  The mixture was 

stirred for 2 h at 353 K to give rise to orange precipitates (as synthesized S-FITC-MSNs).  

The solid product was filtered, washed with deionized water and methanol, and dried under 

high vacuum at 353 K.  To remove the surfactant template (CTAB), the as-synthesized FITC-

MSN (1.0 g) was refluxed for 18 h in a solution of 1.0 mL of HCl (37.4%) and 100.0 mL of 

methanol, followed by washing with methanol and water.  The surfactant-removed FITC-



 

	
  

111	
  

MSNs (washed S-FITC-MSNs) were placed under high vacuum to remove solvent from the 

mesopores, shown previously to remove surfactant to completion by 13C solid state NMR.25  

The amount of fluorescein incorporated to the mesoporous material was determined to be 1.3 

± 0.5×10-4 mol/g by 29Si direct polarization solid-state NMR using a previously reported 

method.25,28 

Synthesis of Tube-shaped Fluorescein Isothiocyanate-doped MSNs (T-FITC-

MSN).  The MSN material was prepared by the following procedures:  First, fluorescein 

isothiocyanate (2.0 mg) was stirred for 30 min at room temperature with 500.0 mL 3-

aminopropyltrimethoxysilane (APTMS) in 500.0 mL anhydrous DMF.  Next, n-

cetyltrimethylammonium bromide (CTAB, 2.0 g, 5.5 × 10-3 mol) was dissolved in 480.0 mL 

nanopure water.  This solution was made basic by the addition of 7.0 mL 2.0 M NaOH, 

followed by adjusting the solution temperature to 353 K.  TEOS (10.0 mL, 5.1 × 10-3 mol) 

was first introduced quickly to the CTAB-containing solution, followed by the rapid addition 

of the FITC-APTMS/DMF solution.  The mixture was stirred for 2 h at 353 K to give rise to 

orange precipitates (as synthesized T-FITC-MSN).  The solid product was filtered, washed 

with deionized water and methanol, and dried in under high vacuum at 353 K.  To remove 

the surfactant template (CTAB), the as-synthesized FITC-MSN (1.0 g) was refluxed for 18 h 

in a solution of 1.0 mL of HCl (37.4%) and 100.0 mL of methanol, followed by washing with 

methanol and water.  The surfactant-removed FITC-MSNs (washed T-FITC-MSN) were 

placed under high vacuum to remove solvent from the mesopores.  The amount of 

fluorescein incorporated to the mesoporous material was determined to be 1.1 ± 0.6×10-4 

mol/g by 29Si direct polarization solid-state NMR using a previously reported method.25,28 
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Reagents and Materials for Biological Studies.  Chinese Hamster Ovarian (CHO) 

and Human fibroblast cell lines were obtained from American Tissue Culture Collection 

(ATCC).  Formaldehyde solution (37% w/w) was purchased from Fisher.  4,6-Diamidino-2-

phenylindole, dihydrochloride (DAPI) and trypan blue were purchased from Sigma-Aldrich.  

Trypsin (1×, 0.25%) in 0.1% EDTA-Na without calcium and magnesium was purchased 

from Fisher Scientific. 

Cell Line Maintenance.  CHO and fibroblast cells were maintained in T75 flasks 

using DMEM (Dulbucco’s modified Eagle’s medium) supplemented with 10% equine serum, 

2 mM L-glutamine, 100 U mL-1 penicillin, 100 mg mL-1 streptomycin, and 1 mg mL-1 

gentamycin.  CHO and fibroblast cells were split every 2-3 days. 

Measuring the Dosage of Spherical-FITC-MSN and Tubular-FITC-MSN 

Uptake.  To investigate the maximum amount of material that can be incorporated by CHO 

and fibroblast cells, a dosage experiment was designed.  The cells were grown in 6-well 

plates for 24 h or until visual confluency developed.  The cells were then treated with 

incremental amounts of T-FITC-MSN and S-FITC-MSN suspended in media.  Experiments 

were designed for both T-FITC-MSN and S-FITC-MSN with concentrations of 0, 5, 10, 25, 

50, and 100 mg mL-1.  The cells were incubated with the different concentrations of MSNs 

for 12 h at 37 °C in 5% CO2.  After 12 h, the cells were washed two times with PBS 

(phosphate-buffered saline) and trypsinized.  The cells were incubated in 830 mM trypan 

blue for 10 min to quench the fluorescence of any MSNs adhered to the exterior of the cells.  

