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Spatial, Temporal, and Hybrid Decompositions 
For Large-Scale Vehicle Routing with Time Windows 

RusseJl Bent] and Pascal Van Hentenryck2 

I Los Alamos National Laboratories 
2 Brown University 

Abstract. This paper studies the use of decomposition techlliques to quickly 
find high-quality solutions to large-scale vehicle routing problems with time win­
dows. It considers an adaptive decomposition scheme which iteratively decouples 
a routing problem based on the current solution. Earlier work considered vehicle­
based decomposi tions that panitions the vehicles across the subproblems. The 
subproblems can then be optimized independently and merged easily. This pa­
per argues that vehicle-based decomposit ions, although very effective on various 
problem classes also have limitations. In panicuIar, they do not accommodate 
temporal decompositions and may produce spatial decompositions that are not 
focused enough. This paper then proposes customer-based decompositions which 
generalize vehicle-based decouplings and allows for focused spatial and tempo­
ral decompositions. Experimental results on class R2 of the extended Solomon 
benchmarks demonstrates the benefits of the customer-based adaptive decom­
position scheme and its spatial, temporal , and hybrid instantiations . In particu­
lar, they show that customer-based decompositions bring significant benefits over 
large neighborhood search in contrast to vehicle-based decompositions. 

1 Introduction 

The scale of optimization problems and the need for finding high-quality solutions has 
grown steadily in recent years as optinllization systems are increasingly deployed in 
operational, integrated settings. This trend generates Significant issues for optimization 
research, changing the focus from finding optimal solutions to deliveling high-quality 
solutions under time constraints. This paper examines the underlying algorithmic issues 
in the context of multiple vehicle routing with time windows (VRPTWs), which arise 
in many transportation applications including courier services, the scheduling of repairs 
in telecommunication companies, and supply-chain logistics. VRPTWs are particularly 
interesting in this respect, since instances with as few as 100 customers have not been 
solved optimally despite intense research [?]. Hence finding high-quality so lutions un­
der time constraints for problems with 1,000 customers is a Significant challenge. 

Spatial and temporal decouplings (17] are natural avenues for speeding up opti­
nIlization algorithms. Unfortunately, they do not apply easily to large-scale VRPTWs 
that involve complex spatial and temporal dependencies. To remedy this linllitation, 
the concept of adaptive decoupling was proposed in (4] . Its key idea is to iteratively 
select subproblems that are optinllized independently and reinserted into an existing 



solution. The successive decouplings are adaptive as they depend on the current solu­
tion, not simply the instance data. The benefits of this approach were demonstrated by 
a vehicle-based adaptive spatial decomposition VASD scheme which produces high­
quality solutions significantly faster than large neighborhood search (LNS) on the class 
RCI of the extended Solomon benchmarks. Informally speaking, the VASD scheme 
partitions the vehicles of an existing solution to obtain two subproblems, reoptimizes 
one of these subproblems using say LNS, and reinsert the optimized vehicle routes to 
obtain a new solution. The VASD scheme is attractive since it makes it easy to merge 
the solutions of decoupled problems. However, it also has a number of limitations. Be­
cause it is vehicle-based, it is not as spatially focused as possible since vehicles may 
often travel across large regions, especially early in the optimization process. Moreover, 
vehicle-based decompositions cannot really accommodate temporal decouplings, since 
vehicles generally serve customers with a wide variety of time windows. 

This paper remedies these limitations and proposes a customer-based adaptive de­
composition (CAD) scheme which can be naturally instantiated to spatial, temporal, 
and hyblid decouplings. Its key idea is to select a set of customers based on a spatial, 
temporal, or hybrid property and to define a generalized multi-depot VRPTW involving 
these customers only. The CAD scheme thus allows for more focused spatial decom­
positions, tight temporaL decompositions, or a combination thereof. The generalized 
VRPTW is also designed to allow for an easy merging of its reoptimized solution into 
the existing solution. 

The benefits of the CAD scheme are demonstrated on the class R2 of the extended 
Solomon benchmarks. The experimental results indicate that the CAD scheme signif­
icantly outperforms LNS and the VASD scheme on this class. They also indicate the 
complementarity between spatial and temporal decompositions and hence the value of 
hybrid decompositions. 

The rest of this paper is organized as follows. It first reviews VRPTWs and the adap­
tive decomposition scheme. It then presents the earlier work on vehicle-based adaptive 
spatial decompositions and the novel contributions on customer-based adaptive decou­
plings. The paper then presents several instantiations of the CAD scheme, including 
spatial, temporal , and randomized decouplings. The experimental results and the re­
lated work concludes the paper. 

