’ == Ch .
LA-UR- /)~ O
Approved for public release;
distribution is unlimited.

Title: | Spacial and Objective Decompositions for Very Large
SCAPs

Author(s): | Russell Bent
Pascal Van Hentenryck
Carleton Coffrin

Intended for: | 2011 Informs Computing Society Conference

L
Loz Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Spacial and Objective Decompositions
for Very Large SCAPs

Pascal Van Hentenryck!, Russell Bent?, and Carleton Coffrin’

! Brown University, Providence RI 02912, USA
2 Los Alamos National Laboratory, Los Alamos NM 87545, USA

Abstract. This paper considers the single commodity allocation prob-
lem (SCAP) for disaster recovery, a fundamental problem faced by all
populated areas [11]. SCAPs are complex stochastic optimization prob-
lems that combine resource allocation, warchouse routing, and parallel
feet routing. Moreover, these problems must be solved under tight run-
time constraints to be practical in real-world disaster situations. This
paper revisits the SCAP algorithm proposed in [11] and proposes new
storage allocation models that are necessary to enable the algorithm to
scale to problem sizes of three orders of magnitude greater (250, 500,
1000 storage locations). The new algorithms are validated on large-scale
hurricane disaster scenarios generated by Los Alamos National Labora-
tory using state-of-the-art disaster simulation tools.

1 Background & Motivation

Every year seasonal hurricanes threaten coastal areas. The severity of hurricane
damage varies from year to year, but considerable human and monetary resources
are always spent to prepare for and recover from these disasters. It is policy
makers who make the critical decisions relating to how money and resources are
allocated for preparation and recovery. At this time, preparation and recovery
plans developed by policy makers are often ad hoc and rely on available subject
matter expertise. Furthermore, the National Hurricane Center (NHC) of the
National Weather Service in the United States (among others) is highly skilled
at generating ensembles of possible hurricane tracks but current preparation
methods often ignore this information.

Previous work has been successful in solving this problem more rigorously
by combining optimization techniques and disaster-specific information given
by NHC predictions [11]. The problem is not only hard from a combinatorial
optimization standpoint, but it is also inherently stochastic because the exact
outcome of the disaster is unknown. Although humans have difficulty reason-
ing over uncertain data, recent work in the optimization community [13,4,11]
has shown that stochastic optimization techniques can overcome this difficulty
and find robust solutions to problems with uncertainty. However, prior work
on SCAPs only considered problems with up to 100 storage locations, although
large-scale planning may require as many as 1000 storage locations. The start-of-
the-art algorithm from [11] has difficulties to scaling problems with 250 storage
locations and really thrashes for larger instances.

The purpose of this paper is to investigate how to enhance the state-of-the-
art algorithms to tackle the large-scale SCAP instances. It demonstrates that
spatial and objective decompositions allow the original SCAP algorithin to scale
to much larger instances. More precisely, this paper makes the following technical
contributions:

L. It investigates scalability issues of the original multi-stage SCAP algorithm.

2. It proposes two enhancements to the multi-stage SCAP algorithm: an ag-
gregate storage model and a sequential storage model. The former model is
particularly appropriate for large instances, while the latter is best suited
for very large instances.

3. It validates the resulting models on the delivery of potable water for hurri-
cane recovery.

Section 2 of this paper reviews similar work on disaster preparation and recovery
problems. Section 3 presents a mathematical formulation of the disaster recovery
problem and sets up the notations for the rest of paper. Section 4 reviews the
overall approach for solving SCAPs as presented in [11]. Section 5 presents the
new stochastic storage formulations using (hopefully) intuitive models. Section
6 reports the experimental results of our algorithm modifications on benchmark
instances to validate the approach and Section 7 concludes the paper.

2 Previous Work

The operations research community has been investigating the field of human-
itarian logistics since the 1990s but recent disasters have brought increased at-
tention to these kinds of logistical problems [16,3, 8, 7]. Humanitarian logistics
is filled with a wide variety of optimization problems that combine aspects from
classic problems in inventory routing, supply chain management, warehouse lo-
cation, and vehicle routing. The problems posed by humanitarian logistics add
significant complexity to their classical variants. The operations research com-
munity recognizes that novel research in this area is required to solve these kinds
of problems [16,3]. Some of the key features that characterize these problems
are as follows:

1. Multi-Objective Functions - High-stake disaster situations often have to
balance conflicting objective goals (e.g. operational costs, speed of service,
and unserved customers) (2,6, 1,10, 11].

2. Non-Standard Objective Functions - A makespan time objective in
VRPs (2,5, 11] or equitability objectives [1].

3. Arbitrary Side Constraints - Limited resources, a fixed vehicle fleet [1,
11], fixed latest delivery time [2,1], or a insufficient preparation budget [6,
9,11].

4. Stochastic Aspects - Disasters are inherently unpredictable. Preparations
and recovery plans must be robust with respect to many scenarios [6,10, 11].

: O
HYY @)
o)
= .%o
; Iy o 906
) . OOO

Fig. 1. Populated Area Abstraction

Humanitarian logistics also studies these problems at a variety of scales in both
space and time. Some problems consider a global scale with time measured in
days and weeks [6], while others focus on the minute-by-minute details of de-
livering supplies from local warehouses directly to the survivors [2,1,11]. This
paper considers a scale which is often called the “last mile” of distribution. This
involves warehouse selection and customer delivery at the city and state scale.