The MSN uptake was measured by flow cytometry. 

Measuring the Kinetics of Spherical-FITC-MSN and Tubular-FITC-MSN 

Uptake.  To investigate the rate of MSN uptake into CHO and fibroblast cells, a kinetic 
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experiment study was conceived.  The cells were grown in 6-well plates for 24 h, or until 

visual confluency developed.  The cells were incubated with a uniform amount of MSNs (50 

mg mL-1) for varying amounts of time.  Uptake was measured at 0, 10, 30, 60, 180, and 360 

min time intervals.  After the pre-determined amount of time, the cells were washed twice 

with PBS, and incubated in standard growth media.  Fourteen hours after initial inoculation, 

the cells were trypsinized, and the MSN uptake was measured by flow cytometry. 

Fluorescence Confocal Microscopy Measurements.  To visually investigate the 

endocytosis of T-FITC-MSN and S-FITC-MSN, fluorescence confocal microscopy was 

employed.  Coverslips (22 mm2) were cleaned with 1.0 M HCl, nanopure water (3×), 50% 

ethanol, 70% ethanol, and 100% ethanol, and dried overnight at 60 °C.  Following cleaning, 

the coverslips were placed on the bottom of the wells of 6-well plates and covered with 3.0 

mL of standard growth media.  CHO (1.0 × 105 cells mL-1) were grown for 24 h on the 

coverslips.  After 24 h, the cells were inoculated with 50.0 mg mL-1 MSNs, and grown for an 

additional 12 h.  Afterwards, the growth media was removed, the cells were washed with 

PBS (2×), and the cells were then reincubated with a PBS solution of 3.7% formaldehyde and 

57.0 mM DAPI for 30 min.  These coverslips were removed from the PBS solution and fixed 

to glass slides with liquid adhesive. 

Nitrogen adsorption/desorption isotherms.  Surface analysis of the T- and S-FITC-

MSN materials was performed by nitrogen sorption isotherms in a Micromeritics Tristar 

3000 sorptometer.  The surface areas were calculated by the Brunauer-Emmett-Teller (BET), 

and the pore size distribution was calculated by the Barrett-Joyner-Halenda method. 

X-ray diffraction measurement.  X-ray diffraction patterns of the MSN materials 

were obtained in a Scintag XDS-2000 powder diffractometer using Cu Kα irradiation.  Both 
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materials possess a hexagonal structure typical of MCM-41 with three characteristic d100, 

d110, and d200 peaks. 

ζ-Potential measurement.  The ζ-potential of the MSN materials was measured in a 

Malvern Nano HT Zetasizer.  500.0 µg/mL suspensions of each of the materials in phosphate 

buffer saline buffer were prepared.  The pH 7.5 buffer was composed of 2.7 mM KCl, 1.5 

mM KH2PO4, 136.0 mM NaCl and 8.1 mM Na2HPO4
.7H2O in nanopure water. 

Scanning and transmission electron microscopy.  Particle morphology was studied 

with a JEOL 840A scanning electron microscope with a 10 kV acceleration voltage.  For 

transmission electron microscopy measurements, an aliquot of the powder was sonicated in 

nanopure water for 15 min.  A single drop of this suspension was placed on a lacey carbon 

coated copper TEM grid and dried in air.  The TEM examination was completed on a Tecnai 

G2 F20 electron microscope operated at 200 kV to examine at electron optical magnification 

of 64,000 to 550,000. 
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CHAPTER 6.  EXOCYTOSIS OF MESOPOROUS SILICA 

NANOPARTICLES FROM MAMMALIAN CELLS: 

ASYMMETRIC CELL-TO-CELL TRANSFER 

Modified from a paper accepted for publication in Small. 

