
LA-UR- /O --05b9?
Approved for public release;
distribution is unlimited.

~Alamos
NATIONAL LABORATORY

---- EST.1943 ---

Title: Spacial and Objective Decompositions for Very Large
SCAPs

Author(s): Russell Bent
Pascal Van Hentenryck
Carleton Coffrin

Intended for: 2011 Informs Computing Society Conference

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-ACS2-06NA2S396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Spacial and Objective Decompositions
for Very Large SCAPs

Pascal Van Hentenryck1 , Russell Bent2 , and Carleton Coffrin1

I Brown University, Providence RI 02912, USA
2 Los Alamos National Laboratory, Los Alamos NM 87545, USA

Abstract. This paper considers the single commodity allocation prob­
lem (SCAP) for disaster recovery, a fundamental problem faced by all
populated areas [11] . SCAPs are complex stochastic optimization prob­
lems that combine resource aJlocation, warehouse routing, and parallel
f1 ect routing. Moreover, these problems must be solved under tight run­
time constraints to be practical in real-world disaster situations. This
paper revisits the SCAP algorithm proposed in [11] and proposes new
storage allocation models that are necessary to enable the algorithm to
scale to problem sizes of three orders of magnitude greater (250, 500,
1000 storage locations). The new algorithms are valida.ted on large-scale
hurricane disaster scenarios generated by Los Alamos National Labora­
tory using state-of-the-art disaster simulation tools.

1 Background & Motivation

Every year seasonal hurricanes threaten coastal areas. The severity of hurricane
damage varies from year to year, but considerable human and monetary resources
are always spent to prepare for and recover from these disasters. It is policy
makers who make the crit.ical decisions relating to how money and resources are
allocated for preparation and recovery. At this time, preparation and recovery
plans developed by policy makers are often ad hoc and rely on available subject
matter expertise. Furthermore, the National Hurricane Center (NHC) of the
National Weather Service in the United States (among others) is highly skilled
at generating ensembles of possible hurricane tracks but current preparation
methods often ignore this information.

Previous work has been successful in solving this problem more rigorously
by combining optimiza tion techniques and disaster-specific information given
by NHC predictions [11]. The problem is not only hard from a combinatorial
optimization standpoint, but it is also inherently stochastic because the exact
outcome of the disaster is unknown. Although humans have difficulty reason­
ing over uncertain data, recent work in the optimization community [13,4,11]
has shown that stochastic optimization techniques can overcome this difficulty
and find robust solutions to problems with uncertainty. However , prior work
on SCAPs only considered problems with up to 100 storage locations, although
large-scale planning may require as many as 1000 storage locations . The start-of­
the-art algorithm from [11] has difficulties to scaling problems with 250 storage
locations and really thrashes for larger instances.

The purpose of t.his paper is to inves tigate how to enhance the state-of-the­
art algorithms to tackle the large-scale SCAP instances. It demonstrates that
spatial and objective decomposit ions allow the original SCAP algorit.hm to scale
to much larger instances. More precisely, this paper makes the following technical
contributions:

1. It investigates calability issues of the original multi-stage SCAP algorithm.
2. It proposes two enhancements to the multi-stag8 SCAP algorithm: an ag­

gregate storage model and a sequential storage model. The former model is
particularly appropriate for large inst.ances, while the latter is best suited
for very large instances.

3. It validates the resulting models on the delivery of potable water for hurri­
cane recovery.

Section 2 of this paper reviews similar work on disaster preparation and recovery
problems. Section 3 presents a mathematical formulation of the disaster recovery
problem and sets up the notations for the rest of paper. Section 4 reviews the
overall approach for solving SCAPs as presented in [11]. Section 5 presents the
new stochastic storage formulations using (hopefully) intuitive models. S{'ction
6 reports the experimental results of our algorithm modifications on benchmark
instances to validate the approach and Section 7 concludes the paper.

2 Previous Work

The operations research community has been investigating the field of human­
itarian logistics since the 1990s but recent disasters have brought increased at­
tention to these kinds of logistical problems [16,3,8,7]. Humanitarian logistics
is filled with a wide variety of optimization problems that combine aspects from
classic problems in inventory routing, supply chain manag{'ment, warehouse lo­
cation, and vehicle routing. The problems posed by humanitarian logistics add
significant complexity to their classical variants. The operatiuIlS research COIIl­

muni ty recognizes that. novel res 'arch in this area is required to solve these kinds
of problems [16 ,3]. Some of the key features that characterize these problems
are as follow:;:

1. Multi-Objective Functions - High-stake disaster situations often have to
balance conflicting objective goals (e.g. operational costs, speed of service,
and unserved customers) [2,6 , 1,10,11].

2. Non-Standard Objective Functions - A makes pan time objective in
VRPs [2,5,11] or equitability objectives [1].

3. Arbitrary Side Constraints - Limited resources, a hed vehicle fleet [1,
11], hed latest delivery time [2,1]' or a insufficient preparation budget [6,
9,11].

4. Stochastic Aspects - Disasters are inherently unpredictable. Preparations
and recovery plans must be robust with respect to many scenarios [6,10,11].

0

0

•
0 .<6
0 008

• 00
0

Fig. 1. Populated Area Abstraction

Humanitarian logistics also studies these problems at a variety of scales in both
space and time. Some problems consider a global scale with time measured in
days and weeks [6], while others focus on the minut.e-by-minute details of de­
livering supplies from local warehouses directly to the survivors [2 , 1,11]. This
paper considers a scale which is often called the "last mile" of distribution. This
involves warehouse select.ion and customer delivery at the city and state scale.

