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STATISTICS FOR CHARACTERIZING DATA ON THE PERIPHERY 

James Theiler and Don Hush 

Space and Remote Sensing Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545 

ABSTRACT 

We introduce a class of statistics for characterizing the pe­
riphery of a distribution, and show that these statistics are par­
ticularly valuable for problems in target detection . Because so 
many detection algorithms are rooted in Gaussian statistics, 
we concentrate on ellipsoidal models of high-dimensional 
data distributions (that is to say: covariance matrices), but we 
recommend several alternatives to the sample covariance ma­
trix that more efficiently model the periphery of a distribution, 
and can more effectively detect anomalous data samples. 

Index Terms- anomaly detection, outlier, target detec­
tion, probability distribution, robust statistics, Gaussian mix­
ture models, expectation-maximization, leptokurtosis 

1. INTRODUCTION 

What makes target detection difficult is that the target must be 
distinguished from the background clutter, and this requires 
that the background be well characterized. More particularly, 
when that characterization is a probability distribution, it is 
the periphery of the background distribution that must be most 
carefully characterized. Targets in the core of the distribution 
are impossible to detect; targets far out on the tail of the dis­
tribution are easy to detect. It is the targets on the periphery, 
the targets that are difficult but detectable, that are of most 
interest to the algorithm developer who wants improved ROC 
curves. 

The detection of anomal:ies (and of anomalous changes) 
requires that the samples that are anomalous be distinguished 
from the sampJes that are normal [I]. One way this can be 
achieved is by identifying two probability distributions: one 
for normal data and one for anomalies. The normal data distri­
bution is generally fit to the data, while the anomalies are (of­
ten implicitly) defined with a distribution that is much broader 
and flatter than the normal' data distribution. If both distribu­
tions were precisely known, then their ratio would provide the 
Bayes optimal detector of those anomalies. 

While the choice of distribution for modeling the anoma­
lies does require some care, the main technical challenge in 
anomaly detection is the characterization of the normal data 
distribution. The more "tightly" fit the distribution is to the 
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normal data, the more accurately one can detect those data 
that do not fit the normal model. 

For anomaly detection problems, very low false alarm 
rates are desired. Thus the challenge is even greater because 
we need to characterize the density in regions where the data 
are sparse; that is, on the periphery (or the "tail") of the 
distribution. Yet, traditional density estimation methods for 
anomaly detection (e.g., the simplest and most common ap­
proach is to fit a single Gaussian to the data [2l) are dominated 
by the high-density core. 

In all of the examples here, our model for characterizing 
the periphery of a multivariate distribution will be an ellip­
soid; our aim then, is to estimate a covariance matrix that 
characterizes that ellipsoid . We remark that the overall scale 
of the covariance is not of particular concern to us; for the 
single scalar measure of ov~rall size, we can adjust the pa­
rameter to achieve the desired false alarm rate Q. What is of 
more concern is the O(p2) parameters, where p is the number 
of spectral channels. that characterize the shape of the ellip­
soid and its centroid. 

2. IN DEFIANCE OF ROBUST STATISTICS 

The goal of robust statistics is to produce characterizations 
of data that are insensitive to a few bad data samples. This 
is typically achieved by discounting (or de-weighting) those 
samples that, because of their long "lever arm" have undue 
influence on the estimation. We will consider a contrary ap­
proach that puts extra weight on points that are far from the 
centroid. 

For estimation of the mean J.L and covariance matrix R, 
Campbell [3] has recommended equations of the form 

(I) 

When the weights are all equal (e.g., Wi = 1 for all ·i), then 
the standard sample estimators for mean and covariance are 
obtained. For a robust estimator, one can alter these weights 
depending on how far the samples are from the mean. Dis­
tance to the mean is measured in terms of the Mahalanobis 



distance 

To make the robust estimator less sensitive to outliers. one 
discounts the large r samples; for instance [3]: 

Robust: w( r) = { II 
ro r 

ifr:S;ro 
ifr>ro· 

(3) 

To use this in practice requires an iterative approach, since 
the weights depend on Mahalanobis distance, Mahalanobis 
distance depends on J.L and R, and J.L and R depend on the 
weights. 

But for problems which depend primarily on the periphery 
of the distribution, this scheme seems to be getting it exactly 
backwards: it discounts just the data that we most need to pay 
attention to. Therefore, we considered a weighting scheme 
that discounts the small Mahalanobis points: 

Anti-robust: w( r) = { (r Ir 0)11-
(rlro)" 

ifr:S;ro 
ifr>ro· 

(4) 

Here, J.l = 1/ = 0 conesponds to the standard sample covari­
ance, while J.l = 0,1/ = -1 conesponds to the robust estima­
tor suggested by Campbell [3]. An anti-robust estimator takes 
J.l > O. Note that the choice of a large ro and a negative 1/ im­
bues the estimator with some robustness to very large values 
ofr. 

