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IMPLEMENTATION OF PARALLEL MATRIX DECOMPOSITION FOR NIKE3D
ON THE KSR1 SYSTEM®

Philip S. Sut, Robert E. Fultont, and Thomas Zacharia
ABSTRACT

New massively parallel computer architecture has revolutionized the
design of computer algorithms and promises to have significant influence on
algorithms for engineering computations. Realistic engineering problems
using finite element analysis typically imply excessively large computational
requirements. Parallel supercomputers that have the potential for
significantly increasing calculation speeds can meet these computational
reqruirements. This report explores the potential for the parallel Cholesky
(U'DU) matrix decomposition algorithm on NIKE3D through actual
computations. The examples of two- and three-dimensional nonlinear
dynamic finite element problems are presented on the Kendall Square
Research (KSR1) multiprocessor system, with 64 processors, at Oak Ridge
National Laboratory. The numerical results indicate that the parallel
Cholesky (UTDU) matrix decomposition algorithm is attractive for NIKE3D
under multiprocessor system environments.

1. INTRODUCTION

The emergence of parallel computers has revolutionized approaches to numerical
solutions of large-scale engineering problems. New algorithms are being developed by
researchers in engineering and computer science in order to exploit the tremendous
potential of parallel computing. Parallel computers have thus become important tools to

solve complex and computationally intensive science and engineering problems.

*This research was supported in part by an appointment to the Oak Ridge National
Laboratory Postdoctoral Research Associates Program administered jointly by the Oak Ridge
National Laboratory and the Oak Ridge Institute for Science and Education and was
sponsored by the Division of Materials Sciences, U.S. Department of Energy, under contract
DE-AC05-840R21400 with Lockheed Martin Energy Systems.

TPostdoctoral Research Associate, Oak Ridge National Laboratory, Oak Ridge,
TN 37831-6140.

$Professor, School of Mechanical Engineering, Georgia Institute of Technology,
Atlanta, GA 30332-0405.




Finite element methods are the basis for numerical solutions to engineering
problems. Solving the associated simultaneous equations can take 50% of the total compu-
tation time. Realistic engineering problems using such analysis typically require excessively
large computation times. Parallel supercomputers have the potential for significantly
increasing calculation speeds in order to meet these computational requirements.

This report explores the parallel Cholesky (UTDU) matrix decomposition algorithm
on the NIKE3D finite element code for two-dimensional (2-D) and three-dimensional (3-D)
nonlinear dynamic finite element structural system problems. The algorithm was imple-
mented on the Kendall Square Research (KSR1) supercomputer system at Oak Ridge
National Laboratory (ORNL). Numerical results indicate that the algorithm is highly

adaptive to a multiprocessor system environment, and a significant speed-up is observed.

1.1 NIKE3D FINITE ELEMENT CODE

NIKE3D (ref. 1) is an implicit finite element code for analyzing the finite strain static
and dynamic responses of 3-D inelastic solids, shells, and beams. The finite element formu-
lation accounts for both material and geometric nonlinearities. The code is fully vectorized
and available on several computer platforms. A number of material models are incorporated
to simulate a wide range of material behavior, including elastoplasticity, anisotropy, creep,
thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along
material interfaces, including interface friction and single surface contact. Interactive
graphics and rezoning are available for analyses with large mesh distortions. Several non-
linear solution strategies are available, including full-, modified-, and quasi-Newton methods.
The resulting system of simultaneous linear equations is either solved iteratively by an
element-by-element method or directly by a factorization method, for which case bandwidth
minimization is optional. Data may be stored either in or out of core memory to allow for
large analysis.

As a Lagrangian implicit code, NIKE3D is ideally suited for quasi-static and low-rate
dynamic problems of solids, shells, and beams. NIKE3D uses a small number of relatively
large time steps. A coupled system of nonlinear algebraic equations is solved at each time
step by a linearization and iteration procedure. A robust and efficient nonlinear solution
strategy is an essential capability for the severely nonlinear problems typically solved by
NIKE3D.




Ongoing parallel computation research and development activities at ORNL have
focussed on exploring parallelization of NIKE3D'’s application on a multiprocessor system
such as KSR1. Since the equation solving can use up to one-half of the total computation

 time, exploration of the parallel version of the popular direct matrix factorization algorithm
on the multiprocessor system for the nonlinear problems should be the first step. The
parallel Cholesky (UTDU) matrix decomposition algorithm and skyline data storage scheme

were used for the implementation.

12 KSR1 MULTIPROCESSOR SYSTEM

The KSR1 architecture is a multiprocessor system composed of a hierarchy of rings.
The lowest level, ring:0, consists of a 34-slot backplane connecting 32 processing cells and
2 cells r&sponsibie for routing to the next higher layer ring, ring:1. A fully populated ring:1
is composed of the interconnecting cells from 32 ring:0 rings. A fully configured KSR1
multiprocessor system is composed of 2 layers containing 1024 processing cells along with 2
ring interconnecting cells on each ring:0. Figure 1 shows the hierarchical ring structure of
the KSR1 multiprocessor system.

