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Abstract
Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility
rebate programs are spurring this burgeoning market. However, the reliability of these
systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has
shown that few data exist to quantify the mean time to failure of these systems. However,
there is keen interest in developing new techniques to measure SHW reliability, particularly
among utilities that use ratepayer money to pay the rebates. This document reports on an
effort to develop and test new, simplified techniques to directly measure the state of health of
fielded SHW systems. One approach was developed by the National Renewable Energy
Laboratory (NREL) and is based on the idea that the performance of the solar storage tank
can reliably indicate the operational status of the SHW systems. Another approach,
developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type
of neural network, to detect and predict failures. This method uses the same sensors that are
normally used to control the SHW system. The NREL method uses two additional
temperature sensors on the solar tank. The theories, development, application, and testing of
both methods are described in the report. Testing was performed on the SHW Reliability
Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM.
The two methods were tested against a number of simulated failures. The results show that
both methods show promise for inclusion in conventional SHW controllers, giving them
advanced capability in detecting and predicting component failures.

This final report is issued jointly by BSI and UNM because the two purchase orders were inextricably linked.
UNM was tasked to provide testing capability and advanced research capability in support of BSI’s research and
development activities regarding solar hot water reliability. The work described in this report was performed for
SNL under Purchase Order No. 95808 (with BSI) and Purchase Order No. 979664 (with UNM).
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1. INTRODUCTION

This document represents the final report for two contractual efforts that relate to testing and
evaluation in support of research on solar hot water (SHW) reliability. Building Specialists Inc.
(BSI) was tasked by Sandia National Laboratories (SNL) with developing a test and evaluation
program with the intention of developing techniques for detecting and predicting faults in SHW
systems (PO 955808). The University of New Mexico (UNM) was tasked by SNL with
providing the test capabilities for the research effort along with advanced technological methods
for detecting faults (PO 979664). This report represents the final deliverable for both efforts.

This report is organized in seven sections.

Section 2 provides background information, including the basic problem that has been
investigated along with related prior work.

Section 3 describes how the testing program evolved.
Section 4 describes the test objectives and the test plan.
Section 5 describes the testbed development.

Section 6 discusses the work needed to prepare the testbed for testing, including a thorough
review of the instrumentation system.

Section 7 presents the two sets of tests that were conducted, one of which was related to the
neural network theory proposed by UNM and the other being a Calorimetric method theorized by
Jay Burch at the National Renewable Energy Laboratory (NREL).

Section 8 presents the conclusions and recommendations.
The appendixes contain details to augment the summary information in the text.



2. BACKGROUND

This project is intended to more thoroughly understand SHW reliability. A major concern is that
many SHW systems are being installed with the assumption that these systems will operate
flawlessly for their expected lifetimes, typically 20 years. This assumption is almost certainly
false because these systems typically contain a variety of mechanical components whose
lifetimes are less than 20 years.

Many utilities are paying rebates to their customers who install these systems based on this
contingency. In addition, utility planners, specifically the people who forecast electrical loads
and design new generation and distribution systems, have an interest in understanding the
reliability of SHW systems because if they fail, the utility must be prepared to supply energy to
heat domestic water in their stead.

As more of these SHW systems are installed, the concern about SHW system reliability grows.
Unfortunately, the actual lifetimes of SHW are not known with even a marginal level of
certainty.

This project has a dual focus. The first is to achieve a more thorough understanding of the
existing reliability data and the implications from these data. The second is to develop tools and
techniques to help improve our ability to measure SHW system reliability and to improve the
level of reliability in new systems.

In 2008, in discussions with technical staff from SNL, the research team* agreed that the first
logical effort would be to examine the existing reliability databases and compare them. Several
databases had been assembled over the past 20 years but nobody had studied them for
consistency. This was the focus of the 2008-2009 effort.

The results were published in an SNL report [1] and the major finding from that investigation is
that there is little consistency among the databases. In fact, in many ways the conclusions that
can be drawn from one database tended to contradict the conclusions drawn from the others. In
short, there were many more contradictions between the databases than similarities. Importantly,
the best data that existed—a field survey of existing installations—indicated that 50% of the
pumped SHW systems had failed during the first 10 years of their lifetime. Integral systems,
which have no moving parts, fared much better, but even they had some unexpected failures.

After that SNL report was released, Tim Merrigan (NREL) criticized it because it did not include
the full set of data from the many systems that were installed in Hawaii, a project that was
managed by the Hawaiian Electric Company (HECO) in the late 1990s and early 2000s. HECO
representatives had presented summary data showing that the Hawaii systems were highly
reliable. But during the first study HECO had been reluctant to release the data for inclusion in
the analysis.

As a consequence, a second effort was initiated to collect and analyze any additional SHW
reliability data that might exist. The goal was to ensure that all existing data were included in the
SHW reliability database that was created in the 2008-2009 effort. A report on this effort has
been drafted and is in the process of being published as an SNL report.

! The research team consisted of Dave Menicucci, Greg Kolb and Tim Moss (SNL), and Tim Merrigan (NREL).
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Another major issue was that there had never been a concerted effort to collect solar reliability
data directly. All of the data that had been collected in the first study and the follow-on data
study were based on opinions of installers, warranty records, or field surveys that were
conducted a decade after systems were installed.

While valuable, these data did not contain the most pertinent information that would allow an
accurate computation of the SHW system’s mean time to failure or system availability. Nearly
all of the existing data about SHW systems pertained to their energy performance at the time of
installation and during the period of warranty, typically a year or two into the systems’ life.
Warranty-based databases rarely contain information about end-of-life system failures that
typically occur many years after the warranty has expired.

A conclusion was that tools and techniques are needed to address this shortcoming and to
develop data that could be analyzed with the intention of improving reliability. But there was no
place to develop and test any new techniques or tools, even if any existed. Therefore, a test
program was required, including the development of a testing platform where reliability issues
could be studied in a controlled manner.

The SHW reliability improvement effort has two parts. The first part was intended to collect and
analyze any additional SHW reliability data that might exist. The second was intended to
develop a program that could be used to develop and test new ideas regarding various aspects of
SHW reliability.

This document reports on the second part of the effort, the testing and evaluation that was
conducted at UNM.
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3. EVOLUTION OF THE TESTING PROGRAM

University of New Mexico Collaboration

One of the basic problems with SHW systems is that when failures occur in installed systems,
there are few obvious negative consequences. In short, nothing of significance happens when a
SHW system fails because the backup water heating system silently picks up the load. Unless
system owners are regularly monitoring their systems, they will not notice when they are offline
due to failures. Most SHW controllers have no capability to recognize a failure in the system or
to notify the owner that a problem exists.

The research team agreed that some tools were needed to identify failures. There was also the
belief that new products should be tested, such as advanced SHW controllers, that purported to
identify failures in SHW systems. Thus, a testbed was needed for SHW reliability testing. A
university is an excellent venue for such a testbed.

In attempting to develop the testbed project a number of labs and universities were contacted.
UNM was the only one that responded with interest. In fact, Andrea Mammoli, of the
Mechanical Engineering (ME) Department, responded enthusiastically and suggested that not
only would UNM co-fund such a project, but that they would contribute novel and unique
concepts and ideas for cutting edge technology that might offer unique capabilities for detecting
and predicting faults in SHW systems. These capabilities would be provided for testing and
evaluation on the testbed.

Mammoli and his team had been considering reliability of SHW systems, and when this
opportunity arose they quickly seized the opportunity to collaborate. Mammoli proposed that
one of his PhD candidates, Hongbo He, would apply Adaptive Resonance Theory (ART) to this
problem. Fundamentally, ART is an artificial learning process that can be programmed on a
computer. The algorithms that comprise ART can essentially be taught the equivalent of human
intuition and can use that artificial intuition to identify and possibly predict failures. The UNM
team had developed the theory, but had no platform to test it. Thus, the idea of creating a testbed
at UNM was enthralling because, for the first time, the ART theory could be tested on a real
SHW system, the best possible trial.

The UNMY/BSI/SNL collaboration was an excellent one to achieve the testing objectives. First,
the testbed would be located near SNL and BSI, thus eliminating expensive travel. Second,
UNM offered to contribute resources to the project in terms of technology, along with labor to
build the testbed and to operate it. Third, working collaboratively, UNM and BSI had some new
ideas to apply to the reliability problem. ART was a concept that had never been applied in the
SHW industry and seemed to be ideally suited for the reliability problems under consideration.

The testbed would consist of a fully instrumented SHW system that could be used to test various
reliability concepts and tools (such as SHW control systems that are purported to have the
capability to identify failures). Hongbo He would apply ART to the testbed as part of his
doctoral thesis. Other students, including Jeremy Sment (senior undergrad) and Glenn Ballard
(MS candidate), would assist in various facets of the project, such as developing the system
controls, which had to be much more sophisticated than the simple controllers used in
commercial systems. The testbed controller had to collect data and control failures, things that
normal controllers do not do.

12



By early November 2009 a plan was developed. Sandia agreed to provide contract funding to
UNM for hardware for a testbed that would be located at UNM’s ME Department. Andrea
Mammoli (UNM) and Dave Menicucci (BSI) were the co-principal investigators in the effort.

Literature Search

The technical work began with a literature search. The UNM library was used to search for
articles and other information about SHW reliability measurements/monitoring. Also, a number
of organizations who are involved with SHW monitoring or manufacturing monitoring
equipment were contacted to know what products might already exist and what capability they
have relative to the question that was under investigation, especially reliability monitoring.

For clarity, the term “reliability monitoring” and like descriptors means that the SHW system is
being monitored by a device with the capability to identify a system failure and take measures to
manage the failure to prevent further damage. Such a monitoring system would also have the
capability to sound a warning to the owner or operator of the system so that appropriate remedial
action can be taken. An advanced reliability monitoring system might also have the capability to
provide diagnostic information, such as identifying the potential failed or failing component.

Previous literature searches for SHW reliability monitoring equipment and ideas had produced
little or no useful information. The more intensive search conducted in this project produced no
new publications or other information.

The organizations that were contacted included the following: Goldline Controls, IMC
Instruments, Heliodyne, Qisol, and Fat Spaniel. Many newer SHW controllers, such as IMC’s
Eagle 2, are designed not only to control the SHW system but to monitor performance as well.

None of the current commercially available controller and/or energy products (Heliodyne, IMC,
and Goldline) have more than cursory capability to perform reliability monitoring of SHW
systems. Representatives of these companies all expressed some interest in the possibility of
applying advanced reliability monitoring capabilities, if they could be proved accurate and
useful.

The largest commercial renewable energy system monitoring organization, Fat Spaniel, focuses
its monitoring services on energy production of photovoltaic (PV) systems but has interest in
eventually providing monitoring services for solar thermal systems. At this time Fat Spaniel has
no capability to conduct reliability monitoring.

Only Qisol had a product that was purported to contain the capability of reliability monitoring.
At that time, about a year ago, the technology owner, David Collins, was interested in
participating in experimental efforts to develop a deeper understanding about SHW reliability
and indicated a willingness to supply a prototype version of his metering system for test on an
experimental test platform. Unfortunately, he was unwilling to divulge technical details about
how his metering system operates, even if these details were protected from disclosure with a
nondisclosure agreement. Nonetheless, this appeared to be a positive possibility.

Sensors for Testing Reliability
The discussions with the manufacturers along with the literature search produced useful

information, especially about the type of information that is needed to detect failures. By
combining this information with common knowledge about the operational characteristics of
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SHW systems, the research team created two matrices that described the various sensors and
their operational characteristics in a system that is operating properly and one that has failed.
The information in these matrices can be used to develop the required sensors and the array of
tests that can be used to monitor a SHW system for reliability.

One matrix was based on the assumption that only the traditional sensors that are commonly
available in commercial SHW systems would be available for monitoring. The other matrix
contains those sensors that are listed in the first matrix plus other additional sensors that might be
considered for future reliability monitoring equipment.

Table 1 lists the traditional sensors and auxiliary ones. The sensors’ functions are obvious by
their name. These sensors were all candidates for inclusion in the SHW reliability testbed being
developed at UNM.

Table 1. Traditional and Auxiliary Sensors.

Normal operational
sensors Auxiliary Sensors

Current CT sensor on

Tank temperature sensor
pump motor

Voltage indicator sensor
at pump motor

Collector temperature Flow meter, insolation
sensor sensor

HX inlet and outlet
temperature sensors

Insolation sensor

Visual inspection

The two matrixes are presented below. Table 2 pertains to systems that have only the commonly
available sensors. Table 3 pertains to systems that have common sensors plus auxiliary ones.
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Table 2. State and Sensor Matrix for Systems With Traditional Sensors.

State and Sensor Matrix for reliability monitoring algorithms (Pumped Systems)
Menicucci; January 20, 2010

Assuming the availability of normal system operational sensors (collector temp, tank temperature, controller outputs)

Sensors
Required for
Test for Causes Possible Resulting States Test Logical tests
Mo or little cooling fluid flow, causing overtemp of collector and 1. Test sensors against reasonable operating
Pump moter burns out or pump o ; . i -
. - o system shutdown; reduction or cessation of energy production;  Tank sensor, limits; 2. Test for correlation between energy
Pump failure shaft seizes; motor loses a winding ) B R ) .
and runs slower high current flow to seized motor trips breaker; slow motor collector sensor  production rates against expected range of
draws higher than normal current energy production rates,
Sensor becomes dislodzed from Temp erroneously low: system runs when tank is thermally 1. Test .tanl.( 5e.:nsor against reasona ?Ie
Tank temp sensor measured device: sensor shorts: saturated and overheats when collector on-sun or cools tank Tank sensor, operating limits; 2. Test for correlation
failure ! ’ when collector off-sun; Temp sensor erroneously high: system  collector sensor  between energy production rates against
Sensor opens.
stopped when tank is cool expected range of energy production rates.
1. Test collector sensors against reasonable
Sensor becomes dislodged from Temp erroneously high: system runs when collector is cold; R i .
Collector temp N . Tank sensor, operating limits; 2. Test for correlation
. measured device; sensor shorts; Temp sensor erroneocusly low: system stops when collector is hot . .
sensor failure collector sensor  between energy production rates against
SeNsor opens. and tank cold _
expected range of energy production rates.
Tank sensor. 1. Test for correlation between energy
o s = " ’ production rates against expected range of
o Hardware (electronic) failure in . collector sensor, -
Controller failure Undetermined state; Probably system halts 2 energy production rates; 2. Test for voltage at
controller box voltage indictor at
pump motor when tank and collector sensors
pump are in the normal operating range.
1. Test for correlation between ener,
Drainback valve  Valve seizes in open or closed Open: System never fills with fluid and does not collect energy;  Tank sensor, roduction rates against expected ragnv e of
failure position Closed: collector subject tofreezing collector sensor H ks o

energy production rates.,

Open when intended to be closed: System operates when not

Isolati I
so1aton valve Valve fails to open or close intended. Closed when intended to be open: System fails te Visual inspection 1. No logical test for this condition.

failure
operate when indicated
Leaks; catastrophic breech of li 1. Test collector t at inst d
Loss of fluid e? ERiSESoRus eacThe System's collector stagnates dry Collector sensor = m = ‘?r G
fluid stagnation limits.
" Degradation of absorptive coating; . Tank sensor, i Test f_or correlatlor.l between energy
Collector failure . Collector energy performance degrades over time preduction rates against expected range of
broken glazing collector sensor "
energy production rates,
1. Test for correlation between energy
Heat exchange Heat exchanger clogged; Heat Exchanger failure: System performance degrades; Heat transfer  Tank sensor, production rates against expected range of
system failure transfer fluid degrades. fluid failure: System freezes. collector sensor  energy production rates; 2. Test collector

sensor for freeze limits.
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Table 3. State and Sensor Matrix for Systems With Traditional and Auxiliary Sensors.

State and Sensor Matrix for reliability monitoring algorithms (Pumped Systems)

Assuming the availability of normal and auxiliary sensors (collector temp, tank temperature, controller outputs)
Mormal Sensors Auiliary

Test for Causes Possible Resulting States for Test for Test Logical tests

1. Tast sansors against reasonable oparating
limits; 2. Test for correlation between energy
production rates against expected rangs of

Mo or little cocling fluid flow, causing overtemp of collector and
system shutdown; reduction or cessation of energy production; Tank sensor,

Fump motor burns out or pump Current CT sensor on

Fump falure ::::un“::z :::;;:: ® high current flow to seized motor trips breaker: slow motor collector sensor z‘:::rmo" flow energy production rates; 3. Test currant flow
draws higher than normal current for normal range; 4. Test cooling liquid flow
for normal range.
1. Test tank sensor against reasonable
B —— Temp erronecusly low: system runs when tank is thermally operating limits; 2. Test l.or corrclalicu?
Tank temp sensor miasured device; sensor-shorts: saturated and overheats when collector on-sun or cools tank Tank sensor, Flow meter, between energy production rates against
failure when collector off-sun; Temp sensor erronecusly high: system  collacter sensor insolation sensor expected range of energy production rates; 3.
ST stopped when tank iz cool Test cooling liquid flow versus solar
and tank ure.

1. Test collector sensors against reasonable

operating limits; 2. Test for correlation
Sensor becomes dislodged from  Temp erronecusly high: system runs when collector is cold:
Collector temp ) - W gz syt N Tank sensor, Flow meter, between enargy production rates against
measured device; sensor shorts;  Temp sensor erroneously low: system stops when collector is N . N
collecter sensor insalation sensor expected range of energy production rates; 3,
SENSOr OPens. hot and tank cold . N
Compare flow meter for flow when irsolation

Is sufficient 1o signal operation,

sensor failure

1. Tast for correlation between energy

production rates against expected ranga of

energy production rates; 2, Test for voltage at

pump motor when tank and collector sensors

are inthe normal oparating range: 3. Check

flow meter for cocling flow when insolation is

sufficient and tank is cold.

