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Abstract

This report gives an introduction to the basic concepts and principles involved in the formulation
of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a
survey of some of the important sources of nonlinearity in solid mechanics appliations, using
wherever possible simple one dimensional idealizations to demonstrate the physical concepts.
This discussion is then generalized by presenting generic statements of initial/boundary value
problems in solid mechanics, using linear elasticity as a template and encompassing such ideas
as strong and weak forms of boundary value problems, boundary and initial conditions, and
dynamic and quasistatic idealizations. The notational framework used for the linearized problem
is then extended to account for finite deformation of possibly inelastic solids, providing the
context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite
element technology given in three companion reports.
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Introduction

Introduction

We begin our study of nonlinear computational solid mechanics in this chapter by surveying
some frequently encountered sources of nonlinearity in engineering mechanics. This will be done
in a rather elementary way by discussing the truss member, which is perhaps the simplest
structural idealization and which is assumed to transmit loads in the axial direction only. By
introducing various nonlinearities into this system one at a time, we will motivate the more
general discussion of nonlinear continuum mechanics, constitutive modeling, and numerical
treatments to follow. This model system will serve as a template throughout the text as new
continuum mechanical and computational ideas are introduced.

Following this motivation will be an introduction to the prescription of initial/boundary value
problems in solid mechanics. This introduction will be provided by discussing a completely
linear system; namely, linear elastic behavior in a continuum subject to infinitesimal
displacements. This treatment will include presentation of the relevant field equations, boundary
conditions, and initial conditions, encompassing both dynamic and quasistatic problems in the
discussion. Also featured is a brief discussion of the “weak” or “integral” form of the governing
equations, providing a starting point for application of the finite element method. Examination of
these aspects of problem formulation in the comparatively simple setting of linear elasticity
allows one to concentrate on the ideas and concepts involved in problem description without the
need for an overly burdensome notational structure.

In anticipation of nonlinear solid mechanics applications, however, we will find it necessary to
expand this notational framework so that large deformation of solids can be accommodated.
Fortunately, provided certain interpretations are kept in mind, the form of the governing
equations is largely unchanged by the generalization of the linear elastic system. This chapter
therefore provides an introduction to how this generalization can be made. However, it will be
seen that the continuum description and constitutive modeling of solids undergoing large
deformations are complex topics that should be understood in detail before accompanying
numerical strategies are formulated and implemented. The closely related topics of nonlinear
continuum mechanics and constitutive modeling will therefore be the subjects of the following
two chapters, with significant discussion of numerical strategies being deferred to Finite
Elements.

This introduction is concluded with a short Iist of references the reader may find useful as
background material. Throughout the text we assume little or no familiarity with either the finite
element method or nonlinear solid mechanics, but we do assume a basic level of familiarity with
the mechanics of materials, linear continuum mechanics, and linear elasticity. Accordingly, these
basic references are intended for those readers wishing to fill gaps in knowledge.
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Other Reading

The following resources are suggested for those readers wishing to reinforce their knowledge of
linear elasticity, elementary continuum mechanics, and/or fundamentals of solid mechanics. They
- are presented in alphabetical order, with no other significance to be attached to the order of
presentation.

Fung, Y.C., 1965

Fung, Y.C., 1977

Hughes, T.J.R., 1987

Lai, WM, Rubin, D. and Krempl, E., 1993
Malvern, L.E., 1969

Pilkey, W.D. and Wunderlich, W., 1994
Timoshenko, S. and Goodier, J.N., 1970
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Nonlinear Behavior

Linear Structural Component

We consider the simple axial (or in structural terms, truss) member shown schematically in
Figure 1.1. We can think of this member as a straight bar of material whose transverse
dimensions are small compared to its overall length and which can only transmit loads in the
axial direction. Real world examples include taut cables in tension, truss members, and similar

rod-like objects.

u((x)

x=0 o ox =1
Figure 1.1  Axial model problem: schematic and local coordinate system.

We index the material with coordinates x, which run between values 0 and L. Assuming that all

displacement of the rod occurs in the axial direction, we write this displacement as u(x,t), with
t signifying time. The infinitesimal, or engineering, strain at any point x € (0, L) is given by

exlx, t) = %u(x, t). (1.1)

The true stress O, at any point in the bar and at any instant is described via

P(% t) (1.2)

Oz(%t) = A(x, &)’

where P is the total axial force acting at location %, and A is the current cross-sectional area at
that location. If the cross-sectional area does not change very much as a result of the
deformation, it is appropriate to define the nominal, or engineering, stress as

_ Bxt)

Og = (%) (1.3)
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where A (x) is the initial cross-sectional area at point x. If the material behaves in a linear

elastic manner, then 6 and €5 are related via

0y = Egg, (1.4)
where E is the elastic modulus, or Young’s modulus, for the material.

To begin we consider the case of static equilibrium where inertial effects are either negligible or
nonexistent, and the response is, therefore, independent of time. One can in this case suppress the
time argument in Egs. (1.2) and (1.4). The balance of linear momentum for the static case is
expressed at each point x by

2 (2g(3)05()) = £60), (15)

where £ is the applied external loading, assumed to be axial, with units of force per unit length.
Substitution of Eq. (1.4) into (1.5) gives the following ordinary differential equation for u(x) on

the domain (0, L) :

C—Z%(EAOZ?}E(u)) = f. : (1.6)

If we assume that the cross-section is uniform, so that A, does not vary with x, and that the

material is hiomogeneous, so that E does not vary throughout the rod, one gets further
simplification:
42
EA—u(x) = £. (1.7
2
dx

We note that (1.7) 1s a linear, second order differential equation for the unknown displacement
field u. To pose a mathematical problem that can be uniquely solved, it is necessary to pose two
boundary conditions on the unknown u. We will be interested primarily in two types,
corresponding to prescribed displacement and prescribed force (or stress) boundary conditions.
An example of the former would be

u(0) = 4, (1.8)

while an example of the latter is
d ~
Ox(Lg)= E--di(LO) =5, (1.9)

where T and G are prescribed values for the displacement and axial stress at the left and right
bar ends, respectively. In mathematics parlance the type of boundary condition in (1.8) is called a
Dirichlet boundary condition, while the sort of boundary condition represented by (1.9) is a
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Neumann boundary condition. Dirichlet boundary conditions involve the unknown dependent
variable itself, while Neumann boundary conditions are expressed in terms of its derivatives.