The operations research community has mainly formulated these problems
using MIP models. Many of the humanitarian logistics problems are complex
and MIP formulations do not always scale to real world instances [1,2]. Ad­
ditionally, it was shown tha t MIP solvers can have difficulty with some of the
unique features of these kinds of problems even when problem sizes are small
(e.g., with minimizing the latest delivery time in VRPs [5]). Local search tech­
niques are often used to scale the problems to real world instances [2,5]. [11]
demonstrated that hybrid optimization and decomposition methods can yield
high-quality solutions to such challenges and scale to real-world instances. This
work extends the work of [11] and shows that additional decomposition can
provide significant scaleability. To the best of our knowledge, this is the first
time that SCAPs with over 100 storage locations have been solved.

3 The Single Commodity Allocation Problem (SCAP)

In formalizing SCAPs, a populated area is represented as a graph G = (V, E)
where V represents those sites of interest t.o the allocation problem, i.e. , sit.es
requiring the commodity after the disaster (e.g., hospit.als, shelters, and public
buildings) and vehicle storage depots. The required commodity can be stored
at any node of the graph subject to some side constraints and the graph edges
have weights representing travel times. Figure 1 illustrates this t.ransformation.
The weights on the edges form a metric space but it is not Euclidean due to the
transportation infrastructure. Moreover, the t.ravel times can vary in different
disaster scenarios due to road damage. The primary outputs of a SCAP are (1)

Fig. 2. SCAP Solution

Given:
Repositories: HiE l..n

Capacity: RGi
Investment Cost: RI,.
Maintenance Cost: RM,

Vehicles: ViE Lm

Capacity: VG
Start Depot: Dt
End Depot: D;

Scenario Data: SiE! . a

Scenario Probability: Pi
Available Sites: AR,; C {I .n}
Site Demand: Gi,Ln
Travel Time Matrix: T i .! .I,Ll

Weights: W x , W y , W.
Budget: B

Output:
The amount stored at each warehouse
Delivery schedules for each vehicle

Minimize:
T-Vr: * Unserved Demands +
Wy * i\lIAXLmTour Time,: +
vVz * Investment Cost +
Wz * Maintenance Cost

Subject To:
Vehicle and site capacities
Vehicles start and end locations
Costs:S B

Notes:
Every warehouse that stores a unit
must be visited at least once

Fig. 3. Single Commodity Allocation Problem Specification

the amount of commodity to be stored at each node; (2) for each scenario and
each vehicle, the best plan to deliver the commodities (Figure 2 depict::; a SCAP
solution). Figure 3 summarizes the entire problem, which we now describe in
detail.

Objectives The objective function aims at mllllmlZmg three factors: (1) The
amount of unsatisfied demands; (2) the time it takes to meet those demands; (3)
the cost of storing the commodity. Since these values are not expressed in the
same units, it is not always clear how to combine them into a single objective
function. Furthermore, their rela tive importance is typically decided by policy
makers on a case-by-case basis. For these reasons, this specification uses weights
Vli", Wy , and Wz to balance the objectives and to give control to policy makers.

Side Constraints The first set of side constraints concerns the nodes of the graph
which represent the repositories in the populated area. Each repository RiEl..n

has a ma.;-umum capacity Rei to store the commodity. It also has a one-time

initial cost R1i (the investment cost) and an incremental cost RJo.1i for each
unit of commodity to be stored . As policy makers often work within budget
constraints, the sum of all costs in the system must be less than a budget B.

The second set of side constraints concerns the deliveries. We are given a
fleet of m vehicles ViEl.m which are homogeneous in terms of their capacity
vc. Each vehicle has a unique starting depot D; and ending depot Di . Unlike
classic vehicle routing problems [15], customer demands in SCAPs often exceed
the vehicle capacity and hence multiple deliveries are often required to serve a
single customer.

Stochasticity SCAPs are specified by a set of a different disaster scenarios SiEl.a,
each with an associated probability Pi· After a disaster, some sites are damaged
and each scenario has a set AR; of available sites where the stored commodities
remain intact. Moreover, each scenario specifies, for each repository Ri , the de­
mand Ci . Note that a repository may have a demand even if that repository is
not available. Finally, site-to-site travel times Ti,l.l,l..l (where I = IVI) are given
for each scenario and capture infrastructure damages.

Unique Features Although different aspects of this problem were studied before
in the context of vehicle routing, location routing, inventory management, and
humanitarian logistiCS, SCAPs present unique features. Earlier work in location­
routing problems (LRP) assumes that (1) customers and warehouses (storage
locations) are disjoint sets; (2) the number of warehouses is ~ 3 .. 10; (3) customer
demands are less than the vehicle capacity; (4) customer demands are atomic

None of these assumptions hold in the SCAP context. In a SCAP, it may not
only be necessary to serve a customer with multiple trips but, due to the storage
capacity constraints, those trips may need to come from different warehouses .
The key features ofSCAP are: (1) each site can be a warehouse and/or customer;
(2) one warehouse may have to make many trips to a single customer; (3) one
customer may be served by many warehouses; (4) the number of available vehlcles
is fixed; (5) vehicles start and end in different depots; (6) the objective is to
minimize the time of the last delivery. Minimizing the time of the last delivery is
a very difficult aspect of this problem as in demonstrated in [5], but we will show
that the stochastic storage decisions quickly become the most difficult aspect as
the number of storage locations increases.