Igor I. Slowing, Juan L. Vivero-Escoto, Yannan Zhao, Kapil Kandel, Chorthip 

Peeraphatdit, Brian G. Trewyn and Victor S.-Y. Lin 

 

Abstract 

Here we demonstrate how endothelial cells can take up mesoporous silica 

nanoparticles (MSNs) and then expel them back into the medium.  The exocytosis of 

mesoporous silica nanoparticles (MSNs) from mammalian cells is demonstrated for the first 

time.  The differences in the degree of exocytosis of MSNs between healthy and cancer cells 

are shown to be responsible for the asymmetric transfer of the particles between both cell 

types.  This behavior demonstrates that cell specific drug delivery does not depend only on 

the efficiency of cellular uptake, but also on the ability of the cells to retain the drug carriers. 

 

ARTICLE 

Mesoporous silica nanoparticles (MSNs) have raised considerable interest as vehicles 

for drug delivery because of their capacity to encapsulate large amounts of bioactive species 

and the ease with which their surface can be chemically modified.1, 2  The versatile chemistry 

of MSNs has enabled their functionalization with several groups to render a variety of gated 

nanodevices, capable of controlling the loading and release of guest molecules in a stimuli-
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responsive fashion.3-17  MSNs are readily endocytosed by animal and plant cells,18-20 and 

their nanopatterned surface has proven to have a significant impact in their 

biocompatibility.21, 22  All these properties have enabled the successful application of these 

materials to the delivery of drugs, genes and proteins into living cells, and more recently, into 

animal models of cancer.1, 2, 8-10, 23-27  Since MSNs are readily taken up by a wide variety of 

cell types,18-20 their use as vehicles for cell type-specific intracellular drug delivery might be 

conditioned to the incorporation of cell-targeting moieties.28, 29  Cellular uptake, however, is 

not the only factor determining the selectivity of a drug delivery system: the relative abilities 

of the host cells to retain the nanoparticles also decide their ultimate fate.  Herein we report 

an investigation on the relative abilities of healthy and cancerous cells to retain endocytosed 

MSNs, with the goal of further understanding the enhanced permeability and retention of 

nanoparticles recently observed in murine models of cancer.27, 30, 31 

 Even if the in vitro endocytosis and the in vivo administration of MSNs have been 

systematically investigated, it is surprising to realize there are no studies on the exocytosis or 

cellular transport of these particles.  This lack of reports could be related to the idea that 

MSNs may be too large for the cells to handle.  In fact, a size retention factor has been 

recently suggested to account for the cellular withholding of aggregates of gold 

nanoparticles.32, 33  However, even if MSNs are relatively large, their cellular uptake has been 

repeatedly proven to be energy-dependent, which suggests that cells employ their machinery 

to take these particles up.20, 29, 34 

In contrast to MSNs, the exocytosis of non-porous nanoparticles has been studied 

several times.  Most of the reports on the exocytosis of nanoparticles have been based on two 

main approaches: microscopic tracking, and measurement of intra- and extra-cellular particle 
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concentrations.32, 33, 35-39  These measurements have allowed the use of kinetic models to 

understand the dynamics of nanoparticle endo- and exocytosis.36  Following these 

investigations, this study explores the role of exocytosis as a potential contributor to the 

enhanced permeability and retention of nanoparticles by cancer cells, which is known to take 

place mainly through hypervasculature.27, 30, 31  These new results place nanoparticle 

exocytosis in a context, demonstrating it is not only an interesting phenomenon, but it also 

plays an important role in biological processes, and has the potential to lead to valuable 

biotechnological applications. 