The operations research community has mainly formulated these problems
using MIP models. Many of the humanitarian logistics problems are complex
and MIP formulations do not always scale to real world instances [1,2]. Ad-
ditionally, it was shown that MIP solvers can have difficulty with some of the
unique features of these kinds of problems even when problem sizes are small
(e.g., with minimizing the latest delivery time in VRPs [5]). Local search tech-
niques are often used to scale the problems to real world instances [2,5]. [11]
demonstrated that hybrid optimization and decomposition methods can yield
high-quality solutions to such challenges and scale to real-world instances. This
work extends the work of [11] and shows that additional decomposition can
provide significant scaleability. To the best of our knowledge, this is the first
time that SCAPs with over 100 storage locations have been solved.

3 The Single Commodity Allocation Problem (SCAP)

In formalizing SCAPs, a populated area is represented as a graph G = (V, E)
where V' represents those sites of interest to the allocation problem, i.e., sites
requiring the commodity after the disaster (e.g., hospitals, shelters, and public
buildings) and vehicle storage depots. The required commodity can be stored
at any node of the graph subject to some side constraints and the graph edges
have weights representing travel times. Figure 1 illustrates this transformation.
The weights on the edges form a metric space but it is not Euclidean due to the
transportation infrastructure. Moreover, the travel times can vary in different
disaster scenarios due to road damage. The primary outputs of a SCAP are (1)

age

PN

Delivery Delivery Delivery
Plan 1 Plan 2 Plan a

Fig. 2. SCAP Solution

Qutput:
The amount stored at each warehouse
Delivery schedules for each vehicle

Given:

Repositories: Rie(. .n
Capacity: RC:
Investment Cost: R,
Maintenance Cost: RM;

Vehicles: Viey. m

Minimize:
W, = Unserved Demands +
. i -
Capacity: VC Wy « MAXY . Tour Time;+
. W, # Investment Cost 4
Start Depot: D; A —
= % i)
End Depot: D] = ¥ Vaintenance oS

Scenario Data: Sie1.a
Scenario Probability: P
Available Sites: AR; C {1..n}
Site Demand: Ci) »
Travel Time Matrix: T3 1.1,1.1
Weights: W, W,, W,
Budget: B

Subject To:
Vehicle and site capacities
Vehicles start and end locations
Costs < B

Notes:
Every warehouse that stores a unit
must be visited at least once

Fig. 3. Single Commodity Allocation Problem Specification

the amount of commodity to be stored at each node; (2) for each scenario and
each vehicle, the best plan to deliver the commodities (Figure 2 depicts a SCAP
solution). Figure 3 summarizes the entire problem, which we now describe in
detail.

Qbjectives The objective function aims at minimizing three factors: (1) The
amount of unsatisfied demands; (2) the time it takes to meet those demands; (3)
the cost of storing the commodity. Since these values are not expressed in the
same units, it is not always clear how to combine them into a single objective
function. Furthermore, their relative importance is typically decided by policy
makers on a case-by-case basis. For these reasons, this specification uses weights
W,., W,, and W, to balance the objectives and to give control to policy makers.

Side Constraints The first set of side constraints concerns the nodes of the graph
which represent the repositories in the populated area. Each repository Ricy.n
has a maximum capacity RC; to store the commodity. It also has a one-time

initial cost RI; (the investment cost) and an incremental cost RM; for each
unit of commodity to be stored. As policy makers often work within budget
constraints, the sum of all costs in the system must be less than a budget B.

The second set of side constraints concerns the deliveries. We are given a
fleet of m vehicles Vigy ,» which are homogeneous in terms of their capacity
VC. Each vehicle has a unique starting depot D;” and ending depot D, . Unlike
classic vehicle routing problems [15, customer demands in SCAPs often exceed
the vehicle capacity and hence multiple deliveries are often required to serve a
single customer.

Stochasticity SCAPs are specified by a set of a different disaster scenarios Sie1..a,
each with an associated probability P;. After a disaster, some sites are damaged
and each scenario has a set AR; of available sites where the stored commodities
remain intact. Moreover, each scenario specifies, for each repository R;, the de-
mand C;. Note that a repository may have a demand even if that repository is
not available. Finally, site-to-site travel times T} 1. ;1.1 (where [= |V|) are given
for each scenario and capture infrastructure damages.

Unique Features Although different aspects of this problem were studied before
in the context of vehicle routing, location routing, inventory management, and
humanitarian logistics, SCAPs present unique features. Farlier work in location-
routing problems (LRP) assumes that (1) customers and warehouses (storage
locations) are disjoint sets; (2) the number of warehouses is 2 3..10; (3) customer
demands are less than the vehicle capacity; (4) customer demands are atomic

None of these assumptions hold in the SCAP context. In a SCAP, it may not
only be necessary to serve a customer with multiple trips but, due to the storage
capacity constraints, those trips may need to come from different warehouses.
The key features of SCAP are: (1) each site can be a warehouse and/or customer;
(2) one warehouse may have to make many trips to a single customer; (3) one
customer may be served by many warehouses; (4) the number of available vehicles
is fixed; (5) vehicles start and end in different depots; (6) the objective is to
minimize the time of the last delivery. Minimizing the time of the last delivery is
a very difficult aspect of this problem as in demonstrated in [5], but we will show
that the stochastic storage decisions quickly become the most difficult aspect as
the number of storage locations increases.

4 The Basic Approach

This section reviews the state-of-the-art algorithm for solving the SCAP prob-
lem, which is discussed in detail in [11]. Our extensions to this work are covered
in Section 5. Due to the complex stochastic nature of the SCAP problem the
previous work proposed a multi-stage algorithm that decomposes the storage,
customer allocation, and routing decisions. The stages and the key decisions of
each stage are as follows:

MuLTi-STAGE-SCAP(G)
D «+ StochasticStorageProblem(G)
for sel.a
do C — CustomerAllocationProblem(G,, D,)
for wel.mn
do T « RepositoryPathRoutingProblem(Gs,C.,)
I — AggregateFleetRouting(Gs, T)
S; — PathBasedFeetRouting(Gs, T,T)
return S

06 =1 T W R

Fig. 4. The Hybrid Stochastic Optimization Algorithm for SCAPs.