One must also choose a value for the cutoff radius r o' For 
a p-dimensional Gaussian. the squared Mahalanobis distance 
r2 is chi-squared distributed. with p degrees of freedom. This 
distribution is approximately Gaussian with mean p and vari­
ance 2d. For our experiments, we take r 0 = vIP + b I v'2 with 
b = 2. 

In the adaptive version of this scheme, we choose a frac­
tion a « 1 of the points to emphasize, then (at each iteration) 
choose r 0 so that a fraction a of the data points have Maha­
lanobis distance larger than r o' 

2.1. Anti-shrinkage estimator 

One difficulty with the anti-robust estimators is that the iter­
ations are often unstable. An alternative approach is to es­
timate a robust covariance matrix and to recognize that the 
sample covariance is a positive linear combination of the ro­
bust and anti-robust estimators. In general, "shrinkage" refers 
to the statistical approach of modifying an estimator by taking 
a positive linear combination with a simpler estimator. Since 
what we want is the anti-robust estimator, we will take a non­
positive linear combination of the sample covariance and the 
robust estimator: 

R = aRrobuSI + (1 - a)Rsample (5) 

where a < 0 is chosen so to optimize an in-sample measure 
of coverage versus volume. as described in Section 6. 

3. EIGENVALUE ADJUSTMENT APPROACH 

In the spirit of the anomaly detector suggested by Adler­
Golden [4]. we will use the sample covariance R to align 
the covariance matrix. but will adjust the magnitudes within 
that alignment. Specifically. we will write R = EAE. where 
E is the matrix of eigenvectors. and A is a diagonal ma­
trix whose elements are eigenvalues. In particular. the kth 
element Au is given by the variance in the ek direction. 
where ek is the kth column vector in the matrix E. That is. 
Au = (lin) L:i(elxi)2. Instead of using variance. we will 
use inter-percentile difference; we used the square distance 
between the tth lowest value of el Xi and the tth highest 
value. thus enclosing a fraction (n - 2t)ln of the samples. 
In our experiments. we took this fraction to be 0.999 . Using 
these new values Au. we estimate the covariance matrix with 
R=EAET. 

In this scheme Au > Akk just because the 99.9 inter­
percentile distance is larger than the standard deviation, even 
for Gaussian data. But the overall magnitude of R doesn't 
matter. We find that the ratio Aul Akk tends to be larger 
for small values of k. consistent with observations made else­
where that tails are fatter in the high variance directions [4. 5]. 

We remark that while the eigenvalue adjustment scheme 
can be applied to the eigenvector matrix E of the original 
sample covariance. it is also possible to apply this correction 
to matrices that have been computed by other means. such as 
the anti-robust covariances in the previous section . 

4. GAUSSIAN MIXTURE MODEL APPROACH 

Although weighting pixels by Mahalanobis distance makes 
intuitive sense, we will provide a more formal approach which 
explicitly models the data with a Gaussian mixture model. If 
we write 

as the normal distribution with mean J.L and covariance R. 
then we will consider a two-component mixture model 

P(X) = (1 - a)N(x; J.L, Rio) + aN(x; J.L, Rhi) (7) 
, v I '--v--' 

inner core periphery 

in which we impose a number of constraints. One. we will 
take J.L the same for both; that is, they will all be concen­
tric. In fact, for simplicity. we will use the sample mean for 
J.L. Two, we want a « I to be fixed at user-specified val­
ues. Three, we want Rio « Rhi, but we will not require 
that the shapes of these covariances be the same. Subject to 
these constraints. we use the usual expectation-maximization 
algorithm [6] to estimate Rio and Rhi. One minor modifica­
tion was to used a trimmed estimator that, at each iteration, 
sets the weights to zero for a tiny fraction E of the points with 
largest Mahalanobis distance with respect to Rhi. 
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Fig. 1. Illustrating the mixture-of-Gaussians model - the 
smaller ellipse corresponds to Rio (and is nearly identical to 
R), and the larger ellipse corresponds to Rhi. Although both 
Gaussians have the same centroid, they have different orien­
tations of their principal axes. The smaller ellipse more effi­
ciently characterizes the core of the distribution, but the larger 
ellipse better represents the periphery of the data. 

