OAK RIDGE ORNLO00-0605
NATIONAL LABORATORY

MANAGED BY UT-BATTELLE
FOR THE DEPARTMENT OF ENERGY

Energy & Transportation Science
Division

CRADA Final Report
For
CRADA Number
ORNLO00-0605

Advanced Engine/Aftertreatment
System R&D

Josh Pihl, Brian West, Todd Toops
Oak Ridge National Laboratory

Brad Adelman, Ed Derybowski
Navistar, Inc.

Prepared by
Oak Ridge National Laboratory
Oak Ridge, TN 37831
managed by
UT-BATTELLE, LLC
for the
U.S. Department of Energy
under contract DE-AC05-000R22725

Approved for

Unlimited Release
UT-BATTELLE

ORNL-27 (4-00)




DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available
free via the U.S. Department of Energy (DOE) Information Bridge.

Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by
members of the public from the following source.

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone 703-605-6000 (1-800-553-6847)

TDD 703-487-4639

Fax 703-605-6900

E-mail info@ntis.gov

Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors,
Energy Technology Data Exchange (ETDE) representatives, and
International Nuclear Information System (INIS) representatives
from the following source.

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone 865-576-8401

Fax 865-576-5728

E-mail reports@osti.gov

Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.




ORNLO00-0605

Energy & Transportation Science Division

CRADA FINAL REPORT FOR
CRADA NUMBER ORNLO00-0605

ADVANCED ENGINE/AFTERTREATMENT SYSTEM R&D

Josh Pihl, Brian West, Todd Toops
Oak Ridge National Laboratory

Brad Adelman, Ed Derybowski
Navistar, Inc.

Date Published: September, 2011

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6283
managed by
UT-BATTELLE, LLC
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725






1. ABSTRACT

Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and
control strategies that could meet emissions regulations while maintaining or improving vehicle
efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx
trap (LNT, also known as NOx adsorber catalyst)) regeneration and desulfation. While Navistar pursued
engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL
focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic
control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust
system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel
oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under
guasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the
exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared
(FTIR) spectroscopy.

Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty
for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were “cracked” into
smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species
entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics;
branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a “road load”
condition were conducted, revealing that the NOXx reduction was better without the DOC at lower
temperatures. The improved performance was attributed to the large swings in the NOx adsorber core
temperature.

Split-injection® experiments were conducted with ultra-low sulfur diesel fuel and three pure HC
compounds: 1-pentene, toluene, and iso-octane. The pure compound experiments confirmed the previous
results regarding hydrocarbon reactivity: 1-pentene was the most efficient LNT reductant, followed by
toluene. Injection location had minimal impact on the reactivity of these two compounds. 1so-octane was
an ineffective LNT reductant, requiring high doses (resulting in high HC emissions) to achieve reasonable
NOXx conversions. Diesel fuel reactivity was sensitive to injection location, with the best performance
achieved through fuel injection downstream of the DOC. This configuration generated large LNT
temperature excursions, which probably improved the efficiency of the NOx storage/reduction process,
but also resulted in very high HC emissions.

The ORNL team demonstrated an LNT desulfation under “road load” conditions using throttling, EGR,
and in-pipe injection of diesel fuel. Flow reactor characterization of core samples cut from the front and
rear of the engine-aged LNT revealed complex spatially dependent degradation mechanisms. The front of
the catalyst contained residual sulfates, which impacted NOx storage and conversion efficiencies at high
temperatures. The rear of the catalyst showed significant sintering of the washcoat and precious metal
particles, resulting in lower NOx conversion efficiencies at low temperatures.

Further flow reactor characterization of engine-aged LNT core samples established that low temperature
performance was limited by slow release and reduction of stored NOx during regeneration. Carbon
monoxide was only effective at regenerating the LNT at temperatures above 200°C; propene was
unreactive even at 250°C. Low temperature operation also resulted in unselective NOx reduction,
resulting in high emissions of both N,O and NHs.