Before investigating the processes resulting from the exocytosis of MSNs, it was 

necessary to establish the timeframe in which the ejection of the particles was most likely to 

occur.  To do so, we studied the uptake of fluorescein isothiocyanate-labeled MSNs (FITC-

MSNs) by human umbilical vein endothelial cells (HUVECs) over time.  These cells were 

chosen as models of healthy cells that surround diseased tissue in cancer.  The cells were 

incubated in presence of the particles for increasing periods of time.  The intracellular levels 

of FITC-MSNs were then monitored by flow cytometry, using the trypan blue exclusion 

method for quenching the fluorescence of extracellular particles.40  The average fluorescence 

intensities of the cells suggested that the amounts of endocytosed FITC-MSNs increased 

gradually with time until reaching a plateau at approximately 2 h of contact (Figure 1a).  This 

plateau can be considered as a state of equilibrium between the rates of endo- and exocytosis 

of the nanoparticles.36  A similar behavior was observed when FITC-MSNs were incubated 

with human cervical cancer cells (HeLa) over the same period of time (Figure 1b).  We also 

monitored the uptake of FITC-labeled MSNs by a culture of Chinese Hamster Ovarian 

(CHO) cells under fluorescence confocal microscope using a stage heated at 37°C. Under 
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these conditions it was possible to observe how a single cell used lamellipodia to drag FITC-

MSNs to its body over a time span of 30 min (Figure 1c). 

 
 
Figure 1. Changes in average fluorescence intensity of HUVEC (a) and HeLa (b) cells when 
incubated with suspensions of FITC-MSNs for different times. (Sample size N = 3).  (c) 
Sequence of laser confocal micrographs of a chinese hamster ovarian (CHO) cell taking up 
two MSNs. The red arrows point to the MSNs being up taken by the cell, and the white 
arrows point to the lamellipodia used to capture and engulf the nanoparticles. 
 

Based on these results we proceeded to follow the exocytosis of FITC-MSNs from 

particle-saturated cells under fluorescence confocal microscope.  After incubating HUVECs 

for 3 h in presence of FITC-MSNs, the particles were observed within the cell body at the 

same focal plane as the cell nucleus.  Upon replenishing the culture with fresh media at 37°C, 

the exocytosis of FITC-MSNs was observed within 40 min.  As can be observed in the upper 

set of frames of Figure 2, the fluorescent particles were initially co-localized with the cell 

body.  During the first 15 to 20 min, the particles migrated gradually to the boundary of the 
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cell membrane defining the shape of the cell (central set of frames).  After some 40 min 

(lower set of frames of Figure 2) the labeled nanoparticles were found mainly in the 

extracellular space, demonstrating an active process of particle discharge. Interestingly, no 

exocytosis of FITC-MSNs was evident when performing the same experiment with HeLa or 

CHO cells.  Consistent with previous observations, endocytosis of the particles was less 

efficient when the cell growth medium contained serum than when it was free of serum.41  

Conversely, the presence of serum in the medium favored exocytosis, as previously reported 

for other nanoparticles.38 

	
  

	
  

Figure 2. Laser fluorescence confocal micrographs of HUVECs pre-incubated with FITC-
MSNs (green spots) after 0 (left), 13 (middle) and 37 (right) minutes of addition of fresh 
growth medium.  The images to the top correspond to the FITC channel, and the ones to the 
bottom correspond to the overlay of the FITC channel with the corresponding phase contrast 
images.  The images show the migration of the nanoparticles from the interior of the cells to 
the periphery and eventually to the intercellular space with time.  The scale bar is 25 
micrometers. 
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Based on these results we considered the possibility that MSNs exocytosed from one 

cell could be taken up by a neighboring cell.  To do so we performed a series of cross-cell 

experiments (Scheme 1).  In the first experiment, two cultures of HeLa cells were incubated 

for 3 h with fluorescently labeled MSNs: one using fluorescein isothiocyanate (FITC) and the 

other one using tetramethyl rhodamine isothiocyanate (TRITC) as a label.  The cells were 

then washed with PBS, harvested by trypsinization, mixed and co-incubated for 20 h with 

serum-containing media at 37°C under 5.5% CO2.  The mixed cells were then washed, 

harvested and analyzed by flow cytometry.   