Virtually any combination of such boundary conditions can be applied to our problem, but only
one boundary condition (i.e., either a Neumann or Dirichlet condition) can be applied at each
endpoint. In the case where Neumann (stress) conditions are applied at both ends of the bar, the
solution u(x) is only determinable up to an arbitrary constant (the reader may wish to verify this
fact by applying separation of variables to Eq. (1.7)).

We now consider a particular case of this linear problem we have posed that will be useful in
considering some of the various nonlinearities to be discussed below. In particular, suppose

f = 0 on the domain (0, L)), and furthermore consider the boundary conditions

u=0atx=0 (1.10)
and
Fext
Oy = —atx = L, (1.11)
Ag

where F™' is an applied force on the right end of the rod.

In this case examination of Eq. ,,,(1.5) yields
d
AOE(GE(X)) = 0, | (1.12)

meaning that 6 does not vary along the length of the rod. Since G is proportional to €, (see

Eq. (1.4)), the strain must also be a constant value along the rod length. Finally, in view of Eq.
(1.1), we conclude that u(x) must vary linearly with x. In other words, we know that the solution
u(x) must take the form

u(x) = u(0) +dox = ox, (1.13)

where 8 is the elongation or difference between the left and right end displacement. The problem

therefore reduces to finding the elongation produced by the applied force .

This problem is trivially solved and leads to the familiar linear relationship between F™ and &:

EA
—05 = g™, (1.14)
Ly

EA
in other words, we have a simple linear spring with stiffness —L—O . After solving for 6 one may
0

merely substitute into (1.13) to obtain the desired expression for u(x).
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Material Nonlinearity

We can examine the case of a so-called material nonlinearity by replacing Eq. (1.4) with the
following generic relationship between o and €:

op = 6(gg), (1.15)

where & is a smooth and generally nonlinear function (see Figure 1.2).

We make few restrictions on the specific form of 6 other than to assume that diga >0 for all

values of €. If we retain the assumption that £ = O and impose boundary conditions (1.10) and
(1.11), then Eq. (1.12) is still valid, that is:

o, = - (1.16)

throughout the rod.

Furthermore, since we assume that a one-to-one relation exists between ¢ and €, we can

conclude that just as in the linear case, the strain is a constant value in the rod given by

o
€. = —. (1.17)
E LO
AOC
6(x)
- ot
e

\

Figare 1.2  Schematic of a nonlinear, one-dimensional stress-strain relation.

We can solve the problem by finding 8 as before, but now we must solve the nonlinear equation

IN 6 _ ext
AOO'(E(-)) = P (1.18)
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Let us reexpress Eq. (1.18) as an equation for the displacement at the right end, which we shall
denote as d; = u(L). We can write
N(G,) = ™, (1.19)

where N(d;) is a nonlinear function of the unknown 4, defined in this case as

N(4,): = AOG(%). (1.20)

In general, Eq. (1.20) will not have a closed-form solution, and some sort of iterative procedure
is necessary. Among the most common and widely used of such procedures is Newton-Raphson
iteration. In this method one introduces a set of indices, i, corresponding to the iterations and

given a current iterate, A2, a first-order Taylor series expansion of (1.20) is utilized to generate

the next iterate, a1+ 1:

0=r* —N(di*) =Fext - (N(dLi) +EC(;—N(dI§)AdL), (1.21)
L

where
ai+! = ai+Ad4,. (1.22)
Equation (1.21) can be expressed more compactly via
K(a})Ad, = R(d}), (1.23)
where R(A}), the residual or out-of-balance force, is given by
R(GH): = FX-N(a}), (1.24)
and K(d}), the incremental or tangent stiffness, is written as

K(di):= -&%—N(dﬁ). (1.25)
L

The Newton-Raphson procedure is then carried out by recursively solving Egs. (1.23) and (1.22).
We will return to this general algorithmic strategy, and variants of it, repeatedly throughout the
text.

Theory Manuval ‘ Formulation of Nonlinear Problems - Nonlinear Behavior - Material Nonlinearity 7




Geometric Nonlinearity

Geometric nonlinearities are induced by nonlinearities in the kinematic description of the system
at hand. We will identify and work with several nonlinearities of this general type throughout the
text, but to begin we will consider two particular cases, still working in the context of our simple
model problem.

The first type of nonlinearity we consider is introduced by the use of nonlinear strain and stress
measures in definition of the stress-strain relation. As an example let us consider alternatives to

Egs. (1.1) and (1.3), which defined the engineering strain £ and engineering stress ¢ that we

have utilized to this point. When used in our model problem with £ = O and boundary
conditions (1.10) and (1.11), we have seen that the engineering strain does not vary over the rod’s

length, having the constant value LE . The appropriateness of this strain measure depends upon
0

the amount of deformation; specifically & should be infinitesimal for this measure to be
appropriate. In the presence of larger deformations, the true, or logarithmic, strain is often used:

L & L
£ = JLOVY = 1og(L_0) = log(1 +¢€g). (1.26)

Similarly if the cross-sectional area A changes appreciably during the process, it is likely that the
engineering stress Oy, should be replaced by the true stress 6., defined in Eq. (1.2). In the case of

our mode! problem, this would imply
Fext

Op = 0. (1.27)

where A is to be interpreted as the cross-sectional area in the final (deformed) configuration.