2 VRPTWs 

A VRPTW instance is specified by a set C of customers , a set of depanure depots V-, 
a set of arrival depots V+, and a set of vehicles V such that IV- I = IV+I = IVI · A 
single depot problem is easiLy generalized into a multi-depot problem by creating mul­
tiple depots at the same location. We use multiple depots since it enables us to specify 
decoupled problems as VRPTWs. The sites of the VRPTW instance are elements of 
Sites = C u V- U V+ Every site c has a demand q e 2 0 and a service time Se 2 O. 
The travel cost between sites i and j is t ij. Each site c has a time window [ee,lcl con­
straining when it can be visited, where ec and Ie represent the earliest and latest arrival 
times . Vehicles must arrive at site c before the end of the time window lc. They may ar-



rive early but they have to wait until time ee to be serviced. Each vehicle has a capacity 
Q. 

Solutions are specified in terms of vehicle routes and routing plans. A vehicle route 
starts from a depot d- , visits a number of customers at most once, and returns to a de­
pot d+. It is thus a sequence (d-, Cl,' .. ,Cn , d+) where alJ sites are different. The cus­
tomers of a route l' = (d- , Cl, ... , en, d+), denoted by cust(r), is the set {Cl. ... ,cn } 

and the route r of a customer in {Cl," . ,cn } is denoted by 1'oute(c). The size of a 
route, denoted by ITI, is I cust (r) I. The demand of a route, denoted by q( r), is the sum 
of the demands of its sites. A route satisfies its capacity constraint if q(r) S Q. We use 
q(c) to denote the amount of capacity used by a route up to site c. The travel cost I(r) of 
a route r = (d-, CI, ... ,Cn , d+) is the cost of visiting all its sites. 

A routing plan is a set of routes in which every customer is visited exactly once 
and every depot at most once. Observe that a routing plan assigns a unique earliest 
arrival time ae for each site c. It also assigns a unique return time a(r) to its destination 
depot d+ for each route r. The routing plan also assigns a departure time for each site 
c, denoted by oe. The routing plan also assigns a critical anival time for each site C, 

denoted by Ze. This is the latest time a vehicle can feasibly arrive at c. 
A solution to the VRPTW is a routing plan a satisfying the capacity and time win­

dow constraints, i.e., 

Vr E a : q(r) S Q & 'ic E Sites: ac S Ie· 

The ordering of the customers on a route in a implicitly defines a predecessor and 
successor site for each site C, denoted by pred(a, c) and s'ucc(a, c). When the context 
is clear, a is dropped from the notation for brevity. The size lal of a routing plan a is the 
number of non-empty routes in a. The VRPTW problem consists of finding a solution 
a which minimizes a lexicographic function conSisting of the number of vehicles and 
the total travel cost, i.e., f(a ) = (Ial, L:TEO' t(r) ). Modem algorithms for the VRPTW 
are often organized in two stages, first minimizing the number of vehicles and then 
minimizing travel distance [2, 19]. 

3 The Adaptive Decomposition Scheme 

This paper aims at finding decouplings to speed up the solving of large-scale VRPTWs. 
The goal of the decouplings is to decompose a VRPTW P into two sub-VRPTWs Po 
and Ps that can be solved independently and whose solutions can be merged into a 
solution of P. In general, finding static decompositions is difficult. For this reason, we 
proposed in [4] to use the CUlTent solution a of P to find a decoupling (Po, P s) with 
projected solution ao and as. The VRPTW Po is then reoptimized and its solution is 
merged with as to obtain a new solution to P . More precisely, the Adaptive Decompo­
sition Scheme (ADS) is based on two main prinCiples: 

1. Starting from plan ao,itproduces a sequence of plans al, ... , aj such thatf(ao) ::::: 
f(al) ::::: ... ::::: f(a j) . 

2. At step i, the scheme uses ai-l to obtain a decoupling (Po, P s ) of P with pro­
jected solutions ao and as. It reoptimizes Po to obtain a; and the new plan ai 
MERGE(a;, (j'i -l) 
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Fig. 1. The First Decoupling of VSAD. 

One of the most challenging aspects of ADS is how to perform the merging of the 
decoupled solutions, i.e, O" i = MERGE(O"; , O"i_l).ln [4], we addressed this challenge 
by choosing Po such that the customers of entire vehicles are removed. The merging 
operation is then trivial , since the vehicles in (Po and P s ) are disjoint. We now review 
this scheme to emphasize its strengths and limitations. 