1. Test for correlation between energy

MNone production rates against expected range of
energy production rates.

Tank sensor,
Hardware (electronic) failure in Undete st PrEBABH S Kl collector sensor, Flow meter,
U ' P o .
controller bax RS LI b woltage indictor at  insolation sensor

pump

Controller failure

Drainback valve  Valve seizes in open or closed Open: Systern newver fills with fluid and does not collect energy; Tank sensor,
failure position Clased: collectar subject to freezing collactor sensor

Open when intended to be closed: System operates when nct

lsolation val
Fration VEVE  valve fails to open or close intended. Closed when intended to ba open: Systern fallsto Visual inspection  None 1. No lagical test for this condition.

failure
ooerate when indicated
_ Leaks; eatastrophic brasch ; Flow meter, CT 1. Test collector temperature against dry
Loss of fluid of cosling fluid System's collector stagnates dry Collector sensor  sensor on pump stagnation limits; 2. Comgpare CT sensor on
maotor oumo motor for no-load conditions.
i x 1. Test for correlation between energy
r Degradation of absorptive - Tank sensor, 2 -
Collector failure _ . Cellector energy performance degrades over time None production rates against expected range of
coating: broken glazing collactor sensor .
energy production rates.
1. Test for correlation between energy
Heat exchange Heat exchanger clogged: Heat Exchanger failure: System performance degrades; Heat transfer  Tank sensor, HX inlet and outlet prod LE(IOCI:;‘:“:-S against C;IT ad 'IEI'"SC of
system failure transfer fluid degrades. Fluid failure: Systam freezes. collactor sensor SENSOrs anergy:procuction rates; 2 Tast. collactor

sensor for freeze limits; 3. Test HX sensors for
normal operational limits.

The matrices contain a list of the various components involved in system operation and the
sensors that would be involved in a test to determine if that particular component has failed or is
in the process of failing (see column “Test for”). The column labeled “Causes” describes the
possible failure states. The “Resulting States” are listed in the next column. The sensors
involved in the test are listed in the next column(s). The last column, “Logical Tests,” describes
the tests that would be applied to determine the state of the component.

Selection of Methodologies to Test

A number of solar controllers were identified for possible SHW reliability testing. These
included the following: Goldline Controls, IMC Instruments, Heliodyne, Qisol, and Fat Spaniel.

Of these, only Qisol had a product, which at the time was in advanced stage of testing, to
monitor SHW reliability. The owner, David Collins, was interested in participating in an
experimental effort to develop a deeper understanding about SHW reliability and to supply a
prototype version of his metering system for test on an experimental platform. However, Collins
was unwilling to divulge details about how his metering system operates, information that is
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needed to design an appropriate test plan. At a later time, after he finished his development, he
was to have contacted the UNM/BSI team to arrange for testing. However, he never contacted
the team and numerous email and telephone attempts to contact Collins through his company
website were not successful.

Selection of Methods for Testing

Two new concepts for monitoring reliability remained in contention for inclusion in the testing
program. The first is the tank calorimetric method developed by Jay Burch of NREL. The
second is the ART work by Hongbo He and Professor Tom Caudell of UNM, Hongbo’s co-
advisor (Andrea Mammoli was Hongbo’s principal advisor).

Both of methodologies held promise for creating algorithms that could be integrated into SHW
system controllers in the future.

The methodology developed by Burch requires a sensor to be installed on the external skin of the
storage tank of an SHW system. This sensor would be in addition to the sensors that are
normally installed as part of traditional commercial controllers. However, this sensor is low cost
and placing it on the middle portion of the tank is possible without extraordinary effort.
Therefore, the cost for this addition is reasonably low and the benefit would be that the controller
would have greatly enhanced capabilities to monitor the health of the solar system during
operation.

The ART methodology, described above, holds equally high potential for application in SHW
controllers. This methodology, while more complex than Burch’s method, holds the promise of
not only being able to identify a failure of a component, but possibly being able to predict the
failure of a component. Most important, the method does not need any additional sensors from
what is normally required by a commercial controller to operate the SHW system.

Further, both Burch’s technique and the ART operate on the principle of a computerized system
that can artificially learn patterns of typical system behavior and then be able to recognize when
these patterns have abnormally changed. The ART method learns in a manner similar to that
used by living creatures. The Burch technique depends on the hysteresis that is inherent in a
SHW system’s storage tank in which its temperature conditions represent a record of system’s
past performance.

The ART directly applies advance neural network methodologies that are extremely robust and
capable in this task. What is more, these techniques are not static. When applied in a real
system, the ART’s learning process continually gleans more about how the system operates, just
as a human operator might do. Thus, it effectively becomes more intelligent over time and
becomes more adept at recognizing abnormalities and differentiating them from normal variance
in operation due to factors such as changing temperatures, insolation, and loads.

Based on this rationale, the Burch and the ART methods were selected for testing.

The Value of Predictive Failure Capability

The reliability of an SHW system can be tremendously improved by replacing components
before they fail instead of replacing them as they fail. The reason is that after the burn-in period,
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the initial operation time where early failures appear, the constant failure rate? is determined by
chance occurrences, and the reliability of the system at any time during the life of the system
after burn-in and before its end of life approaches is predicted by the exponential function.
Bazovsky [2] provides a more complete discussion of the mathematical model for reliability and
the use of the exponential function for devices and systems. The failure rate during that
operational time period is low. Thus the mean time between failures is very long because the
mean time between failures is equal to the reciprocal of the failure rate.

However, as the system approaches a time when critical components are reaching the end of their
lives, the failure rate dramatically increases. The probability of a failure in this part of the
lifetime of a system is predicted using the Gaussian distribution, which includes a mean and a
standard deviation of the time to the end of life. As components age beyond the mean lifetime,
the probability of failure increases and so do their failure rates.

The key to a very high probability that the system will remain in a functional state is to replace
the critical devices as they approach their end of life, at a point when their failure rate is
approximately equal to the failure rate during the middle portion of their life, the time where
reliability is controlled by chance failures. This replacement point is relatively easy to compute,
if a mean and standard deviation are known for the lives of the components in question.

Unfortunately, these critical mean and standard deviation parameters are virtually unknown for
SHW systems. Even with all the data that that have been collected, sorted, organized, evaluated,
and studied in a previous effort conducted last year, none of these critical measures can be
computed or estimated with certainty. Thus, at the present time and until sufficient data are
collected specially to measure the critical items, there is no way to select the right time to replace
components in an SHW system. Even starting today, collecting the required data would require
many years before sufficient information existed to meet the needs of the statistical techniques.

In the absence of good quality statistical data that would identify a specific time to preemptively
replace components, this leaves as a tool only those techniques that can identify an impending
failure of a component in time to allow it to be replaced when the system is normally down, such
as at night or when the sun is obscured. In this environment, the ability to predict a failure is
extremely valuable.

Theoretical Discussion About the Reliability Methods That Were
Chosen for Testing

Calorimetric Method Developed by Jay Burch

Jay Burch et al., of NREL [3], have conceived of a rudimentary method of data collection over
time in which a history of an SHW’s tank temperature fluctuations are recorded and
characterized. This historical temperature profile is compared with the predictions based upon
the collector, piping, heat exchanger, and tank characteristics. A simple theoretical model of
performance is established, and serves as the reference for the actual tank temperature
fluctuations. If solar radiation is not measured (as would be the usual situation), the model uses
the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)

2 The failure rate is usually expressed as a number of failures per unit time. Typically this failure rate varies over

the life of mechanical systems with higher failures during the startup and end-of-life phases and lower rates
during the middle portion of the lifetime, sometimes called the useful or productive life period. During a
system’s useful life period the failure rate is usually constant.
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clear-sky algorithms for solar incidence. If the SHW fails or begins to fail, the temperature
profile of the storage tank will be significantly different from the clear-day assumption. Without
solar radiation data, it is only with statistical probability that a failure is detected, because there is
always some probability of a sequence of totally cloudy weather.

The methodology has been published in two papers. The latest one is included in Appendix A,
reproduced with written permission from the author [3].

The principal questions to be answered in the application of the Calorimetric method to SHW
systems is whether the method can be successfully applied to identify and predict failures and to
determine the number of sensors required to do so.

Adaptive Resonance Theory

The UNM ME Department, in collaboration with Professor Tom Caudell in the Electrical and
Computer Engineering Department, are developing some concepts for using neural networks to
develop an advanced reliability monitoring scheme for solar thermal systems. Specifically,
networks based on ART and its derivatives were used in this work [4].

Fundamentally, a neural network mimics a human brain with the principal characteristic being its
ability to artificially learn and self-organize over time, and then to make intelligent decisions in
the future based on the learned information.

Learning systems in neural networks can either be supervised or unsupervised. In supervised
learning, statistical procedures are used to develop mathematical functions that fit groups of
dependent and associated independent variables. Regression analysis is an example of a kind of
supervised learning.

Unsupervised learning is geared to identifying the best type of function to represent a group of
dependent and independent variables using optimization techniques. It is the kind of learning

continuously employed by humans and other animals in their lives and results in what is often
referred to as intuition.

The ART class of neural networks fits in the category of an unsupervised learning system. Itis
particularly well-suited to the task of performance monitoring and fault detection of an SHW
system, because these can artificially learn and categorize vast amounts of data efficiently. They
can be used to effectively recognize new input patterns in a stream of data that do not fit into any
existing category [5,6].

The ART network algorithms must be trained in order for them to be applied. This “training” is
equivalent to the process of human education and on-the-job training. To train the algorithms,
data about the operation of a system must be recorded and then provided to the ART algorithms,
essentially representing what humans would call “experience.” In the case of an SHW system,
these experiential data might include the temperatures in the solar loop and solar tank. If these
data represent normal operating conditions, then the ART algorithms artificially learn normalcy
for that system. The more training that is done, the more artificially intelligent the algorithms
become, especially in their ability to understand that variations in the performance of the system
is a normal part of operation (e.g., an SHW system’s performance varies as a function of sunny
weather, night-time, cloudy weather, etc.).

Analogously, this training is similar to the training that a human power plant operator might
receive based on his or her experience in watching the plant operate over time. The operator

19



begins to understand the functional characteristics of the plant along with the vagaries of the
plant’s normal operation.

Once the fundamental training is complete, then the algorithms are set to detect faults. Basically
a fault is a condition that is outside the domain of what was previously experienced during the
training. Thus, when this fault condition occurs, the unique nature of the conditions is
immediately flagged by the algorithms as being outside of its experiential base. Additionally, the
algorithms should also be able to detect degradation, as might be associated with a failing
component. This predictive capability is most valuable for intermittent generators, such as
SHW, because it would allow a repair before a catastrophic failure and at a time when the
generator is not normally operating.

It is important to note that predicting failures in systems is not new. In the airline industry, for
example, components in airplanes are routinely replaced before they fail. But these replacements
are based on very well-defined statistical measures that have been computed from a long history
of actual experience. The distinguishing characteristic of ART technology is that while it uses
historical information for its training (based on actual experience or modeled experience), it
develops artificial intuition about the system over time, essentially mimicking that of a human.
This implies that ART can become more useful in predicting failures on systems that have a
limited operational history and that its capabilities will become more robust over time.

Self-learning will occur based on false-positive indicators, the condition where the ART system
has erred in identifying a fault. Once the human operator indicates that the fault condition was
part of the normal behavior for the system, that event is integrated into the experience base of the
algorithms, and if it were to recur it will not again be flagged.

Using this approach, a neural network learns over time the operational characteristics of an SHW
system. Certain relationships among sensors can be established relative to environmental and
load conditions. If a component begins to fail and its performance signature changes, other
aspects of the system will be affected and at some point will be sufficiently noticeable to be
acted upon. This condition would produce either a warning that a component is in the process of
failing or has catastrophically failed.

The principal questions to be answered in the application of ART to SHW systems is whether the
unsupervised learning mode can be successfully applied to identify and predict failures on a
complex physical entity, such as an SHW system. Another goal is to determine the quantity and
frequency of data needed to produce a measure of intuition in the control system that is sufficient
to predict and/or identify failures. Fundamentally, a goal is to optimize the number of sensors,
the frequency of data retrieval, and the history of measurement for maximum development of an
artificially intelligent reliability monitoring system.

The theoretical basis for the ART technology is explained in more detail in Appendix B.
Appendix C contains a copy of the ART code.
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4. TEST OBJECTIVES AND TEST PLAN

This testing program was intended to answer the most fundamental questions about the ability of
NREL’s Calorimetric technique and UNM’s ART methods to identify and predict failures.

A test plan was developed that included two major tests. The first test would simulate a
catastrophic failure of the circulating pump on the solar loop. In this test the pump would
suddenly be turned off, just as would happen if a pump motor burned out.

A second test would simulate the degradation of the pump’s impeller as would occur in the case
that debris is in the solar loop, such as balls of solder that were introduced into the piping when
joints were over-soldered. In this case the impeller blades would be slowly peened over time,
resulting in diminishing ability to move water in the pipe and characterized by reduced flow rates
over time.

Data recorded from the tests, which include the full array of parameters that are recorded by the
Solar Hot Water Reliability Testbed (SHWRT), would be supplied to Jay Burch and Hongbo He
for analysis. Subsequently, each researcher would apply his respective reliability methodology

to determine whether the failures can be detected.

In the first test the SHWRT would be operated in a normal mode for several days to let the
system operation stabilize, especially the tank temperature.® Four days of operation were
planned for stabilization. On the fifth day, a catastrophic pump failure would be introduced on
the solar loop by disabling the pump motor during normal operation. The test period was to be
planned for a time when the weather conditions were to be generally clear for the entire duration
of the test, although small amounts of intermittent cloudiness would be tolerated.

The plan for the second test was similar to test one, but the failure would not be catastrophic.
Instead, the flow rate in the solar loop was to be reduced slowly over a period of four days (about
10% per day) with the fifth day returning the flow to normal. A circuit setter on the solar loop
allowed the flow rate to be adjusted manually.

Preparation for Testing

The NREL methodology was essentially ready to be applied as soon as the tests were completed.
However, this method required thermocouples to be installed on the skin of the solar storage tank
(located on the metal tank between the exterior insulation and exterior face of the water-bearing
metal tank). Details about the thermocouples can be found in Sections 5 and 6.

The ART system required substantial preparation. First, the ART algorithms had to be trained.
Training is the artificial learning process where the adaptive resonance algorithms come to
recognize normal operations. As was noted above, the longer the training period, the more
sensitive the ART system will be in differentiating failures from normal operations.

In the optimal case training is done by monitoring a real system, the same one in which the ART
system will be applied. Preferably, many years of training are expected to provide the best
results, with each subsequent year producing better results than the previous one.

® Normal operation means that the testbed is operating the SHW system in the same mode as a typical one, which

includes an active solar loop and electric backup heating in the storage tank.
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In this case, the time frame for the test was much shorter that the optimal time required for
training because and no fully operating system was available (the SHWRT operates for testing,
and does not operate on a production basis).

To accomplish the training, a computerized system model of the SHWRT was developed and
verified. This model was used to provide the data needed for training by running it with a
standard Solar Rating and Certification Corporation (SRCC) load profile and five years of
SOLMET data for Albuguerque. SOLMET data are hourly weather records for a 30-year period.
The output from the model, an hourly record of SHW system performance, was then used to train
the ART algorithms, effectively substituting for training on a real system. Appendixes D and E
contain detailed information about how the TRNSY'S model was verified and how the ART
algorithms were trained.

* The use of the word “algorithm™ here is based on a broad interpretation of its traditional meaning, which

typically refers to a piece of computer line code which remains fixed unless deliberately modified by a human..
In this case, however, this code learns and self-organizes, distinguishing it from the conventional connotative
meaning of the word “algorithm.”
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5. TESTBED DEVELOPMENT

Concurrent with the preparatory work described in Section 4, the testbed was developed. The
technical team was ready to proceed by early 2010. Unfortunately many delays ensued due to
procurement difficulties at both SNL and UNM. The contract was finally placed with UNM and
money was available for the project by mid-spring 2010.

Furthermore, additional delays were incurred as the BSI and UNM personnel struggled to
organize themselves into an efficient work team. Although BSI brought experience in building
homes, this was an experimental project and construction could not move with the speed of a
home project.

An important point is that unlike SNL where there are skilled technicians with a plentiful supply
of tools for a project like this, UNM had limited tools and few on-site tradespeople and
technicians that could be called upon for assistance. Thus, the principal investigators had to
supply personal tools and direct labor to construct the testbed.

Also, Mammoli, co-principal investigator, is a full-time professor in the ME Department. He
was heavily laden with the ordinary tasks of a full-time teaching professor and could not spend
significant time on the project. Typically only about a day a week (+/-) could be dedicated to the
construction. Occasionally, Mammoli was absent for extended periods to conduct other essential
UNM business that was off site. Since many design modifications were required during
construction and because the project was being conducted on school property, it was not
appropriate to move forward with less than the complete team.

Additionally, the control system was much more complex than was originally anticipated.
LabView was selected as the controlling interface because it was best suited to meet the
technical requirements. But the team had limited familiarity with it. Mammoli originally
assigned a senior undergraduate the task to build the controller, but the problem was too complex
for him. BSI became intimately involved with the project, learning LabView, developing logic
diagrams, and helping the student along. However, the complexity soon overran the combined
expertise of those two individuals.

There were other problems and associated delays, but by end of spring 2010 the project was well
behind schedule. At that point BSI embedded itself into the UNM team, securing an office,
phone, and parking space, and coming into the office on a regular basis. The purpose was to
supplement the labor and expertise needed to move the project along.

The labor expended by UNM and BSI on the project was far greater that had been planned,
perhaps by an order of magnitude. The effort included many full days of work on weekends and
some late evenings. But as progress became apparent, the entire team was invigorated as the
world’s first and only solar reliability testbed began to emerge.

Due to the delays both contracts were extended in August at no cost.