Relating this area to the elongation d requires a constitutive assumption to be made. For example,
if we assume the rod consists of an isotropic elastic material, we could approximate this variation
by considering the area to vary according to Poisson’s effect. This would require that for each

differential increment de,, in the axial true strain, each lateral dimension should be changed by a

factor of (1 —vde,), where v is Poisson’s ratio for the material. At a given instant of the loading

process, therefore, an incremental change in the area A can be approximated via
A+dA = (1-vde,) A~ (1-2vde )a. (1.28)

Integrating (1.28) between the initial area A and the final area and using (1.26) gives

LO 2v LO 2v
A= AO(—L—) - AO(L0+ 6) . (1.29)

Theory Manual Formulation of Nonlinear Problems - Nonlinear Behavior - Geometric Nonlinearity 8



If we assume that
o = Eg,, (1.30)

then we can use Egs. (1.26), (1.27), and (1.29) to conclude that

Ly \2&V. /Ly+9o
EAO(_—O—) log( 0 ) = ™, (1.31)
Lo+ Lo

which is an obviously nonlinear equation governing the elongation 8. Note that this nonlinearity
is not caused by any sort of nonlinear stress-strain relation but instead results from the
observation that the amount of deformation may not be small, necessitating more general
representations of stress and strain.

The second sort of nonlinearity we wish to consider is that caused by large superimposed rigid
body rotations and translations that introduce nonlinearities into many problems even when the
strains introduced into the material are well-approximated by infinitesimal measures. Toward this
end we refer to Figure 1.3, in which we imbed our one-dimensional truss element in a two-
dimensional frame. We locate one end of the rod at the origin and consider this end to be pinned
so that it is free to rotate but not to translate. The other rod end, initially located at coordinates

(x(l), xg ). is subjected to a (vector valued) force FCXt, which need not be directed along the axis
of the rod.

X1

Figure 1.3  Model problem with infinitesimal motions superposed on large
rigid body motions.

We note that if we placed a restriction of small motions this problem would be ill-posed; since

the rod is incapable of transmitting anything but axial force, F would need to act in the axial
direction in this case. In the current context we allow unlimited rotation to take place with the

result being, of course, that the rod will rotate until it aligns with F inits equilibrium
condition. In fact, this observation allows us to guess the solution to the problem. Since we
assume that the axial response of the rod is completely linear, we may deduce that the final
elongation is given by

Theory Manual Formulation of Nonlinear Problems - Nonlinear Behavior - Geometric Nonlinearity 9




Lol ™|

EA,

6 =

) : (1.32)

t . . .
where "Fex " denotes the Euclidean length of the vector F™. The final orientation of the rod
must coincide with the direction of F , S0 we can write the final position of the rod end using

: £ _f
the coordinates (%, x,) as:

£ t ext
X1 2 I;gt (1+NFCXH) Fr, (1.33)
x: [=\ =20 F5e

or writing the solution in terms of the rod end displacements d; and d,:

al o () by F (1.34)
o) T 5 | |l |

F,

It is instructive to proceed as though we do not know the solution summarized in (1.34) and
formulate the equilibrium equations governing d, and d,.

If we observe that the elongation 0 of the rod can be written as

§ = f\[(dl +x‘1’)2+(d2+x3)2—L0, (1.35)

then Eq. (1.32) gives the relationship between " Fm“ and the unknown displacements.

Furthermore, as noted above, the direction of F** is given by

ext 0
d,+x
e T, (139
Combining these facts gives the equation that governs &, and d,:
ext 0,2 0,2 0
F J(d+x)+(d+x)—L d, +
' = et e Xcl) . (1.37)
erXt LOA/(dl +X(1)) + (d2+X(2)) d2+X2

The reader may wish to verify this equation by substituting the solution (1.34) into (1.37).
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Equation (1.37) is a nonlinear, vector-valued equation for the unknowns d; and d, . Recalling

the generic form for nonlinear equations we introduced in the one-dimensional case in (1.19), we
could write this generically as

N(d) = X, (1.38)
where
d
d= { 1} (1.39)
d,
and

2 2
J(d1+x?) +(d2+xg) —Lg d1+x(1)
. (1.40)

N(d) = EA, = = .
Loy (d; +x)) +(dy +x5) dy + X,

Just as was done in the last section for the one degree of freedom case, we could introduce a
Newton-Raphson strategy to solve (1.38) via

K(a)Ad = R(@}) = FeXL_N(d1) (1.41)
and
ai+l = at+Aq, (1.42)
where
oN; ON,
; ; ad; 94,
R(@") = %g(al) =| 1772 (1.43)
oN, oN,
B Tlg=a’
Carrying out the calculation of K(di) for the specific N(d) at hand gives
R(d) = Kgreer(d') + Kgeom(d') . (1.44)

Kdirect(dl) is given by

Theory Manual Formulation of Nonlinear Problems - Nonlinear Behavior - Geometric Nonlinearity 11




AQE

3 X
0.2 0.2 2
. [(d)+x7) +(dy+x,) ]
Kjireer(d7) = , ; (1.45)
(a* +x?) (a1 +x(1))(dlz+xg)
(@1 + x(l))(dlz + xg) (@2 + xg)
and K, (@7) is
Rgeom(@) = 28| - - 1 10} (1.46)
0 A/d 0.2 0.2]l0 1
(d; +x7) +(d; +x%,)

As the notation suggests, Ky ... is sometimes referred to as the direct stiffness or that part of the

(di) , on the

other hand, is sometimes called the geometric stiffness and arises not from the inherent stiffness
of the material but by virtue of the large motions that the current problem allows.

stiffness emanating directly from the material stiffness of the system at hand. K-

To gain some insight into these issues in the current context, consider the case where

i of .. ) . . .
"dl” « ”x I ; 1.e., the case where the motions are small in comparison to the rod’s length. In this
case we find

i
R geom(d") =0, (1.47)

and

; ALE ;
K (@) = “o= cos@c?s® cos©sin® , (1.48)
Lo | cos@sin® cos@cos®

0

X
where ® = atan [-—gj is the angle between the original axis of the truss member and the positive

%
1
x-axis. In other words, when the motions become small, the geometric stiffness vanishes, and the

direct stiffness becomes the familiar stiffness matrix associated with a two-dimensional truss
member.
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Contact Nonlinearity

A final type of nonlinearity we wish to consider is that created due to contact with another |
deformable or rigid entity. As a simple model problem for this case, we refer to Figure 1.4, where

we consider a prescribed motion d of the left end of our one-dimensional rod and consider the
unknown displacement d of the right end to be subject to the constraint

g(d) = d-gg<0, (1.49)

where g, is the initial separation, or gap, between the right rod end and the rigid obstacle.

d
Figure 1.4  Schematic of the rigid obstacle problem.