4 The Basic Approach

This section reviews the state-of-the-art algorithm for solving the SCAP prob­
lem, which is discussed in detail in [11]. Our extensions to this work are covered
in Section 5. Due to the complex stochastic nature of the SCAP problem the
previous work proposed a multi-stage algorithm that decomposes the storage,
customer allocation, and routing decisions. The stages and the key decisions of
each stage are as follows:

MULTl-STAGE-SCAP(9)
1 D <- StochasticSto-rageProblem(9)
2 for s E La
3 do C <- CustomerAllocationPToblem(9s, Ds)
4 for wE l..n
5 do T <- RepositoryPathRoutingProblem(9" Cw)

6 Y <- AggregateFleetRouting(9s, T)
7 S. <- PathBasedFeetRouting(9s, T , Y)
8 return S

Fig. 4. The Hybrid Stochastic Optimization Algorithm for SCAPs.

1. Storage: Which repositories store the commodity and how much do they
store?

2. Customer Allocation: How is the stored commodity allocated to each
customer?

3. Repository Routing: For each repository, what is the best customer dis­
tribution plan?

4. Fleet Routing: How to visit the repositories to minimize the time of the
last delivery?

The decisions of each stage are considered independently and use the optimiza­
tion technique most appropriate to their nature. The first two sta.ges are formu­
lated as MIPs, the third st.age is solved optimally using constraint programming,
and the forth stage uses large neighborhood search (LN8). The algorithm pre­
sented in [11] for solving a 8CAP instance 9 is reproduced in Figure 4.

This work only considers modifications to the stochastic storage stage of
the algorithm and uses ident.ical algorithms for the customer allocation and
routing aspects of the problem. Hence we only review the stochastic storage
model presented in [11] and omit the description of the other algorithms.

Stochastic Storage Model (SSM) The first stage ca.ptures the cost and demand
objectives precisely but a.pproximates the routing aspects. In particular, the
model only considers the time to move the commodity from the repository to
a customer, not. the maximum delivery times. Let D be a set of delivery triples
of the form (source, destination , quantity). The delivery-time component. of the
objective is replaced by

Wy * L Ts .d * q/ VC
(s ,d ,q)ED

Figure 5 presents the 881"1 formulation, which scales well with the number of
disaster scenarios because the number of integer variables only depends on the
number of sites n. The meaning of the decision variables is explained in the fig­
ure. Once the storage and customer allocation are computed, the uncertainty is

Variables:
Stored-;Eln E (0, RCi) - Units stored
OpeniE I", E {O, I} - More than zero units stored flag

StutedSavedsE la,iEln E (O,Cs ,;) - Units used at the storage location
StoredSentsE!..a,',Eln E (0, RCi) - Total units shipped to other locations
IncorningsE!..a ,'iEln E (0, Cs,i) - Total units coming from other locations
UnsatisfiedsEla ,iE !..n E (0, Cs,i) - Demand not satisfied
SentsEla,iEl.n,jE!.. n E (0, RCi/VC) - Trips needed from i to j

Minimize:

Wx * L Ps * L Unsatisfied"i +
sE 1. .a 'i.E 1 .. n

W y * L Ps * L L Ts,i,j * Sents,'i,j+
s El..a iEl..njEl..n

W z " L (RI; '" Open, + RM; * Stored-;)
'~ El..n

Subject To:

L (RIi * Open, + RMi "Stored,) ::; B
'i.E 1. .'ft

RCi * Open" 2: Storedi Vi
StoredSaveds,i + Incomings,', + Unsatisfieds,; = Cs,';, Vs, 'i
StatedSaveds ,i + StoredSents,i ::; Stared-; Vs, i

L VC * Sents,i,j = StoredSent; Vs, i
jEJ..n

L VC * Sents,j" = Incomingi Vs, i
J E I .. n

SturedSav d",; + StoredSents,i = ° Vs, i where i not in ARs

Fig. 5. Stochastic Storage Model MIP Formulation

revealed and the second stage reduces to a deterministic multi-depot, multiple­
vehicle capacitated routing problem whose objective consists in minimizing the
latest delivery. One of the difficulties in this setting is that the customer de­
mand is typically much larger than the vehicle capacity. As a result, the routing
is solved in two steps. First each repository is considered independently and
a number of vehicle trips are determined to serve the repositories customers
(Repository Routing). A trip is a tour that starts at the depot, visits customers,
returns to the depot" and satisfies the vehicle capacity constraints. Second how
to route the vehicles to perform all the trips and minimize the latest delivery
time is determined (Fleet Routing).

5 Modeling and Algorithmic Enhancements

The runtime results presented in [ll] indicate that the Fleet Routing stage of
the algorithm is the dominant factor in the algorithm runtime. However, for
instances with more than 100 storage locations, the SSM quickly dominates the

• • • • •
• • • • • •
• •

Repository
Locations

0
• (JQ

0 •
Repository Flow
Clustering Aggregation

Fig. 6. Storage Clustering and Flow Aggregation.