4 Vehicle-Based Spatial Adaptive Decompositions 

The decomposition presented in [4] is a vehicle-based adaptive decoupling (VAD). It 
partitions the vehicles to obtain Po and P s , reoptimizes Po, and uses the new optimized 
routes, and the routes in Po to obtain a new solution. Only spatial decompositions were 
considered in [4]. The idea was to view the customer regio\"! as a circle, randomly selects 
a wedge W, and partitions the vehicles into those serving at least one customers in W 
and the others. The resulting Vehicle-Based Spatial Adaptive Decomposition V SAD 
is particularly effective and produced high-quality so lutions quickly on instances with 
up to 1,000 vertices. Its main benefits are the simple definition of Po and the trivial 
implementation of merging, which simply uses the optimized routes of Po to replace 
the old routes in the existing solution. 

The VAD scheme has a number of limitations however. First, because the decou­
piing is vehicle-based, the customers can be located significantly outside the selected 
wedge. This is illustrated in Figure 1 which depicts the behavior of the VAS 0 scheme 
visually. The left part of Figure 1 shows the initial plan 0"0 (left) and the plan 0"1 (right) 
after the first decoupling and optimization. The customers in the subproblem Po are in 
red , the remaining ones in blue. The right part of Figure I shows the projected solution 
(J 0 for subproblem Po (bottom left) and its reoptimization 0"; (bottom right). As can be 
seen, the first subproblem is quite spread out, illustrating the spatial decompOSition is 
not as tight as desired. 

More important however is the fact that the V AD scheme does not scale to other 
decomposition criteria and, in particular, to temporal decompositions. Indeed, unless 
the time windows are wide, it is very unlikely that good solutions cluster customers with 



similar time windows on the same vehicle, since the vehicle will be inactive for most 
of the time horizon. Since it uses a vehicle-based decomposition, the VASD scheme is 
not well-adapted to exploit temporal locality. 

5 Customer-Based Adaptive Decompositions 

To remedy this limitation , this paper proposes a Customer-based Adaptive Decompo­
sition (CAD) scheme. A decoupled problem in the CAD scheme is given by a set of 
subsequences of customers and has a new set of depots and constraints so that the solu­
tions of 0"; can be inserted into O"s, while ensuring feasibility of the resulting plan. 

Given a sequence of customers (Ci , . .. , Cj ) for the decoupling, the depots of the 
subproblem are constructed as follows: 

- d- = pred( Ci) : the origin depot is the predecessor of the sequence. 
- d-I = succ( Cj): the destination depot is the soccessor of the sequence. 
- ed- = 6.prcd(c;) : the departure time of Ci is the earliest departure time for d-. 
- ld+ = zs ucc (Cj) : the critical arrival time of s'ucc(Cj ) is the latest departure for d+ . 
- qd- = q(pred(ci )): the demand of d- is the cumulative demand up to pred(ci ). 
- qd+ = q( 81lCC( Cj )) - q( Cj ): the demand of d+ is the cumulative demand after Cj . 

By constructing depots using the border regions of a sequence, any feasible route be­
tween d- and d+ can be reinserted between pred(c,.) and Sllcc(Cj ) of O"i-1 , while 
maintaining the feasibility of Pi. 

The CAD scheme is formalized in Figure 2. The core of the algorithm is in lines 
3-6 which selects a set of customers (line 3), extracts the customers as a VRPTW 
(line 4), reoptimizes subproblem Po using algorithm A (line 5), and merges the new 
optimized subplan 0"; to obtain the new solution (line 6). These main steps are repeated 
until the time limit is reached. The extraction step is given by the EXTRACT function, 
which collects all vehicles serving a customer in the decomposition (line I), collects all 
the customers served by these vehicles in between customers of 8, and constructs the 
depots (lines 2-10). The customers and depots so obtained define the sobproblem (line 
II). The CONSTRUCTARRIVALDEPOT and CONSTRUCTDEPARTUREDEPOT functions 
describe how to create depots for Po that allows 0"; to be feasibly merged into 0". Finally, 
the MERGE function shows how 0"; is merged into 0". 

6 Instantiations of the CAD Scheme 

This section presents a variety of instantiations of the CAD scheme. Each such instan­
tiation only have to specify how the function SELECTCUSTOMERS is implemented. We 
start with the vehicle-based spatial decomposition proposed in [4], generalized it, and 
then presents temporal and random decompositions . 