Even if we assume that the motions are small and the material response of the rod is elastic, the
equations governing the response of our rod are nonlinear. To see this, let us choose d as our

unknown and construct the following residual R(d) for our system

AE L
R(d) = "—L—'(d—-d)'i'Fc, (1.50)
0
where F_, the contact force between the obstacle and the rod (assumed positive in compression),

is subject to the following constraints:
F.20; g(d)<0 and F_g(d)=0. (1.51)

Equations (1.51) are called Kuhn-Tucker conditions in mathematical parlance and physically
require that the contact force be compressive, that the rod end not interpenetrate the obstacle, and

that the contact force only be nonzero when g = 0; i.e., when contact between the rod and
obstacle occurs. In fact, F_ is a Lagrange multiplier in this problem, enforcing the kinematic

constraint (1.49). We see that the condition operating on the right end of the bar is neither a
Dirichlet nor a Neumann boundary condition; in fact, both the stress and the displacement at this
point are unknown but are related to each other through constraints (1.51).

Plots of the residual defined by (1.50) and (1.51) are given in Figure 1.5 for the two distinct cases

of interest: where contact does not occur (i.e., when d < g ) and where contact does occur (when

d = gg). The solutions (i.e., the zeros of R) are readily apparent. When no contact occurs,
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d = d, while in the case of contact, d = dq- The internal stresses generated in the bar are then
readily deduced.

One may note from Figure 1.5 some important practical features of this problem. First, in both
cases the admissible region for 4 is restricted to be less than g . Second, at the value & = g,

each diagram shows the residual to be multiple-valued, which is a direct consequence of the fact
that in this condition (i.e., where g = 0), F_ can be any positive number.

R R
] Pl
_ ! ZN
d 9o d d d
9o
or A,
LO L—O
(a) (b)

Figure 1.5  Plots of residuals versus displacement for rigid obstacle problem:
(a) the case where d < go (no contact) and (b) the case where
d =g, (contact).

Finally, although the solution to our simple model problem is readily guessed, we can see from
both cases that the plot of R versus d is only piecewise linear; the kink in each diagram indicates
the fact that a finite tangent stiffness operates when contact is not active, changing to an infinite
effective stiffness imposed by Egs. (1.51) when contact between rod and obstacle is detected.
This contact detection therefore becomes an important feature in general strategies for contact
problems and introduces both nonlinearities and nonsmoothnesses into the global equations as
this rather simple example demonstrates.
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Linear Elastic IBVP

Introduction and Notation

Having reviewed some relevant nonlinearities in the context of an admittedly simple structural
element, let us begin to generalize our problem description to encompass a larger group of
continuous bodies. We begin this development by first reviewing the basic equations of linear
elasticity, where we assume small motions and linear material behavior. This discussion will
provide the basis for a more general notational framework in the next section where we will
remove the kinematic restriction to small motions and also allow the material to behave in an
inelastic manner.

The notation we will use in this section is summarized in Figure 1.6, where we have depicted a
solid body positioned in three-dimensional Euclidean space or R . The set of spatial points x
defining the body is denoted by Q, and we consider the boundary 0 to be subdivided into two
regions, I', and T';, where Dirichlet and Neumann boundary conditions will be specified as
discussed below. We assume that these regions obey the following
r,Url; =0Q . (1.52)
rNi;,=9
The unknown, or dependent variable, in this problem is u, the vector-valued displacement
which, in general, depends upon x €  and time t.

9{3

Figure 1.6  Notation for the linear elastic initial/boundary value problem.

Equations of Motion

At any point in Q, the following statement of local linear momentum balance must hold:
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2

Vorsg = po % (1.53)

at”

Note that V - T denotes the divergence operator applied to T, the Cauchy stress tensor. The

vector £ denotes the distributed body force in £, with units of force per unit volume, and p
denotes the mass density, which need not be uniform. Equation (1.53) represents the balance of
linear momentum in so-called direct notation; balance of angular momentum is enforced by the

assumption that the tensor T is symmetric. We will frequently employ indicial notation in the
work that follows. Toward that end Eq. (1.53) can be reexpressed as

2
d u,
Tyt E; = pgt—z, (1.54)

where indices i and j run between 1 and 3, and repeated indices within a term of an expression
imply a summation over that index, that 1s:

3
0T, .
Tis5 = D, 5;1‘3 : (1.55)
j=1 7
One should take the notation B,j to indicate partial differentiation with respect to x; . When

using indicial notation repeated indices will always imply sums unless otherwise indicated.

As indicated above, the dependent variables are the u; , so it is necessary to specify the relation

between the displacements and the Cauchy stress. In linear elasticity this is accomplished by two
additional equations. The first is the strain-displacement relation:

1
Ejjy = Uy 5 = i(ui,j"'uj,i)’ (1.56)

where the notation u; 5, is used to denote the symmetric part of the displacement gradient. The

second equation is the linear constitutive relation between T, ; and E; 4, which is normally

i3>

written via

Note that C, 5y, is the fourth-order elasticity tensor, to be discussed further below. Equations

,(1.56) and (1.57) can also be written in direct notation via
E=Vus= %(Vu+VuT) (1.58)

and
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T = C:E, ' (1.59)

where the colon indicates double contraction of the fourth-order tensor C with the second-order
tensor E.