The testbed hardware was completed in October 2010. As was planned, it had the capability of
being configured to represent two kinds of SHW systems, a pressurized loop system (see Figure
1) and a drainback system (see Figure 2). These are the most popular types of active SHW
systems. Figures 1 and 2 show the two system configurations for the SHWRT. Figure 3 shows
the physical layout of the system.
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Physical Layout of the SHWRT
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Figure 3. Physical layout of the SHWRT.

Note that the SHWRT contains a cooling tank.> Since there is no real load, one has to be
simulated. This tank supplies cool water to the solar tank when a hot water draw is simulated.
As hot water is drawn from the solar tank it flows into the load tank. Simultaneously cool water
in the load tank is pumped into the solar tank. The load tank contains water that is chilled to
about the same temperature as water that would be supplied from a municipal supply, ground
temperatures at around 10 feet deep. A chiller is used to maintain the water temperature in the
load tank.

To simulate a hot water draw during a test, the load pump is engaged at the beginning of each
hour. During the time that the pump is running the energy in the loop is computed in real time
and accumulated. The accumulated total is compared to the draw profile for that hour. When
the accumulated total energy matches or exceeds the target load for that hour, the pump is shut
off. A valve in the loop is closed to prevent any thermosiphoning.

> Also referred to as a load tank.
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The SHWRT system employs two Lennox LSC-18 collectors, each with low-iron double glazing
and black chrome absorber, as shown in Figure 4.° The collector was manufactured in the early
1980s and was SRCC OG100 rated. Until it was installed in the SHWRT it had been stored in
the basement of UNM’s ME Building.
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Figure 4. Lennox LSC collector.

The SHWRT is a testbed and as such it is much more highly instrumented than a commercial
system. For example, in a commercial SHW system there are normally two temperature sensors.
One is located on the outlet of the collector and the other is on the supply line, at the outlet of the
solar storage tank. The temperature difference between these two sensors is used by a
commercial controller to turn on and off the solar loop pump. The SHWRT, however, contains
many more Sensors.

The solar tank and the load tank were outfitted with type T thermocouples. A thermocouple tree
consisting of eight thermocouples was located along a plastic pipe that was installed in
approximately the center of the tank. The plastic pipe was used only to hold each thermocouple
in place, approximately equidistant from one another along the vertical axis of the tank.

Similarly, thermocouples were placed along the outside skin of the metal tank under the
insulation in approximately the same vertical locations as those on the internal tree. To install
them the exterior skin of the tank was carefully cut and the insulation was removed. The exterior
metal surface of the water-bearing tank was cleaned and the thermocouples were glued in place
using thermal epoxy.

Figure 5 shows graphically how the thermocouple trees are installed in the solar tank.

NREL supplied Agilent hardware to allow the SHWRT VI to incorporate additional
thermocouples in the system.

® Operation maintenance and installation instructions. Technical Report LSC18-1 and LSC18-1S Solar Collectors,

Lennox Industries Inc., July 1977.
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Figure 6 shows diagrammatically the array of sensors located on the system. The following
labels are used: Thermocouples (Tc), pressure sensors (P), flow meters (Flo), solar radiation
sensors (Rad), current transducers (Ct). “Energy” represents a point in which the energy
generated in the loop is computed.
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Figure 5. Thermocouple trees.
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Figure 6. SHWRT instrumentation.
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All of the instruments were carefully calibrated before they were installed, and were tested again
after they were installed. For example, the thermocouples were calibrated before installation.
After installation they were again tested for consistency. More information about the calibration
and tests can be found in Section 6.

After the hardware was built and tested, attention focused on the control system. The complexity
of the LabView Virtual Instrument (V1) controller had been becoming apparent over the previous
month, but it was not until the hardware was working that serious difficulties began to emerge.
The complexity of this controller was much greater than would be found on a commercial SHW
controller because the SHWRT system contained many more features than a commercial system,
as discussed above. Additionally, the controller had to perform complex calculations during
system operation to ensure that the various systems were all operating within safety limits, and
that the data were written to a file.

As an example of this complexity, Figure 7 is the logic diagram for controlling the solar pump.
Only a small portion of this logic would be implemented in a commercial controller.

Eventually, the team decided that additional professional help was required to complete the V1.
SNL supplied Mike Edgar, a technician from SNL’s National Solar Thermal Test Facility, to
provide assistance. Using the VI’s design specifications that the BSI/UNM team had created and
working hand-in-hand with team members, he provided the necessary expertise to build the VI.
By late December 2010 the VI was fully functional and was being tested for accuracy.

A summary of the components used in the SHWRT is summarized in Table 4.
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Table 4. SHWRT Components.

Component Part Specification
Collectors Lennox LSC-18
Storage Tank SunEarth SU80-HE-1 (nominal 80 gal, actual 73 gal)
11m00;@s0dhjffeiejsdngalactualnactualgal73gal72gal)
Load Tank 55-gal. drum; insulated
Load Tank Chiller Neslab RTE-8
Pumps B&G
Plumbing Copper, Type L and M
Instrumentation (pressure, Mostly Omega
flow, etc)
Thermocouple (TC) Agilent 34970A
acquisition
TCs Type K, Type T,welded in-house
Instrumentation controller National Instruments
Electrical device controller Custom designed and built with solid state relays

Pictures of the SHWRT hardware are found in Appendix F.
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6. PREPARING THE SHWRT FOR TESTING

Verification of the Accuracy of the Testbed Operation

After the testbed was declared to be operational, the next step was to verify the accuracy of the
many sensors in the system. Figure 8 shows a sample of the data that are recorded by the
testbed’s LabView controlling V1. The first nine rows contain information about the manual
settings for the test configuration. Such information includes, for example, the specific heat of
the fluid in the loop (row one). Each column represents the data that was recorded at a specific
time; the time is represented by a date and time in columns one and two. In the graphic below
only 15 columns are shown.

Sp. Heat Solar Loop (Eng.) = 0.895000
Loop Stab. Time =45.000000

Max Header Temp = 105.000000

Turn On Diff: Fin-S. Tank Ref. = 7.000000
Turn Off Diff: Fin-S. Tank Ref. = 2.000000
Max S. Tank Ref Temp = 55.000000

Solar Pump Enable Diff = 2.000000

Min Solar Tank Temp = 10.000000

TC Sample Rate, s = 5.000000

From
Room Outside Plane of To Solar Solar Solar Solar Solar
Ambient Ambient array rad Outside Collector Collector Collector Pump Pressure Pressure Tank Top Tank 113
Date Time C C kW/mA2 RefCell FinC HeaderC C C Flow g/m L H 120C C

2/24/2011 11:24:09  26.667  13.363 1.101 0.178  63.997  56.293  53.387  55.435 1.938 14985 29.134  47.323  48.168
2/24/2011 11:24:39  26.723  13.684 1.096 0.179  64.028 56.322  53.423  55.459 1.93 1512 29.144 47.39 48.18
2/24/2011 11:25:09 26.686  13.756 1.097 0.178 64.132  56.353 53.47  55.499 1973 15.075  29.101 47.452  48.182
2/24/2011 11:25:39  26.662  13.386 1.092 0.178  64.194 56.372  53.497  55.528 1.934 15124  29.004 47.476  48.187
2/24/2011 11:26:14 26.65  13.068 1.09 0.177  64.305 56.444  53.627  55.622 1.945 15.069  29.055  47.492  47.955
2/24/2011 11:26:44  26.465  13.259 1.093 0.176  64.373  56.493  53.622  55.666 1954  15.056  29.092  47.562 48.16
2/24/2011 11:27:14  26.233  13.313 1.093 0.174  64.295  56.557  53.618 55.68 1.956  15.015  29.024  47.545  48.225
2/24/2011 11:27:49  26.201  13.913 1.09 0.18 64.25 56.541  53.634 55.73 1.948 15.03 28934 47.48  48.227

Figure 8. LabView VI data sample.
Fifty-eight columns of data comprise each record. The complete list is noted in Figure 9.

List of Labels for Channels of Data Recorded From the Testbed

Date Solar Tank 114 C Cooling Tank Mid C Disable Test

Time Solar Tank 115C Cooling Tank Bot C Low Temp Fail
Room Ambient C Solar Tank 116 C CooleriInC TestA

Outside Ambient C Solar Tank 117 C Cooler Out C TestB

Plane of array rad kW/mA2 Solar Tank 118 C Cooler Flow Test C-1

Ref Cell Solar Tank Bot 119 C Cooler Watts TestD-1

Outside Fin C Solar Tank Ext-1 Target Hourly Load Wh TestC-2

Collector Header C Solar Tank Ext-2 Load Accumulated Watt-hours Test D-2

To Solar Collector C Solar Tank Ext-3 Heater Watts TestE

From Solar Collector C Solar Tank Ext-4 Solar Pump Watts Heat Switch

Solar Pump Flow g/m Solar Tank Ext-5 Cumulative Solar Loop Wh Load Pump Switch
Pressure L Solar Tank Ext-6 Cumulative Heater Wh Solar Pump Switch
Pressure H Solar Tank Ext-7 Cumulative Load Wh Cooling Switch
Solar Tank Top 120 C Solar Tank Ext-8 Fault

Solar Tank 113 C Cooling Tank Top C Logic Control

Figure 9. List of labels for channels of data.

31



Numerous tests on the individual sensors were conducted to ensure accurate data. For example,
there are two pressure sensors in the solar loop. One is before the pump and one after the pump.
When the system is not operating, both sensors should show readings that are approximately the
equal. When the system is operating, the sensor downstream of the pump should read a higher
value then the one upstream of the pump. The actual numbers were compared with rough hand
calculations.

All of the flow meters were calibrated by hand, using a calibrated bucket and a stop watch. The
accuracy of the SHWRT system was within 2.5% of the hand methods.

As described above, all the thermocouples were calibrated before they were installed and were
re-examined after installation to ensure that they were not damaged during placement.

All of the thermocouples on the tree and along the skin were calibrated as groups against a
mercury lab thermometer. The thermocouples on the internal tree were tested at low
temperatures using an ice bath and found to be accurate to about 0.5 °C of the mercury
thermometer. The thermocouples on the skin were compared to the mercury thermometer at the
high end using a hot water bath and at the low end using an ice bath. All of these thermocouples
were found to be accurate to within about 0.5 °C of the mercury thermometer.

After installation the thermocouples were re-examined. For example, the tank was partially
heated and then allowed to cool. If all of the thermocouples are operating properly, they should
record stratification in the tank with the hottest water near the top and the coldest at the bottom.
The thermocouples on the skin should exhibit the same characteristics as their counterparts
inside the tank, with the expectation that they might be on average slightly cooler because they
are closer to an area of heat loss.

All of the thermocouples were deemed to be working properly.

The current transducers on the electric element in the solar tank and solar pump were compared
against a precision clamp-on current meter. The sensor’s outputs were adjusted inside the VI to
match the precision instrument’s values.

Tests were conducted to ensure that the energy consumed by the tank’s electric heater and the
tare losses were being recorded properly. The SHW system tare losses include the energy
consumed from operating the solar pump. For information, the energy consumed by the load tank
chiller was also instrumented. The equation for measuring the electrical energy consumed by
these devices is as follows.

Qetec = fpdt

where P is the voltage of the element * current flowing in the circuit.”

In the SHWRT only the current is measured; the voltage is set to a constant. UNM plant
engineering tests of the voltage in the building have shown the voltage to be historically constant
at 206/119 VAC +/-1%.

Tests were conducted to ensure that all of the energy computations on the loops were computed
properly. These tests consisted of hand-calculating the energy in the solar and cooling loops
based on the flow rate readings and the temperature difference between the inlets and outlets.

" Power factor is assumed to be approximately 1.0.
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These values, computed for measured time periods, were compared with the measured values
computed by the LabView VI.

The basic equation for computing energy in the loop is
Qz'(to - ti)' c

where Q is energy; t, is temperature at outlet of the loop; t; is temperature at inlet of the loop; c is
specific heat of the fluid flowing in the loop; and m is mass.

The comparison tests were repeated numerous times to ensure that the sample was of sufficient
size.

The SHWRT system’s energy computations for the load and solar loops were found to be within
about +/-5% of the hand calculations. This was well within the range of error resulting from the
hand methods, which required persons to observe the temperature and flow measurements by eye
and then to record them manually. Subsequently, the manually recorded values were averaged
and the total energy in the loop over a specific period was estimated based on these averaged
values.

Finally, system-level tests were conducted to ensure that all of the energy that was being
measured as entering and exiting the system would properly balance. This was done by
computing energy losses in different ways and comparing them.

The first task was to estimate an effective U value for the tank. “Effective,” in this case, means
one that applies to the tank and its associated piping.

The analytical procedure was as follows. The storage tank was charged until it reached a
uniform temperature from top to bottom, about 46 °C. At that point all eight internal
thermocouples read the same temperature.

The heating element was then disabled and the valves in the solar and load loops were closed to
prevent any thermosiphoning.

The tank was allowed to cool naturally for several days. Data were recorded from the tank’s
thermocouples as well as from the thermocouple in the ambient environment near the tank.

The analysis began by computing a weighted average of the eight internal thermocouples, taking
into account that the thermocouples on the ends are measuring in an area with a smaller volume
than the interior ones. The ambient temperature was also averaged to a single value.

A lumped capacitance analysis was computed assuming the following familiar relationship
theta/thetap=exp(-t/tau) to obtain the characteristic time tau. This yields directly the “average” U
value for the tank. The assumptions are as follows:

v Constant ambient temperature.

v Uniform insulation (in fact it is not; the area where the heat exchanger is situated is less
well insulated).

v Uniform internal temperature.
v Lumped capacitance.
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Figure 10 shows the relationship of theta/thetag versus time. The exponential curve fit is shown
by a dotted line, which is largely obscured by the measured data, indicating an excellent curve
fit.

1 ;
experimental
curve fit
0.8 1
0.6 1
l_:::
3
}_
< 04} :
0.2 1
0 i i i
0 100000 200000 300000 40000(

time (s)

Figure 10. Relationship of theta/theta, versus time.

Using the coefficients from the exponential function that was fitted to the data, a U value was
determined to be about 3.25 W/m?/K.

A more detailed calculation would use a TRNSYS model in which an optimizer finds local
values of U, does an internal natural convection calculation, and uses actual ambient temps rather
than time-averaged. But this would be much more complicated and not necessary, as is
evidenced by the quality of the curve fit. A “hand” optimization in TRNSYS was performed and
the results were very close to the hand method.

With an estimated effective U value in hand, the testbed was then run in an electric-only mode
but with no load, and allowed to stabilize.® The tank stratified with its top temperatures around
50 °C.

The electric-only test commenced at this point by introducing a standard draw profile on the tank
as the system was continuing to run normally. The draw profile was identical to the one used by
the SRCC as part of their OG300 certification. For several days the energy in the draw loop and

the electrical energy supplied to the tank were monitored.

The test was terminated after three days and the recorded data were used for the subsequent
computations. First, the average tank temperatures recorded during the electric-only mode test.
Using the U value computed from the cooling test and the averaged tank temperatures, the
estimated heat loss was computed.

® In electric-only mode the testbed runs the system with a load and active electric heater but with the solar system

loop disabled.
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The basic equation for estimating this heat loss is

Qiossest = U - A - (ttnk - tamb)

where Qossest IS the estimated heat loss based on the U value and average tank temperatures; U is
the U value estimated from the static heat loss test; A is the heat loss area; Ty is the average tank
temperature during the test period; and T4y IS the average ambient temperature in the area of the
tank and piping during the test period.

Next, the recorded total energy for the electric heater and the load was used to provide another
measure of heat loss over the test period. The following equation describes this computation:

Qlossmeas - Qheater - Qload

where Ojgssmeas IS the measured heat 10ss; Oreater IS the measured heat energy into the tank heating
element during the test period; and O)eqq IS the measured energy in the load during the test period.

Initially, the measured heat loss value (Qjossmeas) Was about 19% higher than the value based on
the U value (Qiossest). HOwever, after accounting for additional losses in the system that occur
solely during the electric-only test, such as heating the piping from the solar tank to the cooling
bath and I°R losses in the wiring, the measured heat loss was only about 7% higher than that
estimated using the U value. Given the uncertainties in the methods, this finding was about as
expected and the energy loops were deemed to be producing accurate values. More testing is
being done in this area in preparation for a journal article.

Additionally, tests were performed on the solar loop, including computations of efficiency and
performance that were compared against the OG100 rating for the collectors.’ All of the
computed values were within the expected range, around 60% efficiency during the peak period
of the day.

At the conclusion of this work, the testbed was deemed ready for testing.

°  The collectors that are in use were designed and built by Lennox. They were SRCC rated in the early 1980s.

John Harrison of the Florida Solar Energy Center graciously retrieved the records from microfiche for UNM.
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7. TESTING AND RESULTS

Two sets of tests were conducted, as per the test plan described above. One test involved the
simulation of a catastrophic solar loop pump failure. The second simulated a degrading pump
impeller.

Test Results From the Application of the ART Methods of Fault
Detection to the Simulated Catastrophic Pump Failure

In the test, which was conducted from January 7, 2011 (5 p.m.) through January 12, 2011

(10 a.m.), SHWRT’s SHW system operated. For three days it ran normally, using the SRCC’s
standard hot water draw profile. On the morning of January 11 at about 8 a.m. a simulated failed
solar loop pump was introduced. The fault was similar to a real pump failure: the pump starts up
and water begins to flow, but then it falters; it continues to pump, but then completely fails.

Figure 11 shows the performance profile during the test period, including the day of the
simulated failure. The x-axis shows the hour reference from the beginning of the test. The
temperatures on the graph are from the sensors that were in the same position on the SHW
system as would have been on a commercial SHW system: the collector plate temperature and
the tank outlet temperature. Note that the spike on inflow rate at the start of each day is due to
the fact that the loop is empty when the pump starts up. As soon as the loop is filled, then the
flow rate stabilizes.

