DOE Office of Science
Office of Advanced Scientific Computing Research

Extreme Performance Scalable Operating Systems

Final Progress Report (July 1, 2008 — October 31, 2011
Award: DE-FG02-08ER25846

Allen D. Malony! and Sameer Shende?

'Department Computer and Information Science, University Oregon, Eugene, Oregon, 97403
2Performance Research Laboratory, University of Oregon, Eugene, Oregon, 97403

1 Introduction

This is the final progress report for the FastOS (Phase 2) (FastOS-2) project with Argonne National
Laboratory and the University of Oregon (UO). The project started at UO on July 1, 2008 and ran
until April 30, 2010, at which time a six-month no-cost extension began. The FastOS-2 work at
UO delivered excellent results in all research work areas:

scalable parallel monitoring

kernel-level performance measurement

parallel I/0 system measurement

large-scale and hybrid application performance measurement
onlne scalable performance data reduction and analysis
binary instrumentation

Progress reports in Years 1 and 2 provided detailed discussion of our accomplishments during
these periods. These are summarized in Section §2 and Section §3, respectively. The majority of
the final progress report reviews our achievements in Year 3 and the no-cost extension period. In
Section §4, we begin reporting on improvements in the scalable online performance data reduction
and analysis. Next, we discuss our continued work with hybrid performance measurement. New
developments in parallel I/O were made during the period. Finally, we return to the kernel-level
performance measurement work of Year 1 with a new development based on current support in
Linux. As with the prior two reports, our meeting activities are reported; see Section §7.

2 Year 1 Accomplishments

The FastOS-2 project followed a successful FastOS effort where the University of Oregon delivered
performance measurement and analysis support that was targeted to the ZeptoOS [6] environment.

Year 1 of FastOS-2 continue along this path targeting new support to enable a whole system
performance perspective. The achievements made during this period are briefly summarized below.
The Year 1 progress provides full details.

2.1 Performance Monitoring

We built a scalable parallel monitor (through the integration of TAU and MRNet) and evaluated its
function and performance on several platforms. MRNets distributed programming capabilities were
applied to efficiently perform useful reductions on the performance data on its path from application
to monitor. Our research appeared in a STHEC workshop [1] and the CCPE journal [10].

In addition, we applied the TAUoverMRNet (ToM) system to benchmark online performance
monitoring use and to implement profile snapshot functionality for the FLASH applications. This
work was reported at the Cluster [4] and Euro-Par [5] conferences.

2.2 OS Performance Measurement and Analysis

Having developed the KTAU Linux kernel measurement infrastructure in the former FastOS project,
our intent in Year 1 was to both the TAU and KTAU to the ZeptoOS V2.0 distribution for the
IBM BG/P. This was accomplished and included extension of TAU/KTAU with specific BG/P
support. Preliminary experimentation was out on the Surveyor system. Our work demonstrated
that integrated user-system performance views could be obtained. This research was reported at a
HPC tools workshop [3].

2.3 Parallel I/O Performance Measurement

Year 1 began our efforts to develop performance measurement support for Parallel I/O framework.
The main problem studied was the different software layers in I/O stacks and how to track infor-
mation flow between them. The main results were in development of intial instrumentation and
measurement support within PVFS. A new TAU instrumentation capability for automatic wrapper
generation was created during this activity.

3 Year 2 Accomplishments

The focus in the second year of FastOS-2 shifted slightly to replace the KTAU kernel-level per-
formance work with an emphasis on large-scale and hybrid application performance measurement
and binary instrumentation. Our parallel performance monitoring work continued with a focus on
online scalable performance data reduction and analysis. Further improvements were also made in
parallel I/O stack observability. The strategy in Year 2 was to tackle certain scaling challenges in
the TAU instrumentation and measurement system to better position the FastOS project work for
the potential hyper-scale systems appearing in Year 3. We briefly summarize our results below.

3.1 Parallel Performance Monitoring

Our work with MRNet during Year 2 mainly resulted in re-engineering TAUoverMRNet (ToM) to
leverage v3.0 functionality. This improved certain aspects such as ToM startup and connection
to the application. In parallel with ToM activities, we began work on a MPI-based monitoring
implementation. We built a monitoring interface in TAU that was independent of the backend

implementation. Our dual efforts continue through the year and provide us basis for comparison on
the Cray XT5 and BG/P platforms.

We produced significant results using the performance monitoring frameworks on the problem of
event unification, data reductions, and scalable statistics computation. The tools were demonstrated
on the PFLOTRAN application at large scale and results were presented at the Dagstuhl Seminar
10181.

3.2 Hybrid Performance Measurement

Year 2 saw the begin of our efforts to develop support in TAU for event-based sampling (EBS) and
its integration with the probe-based measurement support that forms the foundation of TAU. Not
only does this expand the scope of observable performance, but there are also opportunities for
hybrid measurement. We were successful in building an initial version of the (so-called) TAUebs
system during the year and published the work in the ICPP conference [11]. The implementation
provided tracing support only, but this was enough to demonstrate important new capabilities to
work with applications such as MADNESS, which proved to be problematic for TAU in the past.

3.3 Binary Instrumentation

During Year 2, the Dyninst project released support for binary rewriting. This provided a new
mechanism for TAU to do instrumentation. It was an important development that had direct
relevance to the FastOS-2 project. We were able to build a binary instrumentation tool and include
it in the TAU distribution.

3.4 Parallel I/O Performance

TAU was extended to track I/O performance for applications using the MPI-IO constructs included
in the MPI-2 standard. TAUs library wrapping tool was applied to build support for MPI-2 and
MPI-IO, including the ability to examine the arguments that flowed through the MPI-1O calls. This
allowed TAUs context events to be used to track the volume and bandwidth of I/O operations for
different program callpaths.

4 Final Period Accomplishments

The final period of the FastOS-2 project focussed on improvements in the scalable online perfor-
mance data reduction and analysis, continued work with hybrid performance measurement, new
developments in parallel I/O, and a return to the kernel-level performance measurement work. The
results from these activities are discussed in the following sections.