Meta-Edge
Detail

runtime (see Section 6 for numerical evidence). This is particularly problematic
for performance because the stochastic storage stage is the only algorithmic part
that cannot be easily parallelized. In this section, we present two alternative
models for the stochastic storage problem that provide significant benefits for
scalability. Both stochastic storage models rely on a key observation: In the
baseline algorithm (Figure 4) , a customer allocation is computed in the SSNI and
then recomputed in the customer allocation stage. This means when a customer
allocation stage is used only the storage decisions are a necessary output of
the SSM. Both of these models achieve faster performance by approximating or
ignoring the customer allocation in the stochastic storage problem. 3

Aggregate Stochastic Storage kIodel (ASSM) In the SSM, the number of variables
required for the customer allocation is quadratic in the number of repositories
and multiplicative in the number of scenarios (i .e., an2

). The number of variables
can easily be over one million when the number of repositories exceeds two
hundred. Problems of this size can take up to 30 seconds to solve with a linear­
programming solver and the resulting MIP can take several hours to complete.
Our goal is thus to reduce the number of variables in the MIP solver significantly,
without degrading the quality of the solutions too much.

The ASSM is inspired by observations of the solutions produced by the base­
line algorithm. Customers are generally served by storage locations that are
nearby and commodities are only transported over large distances in extreme
circumstances. We exploit this observation by using a geographic clustering of
the repositories. Given a mapping of the repositories into clusters, we say that

3 It is also worth noting these model formulations assume that the transportation
network is fully connected, however it is easy to imagine how these models could be
extended to a disconnected network by reasoning on the connected components of
the network.

two repositories are nearby if they are in the same cluster; otherwise the reposi­
tories are far- away. Repositories that are nearby have a tightly-coupled supply
and demand relationship so the model needs as much flex.ibility as possible in
mapping the supplies to the demands. This flex.ibility is achieved by allowing
commodities to flow between each pair of repositories within a cluster (as was
done in SSM). When repositories are far away, the precise supply and demand
relationship is not as crucial since the warehouse to customer relationship is
calculated in the customer allocation stage of the algorithm. As a result, it is
sufficient to reason about the aggregate flow moving between two clusters at this
stage of the algorithm. The aggregate flows are modeled by introducing meta­
edges between each pair of clusters. If some demands from cluster Ca must be
met by storage locations from cluster Cb, then the sending repositories in Cb pool
their commodities in a single meta-edge that flows from Cb to Ca. The receiving
repositories in Ca then divide up the pooled commodities in the meta-edge from
Cb to meet all of their demands. Additionally, if each meta-edge is assigned a
travel cost, the meta-edge can approximate the number of trips required between
two clusters by simply dividing the total amount of commodities by the vehicle
capacity, as is the case for all the other flow edges. Figure 6 visually indicates how
a clustering is used to generate the flow decision variables and how commodities
can flow on meta-edges between customers in different clusters.

As stated above, the number of variables in the SSM is quadratic in the
number of repositories. Given a clustering ClnsteTiEl..c, the number of vari­
ables in the clustered storage model is (1) quadratic within each cluster (i.e.,
.z~=l Clnst rn; (2) quadratic in the number of clusters, (i.e., 2); (3) and linear
in the repositories connections to the clusters (i.e., 2nc). The exact number of
variables clearly depends on the considered clustering. However, given a specific
number c of clusters, a lower bound on the number of variables is obtained by
dividing the repositories evenly among the all clusters, and the best possible

2
variable reduction on a problem of size n with c clusters is thus a(llc + 2nc + c2).

Given a clustering ClnsteriEl..C and cluster to cluster travel times CTs,c ,c,
the Clustered Storage MIP is presented in Figure 7. The meaning of the decision
variables is expla.ined in the figure.

Sequential Stochastic Stor'age Model (SSSM) The ASSM significantly decreases
the number of variables but it still requires creating a quadratic number of
variables for the repositories inside each cluster. Since this is multiplied by the
number of scenarios, the resulting number of variables can still be prohibitive
for very-large instances.

We now investigate another approach whose idea is to decompose the objec­
tive function . It reHes on the observation that, in practice, policy makers often
set the values of Wx , W y , Wz such that the objective is lexicographic in demand ,
delivery times, and money (i.e. , Wx » vVy » Wz). Let us contemplate what
this means for the behavior of the model algorithm as the budget parameter
B is varied . \iVith a lex.icographic objective, the model will first try to meet as
many demands as possible. If the demands can be met, it will reduce delivery
times until it cannot be reduced further or the budget is exhausted. As a re-

Calculate:

CSc = L RCi - Total storage in cluster c
iECl-u.ste.rc

CD." c = L C" ,; - Total demand in cluster c
i EClus teTc

Variables:
StorediELn E (0 , RCi) - Units stored
Open;,ELn E {O, l} - More than zero units stored flag

Unsatisfied'ELa';ELn E (0, Cs ,.) - Demand not satisfied
Inc~ing5ELa,iELn,kEL c E (0, Cs ,) - Units received from cluster k to repository i
OutgoingsELa,iELn,kELc E (0, RCi) - Units sent from repository i to cluster k
SentsELa:iELn,jELn E (O,min(RCi, C"j)) - Units sent from repository i tb repository J
Links ELa.iELc ,jELc E (O,min(CSi ,CD"j)) - Units sent from cluster i to cluster j

Minimize:

Wx * L F. * L Unsatisfieds,,+
"E l. .a i·E L. .n

W y * L F8 * L L Ts ,i ,j * Sents ,i,j/VC+
sE 1..0.. kE 1 .. c iEClv..steri j ECltL~te r',

Wy * L Fa * L L CT."; ,j * Links,i ,j/VC+
.3El..a iEl. .. cjEl .. c

W , * L (RIi * Openi + RMi * StoTedi)
iE Ln

Subject To:

L (RI;, * Open; + RM; * Storedi) :S B
iEl"n,

RCi * Openi :0: Stored; 'ii

L Sent,; ,j,i + L Inc~ings,i,c + Unsatisfied." i = Cs ,i 'is , i
j ELn jELc

L Sent,,;, j + L Outgoings;,c :S Stored;, 'is, i
jE L" n, jEl..c

L Outgoings,r,j = Links,i,j 'is,i,j
rEClu.s t,c 1' '1.

