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Abstract. This paper addresses the problem of semi-automatic extrac-
tion of line networks in digital images - e.g., road or hydrographic net-
works in satellite images, blood vessels in medical images. robust, For
that purpose, we improve a generic method derived from morphological
and hydrological concepts and consisting in minimum cost path estima-
tion and Aow simulation. While this approach fully exploits the local
contrast and shape of the network, as well as its arborescent nature,
we further incorporate local directional information about the structures
in the image. Namely, an appropriate anisotropic metric is designed by
using both the characteristic features of the target network and the eigen-
decomposition of the gradient structure tensor of the image. Following,
the geodesic propagation from a given seed with this metric is combined
with hydrological operators for overland Aow simulation to extract the
line network. The algorithm is demonstrated for the extraction of blood
vessels in a retina image and of a river network in a satellite image.

1 Introduction

The detection of line networks - aka thin nets or curvilinear structures - is a
common low-level task in computer vision as they are usually related to the
presence of salient features in images [1,2]. Indeed, they are found in numer-
ous applications fields and have received considerable attention, in particular in
medical imaging and remote sensing. Typical examples are provided by the iden-
tification of roads from aerial or satellite images, which involves the detection
and following of line segments and/or the detection of the road edges [3]; other
common applications regard the extraction of railroads, trails and rivers [4, 5].
Many techniques have been proposed, which can be broadly classified as semi-
automatic approaches and automatic approaches. The main criterion for the
classification is whether the approach requires human intervention [6]. In semi-
automatic approaches, an operator provides information such as starting points
or starting directions, which provide critical assistance in tracking. Without hu-
man intervention, an approach is considered automatic [7].

Because local pixel attributes are intrinsically ambiguous - i.e., pixels be-
longing to the same object (e.g., a river, a road, a vessel) can vary considerably
while pixels belonging to different objects may have similar values -, approaches
based on such attributes only, such as various thresholding methods and clas-
sification techniques, have only limited success (8, 9]. Besides, due to the noise
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sensitivity, asymmetry of the contrast at the both sides of the edges, and the dif-
fieulty of obtaining precise edge directions, edge-based methods are inadequate
for extracting linear networks [10]. Instead, the extraction of line networks is
often based on a two steps approach. The first one typically leads to an initial
detection of the desired network avoiding false positive detections but contain-
ing gaps. It is usually performed through local filtering, segmentation and/or
classification of the input image [3,4] and exploits knowledge about the spa-
tial and spectral properties of the target network [11], sometimes also models
of it [12]. The second step consists in post-processing the obtained output in
order to bridge the gaps, and often uses tracking-based or perceptual grouping
techniques. In this context, recent and advanced techniques have been succes-
fully developped for the detection of tubular structures, like blood vessels, in
medical images {12, 11} or the extraction of linear features, like river networks,
in large scale remotely sensed images [4]. In particular, the authors of [4] propose
to exploit the geometrical and topological characteristics of the rivers and their
tributaries in order to reconstruct hydrographic networks in satellite optical im-
ages. For that purpose, their approach combines - likewise the watershed based
segmentation - concepts arising from mathematical morphology and hydrology.
Similarly to [1], it performs the robust extraction of line networks by applying
minimum cost path techniques searching for the path which contains most line
evidence. However, it differs from [1] as it fully exploits the fact that the hy-
drographic network has a tree-like structure {with a root) and the knowledge of
arborescent networks. It further uses Contributing Drainage Areas (CDA) com-
puted on a potential function defined from the image characteristics as a proxy to
evidence the presence of a network (the higher the value of the CDA, the higher
the probability of belonging to a network). By construction, the method leads
to connected networks. In addition, it can be easily adapted for the extraction
of other arborescent networks. Namely, the generic methodology for extracting
line networks from a single image can be summarised as follows:

(i) define the relerence set as the set of outlets and seeds of the target network,
e.g. pixels belonging most surely to it,

(it} define the polential siretches {referred to as geodesic mask in [4]) as the
image with enhanced linear features, ¢.g. computed using relevant spectral
and spatial properties,

{#i) generate the so-called pseudo Digital Elevation Model (DEM) by estimat-
ing the shortest paths originating from the seed and ’constrained’ by the
enhanced image,

(iv) calculate the local flow directions of the pseudo DEM and its CDA,

{v) trim the resulting space filling network so as to obtain a network matching
the target network.

