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Abstract

This paper examines the conceptualization of multiphase flow processes on the
macroscale, as needed in field applications. It emphasizes that upscaling from the
pore-level will in general not only introduce effective parameters but will also give
rise to “effective processes,” i.e., the emergence of new physical effects that may
not have a microscopic counterpart. “Phase dispersion” is discussed as an example
of an effective process for the migration and remediation of non-aqueous phase
liquid (NAPL) contaminants in heterogeneous media. An approximate space-and-
time scaling invariance is derived for gravity-driven liquid flow in unsaturated two-
dimensional porous media (fractures). Issues for future experimental and theoretical
work are identified. :

1. Introduction
Key to the characterization of subsurface contamination conditions, and to the
design and implementation of effective remediation strategies, is an understanding
of the physical, chemical, and biological processes that affect the behavior of
contaminants in the subsurface environment. This paper is mainly concerned with
multiphase flow processes that are relevant to contamination by non-agueous
phase liquids (NAPLs), such as organic solvents and hydrocarbon fuels. The chief
contaminant migration processes are: 3-phase flow of water, air, and NAPL; phase
partitioning of NAPL (evaporation into the gas phase, dissolution in the aqueous
phase; sorption on the solid phases); and diffusive transport in any of the phases
present. Difficulties in achieving a sound mechanistic understanding of these
processes arise from their inherent complexity, and from the complexity and
attendant uncertainty of the hydrogeologic environment in which these processes
- are being played out.

2. Scale Effects
Although a detailed understanding of multiphase flow processes from first
principles is desirable, even where it can be achieved it may only provide a limited
basis for understanding and controlling natural systems. The difficulties arising on
the typically large space and time scales encountered in the field have been
variously described with catchwords such as “heterogeneity,” “complexity,”
“upscaling”, and “volume averaging.” Volume-averaging of the microscopic
equations for multiphase flow in porous media gives rise to complicated integrals




(Whitaker, 1986) which, for practical applications, must be replaced with
phenomenological expressions. It is well accepted that description of processes on
the larger field scales will generally require “effective parameters.” These may differ
from their laboratory-scale counterparts not only in numerical value but also
conceptually, and may depend on the flow process under consideration. Examples
include anisotropic effective permeability for unsaturated flow in media with
stochastic heterogeneity (Yeh et al., 1985a, b, ¢; Mantoglou and Gelhar, 19874, b,
c), and effective or “apparent” thermal conductivities of soils that incorporate
contributions from pore-scale vapor-liquid phase change processes (Cass et al.,
1984).

It is not always appreciated that volume-averaging of laboratory-scale equations,
such as equations for advection-diffusion processes, may not only lead to effective
parameters but also to effective processes: the appearance of new terms in the
governing equations that represent continuum approximations of the overall effects
of microscopic processes played out in complex settings: The premier example
here is hydrodynamic dispersion of solutes, i.e., the effective diffusive behavior of
solutes being advected in stochastic permeability fields. The recent hydrogeology
literature abounds with efforts to derive macroscopic solute dispersion from the
underlying advective and mixing processes in random fields (Sahimi et al., 1986a,
b; Dagan, 1988). Most work in this area has been limited to solute transport in
single-phase flow. Only recently has it been recognized that analogous dispersive
processes may develop during multi-phase miscible and immiscible displacements,
where the dispersing quantity will be the saturation (i.e., fractional void volume)
of a phase (Espedal et al., 1991; Langlo and Espedal, 1992, 1994; Pruess, 1994).

From a mathematical viewpoint, the presence of dispersive processes on a larger
scale gives rise to the emergence of second-order space derivatives in the governing
equations. This is what we mean by “effective process:” the emergence, through
upscaling and volume averaging, of effects that may not have a microscopic
counterpart. Theoretical upscaling is only one approach by which effective
processes may be identified; an alternative and more direct approach would be
through physical or numerical experimentation on the appropriate scale, and
subsequent direct conceptualization of the phenomena. This is in fact the route that
Scheidegger (1954) took when he introduced the concept of hydrodynamic
dispersion, by suggesting to treat solute transport in porous media in analogy to
Brownian motion.