The fourth-order elasticity tensor C is ordinarily assumed to possess a number of symmetries that
greatly reduce the number of independent components that describe it. It possesses major

symmetry, which means C; sk1 = Cxaigo and it is also assumed to have minor symmetries,
meaning, for example, that C; ;,; = Cyyy; = Cy31x = Cy 41k - Another important property of

the elasticity tensor is positive definiteness, which implies in this context that

A;4C; 5x18ky > 0 for all symmetric tensors A (1.60)

A;5Cihyy = 0iff A=0. (1.61)

In the most general case, assuming the aforementioned symmetries and no others, the elasticity
tensor has 21 independent components. Various material symmetries reduce this number greatly,
with the most specific case being given by an isotropic material that possesses rotational
symmetry in all directions. In this case only two independent elastic constants are required to
specify C, which under these circumstances can be written as

Cijra = ;"Sijskl + u"[siksjl + 8115jk] ; (1.62)
where 3, ., the Kronecker delta, satisfies

Lif 1 =73

= : 1.63
+J {O otherwise (1.63)

and A and U denote the Lame parameters for the material. These can be written in terms of the
more familiar elastic modulus and Poisson’s ratio via

Ev

A= (1+v)(1-2v) (1.64)
- E
b= say (1.65)

The quantity p is also known as the shear modulus for the material.

Substitution of (1.58) and (1.59) into (1.53) gives a partial differential equation for the vector-
valued unknown displacement field u. Full specification of the problem at hand must include
suitable boundary and initial conditions as discussed next.
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Boundary and Initial Conditions

Paralleling the earlier discussion of the one-dimensional example, we will consider the
possibility of two types of boundary conditions, Dirichlet and Neumann. Dirichlet boundary

conditions will be imposed on the region I"  in Figure 1.6 as follows:
u(x, t) = 4(x t)vxe ', te (0, T). (1.66)

Note that u(x, t) denotes a prescribed displacement vector depending, in general, on spatial
position and time. The simplest and perhaps most common example of such a boundary
condition would be a fixed condition that, if imposed throughout the time interval of interest

(0, T) and for all of I' , would imply @(x, t) = 0.

The other type of boundary condition is a Neumann or traction boundary condition. To write
such a condition, we must first define the concept of fraction on a surface. If we use n to denote

the outward normal to the surface I'| ata point x € T, the traction vector t at x is defined via

t = Tn, (1.67)

or in indicial notation
t. = T..n.. (168)

Physically this vector represents a force per unit area acting on the external surface at x. A
Neumann boundary condition is then written in the current notation as

T((x%, t)n(x)) = t(x, t)Vxe I, te (0,T). (1.69)

Note that £(x, t) is the prescribed traction vector field on I'; x (0, T) . One could identify
several examples of such a boundary condition. An unfixed surface free of any external forcing
would be described by € = 0. A surface subject to a uniform pressure loading p, on the other

hand, could be described by setting £(x, t) = —pn(x), where we assume a compressive
pressure to be positive.

With these definitions in hand, we recall the restrictions (1.52) on I"; and I'; and physically

interpret them as follows: 1) one must specify either a traction or a displacement boundary
condition at every point of Q ; and 2) at each point of 92, one may not specify both the traction
and the displacement but must specify one or the other. In fact, these conditions are slightly more
stringent than required. For example, the problem remains well-posed if, for each component

direction i, we specify either the traction component t; or displacement component T, at each

point x € dQ2 as long as for a given spatial direction, we do not attempt to specify both.
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In other words, we may specify a displacement boundary condition in one direction at a point
while specifying a traction boundary condition in the other. An example of such a case would be
the common “roller” boundary condition where a point is free to move in a traction-free manner
tangent to an interface (i.e., a traction boundary condition), while being constrained from
movement in a direction normal to an interface (i.e., a displacement boundary condition). Of
course, a multitude of other boundary condition permutations could be identified. Thus, while we
choose a rather simple boundary condition restriction, summarized by (1.52), for notational
simplicity, it is important to realize that many other possibilities exist and require only minor
alterations of the methodology we will discuss.

The final important ingredient in our statement of the linear elastic problem is the specification of
initial conditions. One may note that our partial differential equation (1.53) is second order in
time; accordingly, two initial conditions are required. In the current context these amount to

initial conditions on the displacement u and the velocity i and can be rather straightforwardly
specified via

u(x, 0) = uy(x) on Q (1.70)

%2(,0) = vo(x) on Q, (L71)

where u,, and v are the prescribed initial displacement and velocity fields, respectively.

Problem Speciﬁceition

We now collect the equations and conditions of the past two sections into a single problem
statement for the linear elastic system shown in Figure 1.6. For the elastodynamic case this
problem falls into the category of an initial/boundary value problem, since both types of
conditions are included in its definition. Our problem is formally stated as follows:

Given the boundary conditions £ on I'; X (0, T) and @ on I' X (0, T), the initial conditions u,

and v, on Q, and the distributed body force £ on X (0, T), find the displacement field u on
Qx (0, T) such that:

2
V-T+f=pa—gonQX(O,T), (1.72)
ot
u(x, t) = 4(x, t)on [ x(0,T), (1.73)
t(x t) = E(x, t)on I x(0,T), (1.74)
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u(x, 0) = uy(x) on Q, (1.75)

a—u(x, 0) = vy(x) on Q, . (1.76)
ot
where the Cauchy stress T is given by

= C:(V u). (1.77)

Equations (1.72) through (1.77) constitute a linear hyperbolic initial/boundary value problem for
the dependent variable u.

The Quasistatic Approximation

Before leaving the elastic problem, it is worthwhile to discuss how our problem specification will
change if inertial effects are negligible in the equilibrium equations. This special case is often
referred to as the guasistatic assumption and considerably simplifies specification of the
problem.

Simply stated, the quasistatic assumption removes the second temporal derivative of u from
(1.72) thereby eliminating the need for initial conditions (1.73) and (1.74). Such an
approximation is appropriate when the loadings do not vary with time or when they vary over
time scales very much longer than the periods associated with the fundamental structural modes
of Q. It is convenient, however, to maintain time in our description of the problem for two

reasons: 1) the loadings € and £ and the displacement condition @ may still vary with time; and
2) when we consider more general classes of constitutive equations, we may wish to allow time
dependence in the stress/strain response. Accordingly, we state below a boundary value problem
appropriate for quasistatic response of a linear elastic system.