In this paper, we adopt the same methodology, but improve its major steps.
First, we derive a new rank-based operator for qualifying the potential stretches
in step (#4). Second, we incorporate directional information about the local struc-
tures in the image through the computation of the gradient structure tensor
{GST) when reconstructing the pseudo DEM in step (444), and we use a Fast
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Marching Method (FMM) instead of the Dijsktra’s algorithm, for that purpose.
Third, we refine the estimation of the CDA in step (7v) using an improved nondis-
persive flow estimation technique. Last, we perform a additional post-filtering
that enables to fill the gaps and retrieve missing branches of the network:

(vi) compute the shortest paths linking the endpoints (leaves) of the previously
detected network and check for possible 'shortcuts’.

Therefore, our approach makes use of both local and global characteristics of
line networks: locally, those networks are modeled as elongated regions with a
smooth spectral signature in the image and a maximum width; globally, they are
structured like a tree. It provides the framework for semi-automatic and robust
extraction of line networks in various types of images.

The rest of the paper is organised as follows. Sec. 2 presents the assumptions
made for the network, and therefore the image, with regards to the image reso-
lution in particular. Steps (i) to (vi) are successively presented in sections 3 to 7
resp. Results are illustrated on a retina image already used in [4] and compared
with [4]. A conclusion to this work is presented in Sec. 8.

2 Image characteristics and networks properties

Our approach is based on the intrinsic properties that a line network is made
of elongated structures composed with groups of ’similar’ pixels'. The similarity
is defined in the overall shape of the region they belong to, the spectrum they
share, and the geometric property of the region. Therefore, we assume images to
satisfy the following two general assumptions which are the minimum conditions
for a line network to be identifiable:

— visual constraint: most pixels compopsing the network have similar (uni-
form, possibly textured) spectrum that is distinguishable from most of the
surrounding areas; this does not require the network to have single color or
constant intensity, it mainly requires the network to look visually different
from surrounding objects in most parts (good contrast);

— geometric constraint: a line is a region that isrelatively long and narrow,
compared with other objects in the image; it does not require a smooth
edge, only the overall shape to be a long narrow strip whose width should
not change significantly.

For a given resolution, a linear network may appear as having a width of ap-
proximately a single pixel, or multiple pixels, depending on the object’s (road,
river, vessels, ...) actual width. Differences in how single and multiple pixel width
linear features are manifest in digital image and imposes an important control
on the techniques used to extract the features. Still, we consider that the con-
ditions above are usually met by most low- to mid-resolution images, where the

" This is in fact in agreement with Gestalt theory stating that elements tend to be
perceptually grouped if they are close to each other (proximity), similar to one
another (similarity) or form a smooth and continuous curve (good continuation).
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network is typically p < 10 pixels-width. Thin structures typically consist of
groups of spectrally similar pixels oriented along a narrow line, whereas other
structures tend to have a more compact and isotropic shape [1]. For instance,
in satellite optical images, most roads consist of straight line segments of dark
pixels connected with smooth curves, normally circular arcs and their width typ-
ically ranges from 1-pixel to 7-pixels: therefore, extraction of road networks in
that case is equivalent to detection of lines or strong curvilinear structures [13].
Consider now Fig. 1, bottom. Similarly, rivers in optical images are detectable by
a human operator owing to their shape and relative contrast since they appear
as dark networks of thin lines. Blood vessels are also identified as long linear
segments of (almost constant) bright pixels with longer segments having more
confidence of being part of the vessel network than segments with short length.

