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Abstract. This paper addresses the problem of semi-automatic extrac­
tion of line networks in digital images - e.g., road or hydrographic net­
works in satellite images, blood vessels in medical images. robust, For 
that purpose, we improve a generic method derived from morphological 
and hydro logical concep ts and consisting in minimum cost path estima­
tion and Aow simulation. While this approach fully exploits the local 
contrast and shape of the network, as well as its a.rborescent nature, 
we further incorporate local directional information about the structures 
in the image. Namely, an appropriate anisotropic metric is designed by 
using both the characteristic features of the target network and the eigen­
decomposition of the gradient structure tensor of the image. Following, 
the geodesic propagation from a given seed with this metric is combined 
with hydrological operators for overland Aow simulation to extract the 
line network. The algorithm is demonstrated for the extraction of blood 
vessels in a retina image and of a river network in a satellite image. 

1 Introd uction 

The detection of line networks - aka thin nets or curvilinear structures - is a 
common low-level task in computer vision as they are usually related to the 
presence of salient features in images [1 ,2]. Indeed, they are found in numer­
ous applications fields and have received considerable attention , in particular in 
medical imaging and remote sensing. Typical examples are provided by the iden­
tification of roads from aerial or satellite images, which involves the detection 
and following of line segments and/or the detection of the road edges [3]; other 
common applications regard the extraction of railroads, trails and rivers [4 ,5]. 
Many techniques have been proposed, which can be broadly classified as semi­
automatic approaches and automatic approaches. The main criterion for the 
classification is whether the approach requires human intervention [6]. In semi­
automatic approaches, an operator provides information such as starting points 
or starting directions, which provide critical assistance in tracking. Without hu­
man intervention, an approach is considered automatic [7]. 

Because local pixel attributes are intrinsically ambiguous - i.e., pixels be­
longing to the same object (e.g., a river, a road, a vessel) can vary considerably 
while pixels belonging to different objects may have similar values -, approaches 
based on such attributes only, such as various thresholding methods and clas­
sification techniques, have only limited success [8,9]. Besides, due to the noise 
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asymmetry of the contrast at the both sides of edges, and the dif-
methods are 

linear networks [101. the extraction of line networks is 
often based on a two steps approach. The first one leads to an initial 
detection of the desired network avoiding false 
ing gaps. It is performed through local segmentation 
classification of the image [3,41 and knowledge about the spa-
tial and of the target network [11], ::;ometimes also models 
of it The second step consists in the obtained output in 

the gaps, and often uses or perceptual 
context, recent and advanced have been succes-

for the detection of tubular structures, like blood 
11] or the extraction of like river 

in sensed [4] In the authors of [4J propose 
to and characteristics of the rivers and their 
tributaries in order to reconstruct networks in satellite im-
age;,. For that purpose, their approach combines likewise the watershed based 
segmentation concepts arising from mathematical morphology and 
Similarly to [1], it performs the robust extraction of line networks by 

techniques searching for the which contains most line 
it differs from :1] as it fully the fact that the 

network has a tree-like structure and the of 
arborescent networks. It. further uses Areas (COA) com-

function defined from characteristics as a proxy to 
value of the COA, 

~'~"h"'h to a construction, the method 
to connected networks. In addition, it can be adapted for the extractIOn 
of other arborescent networks. the methodology for 
line networks from a single image can be summarised as follows: 

(i) define the reference set as the set of outlets and seeds of the 

as the 

Model estimat-
seed and 'constrained' the 

enhanced 
calculate the local flow directions of the OEM and its 
trim the space 
the target network. 

In tilis paper, we adopt the same but improve its steps. 
we derive a new rank-based operator for qualifying the stretches 

in step we incorporate directional information about the local struc-
tures in the through the of the gradient structure tensor 

the DEy! in step (iii), and we use a Fast 
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Marching Method (FMM) instead of the Dijsktra's algorithm, for that purpose. 
Third, we refine the estimation of the CDA in step (iv) using an improved nondis­
persive flow estimation technique. Last, we perform a additional post-filtering 
that enables to fill the gaps and retrieve missing branches of the network: 

(vi) compute the shortest paths linking the endpoints (leaves) of the previously 
detected network and check for possible 'shortcuts'. 