6.1 The VASD Scheme 

We first show how the VASD scheme can be viewed as an instantiation of CAD . The 
VASD decomposition scheme is depicted in Figure 3 and aims at choosing wedges 



CAD(A,(Jo) 
1 (J <- (Jo; 

2 while time limit unreached 
3 do S <- SELECTCUSTOMERS(P, (J); 

4 Po <- EXTRACT(S, P, (J); 

5 (J; <-- A(Po); 
6 (J +- MERGE(Po , (J;, (J); 

7 return (J 

EXTRACT( S, P, (J) 

1 R <- {T E (J I 3c E T : C lies in S}; 
2 Co <- 0; 
3 D; <-- 0; 
4 D;; <- 0; 
5 for T E R 

6 do i <- argmin(cErn S) ac ; 

7 j <- argmax(cE ,.nS) ac ; 

8 Co <-- Co U U(cEr v): a ; $ao$<>j ; 
9 D; <-- D; U CONSTRUCTDEPARTUREDEPOT(pred(i)); 

JO D;; <-- D;; U CONSTRUCTARRIVALDEPOT(SUCC(j)); 

11 return (Co, V;;, V;); 

CONSTRUCTARRIVALDEPOT(p) 
L d- <- p; 
2 [ed-' ld-J <-- lop, ooJ ; 
3 qd-'- q(p); 
4 return d-; 

CONSTRUCTDEPARTUREDEPOT(S) 

1 d+ <-- s; 

2 [e(/,+, Id+ I <-- [0, z. J; 
3 qd+ <--q(s)-q(pred(s»; 
4 return d+; 

MERGE(Po , (J;, (J) 

1 for c E Po 
2 do succ((J, pr·ed(c)) <-- c; 
3 pred( (J, succ( c)) <- c; 

4 succ( (J, c) <-- 8UCC( (J;, c); 
5 pred((J, c) <-- jJTed((J;, c); 
6 return (J; 

Fig. 2. The CAD Scheme. 



SELECTDECOMPOSITIONVAS D(P, a) 
I select 0 E [0,359]; 
2 select!3 > 0 such that the wedge W <- (0, fJ); 
3 (a) contains at least N customers ; 
4 (b) is the smallest wedge satisfying (a); 

5 VI <- {v E V I :3 c E fo : C lies in W}; 

6 return UVEV, CUSI(l' v); 

Fig. 3. The VASD Scheme for VRPTW Decouplings 

SELECTDECOMPOSITJONCASD(P, a) 
I select 0: E [0,359]; 
2 select fJ > 0: such that the wedge W <- (o ,fJ); 
3 (a) contains at least N customers; 
4 (b) is the smallest. wedge satisfying (a); 

5 return U c lies in W; 

Fig. 4. The CASD Scheme for VRPTW Decouplings 

producing roughly the same number N of customers. It first chooses the lower angle 0: 

of the wedge randomly (line 1). It then selects the upper angle fJ as the smallest angle 
greater than 0: producing the smallest wedge with at least N customers (lines 2--4). 
Finally, all customers of vehicles within in the wedge are included in the decomposition. 

6.2 The CASD Scheme 

We now present a customer-based spatial decomposition CASD that generalizes the 
VASD scheme. This generalization is especially important when considering problems 
(such as the class 2 problems of the extended Solomon benchmarks) where the vehicles 
serve many customers and can travel across many portions of the space. Under these 
conditions, VASD loses some of its locality as shown in Figure 1. In contrast, CASD 
algorithm preserves the spatial boundaries and improves the results of spatial decou­
pljngs on the class 2 extended Solomon benchmarks. Figure 4 gives the formalization 
of CASD which is a simplification of VASD. Figure 5 shows how the CASD scheme 
performs a decoupling from the same starting solution as Figure I. The right hand pic­
ture shows all routes with decoupled customers, with the decoupled customers shown 
in red and the remaining ones in blue. It is interesting to compare this with Figure I. 
CASD is clearly better at respecting spatial boundaries and allows customers of more 
vehicles to be considered in the decomposition . 

6.3 The CATD Scheme 

We now present an temporal instantiation (CATD) of the CAT scheme. The CATD 
scheme chooses random time slices and returns all of the customers that are served 
within that time slice. Figure 6 provides the implementation of this algorithm where 
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Fig. 5. The First Decoupling of CAS D. 