3 Seed and outlets selection

Both steps (i) and (i1} make the algorithm semi-automatic, as they both require
the intervention of a user with knowledge about the target network. Indeed, it is
required for an external operator to provide a set of initial seed point(s) on the
network. This set can be entered manually by an expert - a physician locating
a pixel of interest in medical images - or derived from an external source of
information - the location of a road intersection in a satellite image given by its
coordinates in a geographic information system. This approach can be extended
to a fully-automatic one by using the outputs of a previous detection [14] or
by extracting the features that are relatively easier to identify such as major
lines [15]. Still, the reason for keeping the method semi-automatic in our design is
a balance between reliability and efficiency. This way, we want to ensure that the
line network passes through the reference set, which is crucial for its construction.

4 Morphological thin lines enhancement

Next, the geodesic mask (See Sec. 1) needs to be generated. This preprocessing
step aims in fact at providing a potential image identifying key pixels in the
image that are likely components of the network. A potential value can be either
a fuzzy degree, a probability, or a value resulting from any other prior detector,
e.g. line extractor filters [13]. We can derive from such a filter a greylevel image
corresponding to the magnitude of their response, which gives us a potential
image to work with. In order to generate as many line network candidates as
possible, we propose to use here a morphological filter for enhancing lines.

The primary features classically used for the identification of potential lines
are spectral features. For instance, band combinations of multispectral satellite
images defining either a water index or a vegetation index can be used to identify
river or road networks [5, 3]. In medical images, tubular shapes, like vessels, are
usually located in brighter or darker areas [12,16]. The other features charac-
terising a line network are length-width contextual features that measure the
dimensions and directionality of connected pixels {17, 1,4], see previous Sec. In
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order to filter out interference as much as possible, a minimum region width
can be imposed. Following, the fact that water has low reflectance values in
satellite images is used in [4], while the knowledge about the shape, size, and
local contrast of river stretches is also translated into a series of morphological
operations [17]. This way, a geodesic mask where potential river pixels are set
to low values is obtained. The extraction of potential (dark) network pixels is
achieved by initially suppressing these networks with a parametric closing - or
rank-min closing owing to its representation in terms of a rank filter [18] - by
a 2D shaped structuring element (SE), followed by a top-hat by the difference
between the closing and the input image, called top-hat by closing [4]. Instead,
we apply a sequence of directional rank-min closing {¢x x¢}k.e, with 1D SE’s
of increasing lenght k, different orientations ¢ but constant rank A. Top-hat by
closing operators are thus performed at different scales and orientations (e.g.
3 orientations), and then combined by setting the pixels in the image [ to the
number of positive responses they produce at any orientation in the different
scales:

kn
F=>" sup {Too(dearo(l) =D} € [1,n] (1)
k=k, 0€{0m/4,m/2}

with T(-) the threshold operator, A a constant and where the initial lenght &,
slightly exceeds the width of the target network. F quantifies the min and max
lengths of the linear structures consisting of spectrally similar pixels (Fig. 1,
3rd column). It also leads to many false positive detections, but they are coped
by the subsequent steps provided that higher rate of detection are obtained for
actual stretches. Thus, all pixels which have a non null value F are considered as
potentially belonging to the network. The geodesic mask W is formed by keeping
these pixels to that value, while all the other pixels retain their original value
in I incremented by n (Fig. 1, 4th column):

W= (I+n) Too(n—F)+(n—-F) Ton_y(n-F). (2)

