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1.0 Introduction

In a collaboration involving General Atomics, the A. F. Ioffe Physical-Technical Institute,
and the Princeton Plasma Physics Laboratory, the energy distribution of the fast-confined alpha
particles in DT experiments on TFTR is being measured by active neutral particle analysis using the
ablation cloud surrounding an injected impurity pellet as the neutralizer[1]. Recent papers reported
the first measurements of the energy distribution fast confined alpha particles[2] and examined the
influence of magnetic field ripple and sawtooth oscillations on the behavior of the alpha energy
spectra and radial density distributions[3]. This paper focuses on alpha and triton measurements in
the core of quiescent TFTR discharges where the expected classical slowing down and pitch angle
scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity.

2.0 Pellet Charge Exchange (PCX) Diagnostic and Data Analysis
A toroidally extended ablation cloud forms around the pellet when it is injected into a
plasma. A small fraction of the fusion alphas incident on the cloud are converted to helium neutrals
as a result of electron capture processes. The escaping helium neutrals are mass and energy
analyzed using a high energy (0.5 - 4.1 MeV for 4He) neutral particle analyzer developed by the
Ioffe Institute[4]. The neutral particle analyzer views the radially injected pellet from behind at a
toroidal angle of 2.759 to the pellet trajectory. Thus only near perpendicular energetic ions with
velocities close to vii/v = 0.048 are detected by the PCX diagnostic. The radial position of the
pellet as a function of time is measured using a linear photodiode array situated on the top of the
vacuum vessel. By combining this measurement with the time dependence of the PCX signal,
» radially resolved fast ion energy spectra and density radial profiles can be derived with a radial
resolution of ~ 5 cm. Further details on the PCX diagnostic have been presented elsewhere[S5,6],

¢ including results obtained on the measurement of RF-generated energetic ion energy distributions.
By measuring of the energy distribution, dn,/dE, of helium neutrals escaping from the

plasma, the energy distribution of the incident alpha particles, dn,/dE, can be determined using:
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where F,(E) is the equilibrium fraction of incident alphas neutralized in the cloud as a function of
alpha energy. The value of F,(E) is obtained from modeling calculations[9]. The experimental

data are compared with modeling results obtained with the TRANSP[7] Monte-Carlo Code and
with a specially developed Fokker-Planck Post Processor (FPP) code. TRANSP follows the
orbits of alphas as they slow down and pitch angle scatter by Coulomb collisions and takes into
account the spatial and temporal distributions of background plasma parameters for each particular
shot. Since the Monte-Carlo methods used in TRANSP give noisy results, we developed the FPP
post processor code based on a numerical solution of the drift-averaged Fokker-Planck equation[8]
which uses the pitch angle integrated alpha source distribution provided by TRANSP. The
TRANSP and FPP calculations agree well when the modeling basis for both codes are applicable.

3.0 Alpha Particle and Triton Measurements
The alpha particle distributions measured by the PCX diagnostic can be influenced by the
effects of classical slowing down and pitch angle scattering, toroidal magnetic field ripple and
sawtooth activity. In order to separate the classical behavior from the other effects, PCX Li pellet
active measurements of the slowing down alpha spectrum were obtained in the plasma core during
a quiescent DT discharge (#78607) and the triton spectrum from a similar DD discharge(#78601)
as shown in Fig. 1. Note that the error bars in Fig. 1 only reflect the statistical errors due to the
counting statistics. The basic discharge parameters were: R =2.52 m, a = 0.8 m, Pp ~ 20 MW
with Ip ramped down from 1.7 MA to 1.0 MA
during the 1.3 s duration NBI pulse. The 10°

absolute scale for dn/dE was derived from $“ Alpha
normalization of the PCX data with the e, e, Data
TRANSP modeling results and was made only 104 f E@ J

once for the alpha data as noted in the figure. normalization &1\‘5
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The same normalization is used for the triton
spectrum. Both the shape of the energy spectra

as well as the ratio of the alpha-to-triton signal
agree well with TRANSP simulations. This
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result corroborates the expectation that fusion
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generated alphas and tritons in the core of
quiescent TFTR plasmas are well-confined and
slow down classically.
In the TFTR DT experiments, pellets 10‘00 T 1 1o 20 s
Energy (MeV)
Fig. 1 Comparison of measured alpha and

triton spectra with TRANSP simulation.

typically are injected 0.2 to 0.5 sec after

‘termination of neutral beam heating. This

timing delay leads to deeper penetration of the
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Fig. 2 Calculated equilibrium fractions
for Lithium and Boron,
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pellet as a result of decay of the electron
temperature as well as to enhanced signal-to-
noise ratio because the neutron background
decays significantly faster than the confined
alpha population. Even so, it is advantageous
for PCX measurements to enhance the pellet
penetration further and also to increase the
signal level at higher alpha energies. For these
reasons we investigated the use of boron
pellets in place of lithium. As shown in Fig.
2, for alpha energies above ~ 2 MeV the
calculated equilibrium fraction for boron is
significantly higher than for lithium. The
higher heat of ablation energy of 5.3 eV/atom
for boron compared with 1.6 eV/atom for
lithium should increase the pellet penetration.
In practice, this gain is offset by lower pellet
velocity from the injector due to the larger
mass of boron relative to lithium.
Nevertheless, an increased penetration for

boron pellets ranging up to 20% (~ 12 cm) relative to lithium pellets of comparable mass is

observed experimentally. In order to validate the use of boron, alpha energy spectra were
compared for DT discharges using both lithium (#86225) and boron (# 86228, 89, 81) pellets as
shown in Fig. 3. The boron spectra for the three discharges were normalized to account for small

differences in the plasma conditions. As can
be seen, the shapes of the alpha energy
spectra for lithium and boron pellets are
essentially the same. These measurements
also confirm that for alpha particle energies
above ~ 2 MeV, boron pellets provide a more
effective neutralization target that lithium
pellets. Both pellet types are now routinely
used in PCX diagnostic measurements.
Alpha spectra during the birth and
slowing down phases are shown in Fig. 4.
For the slowing down case (#86291, Pp = 15
MW), the alpha distribution from 1-3.5 MeV
was obtained using a boron pellet 200 ms
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Fig. 3 Comparison of alpha spectra

obtained using Boron and Lithium pellets.




after termination of a 1.0 s beam pulse

Stowing while for the "beam blip" case (#86299,
s Down Pp = 20 MW), the boron pellet was
/ “Beam injected 20 ms after a 0.1 s beam pulse.
5 109 Reasonable agreement is seen between the
s B, data and the FPP code results which
§ 74 include Doppler broadening of the alpha
° 10 4 particle birth energy, Eq, given by
AE(keV) = 182(Tesf)0-5 where Teff = 30
) keV is the effective temperature of the
' deuterium and tritium ions.
103 T T T T T
0 1 2 3 4 5
Alpha Energy (MeV) 4.0 Conclusions
Fig. 4 Alpha energy spectra during birth In the core of quiescent DT
and slowing down phases. discharges in TFTR, good agreement is

observed between the PCX measurements
of the confined, trapped alpha particles and tritons and TRANSP and FPP simulations. This
indicates that alphas and tritons are well confined and slow down classically.
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