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Two perturbation theory methodologies are implemented for 4-eigenvalue calculations in the continuous-energy
Monte Carlo code, MCNP6. A comparison of the accuracy of these techniques, the differential operator and

adjoint-weighted methods, is performed numerically and analytically.

Typically, the adjoint-weighted method shows

better performance over a larger range; however, there are exceptions.
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I. Introduction

Methods of perturbation theory allow for the fast
calculation of changes in a response from small changes to a
system. In the early days of computing, these techniques
were invaluable since exploring the parameter space using
direct calculations was prohibitive. Today, computers allow
Monte Carlo methods to be a more practical design tool;
nonetheless, such calculations are often expensive and a
cheap way to explore a design space, albeit approximately, is
desirable.

MCNP3" computes changes in a tally response (such as
k-eigenvalue) from a prescribed perturbation using the
differential operator technique®. Version 6 of MCNP will
feature the adjoint-weighted methodology*™ for calculating
changes in reactivity strictly in k-eigenvalue problems.

With these two methods available, a discussion of which is
most accurate is appropriate. To determine this,
perturbations in & (the k-eigenvalue) are estimated using both
techniques and compared against reference solutions
generated from a direct calculation by subtracting results of &
for from the perturbed and unperturbed cases. Next, analytic
solutions to a simple problem are generated that demonstrate
successes and failures of both methods.

1. The Differential Operator Technique

The premise of the differential operator technique is
centered on a Taylor series expansion. It is assumed that the
nuclear cross section ¢ ~ exp(d) where 6 is some

dimensionless parameter.  The change in & from a
perturbation A6, is:
ok o’k 2
Ak =—AO+ AG) +.... 1

The change in the parameter A is the change in the
relative cross section. In MCNP, Eq. (1) is truncated with
either one or two terms (first- or second-order perturbation

theory). There are Talyor terms for each perturbed nuclide.
Note that no cross-terms between derivatives of nuclides are
considered. This has been shown to have an impact upon the
accuracy of results in some problems”.

To calculate the derivatives in Eg. (1), two terms must be
estimated. The first is the derivative of the probability of the
random walk occurring. The second is the derivative of the
tally response itself. For k the tally response for a single
track is vZavL. The nomenclature is as follows: v is the
average number of neutrons produced in a fission event, Zis
the macroscopic fission cross section, w is the particle
simulation weight, and L is the length of the track. The sum
of all histories is normalized by the volume of the cell to
produce a neutron production rate.

There is an additional derivative for changes in the fission
source shape that MCNP does not account for. Previous
work has shown that this may significantly impact the
accuracy of results®.

2. The Adjoint-Weighted Technique

Starting from the neutron transport equation and applying a
first-order perturbation, the following expression for the
change in reactivity p can be derived”:

(v'.Py)
Ap=—2— (2)
P )

The reactivity is related to & in the typical way,
p=(k—1)/k. The angular flux is y and its adjoint is denoted
by y*. P is the operator for the perturbation taking the
form: P = AZ, — AS — JAF. The eigenvalue 1 = 1/k, and the
three terms from left to right, are the change in the total cross
section, the change in the scattering operator, and the change
in the fission multiplication operator. F is the perturbed
fission operator.

Monte Carlo techniques can be used to sample the
numerator and the denominator in a continuous-energy
forward calculation® and the change in reactivity can be
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Fig. 1 Results of perturbation theory methods and relative errors
compared to reference solutions for the global
perturbation in Godiva.

density

estimated by taking the ratio in Eq. (2). Note that the
implementation in MCNP does not take into account the
perturbation in scattering laws. In applications involving
calculating perturbations for specific reactions of specific
isotopes (such as in generating sensitivity coefficients), there
is evidence to suggest this approximation introduces
significant sources of error’ .

II. Numerical Results

Continuous-energy, k-eigenvalue problems are run using
MCNP6. Both the differential operator and
adjoint-weighted  perturbation methods (eight latent
generations”) are employed to estimate the change in k. A
reference value is obtained by subtracting the results of two
independent MCNP6 calculations.

Two problems of interest are presented. The first is
Godiva®, a bare sphere of high-enriched uranium (HEU).
The other is a 2-D, quarter-core pressurized water reactor
(PWR) model®. Both problems use ENDF/B-VIL.0 nuclear
data.