SELECTDECOMPOSITlONCATD(P, (J) 
I select Ct E [O , ldEVj ; 
2 select {3 > ex such that the time period T = (Ct, (3); 
3 (a) contains at least N customers; 
4 (b) is the smallest time period satisfying (a); 
5 return U c served in T ; 

Fig. 6. The CATD Scheme for VRPTW Decouplings 

lines 1--4 select a random slice that contains at least N customers. The mechanism for 
choosing a time period is similar to that of CAS D. First, 0: is chosen randomly from 
the interval [0, ldEV ] . (3 is then incremented from 0: + 1 until the desired number of 
customers appear in the interval (or when (3 = (dEV). Figure 7 demonstrates a decou­
piing based on the CATD scheme. Unlike prior decouplings, the temporal decoupling 
crosses most of the vehicles as seen by the number of routes included in the righthand 
side of the figure. 

6.4 The CARD Scheme 

This section describes a simple random decoupling scheme (CARD) used to provide 
a basis to evaluate the structured decoupling schemes described in the prior sections. 
Figure 8 shows the implementation. The scheme iterates by selecting random sequences 
of customers (lines 3--4) until the desired number of customers is achieved (line 2). 

7 Experimental Results 

This section presents the experimental results for the 1,000 customer extended Solomon 
benchmarks (www.top.sintef.no/vrp/benchmarks . html). The benchmarks 
contain a mix of loose and tight time windows and different types of spatial distribu­
tions. Recall that the difficulty in these problems, once two-stage algorithms are con­
sidered, is mostly in optimizing travel distances. Hence the experimental results mostly 



Fig. 7. The First Decoupling of CATD. 

SELECTDECOMPOSITIONCARD(P, a) 
IS+- 0; 
2 while lSI < N 
3 do select a: E C \ S; 
4 select f3 E C \ S such that route( a:) = route(f3) II flo < fl,e; 
5 S +- S U U c E C such that 7'O'ute(c) = route(a:) II Oex S fle SOil ; 
6 return S; 

Fig. 8. The CARD Scheme for VRPTW Decouplings 

focus on this second stage, and uses a fixed solution with the minimal number of vehi­
cles from the first phase. The experimental results use large neighborhood search (LNS) 
[29] for algorithm A. LNS is one of the most effective algorithms for optimizing vehi­
cle routing problems [29,3,2,26, 24]; it also has the benefits of easily accommodating 
side conso-aints [3], which is important in practical imp,lementations. The experiments 
report the solution quality under various time constraints (i.e., 2.5, 5, 10, and 15 min­
utes). Each reported result is the average of 50 runs on an AMD Athlon Dual Core 
Processor 3800. 

For space reasons, we focus only on class R2. In general, the results on RC I and R 1 
show that VASD(LNS) is the best implementation and produces significant improve­
ments in solution quality under time constraints. In average, it produces improvements 
of 35%,29%, 17%, and 6% over LNS when the time constraints require solutions to 
be found within 1, 2.5, 5, and 10 minutes respectively on RCI problems. Both VASD 
and CASD outperform LNS on all RCI and Rl instances and the results of CATD 
and CARD are good after the first 2.5 minutes. In general, good solutions to RCI and 
R I are characterized by vehicles serving very few customers in narrow regions, making 
spatial decompositions very natural. 

Benefits of CAD Table 1 describes the solution quality under various time constraints 
for LNS and various instantiations of CAD(LNS) on R2 problems. Each column de­
scribes a R2 instance with 1,000 customers and the best-known number of vehicles. The 



BK R2_10_1 R2_10-1 RLlO_3 R2_ lOA R2_10-5 RL IO_6 RZ_IO_7 R2 _1 0_8 Rl_IO_9 R2 _1O_1O Avg 
US 42294,31 33459,32 24938,95 17880, 11 36258,) 4 30073,6 2325389 17509,69 33068,74 303 125 
LNS( l ) 56536,2 43864.4 42620,2 332819 47352.4 40907,5 38056 6 29516,6 44540,9 40973,8 
VASD (I) 67937 ,5 4839 l.3 4715 1 0 29349.6 59075, 1 49561.9 38104,1 2698 1 8 558608 ~7982,2 