Solar System Conditions Prior To And After Pump Fault
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Figure 11. Performance profile during test period.
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The solar loop flow rate shows the effect of the simulated pump failure. After the failure the
collector outlet temperature rises dramatically because the sun was heating the collector, but
there was no fluid flowing through it to remove the heat.

A complete set of recorded test data from SHWRT’s simulated failure was fed into the ART
system. The ART system began to examine the data from the days before the fault and
considered those conditions to be normal. However, on the day of the simulated fault, using only
the sensors that would normally be included in a commercial SHW system, it detected a
condition it had never previously encountered in it training. It immediately noted that event.

The ART system identified the abnormal situation from the fault and attempted to create a new,
high-level learning category.

Figure 12 shows how the ART system flags conditions that are out of character from normal
operation. The x-axis shows a temporal reference from the beginning of the test. The fault
detection layer increases proportionally to the degree to which the condition deviates from
normal. Again, the numbers on the x-axis represent hours from the start of the test. The arrow on
the graph points to the time of the induced fault. Figure 13 is a closeup view.
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Figure 12. ART error detection during the test period.
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Figure 13. Closeup view of the ART error detection on the day of the fault.

To successfully identify the SHWRT fault, ART was trained using a verified TRNSYS™ model
of the SHWRT configuration. “Training” in this case is analogous to what humans know as
education. ART is essentially a computerized network of neural nodes that mimics how the
human brain learns about its environment. Humans learn by experience and repetition; ART
does the same.

Hongbo He began the ART training process by developing and verifying a TRNSYS model of
the SHWRT system. He ran the TRNSY'S model using weather inputs based on SOLMET
weather data for Albuquerque and the SRCC draw profile.** The model’s outputs were fed into
the ART algorithms so they could learn the normal operation of the system, just as a person
would learn it by observing it over time.

A description of the ART algorithms can be found in Appendix B. Appendix D contains a
description of the development and verification of the TRNSYS model used to train the ART
algorithms. A description of the methods used to train the ART algorithms is located in

Appendix E.
A paper describing this test has been submitted for publication in ASME 2011 5th International
Conference on Energy Sustainability on August 11, 2011.

Detection of Failure Using the External TCs 4,5

An experiment using the tank calorimetry approach outlined in Burch (2009) (see Appendix A)
was done in parallel with the ART analysis. A paper outlining the method is attached as
Appendix A. In the test analyzed here, there were eight temperature sensors mounted on the

1 TRNSYS is the Transient Energy System Simulation code that is used to simulate SHW and other thermal

systems.
11 SOLMET data consist of hourly weather records for every day over a 30-year period of record. Data are

downloaded from NREL’s website.
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sidewall of the inner vessel, at roughly the same height of the immersed tank sensors used in the
ART data analysis. Figure 14 shows the location of the sensors. The sensors were mounted by
cutting away a ~2-inch x 2-inch piece of the metal external skin, removing the insulation,
epoxying the sensor to the tank wall, and replacing the insulation and skin. There is a separate
study of the accuracy of these sensors compared to the immersed sensors (truth) in the next
section.

Figure 14. Location of external wall temperature sensors.
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UNM provided data time series of the external and internal tank sensors, Tank-environments T ambient,
and lg, in the plane of the collector. These data were used in the analysis method (see Appendix
A). Using these variables improves the accuracy of the predictions considerably, as opposed to
when one must “guess” the values. Without such data, Is,, is gotten by assuming a clear sky, and
using ASHRAE correlations for clear sky to predict that radiation. Removing that restriction by
using measured data considerably reduces error in prediction. Of course, without Iy, data, one
could not diagnose the observed failure with any certainty, as total overcast is an alternative
explanation of the abnormal behavior and could certainly occur for two days in a row (the
duration of the fault in the data).

The data were averaged into 5-minute bins to reduce data density. Since positive dT/dt is
detected numerically as (Ti+1 - Ti+1)/(ti+1 - ti+1), the temperatures need to change outside of the
“noise band” to get steady results. The data could have been read in directly and the “specify
how many data points to skip” option could have been used, but this bogs the computer down too
much. The spreadsheet-based software uses cell formulae rather than the more efficient
imbedded programming language.

The data used averaged the two TCs at positions 4,5, corresponding roughly to the middle of the
tank, which is where sensors were most often mounted in the past. Analysis will be done using
other locations and by doing some parametrics. The tank temperature data used for this quick
result are shown in Figure 15. A warmup is seen every day starting in the morning, except the
last two days. Given that it is known there was radiation those last two days, the data shown in
Figure 15 indicate something failed after day 3.
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Figure 15. Tank temperature data used in the analysis (the average of external TCs 4,5).
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When the system was operating as qualitatively expected on the first three days (i.e., warmup
each day), there was reasonable agreement between the predicted and the measured Q-to-tank, as
shown in Figure 16. The predicted is based upon guesses for the collector properties, tilt, etc. The
piping and heat exchanger penalties are not factored in at this time, and that will lower the
predicted performance.
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Figure 16. Measured versus predicted energy to tank.

The time-series plot of the measured versus predicted Qqo to-tank IS ShOwn in Figure 17. This is the
key “diagnostics” information, showing what is expected to happen based upon the collector,
tank return temperature (given from the data, not normally known), and weather (radiation,
Tamb were put in directly from the data, not normally known). There is no time displayed, but
the rough time is clear enough from the data. It is evident that measured and predicted power to
tank tracks reasonably well through the first three days of the test having solar incidence, 1/8
through 1/10. However, 1/11 and 1/12 show that something happened to destroy the correlation
between the measured and predicted between 1/10 and 1/11. There is no indication as to exactly
when the fault occurred. It can be inferred only that between the end of solar day 1/10 and the
start of the next solar day (1/11) something occurred to cause the tank to no longer see the
expected temperature increases. If the failure had been done in mid-day, the time when the fault
occurred would be seen precisely.

Lastly, each night allowed the inference of a tank UA. The UA is inferred via the In(DT1/DT2)
approach that assumes Tenvironment (Tenv) is constant, and so the fact that Tenv varied so
much is a minor issue. The method averages Tenv over the time interval, but this is not rigorous.
The method might be changed to give UA as f(time) that allows Tenv to vary, but that is not a
high priority at the moment. It is also an issue that draws did not allow much of a time window
to see the decay, and more than 2 °C decay was not seen in the three valid nights of data (see
Figure 18). The tank UA analysis period was set to 4 hours starting at 1 a.m., each night. The
average UA was 6.4 £ 0.6 W/C, with error given as the standard deviation of the three data
points. Given the varying Tenv, about 1 need to be added to that 0.6, based upon variations in
inferred UA seen with different time windows set; the method shows UAtank = ~6.4 + 1.6 W/C.
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An issue that is germane to any method that works without weather data: the expected response
cannot be known in any finely-time-resolved sense because the irradiance is not known. As such,
any method must base its inference probabilistically: what is probability as a function of time
duration of a stretch of weather with constantly low irradiance? Until the answer to this question
is known, any method cannot say much about failure because there is no grounded expectation.

Figure 17. Measured versus predicted Qto-tank, as a line plot.
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Figure 18. Tank UA on three successive nights
(fourth night did not pass the screens for robustness).
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If the probability function is known, then (assuming a total failure like here) it can only be
said with ever increasing probability that a failure has occurred, corresponding to the value
[1- (probability of a stretch of that duration of constant ~"too low” radiation)].

Lastly, the method detects when the pump starts and stops, based upon detecting the first
qualifying positive derivative dTtank/dt on a given day, and the last such positive derivative.
“Qualifying” means that the derivative is larger than a specified minimum value. The expectation
is based upon the measured incidence and the Quseful calculation from the collector. The value
was set to 3 F/hr for this run.

Both observed and predicted start/stop times are shown in Figure 19. The figure shows that the
pump started up as expected the first the days, and the pump never operated the last two days.
This again indicates some failure after the first three days, and before the start of the fourth and

fifth days.
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Figure 19. Start and stop times for the five days with solar data. Normal start/stop
occurred the first three days, and the pump never ran the last two days.

Correspondence Between External Surface and Internal Immersed
Temperature Sensors

Figure 20 is a plot of the external and internal temperatures. The legend on the right is headings
in the delivered data file from Dave Menicucci for Test 1 (January 7 to January 12, 2011) data.
Plotted channels are indicated by the check mark on the legend. The top of the tank and Ext-1 are
not shown, as indicated in the legend, because they overlapped the data next down too much.
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Figure 20. External and internal temperatures.
The relationships between external as f(int) are shown in Table 5.
Table 5. Relationships between external and internal sensors.
Relationship Notes
Top of tank: 1 Text =Tint + 2 Ext const diff above Tint
2
3
4 Text =Tin -2 Exceptions; A| as T-Tenv
5 Text =Tin close agreement all the time
6 Text =Tin— (1 to 4) Varies. Strong A| as T—-Tenv
7 Text — Tin — (1-4) except during solar
charging
Bottom of tank 8 Text = Tin except during solar is -2-4

Good agreement can be seen, with some minor strangeness. Analysis has not been done yet, but
it looks like the drops in temperature at draws track very well, even when the temperature
disagrees by a few degrees in absolute value. The data also show that mostly the differences
decrease as the temperatures approaches Tenv.

Results From Application of the ART Methods to Detect Impeller
Degradation

This test was conducted from February 24 through March 7, 2011. It simulates a condition in
which debris in a solar loop, such as drops of solder introduced during construction, is slowly
peening the edges of the impeller blades, compromising their ability to move water and resulting
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in a reduction in the flow rate over time.* This process normally occurs over months of normal
operation and continues until the impeller is incapable of overcoming the head in the supply
piping upon startup (in a drainback system). In this case the process was speeded up to a four-
day period due to constraints in the testing schedule.

The ART system would be able to identify this fault even if it were to occur over an extended
period of time. The reason is that the ART algorithms have been trained using a model of the
SHWRT solar system that operated with simulated flow rates that were in the normal range.
Therefore, any reduction in flow rate, even if it occurred gradually over a long period of time,
will be manifested in an increase in the difference in temperature between the tank and the

collector’s fin temperature (i.e., the operational delta T), and thus will be noticed by the ART
system.

The SHWRT’s SHW system operated normally for four days using the SRCC’s standard hot
water draw profile. On the fifth day, and for four consecutive days following, the solar loop flow
was gradually reduced by around 10% per day.

Figure 21 shows the ART system’s error reporting during the period in which the flow was being
reduced. On the x-axis is a temporal reference number. The red shaded boxes indicate each
consecutive day. The blue dots indicate the detection of an unusual condition. Note that the

severity level of the error on the y-axis is in reverse order, with a 1 representing the most severe
unusual condition.
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Figure 21. ART system’s error reporting.

12 peening in this case is similar to the effect that hail stones have on airplane propellers, degrading their ability to
move air and causing the plane to stall and crash.

45



As can be seen, the ART system begins to detect unusual conditions as soon as the flow was
reduced. By the fourth day, the system has escalated the level of severity significantly. When
the flow was reset to its normal range, the number of detected unusual conditions dropped
dramatically.

The ART algorithms used only those temperature sensors that would normally be involved in
normal control of an SHW system: the collector plate temperature and the tank outlet
temperature. The flow sensor was not included in its sensor set. The four conditions that the
ART algorithms used included (1) the collector plate temp, (2) the tank outlet temperature,

(3) the difference between the plate and tank temperatures (delta T), and (4) the rate of change of
the plate temperature (time derivative).

The ability to predict a component failure on an SHW system is a technological breakthrough,
representing a capability that does not exist in any SHW controller today and heretofore was
thought to be very difficult to achieve. This predictive ability can lead to higher system
reliability because components can be replaced before they fail, at a time when the system would
normally be down.

Much more work is needed to verify the ability of ART to predict failures. In this case a process
that normally evolves over months or years was condensed into four days. It is unknown
whether these ART algorithms would have been able to detect this degradation over a longer
period of time. It is probably the case that this degradation would have been detected over a long
period of time as long as the training covered that period. However, additional experimental
work is needed to prove it.

ART algorithms are written in a modern language, such as C++. Thus, they can be easily
integrated into modern controllers, most of which are microprocessor-based. Since no additional
sensors are required in the ART system beyond what is normally used, the addition of these
algorithms provides significant intelligence to controllers at very low cost.

However, there are many issues that must be addressed before the ART algorithms can be
implemented in a controller, such as how they will learn to differentiate between a true fault and
one in which a system owner is on vacation.

The Calorimetric method was not applied to the degradation experiment.
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8. CONCLUSIONS AND RECOMMENDATIONS

The following are conclusions from this work:

All of the objectives of the UNM and BSI contracts were met or exceeded, although the
labor required to bring the project to fruition surpassed the original expectations by
around an order of magnitude.

Both the ART and Burch’s Calorimetric methods successfully identified failures. ART
uses the same sensors as are normally used to control an SHW system. The Calorimetric
method uses two additional temperature sensors that are attached to the outside skin of
the solar tank.

The ART methodology demonstrated a rudimentary capability to anticipate a failure
condition, one in which a pump impeller is degrading due to debris in the line. However,
the test period of four days was a condensation of a much longer period in which this
type of degradation would normally occur. It is unknown whether ART could effectively
detect the same level of degradation over a longer period of time. Nonetheless, the results
are very encouraging.

Catastrophic failures are relatively easy to detect, but predicting failures is much more
valuable. However, predicting failures is many times more difficult and requires careful
training of the ART algorithms.

The resulting testbed has much more capability than what was originally envisioned for
reliability testing. It can be used for thermal tests as well, and some will be conducted
soon.

The results of this work may form the basis for developing an advanced generation
controller, one that can not only detect and predict faults, but can also help guide the
operator to a specific problem area. Since the ART algorithms can be written in standard
computer languages, such as C++, they can be easily integrated into most modern SHW
controllers, most of which are microprocessor-based. The functional specifications for
such a controller are contained in Appendix G.

Many of the new techniques and concepts developed in this solar thermal project—much
of which will involve new theory—uwill likely be applicable to other small generators.
An SHW system is fundamentally an intermittent generator and differs from others in the
makeup of its components and the final energy product that it generates. Knowledge
gained from work on solar thermal generators could help to define new approaches to
reliability of all small generators and improve their standing among the more traditional
generators.

A comparison between the external sensors on the tank side-wall and the internal sensors
immersed in the tank was made. Eliminating the cases where the thermocouple was
mounted on the wraparound heat exchanger, there was good agreement between the
internal and external sensors. This comparison provides an indirect validation of the
calorimetric method when using external sensors. The external sensors generally read
slightly lower than the immersed sensors, about 1 to 2 °C. The difference disappeared as
the tank approached ambient temperatures. There was also some difference in registering
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sudden transitions, with the wall sensors lagging the transient as seen by the immersed

Sensor.

ART-based fault detection should be applicable to larger, more complex systems,
including building-scale solar cooling and heating, as well as other HVAC applications.
Attempts to do so are under way at UNM.

The following are the lessons that the UNM/BSI team learned in the course of this
project:

v

The investment in higher-quality equipment saves time and effort over the longer
term. For example, a low-cost flow meter was procured for the load loop, but its

output was difficult to handle in the VI. The costs for programming the LabView
VI to accurately capture the signals it produced far exceeded the initial savings.

The level of effort and degree of complexity to develop the LabView VI to
control the SHWRT was grossly underestimated. Even from an early stage the
challenge was well beyond the expertise of the team, especially the student who
was attempting to develop the software. An expert from SNL provided many
hours of expertise to bring the system into operation. This phase of the test
program must be carefully planned in any future research program involving the
SHWRT.

Used computer equipment for controlling the SHWRT was inappropriate for the
task. Hardware failures and a cadre of strange and unusual software errors
complicated the development of the LabView software because when problems
occurred it was often difficult to trace the source of the problem. New equipment
should be used for this critical function.

Similarly, the team began the project with an older version of LabView, which
had many shortcomings. Special programming techniques were needed to
circumvent these shortcomings. The latest version of the LabView software
should be implemented from the outset of the project because it will save time in
the long term.

The labor anticipated for the project was grossly underestimated during the
planning phase. Thus the construction period was much longer than anticipated.
Unlike SNL, which employs numerous tradespeople and technicians, UNM
researchers performed all of the labor to construct the SHWRT. This situation
must be considered for any new project at UNM.

The effectiveness of the ART algorithms depends on training using an accurate
model of the system to which they will be applied. It is essential to ensure that
the model is fully verified before any training is begun. The team wasted some
time initially by moving too quickly to train the algorithms before the model was
fully verified.

A thorough understanding of the ART theory is required before it can be applied.
The team struggled at times with the application because all members did not
have a common understanding of the theory.
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v The selection of the proper parameters for use by the ART algorithms is critical
for application, but at this time is more of an art than a science. For example,
even though there were only two temperature parameters available to the ART
system for its tests (the collector fin temperature and the tank outlet temperature),
there are many combinations of these parameters that can be derived from them.
Consider these possibilities: (1) the temperature difference between the sensors,
(2) the time derivative of the fin temperature, (3) the time derivative of the outlet
temperature, (4) the time derivative of the difference in the temperatures, (5) the
time of day, and so on. At present the only method to select the appropriate
parameters is through the use of a verified system simulation model, such as the
TRNSYS, and human intuition.

v" Since the team was inexperienced with the ART methodology, the time required
for training the algorithms was longer than anticipated.

v" The TRNSYS model that was used was not an exact duplicate of the SHWRT
system. As a result, many runs and much manipulation was needed to achieve the
level of accuracy needed for the ART training. It would be preferable to invest in
the appropriate TRNSY'S software at the outset. For example, had the team
updated to TRNSYS 17 software (from 16), the level of effort would have been
substantially lower.

The following are recommended actions:

1.

Work should continue on the development of the two methods for failure detection and
failure prediction. Specifically, additional experiments should be conducted to test a
wide array of failures that might likely occur in a SHW system.