4.1 Parallel Performance Monitoring

Our work in Year 2 on scalable performance monitoring demonstrated working solutions using MR-
Net and MPI. In the final period, we focussed our efforts on improving the MPI-based capabilities,
primarily because these are portable across HPC platforms. In particular, we made the scalable
data analysis operations more robust and added a means to apply multiple operations. It is now
routine practice to run event unification, reduction, and basic statistics operations at the end of
every TAU-instrumented MPI application.

We will continue to add analysis operations to the monitoring repetoire. There have been
requests made to also provide a scripting capability so that derived metrics can be processed in a
scalable manner online, instead of in TAU’s ParaProf tool post-mortem. This is in development.

Sampling Timeline

Sampling- }?\C..'l:ﬁ‘stfg_@m""*--.__-.5____ be Sampling-
Based o210 Based

Profile 0x3820 \ v T~ range \\\Ee\
\\ 0x3820 Samples
\ 0x4894 | | pnee

v

=

0x4894
last

0x2110 :ﬂ' \, flush

t Integration

Probe- ,ﬁ
Activ 7
Based e
event
Profile stack= — -
TAUkey han g ﬁ
TAUkey 0 TAUkey 1 TAUkey 2

—0—00 @ 0@

Instrumentation Timeline

v

Figure 1: Probe-based and sampling-based profile approaches with sampling-based tracing.

4.2 Hybrid parallel profiling

The Year 2 report covered in detail our efforts to create support in TAU for hybrid performance mea-
surement and analysis that integrates parallel sampling-based and probe-based techniques. Initially,
this work targeted capture of a trace of samples, where each sample contained a depth-limited un-
wound call stack and a key to identify the TAU context. The trace was post-processed to produce
merged hybrid profiles. Figure 1 shows a picture of traditional probe-based and sampling-based
profiling together with the sampling-based tracing.

In the final period, we have made substantial progress in developing an online hybrid parallel
profiling capability. This work will be released in the TAU distribution at the SC11 conference.

4.2.1 Approach

To enable hybrid profiling, it was necessary to first implement event-based sampling (EBS) sup-
port in TAU and capture EBS histograms (i.e., profiles) at runtime. This has been accomplished.
However, the power of hybrid profiling comes from associating the TAU probe-based profie with
the EBS profile. Figure 2 shows the general idea. At each EBS interrupt, the TAU event stack is
queried and a key is generated for each unique TAU event path seen in the application. For each
TAU event path, a EBS histogram is created. What this allows TAU to do is to contextualize EBS
histograms with respect to TAU profiles.

New Sample:
Function a(), address: 0x21098

TAUkey:
foo() “main-> ... -> foo() -> loop’

loop

b

- PC Histogram:

. main | 0x21098 == 15

Active TAU Tt
event stack 0x45362 == 23

Figure 2: TAUebs hybrid profiling.

4.3 Development

The development of the TAU hybrid profiling was based on existing timer-interrupt framework to
trigger samples. It supports call stack unwiding and using BED for PC address symbol resolution.
The TAU event context can be controlled by an specifying the event path depth through an en-
vironment variable. Multi-threading is support for Posix threads, but not for OpenMP threads,
currently. The TAU parallel profile format has been updated to merge hybrid profiles and TAU’s
profile analysis tool, ParaProf, is now able to read and display this format.

4.3.1 Hybrid profiiling examples

We are testing TAU hybrid profiling with several parallel applications. For demonstration purposes,
Figure 3 shows a simple program profile with merge probe-based and sample-based profile data in
a single view. Sample histograms are designated by [SAMPLE] and are positioned relative to the
TAU event context in which they occurred.

Figure 4 shows the simple program profile when loop-level instrumentation is enabled in TAU.
This is highlights a unique feature of hybrid profiling. With EBS profiling alone, it would be
necessary to post-process the EBS histogram to determine if a sample was seen within a loop.
Similaryly, probe-based profiling would have difficulty measuring loop execution details.

TAU hybrid profiling is targeted for parallel application using message communicaton and/or
multi-threading. We experimented with the NAMD and FLASH applications on a Cray XE6 (the
NERSC “Hopper” system). Figure 5 shows the use of hybrid profiling with NAMD. The mean profile
is presented. NAMD is built with Charm++ and what is being displayed is the internal operation
of Charm++’s runtime system Idle state. A significant fraction of the total execution time in
this experiment is spent in this state, but Charm++’s runtime system is difficult to instrument in
detail. We captured TAU events for the major RTS entry points (e.g., Idle) and then relied on
EBS observation for the internal operation.

The mean hybrid profile in Figure 6 and Figure 6 demonstrates how hybrid profile analysis in
ParaProf can be used to discover performance characteristics. Figure 6 exhibits a sequence of TAU
events which form a path to lower levels in the event graph (call graph). The coloring used in the

[n n it n el
File Options Windows Help
LI LT Illlllllllll \illlllllllllllllllllllll
Exclusive TIME Inclusive TIME Cal Child Calls