	
  

 
Scheme 1. Cross-cell experiments.  Two cultures of cells were incubated separately, each 
with different labeled MSNs (FITC-MSNs one, TRITC-MSNs the other one).  After uptake 
of the particles each culture was washed and harvested.  Both cultures were then mixed and 
co-incubated to evaluate nanoparticle transfer between each other. 
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After setting gates using unlabeled cells, cells only loaded with FITC-MSNs, and 

cells only loaded with TRITC-MSNs as controls, it was possible to estimate that only a small 

fraction (12.6% ±1.6%) of the cells were FITC and TRITC positive (Figure 3a).  We 

considered this result as a measure of the ability of the cells to exchange particles between 

each other.  A similar result (10.9% ± 0.6%) was obtained when the experiment was 

performed with CHO cells.  Examination under confocal microscope showed that indeed, the 

amount of double-labeled cells was very low (Figure 3c).  When the same experiment was 

performed with HUVECs we observed a surprisingly large proportion of particle transfer 

between the cells containing FITC-MSNs and the ones containing TRITC-MSNs.  The 

degree of transfer (89.6% ± 1.2%, Figure 3b) was seven times larger than the one observed 

with HeLa cells.  Interestingly, the flow cytometry analysis of the mixture of HUVECs 

showed that instead of a single population with homogeneously distributed amounts of both 

labeled MSNs, two different populations could be clearly identified: one having more FITC-

MSNs than TRITC-MSNs, and another one with more TRITC-MSNs than FITC-MSNs.  

This high efficiency of intercellular MSN transfer in HUVECs was further confirmed by 

confocal fluorescence microscopy (Figure 3d). 

We were further interested in determining if the observed differences between the 

MSN-transfer capabilities of HUVECs and HeLa cells could have implications in the 

distribution of MSNs in a co-culture of both types of cells.  For that purpose we chose to 

label one cell type with a long-term cell tracer dye (Cell Trace™ Far Red DDAO-SE, 

Invitrogen) and treat the other cell type with FITC-MSNs.   Since the cell tracer is not 

exchanged from cell to cell, it was possible to distinguish one cell type from the other 

throughout the experiment.  As can be observed in Figure 4a, when HUVECs were stained  
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Figure 3. Dot plots from the flow cytometry analysis of the cross-cell experiments using 
HeLa cells (a) and HUVECs (b).  The axes correspond to the intensity of green fluorescence 
due to uptake of FITC-MSNs (vertical axis) and of red fluorescence due to uptake of TRITC-
MSNs (horizontal axis). FITC-fluorescent cells appear in area Q1, TRITC-fluorescent cells 
in area Q4, and cells with both fluorescent signals appear in area Q2, cells in area Q3 were 
FITC- and TRITC-negative as determined by a control involving non-labeled cells.  Plots at 
the left correspond to the cells exposed only to FITC-MSNs, center plots correspond to the 
cells exposed only to TRITC-MSNs, and plots at the right correspond to the co-incubated 
cells (cross-cell experiment).  Confocal fluorescence images of HeLa cells (c) and HUVECs 
(d) resulting from the cross-cell experiments.  The channels from left to right correspond to 
cell nuclei stained with Hoechst 33258, FITC-MSNs, TRITC-MSNs and the merge of all 
images. 
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Figure 4. Cross-cell experiments between different cell types. In experiment (a) HUVECs 
were stained with red fluorescent cell tracer, and HeLa cells were incubated with FITC-
MSNs.  In experiment (b) HeLa cells were stained with the cell tracer dye and HUVECs 
were incubated with FITC-MSNs. The vertical axis corresponds to the intensity of green 
fluorescence due to uptake of FITC-MSNs and the horizontal axis to the intensity of red 
fluorescence due to dye-labeled cells.  Area Q1 corresponds to FITC-fluorescent cells, Q4 to 
red-labeled cells, Q2 to cells giving both fluorescence signals. Left plots correspond to the 
cells exposed only to FITC-MSNs, center plots to the red-labeled cells, and the plots to the 
right to the co-incubated cells (cross-cell experiment).  The small proportion of Q2 cells in 
(a) compared to the large one in (b) suggests an asymmetric nature in the transfer of MSNs 
between both cell types. 
 

