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INTRODUCTION 

Recently, the Differential Evolution (DE) 
optimization method was applied to solve inverse 
transport problems in finite cylindrical geometries and 
was shown to be far superior to the Levenberg-Marquardt 
optimization method at finding a global optimum for 
problems with several unknowns [1] . However, while 
extremely adept at finding a global optimum solution, the 
DE method often requires a large number (hundreds or 
thousands) of transport calculations, making it much 
slower than the Levenberg-Marquardt method . In this 
paper, a hybridization of the Differential Evolution and 
Levenberg-Marquardt approaches is presented. This 
hybrid method takes advantage of the robust search 
capability of the Differential Evolution method and the 
speed of the Levenberg-Marquardt technique. 

OPTIMIZATION METHODS 

The measurements considered in this paper are 
unscattered fluxes of discrete gamma-ray lines at points 
external to the source/shield system. Since scattering is 
neglected, a ray-trace technique can be used for transport 
calculations. This ray-trace technique, in which the 
angular domain of the problems is partitioned into several 
(hundreds or thousands) of discrete angles and the 
unscattered flux is calculated along each, is described in 
[2]. 

Differential Evolution 

The Differential Evolution method was implemented 
for inverse transport problems of this type in [1]. The 
method uses a set of vectors u i ' i = 1, ... , p, that each 

contain a set of postulated values for the unknown 
parameters. P represents the total number of vectors, 
referred to as the population size. The fitness of each 

population member is determined using a X2 difference 

between a set of measured photon tluxes and fluxes 
calculated using the parameters of the population 
member. For population member i, 

(1) 

In this equation, M d,O is the measured value of the flux 

for detector d, M d (u i ) is the value of the flux at detector 

d calculated using the set of postulated parameters u i and 

(Y d ,O is the uncertainty in the measurement at detector d. 

In the inverse problem, we seek to find the population 

member with the globally minimum X2. 
DE uses a generational process for optimization. 

Potential population members for generation g + 1 are 

created by using weighted differences between population 
members of generation g. After P such children are 

created they are sorted in ascending order of Xi2 . After 

this, a direct competition between the ith member of 
generation g and ith child (i = 1, ... , P) is implemented, 

with the better fit between the two becoming a member of 
generation g + 1. This competition between parent and 

child ensures that the population members of generation 

g + 1 have X? values equal to or less than the X? values 

of the corresponding population members in generation g. 

This generational process continues until a minimum of 

Xi2 is achieved. 

Levenberg-Marquardt 

The Levenberg-Marquardt (or simply Marquardt) 
method is a standard gradient-based optlOuzation 
approach that was used to solve inverse problems in 
cylindrical geometries in [3]. The Marquardt method 
begins with an initial postulation of the unknown' system 
parameters, then varies smoothly between the steepest-

descent and inverse-Hessian methods to find a X2 
minimum (here subscript i is dropped because Marquardt 
uses only a single potential solution). The Marquardt 
method has the advantage of requiring far fewer transport 

calculations to find a x2minimum than the Differential 

Evolution method. However, in problems with several 
unknown parameters the Marquardt method is heavily 
dependent on the accuracy of the initial guess for the 
unknown parameters. As illustrated in [1], when there are 
several unknown parameters this method often falls into 
local minima when random initial guesses are used (as 
would be the case for no prior information of the 
unknown parameter values). 



Hybrid 

A hybrid Differential EvolutionlMarquardt method 
has been implemented to take advantage of the robust 
search capability of DE and the speed of Marquardt. In 
this technique, the DE method is first used to find an 
accurate initial guess for the Marquardt method. In order 
to quickly find an initial guess for Marquardt, the DE 
method is employed with a coarse angular partition in the 
ray-tracing calculations. This is accomplished by using 
100 discrete values in the polar and azimuthal angles used 
by ray-tracing, as opposed to the WOO discrete values we 
generally use. Using the parameters found with the 
coarse DE algorithm as initial guesses, the Marquardt 
method is then employed with the usual (1000 angles) 

angular partition to find the global minimum of X2
. 

NUMERICAL TEST PROBLEM 

Consider the cylindrical geometry shown in Figure 1. 
The source is a cylinder of radius 2.0 cm and height 4.5 
cm. Above and below the source are lead shield layers, 
each of radius 3.0 cm and height 0.5 cm. Outside the 
radial face of the source is a I-cm thick region of void . 
This is all surrounded by a layer of aluminum shielding. 
The source has density 18.74 glcm3 and contains 94.73% 
235U and 5.27% 238U (by weight). This is the same test 
geometry that was used in [1]. In that paper, it was shown 
that the Marquardt method using random initial guesses 
for the unknown parameters was able to determine the 
unknowns in just one of sixty test trials, while the DE 
method found the unknown parameters in all sixty test 
trials, but averaged over 2 hours of run time. 
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Fig. 1. Cylindrical test geometry. 