¢ W int maindnt, char ™) [{testStack. (pp)(bS 1) <1oo 13 —_ 27.546 24 073 1 4
7 ER[INTERMEDIATE] int main(int, char **) [{testStack.cpp} (68, 1}-{100, 1}] 0 27.498 27,498 &)
M [SAMPLE] UNRESOLYED ADDR Ox2b32c567aac8 0.049 49 &)
M [SAMPLE] UNRESOLYED ADDR 0x41b880 0.02 20 &)
_Z18s_int64_mem_accessv [{/mnt/netapp/home2 fcheelee /work/repositc 0.026 26 &)
_Z18s_int64_mem_accessv [{/mnt/netapp/home2 fcheelee /work/repositc 0.082 82 &)
Ml (SAMPLE] _Z18s_int64_mem _accessv [{/mnt/netapp/home2 fcheelee/work/repositc 0.012 12 &)
Ml [SAMPLE] _Z19s_double_mem_accessv [{/mnt/netapp/home2 jcheelee jwork/reposi 0.012 12 &)
Ml [SAMPLE] _Z195_double_mem_accessv [{/mnt/netapp/home2 fcheeleejwork/reposi 0.081 0.081 81 &)
Ml (SAMPLE] _Z195_double_mem_accessv [{/mnt/netapp/home2 jcheelee/work/reposi 0.034 0.034 34 0
Wl [SAMPLE] _Z19s0_int64_mem_accessv [{fmnt/netapp/home2 jcheelee fwork/reposit 0.019 0.019 19 &)
Ml (SAMPLE] _Z1950_int64_mem_accessy [{/mnt/netapp/home2 jcheelee fwork /reposit 0.073 0.073 73 o
I (SAMPLE] int64_mem_ac [{/mnt/netapp/home2 fcheelee fwork/reposit 0.014 0.014 14 &)
M (SAMPLE] _int64_mem_ sv [{/mnt/netapp/home2 fcheelee fwork/repos 0.016 16 0]
int64_mem_ v [{/mnt/netapp/home2 fcheelee fwork repos 0.088 88 &)
_int64_mem_ {/mnt/netapp/home2 fcheelee fwork/repos 0.019 19 [s]
double_mern_ sv [{/mnt/netapp fhome2 fcheelee fwork frepo 0.01 10 &)
ible_mem_ [{/mnt/netapp/home2 fcheelee fwork repo 0.082 82 &)
_Z20s0_double_mem_acc [{/mnt/netapp/home2 fcheelee fwork repo 0.03 [}
| IS _double_mem_ac / [{fmnt/netapp/hor cheelee jwork/rep 0.014 0
] ouble_mem_accessv [{/mnt/netapp/home2 jcheelee/work/rep &)
- ouble_mem_acce (/mnt/netapp/home2 fcheelee /work/rep o
m c}{0,0}-{0,0}] 0
m g [(("‘l”)) 0, 0,0}] 0.006 s}
W (SAMPLE] puts [{{nul} {0,0) 0.001 1 ol

W (SAMPLE] rand [{(nul)} {0, ¢) 0.0 0.05 50
W (SAMPLE] random [{(null)} {O,(0,0, ,| 0.218 0.218 218 0

W (SAMPLE] random_r [{(null)} (¢), 242 2 242
¢ Il double a(int ck.c 0.009 1 1

¢ HR[INTERME ouble a(G 3 . 7

[(SAMPLE] _Z1ai [(fmnt/ bp g K ocal/20111 C: main — a 3

[T (SAMPLE] _Z1ai [{/mnt/netapp, 1 alj20111 4
¢ Il void main_foo([{testStack.cpp} ~ 1 1

¢ I (INTERMEDIATE] v 1}-{28,1})
B ISAMPLE] __nanos 0,00 ’ C: mam —a— mmamjag

¢ Ow umnnn.mu stStack)) I 1
¢ EBUNTERMEDIATE] void malin_bar0 [:h:ﬁ(;hsck cpp} {18,1)-(21,1) &)
; ncel [(interp.c) (0,0)-(0,0) ’ C: main — a — main_fog — W 0
o [l double b(nt) 0003 3021 1
W int main_divByZero) [{testSta P o o 1 0
o [l void main_inlined_computeNest() (npu v.\ry cpp} {62, 1}-(66,1}] 0.488 0.488 1 0

Figure 3: TAUebs hybrid profiling for simple example.

ParaProf event graph view helps to identify performance “hot spots,” for instance, the HYDRO routine.
Additional instrumentation in HYDRO allows the user to further search for where the performance is
located. We see an unfolded event path to a loop that appears in the EOS_HELMHOLTZ routine. At
this point, measurement switched to EBS and we see the histogram captured when the execution
is withing the loop.

Presentation of a hybrid profile in this manner could show samples from particular code regions
associated with multiple event paths. If we were interested in seeing every event where a sample
occurs, a reverse event/call path view needs to be produced. We implemented this feature in
ParaProf. Figure 6 shows a reverse event/call path view, highlighting those events where a particular
sample in memcpy occurs.

4.3.2 Continuing work

There are several areas where we will continue our hybrid profiling work. First, alternative mecha-
nisms exist for unwinding call stacks. While we believe the 1ibunwind library is generally robust,
there may be some exceptions where other support might be better. Our approach is to create
a call stack query bridge in TAU that could interface with different unwinding support. Second,
hybrid profiles contain significantly more information than TAU’s probe-based profiles. We need to
continue to improve the efficiency of maintaining context-based histograms during execution. This
extends to scalable hybrid profile formats.

Lastlly, a hybrid profiling approach allows the user to set the degree of probe-based versus
sample-based measurement. This is done through event selection and the control of event path
depth. In general, knowing where to set the optimal degree and depth is difficult for an application.
It is possible that more guidance can be given with just a few bounding experiments.

File Options Windows Help
[T IIIIIIIIIIIIIIEM o I‘In!lulsilwl!‘HEIIIIIIIE!!IIIIIIIIIIIII
o Wint main(in, char ™) ftestStack cpp) {68 11200, 1) 27,654 36,81 1 4
o~ [(NTERMEDIATE] int rraini, char **) [testStack cpp) 68, 11-1100, 1) 0 2579 51 0
0 [double afm) [ftesStack cpp) 30, 144, 1) 0 7619 1 3
o [oup doule) etk cop) 2 31363 C: main — a — loop[38,3] |; 1708 I i
¢ I INTERMEDIATE] Lo doutle a(in) (estStack cop) (32, 31-36,3)] 0 1901 1901 0
QU GAMPLE] 2 1a (oot netapp home?2 cheelee wark repasitary/gitlacal /201 PrajectT ayekrDenchimark tesStack inst.cop) (44,0} 0.429 0429 {4 0
[(GAMPLE] _21ai [t/ netapphorne2 cheelee work repasitaryatloca /20 efeT auedS foenchmark testStack int cpp} (45,0} 1472 1472 1472 0
- W Loop: double i) [festtack copl 38 31H42,3) 1897 1897 1 0
¢ I INTERMEDIATE] Loop: double afi) {estStack cop} (38, 31-42,3) 0 1.896 1,89 0
O (SAMPLE] 71 [netapp fhome2 fcheeleefwark reposiorygtocalj 20 1 ProjectTauEgS enchmark tesStack nstcof 0.442 0442 442 0
I SAMPLE 21l netapp e cheeleeworkrepasitory gt ocal 201 LProjectTauE8S enchmarktestStack ns.cog 1454 1454 1454 0
o~ [vaic e o) [{testtack.cpp} (23, 128, 1) /7 201 3104 1 1
o~ [couole () ftestStack cop} 46,1160, 1) 0.009 300 1 |
Wi i iy Zera) etk coo) (10,116, 1) Samples show performance | 0 |)
o Wi i e, computeest) [festackcap) 62,L1466,1) relative to line number | 5y 0517 1)

Figure 4: TAUebs hybrid profiling for simple example showing loops.