Work should continue on the development of the predictive ability of the ART
algorithms, especially to develop refined methods for training them in preparation for
predicting faults and failures.

The ART system of algorithms has potential beyond SHW that should be explored.
Specifically, they might effectively be applied in surety microgrids of the type being
developed by SNL. In these microgrids numerous small generators could productively
employ the predictive capabilities of the ART algorithms to ensure continually high
reliability.

Eventually the ART neural networks could be trained using real-time data from an actual
system operation in addition to that from a model. This is a requisite for ART to be
applicable in modern controller. However, additional work is needed to determine the
optimal amount and type of training that is needed for these algorithms to be included in
controllers.

The team should move forward with plans to develop a new state-of-the-art controller
that incorporates the ART and Calorimetric methods that were tested in this project.
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ABSTRACT

Basved on the tuk coergy balance, net gam e the selar
storage tank can be mferred from the tue der ve of the
average tank température. Uting temperatuse tanik
wall under maulanon 3 3 swregare for flaid remperanze.
Sensor moummg is sanple and the infered gams are useful
for solar water heater (SWH) diagmostics. Positive dayrime
gain is compared 1o selar pam compused from site-specific
parameters for an assumed clear day. The solar storage tank
livs coefficsent is nfemred from terperature decay a ught,
2= i compased 1o the value corguated from Lk
descripicn. Larger draws are evident s sharp deops in
storape temperatare. Analyses are enibodied in 3 fool
validated 3gaint directly-meatured pains. Inoperative
single-famuly SWH are easily detected, sigraling need for
sepaz. Detection of systom control ey 1d shading are
exemplified, In barge b fusly systens, Sequent day-
e draws wall bras the comparrien to expected solar gam

1. INTRODUCTION

Dragnosde menfroring is tken here 25 detenminarion from
short-tenm data if a solar waser heater (SWH) is operating
comectly. Te be routinely apphied it should be mexpersive
amd ey, especially if mbended for srall donsstic SWH
Masy disgnestic methods exist based on the wide rage of
possible data and allowed expense (1,7); we focus bere oa
improving 3 method based on the wlis storape tank surface
(3}, Tank surface teny can usally be
canly accessed, and when msulated 15 2 good smrogate
for the peasty fusd bearperabue, Stguaficant tongperahne
save on some days shows that 3 SWH s operatmy
Quasitstative amalyers wsang the tak a5 a calornmeter can
wschicate frow wel the entire system 1 prformmeg. by

AR WATER F TE
G SOLAR STORAGE TANK SURFACE TT\]I‘FR&TI RE DATA
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‘companng mexsuzed gam to expected operanoa. In (3),
datly foto] vet evergy gain computed from the tank
temperature mse wans cougrred fo g computed for site
specific parareters undes no-draw, clear kv conditions,
However, there are often daytime draws, lowening net gan
and basiag de companson. In this paper. the mifemed ner
#am and expected clear-day solar gaias are compared
dynamically 3s ravgs threughout the day. If draws are
deveced 3s low or pegative 3T, /de. then the conparison is
not done using that period. This maninizes the effect of
deaws on 1 7 of niet 10 exprcted
solar gam, and incresses the odds of pettmg some clear
skeyno-draw conditioas dunng the momtonsg

Tl woek here is different froms previcns studies using taek
surface vemperarures (4,5). In those methods. 3 sysem
characterization was denved that allowed accurate
prejectson of sl paformemee. Congplete weather data
mclsdmg solar mcidence 1 needed. The system mmst be
isolated, with no draws. Here, weather data are not needed,
amdd the system operates ponmally with dows. Compared 1o
previcus diagnostic methods (1.2), the method here is
simple and low-cost. (‘ew:m‘. lo {2), this method has
lower accuracy and diagmostic power. It can be implemented
in controllers s a soffware option, potifyag e cwnes
when perfonmmmce v sub-gar, Ancther application v o
coat, large-scale screening via mail-in procedures, locating
mealfimetoning systens to be repaired and yielding overall
reliability data on systems Combined with cubsequent
repair dats from pasterng firnis, comy
falure rates could also be determaned. The anmalyns
algorians aie developed m Section 2. The algonihuss have

phodied 1 a avalable for download ()
The method 15 applied to both ressdential and multy-faaly
SWH m Section 3, vath conclusaons m Section 4.

2.1 Parameter inference

AQur/dt =

from the well-known expression

detect night-time ther:

The “tank-as-calonmeter” method presented here 5 based
npon the epergy balance shown schemascally in Fig. 1.
With the controd volume taken arcund te tank. the

astanameons enexgy balmee 1

At = 0 g el — L — A le. (1)
whiere Qhuy i5 given 35 Coct T ovg. 208 Tousi g 15 the
capacitimes- wesghted average temperatue. and Cusy 15
caleulated 35 paet sk Here, 8T /dt is conputed
csectly from chfferenciny the tanik temperatae data The
chedoe of rime step 1o compune the derivanve is user-
contrelled, useful to mininize ncise when the data ind
is perhaps too small. Tank loss is compated as

[T WP LTS G NPT PR ot | ()

For a pracrical methed, plumbing should not be breached.
Here, the sensors are to be mouated ca the surface of the
tank. as indicated in Fig. 2. It is important that the sensor be
wancler the sk wall meaatzon Lo Keep it smading close (o the
rank fhusd iemperanmre. A simple resistor chain apmment
shows thar the difference berween the tnk wall emperanme
and the tank faid is typically < 0.1 °C, sufficient for the
modest accuracy of the nwethod here. Surface-mount seasors

compased well with mmersed sensors m (3)

Tank Energy Balance
—E]

[ ]

B

[ BB - |
Fig 1. Schemanic tank energy balance and surface
FEMIpEraniTe MEASIrEmEnt.

Inusing the 1ank energy balance for calorimenry, the
prodlem becomes how to separate the terms in the sum
(Qesee = Qhase = Qe). By takiing dvnamic dara, times when a
specific tenm is dominant can be separated in tine, as
allustrated i Fig. 3 Solar g are evudent a posttive
derivatives, and losses are evidenr ar night Draws are
important, and it is clearly desirable to kmow when they are
occuzring. When the draw is significant compared 1o the
tank’s thermal capacitance and the tank is well-mixed, the
draw momafests x5 2 sharp drog 10 Tug g, 1 Fig. 3 and m
smgle-famuly data below Inmost SWHm the US._ flow
ranes o the tank side are large enough thar the rank stavs

well-mmxed Draws cam be undetectabile at mght when
puisigs ae vl g, the Gk, Draws wall be often
mdetected m well stratfied, low-fow systens common m
Europe, and the dacy may only show when the thermocline
passes the sensor location. Draws can be undetectable in
Fage meulty- Bl systens whsee (here are Fequent deaws

haat ave m met sanaller than (e el solar gam mio e k.
Surface Mount Detail

Fig 2. The wnk surface probe should be well-insalased.

Tabde | shows expected accuracy of the flux inference.
Accugacy of ~3% can be attaned when Togy, ey 15 avourately
measured and Coy is well-Jaosown (7). The key uncerainry
15 how well one or more surface iemperanimes represent
Toszi ey, In systems with high flow during selar eperarion
that are typical m U5, design. the tank is tumed over
vapnelly (Vg Fitggg gy <~ 1T el 15 vesamsably well mixed
In this case, a single surface remperanre represenrs the
average o within a few °C, implying abour 10% accusacy at
peak operanson. Salar ranks can remain sracified duning
operation. however, as with low-flow systems in Europe
where (Vg Mg <~ 10 br), Accumacy degrades severely
m thds ease unless 3 or more probes are nsed.

TABLE | ACCURACY OF TANK CALORIMETRY

Aleasurement B0t agr Dt gk
Lme-averaging RTD EEY
Surface temp, well mxed “15%
Surf 3 afied - 100%5
[l ~15%

Temperatures on Sunny Doy with draws

- [Soen)

g 3. Schtiumﬂnk!cmpe}a”t\s tume, showing
periods of solar gain. draws, and standby losses.

mstrumentation 1s shown m Fig. 4. Because solar gain was

measured, the solar gain inferred from tank calorimetry can
be compared directly. Measured Toy, and Ty, Were used in
the results shown here. Hourly data were used here.

unconditioned space.

TABLE 2: ANALYSIS INPUTS
Assuming no draw, Eqn. 1 implies that solar gains are Symbol Parameter Definition | Data Sow
AQuuy/dt + dQye.s/dt. Losses are computed with i Inputs
the computed value of UAys. Pump on/off times are taken Ao Collector area Label"/Obs’
as the first/last positive dTpwa/dt. The tank loss coefficient Fao Optical gain constant Label/SRCCY
UAp 15 inferred from the tank temperature decay at mght, FU, Loss coefficient Label'SRCC
when no draws are expected. The tank UA is calculated by Constant in 1AM formula | LabelSRCC
Veeme Tank Volume Labelobs
Tank Height Obs/spec
Vs = Co (Tl To) T Te Y 9 [ o sion R e | Speesames
WHETe fhes, Teng are beginning and ending times of the decay. g Collector tlt & azimuth Obs
The user sefs an invariant time window for analyzing decay. L Longitude Map |
Tewy may be estimated, but 1t should be measured 1f more Lat _ Lat _ Map _
precision in inference is needed, as when cne wants to T pioniow | Test lo/hi daytime temps | Met datajobs
Tar is Ly Ped Foreground reflectivity See text
difficult to estimate when the tank is in 2 garage or ofher Tats o highlow Monthly average Met data,
min/max ambient temp local obs
Data reduction inputs
2.2 Comparison of inferred parameters to expectation (dTus/00men | Minimum dTs/dt for | Trial and error
solar gain analysis
Useful solar gain on a clear day is calculated as. e, Al UA analysis window Trial and error
AT Min. AT for UA analysis | Trial and error

AQcon e/ dt=Acon[FA{ta)uKrana(B) eais co—FrUn( Teot o Tams)] (4)

where F,(ta),/F,U, are the measured collector gain/loss
coefficients in the well-known collector efficiency equation
These values have to be corrected for off-test flow rate,
series array configuration, piping losses, and heat exchanger
penalty. as described in (7). These corrections are typically
not large for small-scale systems. but can become important
for large, multi-family systems. especially the piping loss
term. An example is shown in Section 3.3. Table 2 lists
inputs and data sources for the calculations used here.

Lonarary depends on site latitude, longitude, elevation. and
collector orientation. Calculations here use the methods laid
out in (8), based on correlations for beam and diffuse
transmission. Correlation coefficients are gross space-time
averages, limiring accuracy. Calculations have been checked
against clear-sky data, and are considered accurate to about
=10%. If Ly is measured, that data could be used rather
than the estimated clear-sky value. T is taken a5 Tomkmea:
‘when the tank is well-mixed. It can be hard fo estimate in
stratified tanks when a single mid-tank probe is used (three
probes nidhi‘low are best for stratified, low-flow cases,
with the low sensor taken as Teqy . Compuration of Tesisin
is provided. so formulae averaging it with the measured Tog,
can be tested. Ty, for calculating useful energy gain is
generally not measured: in the tool here one can linearly
interpolate Ty, from estimates of Ty o 304 Ty pine Ty
data can be used directly if available. ppy is typically set to
0.2 for grassy foreground or asphalt, 0.3 for concrete, and
0.8 when fresh snow covers the ground.

1) Label on the collector often lists collactor parameters.
2) Obs = observation at the site
3) Solar Rating and Certification Corp., at wwiw.solar rating org

The expected values of pump on/off times are taken as the
start/end of the period where dQcsn /dt is positive. No
deadbands are accounted for. Inferred values of UA ,y are
compared to expectation based upon 1-D calculation. U,
is taken as kins/Lu;. The tank surface area Auuy is calculated
based on mputs for Viuy, and Hix assuming a cylindnical
tank. Because of typical uninsulated thermal shorts (piping.
supports), the actual U value is expected to be ~2X that of
this simple estimare. Reverse thermosiphoning would show
up as UA values much larger than this. It would be possible
to gam further resolution of reverse thermosiphoning by
valving off the collector for cne night to establish the
baseline for nighrtime losses. then differencing that with
results including the collectors.

3 EXAMPLES: VALIDATION AND DIAGNOSTICS
The metheds above have been embodied in a spreadsheet
tool avatlable for download (G). In this section, the tool ts
used to analyze data from three different projects

3.1 Building America test house: method validation

Detailed data from a residence in Colerado are being
acquired under the Building America Program (9). and those
data were used to validate the method. System

Fig. 4 Instrumentation schemanc n lhe Solar Row #2.

Tank sensors were mounted under the insulation on the
outside surface of the unpressurized pre-heat tank near
bottom and top of the tank. The tank is well-mixed when the
solar loop is operating. as shown in Fig. 5. When the solar
pumyp is off and there 1s no space heating or draw, the tank
bottom decays more rapidly than the top of the tank
Possible causes include: convection currents off the tank
sides/thermal shorts, ground thermal shorts at bottom
supports, or small night thermosiphoning (although flow at
might always read zero i the storage-side heat exchanger
loop). When the pump is off and there is space heating. the
top/bottom sensors converge, diverging again when the
space heat is turned off. Similar behavior is indicated upon
large draw. It is believed that this mixing is caused by
apparently-strong convection currents set up when there is a
large heat extraction from the tank.

Tn Fig. 6, the predicted solar gain (yellow curve) is
compared with the inferred solar gain (blue circles) over
eight days corresponding to Fig. 5a. It can be seen that some
days (2* day), there are no measured points (indicative of
irradiance too low to start pumps), and partly-cloudy days
show gamn below the clear-day values. Predictions vary in
peak height (e.g.. clear-day curve for day 2 lower than clear-
day curve day 3) because the collecter inlet temperature
(taken as the lower of the tank sensors) varies, which causes
efficiency and net solar to vary. The 5% and 6 days are
clear davs and the mode] and measurement agree very well.

Measured solar gain is computed as flow-AT across the

tank-side heat exchanger loop. This value is compared with
the inferred gain CuydToa/dt + dQp/d in Fig. 7. It can be
seen that the correlation is good. For all data, the regression

Iine for inferred gain C,.qd Tt vs. direct measurement of
the gain as flow*AT has slope of .0 and R~ 8.
Disagreement is expected due to neglect of system mass,
undetected draws, and errors in tank loss calculations. These
data validate that tank surface temperature data 1s
sufficiently accurate for inferring fluxes in the tank.
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Fig. 6. Predicted clear-day mla( gais
measured solar gain (hlua cncles)

UA.u is shown for the entire data set in Fig. 8. Measured
Ta data was used. It can be seen that during summer the
inferred UAay is quite close to the estimated value based
upon a 1-D calculation, validating the UA inference. Tt is
unusual to have agreement this close. due to un-insulated
thermal shorts (piping/valving). Typically, the measured UA
is ~2X the 1D estimation. The result here indicates that the
thermal shorts are reasonably well-insulated. Note that
during winter, the UA calculations will usually include
periods with space heating load, so anomalously-large UA
values result, as seen 1 Fig. 7
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Sclar Gain (2 methods) vs. Time
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Fig. 7 Solar gain as measured by CouA Ty and as
FlowyyATy, vs. time. Good agreement is seen.

3.2 SWH diagnostics in ke

Temperature and inferred flux for four days of data for a 64
fi* residential system are shown in Fig. 9. These data alone
indicate functioning energy delivery: the unit warms up
significantly on some days. Only two draws appear, both in
the moming. Fig 10 shows observed vs. calculated gain,
Flux comparisons indicate that the unit is gathering most of
the expected energy. Fig. 11 indicates inferred and
calculated pump on/off times. The inferred start times on the
first two days correspond reasonably to predicted values,
Days 3 and 4 are evidently cloudy, but show shut-down
close to expected times. By comparing rares. 38 data points
‘were attamed. as oppesed to essentially 2 points using the
daily total method m (3). With rate comparnsons, good
conclusions can be reached with only several days of data;
one day of data under mostly-clear conditions is sufficient in
the extreme.

Tank UA

w] [HPmasm aemue o

Fig. 8. Tank UA on successive nights, with value during
summer near the 1-D calculation.
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Fig. 9. Temperature and solar flux (computed and
measured) for 4 days for a small system in New York.
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Fig. 10. Measured vs. predicted solar flux for a residential
system in upstate New York.

Collector Pump Start and Stop Times
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Fig. 11. Pump start/stop times, predicted and inferred.

A large SWH at Saranac Lake, NY on a 9-story multi-
family building was menitored, with schematic in Fig. 12,
and collectors and tank shown in Fig. 13 The system has 48
4X8 collectors (A = 1368 ft’) in 8 strings in series and up
to 8 collectors in a single string. The pressurized storage
volume is 1389 gal. The piping run is about 250 ft. A
schematic of the system is shown in Fig. 12. Tt is a glycol
system with external doubly-pumped load-side heat
exchanger. This case illustrates that the method applies to
large-scale systems. However, there are additional issues
with frequent, relatively-small daytime draws that reduce
accuracy (unless draw data are taken). and piping runs in
large systems that significantly impact losses.

Fig. 12. Schematic of the Saranac Lake SWH. Temperatures
are indicated by “T", status with “S”. The red temperature

sensor on right side of tank wall was used for calorimetry.

HW Inlet from HX

—
[ waterto ux

[Hw outietto
| DHW tank

| Logger

T sensoron
tanksuface

showing logger/sensor position. Botfom: one string of six
collectors in parallel on the roof.

Collector gain and loss coefficients as printed on the
collector labels are given in Table 4. The multipliers for the
off-test flow rate, series connections, piping, and the heat
exchanger penalty (8) are also shown in the table. 2, was
estimated at 0.5. The largest correction is a factor of 1.72 for
piping. The corrections reduced the gain by 10% and
increased the losses by 84%. The system corrections to
collector parameters are especially important for large
SWH.