Therefore, our approach makes use of both local and global characteristics of 
line networks: locally, those networks are modeled as elongated regions with a 
smooth spectral signature in the image and a maximum width ; globally, they are 
structured like a tree. It provides the framework for semi-automatic and robust 
extraction of line networks in various types of images. 

The rest of the paper is organised as follows. Sec . 2 presents the assumptions 
made for the network, and therefore the image, with regards to the image reso­
lution in particular. Steps (i) to (vi) are successively presented in sections 3 to 7 
resp. Results are illustrated on a retina image already used in [4] and compared 
with [4]. A conclusion to this work is presented in Sec. 8. 

2 Image characteristics and networks properties 

Our approach is based on the intrinsic properties that a line network is made 
of elongated structures composed with groups of 'similar' pixels]. The similarity 
is defined in the overall shape of the region they belong to, the spectrum they 
share, and the geometric property of the region. Therefore, we assume images to 
satisfy the following two general assumptions which are the minimum conditions 
for a line network to be identifiable: 

- visual constraint: most pixels compopsing the network have similar (uni­
form , possibly textured) spectrum that is distinguishable from most of the 
surrounding areas ; this does not require the network to have single color or 
constant int.ensity, it mainly requires the network to look visually different 
from surrounding objects in most parts (good contrast); 
geometric constraint: a line is a region that isrelatively long and narrow, 
compared with other objects in the image; it does not require a smooth 
edge, only the overall shape to be a long narrow strip whose width should 
not change significantly. 

For a given resolution, a linear network may appear as having a width of ap­
proximately a single pixel, or multiple pixels, depending on the object's (road, 
river, vessels, ... ) actual width. Differences in how single and multiple pixel width 
linear features are manifest in digital image and imposes an important control 
on the techniques used to extract the features. Still, we consider that the con­
ditions above are usually met by most low- to mid-resolution images , where the 

I This is in fact in agreement with Gestalt theory stating that elements tend to be 
perceptually grouped if they are close to each other (proximity), similar to one 
another (similarity) or form a smooth and continuous curve (good continuation) . 
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network is typically p < 10 pixels-width. Thin structures typically consist of 
groups of spectrally similar pixels oriented along a narrow line, whereas other 
st ructures tend to have a more compact and isotropic shape [1]. For instance, 
in satellite optical images, most roads consist of straight line segments of dark 
pixels connected with smooth curves, normally circular arcs and their width typ­
ically ranges from I-pixel to 7-pixels: therefore , extraction of road networks in 
that case is equivalent to detection of lines or strong curvilinear structures [13]. 
Consider now Fig. 1, bottom. Similarly, rivers in optical images are detectable by 
a human operator owing to their shape and relative contrast since they appear 
as dark networks of thin lines. Blood vessels are a lso identified as long linear 
segments of (almost constant) bright pixels with longer segments having more 
confidence of being part of the vessel network than segments with short length. 

3 Seed and outlets selection 

Both steps (i) and (ii) make the algorithm semi-automatic, as they both require 
the intervention of a user with knowledge about the target network. Indeed, it. is 
required for an external operator to provide a set of initial seed point(s) on the 
network. This set can be entered manually by an expert - a physician locating 
a pixel of interest in medical images - 01' derived from an external source of 
information - the location of a road intersection in a satellite image given by its 
coordinates in a geographic information system. This approach can be extended 
to a fully-automatic one by using the outputs of a previous detection [14] or 
by extracting the features that are relatively easier to ident.ify such as major 
lines [15). Still, the reason for keeping the method semi-automatic in our design is 
a balance between reliability and efficiency. This way, we want to ensure that the 
line network passes through the reference set, which is crucial for its construction. 