This operator enables the prior enhancement of potential linear and thin stretches
that could not be detected solely on the basis of their spectral values. This way,
features are represented with (the complement of) a confidence value that the
line element is part of the network: a low potential W-value assigned to a pixel
means that it is very likely to belong to the network; on the contrary, a high
potential W-value means that this pixel may not belong to the network. Yet, the
network is still noisy and incomplete (both false and positive alarms) and dis-
connected (see Fig. 1), but the proposed scheme does not require to be precise.
It also does not exclude the use of additional visual and geometrical informa-
tion, when available, to further improve the quality of the line extraction. In
particular, the information from already extracted lines can be used to simplify
the process of identifying the components of the network that are less visible or
heavily impacted by surrounding objects.
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Fig.1l. Examples of line networks typically observed - blood vessels in a eye retina
image (top), river in a satellite image (bottom) - and the derived functions used for
building the anisotropic metric of Eq. (5). From left to right: original image, its GST
norm N (the darker a pixel, the lower its norm), the function F (the brighter a pixel,
the longer the lines passing through it) computed for k; = 5,k, = 30 and A = 3 in
both cases (networks of similar size) and the resulting geodesic mask W enhancing
dark elongated features.

5 Network propagation

The reconstruction of the network from its seed through the linking of line
pisels is an ill-defined problem since the curves are likely to contain gaps and
branches. More attractive is the 'edge tracker’, which is based on the idea of
following the network in the image. More specifically, starting from the seed
pixel, the next point to be linked to the network is searched for. The approaches
may involve a heuristic methods [13] or minimal path searching [1]. Following [4],
this latter approach is used, where the shortest path(s) originating from the seed
and containing most line evidence is extracted.

Indeed, step (i) implements geodesic transforms applied to the geodesic
mask and enables to mimic a pseudo DEM representing the propagation from
the seed through the network. Geodesic transforms are classical operators in
image analysis [19, 16], as a large class of problems can be formulated as the
extraction of shortest - or geodesic - path(s) for a given discrete or continuous
metric [20,2,16]. In the continuous setting, it is classical to equip the image
domain {2 with a positive metric @(s) ds and to define the weighted length 74 of
a path v :[0,1] — 2 as [16]:

1
—— / &(s)ds = /0 Iy (5] @(1(1)) dit 3)
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the isotropic eikonal equation, the anisotropic FMM involves the sweeping of
the image embedded in a discretisation grid by progressively propagating the
front, but does not resort to any anisotropy related parameter to constrain this
propagation, Compared to Dijkstra algorithm [4], the FMM computes geodesics
with the same computational complexity but more accurate estimation. When
computing geodesic paths with Eq.(4), f* define the strenght of the propagation
in respective directions e4. o defines the relative influence given to the geodesic
mask w.r.t the orientation for the reconstruction of the network, depending on
the confidence in their estimation. Therefore, since f* < f~, a path v has
a shorter local length if its speed ¥/(t) is collinear to e_ [16]. This way, the
front propagates faster along the direction of the potential network, i.e. the
endpoints of the line structures are allowed to "grow” in the general direction
of the line. The propagation is 'forced’ to follow the low values of the geodesic
mask W in that direction through the term (1+ W)~! inherited from [4]. The
additional terin N/ maxp{N} in Eq.(5) further constrains the propagation to
the centerline of the network (low N-values), and is therefore valid for wide
line networks (p > 3 pixels). For narrow networks (p < 3 pixels, centerline
pixels have then high N-values), the tensor should be simply modified as follows:
/¥ = (N/maxgp{N}) (1 + W)~*. The main consequence of such potential
images is that, independently of the input image resolution, centerline pixels
are identified to represent the network. Note moreover, that as line segments
are identified and added to the line network, the endpoints of the line segments
could be possibly used to further propagate the network.