Two detector locations are used here. The first lies 
below the geometry at a radius and height of (r, z) = (0.0 

cm, -1.0 cm), and the second is located at (r, z) = (10.0 

cm, 4.0 cm). At both these detector locations, the 
unscattered scalar photon fluxes of the 144-, 186-, 766-, 
and 1000-keY uranium emission lines are measured. 

Measured data were simulated using two different 
methods. In the first, the same ray-tracing code as used in 
the optimization process (using 1000 discrete angles in 
each direction) was used. Thus, these measured data were 
exactly consisted with calculated data. In the second 
method, measurements were simulated using a Monte 
Carlo code, to produce less consistent, more realistic 
results. 

In the numerical test problem, the weight fractions of 
235U and 238U in the photon source are unknown, along 
with the density of the source region. Also unknown are 
the radial interface locations at 2 .0 cm and 3.0 cm, along 
with the axial interface locations at 1.5 cm and 6.0 cm. 
The test problem thus has six unknowns (since two 
weight fractions must sum to 1.0, they only constitute one 
unknown) of three different types (dimension, density, 
and composition). 

For the initial DE step of the hybrid algorithm a 
random initial population must be created. Interface 
locations are randomly generated within their constraints, 
so that the initial values for the 2.0 cm and 3.0 cm radii 
are randomly generated between 0.0 cm and 4.0 cm, while 
initial values for the 1.5 cm and 6.0 cm axial locations are 
randomly generated between 1.0 cm and 6.5 cm. The 
weight fraction of 235U is generated randomly between 0.0 
and 1.0, and the source density is generated randomly 
between 0.0 glcm3 and 25.0 glcm3

. The population size 
used in the DE step was P = 60. 

First consider the case of consistent measurements 
simulated using ray-tracing. Twenty trials of the hybrid 
method were run, each using different random number 
seeds (thus creating different initial populations for the 
DE step) . All twenty trials found the correct parameter 
values, with an average run time of 23 minutes and 12 
seconds. In [1], the DE method averaged over 2 hours to 
find these parameters. To illustrate the behavior of the 
hybrid method, we will consider a particular trial. 
Starting from the randomly generated initial population, 
the coarse DE method required 3 minutes and 1 second to 
find parameter values of 

Weight Fractions: 235U: 0.947487 238U: 0.052513 
Source Density: 18.38 glcm3 

Radii : 2.015 cm, 2.979 cm 
Heights: 1.500 cm, 6.021 cm 

Using these parameter values as the initial guess in the 
Marquardt method, the correct parameter values were 
found in 16 minutes and 24 seconds, for a total run time 
of 19 minutes and 25 seconds. 

Using measurements simulated by Monte Carlo, all 
twenty trials of the hybrid method approached a minimum 
corresponding to parameter values of 



Weight Fractions: 235U: 0.9428 238U: 0.0572 
Source Density: 19.43 glcm3 

Radii: 1.858 cm, 3.400 cm 
Heights: 1.498 cm, 5.694 cm 

The average run time for the hybrid method was 28 
minutes and 19 seconds. In [1], the DE method averaged 
over 2 hours of run time with Monte Carlo measurements. 

CONCLUSIONS 

Recently, the Levenberg-Marquardt and Differential 
Evo'lution optimization methods were applied to inverse 
transport problems in cylindrical radiation source/shield 
systems. The former technique is fast but tends to fall 
into a local minimum, while the latter technique is robust 
but is slower because it requires a much larger number of 
transport calculations. In this paper, a hybrid Differential 
EvolutionlLevenberg-Marquardt approach is employed. 
This method first implements the DE method with a 
coarse angular partition in the transport calculations to 
find an initial guess for the Levenberg-Marquardt method 
that is near the global minimum. The Marquardt method 
then uses this guess with a fine angular partition to 
quickly find the global minimum. On a numerical test 
case, this hybrid method was found to be as robust as the 
DE method and to find the global optimum solution in 
significantly less time. The method was successful using 
both consistent and less-consistent, more realistic 
measurements. 

We are currently exploring the proper size of the 
angular partition in the Differential Evolution to 
consistently create initial guesses for the Marquardt 
method that are accurate enough to find the global 
optimum in a variety of test problems. We are also 
exploring a hybrid DElMarquardt method on problems 
that include scattering. 
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