the tracer dye and HeLa cells were loaded with FITC-MSNs, very little particle transfer 

(7.5% ± 2.4%) could be observed.  To the contrary, when HeLa cells were labeled with the 

tracer and HUVECs were loaded with the FITC-MSNs, the co-incubation of both cell types 

led to a large (74% ± 2.4%) amount of particle transfer (Figure 4b).  It could be noted that, 

after transferring the FITC-MSNs to the HeLa cells, the fluorescence intensity of the 

HUVECs decreased, going from a relatively homogeneous distributed population (left plot) 
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to a much wider distribution (right plot).  These results suggest a unidirectional flow in the 

nanoparticle transfer between the two types of cell, which is consistent with the enhanced 

permeability and retention recently observed for porous silicon and silica nanoparticles in 

murine models of cancer.27, 31 

In conclusion, the results obtained from the studies on the dynamics of cellular uptake 

of MSNs and cross-cell experiments are all consistent with the hypothesis that mammalian 

cells can exocytose MSNs despite their relatively large size.  We have demonstrated for the 

first time not only that exocytosis of MSNs takes place, but that there are significant 

differences between the abilities of different cells to retain or expel these nanoparticles, 

which lead to asymmetric cell-to-cell transfer of MSNs.  We envision that this asymmetric 

transport of MSNs can have a dramatic impact in the design and use of MSNs as drug 

delivery agents. 

 

METHODS 

Synthesis of MSNs.  MSNs were prepared by our previously reported method.[4]  In 

brief, cetyltrimethylammonium bromide (CTAB, 1.02 g, 2.66 mmol) was dissolved in 480 

cm3 water, followed by the addition of 3.5 cm3 sodium hydroxide solution (2 M). The 

mixture was heated to 80 ºC with vigorous stirring, and then 5.0 cm3 (21.9 mmol) 

tetraethylorthosilicate were added drop wise.  The reaction mixture was stirred at this 

temperature for 2 h.  The resulting solid was filtered, washed thoroughly with methanol and 

dried under vacuum for 20 h.  The CTAB surfactant was removed by refluxing 1 g of the 

material in 100 cm3 of 0.37 % HCl in methanol.  Fluorescent labelling was performed by 

reacting either fluorescein isothiocyanate (FITC) or tetramethyl rhodamine isothiocyanate 
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(TRITC) with (3-aminopropyl)trimethoxysilane (APTMS) for 2 h in anhydrous dimethyl 

sulfoxide, and adding the resulting product to the initial CTAB reaction mixture.  The 

products were characterized by x-ray diffraction in a Rigaku Ultima IV diffractometer, by 

nitrogen sorption analysis in a micromeritics tristar surface area and porosity analyzer using 

Brunauer-Emmett-Teller equation to calculate apparent surface area and pore volume and the 

Barret-Joyner-Halenda method to calculate pore size distribution, and by transmission 

electron microscopy of samples supported on copper grids in a Tecnai G2 F20 microscope 

operated at 200 kV. 

Cellular uptake and exocytosis studies.  Cells were seeded in six-well plates and 

incubated at 37°C under 5.5% CO2 in the corresponding growth media (F-12K supplemented 

with heparin, endothelial growth factor and fetal bovine serum for HUVEC, and DMEM 

supplemented with penicillin, streptomycin, gentamicin, alanyl-glutamine and equine serum 

for HeLa).  After 24 h incubation the growth media were replaced by suspensions of 50 and 

100 µg cm-3 FITC-MSNs in the corresponding growth media, and the cells were incubated 

for specific times (see main text).  The suspensions were then discarded, the cells were 

harvested by trypsinization and resuspended in trypan blue solution for flow cytometry 

analysis.  Flow cytometry was performed in a BD FACSCanto instrument.  For confocal 

microscopy, glass cover slips were set in the bottom of the wells of the plates followed by 

addition of the cells.  After cell attachment, the cells were incubated with FITC-MSNs for 

periods of time ranging from 1 to 4 h, the nuclei were then stained with Hoechst 33258 (blue) 

dye.  The cells were imaged in a Leica SP5 X confocal system with Leica AFS Lite 2.1.0 

imaging processing software under an oil-immersion 100x objective.  For monitoring 
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exocytosis no fixation of the cells was performed and the cells were imaged using a heated 

stage (37 °C). 