1. Godiva
(1) Global Density

The tests with Godiva involve changes in density (globally
as well as locally) and changes in enrichment. For the first
test, the density of the HEU metal is varied from 25% to
175% of the nominal density. Perturbed results of & are
obtained for various density perturbations for both methods
(the differential operator has curves for both first- and
second-order perturbations); these and the reference & from a
direct calculation are compared in Figure 1.

To better compare the results, Figure 1 gives, on the
right-axis, the relative error (not to be confused with the
Monte Carlo uncertainties) with respect to the reference .
For higher densities, the second-order differential operator
perturbation appears to most accurately capture the true value
of perturbed & For lower densities, however, the
adjoint-weighted approach is superior. For example, the 25%
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Fig. 2 Results of perturbation theory methods and relative errors
compared to reference solutions for the localized density
perturbation (inner 2 cm) in Godiva.

of nominal density case, the adjoint-weighted approach is
able to capture k& within 10% whereas both first- and
second-order differential operator generated k’s are in error
of an excess of 50%. Note that the second-order differential
operator k is about twice as erroneous as the first order. This
implies the second-order Taylor term over-contributes and
that higher-order terms are needed to cancel out this effect.
(2) Localized Inner Density

The same experiment is carried out, but this time only the
density of the inner 2 cm of Godiva is perturbed. Figure 2
displays the relative errors for each of the methods. Both
methods are able to capture the perturbed & within one
percent with the adjoint-weighted approach being more
accurate over a wider range.

Interesting is the difference in shape between the curves
produced by the different methods. In this case, the
adjoint-weighted method always predicts a perturbed £ that is
too low, whereas the differential operator method predicts &
being too high for reductions in density and too low for
increases in density. While the sign of the error may be
reversed, this trend in the error of predicting k is observed for
a wide variety of calculations.

(3) Localized Edge Density

Like with the previous, the density is perturbed, but this
time only in the outer 0.1 cm of the sphere. The results of &
along with the errors (this time absolute) in pcm (1 pcm =1 x
10°) are displayed in Figure 3. Because the effect of this
perturbation is relatively small, even statistical uncertainties
of 1to 2 pecm can distort the curve produced. For this reason,
a linear fit is applied with an R-squared value of 0.9951.
This appears justified as both the first- and second-order
differential operator method are nearly identical, implying
the perturbation can be described with only the first, linear
Taylor term.

The adjoint-weighted method follows the true & closely
(there is noise because of statistical uncertainties) whereas
both first- and second-order differential operator values of &



1.0020 — : T 100
% 80
10018 . | | { R —
% 60
10000 f——————+ — 4 g |
S \ L a0
1.0005 4 1 =l
20 —~
b= E
5
i : . , &
2 1.0000 1 e + | £ <
2 ‘ s
& | 20 W
09995 ! —
‘ 4 OAdjoint ADOAst ®DO-2nd | 140
0.9990 ! S !
+AdEr  XDOA Er % DO-2Err 50
| = | |
.9 5 R S S 1 4 — '}
0.9985 x | i
[ | ‘
0.9880 } ! L ' 1 -100

0.0 02 .04 0.6 08 1.0 1.2 14 16 18 20
Relative Density

Fig. 3 Results of perturbation theory methods and absolute errors
compared to reference solutions for the localized density
perturbation (outer 0.1 ¢cm) in Godiva.
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Fig. 4 Results of perturbation theory methods and relative errors
compared o reference solutions for the **°U enrichment
perturbation in Godiva.

follow a line with an incorrect slope.

It has been shown® that this is because MCNP does not
currently handle the perturbation in the fission source and
that doing so largely addresses this problem.  The
adjoint-weighted approach, on the other hand, automatically
accounts for the perturbation in the fission source. A fair
comparison would require the implementation of the
correction,

(4) Enrichment

A simplified model of the Godiva sphere is constructed
with 93 wt% *°U and 7 wt% 2*®U. The perturbation varies
the enrichments from 0% to 100% **U in 5% increments.

The perturbed values of k and the corresponding relative
errors (those in excess of 30% are not shown to better view
performance for smaller perturbations) for the perturbation
methods are displayed in Figure 4. All methods appear to
be quite accurate for enrichments around 80%. For
decreasing enrichment down to about 25%, the
adjoint-weighted method is the most accurate. Below that,
the second-order differential operator appears to be best.

Generally speaking, typical perturbations would be on the
order of a few tens of percent at most, and adjoint-weighted
perturbation theory appears to function best in that regime.
Note that the differential operator results are more accurate if
the second-order cross-terms are approximated®, which they
are not in MCNP5.