4.4 Characterizing parallel I/O performance in GCRM

The ability to grow parallel applications to execute efficiently at extreme scales is most often coupled
with the ability to increase the size of the problem being solved. Consequently, applications will
see a steady increase in the volume of data they need to process and solution results they need
to generate. While parallel efficiency has previously been mainly concerned with computing and
memory optimization, it is clear the I/O performance is becoming a key bottleneck in many cases at
the extreme scale. As the volume of data an application reads and writes increases, it is important
to assess the scalability of I/O operations as a key contributor to overall application performance.
Observing the performance of the I/O operations requires instrumentation to be inserted in the
I/O library layers of the software stack, including commonly used I/O interfaces such as POSIX
I/O and MPI-IO. However, characterization of I/O performance must also be done with respect to
application context to fully understand overall performance impact.

In the final period of the FastOS-2 project, we applied our parallel I/O performance measure-
ment support developed in Year 2 and enhanced in this period to the Global Cloud Resolving Model
(GCRM) application [12] on a Cray XE6 system [13]. TAUs multi-instrumentation capabilities have
proven to be effective to characterize 1/O performance, particularly for automating the instrumen-
tation of I/O packages in cases where the source code may not be available for direct probe-based
instrumentation.

4.4.1 Instrumentation for tracking I/O

Parallel application packages are often layered, internally calling other libraries to implement un-
derlying functionality, which can be hidden to the user. Having an ability to intercept package
calls at library routine interfaces enables performance tools to gather both semantic (contextual)
and performance data for analysis purposes. I/O libraries represent a challenging case study for
performance observation. TAU provides alternative instrumentation techniques that be used during

4 TAU: ParaProf: Mean Statistics - /mnt/netapp/home2/cheelee/work/experiments/EBS_Sampling/20110726_NamdSamp_Logs/Logs_Namd_Apoa10144_SampCallf==iF=!
File Options Windows Help

LU INENNERENN NENNENNNENNENNNANENEAEEE
Name Exclusive TIME Inclusive TIME ¥ Calls Child Calls
¢ I .TAU application 0 14.789 1 1=
¢ W Main 1.582 14.789 1 82,840 75“
¢ Eide 5.815 5.96 3,279.104 162,801.333
¢ [E[INTERMEDIATE] Idle MPIDI_CH3I Progress =) 551 5.151 5,150.722 0
[(SAMPLE] MPIDI_CH3I_Progress [{(null)} {0,0}-{0,0}] . 2.212 2212 0
W (SAMPLE] MPID_nem_gni_pall [{ull} {0,0}-(0, 03] kMPID nem. eni_nol 0.281 0.281 0

0

il {(nul} {0,0}-{0,0}] A\

PLE] GNI_CaGetEvent [{(null)} {0,0}-{0,0}] PMPI Inrobe
PLE] UNRESOLYED ADDR Oxffffffffff60014c

PLE] MPIDI_CH3U_Recvg_FU [{(null)} {0,0}-{0,0}]

PLE] MPID_Iprobe [{(null}} {0,0}~{0,0}]

PLE] MPID_nem_gni_s| oll [{{nhull} {0,0}-{0,0}]

0
(]
0
0

0
0
0

SAMPLE] MPID_nem_gni_datagram_poll [{(hul)} {0,0}-{0,0}] .

SAMPLE] MPID_ Wime (i) {0,01-{0,01) L | Uninstrumented

-[C\AMF‘K E] UNRESOLYED ADDR Oxffffffffff600147 ° °
SAMPLE] UNRESOLYED ADDR OXFfffffff60015 1 runtime routines

PLE] MPI_Wtime [{(null)} {0,0}~(0,0}] TUT TUGT

SAMPLE] MPID_Wtime_todouble [{{(null)} 0,011 0.053 0.053

SAMPLE] PCQueuePop [{/global/homes jc/cheelee jwork/repository/git/charm/mpi-ci 0.045

M (SAMPLE] UNRESOLYED ADDR Oxfffffffiff600154

PLE] PCQueuePop [{/global/homes c/cheelee /work/repository/git/charm/mpi-ci Hopper Cray XE6
’

144 processors

0

0

0

0

0

fwork/repositoryfgit/charm/mpi
rkrepository/git/charm/mpi-ci
frepositoryfgit/charm/mpi-cra:)

Figure 5: NAMD hybrid profiling showing context.

the compilation process, at link time, and on the binary to track I/O calls.

Compilers for C and C++ will pre-process the source code and expand header files and macros
before the code generation phase. This allows tools to intercept and replace I/O calls, such as POSIX
I/0 open, close, read, and write, with their instrumented counterparts. TAU utilizes this support
to replace all references to the I/O call at the callsite in the source code with the corresponding
instrumented call. However, this only works for C and C++. TAU does support instrumentation
of Fortran I/O constructs by re-writing the source code.

The MPI message passing libraries provides a name-shifted interface that permits tools, including
TAU [4], to intercept calls using the PMPI name-shifted interface. TAU additionally uses this
support to create a wrapper library for MPI-1O calls (e.g., MPI_File read) that internally calls the
name-shifted interface (e.g., PMPI_File read). This work was reported in Year 2 of the project.
However, library interposition through name-shifted interfaces is only available as a technique if
such interfaces are implemented in the library. This is not the case with POSIX I/O.