Given the boundary conditions € on I'; X (0, T), @ on I', X (0, T), and the distributed body

force £ on £2 X (0, T), find the displacement field u on Qx (0, T) such that:

V- o+£f =00nQx(0,T), (1.78)
u(x, t) = a(x, tyonI' x(0,T), (1.79)
t(x, t) = E(x, t)on ;% (0, T), (1.80)

where the Cauchy stress T is given by

T = ¢:(V,u). (1.81)
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We note in passing that given a time t € (0, T), Egs. (1.78) through (1.81) constitute a linear,
elliptic boundary value problem governing the dependent variable u.
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Weak Forms

Introduction

A key feature of the finite element method is the form of the boundary value problem (or initial/
boundary value problem in the case of dynamics) that is discretized. More specifically the finite
element method is one of a large number of variational methods that rely on the approximation of
integral forms of the governing equations. In this section we briefly examine how such integral
(alternatively, weak or variational) forms are constructed for the linear elastic system we have
introduced.

Quasistatic Case

It proves convenient from notational and conceptual viewpoints to consider the quasistatic case
first. Accordingly, we recall Egs. (1.78) through (1.81) and explore an alternative manner in
which these conditions can be stated. We consider a collection of vector-valued functions w that
we call weighting functions for reasons that will soon be clear. We require that these functions

w:l — R satisfy
w=0onl,. (1.82)

Furthermore, it is assumed that these functions are sufficiently smooth so that all partial
derivatives can be computed. Suppose we have the solution u of Eqgs. (1.78)-(1.81). We can then

take any smooth function w satisfying (1.82) and compute its dot product with (1.78), which
must produce

w-(V-T+£) =0onQ (1.83)

at each time t € (0, T). We can then integrate (1.83) over Q to obtain
[w-(V-z+£)aQ = 0. (1.84)
Q

Equation (1.84) can be manipulated further by noting that
w-(V-?) = V. (Tw) - (Vw):T (1.85)

(product rule of differentiation) and by also taking advantage of the divergence theorem from
multivariate calculus:

J.V‘(Tw)dQ = j(n-mw)dr. (1.86)
Q : o
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Note that n is the outward directed normal on dQ, and 4T is a differential area of this surface.
Use of Eqs. (1.85) and (1.86) in (1.84) and rearranging gives

j(vw):-rdg = jw~ £4Q + J(n~Tw)d1". (1.87)
Q Q oQ

Taking advantage of the symmetry of T and noting, from Eq. (1.67), that the surface traction t
equals Tn, we can write:

j(n~-rw)dr = j(w- Tn)dl" = jw-tdr. (1.88)
aQ oQ oQ

We now recall restrictions (1.52), which tell us that dQ is the union of I'; and I';. Since by

definition w = Oon I' , we can write

jw.tdr= jw-tdﬁjw.tdr: jw-Edr, (1.89)
oQ T T r

u o G
where the last equality incorporates the boundary condition t = & on I'y.
We collect these calculations to conclude
j(vw):-rdg = jw-fd.Q+ J'W'Edl", (1.90)
Q Q r

[«

which must hold for the solution u of Eqs. (1.78)-(1.81) for any w Satisfying condition (1.82).

In order to complete our alternative statement of the boundary value problem, the concepts of
solution and variational spaces need to be introduced. Let us define the solution space S,

corresponding to time t via
S, = {uju=1u(t)on T, uissmooth} (1.91)
and the weighting space W via
W = {w|jw=0o0nTI, wissmooth}. (1.92)

With these two collections of functions in hand, let us consider the following alternative
statement of the boundary value problem summarized by Eqs.(1.78)-(1.81):

Given the boundary conditions € on I'; X (0, T), @ on I', X (0, T), and the distributed body
force £ on Qx (0, T), find the u e S, for each time t € (0, T) such that:
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j(vw):-rdg = jw~fdg+ jw.Edr (1.93)
Q Q r

[)

for all we W, where S, is as defined in (1.91), W is as defined in (1.92), and where the Cauchy

stress T is given by
T = C:(V, u). (1.94)

Since it explicitly requires only a weighted integral of the governing partial differential equation
to be zero, rather than the differential equation itself, this statement of the boundary value
problem is often referred to as a weak formulation.

Based upon the above derivation of the weak form, it should be clear that the solution u of Egs.
(1.78)-(1.81) (sometimes referred to as the strong form) will satisfy our alternative statement
summarized by Eqgs. (1.93) and (1.94). Less clear is the fact that solutions of the weak form will
satisfy the strong form, as must be true for the two problem statements to be truly equivalent.
Although not established here this equivalency can be rigorously established; the interested
reader should consult [Hughes, T.J.R., 1987] for details. In the present discussion we simply
remark that the equivalent argument depends crucially on the satisfaction of (1.93) forall we W,

with the arbitrariness of w rendering the two statements completely equivalent.

Peeking ahead to numerical strategies, we can also remark that approximate methods will in
effect narrow our definitions of the solution and weighting spaces to so-called finite-dimensional
subspaces. Simply stated, this means that rather than including the infinite number of smooth u
and w satisfying the requisite boundary conditions in our problem definition, we will restrict our

attention to some finite number of functions comprising subsets of S and W.

In so doing we introduce a difference between the solution of our (now approximate) weak form
and the strong form, where the degree of approximation is directly related to the difference
between the full solution and weighting spaces and the subsets of them used in the numerical
procedure.