Cross-cell experiments.  For each experiment two groups of cells (either both 

HUVEC or HeLa, or one HUVEC and the other one HeLa) were seeded in T-25 flasks and 

incubated for 24 h at 37°C and 5.5% CO2.  The growth medium was removed from each 

flask and replaced with a suspension of the labelled MSNs in growth media (FITC-MSNs in 

one flask, and TRITC-MSN or Cell Trace™ Far Red DDAO-SE from Invitrogen in the 

other), and incubated under the same conditions for further 3 h.  The cells in each flask were 

then harvested by trypsinization and transferred into 6-well plates with 3 cm-3 of fresh media.  

The cells were distributed in the wells in the following way: 3 wells with unlabelled cells, 3 

wells with cells previously treated with FITC-MSNs, 3 wells with cells previously exposed 

either to TRITC-MSNs or Cell Trace dye (depending on the experiment), and 3 wells with a 

mixed suspension of the cells previously exposed to FITC-MSNs and the cells previously 

exposed to TRITC-MSNs or Cell Trace dye.  The cells were incubated for further 20 hours at 

37°C and 5.5% CO2 and then harvested by trypsinization for flow cytometry analysis. 

In addition, a well containing a cover slip in the bottom was also filled with the 

mixture of the cells exposed to FITC-MSNs and cells exposed to TRITC-MSNs and 

incubated under the abovementioned conditions.  After 24 h, the cells attached to the cover 

slips were treated with the nuclear stain Hoechst 33258, followed by fixation with 3.7% 

formaldehyde.  Then the cells in the cover slips where mounted on microscope slides and 

imaged under a Leica SP5 X fluorescence confocal microscope with Leica AFS Lite 2.1.0 

imaging processing software. 
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Appendix: Supporting Information 
 

1.  Characterization of the materials 

Mesoporous silica nanoparticles with small pores had a surface area of 971 m2 g-1 

(Figure S1), an average pore size of 2.7 nm (Figure S2) and a regular 2D hexagonal pore 

order as determined by X-ray diffraction (Figure S3) and transmission electron microscopy. 

 

Figure S1. Linear plot of the nitrogen sorption isotherm of MSN. 
 

 

Figure S2. Pore size distribution of MSN measured by nitrogen adsorption. 
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Figure S3. Small angle powder X-ray diffraction pattern of MSN.  
 

2.  Cellular trafficking studies 

As mentioned above, intracellular levels of FITC-MSNs were assessed by flow 

cytometry.  Sample histograms representing the fluorescence intensity of HUVECs incubated 

(Figure S4a) with FITC-labelled MSNs for times ranging from 5 minutes to 3 hours (green 

curves).  The gray curves represent the autofluorescence of cells without FITC-MSNs. 

Similar histograms corresponding to HeLa cells incubated with the FITC-MSNs for the same 

times (Figure S4b). 

 

(a) 

(b) 
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Figure S4. Sample histograms showing the shift in FITC-fluorescence for HUVEC (a) and 
HeLa (b) cells upon incubation for different times with FITC-MSNs. 

 
Figure S5. Changes in average fluorescence intensity of HUVEC (a) and HeLa (b) cells 
when incubated with suspensions of FITC-MSN-10 for different times. (Sample size N = 3). 
 

 

MSNs have been shown previously to be non-toxic to HeLa cells at concentrations 

lower than 100 µg cm-3.1  The toxicity towards HUVEC was tested by incubating cultures of 

the cells for two days in presence of different concentrations of the material.  The number of 

viable cells measured by flow cytometry using Guava Viacount assay (Millipore) did not 

change significantly at concentrations 50 µg cm-3or lower compared to cells incubated in 

absence of the particles (Figure S6).   The trypan blue exclusion assay performed with 50 µg 

cm-3 of small and large pore MSNs showed also good biocompatibility of the materials with 

HUVECs at this concentration (Figure S7). 
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Figure S6. Guava ViaCount biocompatibility assay of MSNs with HUVECs. 
 