1. Storage: Which repositories store the commodity and how much do they
store?

2. Customer Allocation: How is the stored commodity allocated to each
customer?

3. Repository Routing: For each repository, what is the best customer dis-
tribution plan?

4. Fleet Routing: How to visit the repositories to minimize the time of the
last, delivery?

The decisions of each stage are considered independently and use the optimiza-
tion technique most appropriate to their nature. The first two stages are formu-
lated as MIPs, the third stage is solved optimally using constraint programming,
and the forth stage uses large neighborhood search (LNS). The algorithm pre-
sented in [11] for solving a SCAP instance G is reproduced in Figure 4.

This work only considers modifications to the stochastic storage stage of
the algorithm and uses identical algorithms for the customer allocation and
routing aspects of the problem. Hence we only review the stochastic storage
model presented in [11] and omit the description of the other algorithms.

Stochastic Storage Model (SSM) The first stage captures the cost and demand
objectives precisely but approximates the routing aspects. In particular, the
model only considers the time to move the commodity from the repository to
a customer, not the maximum delivery times. Let D be a set of delivery triples
of the form (source, destination, quantity). The delivery-time component of the
objective is replaced by

Wy, * Z Tsaxq/VC
(s.d,q)ED

Figure 5 presents the SSM formulation, which scales well with the number of
disaster scenarios because the number of integer variables only depends on the
number of sites n. The meaning of the decision variables is explained in the fig-
ure. Once the storage and customer allocation are computed, the uncertainty is

Variables:
Storedie; - € (0, RC;) - Units stored
Openier » € {0,1} - More than zero units stored flag

StoredSaved,c aic1.n € (0,C. ;) - Units used at the storage location
StoredSentsey. aie1.a € (0, RC;) - Total units shipped to other locations
Incomingsei. a,ic1.» € (0,Cs ;) - Total units coming from other locations
Unsatisfied .| 4 .e1..n € (0,Cs:) - Demand not satisfied

Sentsei. aicr.n el € (0, RCi/VC) - Trips needed from i to j

Minimize:
Wex > Pox Y Unsatisfied, ;+
sEl.a i€l.n
W, * Z Py ¥ Z Z Tsi * Sents .+
s€l..a i€l.njEl.n
W, = Z (RI; = Open; + RM; * Stored;)
i€l..n
Subject To:
> (RI «Open, + RM, = Stored;) < B
i€l.n

RC; « Open; > Stored; Vi
StoredSaveds : + Incomings: + Unsatisfied, ; = Csi Vs,i
StoredSaveds ; + StoredSent, ; < Stored; Vs,1
Z VC = Sent;s s ; = StoredSent; Vs, i
JE1.n
Z VC = Sents ;: = Incoming, Vs,i

JEL.n
StoredSaved, ; + StoredSents; =0 Vs,1 where ¢ not in AR,

Fig. 5. Stochastic Storage Model MIP Formulation

revealed and the second stage reduces to a deterministic multi-depot, multiple-
vehicle capacitated routing problem whose objective consists in minimizing the
latest delivery. One of the difficulties in this setting is that the customer de-
mand is typically much larger than the vehicle capacity. As a result, the routing
is solved in two steps. First each repository is considered independently and
a number of vehicle trips are determined to serve the repositories customers
(Repository Routing). A trip is a tour that starts at the depot, visits customers,
returns to the depot, and satisfies the vehicle capacity constraints. Second how
to route the vehicles to perform all the trips and minimize the latest delivery
time is determined (Fleet Routing).

5 Modeling and Algorithmic Enhancements

The runtime results presented in [11] indicate that the Fleet Routing stage of
the algorithm is the dominant factor in the algorithm runtime. However, for
instances with more than 100 storage locations, the SSM quickly dominates the

L]
o« °
L]
[]
L]
] L]
L]
[]
L]
[]
L]
[]
Repository Repository Flow Meta-Edge
Locations Clustering Aggregation Detail

Fig. 6. Storage Clustering and Flow Aggregation.

runtime (see Section 6 for numerical evidence). This is particularly problematic
for performance because the stochastic storage stage is the only algorithmic part
that cannot be easily parallelized. In this section, we present two alternative
models for the stochastic storage problem that provide significant benefits for
scalability. Both stochastic storage models rely on a key observation: In the
baseline algorithm (Figure 4), a customer allocation is computed in the SSM and
then recomputed in the customer allocation stage. This means when a customer
allocation stage is used only the storage decisions are a necessary output of
the SSM. Both of these models achieve faster performance by approximating or
ignoring the customer allocation in the stochastic storage problem. 3

Aggregate Stochastic Storage Model (ASSM) In the SSM, the number of variables
required for the customer allocation is quadratic in the number of repositories
and multiplicative in the number of scenarios (i.e., an?). The number of variables
can easily be over one million when the number of repositories exceeds two
hundred. Problems of this size can take up to 30 seconds to solve with a linear-
programming solver and the resulting MIP can take several hours to complete.
Our goal is thus to reduce the number of variables in the MIP solver significantly,
without degrading the quality of the solutions too much.