TABLF 4: CORRECTIONS TO SOLAR GAIN

Gain: | Loss | Fron® | Furm? o | P
ong | onig® [ [] [ 2 con’
| I [ Lot 085 2136

1) Unitless; label value
2) Units of Btwlr-£°F; label value
3) Con = Conection after applying the four factors.

Fig. 14 shows the tank temperatures and solar gains for an 8
day stretch during Oct. 2008. The temperature data show a
clear rise mid-day on four of the davs. The corresponding
solar gain is shown as blue circles in the bottom part of Fig.
14. It can be seen that the collected energy is ~60% below
the expectation. Fig. 15 shows the pump start/stop times.
The inferred values indicate late start-up each moming.
Piping/fluid mass warmup and consistent moming clouds in
the cloudy area could both be factors.

F——

I}

Flg.‘ 14 T:-Lnk Ie1:nperaﬁ1re au;i salar- flux (‘wmpl;ted and
measured) for 8 days for a large system in New York.

Additional data channels can help to resolve uncertainties
that arise from using a single sensor. The channels shown in
Fig. 12 in black font were installed to help explain the 1-
channel calorimetry data, data shown in Fig. 16. The tank
data clearly show that the tank is well-mixed once the heat
exchanger pump turns on. This was surmised based upon
the specified 50 gpm flow rate at the heat exchanger (~2.3
turnovers’hr). The data also indicate that there were draws
all day long, because Touy. never rose above 40 °F. Only for
M did Tyups show any rises toward Tae. Draw
energy lowers net energy. so its effect is indistinguishable
from “low” Qg seizr- There are few times withont draws and
they cannot be seen as discrete events, as occurs with draws
in single-family data, reducing accuracy. With large, multi-
family systems, draw flows should be monitored and
subtracted out of the energy balance, if a valid comparison
with the expected solar gain is desired.

Callector Pump Start and Stop Times.
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Fig. 15 Pump start/stop times (inferred and calculated) for
the Saranac Lake multi-family SWH.
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Fig. 16. Mult-channel data for one day on the multi-famuly
Saranac Lake SWH.

3.3 SWH Field Testing using tank as calorimeter

Field g was on ten ofa
new SWH to detect and resclve any malfunctions (10).
Inoperative systems were easily detected m two cases, as
Tomilt) never fluctuated more than a few °C. The circulation
system failures were identified and fixed. with appropriate
changes in the system manuals. In cases where pumps mun
appropriately but there 1s ne actual flow, one can be fooled
into thinking the SWH is functioming properly.

Fig. 17 shows data from a properly-operating system. The
temperature data show that the system is collecting energy
properly. However. the flux data m Fig. 17b shows that the
System energy collection is quite low m morning. Fig. 18
shows that the pump operates as expected. pointing to
‘morning shading issue: this can also be seen directly in the
temperature dara in Fig. 17a. evident as the relatively slow
temperature rise in the momings
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-
=
N
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i< sz }
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Fig. 17. Tank temperatures (top). and measured and
computed clear-day net pawer to fank (bottom) for SWH #

prre

Fig 18. Pump start/stop times for SWH 0.

Data on several of the systems showed unexplained early
shut-down of the pump. Two examples are shown in Fig.
19, where shutdown appears early every day. This behavior
13 being investigated, possibly related to the collector outlet
temperamre sensor being “glued” to the roof near the
collector, rather than stably fixed under insulation on the
outlet manifold.

Fig. 19. Pump start/stop times for two SWH 1n Flenda

4. CONCLUSIONS

The simple calorimetric method here appears useful for
diagnosing SWH operations. Tt works well when the solar
tank 1s well-mixed during solar operation, so that the
‘measurement at one point on the wall represents the average
tank temperature. With highly-stratified systems, multiple
sensors must be used fo get a more-accurate measure of
Toask ave. An available spreadsheet tool (6) was developed
that embodied the analysis method. The method was
validated with direct solar gain data. with high correlation
‘berween direct and inferred solar gain (R*=0 8).
Malfunctioning systems are easily detected because
fluctuations in Ty are very low. Shading and control issues
‘with operating systems can be detected. The methed could
‘be embedded in controllers for continuous diagnostics, and
could be used in a large-scale program to identify non-
performing systems and gather reliabality data.

Future software werk includes: 1) producing a user-friendly
version of the software if there 1s sufficient interest: if)
investigating large-scale mail-in projects in collaboration
with SWH maintenance and repair firms: and ii1) potential
collaboration with controls manufacturers

5. NOMENCLATURE

Symbols

A Area

r, Heat capacity at constant pressure

C (Capacitance of tank (water + walls + instruments)
F Heat removal factor of the collector

K Incidence angle modifier

Q Thermal energy

t Time

T Temperature

U Unit area conductance

a Shert-wave absorptivity of the absorber

A Difference

€ Effectiveness of the heat exchanger

] Orientation vector (embodies both tilt and azimuth)
T Transmisston of the glazing(s)

Subscripis

amb Ambient

avg Average

beg Beginning of a time interval

clr Clear day. assumed for expectation calculations
coll Collector

dot Denotes fime derivative of the variable

end End of a time interval

env Environment of the tank

T Heat exchanger

i Tndex for dafa points

IAM  Incidence angle modifier

loss Loss from the tank walls

mod  Model

n Normal to the collector plane

I Heat removal

tank  Solar storage tank

useful  Useful energy exiting the collector
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Appendix B. Description of the Artificial Resonance
Theory That Was Applied to Solar Hot Water Failure Analysis

A fuzzy Adaptive Resonance Theory (ART) neural network has three layers: input layer FO,
comparison layer F1, and category layer F2 (see Figure B-1) [1,2]. The number of neurons in
layer FO and layer F1 are the same because each neuron in layer F1 is response to one value of an
input pattern pixel in layer FO. Each neuron in layer F2 represents a category. Each neuron in

layer F1 is connected to all neurons in layer F2 through bottom-up weights ij’“ wi‘]?“. Index i
means that the connection between the i-th neuron in layer F1 and the j-th neuron in layer F2.
The input patterns and bottom-up weights wi*;“ are analog valued. The input to the j-th neuron in

layer F2 from layer F1 is

, (B-1)

category layer F2 O

T;
iy . reset
Vo wﬁ. controller

e O

w
comparison layer F1 O

LR N
input laver F0O O O see O
-~ -~ ces rF 9
I I In

Input

Figure B-1. ART-1 architecture.

where A is the fuzzy MIN operator defined by (X AY); = min(X,,Y; ) w; = (w,;,...,wy ) [X]

1 Nj

N
is the 1-norm |X|=)_ X, , ais the choice parameter, and N is the pixels of the input pattern.
i=1
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The default value of the neurons in layer F2 is ‘0’, except for the neuron receiving the maximum
T; from layer F1. That neuron is the winning neuron in F2 layer, and we label it J. The output of
the neuron Jis “1’,

if =1,  y=l
else, y;=0 (B-2)

Each neuron in F2 layer is connected to all the neurons in F1 layer through top-down weights

wj‘,’ , then the input of the i-th neuron in F1 layer is

M
Vo= wly, =wd, i=1...,N (B-3)
j=1

J

A vigilance subsystem that is formed by the reset controller in Figure B-2 checks the
appropriateness of the active F2 neuron.

|I A WJ|

Where p is the vigilance parameter.

>p (B-4)

If the Equation (B-4) is not true, then the vigilance subsystem will reset the actual active F2
category J and forcing T; = 0. Another active category in F2 layer will be chosen with
maximum T;j and the vigilance criterion will be checked again. This process will not stop until an
active category J in F2 layer satisfies the vigilance criterion.

The fuzzy ART training algorithm is shown in Figure B-2. As a result of training, each pattern in
the data sets has a corresponding category — represented by the active node in F2 layer.

The current input pattern is compared to the nodes in layer F2. If none of the nodes in layer F2
match the input pattern sufficiently, then a new F2 node or category will be created to store the
input pattern. When the current input pattern matches one of the nodes in layer F2 adequately,
the long term memory traces or adaptive weights associated with the node will be modified to
store the information of the current input pattern. Therefore, when a new pattern arises, fuzzy
ART learns to categorize it without forgetting the previously learned patterns.

A four-layer hierarchical ART neural network, as shown in Figure B-3, is a cascade of fuzzy
ART modules [3,4]. This hierarchical ART neural network creates the most general level of
categories first and then divides these categories into more specific ones. It learns to categorize
the input patterns with higher vigilance parameters compared to the previous active fuzzy ART
module that is connected, through the hierarchical links, to the active F2 nodes. There are
different vigilance parameters in each layer; the higher the level of the layer the higher the
vigilance parameters. The objective is to detect different kinds of failures and prioritize those
failures based on severity. Alarms can be created to indicate the level of severity.
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BEGIN Fuzzy ART

Initialize weights, w;; = 1

Read input pattern, I1=(l1.,..,1y)

FOR EACH input pattern (1) in training set

DO
Search matching category for the input pattern 1, find the
max T,
“ A\NJ
T =
' +‘WJ‘
o i “,AMQ|
IF existing matching category J found, and |I| 20,
THEN update the weights, and read new input pattern
w, (new)= A(1 Aw;, (old))+ (1 - 8w, (old)
ELSE
Forcing T; =0
END IF
UNTIL find a matching category J and the vigilance condition
is true.
END

Figure B-2. The fuzzy ART algorithm. B is the learning rate parameter, [ < [O, ]
The dynamics of the hierarchical ART neural networks can be described as follows.

1. Initialization: Determine the number of layers, L; the vigilance parameter, pk (1£ k < L);
and the weights, wij = 1.

2. Read Input Pattern: Present a analog pattern I=[ly,...,In], where 1, €[0/].

3. Bottom-up and top-down learning: For every layer K, (13 k < L), Do, the input for higher
layer k (k >2) is
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. Reset controller
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Figure B-3. A 4-Layer hierarchical ART architecture.

In the F1* layer, y1* =1, A w,.; , if the category j of F2*is active and module k-1 is in resonance,
else y1“=1,.

In the F2¥ layer, y2,;= 1, if the category j of F2* is active and module k-1 is in resonance, else
y2k;j =0.

If the module k-1 is in resonance, TJ.k is calculated by

o [enw| (B-6)
' a +‘Wk:j‘

J is the maximum of Tjk , then the vigilance criterion will be checked by

W, Al

MZ P - (B-7)

L

4. Update weights
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When J is the active category in layer F2 and Equation (B-8) is true, then update the weights
Wi.s (neW) = ﬂ(lk A Wi (Old ))+ (1_ IB)Wk:J (Old ) -

5. Go to Step 2 until the network is stable, no new category in layer k is created, and the weights

are stable.

(B-8)

In order to prove that the hierarchical ART neural networks can categorize the input patterns in
to hierarchies, we use TRNSY'S simulation results to test the neural networks. The training and
testing data are generated from TRNSYS models and the testing data include three kinds of
failures: pump failure, degrading, and thermosiphon. The input patterns of neural networks have
four attributes: (1) collector plate mean temperature in 12 minutes, (2) time in the day, (3)
collector plate temperature variation, and (4) temperature difference between collector plate
temperature and water tank outlet temperature. As shown in Figure B-4, different failures have
different features in each layer.

Layer 1 p=0.65

AT out of range
Pump Failure
or Degradation

AT and Plate T
out of range
Pump Failure

Layer 2 p=0.72

T variation and Time out
of range
Degradation

Layer 3 p=0.78

T variation out of
range
Pump Failure

Plate T out of range
Degradation

Plate T, T \Jariation and
Time out of range
Degradation

Layer 4 p=0.87

T variation out of range
Thermosiphon

T variation Plate T, AT, Plate T and T variation, AT out of Plate T out of T variation AT, T variation
and Plate T and Time out Time out of Plate T and range range and Time and Time
Out of range of range range Time out of Degradation | Degradation out of range out of range
Thermosiphon|  Thermosiphon| Thermosiphon | range Degradation Degradation
or Degradation| Thermosiphon
or Degradation
T variation, T variation out T variation, AT out of Time out of AT, Plate T
Plate T, AT, of range AT and Time range range and Time
and Time out Thermosiphon  out of range Degradation  Degradation out of range
of range or Degradation ~ Thermosiphon Degradation

Thermosiphon

Figure B-4. Hierarchy of SHW data sets.
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Figure B-4 shows the hierarchy of SHW data sets generalized by a four-layer hierarchical ART
neural network. The vigilance levels were p1 = 0.65, p, =0.72, p3 = 0.78, and p4 =87. In this
example, 3, 1, 3, and 14 categories are created in layers 1, 2, 3 and 4 respectively.

The training data for the hierarchical ART neural networks is from a TRNSYS fault-free model,
as shown above. For Albuquerque, 38 years’ data is available; therefore, the fault-free results of
the SHW system under different weather conditions will be included. The inputs to the
hierarchical ART neural networks are the normalization of collector plate mean temperature in
12 minutes, time in the day, collector plate temperature variation, and temperature difference
between collector plate temperature and water tank outlet temperature. Additionally, the
collector outlet mean temperature can be in 12 minutes, 18 minutes, or other intervals; the time
range depends on the SHW system. All the input patterns are presented to the neural network as
eight-element analogy vectors with the same norm of 4.
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Appendix C. Adaptive Resonance Theory Code
Used for Testing Solar Hot Water Failures

Basic Adaptive Resonance Theory Neural Networks Code

% ART neural networks code

% node_in input patterns of the fuzzy art neural networks

% wijold_in existing weight values of the fuzzy art neural networks
% CAT_in existing categories

% rho_in vigilance parameter

% CAT_out new categories

% wijold out new weight values

% map_out winner of the categories
function

[CAT out,wijold_out,map_out]=Ffuzzyart(node_in,wijold in,CAT in,rho_in)

beta=1; %slow learning parameter
alpha_in=1le-5; %choice parameter
wijold_mod=1;
ns=size(node_in);
niter=1;
while 1>0,
for npoint=1:ns(l)
for j=1:ns(2)
a_in(j)=node_in(npoint,j);
end

% winner take all
for j=1:CAT in+l
Tg) =
norm(min(a_in,wijold _in(j,:)),1)/(alpha_in+tnorm(wijold_in(j,:),1));
end
while 1>0,
[Tmax_out,Jmax_out]=max(T);
if norm(min(a_in,wijold_in(Jmax_out,:)),1) >= rho_in*norm(a_in,1)
map_out(npoint)=Jmax_out;
break;
end
T(JImax_out)=0;

it Tmax_out==
Jmax_out = CAT_in+1;
break;
end
end
%update weights
wijold_in(Jmax_out, :)=beta*min(a_in,wijold_in(Jdmax_out, :))+(1-
beta)*wijold_in(Jmax_out,:);
if Jmax_out==CAT_in+1
CAT_in=CAT_in+1;
wijold_in = aug(wijold_in,1);
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end
end

if size(wijold_in)==size(wijold_mod)
if norm(wijold_in-wijold mod)<0.0002

break;
end
end
wijold_mod=wijold_in;
end

CAT_out=CAT _in;
wijold_out=wijold_in;

Code to add lines for Matrix a

% add n lines for the matrix a
function aa=aug(a,n)

[lines,cols]=size(a);
u=ones(l,cols);

for i=1:n

a = [a;u];
end
aa = a;

Hierarchical FuzzyArt Training Code

clear all

close all

clc

alpha=le-5; %choice parameter

rho=[0.65 0.72 0.78 0.87]; %vigilance parameters

F1=8; %input pattern number of the ART neural networks
S=F1/2;

wijo1(1,:)=ones(1,F1); %initialize weights

CATO01=0; %initialize categories of the first layer
out_results=0; %save the results

al test(1,1:F1)=0;
a2_test(1,1:F1)=0;

%read the training data file trainbSweeksmar3min2.txt, first column is the

time in the year (hours), second column is the collector plate temperature,
third column is the water tank outlet temperature, the time step is 3 minutes
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[node(:,1),node(:,2),node(:,3)]= textread("trainSweeksmar3min2.txt", "%f %fF
%F*);

snode=size(node);

% in this part we will get the input patterns for the neural networks:
collector plate mean temperature in 12 minutes, delta temperature between
collector plate temperature and water tank outlet temperature, the time in
the day, variation of the collector plate temperature

for i=1l:snode(l,1)
for j=l:snode(l,2)
node2(i,j)=node(i,j);
end
end

for i=1l:snode(l,1)
node3(i,1l)=node2(i,1);
end

for i=4:snode(1,1)
node3(i,2)=(node2(i,2)+node2(i-1,2)+node2(i-2,2)+node2(i-3,2))/4;
node3(i,3)=(node2(i,3)+node2(i-1,3)+node2(i-2,3)+node2(i-3,3))/4;
end

for i=4:snode(1,1)
node3(i,3)=node3(i,2)-node3(i,3);
end

for 1=1:3
node3(i,2)=node3(4,2);
node3(i,3)=node3(4,3);
end

for i=3:snode(1,1)
node3(i,snode(1,2)+1)=(3*node2(i,2)-4*node2(i-1,2)+node2(i-2,2))/6;
node3(i,snode(1,2)+2)=(3*node2(i,3)-4*node2(i-1,3)+node2(i-2,3))/6;
end

for i=1:2
node3(i,snode(1,2)+1)=node3(3,snhode(1,2)+1);
node3(i,snode(1,2)+2)=node3(3,snhode(1,2)+2);
end

for i=1:snode(1,1)
node3(i,snode(1,2)+3)=rem(node2(i,1),24)/24;

end

for i=1:snode(1,1)
node3(i,snode(1,2)+4)=node3(i,2);
node3(i,snode(1,2)+5)=node3(i,3);

end

snode=size(nhode3);

clear node2 1 j
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% normalization of the input patterns

for i=1:snode(l,2)-1
minO(i)=min(node3(:,i+1));
max0(i)=max(node3(:,i+1));
end

max0(1)=max0(1)+5;
max0(2)=max0(2)+5;
max0(6)=max0(6)+5;
max0(7)=max0(7)+5;

min0(1)=min0(1)-5;
min0(2)=min0(2)-5;
min0(6)=min0(6)-5;
min0(7)=min0(7)-5;

for i=1:snode(1,1)
for j=2:snode(1,2)
node3(i,j)=(node3(i,J)-min0(J-1))/(max0(J-1)-min0(J-1));
end
end

ns=size(node3l);
np=ns(1);