During the latter years of the CRADA, the focus was shifted from LNTS to other aftertreatment devices.
Two years of the CRADA were spent developing detailed ammonia SCR device models with sufficient

! Reductant spray into the exhaust was split, with fuel spray both upstream and downstream of the DOC.
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accuracy and computational efficiency to be used in development of model-based ammonia injection
control algorithms. ORNL, working closely with partners at Navistar and Michigan Technological
University (MTU), developed a flow reactor experimental protocol designed to measure critical
parameters needed for model development, calibration, and validation. These included NH; storage
capacities, SCR reactions rates, and NH3 and NO oxidation rates over a wide range of temperatures, space
velocities, and gas compositions. The resulting data sets were transferred to MTU, where Navistar’s
partners used them to calibrate and validate their models.

To determine the impact of aging on key model parameters, ORNL also exercised the experimental
protocol on catalyst samples aged on an engine dynamometer by Navistar. Two distinct aging
mechanisms were observed from these experiments: hydrothermal sintering of the catalyst washcoat
components, and deposition of precious metals volatilized from an upstream diesel oxidation catalyst
(DOC).

Near the end of the CRADA, the technology focus was shifted to diesel particulate filters (DPFs). This
shift was a logical consequence of Navistar’s strategic decision to utilize in-cylinder NOx conttrol,
precluding a current need for NOx aftertreatment. In-cylinder NOx control places more of a demand on
the DPF due to increased particulate production and/or reduced passive filter regeneration by NOx. If not
managed carefully, the resulting higher soot loading rates would require more frequent active
regeneration events to avoid excessive filter backpressure or runaway regenerations, thereby increasing
the fuel penalty associated with the DPF. The goal of the final phase of the project was to improve the
fidelity of DPF regeneration models so they could be used to identify fuel optimal control strategies.
Navistar obtained miniature DPFs with several different formulations from suppliers, loaded the filters in
engine exhaust, and shipped them to ORNL, where carefully controlled DPF regeneration experiments
were conducted. Temperature programmed oxidations revealed complex variations in soot oxidation rate
and pressure drop evolution, which could be explained, in part, by spatial variations in the regeneration
process. Pulsed oxidation experiments were employed to measure soot oxidation kinetics as a function of
temperature, gas composition, and burnout for both active and passive regeneration. Navistar utilized the
data sets from these experiments to calibrate their DPF regeneration models.

2. STATEMENT OF OBJECTIVES

The overall goal of the CRADA was to develop diesel engine/aftertreatment system configurations and
control strategies that meet stringent emissions regulations while improving overall vehicle efficiency.
The focus of the CRADA research shifted to different aftertreatment component technologies as the
regulatory landscape and Navistar’s strategies evolved. The specific CRADA objectives for each
aftertreatment technology were as follows:

LNT:
e Develop LNT regeneration and desulfation strategies for diesel aftertreatment systems.
e Improve the effectiveness and efficiency of LNTs by understanding the role and fate of various
hydrocarbon species in LNT regeneration through engine experiments.
o Define pathways to reduce catalyst deactivation and fuel penalty from sulfation and desulfation
processes by examining fully-formulated engine-aged LNT catalysts in flow reactors.
o Identify factors limiting NOx conversion during low-temperature operation with CO and
hydrocarbon reductants.
SCR:



o Develop a transient evaluation protocol for ammonia selective catalytic reduction (SCR) catalysts
that generates data sets sufficient for control model development, parameter estimation, and
validation.

o Quantify the impacts of engine-aging on key catalyst parameters needed for control models
through protocol experiments.

DPF:

¢ Enhance the fundamental understanding of diesel particulate filter (DPF) operating principles to
facilitate fuel-optimal control strategy formulation.

e Develop experimental methods that probe the underlying chemical kinetics and changes in soot
reactivity under carefully controlled DPF regeneration conditions.

e Measure the reaction kinetics and operating parameters of DPFs needed to develop accurate
simulation tools and effective control strategies.

3. BENEFITS TO THE FUNDING DOE OFFICE’S MISSION

Diesel engines serve as the prime movers of our nation’s commercial transportation infrastructure, and
account for a significant fraction of our total petroleum consumption. Moreover, diesels and other lean
burn engine technologies offer a promising pathway for reducing the fuel consumption of the light duty
vehicle fleet. However, meeting increasingly stringent emissions regulations in the lean exhaust of diesel
engines has proven challenging. The engine modifications and aftertreatment systems used to reduce
exhaust emissions typically increase fuel consumption, eroding the inherent efficiency advantages of
diesel engines.