3. Spreading of Liquid Plumes in the Vadose Zone

Localized infiltration of aqueous and non-aqueous phase liquids (NAPLs) occurs in
many circumstances. Examples include leaky underground pipelines and storage
tanks, landfill and disposal sites, and surface spills. If the permeability of the
medium in which the spill occurs is sufficiently high the flow will be dominated
by gravity effects. In this case liquids will move primarily downward, but




“straight” downward flow is only possible when appropriate permeability is
available in the vertical direction. Liquids flowing downward in unsaturated soils,
or in large (sub-)vertical fractures, may encounter low-permeability obstacles, such
as silt or clay lenses in soils, or asperity contacts between fracture walls. The
liquid will then pond atop the obstacles and be diverted sideways, until other
predominantly vertical pathways are reached (Fig. 1).

The conventional treatment of liquid percolation through unsaturated media
includes gravity, pressure, and capillary effects. Mass flux in phase B is written as
a multi-phase generalization of Darcy’s law,

k
Fg = - ku—r:pB(VPB - pe) 1.

Here k is absolute permeability, k. is relative permeability, | is viscosity, p
density, Pg is pressure in phase 3, and g is gravitational acceleration. Additional
molecular-diffusive fluxes, not written in Eq. (1), may also be present. Horizontal
flow diversion from media heterogeneities can be represented only if such
heterogeneity is modeled in full explicit detail. In practical applications, explicit
numerical modeling of small-scale
heterogeneities would require
prohibitively large numbers of grid
blocks, because heterogeneities
occur on many different scales.
Using our general-purpose
numerical simulation code
TOUGH2 (Pruess, 1991), enhanced
with a set of preconditioned
conjugate gradient solvers (Moridis
and Pruess, 1995), we have
performed high-resolution
numerical simulation experiments
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Figure 1. Schematic of liquid e b opy oo dor D1€ overa

infiltration in an unsaturated heterogeneous effects of heterogeneity may be
medium. Regions of low permeability approximated by means of an
(shaded) divert flux sideways and cause a effective porous continuum. As an
lateral spreading of the infiltration plume. example, Fig. 2 shows a 2-D

vertical section of a medium that
features a random distribution of impermeable horizontal obstacles. This kind of
heterogeneity structure may be encountered in shallow sedimentary soils, where
the impermeable obstacles would represent shale, silt, or clay bodies (Begg et al.,
1985). Detailed specifications for this system are given in Table 1. Similar
parameters may also be applicable to fractures in hard rocks, in which case the
obstacles would represent asperity contacts between fracture walls.




3.1 Numerical Simulations

From simulations of single-phase flow in the medium of Fig. 2 we find that
effective horizontal and vertical permeabilities are k;, = 7.5 and k, = 1.2 darcies,
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Figure 2. Two-dimensional vertical

section of a heterogeneous medium with a
random distribution of impermeable

obstacles (black segments).

Table 1. Parameters for test problem
with detailed explicit heterogeneity.
Permeability k = 1011 m?
Porosity o =0.35
Relative Permeability
van Genuchten function (1980)
irreducible water saturation Sy =0.15
exponent A= 0.457
Capillary Pressure
van Genuchten function (1980)
irreducible water saturation | S;, = 0.0, 0.15°
exponent A =0.457
strength coefficient a=5m!
Geometry of Flow Domain
2-D vertical (X-Z) section
width (X) 20 m
depth (Z) 15m
gridding AX=25m
AZ =.125m
Initial Water Saturation
for 6.5 <X £13.5m
and -35<Z<0m §;=0.99
remainder of domain $;,=0.15

respectively (anisotropy
ratio of ky/k, = 6.3).
Emergence of a large-scale.
permeability anisotropy is
not the only effect arising
from the heterogeneities,
however. A more subtle
effect becomes apparent
when placing a localized
plume of enhanced liquid
saturation into the
medium, and permitting it
to flow in response to
gravitational force. Plume
behavior is analyzed by
evaluating spatial
moments (Sahimi et al.,
19864, b; Freyberg, 1986;
Essaid et al., 1993). An
effective transverse
dispersivity for a localized
plume is then calculated
as