9'clm pr. -20,6 -10. 3 -1 0,6 118 -24,8 -21.2 -0,1 8.6 -25.4 -17 . I - li .0 
CASD(I) 68108,7 50337.8 47611.1 28388, I 56962,9 50430,3 372 10.3 25543,2 56308.1 51254,3 
%Impr. -20,9 -14 ,8 -11.7 14.7 -20,3 -233 2,2 13 ,5 -26.4 -25,1 -1 1.2 
CATD (l ) 51346.6 42352,3 4182]. ] 34448,2 462757 4]460, 7 38282,0 31 186.8 423218 42 122 ,2 
%Impr, 8.9 3.4 19 -3.5 2,3 -6,2 -0,6 -5 .7 5,0 -2,8 0.3 
CARD (I) 769 15.0 630391 57772.6 40365.4 59084,6 603219 48678,5 35275,7 66420,1 62966,8 
%lmpr. -36,5 -43.7 -3 5,6 -2U -24.8 -47 ,5 -27 .9 -19.5 -49.1 -53,7 -36.0 

LNS (2.5) 53667,5 41 260, } 37907,6 300075 44941.5 38028A 13939 7 2692 1 2 42134,0 383517 
VASD (2.5) 58759,6 41955 ,8 383 16.4 24632,8 49847.5 38975,1 32055,8 23029,9 46152,3 40896,1 
%Iropr. -9, 5 -1.7 -Il 17,9 -1 0,9 -2.5 5,6 14,5 -9.5 -6,6 -0.4 
CASD(2.5) 54423,3 40426,1 :13387,2 227 17.8 46063,0 384620 29460,6 20837.6 43235.2 390632 
%Impr. -1.4 2,0 119 24,3 -2.5 - l.l 13.2 22,(1 -2,6 -3.4 6,3 
CATD (2 ,5) 46203.4 38061.9 33749,0 28799.4 40220,7 ~IM99,3 32848,3 26997, I 37653, 3 347917 
%lmpr. 13.9 78 110 40 10,5 4,0 3.2 -0, 3 10.6 9,3 7.4 
CARD (2.5) 65820,0 50880,9 43792,2 31651.3 566369 47119,1 37598,2 25336 .4 54375,1 505838 
%Impr. -22,6 -n~ -1 5.5 -5.5 -26.0 -23,9 -10,8 5,9 -29 ,1 -31.9 -18.3 

LNS (5) 5 1877. 8 39871.7 34873.2 275499 43616.4 36400,2 31500,3 25323,0 40647.4 37109,6 
VASD (5) 54743 7 40546,3 34540.3 22899, 2 46 174. 3 369599 301885 21 775,7 42417,0 3835L2 
%lmpr. -5, 5 -1.7 1 0 16,9 -5 9 -1.5 4.2 14.0 -4.4 -3,3 14 
CASD (5) 49454. 3 38194 8 30138,7 21578,2 42203,5 347%8 27451.5 20837 ,6 38577.2 35847,8 
%lmpr, 4. 9 4.4 15,7 27,7 3,3 4,6 14.7 215 5,4 3,5 10,6 
CATD(5) 44633,9 36339,7 31647,7 26463, 1 39040.4 34816, 3 293542 2,)357,9 360 148 335 17 A 
%lmpr. 14 ,0 89 9,2 3.9 10,5 4A 6,8 -0,1 11.4 9.7 7,9 
(ARD(5) .1 8595,0 44 2694 37808,6 27458.0 49889,9 40801.7 32854.8 23217 5 47379.4 43606,2 
%lmpr. -5,5 -1.7 1.0 16,9 -5,9 -1.5 4,2 14,0 -4A -33 I A 

LNS (1 0) 50763,2 38737,0 34873,2 251956 42848,5 135342 0 29752,8 23665.7 398025 36378,8 
VASD (10) 51950,6 39427,7 32426,1 22 185 ,2 44327.2 35842,8 292641 21164 A 405 19,9 37099,5 
%lmpr. -2 3 -1.8 7,0 11.9 -3,5 -I A 1.6 10,6 -1.8 -20 1.8 
(ASD( IO) 4737 1.3 37343,2 2899 1.6 2 1010,5 4089() 2 338524 26566.4 20290,5 37 112.5 346328 
%lmpr. 67 3,6 169 16, 6 4.6 4,2 10.7 14 .. ' 6,8 48 8,9 
CATD (10) 44172,2 36339,7 313587 25469,9 38445.3 338300 29354,2 24371.9 3522 1.8 327861 
~~ Impr. 13,0 6,2 10, 1 -l.l 103 4.3 L3 -3,0 11.5 9.9 6,2 
CAR D (10) 52845,8 40408,6 335495 2433 1.5 45 462,6 36987,2 29852,5 232175 42537 ,3 38638.1 
%lm pr. -4,1 -4.3 3,8 3.4 -6.1 -4.7 -0,3 1.9 -6.9 -6,2 -2.3 

Table 1. R2 Solution QualilY Under Time Constraints, 

c lusters of rows consider various time constraints: 1, 2,5, 5, and 10 minutes, The row 
B K specifies the cravel distance of the best known solution (prior to this research) . The 
rows %lmpr describes the improvement in solution quality of CAD(LN S) with respect 
to LNS , CAD(LNS) is run with N = 200, j,e,. the decomposition must contain at least 
200 customers. 