Development of diesel engine systems that meet stringent emissions standards while improving overall
vehicle efficiency requires careful optimization of the entire engine/aftertreatment system. The CRADA
pursued two complementary paths toward this goal: evaluation of aftertreatment configurations and
associated control strategies, and measurement of aftertreatment device parameters required for
development of simulation tools used in control algorithm design and optimization. The insights and
simulation tools that followed from the work under the CRADA will help Navistar bring to market high
efficiency engine systems that reduce fuel consumption while complying with emissions regulations.
These engines could substantially reduce petroleum consumption from commercial vehicles, and provide
a pathway to improve the efficiency of the light duty fleet. Such outcomes directly support the mission of
the Office of Energy Efficiency and Renewable Energy’s Vehicle Technologies Program, which is “to
develop more energy efficient and environmentally friendly highway transportation technologies that
enable America to use less petroleum.”

4. TECHNICAL DISCUSSION OF WORK PERFORMED BY ALL PARTIES

FY2002

The first several years of the CRADA focused on engine-based investigations of regeneration and
desulfation strategies for lean NOx trap (LNT) catalysts (also known as NOx adsorber catalysts). The
Navistar/ORNL CRADA team decided to investigate two parallel pathways to achieving the fuel-rich
conditions needed to release and reduce stored NOx and remove sulfur from the catalyst. Navistar
pursued late-cycle, in-cylinder injection of fuel, while ORNL focused on in-manifold (before the turbo)
and in-pipe (after the turbo) fuel injection.



Much of the first year of the project was spent setting up the necessary experimental systems. Navistar
provided a production T444e diesel engine which was installed in an ORNL engine test cell with a
motoring dynamometer with digital transient control. The ORNL team developed a PC-based system for
transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors
in exhaust manifold and downstream pipe locations. They also fabricated the first aftertreatment system
for evaluation, which consisted of a diesel oxidation catalyst, a catalyzed diesel particulate filter, and a
lean NOx trap. The ORNL team demonstrated better than 90% NOXx reduction under steady-state modes
for the first engine/aftertreatment system configuration.

FY2003

During the second year of the CRADA, the ORNL team focused on engine experiments conducted at full
load, rated speed (450 ft-Ib, 2300 RPM, ~600°C catalyst temperatures) with three different aftertreatment
configurations. The first configuration consisted of a catalyzed diesel particulate filter upstream of the
LNT. The second and third configurations included diesel oxidation catalysts of two different sizes (2.5
liter or 5.0 liter) upstream of the CDPF. An LNT regeneration strategy was developed that achieved 70%
NOX reduction at the rated power condition while still maintaining CO and HC emissions below
mandated not-to-exceed (NTE) levels. By varying in-pipe fuel injection rates for the three configurations,
the ORNL team showed that the presence of the upstream oxidation catalyst reduced the amount of fuel
required to achieve comparable NOXx reduction by 10-20%. The total fuel penalty for LNT operation was
less than 2.5%.

Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy
were used to quantify the hydrocarbon species entering and exiting the NOx adsorber catalyst to better
understand the exhaust chemistry during LNT regeneration. The detailed hydrocarbon measurements
revealed that a substantial amount of fuel cracking (splitting of the relatively large fuel constituent
hydrocarbons into smaller, lighter compounds) occurred over the oxidation catalysts, generating relatively
high concentrations of light alkenes (propene, butenes, and pentenes). Comparing LNT inlet and outlet
HC measurements, it became apparent that these light alkenes were readily utilized by the LNT for NOx
release and reduction. The higher reactivity of these cracked HCs explained the reduced fuel penalty for
the configurations containing a DOC. Looking at other classes of HCs, mono-aromatics were also found
to be relatively reactive over the LNT, while branched alkanes were not consumed as readily by the LNT.

FY2004

Navistar continued to investigate in-cylinder approaches to LNT regeneration, while the ORNL team
members extended the studies of in-pipe fuel injection to include lower temperature “road load” (200 ft-
Ib, 1800 RPM, ~400°C catalyst temperatures) operation. Concerns about fuel evaporation and mixing at
this lower temperature operating point led the ORNL team to develop an air-assisted fuel injector, which
greatly improved atomization. The air-assisted injector improved fuel cracking over the DOC, generating
more than twice as much butene as the conventional injector. Use of the air-assisted injector at the full
load, rated speed condition reduced fuel consumption by about 5-8% while maintaining the same NOx
reduction efficiency. Better than 80% NOXx reduction was achieved under road load conditions, in spite of
the catalyst suffering from sulfur poisoning due to extended engine-exhaust operation on ultra-low sulfur
diesel fuel.