4 Morphological thin lines enhancement 

Next, the geodesic mask (See Sec. 1) needs to be generated. This preprocessing 
step aims in fact at providing a potential image identifying key pixels in the 
image that are likely components of the network. A potential value can be either 
a fuzzy degree , a probability, or a value resulting from any other prior detector, 
e.g . line extractor filters [13). We can derive from such a filter a greylevel image 
corresponding to the magnitude of their response , which gives us a potential 
image to work with. In order to generate as many line network candidates as 
possible, we propose to use here a morphological filter for enhancing lines. 

The primary features classically used for the identification of potential Jines 
are spectral features. For instance, band combinations of multispectral satellite 
images defining either a water index or a vegetation index can be used to identify 
river or road networks [5,3]. In medical images , tubular shapes, like vessels, are 
usually located in brighter or darker areas [12 , 16). The other features charac­
terising a line network are length-width contextual features that measure the 
dimensions and directionality of connected pixels [17,1,4]' see previous Sec. In 
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order to filter out interference as much as possible, a minimum region width 
can be imposed. Following, the fact that water has low reflectance values in 
satellite images is used in [4], while the knowledge about the shape, size, and 
local contrast of river stretches is also translated into a series of morphological 
operations [17]. This way, a geode~ic mask where potential river pixels are set 
to low values is obtained. The extraction of potential (dark) network pixels is 
achieved by initially suppressing these network::; wit.h a parametric closing - or 
rank-min closing owing to it:; representation in terms of a rank filter [18] - by 
a 20 shaped structuring element (SE), followed by a top-hat by the difference 
between the closing and the input image, called top-hat by closing [4] . [nstead, 
we apply a sequence of directional rank-min closing {¢>k . .x .oh,8, with 10 SE's 
of increasing lenght k, different orientations (J but constant rank A. Top-hat by 
closing operators are thus performed at different scales and orientations (e.g. 
3 orientations), and then combined by setting the pixels in the image I to the 
number of positive responses they produce at any orientation in the different 
scales: 

kn 

F = L sup {Tlo,ol(¢>U ,o(I) - J)} E [l ,n] 
k=k. 8E{O,rr/4,rr/2} 

(1) 

with TC) the threshold operator, A a constant and where the initial lenght kl 
slightly exceeds the width of the target network. F quantifies the min and max 
lengths of the linear structures consisting of spectrally similar pixels (Fig. 1, 
3rd column). It also leads to many false positive detections, but they are coped 
by the subsequent steps provided that higher rate of detection are obtained for 
actual stretches. Thus, all pixels which have a non null value F are considered as 
potentially belonging to the network. The geodesic mask W is formed by keeping 
these pixels to that value, while all the other pixels retain their original value 
in I incremented by n (Fig. 1, 4th column): 

W = (I + n) . Tlo.ol(n - F) + (n - F) . 11o,n-ll(n - F). (2) 

This operator enables the prior enhancement of potential linear and thin stretches 
that could not be detected solely on the basis of their spectral values. This way, 
features are represented with (the complement of) a confidence value that the 
line element is part of the network: a low potential W-value assigned to a pixel 
means that it is very likely to belong to the network; on the contrary, a high 
potential W-value means that this pixel may not belong to the network. Yet, the 
network is still noisy and incomplete (both false and positive alarm~) and dis­
connected (see Fig. 1), but the proposed scheme does not require to be precise. 
It also does not exclude the use of additional visual and geometrical informa­
tion, when available, to further improve the quality of the line extraction. [n 
particular, the information from already extracted lines can be used to simplify 
the process of identifying the components of the network that are less visible or 
heavily impacted by surrounding objects. 
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Fig.!. Examples of line networks typically observed - blood vessels in a eye retina 
image (top), river in a satellite image (bottom) - and the derived functions used for 
building the anisotropic metric of Eq , (5), From left to right: original image, its GST 
norm N (the darker a pixel, the lower its norm), the function F (the brighter a pixel, 
the longer the lines passing through it) computed for kl == 5, k" == 30 and A == 3 in 
both cases (networks of similar size) and the resulting geodesic mask W enhancing 
dark elongated features, 

