

LA-UR-

10-05603

Approved for public release;
distribution is unlimited.

Title: Tri-cubic manufactured solutions of the static diffusion equation

Author(s): Gary A. Dilts
CCS-2

Intended for: DOE/NEAMS AMP IPSC workshop
Knoxville, TN
8/23-26/10

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Tri-cubic Manufactured Solutions

Gary Dilts

July 23, 2010

We wish to verify software that solves the nonlinear diffusion equation

$$\begin{aligned}
 \nabla \cdot (K(u) \nabla u) &= f(u, x), \quad x \in V \\
 u(x) &= c_i, \quad x \in \partial V_i, \quad i = \{1, \dots, m\} \\
 \nabla u \cdot n &= d_j, \quad x \in \partial V_j, \quad j = \{m+1, \dots, m+n\} \\
 \bigcup_i \partial V_i &= \partial V, \quad \text{int } \partial V_i \cap \text{int } \partial V_j = \emptyset
 \end{aligned}$$

where K is a complicated analytic or tabular function representing a realistic material property and c_i are constants. To do so we construct an arbitrary function $u^*(x)$ that satisfies the above boundary conditions. Then we define a source term

$$f^*(x) = \nabla \cdot (K(u^*) \nabla u^*).$$

We then set our solver on the original equations with $f = f^*$. It should reproduce the solution u^* . The hard part is getting nontrivial functions that satisfy the boundary conditions (BC's), as they must be constant. After a couple of days with Mathematica, a symbolic computation method for deriving tri-quadratic and tri-cubic (in 3D) polynomials that satisfy a number of types of BC's on the unit cube and a cylindrical shell and rod has been developed. Some examples follow. To date, we have solutions for the following types of problems:

Geometry	Order	Dirichlet	Neumann
Unit Cube	Quadratic		X,Y,Z={0,1}
Unit Cube	Quadratic	X=0	X=1, Y,Z={0,1}
Unit Cube	Quadratic	X={0,1}	Y,Z={0,1}
Unit Cube	Cubic		X,Y,Z={0,1}
Unit Cube	Cubic	X=0	Y,Z={0,1}
Unit Cube	Cubic	X={0,1}	X,Y,Z={0,1}
Cylindrical $\frac{1}{4}$ shell	Quadratic		R={1/2,1}, $\theta = \{0, \pi/2\}$, Z={0,1}
Cylindrical $\frac{1}{4}$ shell	Cubic		R={1/2,1}, $\theta = \{0, \pi/2\}$, Z={0,1}
Cylindrical $\frac{1}{4}$ shell	Cubic Periodic		R={1/2,1}, $\theta = \{0, \pi/2\}$, Z={0,1}
Cylindrical shell	Quadratic		R={1/2,1}, Z={0,1}
Cylindrical shell	Cubic		R={1/2,1}, Z={0,1}
Cylindrical shell	Cubic Periodic		R={1/2,1}, Z={0,1}

Cylindrical rod	Cubic Periodic	Z={0,1}	R=1
-----------------	----------------	---------	-----

In the examples below it is seen that each function has a number of parameters. The c_i are the input Dirichlet or Neumann BC's. The a_i are free parameters that can be chosen at will. Some of the solutions have many of these, in one case up to 96.

It is curious that relatively few solutions involving Dirichlet conditions could be found. None involving r or θ for example.

A code generator has been built in Mathematica to write C++ code for these functions as well as their first and second derivatives. Using the resulting code, it is possible to generate manufactured solutions as outlined above.