Two of the previously investigated aftertreatment system configurations were evaluated at the road load
operating condition: the CDPF + LNT only configuration, and the configuration with a large upstream
DOC. While the DOC once again generated a significant amount of cracked fuel products, the system
without a DOC actually provided equivalent NOx reduction at a lower fuel penalty.
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Several factors could have contributed to the more efficient operation without a DOC for this operating
point, including LNT temperature profiles and exhaust chemistry differences. Since diesel engine exhaust
contains excess oxygen, injection of fuel into the exhaust pipe upstream of a catalyst generates a
significant exotherm within the catalyst as the fuel reacts with the remaining oxygen. For the
aftertreatment configuration with an upstream DOC, this exotherm occurs within the DOC, and the LNT
temperature stays fairly constant. However, in the absence of a DOC, the exotherm occurs inside the
LNT itself, resulting in fairly large temperature swings. While the cycle-averaged LNT temperature for
the two cases is the same, the exotherm results in a lower temperature during NOx storage and a higher
temperature during regeneration. Temperature impacts LNT performance by changing reaction rates and
stability of the stored NOx. The lower temperature during storage increases the effective LNT storage
capacity, allowing for longer times between regeneration events. The higher temperature during
regeneration decreases the stability of the stored NOx, resulting in more complete regeneration of the
storage sites. Together, these temperature effects could reduce the amount of fuel required to achieve a
given NOx conversion over the LNT. As previously discussed, the DOC also alters the exhaust
chemistry. In addition to cracking fuel compounds into lighter HCs, the DOC will consume any CO in
the engine exhaust. In the absence of a DOC, CO was measured at the LNT inlet. Since CO is known to
be an effective reductant for LNT regeneration, it may have improved the regeneration efficiency.

FY2005

In an attempt to decouple the effects of reductant chemistry and LNT temperature under road load
conditions, the ORNL team modified the engine experiment setup to enable fuel injection both upstream
and downstream of the DOC. This split injection strategy allowed the bulk of the exotherm associated
with oxygen depletion to occur in the DOC, keeping the LNT temperature relatively constant, and
allowed uncracked hydrocarbons to be used in the regeneration (the CDPF had minimal effect on the
exhaust HC speciation).

Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC
compounds: 1-pentene (a light alkene), toluene (a mono-aromatic), and 2,2,4-trimethylpentane (iso-
octane, a branched alkane). The pure compound experiments confirmed the previous results regarding
reactivity of the various hydrocarbon species: when comparing NOXx reduction normalized to equivalent
fuel penalties, 1-pentene was the most efficient LNT reductant, followed by toluene. Iso-octane was
fairly unreactive over the LNT. Achieving reasonable NOx conversion efficiencies required high dosing
rates of iso-octane, resulting in a large fuel penalty and excessive HC emissions.

Injection location (DOC inlet or outlet or split injection) had very little effect on the reactivity of pentene
or toluene. Conversely, using diesel fuel as the reductant resulted in a very high sensitivity to injection
location, with the best performance being achieved with injection of the fuel downstream of the DOC. As
expected, this configuration generated large LNT temperature excursions as observed in the previous
year’s experiments, which probably improved the efficiency of the NOx storage/reduction process.
However, injection of diesel downstream of the DOC also resulted in very high HC emissions.

The ORNL team also developed a protocol for an LNT desulfation under “road load” conditions using
throttling, EGR, and in-pipe injection of diesel fuel.

FY2006
During 2006, the CRADA team focused on more detailed characterization of the LNT catalyst that was
used for engine experiments during the previous years of the project. Core samples were cut from the

front and rear faces of the LNT and analyzed with several techniques to measure the effects of thermal
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aging and sulfur poisoning on catalyst properties and performance. Nitrogen physisorption measurements
showed that the specific surface area at the front of the LNT was approximately 30% more than the
specific surface area at the rear of the LNT. X-ray diffraction measurements indicated that the precious
metal particles at the rear of the catalyst were more sintered by thermal aging than those at the front.