Many HPC operating systems such as Linux, Cray Compute Node Linux (CNL), IBM Blue-
Gene Compute Node Kernel (CNK), Solaris permit pre-loading of a library in the address space
of an executing application specifying a dynamic shared object (DSO) in an environment variable
(LD_PRELOAD). TAU uses this technique to intercept all I/O operations by means of a wrapper-library
where the POSIX I/0 calls are redefined to call the global dynamically-linked routine. While it can
resolve all POSIX-IO calls and operates on un-instrumented executables, it only supports dynamic
executables. A different technique will be necessary to support static binaries on machines such as
IBM BlueGene and Cray XE6 and XK6 systems.

A linker can redirect references to a wrapped routine when it is invoked with a special flag
on the command line (-Wl,-wrap,function name). In this case, the application does need to be
re-linked to use the wrapped library, but this instrumentation technique overcomes the limitation
of the previous approach provided by the runtime linker and may be used with both static and
dynamic executables. TAU has applied this approach to instrument POSIX 1/0O calls by creating a
wrapper library.

When the user needs to evaluate the time spent in un-instrumented I/O libraries (such as
HDF5) and other system libraries, it is important to be able to generate custom user-directed
wrapper libraries. These wrapper libraries may be pre-loaded at runtime or re-linked to create an

X dnals

File Options Windows Help
NERNRRNRRNRNNREN R LT T
Name

Exclusive TIME Inclusive TIME Calls Child Calls

¢ IMFLASH [{Flash.F90} {4C
¢ I DRIVER_EVOLV

0 21 =
0.066
0.002
0.003
0.003
0.003
0.063

Follow probed event | o

path to end and pick | ¢

0.003

[{dr_shortenLastDt.F9C
OFBLOCKS [{Cravity_po!
{Grid_getListOfBlocks.F90!
LocalNumBlks.F90} {19
dateRefinement F90} {42

0.012

up samples to highlight | -

0.008

¢ EHYDRO [{H
o I GRID_M:

MREGION [{Grid_moveCustomRegion.F90} {26, 1}-{182,36}]
pm_sweep.F90} {66, 1}-{661,27})
1 [{Diffuse_therm.F90} {106, 1}-{147,

2o significant code points | .-

4

mholtz.F90} {228, 1}-{68:
p: EOS_HELMHOLTZ [{eos_helmhohz. F90}

M (INTERMEDIATE] Loop: EOS_HELMHOLTZ |
I (SAMPLE] RisLayer: myThre

0
0
0
0
0

0.03
0.015
0.021
0.099
0.117
0.072

0.111

/tau2 /src/Profile/TauFAPL.cpp
repository/git/tau2 /src/Profile/TauFAPL.cpp} {62 1

;p ' - |Hopper, Cray XE6
228 1605200 144 processors

PLE] tau_profile_stop_ [{/global/h,
ELMHOLTZ [{e0s_helmholtz.F90

cccococococococooocooooo

coo

),26))

Figure 6: Hybrid profiling on FLASH showing event paths.

instrumented binary using linker-based instrumentation as described above. However, manually
building these libraries may prove to be cumbersome. We created a TAU tool, tau_gen_wrapper, to
automate generation of wrapper libraries. It takes an interface declaration of a library in the form
of a header file and generates a wrapper library for TAU instrumentation. It uses the PDT static
analysis tool to parse the header file and generates for each routine, a complete representation of
its signature. A signature consists of the return type, the routine name, and a list of arguments.
Fach argument, in turn, consists of the argument type and an optional argument name. Internally,
the tool invokes the parser TAU’s wrapping tool, tau_wrap and builds the instrumented source
code emitted by it. The wrapper generator tool allows the user to choose pre-processor, runtime
preloading, or linker-based instrumentation techniques for creating a wrapper library.

4.4.2 GCRM

The Global Cloud Resolving Model (GCRM) being developed by Randall et al [?7] will model
climate on the entire globe at a horizontal grid spacing of at least 4km and vertical dimension on
the order of 256 layers resulting in over 10 billion cells. A single cell-based variable written in single
precision will require approximately 43 GB of disk storage. Corner data will require 85 GB and
edge data 128 GB. A single snapshot of history data will require 1.8 TB of storage as currently
configured. Climate scientists will want to write data as frequently as possible (down to the order of
minutes) while maintaining an IO cost below 10% of the overall simulation. Obviously, the efficiency
of the I/0O is of critical importance.

| i sl

File Options Windows Help

LLLLLLL TR IRNNRNNRNRNNRN NNNNERRRNNNNNNRNNNNNERRRRANEEER
Name Exclusive TIME Inclu Calls
7N 0
volveFlash. 0.066
SHIFT [{Cosmol 0.002
THYDRO [{Cosm 0.003
IEDMANNEQN [{Co: 0.003
5,22)) 0.002
0.063
0.002

Follow probed event
path to end and pick
up samples to highlight | oo
significant code points | :::

M GRID_GETLIS
o [GRID_GETLOC
o [GRID.UPDATE?
¢ EHYDRO [{H

eRefinement.F90} {42, 1}-{106,36]

644,084

umfrac_ [{(nulh}
es_getsuminv_ [{(nulb)} {

0.111

{Hopper, Cray XE6 | «
144 processors ;

#/repository/git/tau2 /src/Profile/Tauf APL.cpp} {62 1, 0}-621,0

(689,28]]
o W [INTERMEDIATE] EOS [{E0s.F90} {209,
o I [INTERMEDIATE] EOS_WRAPPED [{E0s_wra

|«

Figure 7: Reverse event/call path view of FLASH hybrid profile.