1d
oy = '2-5(0'1'2) (2)
where z is the vertical
center-of-mass coordinate
of the plume, and o2 is
the mean square plume
size (variance) in the
transverse (horizontal)
direction.

Fig. 3 shows a
simulated water
infiltration plume in the
medium of Fig. 2 for a
case where capillary
pressure is neglected. In
this case flow proceeds in
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Figure 3. Simulated infiltration plume

in the medium of Fig. 2 after 2x105 seconds,
without capillary pressure. Initially, the
plume has a uniform water saturation of S, =
.99 and occupies the region indicated by the
black rectangle at the top of the figure.
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Figure 4. Transverse dispersivities for
plumes with increasingly strong capillary
pressures: (1) no Pcap, (2) moderate Peap (Si
= 0.0), and (3) strong P¢ap (Sy = 0.15).

the form of narrow seeps
(fingers), while inclusion of
capillary pressures dampens
out the fingers and produces a
smoother saturation
distribution (not shown)..
Using Eq. (2) to analyze for
effective transverse
dispersivities we obtain the
results shown in Fig. 4. It is
seen that after some early-
time transients, transverse
dispersivities stabilize at very
nearly constant values of 1.2,
1.7, and 2.0 m, respectively,
for the cases of (1) no
capillary pressure, (2) weaker
and (3) stronger capillary
pressure. These results as well
as others not shown here
indicate that transverse plume
spreading from intrinsic
heterogeneities of porous
media may proceed as a
Fickian diffusion process. We
conclude that the
heterogeneous medium of
Fig. 2 behaves like an
effective dispersive medium.

To represent dispersion
within a continuum
framework requires adding
another term to the flux
expression Eq. (1). The

“phase-dispersive” liquid flux may be written (Pruess, 1995)

.Y
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where e, and e, are unit vectors in x and y-directions, respectively.

3.2 Dispersion Model
The dispersive behavior of a medium with homogeneous “background”
permeability and a random distribution of embedded impermeable obstacles, such




as shown in Fig. 2, can be derived from a simple model. Consider a localized seep
where liquid is flowing straight downward, until a horizontal impermeable obstacle
of width d is encountered. Assume that the seep splits into two seeps of equal
strength which, in the center-of mass (COM) coordinate frame, are located at x =
+d/2 and x = -d/2, respectively. Then the variance increases by

Ac? = %{(+d/2)2+(—~d/2)2} = d*/s @

In a statistically homogeneous medium, the average width of an obstacle will be
independent of position, and the number of obstacles encountered will be
proportional to the vertical distance traveled. Under these conditions the variance of
a seep will, on average, grow linearly with vertical distance. Consequently, from
Eq. (2), the associated dispersivity will be constant, i.e., the seep will be subject
to a diffusion-like spreading. Denoting with T the probability of encountering an
obstacle over a vertical migration distance D, the transverse dispersivity can be
expressed, using Eqgs. (2, 4), as

wp = LI& )
2D 4

For the medium of Fig. 2, the obstacles have widths in the range 2 m<d <4
m, with an average d = 2.67 m. The obstacles are randomly placed in rows with a
vertical .distance D = 0.5 m, and their combined length is 2/3 of the length of a
row. Thus, the probability of hitting an obstacle while migrating over a vertical
distance of 0.5 m is T = 2/3. Inserting these parameters into Eq. (5), we obtain O
= 1.19 m, in excellent agreement with the value derived from the numerical
simulation (see Fig. 4).