Finally, it is worthwhile at this point to make a connection to so-called virtual work methods that
may be more familiar to readers versed in linear structural mechanics. In this derivation we will
work in indicial notation so that the meaning of the direction notation statements above can be

reinforced. Accordingly, for a possible solution u; of the governing equations, let us write the

following expression for the total potential energy of the system at hand:

1
Q

, (1.95)
—Duifidﬂ— juiEidr]
Q r

C

Theory Manual Formulation of Nonlinear Problems - Weak Forms - Quasistatic Case 24




Note that the first term on the right-hand side represents the total strain energy associated with
u; , and the last two terms represent the potential energy of the applied loadings £; and t;. A

virtual work principle for this system simply states that the potential energy defined in (1.95)
should be minimized by the equilibrium solution. Accordingly, let u; now represent the actual

equilibrium solution. We can represent any other, kinematically admissible displacement field via
u; + €w; , where € is a scalar parameter (not necessarily small), and w; is a so-called virtual

displacement that we assume to obey the boundary conditions outlined in (1.82). This restriction
on the w; causes u; + &€w; to satisfy the Dirichlet boundary conditions (hence the term
“kinematically admissible”) because the solution u; does. We can write the total energy

associated with any of these possible solutions via

1
Q

(1.96)
- j(ui +ew,;)f,dQ - J' (u; +ew,)t;dl
Q T

g
We now note that if the potential energy associated with u; is to be lower than that of any other
possible solution u, + €w, , then the derivative of P(u, +&w,) with respectto € ate = 0 (i.e.,

at the solution u; ) should be zero for any w; satisfying conditions (1.82), since u; is an

extremum point of the function P. Computing this derivative of (1.96) and setting the result equal ‘
to zero yields

J ¥, 5)Ce st 1)8Q
4] puyrewy) =|° = 0, (1.97)
dele-¢ _JwifidQ—J.wiEidr
Q T,
which must hold for all w, satisfying the boundary condition on I' ;. Equation (1.97) can be
manipulated further by noting that
Wi, 5% 1) T W5, 5)CixEa (1.98)

= Wi, )Ty = Wi, 5Ts5

The last equality in (1.98), while perhaps not intuitively obvious, holds because of the symmetry
of T ij
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Use of (1.98) in (1.97) yields

jwlj 1599~ jwfd@ jwtdr_o (1.100)

0’

which is seen to be nothing more than the indicial notation counterpart of (1.93). Summarizing,
we see that the weak or integral form of the governing equations developed previously can be
interpreted as a statement of the principle of minimum potential energy. It is because of this

alternative viewpoint that the weighting functions w, are sometimes called variations or virtual

displacements, with the terminology used often depending upon the mathematical and physical
arguments used to develop the weak form.

Despite the usefulness of this physical interpretation, it should be noted that the presence of an
energy principle is somewhat specific to the case at hand and may be difficult or impossible to
deduce for many of the nonlinear systems to be considered in our later study. For example, many
systems are not conservative, including those featuring inelasticity, so at best our thermodynamic
understanding must be expanded if we insist on formulating such problems in terms of energy
principles. Thus while the energy interpretation is enlightening for many systems, including
those featuring elastic continuum and/or structural response, insistence on this approach for more
general applications of variational methods can be quite limiting. It is noteworthy, for example,
that the derivation given in Eqgs. (1.83)-(1.90) depended in no way upon the system being
conservative or even upon the form of the constitutive equation used. We will exploit the
generality of this weighted residual derivation as we increase the level of nonlinearity and
complexity in the chapters to come.

Fully Dynamic Case

Another advantage of the weighted residual approach is that it can be straightforwardly applied
to dynamic problems. Before examining the dynamic case in detail, whose development parallels
that of quasistatic problems, it is worthwhile to emphasize again the definitions of the weighting
and solution spaces and to highlight the differences between them. Examining the definition of

S, in (1.91) and that of W in (1.92), we see that S_ depends on t through the boundary

conditions on I', while W is independent of time. We retain these definitions in the current cas,

and pose the following problem corresponding to the elastodynamic system posed in the last
section:
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Given the boundary conditions £ on I'; X (0, T) and @ on I' X (0, T), the initial conditions u,
and v, on £, and the distributed body force £ on Q x (0, T), find the u € S, for each time
t € (0, T) such that:
2
jpw-é—‘-‘z_dg+j(vw):wdg = jw-fdcz+jw.1‘;dr (1.101)
o ot Q Q T

for all we W, where S is as defined in (1.91), Wis as defined in (1.92), and where the Cauchy
stress T is given by

T = c:(V,ou). (1.102)

In addition, the solution u is subject to the following conditions at t = O:
jw-(u(())—uo)d.Q =0 (1.103)
Q

and
jw-(-gf’t-(m-vo)dg =0, (1.104)
Q

both of which must hold for all we W.

The integral form of the dynamic equations given in (1.101) is obtained just as was done in the
quasistatic case, by taking the dynamic governing partial differential equation (1.72) and
multiplying it by a weighting function, integrating over the body, and applying integration by
parts to the stress divergence term. The new ingredients in the current specification are the initial
conditions summarized by Eqgs. (1.103) and (1.104) but should be recognized by the reader as
simple weighted residual expressions of the strong form of the initial conditions given in Egs.
(1.75) and (1.76).

Before leaving this section, we reemphasize the fact that the weighting functions are time
independent while the solution spaces remain time dependent. This fact will have important
consequences later when numerical algorithms are discussed because, in effect, we will wish to

use the same classes of functions in our discrete representations of W and S, . These
discretizations will involve spatial approximation, which in the case of S, will leave the time

variable continuous in the discrete unknowns of the system to be solved.

This semidiscrete approach to transient problems is pervasive in computational mechanics and
has its origin in the current context in the fundamental difference between the weighting and
solution spaces.
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Large Deformation Problems

Introduction

In this section we extend our discussion of the linear elastic problem to accommodate two
important features: potentially large motions and deformations, and nonlinear material response.
We will do this by introducing a more general notational framework in which we will work
throughout the text and then by examining in a fairly nonrigorous fashion how, provided certain
concepts are kept in mind, the equations governing large deformation initial/boundary value
problems are similar in form to their familiar counterparts from the small deformation theory.
Rigorous prescription and understanding of large deformation problems can only be achieved
through a careful examination of the concepts of nonlinear continuum mechanics, which will be
the concern of the next chapter.

