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SIMULATION OF THE CONSISTENT
BOLTZMANN EQUATION FOR HARD
SPHERES AND ITS EXTENSION TO HIGHER

DENSITIES

Francis J. Alexander, Alejandro L. Garcia*and Berni J. Alder
Institute for Scientific Computing Research L-{16

Lawrence Livermore National Laboratory

Livermore, California 94550

The direct simulation Monte Carlo method is modified with a post-collision displacement
in order to obtain the hard sphere equation of state. This leads to consistent thermodynamic
and transport properties in the low density regime. At higher densities, when the enhanced
collision rate according to kinetic theory is introduced, the exact hard sphere equation of state
is recovered, and the transport coeflicients are comparable to those of the Enskog theory. The
computational advantages of this scheme over hard sphere molecular dynamics are that it is

significantly faster at low and moderate densities and that it is readily parallelizable.

1 Introduction

The direct simulation Monte Carlo (DSMC) method is a particle-based, numerical scheme for
solving the nonlinear Boltzmann equation {1, 2, 3]. Rather than exactly calculating successive

hard sphere (HS) collisions, as in molecular dynamics (MD) [4], DSMC generates collisions
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stochastically with scattering rates and post-collision velocity distributions determined from
the kinetic theory of a dilute gas. DSMC encounters the usual inconsistency of the Boltzmann
equation, namely, it yields the transport properties for a dilute gas of hard spheres of diameter
o, yet results in an ideal gas equation of state (implying ¢ = 0) [5]. In this paper, a modification
to DSMC is introduced which removes this inconsistency and, in fact, recovers the exact HS
equation of state at all densities.

The DSMC method solves the Boltzmann equation by using a representative random sample
drawn from the actual velocity distribution. In the simulation, the state of the system is given
by the positions and velocities of particles, {7;, 7;}. The system evolves in two steps, advection
(or free streaming) and collision. In free streaming, particles are propagated for a time At as
if they did not interact. In other words, their positions are updated to 7; + 7; Af. Any particles
that reach a boundary are reflected according to the boundary condition (e.g., specularly or
diffusely).

After the advection step, the particles are sorted into cells to evaluate the collisions in the
gas. Particles within a cell are randomly selected as collision partners according to the collision
probabilities derived from dilute hard sphere kinetic theory. Conservation of momentum and
energy provide four of the six equations needed to determine the post-collision velocities. The
remaining two conditions are selected stochastically with the assumption that the direction
of the post-collision relative velocity is uniformly distributed on the unit sphere. The spatial
“coarse-graining” of particles into cells allows two particles to collide by simply being located
within the same cell. Since only the magnitude of the relative velocity between particles is
used in determining their collision probability, even particles that are moving away from each
other may collide.

The DSMC scheme is only accurate when the time step is a fraction of the mean collision
time and the cell volume is a fraction of a cubic mean free path. Because each particle in
the simulation represents an effective number of molecules in the physical system, macroscopic
systems may be accurately modeled by using as few as 10* — 10° particles, with at least 20
particles per cubic mean free path [6]. A more detailed description of the standard DSMC

method may be found in References [1] and [2].

The DSMC method was developed for use in rarefied gas dynamics to compute flows at




high Knudsen number (ratio’of mean free path to characteristic length) [7]. The algorithm
has been thoroughly tested over the past 20 years and found to be in excellent agreement
with both experimental data [8, 9] and molecular dynamics computations [10, 11]. Recently, it
was proved that DSMC is equivalent to a Monte Carlo solution of an equation “close” to the
Boltzmann equation [3]. The DSMC method has also been useful in the study of nonequilibrium

fluctuations [12], chemically reacting systems [13, 14] and nanoscale hydrodynamics [15).

2 Non-ideal Gas DSMC

To obtain a consistent equation of state, DSMC must be modified in the collision step to
include the extra separation, d ([cf] = ¢), that the particles would have experienced if they had
collided as hard spheres. Consider for simplicity a one-dimensional system with two hard rods
of length ¢ initially traveling toward each other. They collide when their centers are a distance
o apart. After the collision, the distance between centers will be larger than the separation
between similarly colliding point particles by a distance 20 [16]. For hard spheres in three

dimensions this effect generalizes to a displacement, d-
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where the incoming velocities of the colliding particles 1 and 2 are ¢; and ¥, and the post-
collisional velocities are v’ 1 and o 2 respectively; @, is the relative velocity. Thus, particle 1
is displaced by the vector distance d and particle 2 by —d. See Figure 1 for an example. In
the low density limit the displacement yields the correct second virial coefficient. The average
projection of the velocity change onto the line connecting centers of colliding particles after
displacement, (7; - Ad;), the virial, resulting from this procedure is that of hard spheres at all

densities.