L Inc~ings,r,t = Links ,;,j 'is, i,j
rECI u.::Jf,erj

L Outgoing5 ,rj = Incomings,r,i 'is, i, J
rECl-IJ,s ter", rE C I.?.},:'J te r :)

Sent. ,i,j = 0 'is, i, k where i not in ARs
Outgoings ,c,; = 0 'is, i , c where i not in ARs

Fig. 7. AggTegate Stochastic Storage Model MIP Formulation

Calculate:

SD, = L cs" - Total demand
i E 1. .n

Variables:
StorediE Ln E (0, Re;) - Units stored
OpeniE I .n E {O, I} - More than zero units stored flag
UsedsE 1 .a E (O,SDs) - Units used

Minimize:

L Po * (SD. - Used.)
sE 1..n

Subject To:
Re; * Open; 2': Stored.; Vi

L Stcyredi 2': Used. V s
iEAR .•
L (Rli * Open. + RlvI, * StCYr di) ~ B

iE l .. n

Fig. 8. Sequential Stochastic Storage Model MIP Formulation

suit, the optimization with a lexicograpillc objective exhibits three phases as
B increases. In the first phase, the satisfied demands, routing times, and costs
increase steadily. In the second phase, the satisfied demands remain at a maxi­
mum, the routing times decrease, and the costs increase. In the last phase, the
satisfied demands remain at. a maximum, the routing times remain at a mini­
mum, and the costs plateau even when B increases further . The experimental
results from [11] confirm this behavior.

The 888M assumes that the objective is lexicographic and solves the first
phase with a much simpler (and faster) model. The goal of this phase is to use
the available budget in order to meet the demands as best possible and it is
solved with a two-stage stochastic allocation model that ignores the customer
allocation and delivery time decisions. 8ince each scenario s has a total demand
SD .. that must be met, we simply need to maximize the expected amount of
demands that can be met, conditioned on the stochastic dest.ruction of storage
location..c:;. Figure 8 presents such a model. The meaning of the decision variables
is explained in the figure.

During the first phase, the model in Figure 8 is identical to the 88M with a
lexicographic configuration. But the model does not add.ress the delivery times
at all, since tills would create a prohibitive number of variables. To compen­
sate for this limitation, we use another model whose idea can be summarized by
the following greedy heuristic: "if all the demands can be met , use the remain­
ing budget to store as much additional commodity as possible". This greedy
heuristic is calculated by cobmining the 888M with an additional MIP model
8SSNI-B, which is presented in Figure 9. SSSM-B utilizes the remaining budget
while enforcing the decisions of the first step by setting the lower bound of the

Variables:
StoredExiEln E (Stored" RCi) - Units stored
OpenExiEl n E {O, I} - More than zero units stored flag

Maximize:

LiEI .. n Sto-redEx,
Subject To:

RCi * OpenExi 2:: Sto-redEx , Vi

L (RI, * OpenEx; + RMi * StoredExi) ::; B
i El .. n

Fig. 9. Sequential Stochastic Storage Model MIP Formulation - B

StO'redEl:i variables to the value of the Staredi variables, wlJich were computed
by the SSSNI. This approximation is rather crude but produces good results on
actual instances (see Figures 10 & 11 in Section 6). Our future work will inves­
tigate how to improve this by taking account of customer locations, while still
ignoring travel distances.

The resulting approach is much less flexible than the SSM and ASSM ap­
proaches because it ignores the weighting factors \i(lx, W y , W z . However, it pro­
duces a significant increase in performance by decrea::; ing the number of decision
variables asymptotically (i.e., fTOm quadratic to linear) . The asymptotic reduc­
tion is essential for scaling the algorithm to very large instances.

Note that it is well-known in the goal programming community that lex­
ographic multi-objective programs can be solved by a series of single-objectice
problems [12]). The sub-objectives are considered in descending importance and ,
at each step, one sub-objective is optimized in isolation and side constraints are
added to enforce the optimization of the previous steps. Our decomposed stor­
age model follows the same schema, except that the second step is necessctrily
approximated due to its size.

6 Benchmarks & Results

B enchma.rks The benchmarks were produced by Los Alamos National Labo­
ratory and are based on the infrastructure of the United Statp-s. The disaster
scenarios were generated by state-of-the-art hurricane simulation tools similar to
those used by the National Hurricane Center. Their sizes are presented in Table
1 (The table also depicts the algorithm parameters). The Trip Lower- Bound
is simply the total amount of commodities that are moved between locat.ions
divided by the vehicle capacity. This value is included becau 'e it is a good met­
ric for the routing difficulty of a benchmark. The amount of commodities that
need to be moved can vary significantly hom scenario to scenario; Therefore, we
present both the smalle't and the largest trip bounds acros.: all the scenarios.
Benchmarks 3 and 6 feature scenarios where the hurricane misses the region;
this results in the minimum trip bound being zero. This is important since any