On theoretical grounds we expect dispersion effects from medium heterogeneities
and from capillarity to be additive (Pruess, 1995). The capillary dispersivity is
given by (Pruess, 1994)

o _ kp 1 dPep ©)
BT 7 ky prg dinkg

Capillary dispersivity is close to 0.5 m over a wide range of saturations for the
moderately strong capillary pressure function used in our numerical plume
migration experiments (Pruess, 1994). This is in excellent agreement with the
difference in dispersivities seen between cases (1) and (2) in Fig. 4, confirming
that heterogeneity- and capillary-derived transverse dispersivities are additive.

4. Dependence on Space and Time Scales
The migration of liquids through the unsaturated zone proceeds under the combined
action of gravity, capillary, and pressure forces. Within a continuum framework,




the governing equatjons‘ for multiphase, multicomponent flows can be written in
integral form as (Pruess, 1991)

% [ M<av, = [FFendr, -

Vn rn
Here we have for simplicity neglected sink and source terms. MX is the mass of
component K per unit porous medium volume, F¥ is the mass flux of component
K, V, is an arbitrary subdomain of the flow system under study, I', is the closed
surface bounding V,, and n is the unit normal pointing into V,. Both M¥ and F*
include a sum over all phases in which component x may be present. We are
interested in the behavior of multiphase systems under a change of space and time
scales. For simplicity consider a two-dimensional heterogeneous porous medium,
such as a sub-vertical fracture in hard rock with negligible matrix permeability.
Let us apply a simultaneous scaling to time t and to horizontal and (sub-)vertical
space coordinates, X and z, respectively

t = t=Aht
X = X =Agx ®)

z = =%,z

Under the transformation Eq. (8), subdomain volumes scale by A, A,, so that the
left band side (Lh.s.) of Eq. (7) scales by A, A,/A,. On the r.h.s., scaling behavior
is different for horizontal and vertical areas, and is also different for gravity-driven
flow as compared to capillary- or pressure-driven flow. Interface areas for
horizontal and vertical flow scale by A, and A,, respectively. The gravity (body
force) flux term remains unchanged under the scaling Eq. (8), while pressure and
capillary-driven fluxes, being proportional to (capillary) pressure gradients, scale as
1/A; and 1/A, for horizontal and vertical components, respectively. The
expressions resulting from moving all scaling factors arising from the
transformation Eq. (8) to the Lh.s. of Eq. (7) are shown in Table 2. To obtain
scaling invariance, space and
time scale factors must be
chosen in such a way that
the expressions given in
flow terms Table 2 are equal to 1. It is
seen that this cannot be
achieved simultaneously for
(capillary) pressure and
gravity terms. Therefore,
flow processes involving

Table 2: Scale factors for flow equations.

components horizontal vertical

capillary and pressure | A, 2/A, A2 A,

gravity - Ay

these different driving forces simuitaneously will be different on different scales.
However, an approximate scaling invariance may hold when dense liquids percolate
downward in an unsaturated medium. For such flows the gas phase may be
considered a passive bystander at constant pressure. For the liquid phase horizontal




flows are driven solely by pressure and capillary forces, while (sub-) vertical flows
are dominated by gravity. If capillary and pressure forces on vertical flux
components are small relative to gravity effects, an approximate invariance will
hold if A2/A, = A\, =1, ie,

M =02=1, ®-

Numerical simulation experiments were performed to test the approximate
scaling relationship Eq. (9). Fig.5 shows a two-dimensional heterogeneous -
medium that was generated
with geostatistical techniques
to represent “small” fractures
in hard rock. It features fairly
short-range spatial correlations
and numerous asperity contacts
9 (regions of zero permeability)
E¥! permeabiliiy ~ Where the fracture walls are in
Modifier contact. Apart from the

different permeability

S e % it structures, problem parameters
80 50 10.0 150 20.0 are as given in Table 1.
Distance (m) Strength of capillary pressure

was scaled consistently with

Figure 5. Stochastic permeability field, with  permeability (Leverett, 1941),
correlation lengths of {, =0.2m, {; = 0.1 m. Le., Pop(k’) = Pcap(k)”"k/k"
' Flow simulations were then
performed by placing a square
liquid plume of saturation S, =
0.99 at the top, center, of the
domain, and letting it migrate
under the combined action of
gravity, capillary, and pressure
forces. The liquid plume after
105 seconds is shown in Fig.
6. Another simulation was
. performed for a scaled flow
system with A, =5, and A, =