6 Network extraction and trimming

The pseudo DEM can be viewed as a height map image where the intensity
value of a pixel represents its elevation and whose 'valleys’ match the target
network. In order to extract these valleys, the best available method relies on the
simulation of a nondispersive flow of water on digitised topographic surfaces [5,
23]. The flow direction of a pixel is defined for each pixel as the direction of
the 8-neighbour producing the steepest slope. In this sense, each point of the
terrain belongs to the network of streams [4]. However, the classical extraction
of nondispersive flow paths suffer serious uncertainty because of the lack of
variability, 7.e. only 8 allowed Aow directions. Instead, we use here the improved
estimation technique based on global search of [24], which has the advantage
of reducing this uncertainty (Fig. 2 middle). This approach also assumes that
all spurious minima have been filtered out beforehand and that every point,
except for the seed, have at least one neighbour with a lower elevation than
the considered point [23,4]. Following, CDA are calculated by simulating the
flow of water on the pseudo DEM using the flow directions for the computation
of the number of pixels located upstream of each point of the DEM. See [4]
and references therein for further discussion. Actual line network pixels are then
identified as as the downstream of all pixels whose CDA exceeds some value.
Their extraction can achieved by adaptive thresholding using a priori knowledge
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(aka geodesic time [4] or weighted distance [19]). The geodesic distance between
two pixels x,y € §2 is defined as the minimal lenght of all the paths joining
them: 7,(x,y) = min{7s(7v) | 7(0) = x,v(1) = y} and is reached over geodesic
paths. In Eq.(3), ¢ defines on each pixel a weight that penalises the path ~
passing through it, i.e. it gives the potential function for moving along ~ [19,
16]. In particular in [4], this function is set to the geodesic mask so that the
derived metric @ is the Euclidian distance weighted by W. Since potential line
pixels are set to low values in W, the propagation goes faster through those
pixels and the geodesic paths follow the network lines as desired. This way, the
local contrast and shape of the network, as well as its arborescent nature, are
fully exploited for its reconstruction. Still, the propagation does not take into
account directional information regarding the network. Namely, the gradient
edge magnitude is however not enough for capturing thin structures, important -
so far neglected - additional information is the orientation of the image gradients.
Ideally, one should incorporate the local direction of salient image structures
into the estimation of the geodesic paths, so that they are further constrained to
follow the line network. Anisotropic propagation is made possible by defining a
local Riemannian metric ¢ associated with a tensor field T - defined as a positive
symmetric matrix - that allows to measure a geodesic path ~ as follows [16]:

1
0= [ VrerTomrod. @)

The difficult task is the design of the tensor T' so that meaningful geodesics
are derived. In this context, it seems natural to first consider the GST, which
is a local measure of the directional signal variations based upon the gradient,
in order to retrieve the local geometry and orientation of the image 7. The
classical method for estimating the GST consists in computing locally the matrix
S=K,* (VI,VIT), where » is the element-wise convolution operation, V1, is
the gradient of the image I pre-smoothed by a Gaussian with scale o, and K,
is an analogous smoothing kernel of scale p [21]. S enables to extract both the
local direction of edges and textural patterns. The eigenvectors e4,e. of S are
the directions of maximal and minimal variations of / at a given point, while the
corresponding eigenvalues Ay > A_ give the respective rates of change. These
values together discriminate different local geometries [21]. The corresponding
eigenvectors e, ,e_ are the directions of maximal and minimal changes. The
information contained in the eigen-decomposition A4 and ey of S is then used
to build the tensor field T = f*e el + f~e_eT as follows:

{f+ =(1—- N/maza{N}) - (1+ W)™ ® (5)
fF=0+w)!

with W the enhanced image defined in Sec. 4, N = (A, — A_) approximating
the norm of the image gradient, and a > 1 controling the anisotropy (here
we set « = 2). In order to efficiently compute the anisotropic geodesic paths, a
Fast Marching Method (FMM) developed for computing geodesic distances with
generic Riemannian metrics is employed [22]. Like classical FMM [20, 16] solving
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Fig. 2. Network extraction in the images of Fig. 1. Results of the approach of [4] (top)
and current approach (middle) are output for the vessel image. Output of the current
approach is displayed for the river image. From left to right: pseudo DEM’s generated as
the geodesic distance (the darker a pixel, the lower its distance to the seed) estimated
from a seed manually placed (in the center of the retina or at the crossroad resp.),
color representation of the corresponding flow directions (value in [1,8] indicated the
direction in a 8-neighbourhood) and extracted networks.
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Fig. 3. Filling gaps occuring in the network: an excerpt for the procedure applied on
the retina image is shown. From left to right: network output by adaptive threholding of
the pseudo DEM (notice an inherent drawback of shortest paths based approaches: the
path joining two branches takes a shortcut), leaves extracted through morphological
procedures (displayed in red), new pseudo DEM estimated from the set of all leaves
found in the image and estimated geodesic paths (shortcuts) occuring between pairs of
closest leaves. This gap filling procedure has to be iterated till all (pairs of) leaves have
been explored. The two leaves 'facing’ each other are linked very early. The leave on
the left of this excerpt is not linked to any other leave in the image: it is a real terminal
leave while the one on the top of the image is reached by another leave (outside this
excerpt) through the displayed shortcut.

