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“K-EFFECTIVE OF THE WORLD” AND OTHER CONCERNS
FOR MONTE CARLO EIGENVALUE CALCULATIONS

Forrest B. Brown

Los Alamos National Laboratory, Los Alamos, NM. 87545, USA

Monte Carlo methods have been used to compute k,;and the fundamental mode eigenfunction of critical systems
since the 1950s. Despite the sophistication of today’s Monte Carlo codes for representing realistic geometry and
physics interactions, correct results can be obtained in criticality problems only if users pay attention to source
convergence in the Monte Carlo iterations and to running a sufficient number of neutron histories to adequately
sample all significant regions of the problem. Recommended best practices for criticality calculations are reviewed
and applied to several practical problems for nuclear reactors and criticality safety. including the “K-effective of the
World” problem. Numerical results illustrate the concerns about convergence and bias. The general conclusion of is
that with today’s high-performance computers. improved understanding of the theory, new tools for diagnosing

convergence (e.g.,

Shannon entropy of the fission distribution), and clear practical guidance for performing

calculations, practitioners will have a greater degree of confidence than ever of obtaining correct results for Monte

Carlo criticality calculations.
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I. Introduction

Monte Carlo methods have been used to compute 4. and
the fundamental mode eigenfunction of critical systems
since the 1950s. During the 1960-70s, pioneering work by
Lieberoth"”, Gelbard and Prael”, and Brissendon and
Garlick” examined the mathematical basis for performing
criticality calculations using Monte Carlo methods. Three
principle concerns were identified that must be addressed to
perform calculations correctly: (1) Sufficient initial cycles
must be discarded prior to beginning the tallies, so that
contamination of the results by the initial source guess
becomes negligible. (2) Sufficient numbers of neutrons must
be followed in each cycle so that bias in k. and reaction rate
tallies becomes negligible. (3) Bias in the statistics on k.
and reaction rate tallies must be recognized and dealt with.

In 1971, Whitesides” took a more practical approach to
the problem by defining the “K-effective of the World”
problem:

. if one attempts to calculate the kg of the world using a
Monte Carlo calculation. what k. would be computed
assuming that there are several critical assemblies located
around the world? The answer would likely be the kyy of the
world with no critical assemblies present. The cause of the
erroncous result is the fact that the volume of fissile material
in the world would be so large relative to the volume of fissile
material in the critical assemblies that most commonly used
forms of sampling would almost never "see" the critical
assemblies. Hence, this would not reflect their existence in the
computed keff.

..... The erroneous results for these types of problems
are the result of the failure of the calculation to converge the
source to the fundamental source mode.
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Whitesides also defined a model problem to illustrate the
potential problems from undersampling the fission source
and not properly converging the fission source. More
recently, the OECD/NEA Expert Group On Source
Convergence in Criticality Safety Analysis™ investigated
source convergence issues for Monte Carlo calculations and
suggested improvements to Monte Carlo codes and guidance
for code users 7.

I1. Monte Carlo Criticality Calculations

Most Monte Carlo codes use the standard power method
for solving k-eigenvalue problems™’, where each (outer)
iteration cycle corresponds to a single fission generation in
the simulation. Given a fission neutron source distribution
and an estimate of k.. single-generation random walks are
carried out for a “batch” of neutrons to estimate a new k.,
and fission source distribution. Iterations continue until both
kyrand the fission source distribution have converged. After
convergence of the power iterations, tallies of k. and spatial
reaction rates are accumulated.

As in all Monte Carlo calculations. if there are too few
neutrons in a cycle to adequately sample the problem phase
space, results will not be accurate and statistics will be
meaningless. Sufficient neutrons/cycle must be used to
adequately cover the problem phase space. In addition, the
Monte Carlo implementation of the power method suffers
from a bias, in that the normalization of the fission source
after each cycle involves dividing by a stochastic quantity
(i.e., all ratio estimators are biased). Fortunately, the
renormalization bias is inversely proportional to the number



of neutrons/cycle. Thus, using a large number of
neutrons/cycle reduces or eliminates difficulties from both
undersampling and renormalization bias.