Benchmark n m a Min Trip Max Trip CA LNS Clust IS

Lower Bound Lower Bound Timeout Timeout

BMI 25 4 3 6 27 30 10 4
BM2 25 5 3 60 84 30 20 4
BM3 25 5 3 0 109 30 20 4
BM4 30 5 :3 35 109 :30 20 4
BM5 100 20 3 82 22:3 90 200 4
BM6 25 5 18 0 140 :30 20 4
BM7 30 10 18 7 2:3 :30 20 4
BM9 250 10 18 7 2:3 250 45 10
BMlO 500 20 18 13 45 - 180 -

BlvIl2 1000 20 :3 64 167 - :300 -

Table 1. SCAP Benchmark Statistics

algorithm must be robust with respect to empty disaster scenarios which arise in
practice when hurricanes turn away from shore or weaken prior to landfall. All of
the experimental results have fixed values of Wx , Wy , and Wz satisfYing the field
constraint Wx » Wy » Wz and we vary the value of the budget B to evaluate
the algorithm (as was done in [11]). The results are consistent across multiple
weight configurations, although there are variations in the problem difficulties .
It is also important to emphasize that , on these benchmarks, the number of trips
in the worst case are larger than the Max Trip Lower Bound and thus produce
routing problems of sigllificant sizes.

The Algorithm Implementation and the Baseline Algorithm The algorithms were
implemented in the CmvIET system [14] and the experiments were run on Intel
Xeon CPU 2.80GHz machines running 64-bit Linux Debian. To validate our
results, we compare our proposed storage models with those of the previous
study [11]. Our routing time results also include the solution from the greedy
agent-based algorithm proposed in [11] which mimics how actual decision makers
operate in the field and thus provides a sense of improvement and scale in solution
quality. The agent-based algorithm uses the storage model but builds a routing
solution without any optimization. Each vehicle works independently to deliver
as much commodity as possible.

Baseline Efficiency Results Table 2 depicts the runtime results for the baseline
algorithm proposed iII [11]. In particular, the table reports, in average, the total
time in seconds for all scenarios (Td, the total time when the scenarios are run
in paraliel (Too), the time for the storage model (STO), the customer allocation
model (CA), the repository routing (RR), the aggregate fleet routing (AFR),
and fleet routing (FR). The first three fields(T1 , Txo , STO) are averaged over
ten identical runs on each of the budget parameters. The last four fields (CA,
RR, AFR, FR) are averaged over ten identical runs on each of the budget pa­
rameters and each scenario. Since these are averages, the times of the individual
components do not sum to the total time. The results show that the approach

BM1 89.89 21.90 39.96 13.01 0.9293 0.4670 9.257 0.1746 10.057 10.13
BM2 169.1 35.93 66.02 10.47 0.5931 0.2832 16.67 0.1956 19.26 20.00
BM3 98.58 14.51 61.07 13.79 0.3557 0.1748 7.225 0.1050 12.04 13.33
BM4 184.2 26.25 68.76 5.163 0.8892 0.3940 21.24 0.2075 19.58 20.00
BM5 1308 62.01 520.5 32.70 46.70 21.31 90.87 1.225 128.0 200.0
13M6 723.5 58.76 75.34 3.079 5.165 3.076 10.81 0.1281 13.35 15.56
BM7 832.0 97.05 75. 13 13.31 16.15 5.153 5.500 0.4509 19.31 20.00
BM9 15972 14245 13114 14205 12926 14205 79.93 1.426 41.29 44.96

BMlO - - - - - - - - - -
BM12 - - - - - - - - - -

Table 2. SCAP Benchmark Runtime Statistics (Seconds)

1 1 x · 00

BM1 89.77 22.19 39.25 13.28 0.5464 0.2389 9.043 0.1791 10.04 101 2
BM2 Hi9.4 35.91 65.93 10.49 0.4846 0 .1850 16.81 0.2U84 19.26 20.00
BM3 98.73 14.49 61.15 13.81 0.3986 0.1609 7.245 0.1092 12.05 13.33
BM4 182.8 24.28 69.74 3.822 0.6950 0.3717 20.88 0.2122 19.56 20.00
BM5 1266 70.41 487.4 35.18 18.40 7.700 90.88 0.8691 123.9 200.0
BM6 714.86 59.04 73.28 1.032 3. 130 1.041 10.57 0.09642 13.27 15.56
13M7 823.0 98.79 67.95 12.99 8.849 2.666 5.479 0.4475 19.28 20 .00
BM9 5534 974.7 1226 567.8 8 78.4 567.8 Hi9.9 0.9652 41.50 45.01

BMlO - - - - - - - - - -

BM12 - - - - - - - - - -

Table 3. Clustered Storage Runtime Statistics (Seconds)

scales well with problems with 100 repositories or less. However, benchmark 9
(250 repositories) ckmly indicates that the runtime of the storage model has
exploded and become the dominating factor of the algorithm. Benchmarks 10
and 12 are unsolvable due to memory issues (the:;c models require over 3,000,000
variables) .

ASSM Quality fj Effir.iency Results Table 3 depicts the improvement of our
ASSM for the SCAP algorithm. Observe the 50% reduction in runtime of the
storage model (S TO) and uniform benefits of our approach which systematically
delivers that reduction on the larger benchmarks. In this study we cluster the
repositories using their geographic locations using ten samples of the k-means
algorithm. The sample with the smallest mean sum is used in the clustered
storage model. The distances between clusters are calculated on a scena.rio-by­
scenario basis using the average dista.nce between all pairs of points in each
cluster.