or further transformations of the input image [23]. Here, Strahler branching ratio,
which uses global properties on ordering and relationships between branches,
is chosen for filtering, but other topological indices can be used [25]. Strahler
indice measures the symmetry and elongation of the branching structure, it is
calculated by ordering all the edges within a given tree.

7 Filling the gaps

It can be seen in Fig. 2 that the estimated anisotropic geodesic front (middle)
'tracks’ well the main blood vessels of the network, without spreading in smaller
branches due to noisy artefacts in the image. The flow estimation reduces the
uncertainty residing in local searches and produces more natural flow patterns
(middle). In comparison to [4], the resulting extracted network (bottom) better
deals with interruptions - e.g. a bridge on a road - and bifurcations - e.g. anas-
tomosis of blood vessels - in the network, as it takes into account the orientation
of the structures present in the image to 'prolong’ them. However, some gaps
are still present in the extracted network. Indeed, [1] identifies several errors
general for the extraction of line networks - like the presence of spurious line
structures in the image which may generate distortions - errors specific for min-
imum cost path based methods. In particular, specific for the algorithm is (a)
the inability to trace more than one line between connections: in general, only
one path between two pixels is of minimum cost, any other path connecting the
same pixels will be removed, and (b) the sensitivity to shortcuts: when a shorter
path exists in the neighborhood of the traced path, the algorithm tends to take
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a shortcut via this path. Under some severe noise, part of the network may also
be disqualified as valid segments and hence missed, leaving some major gaps.

These issues can be partially solved by a post-processing based on the propa-
gation from the endpoints (leaves) of the primary detected network, completing
the network extraction. Remaining small ’gaps’ are eliminated using the prop-
erty of line networks, that most pixels can be reached from all other points with
minimum detour. For each endpoint, the optimal path within the geodesic mask
to its closest endpoint is estimated and compared to the connection between
them along the network. If the estimated path does not belong to the primary
network (hence, it is shorter), the new connection is inserted (i.e. a gap is closed)
into the network (see Fig. 3). This post-processing has to be repeated until no
more new endpoints can be generated. The result of this global completion step
is the final line network.

8 Conclusion

Similar to the approach of [4] it is derived from, the proposed method for ex-
tracting line networks lies in the idea - common to watershed segmentation -
of combining the geodesics computed for an appropriate metric built from the
network characteristic in the image with hydrological concepts developped for
overland flow simulations. This approach exploits both local and global informa-
tion based on spatial and spectral properties of the line network of interest. The
local contrast, shape and size of the network, but also its direction as well as its
arborescent nature, are exploited for its extraction from the anisotropic geodesic
front through the introduction of an approapriate anisotropic metric. This way,
topological changes (obstructions and bifurcations) can be handled, and a priori
domain knowledge (e.g., structural constraints) can be further incorporated into
the evolution process. If necessary, additional physical information about the
network and/or the image can still be used to better constrain the generation of
the pseudo DEM. Besides, the extraction of the network requires minimal oper-
ator assistance as it is able to extract the network from a single seed point, and
can be easily made automatic. This technique can be also refined by combining
the outputs for multiple seeds when such information is available.
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