The other principal concern for Monte Carlo criticality
calculations is determining how many iteration cycles are
required to converge the fission source distribution.
Sufficient initial cycles must be discarded prior to beginning
the tallies, so that contamination of the results by the initial
source guess becomes negligible. Shannon entropy of the
fission source distribution has been used recently to

characterize the source convergence®.

II1. Numerical Results

Three sample problems were chosen to represent typical
reactor and criticality safety calculations and illustrate the
effects of undersampling, convergence, and bias: (1) the
K-effective of the World problem specified by Whitesides,
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(2) a 2D quarter-core Pressurized Water Reactor (PWR)
model, and (3) an array of cans partially filled with
plutonium nitrate solution. Criticality calculations for these 3
problems were performed using MCNP5”'” with
continuous-energy ENDF/B-VII data. The problems were
run many different ways, including poorly (too few
neutrons/cycle) and according to recommended best
practices”. It should be noted that the theory and results
presented below apply not just to MCNPS, but to any Monte
Carlo codes that uses the power iteration method to solve
criticality problems.

1. K-effective of the World Problem

Figure 1 provides results from MCNP35 calculations of
the model problem specified by Whitesides”. Figure 1B
shows the convergence behavior of 4.4 and H,,.. the Shannon
entropy of the fission source, vs. iteration cycle for various
values of M, the number of neutrons/cycle. It can be seen
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Fig. 1 K-effective of the World Problem, A — geometry model, B — convergence of ks and H,,., C — distribution

of k.. for replica calculations, D - k..-dependence on neutrons/cycle




that using larger M makes it easier to diagnose convergence
of both kzand H,., and that the fission source distribution
takes longer to converge than the integral quantity A
Figure 1C shows the distribution of &,y values from several
hundred independent replica calculations, for several
different values of M. It can be seen that the spread in the &
distribution is reduced for larger M. The shift in the peak
values is due to reducing the renormalization bias in 4. .
Figure 1D shows this more clearly, and demonstrates that the
bias is inversely proportional to .

In order to get accurate, reliable results for the K-effective
of the World problem, it can be inferred from Figure | that
10,000 or more neutrons/cycle should be used, and that 150
or more initial cycles should be discarded before beginning
tallies.

2. Quarter-core PWR Problem

Figure 2 provides results from MCNP5 calculations of a
2D quarter-core model of a PWR similar to a benchmark
proposed by Nakagawa and Mori'". Figure 2B shows the
convergence behavior for k., and H,,. for different choices of
the initial guess for the fission distribution. Using a point
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source guess requires many cycles to converge to the
fundamental mode; using a line source on the core diagonal
is somewhat better; using a uniform fission source guess
throughout the core region is the preferred initial guess,
since it is nearly converged. It can also be clearly seen that
H.,. take longer to converge than 4. Figure 2C shows the
dependence of 4k, on M. Using 10,000 or more
neutrons/cycle for this problem is sufficient to eliminate the
k.y bias. Figure 2D shows the fission distribution along the
core diagonal for various M. Clearly, the fission distribution
is also biased when M is chosen too small. Choosing 10,000
or more neutrons/cycle eliminates the bias in the source
shape for this problem.

While 10,000 or more neutrons/cycle is sufficient for this
problem to prevent undersampling and to eliminate bias,
even more neutrons/cycle will be required for 3D whole-core
reactor problems. Experience has shown that 100,000 or
even 1,000,000 neutrons/cycle should be used in large 3D
problems to provide adequate Monte Carlo sampling and
reliable local tallies. Fortunately, these large problems can
readily be run using parallel computation, and the efficiency
of parallel execution increases for larger M.
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Fig. 2 Quarter-core PWR Problem, A — geometry model, B — convergence of kyy and Hg.,, C - ky
dependence on neutrons/eycle, D — bias in fission distribution along core diagonal for various M
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Fig. 3 Array of cans partially filled with plutonium nitrate solution, A — geometry model,
B - k,rdependence on neutrons/cycle, C — convergence of k.yand H,,, for various M

3. Array of Cans Filled with Plutonium Nitrate Solution

The 2x3 array of steel cans partially filled with plutonium
nitrate solution is a simplified version of the problem
described in Chapter 5 of the MCNP Criticality Primer'?.
There are six stainless steel cylinders arranged in a 2x3 array
with a 10 cm separation between cyclinders. For simplicity,
no external walls or features are included. Results are shown
in Figure 3.

