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INTRODUCTION

Recently, the Differential Evolution (DE)
optimization method was applied to solve inverse
transport problems in finite cylindrical geometries and
was shown to be far superior to the Levenberg-Marquardt
optimization method at finding a global optimum for
problems with several unknowns [1]. However, while
extremely adept at finding a global optimum solution, the
DE method often requires a large number (hundreds or
thousands) of transport calculations, making it much
slower than the Levenberg-Marquardt method. In this
paper, a hybridization of the Differential Evolution and
Levenberg-Marquardt approaches is presented.  This
hybrid method takes advantage of the robust search
capability of the Differential Evolution method and the
speed of the Levenberg-Marquardt technique.

OPTIMIZATION METHODS

The measurements considered in this paper are
unscattered fluxes of discrete gamma-ray lines at points
external to the source/shield system. Since scattering is
neglected, a ray-trace technique can be used for transport
calculations. This ray-trace technique, in which the
angular domain of the problems is partitioned into several
(hundreds or thousands) of discrete angles and the
unscattered flux is calculated along each, is described in

[2].
Differential Evolution

The Differential Evolution method was implemented
for inverse transport problems of this type in [1]. The
method uses a set of vectors w;, j=1,..., P, that each
contain a set of postulated values for the unknown
parameters. P represents the total number of vectors,
referred to as the population size. The fitness of each

population member is determined using a y? difference
between a set of measured photon fluxes and fluxes

calculated using the parameters of the population
member. For population member i,
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In this equation, M, , is the measured value of the flux
for detector d, M ;(u;) is the value of the flux at detector
d calculated using the set of postulated parameters u; and
G, is the uncertainty in the measurement at detector 4.
In the inverse problem, we seek to find the population

member with the globally minimum ;{2.
DE uses a generational process for optimization.
Potential population members for generation g +1 are

created by using weighted differences between population
members of generation g. After P such children are

created they are sorted in ascending order of y?. After
this, a direct competition between the ith member of
generation g and ith child (i =1....,P) is implemented,
with the better fit between the two becoming a member of
generation g +1. This competition between parent and
child ensures that the population members of generation
g +1 have ;(f values equal to or less than the Zfz values
of the corresponding population members in generation g.
This generational process continues until a minimum of
%’ is achieved.

Levenberg-Marquardt

The Levenberg-Marquardt (or simply Marquardt)
method is a standard gradient-based optimization
approach that was used to solve inverse problems in
cylindrical geometries in [3]. The Marquardt method
begins with an initial postulation of the unknown- system
parameters, then varies smoothly between the steepest-

descent and inverse-Hessian methods to find a ;(2

minimum (here subscript iis dropped because Marquardt
uses only a single potential solution). The Marquardt
method has the advantage of requiring far fewer transport

calculations to find a y’minimum than the Differential

Evolution method. However, in problems with several
unknown parameters the Marquardt method is heavily
dependent on the accuracy of the initial guess for the
unknown parameters. As illustrated in [1], when there are
several unknown parameters this method often falls into
local minima when random initial guesses are used (as
would be the case for no prior information of the
unknown parameter values).



Hybrid

A hybrid Differential Evolution/Marquardt method
has been implemented to take advantage of the robust
search capability of DE and the speed of Marquardt. In
this technique, the DE method is first used to find an
accurate initial guess for the Marquardt method. In order
to quickly find an initial guess for Marquardt, the DE
method is employed with a coarse angular partition in the
ray-tracing calculations. This is accomplished by using
100 discrete values in the polar and azimuthal angles used
by ray-tracing, as opposed to the 1000 discrete values we
generally use. Using the parameters found with the
coarse DE algorithm as initial guesses, the Marquardt
method is then employed with the usual (1000 angles)

angular partition to find the global minimum of ,‘(2.

NUMERICAL TEST PROBLEM

Consider the cylindrical geometry shown in Figure 1.
The source is a cylinder of radius 2.0 cm and height 4.5
cm. Above and below the source are lead shield layers,
each of radius 3.0 cm and height 0.5 cm. Outside the
radial face of the source is a 1-cm thick region of void.
This is all surrounded by a layer of aluminum shielding.
The source has density 18.74 g;f'crn3 and contains 94.73%
P50 and 5.27% **U (by weight). This is the same test
geometry that was used in [1]. In that paper, it was shown
that the Marquardt method using random initial guesses
for the unknown parameters was able to determine the
unknowns in just one of sixty test trials, while the DE
method found the unknown parameters in all sixty test
trials, but averaged over 2 hours of run time.
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Fig. 1. Cylindrical test geometry.