Distance (m) M =25, as required by Eq. (9).
Fig. 7 shows the liquid plume
in the scaled system after the
scaled time (25 x 105 seconds).
Comparison with Fig. 6
shows that the two plumes are

Depth (m)

5.0 T0.0 5.0

Figure 6. Simulated liquid infiltration plume in
the medium of Fig. 5, after 10° seconds. The
black square indicates the region originally
occupied by the plume.




very similar, although minor differences are also apparent. This confirms the
validity of the approximate scaling relationship Eq. (9) for the particular flow
system and process considered here.

5. Discussion and Conclusions

In the simulations presented above water was used as the liquid phase, but similar
results would be obtained for NAPL migration in the unsaturated zone.
Dispersivities from permeability heterogeneity would be the same for water and
NAPLs, while capillary effects would be weaker for the latter. Phase dispersion
effects are therefore expected to be relatively more prominent for NAPLs.

The phase dispersion and

Depth (m)

0.0
scaling analyses in this paper
100 were made for two-dimensional
porous media, so that they are
immediately applicable only to
-200 flow in fractures, and to
conditions where flow can be
300 approximated as proceeding in

2-D vertical sections. It would
be of interest to generalize
these analyses to 3-D media.
Distance (m) Fickian-type dispersive

; behavior from medium

Figure 7. As Fig. 6, but for scaled flow system heterogeneities is by no means

with A, =5, A, = 25, after 25 x 10° seconds.

25.0 50.0 750

inevitable or universal. In fact,
for certain heterogeneity
conditions and spatial scales infiltration plumes may show “antidispersive”
behavior, becoming more narrowly focused with depth (Kung, 1990). Laboratory
and field experiments are needed to evaluate the range of heterogeneity conditions
that would give rise to dispersive plume spreading, and to examine the validity of
the space- and time-scaling invariance proposed above.

NAPL remediation techniques such as soil vapor extraction, or surfactant-
enhanced solubilization and extraction, must rely for their efficiency on interphase
mass transfer between the NAPL phase on the one hand, gaseous and aqueous
phases on the other. Interphase mass transfer depends on small-scale details of
NAPL phase distribution, such as the contact area between NAPL and surrounding
phases. At small (irreducible) saturations NAPLs are not spread out volumetrically
throughout the pore space; rather, they are present as thin threads, called “ganglia”,
whose length and thickness typically may be of the order of 1 m and 1 mm,
respectively (Hunt et al., 1988). This will cause limitations for interphase mass
transfer, and may seriously limit the rate at which NAPL may be removed. It is
obvious that these kinds of details cannot be predicted from continuum approaches
to flow.




In order to achieve engineering control over remediation processes, it may be
necessary to employ several different conceptualizations of the flow system
simultaneously, so that process aspects on different scales may be resolved.
Volume-averaged continuum models can be used to evaluate overall migration of
the contaminant plume, and to assess and achieve adequate volumetric coverage for
a remediation process. More detailed models, perhaps going down to pore-level
phenomena, may be needed to describe the actual distribution of NAPL and its.
interaction with surrounding gas and aqueous phases, or heat. It may even be
possible to combine the large-scale volume-averaging approach with a detailed
description of NAPL seeps and ganglia, using statistical techniques borrowed from
petroleum reservoir engineering (Chesnut, 1992). Only through imaginative use of
different conceptualizations for phenomena on different scales, closely coupled
with experiments and site characterization efforts, wxll it be possible to devise and
unplement effective remediation strategies.
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