4.5 Profiling GCRM

Understanding and optimizing the behavior of the I/O system for an application is difficult for sev-
eral reasons. First there are several layers in the I/O stack, some of which are proprietary software.
Second, there are many options for controlling these layers varying from optional arguments, to
hints to alternative APIs. Third, there are often multiple implementations of some of the layers.
Figure 8 shows the layers and alternatives considered for GCRM. It is still critical to be able to
profile all the layers of the GCRM I/O in order to determine where the true bottlenecks reside.
TAU provides the capabilities both to look deep into the various API layers and to organize and
analyze the numerous configurations under evaluation.

We ran GCRM with TAU on the CRAY systems at NERSC using PNetCDF, the Cray MPI-10
library, and Lustre. The whole application was profiled with different phases of execution analyzed:
initialization, I/O, and the numerical model itself. This enabled us to look at performance of each
phase in its context and see the relative cost of each phase. Figure 9 shows the phase profile from
our initial experiments.

Profile runs tend to be of very short duration, which causes an over-representation of the Init
phase. The interesting take-way from this particular run is that I/O is taking a reasonable amount
(8%) time relative to the numerical model itself. Right clicking on the I/O phase column and
requesting the phase detail will result in the I/O phase detail shown in Figure 9 (right). In these
early runs, we were clearly able to see that the collective open calls were taking significant time and
that it was not due to the cost of POSIX open. Sharing these profiles with Cray engineers led to a
detailed analysis of the cost of MPI_file open and resulted in several changes to the Cray library
that will be included with the next release.

A final important feature provided by the new TAU I/O profiling capability is a summary of
the read and write sizes and read and write bandwidths per processor. An example is shown in

10

GCRM

Isolate application

Maps application level Application 10 Layer ’; from underlying
abstractions onto GIO libraries; provide
storage abstractions higher level interface
and provides portability —‘ High Level IO Library
PNetCDF, NetCDF4
Organizes accesses
1O Middleware '7 from many processes
especially those
Vendor or Open MPIO using collective 1/0

Maintains logical
space and provide
efficient access to
data

Parallel File System
Lustre, GPFS

L

/O Hardware

Figure 8: The GCRM I/O stack and some of the variations that make profiling a complex task.

D O TAU: ParaProf: zgrd_hopp2_10kp_r11_nonblock_80_mfiles.xml Phase: CIO_DRIVER [{gio_driver.pp.F30}

Phase: GIO_DRIVER [{gio_driver.pp.F90} {6,1}-{167,25}]
Metric: TIME
Value: Exclusive

std. Dev.] [u] C
Mean]]

node O 10 1

node 1

node 4
node 5
node 6
node 7
node 8
node 9
node 10
node 11
node 12
node 13
node 14
node 15
node 16
node 17
node 18

Figure 9: Left: The initial TAU profile when using TAU’s phase capability. The first column
represents the computational phase, the second column represents the initialization phase, and the
third column represents the I/O phase. Right: I/O phase detail with columns MPI Write all,
MPI File_open, POSIX I/O write, and everything else. I/O aggregators are clearly identifiable.

Figure 10. Here we can see that we are successfully writing large chunks of data and that the mean
is also large. Per-processor bandwidth and mean bandwidth can also be seen.

4.6 OS Performance Measurement and Analysis

In the first year of the FastOS-2 project, we further developed the KTAU (Kernel Tuning and
Analysis Utilities) system-level performance measurement methodology and tool infrastructure to
bridge the gap between the application and the OS/R components. KTAU couples kernel-level per-
formance measurements with application-level events to provide an integrated parallel performance
view from both kernel-wide and process-centric perspectives. Our specific Year 1 effort had the goal
to port KTAU to the IBM BG/P at Argonne and demonstrate it integrated with TAU on a parallel
MPI application. While our Year 1 goal was achieved, the KTAU source-level implementation was
a non-starter for future use. In the final project period, we refocussed our KTAU work on a course
that leverages broader Linux development efforts. This work on KTA U-ngis presented below.

11

TAU: ParaProf: Context Events for thread: n,c,t, 0,0,0 - zgrd_hopp2_10kp_r11_nonblock_80_mfiles.xml

Name £ Total NumSampl.. MaxValue MinValue MeanValue Std. Dev.

» MPI_File_open()

» MPI_File_read_at()

¥ MPI_File_write_all()

¥ write()

Bytes Written 10,123,013... 10,977 1,048,576 4 922,202.241 340,391.19
Bytes Written <file=./data80/exner_19010101_000000.nc> 415,237,696 400 1,048,576 81,038,094.24 104,220.35
Bytes Written <file=./data80/graupel_mmr_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103,707.722
Bytes Written <file=./data80/geopotential_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103,707.722
Bytes Written <file=./data80/grid.nc> 102,760,712 313 1,048,576 4 328,308.984 461,889.127
Bytes Written <file=./data80/heat_flux_vdiff_19010101_000000.nc> 415,237,696 400 1,048,576 81,038,094.24 104,220.35
Bytes Written <file=./data80/cloud_ice_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103,707.722
Bytes Written <file=./data80/cloud_water_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103,707.722
Bytes Written <file=./data80/vorticity_19010101_000000.nc> 415,237,696 400 1,048,576 81,038,094.24 104,220.35
Bytes Written <file=./data80/swinc_19010101_000000.nc> 4,194,336 8 1,048,576 8 524,292 523,764.258
Bytes Written <file=./data80/temperature_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103.707722[
Bytes Written <file=./data80/snow_mmr_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103,707.722
Bytes Written <file=./data80/rel_vorticity_19010101_000000.nc> 415,237,696 400 1,048,576 81,038,094.24 104,220.35
Bytes Written <file=./data80/pressure_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103,707.722
Bytes Written <file=./data80/rain_mmr_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103,707.722
Bytes Written <file=./data80/olr_19010101_000000.nc> 4,194,336 8 1,048,576 8 524,292 523,764.258
Bytes Written <file=./data80/mass_19010101_000000.nc> 415,237,696 400 1,048,576 81,038,094.24 104,220.35
Bytes Written <file=./data80/heating_lw_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103,707.722
Bytes Written <file=./data80/heating_sw_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103,707.722
Bytes Written <file=/dev/kdreg> 32,768 1,024 32 32 32 0
Bytes Written <file=./data80/wtr_flux_vdiff_19010101_000000.nc> 415,237,696 400 1,048,576 81,038,094.24 104,220.35
Bytes Written <file=./data80/wind_crn_ns_19010101_000000.nc> 830,472,200 794 1,048,576 8 1,045,934.... 52,534.087
Bytes Written <file=./data80/wind_crn_ew_19010101_000000.nc> 830,472,200 794 1,048,576 8 1,045,934.... 52,534.087
Bytes Written <file=./data80/wind_19010101_000000.nc> 1,245,708,... 1,190 1,048,576 8 1,046,813.... 42,929.966
Bytes Written <file=./data80/water_vapor_19010101_000000.nc> 419,432,016 404 1,048,576 8 1,038,198.... 103,707.722
Write Bandwidth (MB/s) <file=./data80/heating_lw_19010101_0000 404 771.012 0.078 525.008 93.257 a
Write Bandwidth (MB/s) <file=./data80/heat_flux_vdiff_19010101_0! 400 762.047 0.084 521.865 101.895 v