Each processor contains a 256-KB data cache and a 256-KB instruction cache. The
on-board data and instruction caches are referred to as subcaches. A daughter board con-
nected to each processing cell contains 32 MB of memory referred to as local cache. The
word size of the KSR1 multiprocessor system is 64 bits, and all functional units are based on
64-bit operands. All of the local caches make up the ALLCACHE memory system. The
KSR1 architecture and chip set are designed specifically to support a shared-memory
multiprocessor. Reference 2 provides more detail on the actual implementation. Each
processor has the peak performance of 40 MFLOPS. The KSR1 multiprocessor system at
ORNL has 64 (2 ring:0 rings) processors.

2 PARALLEL MATRIX DECOMPOSITION

The parallel Cholesky (UTDU) matrix decomposition algorithm uses a column-wise

reduction scheme to compute upper triangular and diagonal factors of a sparse symmetric
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® Up to 32 Ring:0s
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Fig. 1. The architecture of the KSR1 multiprocessor system.
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matrix K (refs. 3, 4). The terms Uj of the upper triangular matrix U may be obtained

from:
i-1
le = Kij - E U-‘ Ilj. 1=1' K 'j“l . (1)
==1
and
v, = L1 i=1 I @
13 = D Shysseg .
14

The above equations are evaluated for j = 1,...,n where n is the number of columns in K
The corresponding diagonal terms D;; are computed from:

J-1
DJJ = Ku - .Zl IIJ. U” j=1,...,n . (3)

The decomposition for matrix K proceeds in a column-wise pattern when m, i, and j
are used as inner, intermediate, and outer loop indices. Through the above algorithm, the
factor terms may replace the corresponding matrix terms in memory as they are determined.

From Egs. (1) through (3), it is evident that the envelope of the original matrix and
the factor matrices are identical inside the band; however, zero terms may or may not
become non-zero. In the case of finite element method applications, the sparsity of the
factor matrix is generally less than the sparsity of the original matrix. This *fill-in"
phenomenon is the reason why, in the present algorithm, all in-band zeros are stored and
operated on. Hence, the total number of operations is not an absolute minimum but is time
consuming for additional testing, and skipping would be required in the equation solution to
skip "non-fill-in zeros.”

The Cholesky (UTDU) decomposition algorithm has a high level of inherent
parallelism. In the present procedure, concurrence is realized on the column level, and the
parallel granularity is proportional to the square of the half bandwidth. One processor
computes all terms Uj; (i = 1,...j-1) and the diagonal term D;; in one particular column j

using Egs. (1) through (3). Concurrently, the other processors factorized the neighboring




columns j+1, j+2, etc. However, these tasks are not completely independent. For example,

writing Eq. (1) for column j+1 yields:

11
Ly, = Ki3u ~ E Upi Ly.1,a i=1,...,9 . (4)

=l

For i = j, the term U,

before the previous column is completely decomposed; this is an interprocess

is required to evaluate Eq. (4). Hence, Ly,,; cannot be computed

synchronization point.

If p denotes the number of processors, each column (i.e., each parallel task) has p-1
synchronization points. Software flags and lock variables are used to synchronize the
decomposition procedure when the tasks reach the critical region at the bottom of the
column. The distribution of columns among processors is done in a controlled scheduling
loop, i.e., when a processor has finished its column, it automatically identifies and claims the
next not-yet-decomposed column according to a specific pattern. Figure 2 (ref. 5) illustrates

the parallel decomposition processing algorithm.
3. NUMERICAL EXAMPLES

The parallel Cholesky (UTDU) matrix decomposition algorithm was implemented for
two symmetric, perfect-banded matrices to explore the speed-up performance of the
algorithm. Then, this algorithm was applied to the NIKE3D code and tested for two
nonlinear, dynamic 2-D and 3-D finite element problems. The NIKE3D applications were
run with in-core mode to eliminate the disk input/output timing. All the computations were
performed on the KSR1 multiprocessor system, with 64 processors, at ORNL.

The KSR1 compilers provide two levels of optimization for the object code: one is
the global optimization which is mainly composed of constant folding, common subexpression
elimination, strength reduction, peephole optimization, global register allocation, pipeline
scheduler, argument passing in registers, and subroutine inlining; the other is the automatic
loop unrolling.® These two levels of optimization can reduce a lot of execution time for
most of the serial finite element codes. The new subroutine which contains the parallel

matrix decomposition uses both the global optimization and the automatic loop unrolling.
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Fig. 2. The parallel decomposition processing algorithm.




However, the original NIKE3D code was developed several years ago, and all subroutines
were not considered to be optimized on a supercomputer system such as KSR1. The KSR1
compilers can optimize NIKE3D code up to the second level for the 2-D shell elements case

but not even for the first level for the 3-D solid elements case.