Both of these observations indicate more thermal aging occurred at the rear of the LNT brick than at the
front. This non-uniform aging was likely a result of engine experiments where reductant was injected
downstream of the DOC, generating significant exotherms within the LNT catalyst. During the
desulfation experiment, for example, the temperature at the rear of the catalyst was at least 50°C higher
than at the front of the catalyst. The higher temperatures at the rear of the catalyst induced more sintering
of the catalyst washcoat, reducing surface area and increasing precious metal particle size.

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments revealed a substantial
amount of sulfur at the front face of the catalyst, while no sulfur was observed on the rear of the catalyst.
The NOx storage capacity of the front sample, as measured in a micro-reactor under simulated exhaust
conditions, was much lower than the capacity of the rear sample at temperatures near the upper end of the
LNT operating window. The limited storage capacity at the front of the catalyst is consistent with the
presence of sulfur, which strongly binds to the storage sites and prevents NOx uptake.

Together, these observations highlight how operation under engine exhaust conditions can generate
complicated non-uniform aging within an aftertreatment catalyst. This point is further evidenced by
micro-reactor measurements of NOx conversion under lean/rich cycling: the front of the catalyst showed
superior NOx conversion at the lower temperature, while the rear sample was better at the higher
temperature. At low temperatures, LNT catalyst performance is typically limited by the activity of the
precious metal catalysts in oxidation of NO to NO, during the storage phase and/or reduction of the stored
NOXx during regeneration. Since the front face of the catalyst had a higher surface area and higher
precious metal dispersion, it retained a higher level of activity at low temperature. At high temperatures,
LNT performance is limited by the stability of the stored nitrates (that is, the storage capacity). Under
these conditions, the front of the LNT brick suffered from the sulfur on the catalyst surface; the sulfur-
free rear of the LNT catalyst retained a higher level of NOx conversion. In all, the inhomogeneous
changes in the engine-operated catalyst performance and properties highlighted the difficulty of
understanding, predicting, and mitigating catalyst aging under real-world operation.

FY2007

Continuing the emphasis on flow reactor characterization of LNT catalysts, the CRADA team focused on
developing a better understanding of the factors that limit low-temperature performance. Navistar
provided catalyst core samples that were cut from engine-aged LNTs. ORNL installed the core samples
in a flow reactor and conducted a series of experiments designed to examine the effects of temperature,
space velocity, lean/rich cycle duration, and reductant speciation on overall NOx conversion, reductant
consumption, and product selectivity.

As expected, catalyst performance fell off sharply at low temperatures. Using CO as the primary
reductant species, NOx conversion dropped at temperatures below 250°C, with a particularly steep
decline between 225 and 200°C. Low temperature performance limitations in LNT catalysts are often
attributed to slow NO oxidation kinetics, as the incoming NO must be converted to NO, to achieve
efficient NOx storage. However, NO, was observed at the catalyst outlet even at the lowest temperatures,
indicating NO oxidation activity was not limiting the LNT performance. More detailed analysis of the
flow reactor data revealed that there was actually significant NOx uptake at the onset of low temperature
cycling, but after several cycles NOx storage diminished. The reductant species were apparently unable
to release and reduce the stored NOx during the rich phase of the operating cycle at low temperatures, and
the NOx storage sites were quickly saturated. Thus, it was the inability of the precious metal to activate
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the reductant species and catalyze the NOXx release/reduction process that limited low temperature
performance.

In addition to NOx conversion, the low temperatures affected CO conversion and regeneration product
selectivity. CO conversion followed a similar trend to NOx conversion: it remained relatively high at
250°C, but dropped substantially as the temperature was reduced. For all of the conditions tested, the
LNT catalyst generated a mixture of product species, including N,, NHs, and N,O.

Space velocity had less of an impact than temperature on catalyst performance. NOx conversion did not
appear to follow any trends with space velocity. CO conversion decreased with increasing space velocity.
Product selectivity also shifted: higher space velocities generated more NH; and less N,O.