Notational Framework

The basic system we wish to consider is depicted schematically in Figure 1.7. We consider a
body, initially in a location denoted by €2, undergoing a time-dependent motion ¢ that describes

its trajectory through the ambient space (assumed here to be R ). The set € is called the

reference configuration and can be thought of as consisting of points X that serve as labels for the
material points existing at their respective locations.

9{3

Figure 1.7  Notation for large deformation initial/boundary value problems.

For this reason the coordinates X are often called reference or material coordinates. We assume,
as before, that the surface dQ of Q can be decomposed into subsets I'; and T' , obeying

restrictions (1.52). The general interpretation of these surfaces remains the same: traction

Theory Manual Formulation of Nonlinear Problems - Large Deformation Problems 28



boundary conditions will be imposed on I, and displacement boundary conditions will be

imposed on I',, . Full specification of these boundary conditions must be deferred, however, until

some continuum mechanical preliminaries are discussed.

We have mentioned that the motion @ is, in general, time dependent. In fact, we could write this
fact in mathematical terms as @:Q x (0, T) — R . If we fix the time argument of ¢, we obtain a
configuration mapping @, summarized as (pt:§_2 SR , which gives us the location of the body
attime t given the reference configuration Q. Coordinates in the current location ¢, () of the

body will be denoted by x.

The current location is often called the spatial configuration and the coordinates, x, spatial

coordinates. Given a material point X € Q and a configuration mapping ¢, we may write

% = @.(X). (1.105)

A key decision in writing the equations of motion for this system is whether to express the
equations in terms of X € Q or x€ @ (L2).

Lagrangian and Eulerian Descriptions

The choice of whether to use reference coordinates X or spatial coordinates x in the problem
description is generally highly dependent on the physical system to be studied. For example,
suppose we wish to write the equations of motion for a gas flowing through a duct or for a fluid
flowing through a nozzle. In these cases the physical region of interest (the control volume
bounded by the duct or nozzle) is fixed and does not depend on the solution or time.

It could also be observed that identification of individual particle trajectories in such problems is
probably not of primary interest, with such quantities as pressure, velocity, temperature, and so
forth at particular locations in the flow field being more desirable. In such problems it is
generally most appropriate to associate field variables and equations with spatial points or in the -

current notation, points x. A system described in this manner is said to be utilizing the Eulerian
description and implicitly associates all field variables and equations with spatial points x
without specific regard for the material points X involved in the flow of the problem. Most fluid

and gas dynamics problems are written this way, as are problems in hydrodynamics and some
problems in solid mechanics involving fully developed plastic flow.

When thinking of Eulerian coordinate systems, it is sometimes useful to invoke the analogy of
watching an event through a window: the window represents the Eulerian frame and has our
coordinate system attached to it. Particles pass through our field of view thereby defining a flow,
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but we describe this flow from the frame of reference of our window without specific reference to
the particles undergoing the motion we observe.

In most solid mechanics applications, by contrast, the identity of specific material particles is of
central interest in modeling a system. For example, the plastic response of metals is history
dependent, meaning that the current relationship between stress and strain at a point in the
medium depends on the deformation history associated with that material point. To use such
models effectively requires knowledge of the history of individual particles, or material points,
throughout a deformation process. Furthermore, many physical processes we wish to describe do
not lend themselves to an invariant Eulerian frame: in a forging process, for example, the metal at
the end of the procedure occupies a very different region in space than it did at the outset. For
these and other reasons, the predominant approach to solid mechanics systems is to write all
equations in terms of material coordinates or to use the Lagrangian frame of reference.

Returning to the notation summarized in Figure 1.7, we associate all field variables and equations

with points X € Q and keep track of these reference particles throughout the process. One may
note, in the last subsection, a bias toward this approach already; namely, we have written the
primary unknown in the problem (@) as a function of X € Q and t € (0, T).

Governing Equations in the Spatial Frame

With the above discussion as background, we turn now to the equations of motion governing the
motion of a medium. Interestingly if we adopt for the moment the spatial frame as our frame of
reference, the form of these equations is largely unchanged from the linear elastic case presented

previously. Let us fix our attention on some time t € (0, T) and consider the current location
(unfortunately unknown to us) of the body 2. Over this region ¢.(Q), the following conditions
must hold:

V.T+£ = paon @ (Q), (1.106)
¢ = ¢ on ¢ (T), (1.107)

and
t =tono (), (1.108)

subject, of course, also to initial conditions at t = 0. Some explanation of these equations is
necessary. The nabla operator V in (1.106) is to be interpreted as being with respect to spatial
coordinates x.

The acceleration a is referred to spatial coordinates but is the (material) acceleration of the

particle currently at x, and (Ft is to be interpreted as a given or prescribed location for particles
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on the Dirichlet boundary. We leave the constitutive law governing T unspecified at this point
but remark that, in general, the stress must depend on @ through appropriate strain/

displacement and stress/strain relations. What we see from Eqgs. (1.106) through (1.108) is that
the equations of motion are easily written in the form inherited from the kinematically linear case
but that the frame in which this is done, the spatial frame, is not independent of the unknown

field @ but relies upon it for its own definition.

Thus although the equations we now consider are essentially identical in form to those from
linear elasticity, they possess a considerably more complex relationship to the dependent
variable. As will be provided in the next chapter, full and rigorous specification of this more
general boundary value problem requires an in-depth treatment of the continuum mechanics of
large deformations.

Before leaving this topic, an item that frequently causes confusion should be addressed. Although
we have written the governing equations in (1.106) through (1.108) in terms of the spatial
domain, this does not imply an Eulerian statement of the problem at hand. In fact, if we choose

(as we have done) to consider our dependent variable (in this case ¢, ) to be a function of
reference coordinates, the framework we choose is inherently Lagrangian. Another way of saying
this is that Egs. (1.106)-(1.108) are the Lagrangian equations of motion which have been
converted through a change-of-variables so that they are written in terms of x. In the remainder
of this text, the reader should assume a Lagrangian framework unless otherwise noted.
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