% set the input patterns

for point=1:1:np
out_results(point,1)=node3(point,1);
out_results(point,2)=node3(point,2);
out_results(point,3)=node3(point,3);
out_results(point,4)=node3(point,6);
out_results(point,5)=node3(point,4);

a0(point,1)=node3(point,2);
a0(point,2)=1-a0(point,1);
a0(point,3)=node3(point,3);
a0(point,4)=1-a0(point,3);
a0(point,5)=node3(point,6);
a0(point,6)=1-a0(point,5);
a0(point,7)=node3(point,4);
a0(point,8)=1-a0(point,7);
end

clear node point
shode(1,2)=5;

% run 4 layer hierarchical fuzzy ART neural networks training part
for k=1:4

if k==1
CAT=CATO1; % First layer categories
wijtest=wij01; % first layer weights

%call fuzzyart part code
[CAT temp,wijold temp,map_temp]=fuzzyart(aO,wijtest,CAT,rho(k));

%save results of first layer
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CATO1=CAT_temp;

wijOl=wijold_ temp;

countl1(1:CAT01)=0;

for point=1:1:np
countl(map_temp(point))=countl(map_temp(point))+1;
al temp{l,map_temp(point)}(1,countli(map_temp(point)))=point;
for h=1:F1

al{l,map_temp(point)}(countl(map_temp(point)),h)=a0(point,h);

end
out_results(point,snode(l,2)+k)=map_temp(point);

end

clear CAT_temp wijold_temp map_temp point h
end

if k==2
CAT12(1:CAT01)=0; % initialize second layer categories
for h=1:CATO1
if countl(h)>0
for r=1:countl(h)

for t=1:F1
al test(r,t)=al{l,h}(r,t);
end
end
clear r t

wijl2{1,h}(1,:)=ones(1,F1l); %initialize second layer weights
wijtest(l,1:FD)=wijl12{1,h}(1,1:F1);

CAT=CAT12(h);

%call fuzzyart part code

[CAT_temp,wijold_temp,map_temp]=fuzzyart(al_test,wijtest,CAT,rho(k));

%save results of second layer
CAT12(h)=CAT_temp;
[1inel2,coll2]=size(wijold_temp);
for r=1:1inel2
for t=1:coll2
wij12{1,h}(r,t)=wijold_temp(r,t);
end
end
clear r t

for r=1:countl(h)
out_results(al_temp{l,h}(1,r),snode(1,2)+k)=map_temp(r);
end
clear wijtest map_temp wijold temp CAT CAT temp linel2 r
al test
end
end

clear countl al temp al hr t
for h=1:CATO1
count2{h}(1:CAT12(h))=0;

end
clear h
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for point=1:1:np

count2{1,out_results(point,snode(l1,2)+k-
1)}(1,out_results(point,snode(l1,2)+k))=count2{1,out_results(point,snode(1,2)+
k-1)}(1,out_results(point,snode(1,2)+k))+1;

a2_temp{l,out results(point,snode(l1,2)+k-
D H1,out _results(point,snode(l1,2)+k)}(1,count2{1,out_results(point,snode(l,2
)+k-1)}(1,0out_results(point,snode(l,2)+k)))=point;

for h=1:F1

a2{l,out_results(point,snode(l1,2)+k-

DH1,out_results(point,snode(l,2)+k)}(count2{l,out_results(point,snode(l1,2)+
k-1)3}(1,out_results(point,snode(l,2)+k)),h)=a0(point,h);

end
end
clear point h
end
if k==3

for h=1:CATO1
CAT23(h,1:CAT12(h))=0; %initialize the third layer categories
end
clear h
for h=1:CATO1
for r=1:CAT12(h)
if count2{1,h}(1,r)>0
for t=1:count2{1,h}(1,r)
for u=1:F1
a2 _test(t,u)=az{1,h}H{1,r}(t,u);
end
end
clear t u

wij23{1,h}{1,r}(1,:)=ones(1,F1); %initialize the third
layer weights

wijtest(1,1:F1)=wij23{1,h}{1,r}(1,1:F1);

CAT=CAT23(h,r);

%call fuzzy art part code

[CAT _temp,wijold_temp,map_temp]=Ffuzzyart(a2_test,wijtest,CAT,rho(k));

%save results of third layer
CAT23(h,r)=CAT_temp;

[1ine23,col23]=size(wijold_temp);
for t=1:1ine23
for u=1:col23
wij23{1,h}{1,r}(t,u)=wijold_temp(t,u);
end
end
clear t u

for t=1:count2{1,h}(1,r)
out_results(a2_temp{l,h}{1,r}(1,t),snode(l,2)+k)=map_temp(t);
end

clear a2_test wijtest map_temp wijold temp CAT temp t
end

64



end
end

clear count2 a2_temp a2 h r t u

for h=1:CATO1
for r=1:CAT12(h)
count3{1,h}{1,r}(1,1:CAT23(h,r))=0;
end
end
clear h r

for point=1:1:np
count3{1l,out_results(point,snode(l,2)+k-
2)H1,out_results(point,snode(l,2)+k-
D}(1,o0ut_results(point,snode(l,2)+k))=count3{1l,out results(point,snode(l1,2)+
k-2)}{1,out_results(point,snode(l,2)+k-
1D} ,out_results(point,snode(1,2)+k))+1;
a3_temp{l,out results(point,snode(l1,2)+k-
2)H1,out_results(point,snode(l,2)+k-
DH1,out_results(point,snode(1,2)+k)}(1,count3{l,out_results(point,snode(l,?2
)+k-2)H{1,out_results(point,snode(1,2)+k-
1}(1,out_results(point,snode(l,2)+k)))=point;
for h=1:F1
a3{1,out_results(point,snode(l1,2)+k-
2)H1,out_results(point,snode(l,2)+k-
DH1,out_results(point,snode(1,2)+k)}(count3{1,out results(point,snode(1,2)+
k-2)H1,out _results(point,snode(l1,2)+k-
1} ,out_results(point,snode(l1,2)+k)),h)=a0(point,h);
end
end
clear point h

end

it k==4
for h=1:CATO1
for r=1:CAT12(h)
CAT34{1,h}(r,1:CAT23(h,r))=0; %initialize the forth layer
categories
end
end
clear h r

for h=1:CATO1
for r=1:CAT12(h)
for t=1:CAT23(h,r)
if count3{1,h}{1,r}(1,t)>0
for u=1l:count3{1,h}{1,r}(1,t)

for v=1:F1
a3_test(u,v)=a3{1,h}{1,r}{1,t}(u,Vv);
end
end
clear u v

wiJ34{1,h}{1,r}{1,t}(1,:)=ones(1,F1l); %initialize 4th
layer weights
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wijtest(1,1:F1)=wij34{1,h}{1,r}{1,t3(1,1:F1);
CAT=CAT34{1,h}(r,t);
%call fuzzy art part code

[CAT _temp,wijold_temp,map_temp]=fuzzyart(a3_ test,wijtest,CAT,rho(k));
CAT34{1,h}(r,t)=CAT_temp;
[Mine34,col34]=size(wijold_temp);
for u=1:1ine34

for v=1:col34
wij34{1,h}{1,r}{1,t}(u,v)=wijold_temp(u,Vv);
end
end
clear u v

for u=l:count3{1,h}{1,r}(1,t)

out_results(a3 _temp{l,h}{1,r}{1,t}(1,u),snode(l,2)+k)=map_temp(u);
end
clear a3 _test wijtest map_temp wijold_temp CAT_ temp u
end
end
end
end

clear count3 a3 temp a3 hr t uv

end
end

clear a0 node3

%save the training results
fid = fopen("results_train.txt®, "wt");
for k=1:np
fprintf(fid, "%6.2F %1.6F %1.6F %l.6F %1.6F %2d %2d %2d
%2d\n*" ,out_results(k,1),out results(k,2),out results(k,3),out results(k,4),ou
t_results(k,5),out_results(k,6),out_results(k,7),out_results(k,8),out_results
(k,9));
end
clear k
fclose(Tid);
clear ntest numtest ntest2 ntest3 ttest out test

%read the testing file NNO5118 3min.txt, first column is the time in the year
(hours), second column is the collector plate temperature, third column is
the water tank outlet temperature, the time step is 3 minutes
[ntest(:,1),ntest(:,2),ntest(:,3)]= textread(NNO5118_3min.txt", "%f %F %F");

% in this part we will get the input patterns for the neural networks:
collector plate mean temperature in 12 minutes, delta temperature between
collector plate temperature and water tank outlet temperature, the time in
the day, variation of the collector plate temperature

numtest=size(ntest);

for i=1l:numtest(l,1)
for j=1:numtest(l,2)
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ntest2(i,j)=ntest(i,j);
end
end
clear i j

for i=1:numtest(l,1)
ntest3(i,l)=ntest2(i,1);
end

for 1=4:numtest(l,1)
ntest3(i,2)=(ntest2(i,2)+ntest2(i-1,2)+ntest2(i-2,2)+ntest2(i-3,2))/4;
ntest3(i,3)=(ntest2(i,3)+ntest2(i-1,3)+ntest2(i-2,3)+ntest2(i-3,3))7/4;
end

for i=4:numtest(l,1)
ntest3(i,3)=ntest3(i,2)-ntest3(i,3);
end

for 1=1:3
ntest3(i,2)=ntest3(4,2);
ntest3(i,3)=ntest3(4,3);
end

for 1=3:numtest(l,1)
ntest3(i,numtest(1,2)+1)=(3*ntest2(i,2)-4*ntest2(i-1,2)+ntest2(i-2,2))/6;
ntest3(i,numtest(1,2)+2)=(3*ntest2(i,3)-4*ntest2(i-1,3)+ntest2(i-2,3))/6;
end

for i1=1:2
ntest3(i,numtest(1,2)+1)=ntest3(3,numtest(l,2)+1);
ntest3(i,numtest(1,2)+2)=ntest3(3,numtest(1,2)+2);
end

for i=1:numtest(l,1)
ntest3(i,numtest(1,2)+3)=rem(ntest2(i,1),24)/24;
end

for i=l:numtest(l,1)
ntest3(i,numtest(l,2)+4)=ntest3(i,2);
ntest3(i,numtest(1,2)+5)=ntest3(i,3);
end

numtest=size(ntest3l);
clear ntest
% normalization of the input patterns

for i=1l:numtest(l,1)
for j=2:numtest(1,2)
if ntest3(i,j)>max0(j-1)
ntest3(i,j)=max0(j-1);
elseif ntest3(i,j)<min0(j-1)
ntest3(i,j)=min0(j-1);
end
ntest3(i,j)=(ntest3(i,j)-min0(g-1))/(max0(j-1)-min0(j-1));
end
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end
clear ntest2

numtest(1,2)=5;
err_num=1;
for m=1:numtest(l,1)
%set the input patterns
ttest(1l)=ntest3(m,2);
ttest(2)=1-ttest(1);
ttest(3)=ntest3(m,3);
ttest(4)=1-ttest(3);
ttest(5)=ntest3(m,6);
ttest(6)=1-ttest(5);
ttest(7)=ntest3(m,4);
ttest(8)=1-ttest(7);
out_test(m,1l)=ntest3(m,1);
out_test(m,2)=ntest3(m,2);
out_test(m,3)=ntest3(m,3);
out_test(m,4)=ntest3(m,6);
out_test(m,5)=ntest3(m,4);

for i=1:4 %test the input patterns in 4 layers
if i==
CATa=CATO1;
wijtest=wij01;
end
if i==
CATa=CAT12(out_test(m,numtest(l,2)+i-1));
[1inel2,coll2]=size(wijl1l2{1l,out_test(m,numtest(l,2)+i-1)});
for h=1:linel2
for r=1:coll2
wijtest(h,r)=wijl2{1,out_test(m,numtest(l,2)+i-1)}(h,r);
end
end
clear h r
end
if i==

CATa=CAT23(out_test(m,numtest(l,2)+i-
2),out_test(m,numtest(1,2)+i-1));

[1ine23,col23]=size(wij23{1l,out_test(m,numtest(l,2)+i-
2)H1,out_test(m,numtest(l,2)+i-1)});
for h=1:1ine23
for r=1:col23
wijtest(h,r)=wij23{1,out_test(m,numtest(l,2)+i-
2)H1,out_test(m,numtest(l,2)+i-1)}(h,r);
end
end
clear h r
end

it i==

CATa=CAT34{1,out_test(m,numtest(1,2)+i-
3)}(out_test(m,numtest(l,2)+i-2),out _test(m,numtest(l,2)+i-1));
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[line34,col34]=size(wij34{1,out_test(m,numtest(l,2)+i-
3 H1,out_test(m,numtest(l,2)+i-2)}{1,out_test(m,numtest(l,2)+i-1)});
for h=1:1ine34
for r=1:col34
wi jtest(h,r)=wij34{1,out_test(m,numtest(l,2)+i-
3 H1,out _test(m,numtest(l,2)+i-2)}{1,out_test(m,numtest(l,2)+i-1)}(h,r);
end
end
clear h r
end

wi jtest(CATa+1,1:F1)=1;
for r=1:CATa+1l

Ti(r)=norm(min(ttest,wijtest(r,:)),1)/(alphatnorm(wijtest(r,:),1));
end
clear r

while 2>0
[Tmax_test,Jmax_test]=max(Ti);
if norm(min(ttest,wijtest(Imax_test,:)),1)>=rho(i)*norm(ttest,1)
break;
end
if Tmax_test==
break;
end
Ti(JImax_test)=0;
end

it (Umax_test==CATa+1l) || (Tmax_test==0)

out_test(m,numtest(l,2)+i1)=9999; %failures category number are
9999
for j=1:numtest(l,2)
err_test(err_num, j)=out_test(m,j);
end
for u=1:i
err_test(err_num,numtest(l,2)+u)=out_test(m,numtest(l,2)+u);
end
clear u
it i<4
for u=(i+l):4
err_test(err_num,numtest(l,2)+u)=0;
out_test(m,numtest(l,2)+u)=0;
end
end
err_num=err_num+1;
break;
else
out_test(m,numtest(l,2)+i)=Jmax_test;
end
clear Ti wijtest CATa
end
end

clear ntest3

%save the testing results
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fid = fopen("results_test.txt","wt");
for k=1l:numtest(l,1l)
fprintf(fid, "%6.2F %1.6F %1.6F %1.6F %1.6F %2d %2d %2d
%2d\n" ,out_test(k,1l),out_test(k,2),out_test(k,3),out_test(k,4),out_test(k,5),
out_test(k,6),out_test(k,7),out test(k,8),out test(k,9));
end
clear k
fclose(fid);

%save the failures results
it err_num>0
fid = fopen( errors.txt", "wt");
for k=1l:err_num-1
fprintf(fid, "%6.2F %1.6F %1.6F %1.6F %1.6F %2d %2d %2d
%2d\n* ,err_test(k,1l),err_test(k,2),err_test(k,3),err_test(k,4),err_test(k,5),
err_test(k,6),err_test(k,7),err_test(k,8),err_test(k,9));
end
clear k
fclose(fid);
end
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Appendix D. Description of the Development and Verification of the
TRNSYS Model Used in the Solar Hot Water Reliability Testbed
Testing Program

The Adaptive Resonance Theory (ART) neural network must be trained by subjecting it to
operational data from a solar hot water (SHW) system. However, actual operational data did not
exist for this process. Instead, an SHW system model was used to generate simulated data.
TRNSYS is a transient systems simulation program with a modular structure. It is applicable for
use in modeling solar thermal systems and has a long track record for accuracy. This system was
used to develop a model of the Solar Hot Water Reliability Testbed (SHWRT) SHW system.

Water tank in Water tank in SHWRT
TRNSY'S model system
\\_/ Heat v Heat
/Exchanger Exchanger
/ S N

Figure D-1. Diagrams of the modeled and actual tank in the SHW system

TRNSYS contains substantial libraries of components that can be selected for configuration into
a modular system. These components include solar collectors, pumps, water tank storage, and
others.

Ideally the model should be an exact representation of the real system. In reality, it was
impossible to match the model to the system because some components in the system had no
corollary component within TRNSYS. Tank type 534 is one from the TRNSYS library that
matched the SHWRT’s tank most closely, but the heat exchanger is different. As shown in
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Figure D-1, the heat exchanger of type 534 is immersed in the water tank, but the heat exchanger
in the SHWRT’s tank consists of a copper tube coiled around the outside of the tank.*?

The time frame and resources for the project did not allow for the tank/heat exchange system to
be created for the TRNSYS model.* Therefore, the team selected tank type 534 for use in the
modeling. The input parameters for the type 534 tank model within the TRNSY'S code were
adjusted based on trial and error comparisons until its predicted behavior reasonably mirrored the
real system. For example, the heat transfer coefficients for each of the eight nodes of the tank
were adjusted until the modeled results approximated the measured ones. Clearly this is not
optimal, but was about all that could be done under the circumstances.

There are eight temperature sensors in the water tank from bottom to top, as described in Section
6 of this report. In the TRNSY'S model the water tank is divided into eight zones, each
representing an equal portion of the tank from the bottom to the top. Each node roughly
corresponds to the placement of the thermocouples in the tank.

The upper four zones perform very similarly to the real zones, but the lower four zones are
slightly different because the heat exchanger is located in the lower part of the water tank. The
wrap-around heat exchanger displaced insulation in the bottom portion of the tank, resulting in
more heat loss in that part of the tank than in the upper half. These nuances were incorporated
into the model by adjusting the input parameters until the modeled behavior of the tank
reasonably represented the actual behavior.