The ASSM is inspired by observations of the solutions produced by the base-
line algorithm. Customers are generally served by storage locations that are
nearby and commodities are only transported over large distances in extreme
circumstances. We exploit this observation by using a geographic clustering of
the repositories. Given a mapping of the repositories into clusters, we say that

3 It is also worth noting these model formulations assume that the transportation
network is fully connected, however it is easy to imagine how these models could be
extended to a disconnected network by reasoning on the connected components of
the network.

two repositories are nearby if they are in the same cluster; otherwise the reposi-
tories are far away. Repositories that are nearby have a tightly-coupled supply
and demand relationship so the model needs as much flexibility as possible in
mapping the supplies to the demands. This flexibility is achieved by allowing
commodities to flow between each pair of repositories within a cluster (as was
done in SSM). When repositories are far away, the precise supply and demand
relationship is not as crucial since the warehouse to customer relationship is
calculated in the customer allocation stage of the algorithm. As a result, it is
sufficient to reason about the aggregate flow moving between two clusters at this
stage of the algorithm. The aggregate flows are modeled by introducing meta-
edges between each pair of clusters. If some demands from cluster C, must be
met by storage locations from cluster Cy, then the sending repositories in Cy, pool
their commodities in a single meta-edge that flows from Cj to C,. The receiving
repositories in C, then divide up the pooled commaodities in the meta-edge from
Cy to meet all of their demands. Additionally, if each meta-edge is assigned a
travel cost, the meta-edge can approximate the number of trips required between
two clusters by simply dividing the total amount of commodities by the vehicle
capacity, as is the case for all the other flow edges. Figure 6 visually indicates how
a clustering is used to generate the flow decision variables and how commodities
can flow on meta-edges between customers in different clusters.

As stated above, the number of variables in the SSM is quadratic in the
number of repositories. Given a clustering Cluster;e; ., the number of vari-
ables in the clustered storage model is (1) quadratic within each cluster (i.e.,
> iy Cluster?); (2) quadratic in the number of clusters, (i.e., ¢); (3) and linear
in the repositories connections to the clusters (i.e., 2n¢). The exact number of
variables clearly depends on the considered clustering. However, given a specific
number ¢ of clusters, a lower bound on the number of variables is obtained by
dividing the repositories evenly among the all clusters, and the best possible
variable reduction on a problem of size n with ¢ clusters is thus a(«’%:— +2nc+c?).

Given a clustering Cluster;e;. . and cluster to cluster travel times CT; .,
the Clustered Storage MIP is presented in Figure 7. The meaning of the decision
variables is explained in the figure.

Sequential Stochastic Storage Model (SSSM) The ASSM significantly decreases
the number of variables but it still requires creating a quadratic number of
variables for the repositories inside each cluster. Since this is multiplied by the
number of scenarios, the resulting number of variables can still be prohibitive
for very-large instances.

We now investigate another approach whose idea is to decompose the objec-
tive function. It relies on the observation that, in practice, policy makers often
set the values of W, W, W, such that the objective is lexicographic in demand,
delivery times, and money (i.e., W, > W, > W,). Let us contemplate what
this means for the behavior of the model algorithm as the budget parameter
B is varied. With a lexicographic objective, the model will first try to meet as
many demands as possible. If the demands can be met, it will reduce delivery
times until it cannot be reduced further or the budget is exhausted. As a re-

Calculate:
CS: = Z RC; - Total storage in cluster ¢
tECTuster,

ChDye= z C.: - Total demand in cluster ¢

TECluster,

Variables:
Storedicy.» € (0, RC:) - Units stored
Openiec) . € {0,1} - More than zero units stored flag

Unsatisfied ¢, , :c1 . € (0,Cs.) - Demand not satisfied

Incomingsey oier..nket..c € (0,Cs;) - Units received from cluster k to repository 1

Outgoingsey. aic1 nkel. c € (0, RC;) - Units sent from repository 7 to cluster k

Sentsei aict.njel.n € (0,min(RC;,C, ;)) - Units sent from repository ¢ to repository j

Linksey. aiel. e jei..c € (0,min(CS;,CD, ;)) - Units sent from cluster i to cluster j
Minimize:

W, z P, % Z Unsatisfied, ,+

s€l..o i€l.n
Wy Y Pex Y.) > TuijxSents:;/VC+
s€L.a k€Ll .ci€Cluster; jECluater,
Wyx 3. Pax Y Y CTauj* Linkss;/VC+
s€l..a t€l..cj€l. e
W, * Y (RI x Open; + RM, * Stored;)
i€l.n

Subject To:
> (RL = Openi + RM, * Stored,) < B

iEl.n
RC; « Open; > Stored; Vi

Z Sents ;i + Z Incomings,. . + Unsatisfied, ; = Cs: Vs, i

jEl.n JEL ¢
Z Sent.i; + Z Outgoings.. . < Stored; Vs,i
JEl.m JEL.c

Z Qutgoings..; = Link,:; Vs, 1,j
reCluster;

Y. Incoming.., = Linksi; Vsi,]

recf!(dl‘er,
Z Qutgoings.r; = E I'ncomingsri ¥s,1,7
reClustery rECluster;

Sentyi; =0 Vs, i,k where ¢ not in AR,
Outgoings..: =0 Vs, i,c where i not in AR,

Fig. 7. Aggregate Stochastic Storage Model MIP Formulation

Calculate:
SD,= »_ C.- Total demand

i€El..n

Variables:
Storedie1 « € (0, RC;) - Units stored
Opensiet.n € {0,1} - More than zero units stored flag
Usedsei. o € (0,58D;) - Units used

Minimize:
> Pox(SDy - Used,)

s€l.a

Subject To:
RC, x Open; > Stored; Wi
> Stored. > Useds Vs
iEAR,
> (R + Open: + RM; * Stored;) < B

i€l.n

Fig. 8. Sequential Stochastic Storage Model MIP Formulation

sult, the optimization with a lexicographic objective exhibits three phases as
B increases. In the first phase, the satisfied demands, routing times, and costs
increase steadily. In the second phase, the satisfied demands remain at a maxi-
mum, the routing times decrease, and the costs increase. In the last phase, the
satisfied demands remain at a maximum, the routing times remain at a mini-
mum, and the costs plateau even when B increases further. The experimental
results from [11] confirm this behavior.