3 Dense Gas DSMC

If, in addition to the displacement, d, the Boltzmann collision rate is scaled by the so-called

Y -factor, the enhanced probability of a collision due to the volume occupied by the spheres.

a model in the spirit of Enskog results [18]. This density dependent Y factor can be obtained




from the HS equation state as determined by Monte Carlo and MD simulations and expressed

in the Padé form [17]

14 0.05556782ban + 0.01394451b3n2 — 0. 0013396b§n3
1 — 0.56943218byn + 0.082890113n ’

Y{n) = (2)

where by = (2/3)ro? is the HS second virial coefficient. Collisions within a cell are generated
with a rate A(n*) = Y(n*)Ag(n*), where n* = no3 is the reduced particle number density

and Agg is the Boltzmann collision rate:

Ago(n) = 2N,no?\/nkpT /m. (3)

In this expression kp is the Boltzmann constant, and T is the temperature, m is the particle
mass and N, is the number of particles in a given cell. In the Enskog approximation, the mean

free path for a dense gas is A = 1/(v27rnY (r)o?) [18].

4 Computer Simulations

A series of computer simulations tested this model with the units determined by setting m = 1,
¢ = 1, and kgT = 1. The equilibrium pressure as a function of density can be determined
from the virial and also by measuring the normal momentum transfer across a plane. Both
procedures yield the HS equation of state within 1% for all densities (see Fig. 2) when the time
step is less than 0.03 mean collision times. From the hydrodynamic expression for the direct
scattering function, S(k,w), [19], the sound speed obtained from the location of the Brillouin
peak is in agreement with HS MD at low densities. At the higher densities, the Rayleigh and
Brillouin peaks are not well separated, and accurate measurements of the sound speed cannot
be made in this way. Furthermore, the radial distribution (pair correlation) function is that of a
perfect gas so that the compressibility, as determined from the density fluctuations in a volume
V, xT = (6n?)V/kgTn? is that of a perfect gas and does not agree with xr = (3 logn/dp)r
as obtained directly from the equation of state.

The self-diffusion coefficient, D, is measured using the Einstein relation,

= ’é‘t’ T\T Z(rt - 7:;(0))2) (4)




where IV is the number of particles in the system and ¢ is the {long) time over which averages
are taken. For densities up to n* = 0.3 there is good agreement (within 5%) with hard sphere
MD and the Enskog self-diffusion prediction. However, at higher densities, the agreement
fails because the post-collisional particle displacement d is of similar or larger magnitude than
the mean free path. Also, as mentioned above, structural effects found at high densities in
hard spheres are absent in this model and the backscattering events at these densities are not
reproduced (i.e., there is no "caging”).

The shear viscosity was measured by both equilibrium (Einstein relation and transverse
current correlation function) and nonequilibrium (Poiseuille low and relaxing velocity sine
waves) techniques. For the thermal conductivity only the Einstein relation was used. The
transport coefficients as functions of density are shown in Figures 3 and 4. For the shear
viscosity, there is good agreement with both Enskog theory and HS MD at lower densities. At
higher densities the measured shear viscosity shows better agreement with HS MD than does
Enskog theory.

Poiseuille flows for various densities were generated in a channel by applying a constant
external force on the particles parallel to the walls. At the walls, a thermal boundary condi-
tion was used; that is, particles colliding with a wall were emitted with a biased Maxwellian
distribution at temperature T. The resulting velocity profile (See Figure 5) was fit assuming

a parabolic form,
- ‘TIF 2 2
Ulz) = (-.2-;)((14/2) = 2°) + Ustip, (5)

where Uy, is the slip velocity at the walls, F' is the force applied to the fluid, and L is
the channel width. As can be seen in Fig 3, the viscosity obtained in this way agrees with
alternative methods.

The Einstein relation allows one to assess the separate contributions to the transport coef-
ficients. In HS MD there are two ways to transfer momentum and energy, namely by streaming
and collisions. The former, the kinetic transport, is due to the motion of the particle. while
potential transport consists of momentum and energy being instantaneously transferred in a
collision from the center of one sphere to the center of its collision partner. The shear viscos-

ity and thermal conductivity may then be decomposed into three distinct parts: the kinetic,
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potential, and cross contributions [20]. These separate terms can also be determined from the
Enskog theory of hard spheres [18].