Reductant speciation was perhaps the most important factor for determining catalyst performance.
Switching from CO to propene (CsHg) dropped NOXx conversion by more than half. Propene is a light
alkene, a class of compounds shown to be very effective at LNT regeneration in engine experiments. The
previous engine experiments, however, were conducted at much higher catalyst temperatures. Propene
(and likely any other hydrocarbon) is not sufficiently reactive to be an effective LNT reductant at low
temperatures.

FY2008

During 2008, the focus of the CRADA was shifted from LNTs to NHs selective catalytic reduction (SCR)
catalysts. Navistar had been working with collaborators at Michigan Technological University to create
an SCR simulation tool with sufficient accuracy and computational efficiency to be used in model-based
ammonia control system design. Such tools require model parameter calibration with data sets collected
under relevant operating conditions. The CRADA partners decided to focus on generating the required
data sets using flow reactor experiments. To this end, ORNL, Navistar, and MTU worked together to
develop an experimental protocol that captured the critical parameters needed to accurately model SCR
catalysts. These parameters included: NH; storage capacity, NO oxidation rates, NH; oxidation rates, and
SCR reaction rates under multiple inlet gas compositions. The protocol was designed to measure these
parameters over a wide range of temperatures and space velocities.

Navistar obtained a zeolite SCR catalyst sample from a supplier and shipped a core sample to ORNL,
where it was loaded into a flow reactor. Preliminary runs with the protocol indicated that completing all
of the planned experiments would require over 500 hours of reactor operating time. Limited project
resources and reactor availability made such a large effort impractical if experiments were only run
during normal business hours. To overcome this issue, the ORNL team set up a fully automated flow
reactor designed to operate unattended over nights and weekends.

FY2009

After running preliminary experiments in 2008, the CRADA team further refined the NH; SCR
experimental protocol to ensure it provided the essential data for model calibration and validation. The
rest of the year was spent running the protocol over a range of temperatures (150-550°C), space velocities
(60,000, 90,000, and 120,000 hrt GHSV), and reactant concentrations (150, 300, and 450 ppm NOXx) and
analyzing the resulting data sets.

The protocol steps included measurements under SCR reaction conditions with different NO,/NOx and
NH3/NOx ratios. Like many SCR catalysts, the NOx conversion performance was extremely sensitive to
the NO,/NOXx ratio of the inlet gas. The highest conversions were achieved with equimolar mixtures of
NO and NO,. Performance dropped off as the feed composition was shifted to an excess of either NOx
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species. Interestingly, the material we conducted our experiments showed higher rates of reaction with
NO, only than with NO only at all temperatures. Varying the NH3/NOX ratio also yielded interesting
results. At high temperatures, increasing the NH; resulted in higher NOx conversions, as expected.
However, at low temperatures, the opposite trend was observed: increasing NH; dose reduced NOx
conversion, consistent with NH; inhibition of the SCR reaction at low temperature. Both of these insights
(higher NO; reaction rates and NH; inhibition) were shared with our MTU modeling collaborators, who
made appropriate modifications to their model.

In addition to the steady state data typically collected for evaluation of SCR catalysts, the experiment
protocol included three steps designed to probe the amount and stability of NH; stored on the catalyst
surface: (1) NH; adsorption, (2) isothermal desorption, (3) and temperature programmed desorption
(TPD). For adsorption temperatures above 300°C, all of the NH;3 was released during the isothermal
desorption step prior to the TPD. For adsorption temperatures below 300°C, the amount of NH; desorbed
during the TPD increased with decreasing adsorption temperature, consistent with expected increase in
NH3 storage capacities with decreasing temperature. For all but one of the TPD runs, there was a single
NH; desorption feature centered at approximately 300°C. At 150°C there was a second low temperature
NHj; desorption, likely due to formation of ammonium nitrates on the catalyst surface.

Besides the isothermal and temperature programmed desorption steps, the protocol included two other
measurements of NHj; storage capacity: NH; uptake under inert conditions and consumption of NO by
stored NH; after the NH; feed was shut off. With the exception of the lowest temperature run, the three
storage capacities are fairly consistent across the three measurement techniques. Based on this
observation, we concluded that a measurement of NH; storage capacity can be achieved through any of
the three techniques for temperatures above 200°C. At lower temperatures, the slow SCR kinetics
limited the NOx reacted with stored NH;. The appropriate measure of NH; storage capacity would
therefore depend on the application of the measurement.