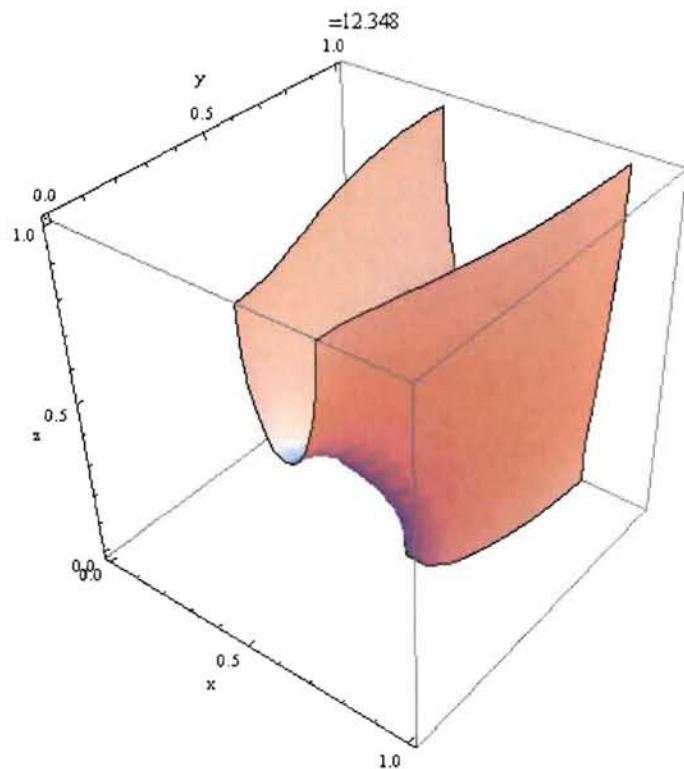
CUBIC, DOUBLE-DIRICHLET ON X

$$u\Big|_{x=0} = c_0, \quad u\Big|_{x=1} = c_1, \quad \frac{\partial u}{\partial y}\Big|_{y=0} = 0, \quad \frac{\partial u}{\partial y}\Big|_{y=1} = 0, \quad \frac{\partial u}{\partial z}\Big|_{z=0} = 0, \quad \frac{\partial u}{\partial z}\Big|_{z=1} = 0$$

$$u = \frac{1}{9} (x((1-x)(4a_3xy^3z^3 + 4a_7xy^3z^3 - 6a_3xy^3z^2 - 6a_7xy^3z^2 - 6a_2xy^3 - 6a_6xy^3 - 6a_3xy^2z^3 - 6a_7xy^2z^3 + 9a_3xy^2z^2 + 9a_7xy^2z^2 + 9a_2xy^2 + 9a_6xy^2 - 6a_5xz^3 - 3a_1(x + 1)z^2(2z - 3) + 9a_5xz^2 + 9a_0(x + 1) + 9a_4x + 4a_3y^3z^3 - 6a_3y^3z^2 - 6a_2y^3 - 6a_3y^2z^3 + 9a_3y^2z^2 + 9a_2y^2) + 9c_1x^2) - 9c_0(x^3 - 1))$$

$$\{a_0 \rightarrow 11.6634, a_1 \rightarrow 9.47814, a_2 \rightarrow 18.2946, a_3 \rightarrow 28.0376, a_4 \rightarrow 25.5023, a_5 \rightarrow 19.5, a_6 \rightarrow 25.2602, a_7 \rightarrow 18.4571\}$$

$$\{c_0 \rightarrow 1.84406, c_1 \rightarrow 4.96337\}$$



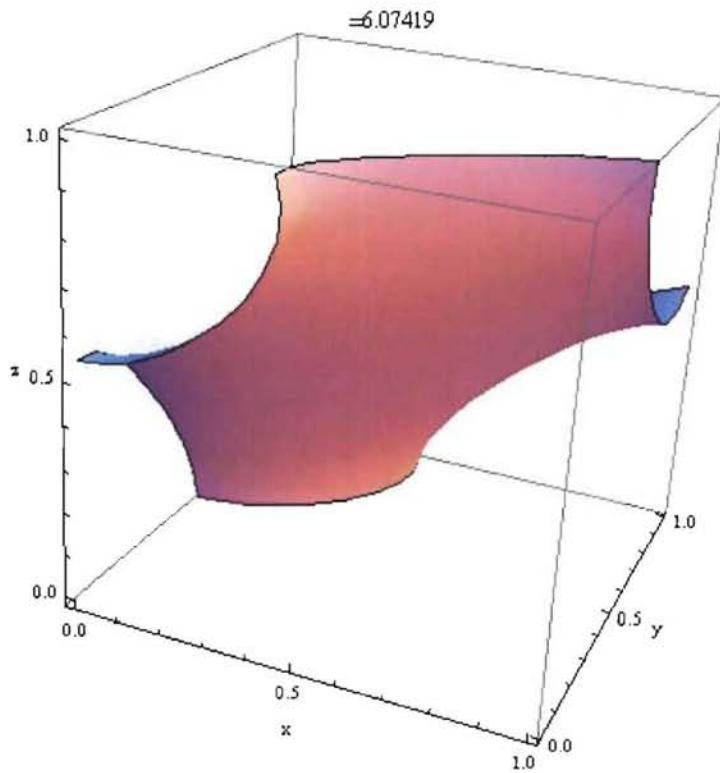
CUBIC, BRICK, 6 NEUMANN CONDITIONS

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} = c_0, \left. \frac{\partial u}{\partial x} \right|_{x=1} = c_1, \left. \frac{\partial u}{\partial y} \right|_{y=0} = c_2, \left. \frac{\partial u}{\partial y} \right|_{y=1} = c_3, \left. \frac{\partial u}{\partial z} \right|_{z=0} = c_4, \left. \frac{\partial u}{\partial z} \right|_{z=1} = c_5$$