5 Network propagation 

The reconstruction of the network from its seed through the linking of line 
pisels is an ill-defined problem since the curves are likely to contain gaps and 
branches, More attractive is the 'edge tracker ' , which is based on the idea of 
following the network in the image, More specifically, starting from the seed 
pixel, the next point to be linked to the network is searched for. The approaches 
may involve a heuristic methods [13] or minimal path searching [1], Following [4], 
this latter approach is used, where the shortest path(s) originating from the seed 
and containing most line evidence is extracted. 

Indeed, step (iii) implements geodesic transforms applied to the geodesic 
mask and enables to mimic a pseudo DEM representing the propagation from 
the seed through the network, Geodesic transforms are classical operators in 
image analysis [19,16]' as a large class of problems can be formulated as the 
extraction of shortest - or geodesic - path(s) for a given discrete or continuous 
metric [20 , 2,16], In the continuous setting, it is classical to equip the image 
domain n with a positive metric <P(s) ds and to define the weighted length 7,p of 
a path 'Y : [0,1] -+ n as [16]: 

7",("1) = 1 <P(s) ds == t h'(t)1 <P("I(t)) dt .., ./0 
(3) 
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the isotropic eikonal equation, the anisotropic FMM involves the sweeping of 
the image embedded in a discretisation grid by progressively propagating the 
front, but does not resort to any anisotropy related parameter to constrain this 
propagation, Compared to Dijkstra algorithm [4], the FMM computes geodesics 
with the same computational complexity but more accurate estimation. When 
computing geodesic paths with Eq.( 4), f± define the strenght of the propagation 
in respective directions e±. 0: defines the relative influence given to the geodesic 
mask W.T. t the orientation for the reconstruction of the network, depending on 
the confidence in their estimation. Therefore, since f+ ::; f-, a path, has 
a shorter local length if its speed ,'(t) is collinear to e_ [16]. This way, the 
front propagates faster along the direction of the potential network, i.e. the 
endpoints of the line structures are allowed to "grow" in the general direction 
of the line. The propagation is 'forced' to follow the low values of the geodesic 
mask W in that direction through the term (1 + W)-J inherited from [4]. The 
additional term Nj maxJ?{N} in Eq.(5) further constrains the propagation to 
the centerline of the network (low N-values), and is therefore valid for wide 
line networks (p > 3 pixels). For narrow networks (p < 3 pixels, centerline 
pixels have then high N-values), the tensor should be simply modified as follows: 
f+ = (NjmaxJ?{N}) . (1 + W)-Ct. The main consequence of such potential 
images is that, independently of the input image resolution, centerline pixels 
are identified to represent the network. Note moreover, that as line segments 
are identified and added to the line network, the endpoints of the line segments 
could be possibly used to further propagate the network. 