A collector model that exactly matched the one used in the SHWRT was not available in the
TRNSYS Thermal Energy System Specialists (TESS) library. Therefore, the model that most
closely matched the real one (type 564) was selected for use.

This collector model required a number of input parameters to be defined. Some of these
parameters were based on measurements taken from the collector directly, such as its physical
dimensions. Others, such the bond resistance between the riser tubes and the collector fins, were
not known and were estimated based on engineering judgment.

Values for some of the parameters were easily obtained from the manuals for these components
or measurements. Others were more difficult to obtain and had to be derived from empirical
formulas.

For example, sky temperature is a required input value of the collector type 564, as shown in
Table D-1. The team had no measured sky temperatures. Thus, an empirically derived equation
was used to estimate them based on ambient temperature.*®

Toky = 0.0552 - T, *®
where Ty = sky temperature (C) and T,= ambient temperature (C). The authors recognize that
perhaps better sky radiation models are available. However, because no energy is collected at
night in an SHW system and because this model was not critical to the testing, the approximation
above was deemed to be satisfactory.

3 TRNSYS 17 and the associated TESS libraries contain a wraparound heat exchanger tank, but the UNM team
had TRNSYS 16 and that model was not available to them.

Y TRNSYS system allows for custom-written component modules to be integrated into the system.

> W. C. Swinbank, Long-waver radiation from clear skies, Quarterly Journal of the Royal Meteorological Society,
vol. 89(381), pp. 339-348, 1963.
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Table D-1 lists the parameters required to define collector type 564.

Table D-1. Collector Parameters to Define Collector Type 564.

Parameter Value Units
Collector length 1.71 m
Collector width 1.61 m
Absorber plate thickness 0.0012 m
Conductivity of absorber material 194 kJ/hr.m.K
Number of tubes 20
Inner tube diameter 0.0044 m
Outer tube diameter 0.0064 m
Bond resistance 0.05 h.m2.K/kJ
Fluid specific heat 419 kJ/kg.k
Absorptance of the absorber plate 0.88 Fraction
Emissivity of the absorber plate 0.9 Fraction
Top loss mode 1
Number of identical covers 2
Index of refraction of cover material 1.53
Extinction coefficient, thickness product 0.005
Emissivity of the glass 0.9 Fraction
Plate spacing 0.025 m
Glass spacing 0.01 m

Table D-2 lists those parameters that are passed to the routine. Note that some are fixed

constants while others have the values passed to them from a calling routine.

Table D-2. Collector Parameters Passed to the Routine.

Input Value Units
Inlet temperature Passed C
Inlet flow rate Passed Kg/hr
Ambient temperature Passed C
Sky temperature Passed C
Wind velocity Passed m/s
Incident solar radiation Passed kJ/hr.m.2
Total horizontal radiation Passed kJ/hr.m.2
Horizontal diffuse radiation Passed kJ/hr.m.2
Ground reflectance 0.2 (fixed) Fraction
Incidence angle Passed Degrees
Collector slope 35 (fixed) Degrees
Back heat loss coefficient 3.24 (fixed) kJd/hr.m.2.K
Edge heat loss coefficient 0.432 (fixed) kJd/hr.m.2.K
Fluid heat transfer coefficient 2000 (fixed) -
Atmospheric pressure Passed atm
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After building the TRNSYS model, the effort turned to its verification. To do this the SHWRT
was run in solar mode. A test was conducted from December 13, 2010 (4 p.m.), through
December 16, 2010 (9 a.m.).

At the conclusion of the test, the actual weather data from the test were extracted from the
SHWRT’s data file and these data were fed to the TRNSYS model. The TRNSYS model
produced a set of predicted behavior for the solar system’s various components, such as the
temperatures in the tank, and the collector temperature. These modeled values were then
compared to the actual measurements for each parameter.

The initial comparisons showed that the model predictions were insufficiently accurate for use in
the upcoming tests, suggesting that some of the input parameters were not properly defined.
Some of the error was found to be due to incorrect measures and typographical errors in defining
various parameters. Other errors were more difficult to diagnose and required additional system
runs to help identify the model parameters that might require adjusting. Most of the adjustments
to the model involved the tank, as discussed above. A few involved the collector. The exact
changes were not recorded in detail because many of them were very small and would have
required extraordinary time and effort to do so. For the purposes of the test, the authors
determined that such recording was not warranted.

Eventually, the overall error between the model’s predictions and the measured values were
reduced to what appeared to be an acceptable level, less than around 5%.

Some of the comparisons are shown in the figures that follow. Figure D-2 shows the modeled
and measured collector plate temperature. As can be seen, the overall trends are quite consistent.

However, measured data show more variation during the partly cloudy conditions that prevailed
on the third day of the test (hour reference 8360-8368)*° than those predicted by the TRNSYS
model. These results were judged to be within acceptable limits.

Also, as can be seen, cloudy conditions on the last night of the test introduced some under-
prediction by the TRNSYS model. The error is probably due to the estimates of sky temperature
calculated from the generalized equation described above, which is a function only of the outside
ambient temperature. Other factors, such as relative humidity, also affect sky temperature. This
error was deemed to be inconsequential since no energy is collected at night, whether or not the
conditions involve clouds.

Figure D-3 shows the predicted and actual temperatures of the tank at node 1, the one located at
the top of the tank. Figure D-4 shows the predicted and actual temperature at node 6, about one-
third the distance from the bottom of the tank. Note that the plot shows small temperature steps
in the latter part of the day. This is due to the influence of the solar tank’s powerful electric
heater firing in quantum steps because the solar input was insufficient to meet the load.

Figure D-5 presents a comparison of the predicted and measured useful energy gain by the solar
collectors. As can be seen, the overall trends are reasonably accurately predicted with a slight
time lag.

In general, the difference between the predicted and measured total energy, based on the integral
under the curves, is around 1% and was judged to be acceptable for use in the ART algorithm
training.

1% The numbers on the abscissa are reference numbers only and do not correspond to real hour values.
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‘— Measured data — TRNSYS model
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Figure D-2. Collector plate temperature.

— Measured data — TRNSYS model
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Figure D-3. Temperatures solar tank in node 1, at the top of the tank.
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— Measured data — Trnsys model
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Figure D-4. Temperatures solar tank in node 6,
about one third of distance from tank bottom.
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Figure D-5. Useful energy gain by the solar collectors.
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A pictorial diagram of the TRNSY'S model that was used for testing is found in Figure D-6.
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Figure D-6. TRNSYS model used in SHWRT testing program.

Tables D-3 through D-5 list other parameters associated with the TRNSYS model. Table D-3 is
the water tank parameters, Table D-4 is the solar loop pump parameters, and Table D-5 is the hot
water draw profile used in the simulation.
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Table D-3. TRNSYS Model Water Tank Parameters (tank type #534).

Parameter Value Units
Logical unit for data file 48
# of tank nodes 8
Number of ports 1
Number of immersed heat exchangers 1
Number of miscellaneous heat flows 0
Number of tank Node 8
Tank volume 0.297 m3
Tank height 1.4 m
Top loss coefficient 15 kJd/hr.m2.K
Bottom loss coefficient 5 kJ/hr.m2.K
Additional Thermal Conductivity 0 kJd/hr.m2.K
Edge loss node #1 5 kJ/hr.m2.K
Edge loss node #2 5 kJd/hr.m2.K
Edge loss node #3 2 kJd/hr.m2.K
Edge loss node #4 2 kJ/hr.m2.K
Edge loss node #5 10 kJd/hr.m2.K
Edge loss node #6 30 kJ/hr.m2.K
Edge loss node #7 15 kJd/hr.m2.K
Edge loss node #8 5 kJ/hr.m2.K
Top loss temperature 22 C
Bottom loss temperature 22 C
Inversion mixing flow rate -10 kg/hr
Number of misc heat gains 0

Table D-4. TRNSYS Solar Loop Pump Parameters.

Parameter Value Unit
Rated flow rate 180 Kg/hr
Fluid specific heat 4.19 kJ/kg.K
Rated power 432 kJ/hr
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Table D-5. TRNSYS Hot Water Draw Profile Used in the Simulations.

Hour WattHours
0 150
1 0
2 0
3 0
4 0
5 150
6 900
7 1100
8 900
9 625
10 625
11 430
12 430
13 300
14 180
15 300
16 450
17 450
18 625
19 750
20 625
21 750
22 450
23 300
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The following is a copy of the Matlab code used to control the solar loop pump in the TRNSYS
model.

% pump.m
% pump collector model (M-file called by TRNSYS type 155)

% Data passed from / to TRNSYS

% trnTime (1x1) : simulation time

% trninfo (15x1) : TRNSYS info array

% trnlnputs (nIx1) : TRNSYS inputs

% trnStartTime (1x1) : TRNSYS Simullation Start time
% trnStopTime (1x1) : TRNSYS Simulation Stop time
% trnTimeStep (1x1) : TRNSYS Simulation time step

% mFileErrorCode (1x1) : Error code for this m-file. It is set to 1 by TRNSYS
and the m-file should set it to O at the

% end to indicate that the call was successful. Any
non-zero value will stop the simulation

% trnOutputs (NOx1) : TRNSYS outputs

%

%

% Notes:

0 ——————

%

% You can use the values of trninfo(7), trninfo(8) and trninfo(13) to
identify the call (e.g. first iteration, etc.)

% Real-time controllers (callingMode = 10) will only be called once per time
step with trnlnfo(13) = 1 (after convergence)

%

% The number of inputs is given by the size of trnlnputs and by trninfo(3)

% The number of expected outputs is given by trninfo(6)

O — — -
% This example implements a very simple solar collector model. The component
is iterative (should be called at each

% TRNSYS call)

%

% trnlnputs

0 ————————

%

% trnlnputs(l) : Collector plate temperature

% trnlnputs(2) : Water tank top temperature

% trnlnputs(3) : Water tank outlet temperature

% trnlnputs(4) : Forcing function

%

% trnOutputs

W —————————

%

% trnOutputs(l) : pump control signal

%

O = — o



% TRNSYS sets mFileErrorCode = 1 at the beginning of the M-File for error
detection

% This file increments mFileErrorCode at different places. If an error occurs
in the m-file the last succesful step will

% be indicated by mFileErrorCode, which is displayed in the TRNSYS error
message

% At the very end, the m-file sets mFileErrorCode to O to indicate that
everything was OK

mFileErrorCode = 100 % Beginning of the m-Ffile

mFileErrorCode = 110 % After setting parameters

T_coll_out = trnlnputs(l);
Tank_top_T = trnlnputs(2);
Tank_bot T = trnlnputs(3);
Forcing_func = trnlnputs(4);

mFileErrorCode = 120 % After processing inputs

% (note that Matlab is initialized before this at the info(7) = -1 call, but
the m-file is not called)

it ( (ernInfo(7) == 0) & (trnTime-trnStartTime < 1le-6) )

% This is the first call (Counter will be incremented later for this very
first call)
nCall = 0;

% This is the Ffirst time step
nStep = 1;

% Initialize history of the variables for plotting at the end of the
simulation

nTimeSteps = (trnStopTime-trnStartTime)/trnTimeStep + 1;

history.onoff = zeros(nTimeSteps,1);

history.en = zeros(nTimeSteps,1);

% No return, we will calculate the solar collector performance during
this call
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mFileErrorCode = 130 % After initialization

end

% --- Very last call of the simulation (after the user clicks "OK"): Do
nothing --------- - - - - - -----\-\ -\ -\ i \i. i”i o e i i i i i

U
if ( trninfo(8) == -1 )

mFileErrorCode = 1000;

mFileErrorCode
without errors
return

0; % Tell TRNSYS that we reached the end of the m-file

end

it (trninfo(13) == 1)
mFileErrorCode = 140; % Beginning of a post-convergence call

history.onoff(nStep) = on_pump;
history.en(nStep) = en_pump;

mFileErrorCode = 0; % Tell TRNSYS that we reached the end of the m-Ffile
without errors
return % Do not update outputs at this call

end

% --- Aall iteratéivecalls ------------- - - - ----\-\-\-\-«\«\«\~\ (- \ -\ \ -\ + -\ (-
U
% --- If this is a first call in the time step, increment counter ---

if ( trninfo(7) == 0 )
nStep = nStep+l;

end

% --- Get TRNSYS Inputs ---

nl = trninfo(3); % For bookkeeping
nO0 = trninfo(6); % For bookkeeping
T coll_out = trninputs(l);

Tank_top T = trnlnputs(2);

Tank_bot T = trninputs(3);
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Forcing_func = trninputs(4);

mFileErrorCode = 150; % After reading inputs

% --- Calculate solar collector performance ---
dis_pump = O;
en_pump = 1;
on_pump = 1;

if Tank _bot T > 60
dis_pump == 1;
else
dis_pump == 0;
end

if T_coll _out > 97

dis_pump == 1;
else

dis_pump == 0;
end
if nStep ==

if (Tank bot T < 55) && (T_coll_out < 97)
en_pump = 1;
else
en_pump =0;
end
end

ifT en_pump ==
if (T_coll_out - Tank_bot T) >7% 7*1.8
on_pump = 1*Forcing_func;
else
on_pump = 0O;
end
else
on_pump = 0O;
end

it history.onoff(nStep-1) > 0
it (T_coll_out-Tank_bot_T) > 0%3
on_pump = 1*Forcing_func;
else
on_pump = 0;
end
end

% --- Set outputs ---
trnOutputs(l) = on_pump;
mFileErrorCode = 0; % Tell TRNSYS that we reached the end of the m-Ffile
without errors
return
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Appendix E. Description of the Process for
Using TRNSYS Model to Train the ART Algorithms

The following outlines the steps training of the Adaptive Resonance Theory (ART) algorithms
using the TRNSYS model.

1.

2.

10.

11.

Install TRNSYS Version 16 including the libraries and associated features on a
personal computer.

Configure the solar hot water (SHW) system model to duplicate as closely as possible
the Solar Hot Water Reliability Testbed (SHWRT) system. To the greatest extent
possible the components used in the TRNSY'S model mirrored the SHWRT system
that was used for testing.

Verify that the TRNSY'S model is accurate by comparing the model predictions with
the measured output from the SHWRT. See Appendix C for details.

Write hierarchical ART neural networks code in MATLAB. See Appendix E for a
copy of the code.

Debug hierarchical ART neural networks code.

Obtain SOLMET weather data from 1991 to 2005 from National Solar Radiation
Data Base (NSRDB) archives. Remove the parameters of these data that are not used
in by the TRNSYS model. Modify the data in this dataset to conform to the
requirements of TRNSYS.

Run the verified TRNSYS model using data from the database corresponding to years
2000 to 2004. These five years were chosen because they represented the nearest
years of data from the current date. Five years were found to be sufficient to train the
ART algorithms. In all of the TRNSY'S simulation runs the Solar Rating and
Certification Corporation (SRCC) load profile was used, the same profile used in the
SHWRT testing.

Use the simulated outputs from the TRNSYS runs to train the ART algorithms. This
process essentially teaches the ART algorithms the normal operation of a SHW
system, one that is very similar to the SHWRT.

Set aside these trained algorithms for testing against simulated failures based on
TRNSYS runs using a weather year that is different from the years used for training.
Execute the TRNSYS model for weather 2005 to simulate the failure conditions that
would be used to test the ART algorithms. Those failure conditions include a pump
failure and a loop flow degradation condition. The reason for using a weather year
that was different from the weather years used for training is because a unique set of
weather conditions were needed to create a valid test of the ART algorithms.

Test the hierarchical ART algorithms using the data that were generated from Step
10. This testing allows various parameters to be evaluated for effectiveness in the
ART algorithms as they detect failures. For example, two parameters might be
chosen as a starting point: collector plate temperature and water tank outlet
temperature. However, after running the test, these set of parameters might be found
to be insufficiently robust for use in the ART algorithms in detecting the simulated
failures. Based on this information, a different set of parameters might be chosen,
ones that are more effective.
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12. Write ARTMAP neural networks code in MATLAB. This ARTMAP provides a
method to identify and label the type of failure associated with various fault
conditions.

13. Use the data from the five years of fault-free simulations plus the one year that
contained the simulated failures to retrain the ART algorithms.

14. Applied the retrained ART algorithms to the data generated by the SHWRT.

The TRNSYS runs to complete the fault-free runs for years 2000-2004 required about 15 hours
of computer time. The computer time required to run TRNSY'S for the simulations for the year
containing faults, 2005, was about six hours. The required computer time for the training the
ART algorithms was about one hour. However, the process of simulating coupled with training
required a great deal of human intervention. The intervention is needed to refine the process and

ensure that the results are applicable to the upcoming SHWRT tests. Around 400 hours of labor
was consumed in the training.
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Appendix F. Pictures of the Solar Hot Water
Reliability Testbed at the University of New Mexico

Figure F-2. Collectors for the testbed
(oneis covered).

Figure F-3. Front panel of Virtual Instrument for
testbed control and instrumentation.

Figure F-4. Partial view of code for the Virtual
Instrument.
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Appendix G. Functional Specifications for
an Advanced Generation Solar Hot Water Controller

An advanced-generation Solar Hot Water controller would have these functional characteristics,
capabilities and abilities:

1) Control an SHW in the traditional manner.

2) Monitor energy production performance using solar loop flow and inlet and outlet
temperatures. Display the results on a visual display and record them in storage.

3) Monitor energy production performance using only solar loop flow (not the flow meter)
the patented methods defined in Menicucci et al., U.S. Patent Number 6960017, Non-
invasive energy meter for fixed and variable flow systems.

4) Detect faults in the SHW system and announce the fault via one or all of the following:

a. Phone call
b. Email
c. Audible alarm

5) Predict faults in the SHW system by employing self-organizing and self-learning

networks and announce the prediction via one or all of the following:
a. Phone call
b. Email
c. Audible alarm

6) Provide fundamental analysis of the energy performance of the SHW system over various
periods of time.

7) Perform “black box” data recording, which upon a failure would store system
information just before the failure.
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