2. Pressurized Water Reactor
(1) Boron Concentration

The boron-10 concentration in the water region of the 2-D
PWR model is varied. The reference concentration of '°B is
16.75 ppm, making the reactor approximately critical.
Results of perturbed & and relative errors (those in excess of
50% are not displayed) are given in Figure 5 for different
concentrations from 1 to 100 ppm.

Only the adjoint-weighted perturbation theory is able to
capture the boron-10 concentration perturbations within 10%
accuracy. Both the linear and quadratic curves formed by
first- and second-order differential operator exceed 10% error
for perturbations in excess of 40 and 50 ppm of boron-10
respectively. Furthermore, both differential operator
approximations produce unphysical behavior (in the case of
first order, & becomes negative, and, in the case of second
order, £ begins to increase with adding boron-10). For
differential operator to be more accurate, higher-order terms
will be required.

(2) Xenon Concentration

Xenon-135 is distributed uniformly throughout the fuel.
The reference concentration of '**Xe is taken to be at 10 ppb.
The perturbations vary the concentration from no xenon to 50
ppb. Perturbed & results along with relative errors are
displayed in Figure 6. All methods appear to be able to
capture the perturbation within three percent, with the
second-order differential operator being the most accurate.

An important point is that had the unperturbed case been a
fresh core (no xenon-135 present), the differential operator
method would have been unable to compute any
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Fig. 5 Results of perturbation theory methods and relative errors
compared to reference solutions for perturbing the boron-10
concentration in the coolant/moderator of a PWR.,
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Fig. 6 Results of perturbation theory methods and relative errors
compared to reference solutions for perturbing the xenon-10
concentration uniformly in the fuel of a PWR.

perturbations. This is because of the assumption that the
nuclear cross sections vary as the exponential of some
dimensionless parameter 6. Therefore, differential operator
cannot add a new impurity; the adjoint-weighted method
does not have this restriction.

(3) Moderator Density

The next test is to see how well the various methods can
predict £ for adding and removing moderation to the core.
The as is, simplified model is strongly overmoderated with
the current boron-10 concentration in the water. Because of
this, changing the moderator density would more repeat the
previous boron-10 concentration perturbation rather than
look at the effect of adding/removing moderator.

The model is modified in two ways to produce a
perturbation that tries to measure the change of core
moderation. First, all boron-10 is removed from the water.
Secondly, 50 ppb of xenon-135 is added uniformly
throughout the fuel to bring & back to near critical (k= 1.024).

The density of the moderator is varied globally by +/-25%.
The periurbations of k are displayed in Figure 7 along with
the relative errors. In this case, the second-order differential
operator is more accurate over this domain. Both the
first-order differential operator and the adjoint-weighted
perturbation theory are about the same in terms of accuracy.

II1. Analytical Comparisons

The change in & is calculated exactly for changes in the
capture and scattering cross sections of a simple two-group,
infinite medium problem (unperturbed & = 1). The cross
section data is given in Table 1. The analytic solution for &
is
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Fig. 7 Results of perturbation theory methods and relative errors
compared to reference solutions for perturbing the moderator
density throughout the PWR.

The removal cross section for energy group g is defined as
Tre = Lig — L where L, and I, are the total and
within-group  macroscopic  scattering cross  sections
respectively for group g. vI; is the mean neutrons per
fission times the macroscopic fission cross section for group
g and I, is the group l-to-2 scattering macroscopic cross
section.

Table 1 Cross-section data (cm™) for the two-group
infinite-medium problem.

g % Z z v X Lo | T
12 Tzl w234 1 [ 12]12
2] 3 1 1 Jo2 ] 0] o 1

Exact, reference solutions for & for various perturbations
can be computed by directly evaluating Eq. (3) with modified
cross section data.

To evaluate the analytic result for the differential operator
technique, the expression in Eq. (3) is differentiated with
respect to various cross sections. Numerical values for first
and second derivatives of each cross section are given in
Table 2. These derivatives are inserted into a Taylor
expansion with respect to Eq. (3) and evaluated for a range of
perturbations ranging from +/- 100% of the unperturbed cross
section.

Table 2 Numerical evaluations of derivatives
of Eq. (3) with respect to cross sections.

| First Second

Deriv. | Deriv.