$$\begin{aligned}
 u = & x^3 \left(-\frac{2a_4}{3} + \frac{c_0}{3} + \frac{c_1}{3} \right) + y^3 \left(-\frac{2a_2}{3} + \frac{c_2}{3} + \frac{c_3}{3} \right) + z^3 \left(-\frac{2a_1}{3} + \frac{c_4}{3} + \frac{c_5}{3} \right) - \frac{8}{27} a_7 x^3 y^3 z^3 \\
 & + \frac{4}{9} a_7 x^3 y^3 z^2 + \frac{4}{9} a_6 x^3 y^3 + \frac{4}{9} a_7 x^3 y^2 z^3 - \frac{2}{3} a_7 x^3 y^2 z^2 - \frac{2}{3} a_6 x^3 y^2 + \frac{4}{9} a_5 x^3 z^3 \\
 & - \frac{2}{3} a_5 x^3 z^2 + \frac{4}{9} a_7 x^2 y^3 z^3 - \frac{2}{3} a_7 x^2 y^3 z^2 - \frac{2}{3} a_6 x^2 y^3 - \frac{2}{3} a_7 x^2 y^2 z^3 + a_7 x^2 y^2 z^2 \\
 & + a_6 x^2 y^2 - \frac{2}{3} a_5 x^2 z^3 + a_5 x^2 z^2 + a_4 x^2 + \frac{4}{9} a_3 y^3 z^3 - \frac{2}{3} a_3 y^3 z^2 - \frac{2}{3} a_3 y^2 z^3 + a_3 y^2 z^2 \\
 & + a_2 y^2 + a_1 z^2 + a_0 - c_0 x - c_2 y - c_4 z
 \end{aligned}$$

$\{a_0 \rightarrow 10.0192, a_1 \rightarrow -17.4407, a_2 \rightarrow -28.825, a_3 \rightarrow -29.7872, a_4 \rightarrow 14.1264, a_5 \rightarrow 2.58884, a_6 \rightarrow 24.1892, a_7 \rightarrow -0.639174\}$

$\{c_0 \rightarrow 0.0156487, c_1 \rightarrow 3.13805, c_2 \rightarrow -1.52654, c_3 \rightarrow 7.06751, c_4 \rightarrow 1.68383, c_5 \rightarrow 3.08845\}$



CUBIC, CYLINDRICAL QUARTER-SHELL, ALL NEUMANN

$$\left. \frac{\partial u}{\partial r} \right|_{r=1/2} = c_0, \left. \frac{\partial u}{\partial r} \right|_{r=1} = c_1, \left. \frac{1}{r} \frac{\partial u}{\partial \theta} \right|_{\theta=0} = c_2, \left. \frac{1}{r} \frac{\partial u}{\partial \theta} \right|_{\theta=\pi/2} = c_3, \left. \frac{\partial u}{\partial z} \right|_{z=0} = c_4, \left. \frac{\partial u}{\partial z} \right|_{z=1} = c_5$$

$$u = \frac{1}{54\pi} (32a_7r^3z^3\theta^3 - 24\pi a_7r^3z^3\theta^2 - 24\pi a_5r^3z^3 - 48a_7r^3z^2\theta^3 + 36\pi a_7r^3z^2\theta^2 + 36\pi a_5r^3z^2 \\ - 48a_6r^3\theta^3 + 36\pi a_6r^3\theta^2 + 36\pi a_4r^3 - 72a_7r^2z^3\theta^3 + 54\pi a_7r^2z^3\theta^2 + 54\pi a_5r^2z^3 \\ + 108a_7r^2z^2\theta^3 - 81\pi a_7r^2z^2\theta^2 - 81\pi a_5r^2z^2 + 108a_6r^2\theta^3 - 81\pi a_6r^2\theta^2 \\ - 81\pi a_4r^2 + 48a_7rz^3\theta^3 - 36\pi a_7rz^3\theta^2 - 36\pi a_5rz^3 - 72a_7rz^2\theta^3 + 54\pi a_7rz^2\theta^2 \\ + 54\pi a_5rz^2 - 72a_6r\theta^3 + 54\pi a_6r\theta^2 + 54\pi a_4r + 48a_3z^3\theta^3 - 36\pi a_3z^3\theta^2 \\ - 36\pi a_1z^3 - 72a_3z^2\theta^3 + 54\pi a_3z^2\theta^2 + 54\pi a_1z^2 - 72a_2\theta^3 + 54\pi a_2\theta^2 + 54\pi a_0 \\ + 36\pi c_0(2r-3)r^2 + 9\pi c_1(4r-3)r^2 + 18\pi c_2z^3 + 18\pi c_3z^3 - 54\pi c_2z)$$

$$\{a_0 \rightarrow 15.1921, a_1 \rightarrow -25.9486, a_2 \rightarrow 22.1572, a_3 \rightarrow -27.0624, a_4 \rightarrow 23.3677, a_5 \rightarrow 10.5747, a_6 \rightarrow 26.6375, a_7 \rightarrow -13.3463\}$$

$$\{c_0 \rightarrow 3.83392, c_1 \rightarrow 1.06843, c_2 \rightarrow -4.31864, c_3 \rightarrow 3.78729, c_4 \rightarrow -7.69857, c_5 \rightarrow -2.97175\}$$