It is interesting to observe that Table I provides very different conclusions than the 
results on classes RC I and RI. High-quality solutions to R2 problems are characterized 
by fewer vehicles serving many more customers over wide temporal regions, This puts 
VASD at a disadvantage as decompositions typically violate the natural spatial bound­
aries of the wedge due to the need to include all customers of vehicles, This is best 
illustrated by the 5 minute results, when the CASD scheme vastly outperforms VASD, 
After 2.5, 5, and 10 minutes, CASD produces average improvements of 6.3%, 10.6%, 
and 8.9% over LNS , while VASD degrades the performance after 2.5 minutes and 
produces improvemen ts of 1.4% and 1.6% for 5 and 10 minutes. On some benchmarks, 
CAS 0 produces more than 10% over LN S, Interestingly, CATD produces excellent re-
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suIts On class R2 and produces average improvements of 0.3%,7.5%,7.9%, and 6.2% 
after 1, 2.5 , 5, and 10 minutes. Moreover, it significantly outperforms other decomposi ­
tions on several benchmarks where it can produce improvements up to 14%. On closer 
inspection. CATD performs very well on those problems whose customers have narrow 
time windows. The explanation for this behavior is interesting: when a customer has a 
wide time window, it can be served early or late. If it is initially served early when it 
should be served late, it is impossible to find a solution that moves the customer to a 
later time period, unless every intermediate temporal decoupling provides an improving 
solution. On problems with customers with narrow time windows, the problem struc­
ture itself enforces the correct temporal locations of the customers, making a temporal 
decomposition very natural. 

Figure 9 depicts the typical behavior of LNS and CAD(LNS) on two benchmarks 
in the R2 class. In the left graph, the R2 problem has narrow time windows and CATD 
is clearly the best, further demonstrating the natura] benefits of this decomposition when 
customers have narrow time windows. It also shows the limitations of the VASD ap­
proach under the conditions of class 2 problems. The light part of the figure shows 
results on a class 2 problem with wide time windows. Here we see a reversal of the ef­
fectiveness of CATD where CASD is clearly better. Note also that CASD(LNS) and 
CATD(LNS) still dominates LNS when both algorithms run for an hour. 

Overall, these results clearly show the benefits of customer-based decompositions 
and the complementary between spatial and temporal decompositions . 

Hybrid Implementations To exploit this complementarity, We also considered some 
hybrid approaches between CASD and CATD to determine if a single approach would 
perform well on all instances (for example good on both R2_IO_l and R2_10~) . Two 
hyblids worked quite well. The first hybrid chooses to either follow a CATD decou­
piing or a CASD decoupling randomly at each iteration. The second hyblid creates a 
decoupling at each iteration that contains N / 2 customers from a CATD selection and 
N /2 from CASD selection. Both schemes generated very consistent results on all prob­
lems, in general being within 1% of the best CASD or CATD result on each problem. 
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Fig. 10. Benefits of Hybrid Approaches. 0 

This indicates that when problem structure is unknown or varied, a hybrid approach 
may produce the best results. Figure 10 demonstrates how hybrid based approaches can 
smooth out perrormance. 

8 Related Work 

There are literally hundreds of papers discussing vehicle routing problems and their 
variations and it is beyond the scope of this paper to provide a comprehensive literature 
review. The reader is invited to see [8,9, Il, 16,27, 25] for recent surveys. Almost all 
papers focus on problems of relatively small size which, as mentioned earlier, are al­
ready extremely difficult. Unfortunately, many of the proposed techniques do not scale 
well and some recent papers specifically address large-scale problems. We now focus 
attention on recent work that have considered decomposition ideas. 

Decomposition comes in many different varieties in literature. In some papers, like 
[5,6], decomposition focuses on decomposing the search strategy space (as opposed to 
problem structure). Related to this idea is the view of decomposition across attributes 
(variables) of the problems. Multi-stage approaches such as [15,2,21, l8, lO, 7] can 
be classified in this way (i.e., first minimizing the number vehicles required and then 
minimizing the travel distance). [12] suggests a general framework for breaking prob­
lems across attribute boundaries using evolutionary algorithms. The different subprob­
lems communicate results via population exchanges . The framework is tested on the 
VRPTW. They key difference between attribute decomposition and CAD is that our 
approach retains information about the entire problem and simplifies the problem by 
decreasing their scale. 