The runtime benefits of the clustering algorithm are largely due to the re­
duction in the number of variables ill the model. Section 5 analyzed the variable

I Benchmark IBM11BM21BM31BNI41 BM51 BM61 BM71 BM9 IBM10lBM12 1

SSM 1875 1875 1875 2700 30000 11250 16200 1125000 - -

ASSM 1116 1206 1248 1470 12246 7344 9576 237420 - -
Lower Bound 1101 1101 1101 1443 9948 6606 8658 204300 - -

Table 4. Clustered Problem size compared to the Baseline Algorithm

Table 5. Clustered Quality compared to the Baseline Algorithm

reduction and pOinted out that the reduction is tightly coupled with the cluster­
ing. Due to geographic considerations in these instances, the clustering exhibits
great variation from instance to instance and it is important to report the actual
reduction in problem size. Table 4 presents the number of variables of the SSM
and the ASSM, as well as the lower bound on the number of variables. Observe
that the benefits become more significant as the problem size grows and the
runtime results confirm this .

Table 5 describes the relative changes in routing times from the SSM. The
quality degradation of the greedy algorithm is also presented to provide a sense
of scale. Because the ASSM is a cow-ser approximation of the travel time, some
decrease in routing quality is expected . It is impressive that the reduction in
quality is not significant (especially when compared with the greedy algorithm).

It is eLl so surprising that sometimes the clustering model improves the quality
of the routing solution. This is a result of the fact that the travel time objective
is only approximated in all of the stochastic storage models. When there are
large distances between nodes, the ASSM's meta-edges provide a more accurate
estimate of the number of trips needed between two clusters.

Unfortunately this model still suffers from the same memory issues as the
SSM and is unable to solve Benchmarks 10 and 12. Figure 10 visually summarizes
the time and quality tradeoff of the ASSM and the SSM.

8S8M Quality €<J Efficiency Results Table 6 depicts the improvement of our
SSSM for the SCAP algorithm. Observe the consistent reduction in runtime of
the storage model (SrO) , which runs about 1000 times faster than the SSM on
BM9.

Table 7 describes the relative change in routing times from the SSM. The
quality degradation of the greedy algorithm is also presented to provide a sense
of scale. Because the SSSM has no information about the travel time, some
decrease in routing quality is expected. Again, it is impressive that the reduction
is so small (especially when compared with the gTeedy algorit.hm). Note that
some policy makers may be concerned by the 6.6% increase in delivery t.ime in
benchmark 9 and may prefer to use the SSM. However, some types of disasters

1 I ' <>c . 00

BMI 94.97 24.38 41.32 12.79 0 .1166 0.06717 11.46 0.1 943 9.819 10.00
BM2 169.3 36.04 65.59 10.43 0 .1624 0.07953 16.80 0.2375 19.25 20.00
BM3 98.85 14.31 60.97 13.76 0 .1705 0.09249 7.280 0.1260 12. 12 13.34
BM4 18:J.8 24.26 69.15 ;3.527 0.2514 0.1918 21. 27 0.2547 19.59 20.00
BM5 1240 69.07 468.6 3:J.70 2 .125 0 .8614 90.94 0.8141 120.6 200.0
BM6 719.8 56.91 70.40 0.08338 0 .3516 0.08734 11.06 0.08603 13.23 15.56
BM7 1810.5 100.8 59.54 13.51 0.7089 0.1497 5.397 0.3703 19.17 20.00
BM9 5963 439.0 366.5 7.134 13.19 4 .661 239.6 2.166 42. 58 45 .00

BMlO 32048 170R 1921 108.!:! 17.34 22 .02 1385* 8.059 175.7 180 .0
BM1 2 18201 73.11 6140 46 .. 54 14.12 0.2223 5485* 14.28 227.3 300.0

Table 6 . Decomposed Storagf' Runtime Statistics (Seconds)

Table 7. Decomposed Q uality compared to the Baseline Algorithm

require immediate response where every minute is valuable. In those extreme
situations , the decomposed storage model provides a much faster alternative to
the baseline algorithm. These new algorithms allow the policy maker to choose
on a case-by-ca~e basis which is preferable, a more immediate response or a
higher quality solution.

The lack of information about travel time is a.n advant.age for the memory
usage of the SS8M. Only three pieces of the problem specification need to be
considered , the repository information, scenario demands, and scenario damage.
This resolves the memory iSS UE}; faced by the ot.her models by loading the s e­
nario travel time separately for each scenario . This allows the SSSM to scale to
the larges t benchmarks. Figure 10 visually summarizes the runtime and quality
tradeoff of the SSSM and the SSM.

Due to the euormous size of benchmarks 10 and 12, the customer allocation
s tage of the algorithm does not return a feasible solution within 1000 seconds.
To re.olve this difficulty, we simply ignore the integer variables and solve the
linear programming relaxation of the same problem, which is then rounded. As
Table 6 indicates just solving a linear programming relaxation of thes problems
can take over ten minutes. Additionally, to make the runtime of the S8SM stable
on the larges t instnaces the solver is terminated whenever the optimiality gap is
reduced to 0.05%.

-

Behavioral Analysis of SSSM The SSS.tvI ignores the algorit.hm parameters Wx , vVy , W z
and implicitly assumes the field constraint liVx » Wy » Wz . Although the other
storage models are more flexible in this regard , for the purpose of this study all
the storage models are configured for this field constraint. This means that the

~
~ ~ 1

i ~ -
~
~ ;!