 

Figure S7. Phase contrast micrographs showing the trypan blue exclusion biocompatibility 
assay for HUVECs (a) without any MSN, incubated for 5 h with 50 µg cm-3 of (b) FITC-
MSN, (c) FITC-MSN-10, and incubated for 30 min with 3 µM Doxorubicin.  Only the last 
frame shows significant proportion of the dark dye in the cells. 
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Figure S8. Confocal fluorescence microscopy images of FITC-MSN loaded HeLa cells 0, 22 
and 45 minutes following incubation with FITC-MSN free medium. 
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CHAPTER 7.  GENERAL CONCLUSIONS 

 The research presented in this dissertation is centered on the biomedical applications 

of mesoporous silica nanoparticles (MSNs), especially related to their interactions with cell 

membranes and uptake by live cells, as well as their potential use as drug and biomolecule 

delivery agents.   

One of the unique features of MSN is the presence of both interior pore and exterior 

particle surfaces.  Upon selective modification of its internal and external surface we have 

been able to employ MSN for the glucose-responsive co-delivery of small biomolecules and 

proteins with control over the sequence of release.  This is accomplished by: (1) modifying 

insulin with gluconic acid while preserving its bioactivity to encapsulate cyclic AMP inside 

mesopores and also serve as a therapeutic agent to regulate blood glucose levels; (2) 

functionalizing the exterior surface of MSN with phenylboronic acid linkers as glucose 

sensors to regulate the pore opening and closing in response to blood glucose levels.  A 

competitive binding between gluconic acid modified-insulin (G-insulin) and saccharides with 

phenylboronic acid resulted in the G-insulin uncapping once a higher than normal blood 

glucose level was encountered.  Surface zeta-potential change on the G-insulin uncapping 

enhanced the cellular uptake of the material for efficient intracellular cAMP delivery.  The 

fast insulin release (within 30 min) is especially important for diabetic patients requiring high 

dosage of insulin after meals, and the sustained intracellular release of cAMP can induce 

insulin production from pancreas beta cells in between meals for a long-term effect. 

 A preliminary condition for using MSN as intravascular biomolecule delivery agents 

is to understand the hemocompatibility of these materials and the factors that regulate their 
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interactions with blood cells.  To this end, we investigated particle size- and surface-

dependent interactions of MSNs with human red blood cell (RBC) membranes using 

fluorescence and electron microscopies and cell biology techniques, and proposed three 

fundamental criteria that must be assessed before performing in vivo studies involving the 

intravascular administration of nanoparticles: (1) hemolytic potential, (2) propensity to 

induce RBC membrane deformation or morphological alteration, and (3) tendency to impair 

RBC deformability.  We showed how the surface of the nanoparticles can be modified to 

regulate their interaction with RBC membranes and improve their compatibility with RBCs, 

and discovered, for the first time, how MSNs are internalized by RBCs, which renders the 

possibility of using this material for drug delivery into non-phagocytic cells. 

 Another part of this dissertation consists in determining the properties that control the 

cellular uptake of MSN and their retention inside of living cells.  We showed that the cellular 

uptake of MSNs is morphology and cell line dependent. Tubular MSNs were uptake up more 

efficiently than spherical MSNs by both cancerous and non-cancerous cells.  We also 

observed that a cancer cell line showed a higher endocytosis efficiency and rate for both 

spherical and tubular particles compared with a normal cell line. 

 As an effort to study the relative abilities of healthy and cancerous cells to retain 

endocytosed MSNs and to further understand the enhanced permeability and retention of 

nanoparticles, we have demonstrated for the first time not only that exocytosis of MSNs 

takes place, but that there are significant differences between the abilities of different cells to 

retain or expel these nanoparticles, which lead to asymmetric cell-to-cell transfer of MSNs. 

 Further work is required to translate all these exciting findings to in vivo applications.  