Recent and conCUITent work has focused on dividing the problem into smaller sub­
problems across structural boundaries that is very much in the spirit of VASD. [20] 
presents a deterministic hierarchical decomposition scheme for evolutionary algorithms. 
The VRPTW spatial region is divided into rectangles, defining sub problems that are 
solved independently. The rectangles are recursively merged into larger subproblems 



which rely on the smaller problems as starting solutions for the larger subproblems. [1) 
introduces spatial-based decomposition ideas in a genetic aJgorithm. Their approach 
randomly applies the evolutionary operations to either the whole problem or spatiaJly 
defined sub regions. [23,22) presents some interesting spatiaJ decomposition approaches 
based on clustering (POPMUSIC). At a high level, POPMUSIC iteratively chooses 
routes and creates subproblems based on nearness to that route (different approaches to 
defining nearness are explored). The algorithm iterates until it has created subproblems 
on all routes without improvement. Finally, the work of (13) proposes a decoupling 
scheme for the rur-taxi problem based on spatial boundaries. 

In many ways, all of these approach can be viewed as variations of VASD. The key 
difference between these approaches and our fram ework is that they decompose prob­
lems based on routes as opposed to customers. Trus makes the merging of solutions 
from the subproblems to the global problem easy. However, by structuring the decom­
positions on a customer basis, we are able to create subproblems within routes, a prop­
erty that is very important when routes cross multiple spatial and temporal boundaries. 
But is important to note that this related work also supports our clrum that decomposi­
tion improves algorithm performance. 

It is useful to contrast the deconstruction steps of LNS ([29,26,28,24)) and the 
CAD scheme. In LNS, the basic step consists of removing related customers (often 
based on spatial or temporal relationships) from a plan a and to reinsert them in a us­
ing an optimization algorithm. The CAD scheme can also be thought of as removing 
related customers with tWO fundamental differences: J) the removed customers defines 
a VR PTW subproblem of (significantly) smaller size which can solved independently 
and 2) Subproblems restrict neighborhood explorations to being within the decomposi­
tion itself. Thi s is critical for finding rugh-quality solution quickly. Obviously, the two 
approaches are synergetic since our results are obtained using CAD(LNS). 

Finally, it is useful to relate CAD to the approach in (17) which impose specific 
temporal constraints to obta.in decouplings. CAD uses spatial and temporal decouplings 
that constrrun specific subsets of customers to be served by designated vehicles. More­
over, the use of decoupJing is fundamentally different. The idea is to iteratively obtain 
new decouplings 10 optimize an existing plan by re-optimizing subproblems. This use of 
decouplings also contrast with traditional decomposition techniques in constraint satis­
faction (14) . 

9 Conclusion 

This paper reconsidered the adaptive decomposition framework to quickly find rugh­
quality solutions to large-scale vehicle routing problems with time windows. Earlier 
work had focused vehicle-based decompositions that partition the vehicles across the 
subproblems which makes it easy to define the subproblems and merge their solutions. 
Although vehicle-based spatiaJ decompositions are very effective on classes R I and 
RC I of the extended Solomon benchmarks , the paper identified some of their limita­
tions and, in particular, the difficulty in adapting them to temporal decompositions. This 
paper then proposed customer-based decompositions which generalize vehicle-based 
decouplings and allow for focused spatial and temporal decompositions. Experimen-



tal results on class R2 of the extended Solomon benchmarks demonstrated the benefits 
of the customer-based adaptive decomposition scheme and its spatial, temporal, and 
hybrid instantiations. In particular, the results show significant benefits over the use 
of large neighborhood search and vehicle-based spatial decompositions. For instance, 
customer-based temporal decompositions yield an average improvement of 7.4% over 
LNS after 2.5 minutes, while the vehicle-based spatial decomposition degrades the per­
formance by 0.4% in average . Similarly, customer-based spatial decompositions yield 
an average improvement of 10.6% over LN S after 5 minutes, while the vehicle-based 
spatial decomposition improves the performance by only 1.4% in average. The com­
plementary between spatial and temporal decompositions was also highlighted and hy­
bridizations were shown to be particularly effective in producing robust results across 
all benchmarks. 
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