-

Maximum Storage Model Runtime Average Distance from Original Routing Solution

o SSM :I • ASSM
l\ S5SM
f-

0
--"--~

"

o o SSM
<.O _ xA5SM

6 555M

x _ ~ ..,

'"

--,--,- -,- , , -,--,-
7 5 9 10 12

Instance Number

x

"

l~lanc8 Number

Fig. 10. Runtime and Quality Tradeoffs

10

storage decisions for the SSSlVI will be exactly the same as the SSM until all
of the demands are met. Once all of the demands are satisfied, the SSSM will
degrade because it cannot determine how to use additional funds to decrease the
delivery time. However, as the budget increases it will approach the same solu­
tion as the SSM because these solutions correspond to storing commodities at all
of the repositories. Figure 11 presents the experimental results on benchmark 6
which exhibits this behavior most dramatically (other benchmarks are less pro­
nounced and omitted for space reasons). The graph on the left shows how the
satisfied demand increases with the budget while the graph on the right shows
how the last delivery time changes. We can see that as the satisfied demand
increase the routing time of both algorithms is identical until the total demand
is met. At that point, the routing times diverge as the travel distance becomes
an important factor in the objective and re-converge as the budget approaches
its maximum and all of the respositories are storing commodities. These results
confirm our behavioral expectation. The experimental results also demonstrate
that the degradation of the decomposed model is not significant when compared
to the choices made by the greedy routing algorithm.

7 Conclusion

This paper studied the scalabillty of a problem in the field of humanitarian lo­
gistics, the Single Commodity Allocation Problem (SCAP). The SCAP models
the strategic planning process for disaster recovery with stochastic last mile dis­
tribution. The paper proposed two new stochastic storage models that produce
high quality solutions to real-world benchmarks that until this work were un­
solvable. The algorithms use spacial and objective decompositions to exploit the
problem structure and speedup stochastic storage decisions. The experimental

/
/

o

/

"

Expected Demand Met

500000 1000000 1500000

Budgo, (S)

Expected last Delivery Time

~
o Now

OriginlJl

r
500000 1000000 1500000

BuOgo' (S)

Fig. 11. Varying the Budget on Benchmark 6 with Decomposition

results on water allocation benchmarks indicate that the algorithm is: (1) prac­
tical from a computational standpoint; (2) produce significant scalability over
previous work; (3) delivers better performance than exit;ting relief delivery pro­
cedures. This work is currently deployed at Los Alamot; National Laboratory as
part of the National Infrastructure Simulation and Analysis Center (NISAC).
It is being used to aid federal organizations such as the Department of Energy
and the Department of Homeland Security in preparing for and responding to
disasters.

References

1. B. Balcik, B. Beamon, and K. Smilowitz. La;:;t mile distribution in humanitarian
reJief. Journal of Intelligent Transportation Systems, 12(2):51-63, 2008.

2. Glay Barbarosoglu, Linet zdamar, and Ahmet evik. An interactive approach for
hierarchical analysis of helicopter logistics in disaster relief operations. E7},Topean
J07},Tnal of Operational Research, 140(1):118 - 133, 2002.

3. B. Beamon. Humanitarian relief chains: Issues and challenges. 34th International
Conference on Computers 8 Industrial Engineering, pages 77-82, 2008.

4. L. Bianchi , M. Dorigo, L.Gambardella, and W. Gutjahr. A survey on metaheuris­
tics for stochastic combinatorial optimization. Nat1lral Computing, 8(2), 2009.

5. Ann Melissa Campbell , Dieter Vandenbutische, and William Hermann. Routing for
relief efforts. Transportation Science, 42(2):127-145, 2008.

6. Serhan Duran, Marco Gutierrez, and Pinar Keskinocak. Pre-positioning of emer­
gency items worldwide for care international. submitted to Interfaces , 2008.

7. Fritz institute. http)/www.fritzinstitute.org. 2008.
8. United States Government. The federal response to hurricane katrina: Lessons

learned, 2006.
9. P. Griffin, C. Scherrer, and J. Swann. Optimization of community health center

locations and service offerillgs with sta.tistica.l need estimation. lIE Transactions,
2008.

10. D. Gunnec and F. Salman . A two-stage multi-criteria stochastic programming
model for location of emergency response and distribution centers. In INOC, 2007.

11. Pascal Van Hentenryck, Russell Bent, and Carleton Coffrill. Strategic planning for
disaster recovery with stochastic last mile distribution. In Andrea Lodi, Michela
Milano , and Paolo Toth, editors, CPAIOR, volume 6140 of Lect'ure Notes in Com­
puter Science, pages 318-333. Springer , 2010.

12. James P. Ignizio. A review of goa.! programming: A tool for multiobjective analysis.
The Journal of the Operational Research Society, 29(11):pp. 1109-1119, 1978.

13. Peter Kall and Stein W. Wallace. Stochastic Programming (Wiley Interscience
Series in Systems and Optimization). John Wiley & Sons, 1995.

14. Comet 2.1 User Manual. Dynadec website. http://dynadec.com/.
15. Paolo Toth and Daniele Vigo. The Vehicle Ro'uting Problem. SIAM Monographs

on Discrete Mathematics and Applications, Philadelphia, Pennsylvania, 200l.
16. L. Van Wassenhove. Humanitarian ajd logistics: supply chajn management in high

gear. Journal of the Operational Research Society, 57(1):475-489, 2006.