Figure 3B shows the computed values for 4, for the array
of cans using 100, 200, 500, 1000, 5000, 10000, and 20000
neutrons/cycle. For this problem it can be seen that using
100 or 200 neutrons per cycle results in a bias of about 200
pcm, and that using 1000 or more neutrons per cycle
effectively eliminates the bias in 4, Also shown in Figure
3B is the k. result (the green point) for the array of cans
using 1000 neutrons per cycle, but using an incorrect number
of discarded cycles. In that run, only 3 cycles were discarded
before beginning the A, tallies, rather than 25 cycles for the
other runs. The bias introduced by beginning the tallies
before convergence is significant.

Figure 3C shows the convergence behavior of k. and #,.
for different choices of the initial fission source guess. A
single point source is a poor guess, leading to longer
convergence; uniform points within all individual cans is
better.

III. Conclusions - Best Practices

Based on both theory and numerical results, the following
guidance and recommendations constitute best practices for
Monte Carlo criticality calculations:

1. Convergence

For the initial source guess in a criticality calculation,
choose a uniform distribution in all fissionable regions of the
problem. If only a one or a few source points are used, more
cycles will be needed to assure convergence.

To determine the number of cycles needed for
convergence of the power iteration method, always make a
trial run using ~100 cycles and a moderate number of
neutrons per cycle (e.g., 1000). Examine plots of both 4.,
and H,,. vs cycle to determine the number of cycles to be
discarded before beginning tallies.

For applications where only k. is sought, examine plots
of k. vs. cycle to determine the proper number of cycles to
discard before beginning the 4. tally. For applications where
local tallies are required (e.g., local reaction rates, foil
measurements, dose flelds, fission distributions, etc.) in
addition to k.; examine plots of both 4.y vs. cycle and H,,.
vs. cycle to determine the proper number of cycles to discard
before beginning the tallies. Be sure that final production
runs are made using at least that many discarded cycles;
using fewer discarded cycles can bias the results.

2. Bias in k. and Tallies

It is recommended that 10,000 or more neutrons/cycle be
used for all calculations. For large 3D reactor or storage
vault problems, 100,000 or more neutrons/cycle is preferred.
Problems should never be run using 10s or 100s of
neutrons/cycle; that would introduce significant bias in both
kyrand any local tallies.

3. Bias in Uncertainties

The uncertainties computed for k. and reaction rate tally
distributions exhibit a bias due to inter-cycle correlation
effects that are neglected when performing the Monte Carlo



code tallies™”. The computed uncertainties are always
smaller than the true uncertainties for a tally, regardless of
the number of cycles run or the number of neutrons/cycle.
The underprediction of uncertainties for local reaction rate
tallies is often as large as factors of 3-5, while the
underprediction is generally small or negligible for
uncertainties on A

At present, there is no easy means of overcoming the
underprediction bias in the computed uncertainties from
Monte Carlo criticality calculations. While there is evidence
that modifications to the iteration procedure, such as the
superhistory method in MONK® and Wielandt’s method
under development for MCNPS can reduce or eliminate the
underprediction bias in uncertainties, these methods are not
available yet to general MCNPS or SCALE/KENO users. A
brute-force method for assessing the true uncertaintics can
be carried out: Make 25 or so independent Monte Carlo
criticality calculations, discarding the uncertainties from the
individual calculations, and compute the true uncertainties
from the ensemble of results from the 25 runs.

With  today’s  high-performance computers, it is
straightforward to follow the above guidance when
performing Monte Carlo criticality calculations. With
improved understanding of the theory, new tools for
diagnosing convergence (€.g., Shannon entropy of the fission
distribution), and clear practical guidance for performing
calculations, practitioners should have a greater degree of
confidence than ever of obtaining correct results for Monte
Carlo criticality calculations.
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