The SSSM assumes that the objective is lexicographic and solves the first
phase with a much simpler (and faster) model. The goal of this phase is to use
the available budget in order to meet the demands as best possible and it is
solved with a two-stage stochastic allocation model that ignores the customer
allocation and delivery time decisions. Since each scenario s has a total demand
SD, that must be met, we simply need to maximize the expected amount of
demands that can be met, conditioned on the stochastic destruction of storage
locations. Figure 8 presents such a model. The meaning of the decision variables
is explained in the figure.

During the first phase, the model in Figure 8 is identical to the SSM with a
lexicographic configuration. But the model does not address the delivery times
at all, since this would create a prohibitive number of variables. To compen-
sate for this limitation, we use another model whose idea can be summarized by
the following greedy heuristic: "if all the demands can be met, use the remain-
ing budget to store as much additional commodity as possible”. This greedy
heuristic is calculated by cobmining the SSSM with an additional MIP model
SSSM-B, which is presented in Figure 9. SSSM-B utilizes the remaining budget
while enforcing the decisions of the first step by setting the lower bound of the

Variables:
StoredExic;. » € (Stored,, RC;) - Units stored
OpenEzicy..n € {0,1} - More than zero units stored flag

Maximize:
Y ic1 . StoredEx,
Subject To:
RC; * OpenEx; > StoredEx, Vi
> (RIL x OpenEx; + RM; x StoredEx;) < B
i€l.n

Fig. 9. Sequential Stochastic Storage Model MIP Formulation - B

StoredFEx; variables to the value of the Stored; variables, which were computed
by the SSSM. This approximation is rather crude but produces good results on
actual instances (see Figures 10 & 11 in Section 6). Our future work will inves-
tigate how to improve this by taking account of customer locations, while still
ignoring travel distances.

The resulting approach is much less flexible than the SSM and ASSM ap-
proaches because it ignores the weighting factors W, W, W,. However, it pro-
duces a significant increase in performance by decreasing the number of decision
variables asymptotically (i.e., from quadratic to linear). The asymptotic reduc-
tion is essential for scaling the algorithm to very large instances.

Note that it is well-known in the goal programming community that lex-
ographic multi-objective programs can be solved by a series of single-objectice
problems [12]). The sub-objectives are considered in descending importance and,
at each step, one sub-objective is optimized in isolation and side constraints are
added to enforce the optimization of the previous steps. Our decomposed stor-
age model follows the same schema, except that the second step is necessarily
approximated due to its size.

6 Benchmarks & Results

Benchmarks The benchmarks were produced by Los Alamos National Labo-
ratory and are based on the infrastructure of the United States. The disaster
scenarios were generated by state-of-the-art hurricane simulation tools similar to
those used by the National Hurricane Center. Their sizes are presented in Table
1 (The table also depicts the algorithm parameters). The Trip Lower Bound
is simply the total amount of commodities that are moved between locations
divided by the vehicle capacity. This value is included because it is a good met-
ric for the routing difficulty of a benchmark. The amount of commodities that
need to be moved can vary significantly from scenario to scenario; Therefore, we
present both the smallest and the largest trip bounds across all the scenarios.
Benchmarks 3 and 6 feature scenarios where the hurricane misses the region;
this results in the minimum trip bound being zero. This is important since any

[Benchmark] » |m|a| Min Trip Max Trip CA LNS |Clusters

i Lower Bound|Lower Bound||Timeout|Timeout
BM1 25 [4]3 6 27 30 10 4
BM2 25 [5]3 60 84 30 20 4
BM3 25 |5(3 0 109 30 20 4
BM4 30 |53 35 109 30 20 4
BM5 [100 |20 3 82 223 90 200 4
BM6 25 |5]18 0 140 30 20 4
BM7 | 30 [10[18 T 23 | 30 20 4 |
BM9 | 250|10[18 7 23 250 45 10 |
BM10 | 500 |20[18 13 | 45 - 180 a1
BM12 [1000[20] 3 64 167 - 300 -]

Table 1. SCAP Benchmark Statistics

algorithm must be robust with respect to empty disaster scenarios which arise in
practice when hurricanes turn away from shore or weaken prior to landfall. All of
the experimental results have fixed values of W.., W,,, and W, satisfying the field
constraint W, > W, > W, and we vary the value of the budget B to evaluate
the algorithm (as was done in [11]). The results are consistent across multiple
weight configurations, although there are variations in the problem difficulties.
It is also important to emphasize that, on these benchmarks, the number of trips
in the worst case are larger than the Max Trip Lower Bound and thus produce
routing problems of significant sizes.

The Algorithm Implementation and the Baseline Algorithm The algorithms were
implemented in the COMET system [14] and the experiments were run on Intel
Xeon CPU 2.80GHz machines running 64-bit Linux Debian. To validate our
results, we compare our proposed storage models with those of the previous
study [11]. Our routing time results also include the solution from the greedy
agent-based algorithm proposed in [11] which mimics how actual decision makers
operate in the field and thus provides a sense of improvement and scale in solution
quality. The agent-based algorithm uses the storage model but builds a routing
solution without any optimization. Each vehicle works independently to deliver
as much commodity as possible.