All of the protocol experiment data sets were transferred to our modeling collaborators at MTU. They
employed selected segments of the test protocol to isolate global kinetic parameters. After calibrating the
kinetic parameters, they used the full transient data sets for model validation.

The CRADA team also conducted the experimental protocol on engine-aged catalyst samples to see how
the measured reaction Kinetics and storage capacities degraded with catalyst aging. Navistar provided
two catalyst monoliths removed from the exhaust system of an engine that had been run extensively on a
dynamometer. Core samples were cut from the front face and back face of the first SCR monolith. The
protocol experiments revealed two separate aging mechanisms that impacted catalyst performance. At
low temperatures, both core samples suffered a similar drop in NO and NH; conversion, likely due to loss
of active catalyst surface area from hydrothermal aging mechanisms (washcoat sintering, zeolite de-
alumination, or loss of exchanged metal cations from the zeolite structure). In addition to the loss of low
temperature performance, the front face core sample showed a drop in NOx conversion accompanied by
an increase in NH; conversion under SCR conditions at high temperatures. The drop in SCR performance
was caused by an order of magnitude increase in the rate of NH; oxidation by O, (compared to the un-
aged catalyst). The most likely explanation for such a large increase in NH; oxidation is deposition of
precious metals volatilized from the upstream DOC onto the front face of the SCR catalyst.

FY2010

During FY2010 the focus of the CRADA shifted from ammonia selective catalytic (SCR) systems to
diesel particulate filters (DPFs). The goal of this new phase of the project was to measure relevant soot
oxidation Kinetics that would be integrated into Navistar’s DPF regeneration control models. Due to the
complexities inherent in engine experiments, the CRADA team decided to conduct our kinetic
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measurements on a bench-scale flow reactor system at ORNL. Navistar identified several DPF
formulations of interest and obtained miniature (2.5 cm outer diameter by 7.6 cm long) particulate filter
samples from suppliers. The formulations were based on three different substrate materials: cordierite,
aluminum titanate, and silicon carbide. Half of the filters were washcoated with an oxidation catalyst; the
other half were left uncoated. The filters were loaded with soot in an engine exhaust slip stream at a
Navistar engine testing partner facility. The filters were subsequently sent to ORNL for detailed
characterization of the regeneration process in an automated flow reactor. Flow reactor experiments
conducted in FY2010 focused on temperature programmed oxidations (TPOs). The TPO experiments
consisted of loading a miniature DPF in the reactor, heating it to 200°C, starting the flow of a known
composition of oxidant (O,, NOXx, or a mixture of the two) through the filter, and linearly increasing the
filter temperature to 650°C. These controlled burnout experiments allowed characterization of soot
oxidation rates and pressure drop evolution over the course of a complete regeneration.

Soot oxidation rates as a function of temperature were calculated based on CO and CO, evolved during
the O, TPO experiments on all six DPF formulations. To account for variations in total soot loading, the
oxidation rates were normalized to the initial amount of soot on the fully loaded filter. The resulting
oxidation rate profiles were very similar for all three substrate materials in the absence of a catalytic
washcoat. This result was expected since, in the absence of a catalyst, the oxidation kinetics should be
determined primarily by the properties of the soot, and all of the soot samples were collected under very
similar engine operating conditions. Measurable oxidation by O, was observed at around 300°C, but the
reaction rate did not become significant until around 450°C. The peak burnout rate occurred at 600°C,
after which the rapidly decreasing amount of soot on the filter caused a drop in CO and CO, evolved.
The washcoat resulted in a slight increase in oxidation rate over the entire regeneration for cordierite and
aluminum titanate, resulting in slightly lower peak burnout temperatures than for the uncatalyzed
substrates. Interestingly, the presence of the washcoat on the silicon carbide substrate appeared to have a
slightly negative impact on O, oxidation kinetics over the entire regeneration. The difference between the
catalyzed and uncatalyzed silicon carbide filters was small, but the catalyst definitely did not have the
positive impact on O, oxidations Kinetics as seen in the other two substrate materials. It should be noted
that this result was not confirmed with a replicate run due to a limited number of available samples. The
lack of apparent catalytic activity may have been due to a problem with the catalytic coating or some
undetermined error in the reactor run.