Two detector locations are used here. The first lies
below the geometry at a radius and height of (r,z) =(0.0

cm, -1.0 cm), and the second is located at (r,z)=(10.0

cm, 4.0 cm). At both these detector locations, the
unscattered scalar photon fluxes of the 144-, 186-, 766-,
and 1001-keV uranium emission lines are measured.

Measured data were simulated using two different
methods. In the first, the same ray-tracing code as used in
the optimization process (using 1000 discrete angles in
each direction) was used. Thus, these measured data were
exactly consisted with calculated data. In the second
method, measurements were simulated using a Monte
Carlo code, to produce less consistent, more realistic
results,

In the numerical test problem, the weight fractions of
557 and PV in the photon source are unknown, along
with the density of the source region. Also unknown are
the radial interface locations at 2.0 cm and 3.0 cm, along
with the axial interface locations at 1.5 ¢cm and 6.0 cm.
The test problem thus has six unknowns (since two
weight fractions must sum to 1.0, they only constitute one
unknown) of three different types (dimension, density,
and composition).

For the initial DE step of the hybrid algorithm a
random initial population must be created. Interface
locations are randomly generated within their constraints,
so that the initial values for the 2.0 cm and 3.0 cm radii
are randomly generated between 0.0 cm and 4.0 cm, while
initial values for the 1.5 cm and 6.0 cm axial locations are
randomly generated between 1.0 cm and 6.5 cm. The
weight fraction of °U is generated randomly between 0.0
and 1.0, and the source density is generated randomly
between 0.0 g/cm® and 25.0 g/cm’. The population size
used in the DE step was P = 60.

First consider the case of consistent measurements
simulated using ray-tracing. Twenty trials of the hybrid
method were run, each using different random number
seeds (thus creating different initial populations for the
DE step). All twenty trials found the correct parameter
values, with an average run time of 23 minutes and 12
seconds. In [1], the DE method averaged over 2 hours to
find these parameters. To illustrate the behavior of the
hybrid method, we will consider a particular trial.
Starting from the randomly generated initial population,
the coarse DE method required 3 minutes and 1 second to
find parameter values of

Weight Fractions: *°U: 0.947487 2*U: 0.052513
Source Density: 18.38 g/em’

Radii: 2.015 e¢m, 2.979 cm

Heights: 1.500 cm, 6.021 cm

Using these parameter values as the initial guess in the
Marquardt method, the correct parameter values were
found in 16 minutes and 24 seconds, for a total run time
of 19 minutes and 25 seconds.

Using measurements simulated by Monte Carlo, all
twenty trials of the hybrid method approached a minimum
corresponding to parameter values of



Weight Fractions: *°U: 0.9428 **U: 0.0572
Source Density: 19.43 g/lem®

Radii: 1.858 ¢cm, 3.400 cm

Heights: 1.498 ¢cm, 5.694 cm

The average run time for the hybrid method was 28
minutes and 19 seconds. In [1], the DE method averaged
over 2 hours of run time with Monte Carlo measurements.

CONCLUSIONS

Recently, the Levenberg-Marquardt and Differential
Evolution optimization methods were applied to inverse
transport problems in cylindrical radiation source/shield
systems. The former technique is fast but tends to fall
into a local minimum, while the latter technique is robust
but is slower because it requires a much larger number of
transport calculations. In this paper, a hybrid Differential
Evolution/Levenberg-Marquardt approach is employed.
This method first implements the DE method with a
coarse angular partition in the transport calculations to
find an initial guess for the Levenberg-Marquardt method
that is near the global minimum. The Marquardt method
then uses this guess with a fine angular partition to
quickly find the global minimum. On a numerical test
case, this hybrid method was found to be as robust as the
DE method and to find the global optimum solution in
significantly less time. The method was successful using
both consistent and less-consistent, more realistic
measurements.

We are currently exploring the proper size of the
angular partition in the Differential Evolution to
consistently create initial guesses for the Marquardt
method that are accurate enough to find the global
optimum in a variety of test problems. We are also
exploring a hybrid DE/Marquardt method on problems
that include scattering.
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