Figure 10: Processor 0 Context Event Window showing write sizes and bandwidths.

4.6.1 Background

KTAU-ng is a Linux kernel module for creating performance data. KTAU-ng builds upon work of
KTAU, LTT-ng, Oprofile, SystemTap, and D-Trace. The goals of our work differs from these tools
in the following respects:

1. Flexibility to produce performance traces or profiles
2. Seamless integration with TAU

3. Ability to provide kernel-level performance information on production HPC-class system with-
out compromising stability or security

4. Easy installation and operation

These particular goals have resulted in a feature set different from the tools above, and one that
also paritally dictated an architecture for development.

4.6.2 KTAU-ng architecture design

The KTAU-ng architecture is shown in Figure 11. There are several things to point out. First,
whereas the original KTAU used kernel patches to directly insert instrumentation points into the
kernel source, KTAU-ng uses the tracepoint and Kprobes mechanisms added into the mainline Linux
kernel. Tracepoints are statically-instrumented points in the kernel which have the advantage of
low overhead when disabled. Converslty Kprobes allow dynamic instrumentation of nearly any
location in the kernel, but but have higher overhead since they trigger a software interrupt and use
traditional trampolining.

Second, KTAU-ng’s functionality is restricted to a kernel module and a set of user-space utili-
ties. It requires root access only to install, which is a necessary consequence of using tracepoints.

12

Kernel Space User Space

Klaws Cone

ktai_padhash ks prof (ictaud]
“ite

318 hasy
Eai praf st C-L
/ POCTL_COMMANDS
| T
prad
i pret

e
R B s
. i e
s
tau_inst muw\
o ;
-

Ktau_Inst_schadiler

| ktau mhmg |ktas tracamargn|

Figure 11: KTAU architecture showing the division of user-level and system-level development.

However, users can query performance application (about processes they start) without requiring
super user access.

Third, one of the prominent features of KTAU-ng is its emphasis on per-process recording
buffers — as opposed to the per-instrumentation point buffers user by other kernel performance
measurement systems. Since KTAU-ng has been designed to be run solely as a Linux kernel module
these recording buffers could not be added to the Linux kernel’s task_struct, which would require
a kernel patch. Instead, we constructed a hash structure based on processor ID (pid) and process
namespace. Using the task struct pointer stored at the bottom of the processes stack frame we can
quickly locate the the necessary information to look-up the buffer for a given process, record the data,
and continue executing the process. Since access to this hash could be performed simultaneously for
multiprocessor systems we needed a locking structure that would allow for simultaneous access to
the process structure in an atomic way. This was achieved by using the Read-Concurrent-Update
mechanism.

Lastly, because KTAU-ng can potentially create large volumes of performance information it is
necessary to insure that the recording of this performance information does not influence the results.
To this end, KTAU-ng has been designed to transfer the data recorded by the kernel into user-space
without having to copy the data while still insuring that the kernel does not export potentially
sensitive information or read any data that might poison the integrity of the kernel.

4.6.3 Using KTAU-ng

KTAU maintains a per-process vantage point to allow instrumentation to be selected on a per
process basis at run time. When instrumentation is no longer needed because the processes that it
was specified for finishes, or is otherwise told to stop recording performance data, it is automatically
disabled from this system.

While KTAU provides a growing set of instrumentation point to allow end pusers to easily
evaluate system performance, specific hardware may require instrumentation beyond that which
is provided by the KTAU system. Fortunately an API has been developed for the easy creation

13

and installation of instrumentation points. These points can be then registered into the KTAU
infrastructure (at run time) and added into the performance data produced by KTAU.

Central to KTAU-ng’s feature set is the ability to merge profiles and traces produced by TAU
with those produced by KTAU, to this end the profiles and traces produced by KTAU-ng use the
same format as TAU and will be easily mergable the profiles and traces produced by TAU.

5 Preliminary Results

Presently, KTAU-ng is still a work in progress. We have done preliminary testing to validate the
functionality of profiling with a set of tracepoint instrumentation, including system calls, IRQs, and
scheduling events. Once the profiling framework is robust and more instrumentation points have
been enabled, we will develop the KTAU-ng tracing support.

One of the tests being used for KTAU-ng is a multi-process matrix multiplication (matmult)
benchmark. Figure 12 shows a ParaProf display of one process from a matmul execution. Here we
see merged application and system profiles. Notice the application-level events and the system-level
events. If we look at the four-process matmult profile in Figure 13, we see the clearly the effects of
the kernel swapping out the processes for another processes. This is happening because the matmult
application is being run on a two-core machine

File Options Windows Help

Metric: Time
Yalue: Inclusive
Units: seconds

40,135 | | ktau_toplevel_timer{} il
38,752] MAIM_ [{matmult.fe0} {39,01]
23.148 | | =ched_switch()

20,624 IEEe—— sched yield(]
20414 — MPI_Bast(]
7.959] MPI_Recw()
3,584 [MPI_Send()
2,552 = MPLInit0)
=

2.041 paoll(}
1.718 [initialize_ [{matmult.fo0} {4,03]
0.482 [read{)
0.057 | execvel)
0.044 | socketcall()
0.028 | munmap(}
0.024 | MPI_Finalizel} —
0.007 | mmap2(}
0.005 | nancsleep()
0.004 | mprotect{}
0.004 | gettimeofday()

|
|
|
|
|
|
|
|
0.003 | open{)
|
|
|
|
|
|
|
|

0.002 | getdents{)

0,001 | ftruncate()

0.001 | writew(}

8.0E-4 | cloge()

3.3E-4 | fstatg4()

2.7E-4 | brk(}

1.4E-4 statGal)

1.4E-4 | writel) -

Figure 12: ParaProf display of one matmult process showing application and kernel events.