S. SUPPORT VECTOR MACHINE APPROACH 

As noted in the Introduction, if both the normal and the 
anomaly distributions were known then their ratio would pro­
vide the Bayes optimal anomaly detector. It follows that if 
we have samples from both distributions then we can design 
a support vector machine (SVM) to approximate the Bayes 
optimal detector [7]. In this paper we use a training set that 
contains both normal samples and synthetically generated 
anomalies to design a quadratic SVM that (approximately) 
optimizes a weighted linear combination of false alarm and 
missed detection rates. The SVM discriminant function takes 
the form I 

f(x) = x T Qx + qT X + qo (8) 

and can be converted to a Mahalanobis distance classifier us­
ing 

1 -1 J.L=--Q q. 
2 

(9) 

Instead of computing moments (or Mahalanobis distance 
weighted moments), the support vector machine more di­
rectly estimates the decision boundary between the two dis­
tributions. Increasing the weight on false alarms moves the 
decision boundary toward the periphery of the data so that 
the solution has fewer false alarms, though at the expense of 
more missed detections. Furthermore the SVM solution for 

lThis form can be realized by using a quadratic kernel. or by quadratically 
extending the original training vectors and using a linear kernel. 

Q takes the form 

Q = L aixix ; 
x,Edata 

L aixi x ; 
xiEanomalies 

(J 0) 

where all ai 2: O. The support vector property of SVM so­
lutions implies that the nonzero coefficients in the first sum 
correspond to normal samples that lie near or beyond the de­
cision boundary. Thus the solution is defined explicitly in 
terms of the peripheral normal samples. 

The SVM approach requires us to generate samples from 
the anomaly distribution. The results in this paper we ob­
tained using random samples from a uniform distribution 
over a hyper-rectangle that encompasses the normal data. 
Although increasing the number of samples promises more 
accurate solutions, it also increases the computational de­
mand, and so the number of samples must be chosen to 
balance these two concerns. The results in this paper were 
obtained using approximately fives times as many anomalous 
samples as normal samples. 

6. A MEASURE OF PERFORMANCE FOR 
ANOMALY DETECTION 

Because anomalies are rare, measuring the performance of an 
anomaly detection algorithm can be problematic. Rather than 
concentrate on the anomalies, however, we will emphasize 
how well the model fits the normal data. In particular, given 
an alarm rate a (the rate at which normal samples are pre­
dicted to be anomalous), we will compute the volume V(a) 
of the ellipsoid which contains a fraction 1 - a of the data. 
We will plot V versus a and our best algorithms will give the 
smallest values of V at Iowa. As we adjust the overall radius 
of the ellipsoid whose shape is specified by a given covariance 
matrix, we will trace out a curve in the V -versus-a space that 
has the flavor of a ROC curve. In fact, the a directly corre­
sponds to false alarm rate. The V corresponds to a kind of 
missed detection rate, since the anomalies that are inside the 
volume V are the ones that will not be detected. 

Fig. 2 shows such curves. As the alarm rate decreases, the 
volume necessary for achieving that alarm rate increases. For 
the low alarm rates, we see that the periphery-characterizing 
estimates outperform the standard and robust estimates. The 
robust estimate is worse than the standard estimate at Iowa, 
but for larger a ~ 0.5, the robust is slightly 'better. That 
is: the robust estimator better characterizes the core of the 
distribution while the periphery-characterizing estimates are 
better at, well, characterizing the periphery. 

7. DISCUSSION AND CONCLUSIONS 

In the ideal case of a mu,ltivariate Gaussian distribution, the 
contours are concentric ellipsoids, fully characterized by a 
mean vector and covariance matrix. Furthermore, the opti­
mal estimator of these parameters are just the sample mean 
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Fig. 2. Coverage plots show how the volume V of the ellipsoid increases as the fraction of uncovered data (the alarm rate) 0: de­
creases, using various algorithms to to estimate the covariance matrix. The top panel is for the first p = 3 principal components, 
and the bottom panel is all p = 224 spectral channels of the AVIRIS (Airborne Visual/InfraRed Imaging Spectrometer [8]) 
hyperspectral image of the Florida coastline, from data set f960323tO I p02J04..scO I. Half of the points are used to estimate 
covariance, and the other half are used to estimate performance, so these are out-of-sample results. The sample estimator uses 
Eq. (I) with all weights equal to one. 

and sample covariance from classical statistics. These statis­
tics give equal weight to all data samples, whether they are 
from the core or the periphery of the distribution. 

It is widely recognized that hyperspectral data is generally 
more fat-tailed than a Gaussian distribution, but it has recently 
become apparent that the "fatness" of those tails is different 
in different directions [4, 5, 9]. A consequence of this obser­
vation is that the best covariance matrix for characterizing the 
core of the data may differ from the best covariance matrix for 
characterizi,ng the periphery. The approach we suggest here 
follows Vapnik's dictum [I OJ - rather that attempt to char­
acterize the full distribution, we seek instead to characterize 
only the contour on the periphery. 
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