6 Network extraction and trimming 

The pseudo DEM can be viewed as a height map image where the intensity 
value of a pixel represents its elevation and whose 'valleys' match the target 
network. In order to extract these valleys, the best available method relies on the 
simulation of a nondispersive flow of water on digitised topographic surfaces [5, 
23]. The flow direction of a pixel is defined for each pixel as the direction of 
the 8-neighbour producing the steepest slope. In this sense, each point of the 
terrain belongs to the network of streams [4]. However, the classical extraction 
of nondispersive flow paths suffer serious uncertainty because of the lack of 
varia.bility, i. e. only 8 allowed Aow directions. Inst.ead, we use here the improved 
estimation technique based on global search of [24], which has the advantage 
of reducing this uncertainty (Fig. 2 middle). This approach also assumes that 
all spurious minima have been filtered out beforehand and that every point, 
except for the seed, have at least one neighbour with a lower elevation than 
the considered point [23, 4J. Following, CDA are calculated by simulating the 
flow of water on the pseudo DEM using the flow directions for the computation 
of the number of pixels located upstream of each point of the DEM. See [4] 
and references therein for further discussion. Actual line network pixels are then 
identified as as the downstream of all pixels whose CDA exceeds some value. 
Their extraction can achieved by adaptive thresholding using a priori knowledge 
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(aka geodesic time [4] or weighted distance [19]). The geodesic distance between 
two pixels x, y E fl is defined as the minimal lenght of all the paths joining 
them: T-y(X , y) = min{T<t>(')') 1, (0) = x , ,(1) = y} and is reached over geodesic 
paths. In Eq.(3), cP defines on each pixel a weight that penalises the path, 
passing through it, i. e. it gives the potential function for moving along, [19, 
16]. In particular in [4], this function is set to the geodesic mask so that the 
derived metric cP is the Euclidian distance weighted by W. Since potential line 
pixels are set to low values in W , the propagation goes faster through those 
pixels and the geodesic paths follow the network lines as desired. This way, the 
local contrast and shape of the network, as well as its arborescent nature, are 
fully exploited for its reconstruction. Still, t.he propagation does not take into 
account directional information regarding the network. Namely, the gradient 
edge magnitude is however not enough for capturing thin structures, important -
so far neglected - additional information is the orientation of the image gradients. 

Ideally, one should incorporate the local direction of salient image structures 
into the estimation of the geodesic paths, so that they are further constrained to 
follow the line network. Anisotropic propagation is made possible by defin ing a 
local Riemannian metric cP associated with a tensor field T - defined as a positive 
symmetric matrix - that allows to measure a geodesic path, as follows [16]: 

T(')') = 11 V,'(t)TT(')'(t)h'(t) dt. ( 4) 

The difficult task is the design of the tensor T so that meaningful geodesics 
are derived. In this context, it seems natural to first consider the GST, which 
is a local measure of the directional signal variations based upon the gradient, 
in order to retrieve the local geometry and orientation of the image I. The 
classical method for estimating the GST consists in computing locally the matrix 
S = Kp * (\7 [0 \7 (;), where * is the element-wise convolution operation, \710 is 
the gradient of the image 1 pre-smoothed by a Gaussian with scale 0', and Kp 
is an analogous smoothing kernel of scale p [21]. S enables to extract. both the 
local direction of edges and textural patterns. The eigenvectors e+ , e_ of S are 
the directions of maximal and minimal variations of 1 at a given point, while the 
corresponding eigenvalues A+ ~ A_ give the respective rates of change. These 
values together discriminate different local geometries [21] . The corresponding 
eigenvectors e+, e_ are the directions of maximal and minimal changes. The 
information contained in the eigen-decomposition A± and e± of S is then used 
to build the tensor field T = f+e+er + f-ce~ as follows: 

{ 
f + = (1 - N/maxn{N}) 
r = (1 + W)-l 

(5) 

with W the enhanced image defined in Sec. 4, N = (A+ - A_) approximating 
the norm of the image gradient , and a ~ 1 controling the anisotropy (here 
we set a = 2) . In order to efficiently compute the anisotropic geodesic paths, a 
Fast lVIarching lVIethod (FlVIlVI) developed for computing geodesic distances with 
generic Riemannian metrics is employed [22]. Like classical FlVI lVI [20 , 16] solving 
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Fig. 2. Network extraction in the images of Fig. 1. Results of the approach of [4] (top) 
and current approach (middle) are output for the vessel image. Output of the current 
approach is displayed for the river image. From left to right: pseudo OEM's generated as 
the geodesic distance (the darker a pixel, the lower its distance to the seed) estimated 
from a seed manually placed (in the center of the retina or at the crossroad resp.), 
color representation of the corresponding Aow directions (value in [1,81 indicated the 
direction in a 8-neighbourhood) and extracted networks. 
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Fig.3. Filling gaps occuring in the network: an excerpt for the procedure applied on 
the retina image is shown. From left to right : network output by adaptive threholding of 
the pseudo OEM (notice an inherent drawback of shortest paths based approaches: the 
path joining two branches takes a shortcut), leaves extracted through morphological 
procedures (displayed in red), new pseudo OEM estimated from the set of all leaves 
found in the image and estimated geodesic paths (shortcuts) occuring between pairs of 
closest leaves. This gap filling procedure has to be iterated till all (pairs of) leaves have 
been explored. The two leaves 'facing ' each other are linked very early. The leave on 
the left of this excerpt is not linked to any other leave in the image: it is a real terminal 
leave while the one on the top of the image is reached by another leave (outs ide this 
excerpt) through the displayed shortcut. 