Baseline Efficiency Results Table 2 depicts the runtime results for the baseline
algorithm proposed in [11] . In particular, the table reports, in average, the total
time in seconds for all scenarios (T), the total time when the scenarios are run
in parallel (T..), the time for the storage model (STO), the customer allocation
model (CA), the repository routing (RR), the aggregate fleet routing (AFR),
and fleet routing (FR). The first three fields(T,, T, STOQ) are averaged over
ten identical runs on each of the budget parameters. The last four fields (CA,
RR, AFR, FR) are averaged over ten identical runs on each of the budget pa-
rameters and each scenario. Since these are averages, the times of the individual
components do not sum to the total time. The results show that the approach

[Benchmark] (T}) [o(T)) [11(Too) [0 (T50) [11(STO) [(STO) [u(CA)[u(RE) [u(AFR) [u(FR)]
BM1 [89.89[21.90 39.96 | 13.01 [0.9293]0.4670(9.257 [0.1746] 10.057 | 10.13
BM2 [169.1]35.93] 66.02 | 10.47 [0.5931 | 0.2832]| 16.67 [0.1956] 19.26 |20.00 |
BM3 [98.58]14.51] 61.07 | 13.79 [0.3557 | 0.1748 | 7.225 [0.1050| 12.04 |13.33
BMd4 [184.2]26.25] 68.76 | 5.163 [0.8892|0.3940|| 21.24 [0.2075] 19.58 [20.00
BM5 | 1308 [62.01| 520.5 | 32.70 | 46.70 | 21.31 || 90.87 | 1.225 | 128.0 | 200.0

~ BM6 |723.5/58.76| 75.34 | 3.079 | 5.165 | 3.076 || 10.81 |0.1281| 13.35 | 15.56
BM7 |832.0]97.05] 75.13 | 13.31 | 16.15 | 5.153 || 5.500 |0.4509| 19.31 | 20.00 |
BM9 |15972|14245|13114| 14205 | 12926 | 14205 || 79.93 | 1.426 | 41.29 | 44.96
BM10 - - - . - - - - -

“BM12 | - | - - - - - - - - -

Table 2. SCAP Benchmark Runtime Statistics (Seconds)

[Benchmark] u(Th) [o(T1)[u(Tx) [0 (T) [1(STO) |0 (STO)[[u(CA)| u(RR) [u(AFR)|s(FR))
BMI1 [R0.77 [22.19] 39.25 [13.28 [0.5464 [0.2389[9.043 [0.1791 [10.04 |10.12
BM2 | 169.4[35.91] 65.93 | 10.49 [0.4846 | 0.1850 || 16.81 | 0.2084 | 19.26 | 20.00
BM3 | 98.73[14.49| 61.15 | 13.81 | 0.3986 | 0.1609 || 7.245 | 0.1092 | 12.05 | 13.33
BM4 | 182.8 [24.28] 69.74 | 3.522 [0.6950 | 0.3717 || 20.88 | 0.2122 | 19.56 | 20.00
BM5 | 1266 |70.41| 487.4 | 35.18 | 18.40 | 7.700 || 90.88 | 0.8691 | 123.9 | 200.0
BM6 [714.86]59.04] 73.28 | 1.032 | 3.130 | 1.041 || 10.57 |0.09642] 13.27 |15.56
BM7 | 823.6 [98.79]| 67.95 | 12.00 | 8.849 | 2.666 || 5.479 | 0.4475 | 19.28 | 20.00
BMO | 5534 |974.7| 1226 | 567.8 | 878.4 | 567.8 || 169.9 [0.9652 | 41.50 | 45.01
BM10 - = - = z - = =

[BMI2 = 2 5 - 2 = = - = -

Table 3. Clustered Storage Runtime Statistics (Seconds)

scales well with problems with 100 repositories or less. However, benchmark 9
(250 repositories) clearly indicates that the runtime of the storage model has
exploded and become the dominating factor of the algorithm. Benchmarks 10
and 12 are unsolvable due to memory issues (these models require over 3,000,000
variables).

ASSM Quality € Efficiency Results Table 3 depicts the improvement of our
ASSM for the SCAP algorithm. Observe the 50% reduction in runtime of the
storage model (ST0) and uniform benefits of our approach which systematically
delivers that reduction on the larger benchmarks. In this study we cluster the
repositories using their geographic locations using ten samples of the k-means
algorithm. The sample with the smallest mean sum is used in the clustered
storage model. The distances between clusters are calculated on a scenario-by-
scenario basis using the average distance between all pairs of points in each
cluster.

The runtime benefits of the clustering algorithm are largely due to the re-
duction in the number of variables in the model. Section 5 analyzed the variable

| Benchmark [BM1[BM2[BM3[BM4] BM5 | BM6|BM7| BM9 |[BM10[BM12

~ SSM 1875|1875 1875]270030000/11250 16200/1125000 - 5
ASSM [1116]1206!1248]1470/12246| 7344 | 9576 | 237420 | - R
Lower Bound|1101(1101,1101 1443\ 9948 \ 6606 | 8658 | 204300 | - =

Table 4. Clustered Problem size compared to the Baseline Algorithm

[Benchmark | BMI [BM2 [BM3 [BM4 | BM5 [BM6] BM7 [BM9[BM10[BM12|

Relative Chang_ﬂ(%) -0.356(0.0834/-0.108/-0.504|-0.887| 3.54 [-0.308| 1.16 | - -
Greedy Change(%) | 56.4 | 43.1 | 73.7 | 52.0 | 64.0 [92.2| 55.5 | 200 | - -

Table 5. Clustered Quality compared to the Baseline Algorithm

reduction and pointed out that the reduction is tightly coupled with the cluster-
ing. Due to geographic considerations in these instances, the clustering exhibits
great variation from instance to instance and it is important to report the actual
reduction in problem size. Table 4 presents the number of variables of the SSM
and the ASSM, as well as the lower bound on the number of variables. Observe
that the benefits become more significant as the problem size grows and the
runtime results confirm this.