In the model presented in this paper the kinetic contribution to the fluxes is the same as
that for uncorrelated hard spheres as given by the Enskog theory. The collisional transport,
however, has two parts: exchange between colliding particles (which are in the same cell) and
post-collision displacement. The viscosity, for example, then has the form

= QVkBTt ,/va(s Joyi(s)ds + Z (v’“ Vai )i + Z (Uzzd )]) (6)
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where y;; is the y-component of the distance between colliding particles ¢ and j and d,, is the
y-component of d. The first term accounts for the kinetic transport; the second term for the
transfer of momentum over the distance separating colliding particles ¢ and j, and the last
term for the post-collision displacement. The second term in (5) corresponds to collisional
momentum and energy transfer on a length scale on the order of a cell size. In both standard
DSMC and its dense gas extension, the transport coefficients depend (weakly) on cell size Ay,
vet this effect is small when Ay is less than the mean free path [21]. In the limit of cell size
tending to zero, this “grid error” vanishes (since y;; — 0). For all cases shown in Figure 3, the
grid error was within the error bars of the measured transport coefficients.

Good agreement with Enskog theory is found for the kinetic and cross terms of the shear
viscosity and thermal conductivity at all densities [22]. The potential term in the shear viscosity
is about twice that predicted by the Enskog theory; for thermal conductivity the potential term
was about 25% larger than the Enskog predicted value. A kinetic theory explanation for these

differences between the Enskog model and the present model is in progress.

5 Efficiency

The model presented here runs with nearly the same efficiency as standard DSMC at low
densities. The calculation of displacements and the use of the Y factor only increase the
computational cost by one or two percent. At low densities, HS MD is inefficient because of
the large number of possible collision partners within a neighborhood of a few mean free paths
[23]. The number of operations per collision per particle with hard sphere dynamics grows

as n~? at low densities, while it is independent of density for DSMC. In comparison with a




scalar hard spheres molecular dynamics code, the dense gas DSMC scheme runs two orders of
magnitude faster for n* = 0.01414. This advantage can be further enhanced by running on a
parallel architecture [24].

At high densities, the dense gas DSMC method becomes ineflicient compared with HS MD.
The reason is that a cell the size of a mean free path, namely one which is roughly 1/10 of a
HS diameter represents only a small fraction {1/1000) of a single hard sphere particle. Thus 20
million particles are required to represent 1000 HS particles, assuming 20 DSMC particles per
cell. On a single processor computer, HS MD and dense gas DSMC are of comparable efficiency
at n* =~ 0.3, while on a massively paralle] machine (with 1000 processors) this “break-even”

density increases to n* ~ 0.7.

6 Conclusions

In this paper a modification of the DSMC algorithm which extends the method to dense gases
is described. Computer simulations of this method yielded the equilibrium thermodynamic
and nonequilibrium transport properties. In general, for all properties good agreement was
found with HS MD at densities less than n* = 0.3. Further exploration of the effects of time
step, spatial grid, effective number, and overall system size is necessary for more quantitative
comparisons.

Direct simulation Monte Carlo has been a popular method for the simulation of hydrody-
namic flows of high Knudsen number where conventional Navier-Stokes solvers are inaccurate.
Since most DSMC applications have been in rarefied flows, the method’s restriction to ideal
gases has not been viewed as a major drawback. This dense gas version of DSMC will extend
the method’s utility to a variety of new problems. which involve not only very low density
gases, but moderate density as well. These include the study of cold boundary layers in high

altitude flows and strong shocks [25].
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8 Figure Captions
e Figure 1. Schematic illustration of the displacement occurring after a collision.

e Figure 2. Pressure {(normalized by ideal gas pressure) as a function of number density

for a time step of At = 0.04)/(v) and the cell width is A. The solid line is HS MD.

e Figure 3. Viscosity versus number density as measured using the Einstein relation (cir-

cles), transverse current correlation function (diamonds), velocity sine wave decay (tri-




angles) and Poiseuille flow (squares); the solid line is Enskog theory and the dashed line

is HS MD.

e Figure 4. Thermal conductivity versus number density as measured using the Einstein

relation (circles); the solid line is Enskog theory and the dashed line is HS MD.

e Figure 5. Velocity versus position in a channel of length L for n* = 0.1414, The solid
line is the quadratic fit of the data. The cell width is 0.38)\, and the time step is

At = 0.038)/(v).
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