3.1 PARALLEL CHOLESKY (U'DU) MATRIX DECOMPOSITION

There are several test results for the parallel Cholesky (UTDU) matrix decomposition
performance on ihe KSR1 multiprocessor system.© However, all those results are up to
28 processors which are within one ring:0 ring. The results shown here were implemented,
up to 64 processors, which are across two ring:0 rings, and it is important to understand how
the speed-up performance changes when the number of processors is across multiple ring:0
rings. Two test matrices used here are both symmetric and perfect banded. One has
6000 deg of freedom with 600 perfect half bandwidth. The other has 16,000 deg of freedom
with 1600 perfect half bandwidth. Both matrices are stored by use of the skyline matrix
storage scheme as described before. Figure 3 shows the speed-up performance for these two
cases. The speed-up describes the speed advantage of the parallel algorithms compared to
the central processing unit (CPU) time required in a single processor node. For the
6000 deg of freedom case, the performance drops off as the number of processors exceeds
one ring:0 ring. This is primarily due to the delay in frequent references to shared data
across two ring:0 rings. Also, the problem and bandwidth sizes are not big enough so that
the computation can overcome the communication delay. The larger problem, 16,000 deg of
freedom with 1600 perfect half bandwidth, is big enough to have a pretty good speed-up for

up to 64 processors.

32 PIPE WHIP TEST PROBLEM

This transient dynamic analysis simulates the impact of two steel pipes.! The pipes
have 3.3125 in. OD, 0.432 in. wall thickness, and are 50 in. long. The target pipe is
supported with a fixed boundary condition at each end. The second pipe swings freely about
one end with an angular velocity at impact of 50 rad/s. One-half of this symmetric problem
is modeled. Shell elements are used in the model, and a slide surface (type 3) is included
between the pipes. There are 1484 shell elements, 8985 deg of freedom, and 20 time steps
are used with the step size of 5.0 x 10 s. The original serial matrix decomposition
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Fig. 3. The speed-up for parallel Cholesky matrix decomposition.
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subroutine was substituted by the new parallel version subroutine. Also, all subroutines were
recompiled with the KSR1 optimization compiler up to the first and second levels. The
execution time of the optimized parallel version with one processor drops to 2950 s
compared to 6709 s for the serial version without optimization compilation. Figure 4 (ref. 1)
shows the deformed geometry of the pipe whip test problem at several stages of analysis.
Figure S shows the speed-up performance for NIKE3D with the parallel Cholesky (UTDU)
matrix decomposition subroutine. The ideal speed-up curve was drawn by the fact that
56.2% of the code has been parallelized. The performance drops off as the number of
processors exceeds 8 and drops off again as the number of processors exceeds 32. This is
primarily due to the communication waiting of the highly skyline outline, uneven half

bandwidth, and the use of two ring:0 rings.

33 BAR IMPACTING RIGID WALL TEST PROBLEM

This transient dynamic analysis simulates a copper bar of 6.4 mm diam and 32.4 mm
length impacting a rigid wall with an initial axial velocity of 0.227 mm/ps (ref. 1). The
bilinear elastic-plastic material model is used with isotropic hardening. A 90° segment of this
axisymmetric cross section is modeled using 972 solid elements, 3552 deg of freedom, and
80 time steps with a step size of 1.0 x 10®s. Only the new parallel matrix decomposition
subroutine was compiled with up to the second level optimization. The execution time for
the parallelized version with one processor only reduces to 5470 s compared to 6060 s for
the serial version. Figure 6 (ref. 1) shows the stages of deformation at different time
periods. Figure 7 shows the speed-up performance for NIKE3D with the parallel Cholesky
(UTDU) matrix decomposition subroutine. The ideal speed-up curve was drawn by the fact
that 12.6% of the code has been parallelized. The performance drops off as the number of
processors exceeds 24 and drops off again as the number of processors exceeds 32. This is

primarily due to the communication waiting of the skyline outline and the use of two ring:0

rings.
4. CONCLUSIONS

A parallel Cholesky (UTDU) matrix decomposition algorithm and its application on
the NIKE3D finite element code have been presented in this report. The results show that
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Fig. 4. The pipe whip test problem.
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the parallel Cholesky (UTDU) matrix decomposition is attractive for a multiprocessor
computer architecture with local- and shared-memory configurations. The implicit method-
oriented finite element codes, like NIKE3D, are required to solve a very large set of
equations within each time step. The parallelization of the matrix decomposition can save a
lot of execution time, especially for complex problems which have huge numbers of degrees
of freedom and need to use many time steps. The matrix outline, data storage scheme, and
task assignment will affect the performance of the algorithm.

It is believed the results indicate that the parallel Cholesky (UTDU) matrix
decomposition algorithm can provide an attractive strategy for high-performance finite
element computations on multiprocessor, local-, and shared-memory systéms. Further
experience with parallel sparse matrix algorithm would be desirable as well as the parallel
element matrix generation, parallel global stiffness matrix assembly, and parallel force vector

generation.
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