Table 5 describes the relative changes in routing times from the SSM. The
quality degradation of the greedy algorithm is also presented to provide a sense
of scale. Because the ASSM is a courser approximation of the travel time, some
decrease in routing quality is expected. It is impressive that the reduction in
quality is not significant (especially when compared with the greedy algorithm).

1t is also surprising that sometimes the clustering model improves the quality
of the routing solution. This is a result of the fact that the travel time objective
is only approximated in all of the stochastic storage models. When there are
large distances between nodes, the ASSM’s meta-edges provide a more accurate
estimate of the number of trips needed between two clusters.

Unfortunately this model still suffers from the same memory issues as the
SSM and is unable to solve Benchmarks 10 and 12. Figure 10 visually summarizes
the time and quality tradeoff of the ASSM and the SSM.

SSSM Quality & Efficiency Results Table 6 depicts the improvement of our
SSSM for the SCAP algorithm. Observe the consistent reduction in runtime of
the storage model (STO), which runs about 1000 times faster than the SSM on
BMS9.

Table 7 describes the relative change in routing times from the SSM. The
quality degradation of the greedy algorithm is also presented to provide a sense
of scale. Because the SSSM has no information about the travel time, some
decrease in routing quality is expected. Again, it is impressive that the reduction
is so small (especially when compared with the greedy algorithm). Note that
some policy makers may be concerned by the 6.6% increase in delivery time in
benchmark 9 and may prefer to use the SSM. However, some types of disasters

|Benchmark|u(T)) [o(T1) | (T)| 0(Toe) [1(STO)| o (STO) [|u(CA)| (RR) [u(AFR)|u(FR)|
BM1 [94.97]24.38]41.32] 12.79 [0.1166 [0.06717|[11.46 | 0.1943 | 9.819 | 10.00 |
BM2 [169.3(36.0465.59 | 10.43 |0.1624[0.07953(16.86 | 0.2375 | 10.25 | 20.00
BM3 |98.85[14.31| 60.97 | 13.76 | 0.1705|0.09249(7.280 | 0.1260 | 12.12 | 13.34
BM4 |[183.8]24.26(69.15 | 3.527 |0.2514| 0.1918 || 21.27 [0.2547 | 19.59 | 20.00
BM5 | 1240[69.07|468.6 | 33.70 | 2.125 | 0.8614 || 90.94 [0.8141 | 120.6 | 200.0
BM6 |710.8]56.91(70.46 |0.08338] 0.3516 |0.08734|| 11.06 |0.08603] 1323 | 15.56
BM7 |810.5]100.8| 59.54 | 13.51 |0.7089| 0.1497 || 5.397 | 0.3703 | 19.17 |20.00
BM9 | 5963 [439.0(366.5| 7.134 | 13.19 | 4.661 | 239.6 | 2.166 | 42.58 | 45.00
BM10 |32048[1708 | 1921 | 108.9 | 17.34 | 22.02 |[1385% | 8.659 | 175.7 | 180.0
BM12 [18201[73.11] 6146 | 46.54 | 14.12 | 0.2223 [[5485* | 14.28 | 227.3 [300.0

Table 6. Decomposed Storage Runtime Statistics (Seconds)

| Benchmark |[BM1| BM2 | BM3 |[BM4[BM5|BM6] BM7 [BM9|BM10|BM12

Relative Change(%)] 3.61 [-0.0549]-0.0371]0.524[0.524] 6.22]-0.527] 6.64 | - -
Greedy Change(7%) |60.6| 43.5 | 74.5 |52.9|67.2| 103 | 55.5 | 227 | 78.56 | 91.5

Table 7. Decomposed Quality compared to the Baseline Algorithin

require immediate response where every minute is valuable. In those extreme
situations, the decomposed storage model provides a much faster alternative to
the baseline algorithm. These new algorithms allow the policy maker to choose
on a case-by-case basis which is preferable, a more immediate response or a
higher quality solution.

The lack of information about travel time is an advantage for the memory
usage of the SSSM. Ouly three pieces of the problem specification need to be
considered, the repository information, scenario demands, and scenario damage.
This resolves the memory issues faced by the other models by loading the sce-
nario travel time separately for each scenario. This allows the SSSM to scale to
the largest benchmarks. Figure 10 visually summarizes the runtime and quality
tradeoff of the SSSM and the SSM.

Due to the enormous size of benchmarks 10 and 12, the customer allocation
stage of the algorithm does not return a feasible solution within 1000 seconds.
To resolve this difficulty, we simply ignore the integer variables and solve the
linear programming relaxation of the same problem, which is then rounded. As
Table 6 indicates just solving a linear programming relaxation of these problems
can take over ten minutes. Additionally, to make the runtime of the SSSM stable
on the largest instnaces the solver is terminated whenever the optimiality gap is
reduced to 0.05%.

Behavioral Analysis of SSSM The SSSM ignores the algorithm parameters W, W, W,
and implicitly assumes the field constraint W, > W, > W.. Although the other
storage models are more flexible in this regard, for the purpose of this study all
the storage models are configured for this field constraint. This means that the

Maximum Storage Model Runtime Average Distance from Original Routing Solution

1 1
o ssm | ° | o SSM & A ,
* assu' | o .| * ASSM |
g o sssM|]| A SSSM
g

L]

3 g # | 2

2 2 1 £ .