As expected, inclusion of NO, in the feed gas substantially increased the soot oxidation rate at low
temperatures; measurable oxidation was observed as low as 200°C. As in the O, TPOs, the burnout
curves for the uncatalyzed filters were fairly similar, but the presence of a catalytic washcoat introduced
substantial differences between the substrate materials. In this case, the oxidation catalyst significantly
increased the low temperature oxidation rates for all the substrates. Further, unlike the fairly simple
burnout curves observed for the O, TPOs, the catalytic coating resulted in fairly complex NOx + O,
oxidation rate behavior that changed significantly with substrate material. The burnout profile, which
contained multiple peaks in reaction rate as a function of temperature, suggested that different types of
soot (or soot environments) existed within the filter.

Since the washcoat composition and loading were nominally the same for the three substrates, the
differences in oxidation kinetics were most likely due to variations in washcoat location and distribution,
which were caused by differences in substrate microstructure (porosity, monolith geometry, and affinity
for the washcoat material). These variations in the washcoat could, in turn, have resulted in different soot
distributions within the filter (more soot in the cake layer as opposed to within the filter wall, for
example).

Further evidence of possible spatial variations in soot loading and oxidation behavior could be seen in the
filter backpressure evolution during the regeneration. For all of the formulations and operating conditions
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investigated, the filter pressure drop decreased to that of a clean filter by the time half of the soot had
been oxidized. This observation highlighted the inadequacy of pressure sensors for determining filter
regeneration status: the pressure sensor would indicate a complete regeneration long before all of the soot
in the filter has actually been consumed. It also illustrated the complex spatial dependence of the soot
oxidation process. The soot that created most of the filter pressure drop (located within the filter wall, for
example) burned out faster than the soot located elsewhere. This effect was magnified when NOx was
added to the feed gas: the backpressure drops after only a third of the soot had been oxidized. Why the
NOx was more selective in burning out the soot contributing to the backpressure (even in the absence of a
catalytic coating) remains unclear.

Comparison of the oxidation rates with different oxidant mixtures (O,, NOXx, or O,+NOXx) demonstrated
the synergistic effect of O, and NOx over a catalyzed filter. On the uncatalyzed filter, the oxidation rate
for the O,+NOx experiment was roughly the sum of the runs with O, and NOx individually. However, on
the catalyzed sample, the O,+NOx TPO showed a substantially increased low temperature soot oxidation
rate over either the individual catalyzed O, and NOx experiments or the uncatalyzed O,+NOx TPO. The
increase in low temperature oxidation rate was likely due to catalytic oxidation of NO to NO,, a more
reactive species for carbon oxidation. The O,+NOX feed gas also resulted in a drop in backpressure at a
much lower fractional soot burnout than in cases with just O, or NOx, implying that NO, was more
selective in burning soot located in the filter wall.

FY2011

The TPO experiments conducted in 2010 yielded interesting insights on soot reactivity trends and
pressure drop evolution. However, DPF regeneration model parameter calibration required experimental
data collected under more carefully controlled conditions. To this end, the ORNL team conducted a
series of pulsed oxidation experiments to measure soot oxidation kinetics as a function of temperature,
gas composition, and soot burnout. A method was also developed for probing active oxygen surface area
with oxygen chemisorption. Rate parameters were extracted from these experiments for use in DPF
regeneration model development.

5. SUBJECT INVENTIONS

No inventions were filed under this CRADA.

6. COMMERCIALIZATION POSSIBILITIES

The insights and simulation tools that followed from the work under the CRADA will help Navistar bring
to market high efficiency engine systems that reduce fuel consumption while complying with emissions
regulations.

7. PLANS FOR FUTURE COLLABORATIONS

Navistar and ORNL have an existing contract in place for evaluation of advanced aftertreatment catalysts,
and are in continuing conversations over future collaboration opportunities. Navistar has also provided
loaded DPF samples for use in neutron imaging experiments under a separate DOE-funded project.
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8. CONCLUSIONS

The Navistar/ORNL CRADA generated new information regarding diesel engine aftertreatment
configurations and operating strategies, as well as data sets appropriate for aftertreatment device model
parameter calibration. These insights were integrated into Navistar’s simulation toolset for use in
designing fuel-optimal control strategies for high efficiency engine/aftertreatment systems.
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