14

File Options windows Help

Metric: Time .
value: Exclusive SChed_SWItCh()

Std. Dev. %_LE_LEJ

Mean e el e [

nct 2410,2410,0 1
nct 2412,2412,0 -~
.t 2413,2413,0 || & S = —
n.c.t 2414,2414,0 | Ll
nc.t 2415,2415,0

S ~

MPI_Bcast()
matmult processes

Figure 13: Full profile display of four-process matmult execution on two cores.

6 Future direction

As KTAU-ng continues to be developed, various system performance questions will be able to be
addressed. In particular we believe KTAU-ng will hold great promise for analyzing performance
on systems taking advantage of virtualization and those that utilize GPUs. The overhead of these
two increasingly prevalent technologies is difficult to analyze with purely user-space utilities and we
hope that KTAU-ng will help answer some of these questions.

7 Meetings

Throughout the FastOs-2 project, we participated in many external meetings we presented our
research and development accomplishments. In addition to those presented in the Year 1 and Year
2 progress reports, the meetings in the final period included:

e SC (Supercomputing) 2010

— TAU demonstrations in DOE NNSA ASC booth.

— Tutorial, “Hands-On Practical Parallel Application Performance Engineering using PAPI,
PerfSuite, Scalasca, Vampir and TAU”

e DOE SciDAC CScADS workshops

— Performance Tools for Petascale Computing, August 2-5, 2010
— Performance Tools for Extreme Scale Computing, August 1-4, 2011

e Argonne Leadership Class Facility workshops

— INCITE Getting Started Workshop, January, 2010
— Leap to Petascale, May 18-20, 2011
— Leap to Petascale, June 7-9, 2011

e DOE ACTS Collection Workshop, High Performance Software Tools to Fast-Track The
Development of Scalable and Sustainable

— Tutorial, “TAU Performance System,” August 17-20, 2010
— Tutorial, “TAU Performance System,” August 16-19, 2011

15

References

1.

10.

11.

12.

A. Nataraj, A. Malony, A. Morris, D. Arnold, and B. Miller. TAUoverMRNet (ToM) : A
Framework for Scalable Parallel Performance Monitoring. In International Workshop on Scal-
able Tools for High-End Computing (STHEC ’08), 2008.

. A. Nataraj, A. Malony, S. Shende, and A. Morris. Integrated Parallel Performance Views.

IEEE Cluster Computing Journal, 11(1):57-73, Mar. 2008.

. A. Malony, S. Shende, A. Morris, S. Biersdorff, W. Spear, K. Huck, and A. Nataraj. Evolution

of a Parallel Performance System. 2nd International Workshop on Tools for High Performance
Computing, M. Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz, Eds., Stuttgart,
Germany, Springer, pp. 169-190, July, 2008.

. A. Nataraj, A. Malony, A. Morris, D. Arnold, and B. Miller. In Search of Sweet-Spots in

Parallel Performance Monitoring. In IEEE International Conference on Cluster Computing
(Cluster 2008), Sept. 2008.

. A. Morris, W. Spear, A. Malony, S. Shende. Observing Performance Dynamics using Parallel

Profile Snapshots. In 14th International Euro-Par Conference on Parallel Processing (Euro-Par
2008), Aug. 2008.

. ZeptoOS V2.0 Documentation — Using (K)TAU on ZeptoOS

http://wiki.mcs.anl.gov/zeptoos/index.php/ (K) TAU

H. Jagode , J. Dongarra. S. Alam, J. Vetter, W. Spear, A. Malony, A Holistic Approach for
Performance Measurement and Analysis for Petascale Applications. International Conference
on Computational Science (ICCS). Eds. G. Allen et al., Springer-Verlag. LNCS 5545, Part
I1, 686695, May, 2009. (Joint Workshop: Tools for Program Development and Analysis in
Computational Science and Software Engineering for Large-Scale Computing).

. M. Geimer, S. Shende, A. Malony, F. Wolf. A Generic and Configurable Source-Code Instru-

mentation Component. International Conference on Computational Science (ICCS). Eds. G.
Allen et al., Springer-Verlag. LNCS 5544, Part II, 696-705, May, 2009. (Joint Workshop: Tools
for Program Development and Analysis in Computational Science and Software Engineering
for Large-Scale Computing).

. S. Biersdorff, C.W. Lee, A. Malony, and L. Kale. Integrated Performance Views in Charm+-+:

Projections Meets TAU. International Conference on Parallel Processing (ICPP), September,
20009.

A. Nataraj, A. Malony, A. Morris, D. Arnold, and B. Miller. A Framework for Scalable, Parallel
Performance Monitoring. Concurrency and Computation: Practice and Experience. Vol. 22,
No. 6, pp. 720-735, December, 2009. (special issue on Scalable Tools for High-End Computing).

A. Morris, A. Malony, and S. Shende. Design and Implementation of a Hybrid Parallel Perfor-
mance Measurement System. International Conference on Parallel Processing (ICPP), Septem-
ber 2010.

Global Cloud Resolving Model, 2011
http://kiwi.atmos.colostate.edu/gcrm/

16

13. S. Shende, A. Malony, W. Spear, and K. Schuchardt. Characterizing I/O Performance us-
ing the TAU Performance System. International Conference on Parallel Computing (ParCo),
September 2011.

17