Yo 23 8/9

Ta 38 3/16
Sh | -6 29 ]

S, | 3/8 -3/8

Ta2 | 506 -10/9

To compare adjoint-weighted perturbation results, Eq. (2)
must be evaluated. This solves for p, which can easily be
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Fig. 8 Analytically derived relative errors for perturbing the
capture cross sections in energy groups 1 and 2.

converted to k. To solve Eq. (2), the forward and adjoint
fluxes must be computed from the transport equation. Since
the system is an eigenvalue problem, there is a free parameter
to normalize the equations; choose y, =1 and y, =1.
From these definitions, the forward and adjoint fluxes for the
other group can be determined to be

Z']2
W, =", 4
’ Z:RZ
D)
v, = = (5)
v):f,_

Both the Taylor expansion in Eq. (1) and the relationship
in Eq. (2) are used to calculate Ak for perturbations of various
magnitudes for the capture, fission, and group-to-group
scattering cross sections. These computed values are then
compared to reference solutions obtained from Eq. (3).

The relative errors of the perturbations for the capture
cross sections are shown in Figure 8. For the group-1
capture cross section, adjoint-weighted perturbation theory
captures the perturbed & exactly. [n the case of group-2, the
adjoint-weighted perturbation is no Jonger exact, but is still
more accurate than either the first- or second-order
differential operator predictions.

The relative errors for Ak of the fission cross section

perturbations from the two methods are displayed in Figure 9.

Like with the capture cross section of group 1, the
adjoint-weighted perturbation for the group | fission cross
section is exact. The second-order differential operator
method is more accurate for perturbations where the group 2
fission cross section is reduced from 0 —60%. However, the
adjoint-weighted method still appears to be most accurate
over a greater range.

Figure 10 shows the relative errors of Ak for the group
I-to-2 scaftering cross section perturbation. This case has
both the first- and second-order differential operator method
being superior to the adjoint-weighted method, opposite of
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Fig. 9 Analytically derived relative errors for perturbing the
fission cross sections in energy groups 1 and 2.

the behavior observed in both the capture and fission cross
section perturbations.

This perturbation is particularly pathological for the
adjoint-weighted method. The change in reactivity
predicted from adjoint-weighted perturbation theory is

[1—2”]&2‘,1
Ve
i ; F A (6)

VE
71
Lpo +Z
12

When Zp, / vZ; < 1, p can increase without bound for an
arbitrarily large increase in the group 1-to-2 scattering cross
section. The physical range of the reactivity is -o0o <p < 1,
where the lower and upper bounds correspond to a zero and
infinite & respectively. Should p exceed unity, as is possible
in Eq. (6), the results become unphysical. Note that is not a
feature or weakness of MCNP or a Monte Carlo
implementation, but of the theory itself.  Applying
adjoint-weighted perturbation theory to one such as this may
produce vastly incorrect and even nonsensical results.
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Fig. 10 Analytically derived relative errors for perturbing the
group [-to-2 scattering cross section.



II1. Conclusions & Recommendations

Perturbation results from MCNP6 are compared against
direct Monte Carlo calculations and analytic solutions. The
results of these calculations show that, a priori, neither the
differential operator method nor the adjoint-weighted
approach is better in all cases.

There is evidence to suggest adjoint-weighted perturbation
theory will yield more accurate results most of the time. For
some simple cases, adjoint-weighted perturbation theory
produces exact results.  However, there are notable
exceptions and even pathological cases (e.g. the group 1-to-2
scattering perturbation in the infinite medium problem)
where adjoint-weighted perturbation theory will always
produce results far less accurate than even the first-order
differential operator approach.

Users are therefore urged to exercise caution when using
either perturbation theory method. This should come as no
surprise, as perturbation theory is, by definition, inherently
approximate except in simple cases. Never should one
assert that either method, in general, produces results more
accurate than the other. Nonetheless, perturbation theory
provides a useful tool to efficiently probe a design space or
compute sensitivity coefficients and its use is encouraged to
this end so long as care is taken.

A future subject of study is determining conditions for
which each method is appropriate, or, conversely, types of
calculations that are best avoided with either method. Such
diagnostics would be useful for informing a designer which
method is most appropriate for the problem of interest.

For MCNP6 (and other related codes) development, the
following recommendations are made based on this research:

e The differential operator approach should account for
perturbations to the fission source. This has been shown
to greatly improve the accuracy of the calculation, albeit at
added cost.

e Higher-order and cross-terms for the differential operator
should be developed and implemented; while this comes
with increased cost, for some problems the cost may be
Jjustified.

e For adjoint-weighted perturbation theory, the effect of
changes to the scattering laws and fission emission spectra
should be incorporated.
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