or further transformations of the input image [23]. Here, Strahler branching ratio, 
which uses global properties on ordering and relationships between branches, 
is chosen for filtering, but other topological indices can be used [25]. Strahler 
indice measures the symmetry and elongation of the branching st ructure, it is 
calcu lated by ordering all the edges within a given tree. 

7 Filling the gaps 

It can be seen in Fig. 2 that the est imated anisotropic geodesic front (middle) 
'tracks' well the main blood vessels of the network, without spreading in smaller 
branches due to noisy artefacts in the image. The Aow estimat ion reduces the 
uncertainty residing in local searches and produces more natural Aow patterns 
(middle). In comparison to [4], the resulting extracted network (bottom) better 
deals with interruptions - e.g. a bridge on a road - and bifurcations - e.g. anas­
tomosis of blood vessels - in the network, as it takes into account the orientation 
of the structures present in the image to 'prolong' them. However, some gaps 
are stili present in the extracted network. Indeed, [1] identifies several errors 
general for the extraction of line networks - like the presence of spurious line 
structures in the image which may generate distortions - errors specific for min­
imum cost path based methods. In particular, specific for the algorithm is (a) 
the inability to trace more than one line between connections: in general, only 
one path between two pixels is of minimum cost, any other path connecting the 
same pixels will be removed, and (b) the sensitivity to shortcuts: when a shorter 
path exists in the neighborhood of the traced path, the algorithm tends to take 
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a shortcut via this path. Under some severe noise, part of the network may also 
be disqualified as valid segments and hence missed, leaving some major gaps. 

These issues can be partially solved by a post-processing based on the propa­
gation from the endpoints (leaves) of the primary detected network, completing 
the network extraction. Remaining small 'gaps' are eliminated using the prop­
erty of line networks, that most pixels can be reached from all other pOints with 
minimum detour. For each endpoint, the optimal path within the geodesic mask 
to its closest endpoint is estimated and compared to the connection between 
them along the network. If the estimated path does not belong to the primary 
network (hence, it is shorter), the new connection is inserted (i. e. a gap is closed) 
into the network (see Fig. 3). This post-processing has to be repeated until no 
more new endpoints can be generated. The result of this global complet.ion step 
is the final line network. 

8 Conclusion 

Similar to the approach of [4] it is derived from , the proposed method for ex­
tracting line networks lies in the idea - common to watershed segmentation -
of combining the geodesics computed for an appropriate metric built from the 
network characteristic in the image with hydrological concepts developped for 
overland flow simulations. This approach exploits both local and global informa­
tion based on spatial and spectral properties of the line network of interest. The 
local contrast, shape and size of the network, but also its direction as well as its 
arborescent nature, are exploited for its extraction from the anisotropic geodesic 
front through the introduction of an approapriate anisotropic metric. This way, 
topological changes (obstructions and bifurcations) can be handled, and a priori 
domain knowledge (e.g., structural constraints) can be further incorporated into 
the evolution process. If necessary, additional physical information about the 
network and/or the image can still be used to better constrain the generation of 
the pseudo DEM. Besides, the extraction of the network requires minimal oper­
ator assistance as it is able to extract the network from a single seed point, and 
can be easily made automatic. This technique can be also refined by combining 
the outputs for multiple seeds when such information is available. 
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