® | ﬁ 4 x

§ 3

E 8 o o ‘ a

— Y

g a ® % o~ |

g s X a 2

g o @

& ® s |

o
|: g2 L A o o A I3 o o o o o A
I & X A A L x £ ‘
a »
= — T 7T T T T T T T 1
12 3 4 & 1 5 & 1w 12 T 2 3 4 6 1 5 9 10
Instance Numbar Instance Numbsar

Fig. 10. Runtime and Quality Tradeoffs

storage decisions for the SSSM will be exactly the same as the SSM until all
of the demands are met. Once all of the demands are satisfied, the SSSM will
degrade because it cannot determine how to use additional funds to decrease the
delivery time. However, as the budget increases it will approach the same solu-
tion as the SSM because these solutions correspond to storing commodities at all
of the repositories. Figure 11 presents the experimental results on benchmark 6
which exhibits this behavior most dramatically (other benchmarks are less pro-
nounced and omitted for space reasons). The graph on the left shows how the
satisfied demand increases with the budget while the graph on the right shows
how the last delivery time changes. We can see that as the satisfied demand
increase the routing time of both algorithms is identical until the total demand
is met. At that point, the routing times diverge as the travel distance becomes
an important factor in the objective and re-converge as the budget approaches
its maximun and all of the respositories are storing commodities. These results
confirm our behavioral expectation. The experimental results also demonstrate
that the degradation of the decomposed model is not significant when compared
to the choices made by the greedy routing algorithm.

7 Conclusion

This paper studied the scalability of a problem in the field of humanitarian lo-
gistics, the Single Commodity Allocation Problem (SCAP). The SCAP models
the strategic planning process for disaster recovery with stochastic last mile dis-
tribution. The paper proposed two new stochastic storage models that produce
high quality solutions to real-world benchmarks that until this work were un-
solvable. The algorithms use spacial and objective decompositions to exploit the
problem structure and speedup stochastic storage decisions. The experimental

Expacted Demand Mat (%)

Expected Demand Met Expected Last Dalivery Time

g = ¥ '- |
] Original ! O~ 00 = O—0— 0= 80« 0—0 »
PR b L o-B-0-8 o-0-o © ~ (;”‘w! y .
> o
2 g :
,,’/ Yo
, S -
. | E 2 .fx P
i u/n \u
g o s/ - b
| ‘u/ T T S
| § e
2 |
@ ‘ a
T T T I T 1
500000 1000000 1500000 S00000 1000000 1500000
Buagel (5) Budagel (S)

Fig. 11. Varying the Budget on Benchmark 6 with Decomposition

results on water allocation benchmarks indicate that the algorithm is: (1) prac-
tical from a computational standpoint; (2) produce significant scalability over
previous work; (3) delivers better performance than existing relief delivery pro-
cedures. This work is currently deployed at Los Alamos National Laboratory as
part of the National Infrastructure Simulation and Analysis Center (NISAC).
It is being used to aid federal organizations such as the Department of Energy
and the Department of Homeland Security in preparing for and responding to
disasters.

References

1.

2

B. Balcik, B. Beamon, and K. Smilowitz. Last iile distribution in humanitarian
relief. Journal of Intelligent Transportation Systems, 12(2):51-63, 2008.

Glay Barbarosoglu, Linet zdamar, and Ahmet evik. An interactive approach for
hierarchical analysis of helicopter logistics in disaster relief operations. European
Journal of Operational Research, 140(1):118 — 133, 2002.

B. Beamon. Humanitarian relief chains: Issues and challenges. 34th International
Conference on Computers & Industrial Engineering, pages 7T7-82, 2008.

L. Bianchi, M. Dorigo, L.Gambardella, and W. Gutjahr. A survey on metaheuris-
tics for stochastic combinatorial optimization. Natural Computing, 8(2), 2009.
Ann Melissa Campbell, Dieter Vandenbussche, and William Hermann. Routing for
relief efforts. Transportation Science, 42(2):127-145, 2008.

Serhan Duran, Marco Gutierrez, and Pinar Keskinocak. Pre-positioning of emer-
gency items worldwide for care international. submaitted to Interfaces, 2008.

. Fritz institute. http://www.fritzinstitute.org, 2008.
. United States Government. The federal response to hurricane katrina: Lessons

learned, 2006.

. P. Griffin, C. Scherrer, and J. Swann. Optimization of community health center

locations and service offerings with statistical need estimation. IIE Transactions,
2008.

10

11.

12.

13.

14.
15.

16.

. D. Gunnec¢ and F. Salman. A two-stage multi-criteria stochastic programming
model for location of emergency response and distribution centers. In INOC, 2007.
Pascal Van Hentenryck, Russell Bent, and Carleton Coffrin. Strategic planning for
disaster recovery with stochastic last mile distribution. In Andrea Lodi, Michela
Milano, and Paolo Toth, editors, CPAIOR, volume 6140 of Lecture Notes in Com-
puter Science, pages 318-333. Springer, 2010,

James P. Ignizio. A review of goal programming: A tool for multiobjective analysis.
The Journal of the Operational Research Society, 29(11):pp. 1109-1119, 1978.
Peter Kall and Stein W. Wallace. Stochastic Programming (Wiley Interscience
Series in Systems and Optimization). John Wiley & Sons, 1995.

Comet 2.1 User Manual. Dynadec website. http://dynadec.com/.

Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. SIAM Monographs
on Discrete Mathematics and Applications, Philadelphia, Pennsylvania, 2001.

L. Van Wassenhove. Humanitarian aid logistics: supply chain management in high
gear. Journal of the Operational Research Society, 57(1):475-489, 2006.

