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STATISTICS FOR CHARACTERIZING DATA ON THE PERIPHERY

James Theiler and Don Hush

Space and Remote Sensing Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

We introduce a class of statistics for characterizing the pe-
riphery of a distribution, and show that these statistics are par-
ticularly valuable for problems in target detection. Because so
many detection algorithms are rooted in Gaussian statistics,
we concentrate on ellipsoidal models of high-dimensional
data distributions (that is to say: covariance matrices), but we
recommend several alternatives to the sample covariance ma-
trix that more efficiently model the periphery of a distribution,
and can more effectively detect anomalous data samples.

Index Terms— anomaly detection, outlier, target detec-
tion, probability distribution, robust statistics, Gaussian mix-
ture models, expectation-maximization, leptokurtosis

1. INTRODUCTION

What makes target detection difficult is that the target must be
distinguished from the background clutter, and this requires
that the background be well characterized. More particularly,
when that characterization is a probability distribution, it is
the periphery of the background distribution that must be most
carefully characterized. Targets in the core of the distribution
are impossible to detect; targets far out on the tail of the dis-
tribution are easy to detect. It is the targets on the periphery,
the targets that are difficult but detectable, that are of most
interest to the algorithm developer who wants improved ROC
curves.

The detection of anomalies (and of anomalous changes)
requires that the samples that are anomalous be distinguished
from the samples that are normal [1]. One way this can be
achieved is by identifying two probability distributions: one
for normal data and one for anomalies. The normal data distri-
bution is generally fit to the data, while the anomalies are (of-
ten implicitly) defined with a distribution that is much broader
and flatter than the normal data distribution. If both distribu-
tions were precisely known, then their ratio would provide the
Bayes optimal detector of those anomalies.

While the choice of distribution for modeling the anoma-
lies does require some care, the main technical challenge in
anomaly detection is the characterization of the normal data
distribution. The more “tightly” fit the distribution is to the
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normal data, the more accurately one can detect those data
that do not fit the normal model.

For anomaly detection problems, very low false alarm
rates are desired. Thus the challenge is even greater because
we need to characterize the density in regions where the data
are sparse; that is, on the periphery (or the “tail”) of the
distribution. Yet, traditional density estimation methods for
anomaly detection (e.g., the simplest and most common ap-
proach is to fit a single Gaussian to the data [2]) are dominated
by the high-density core,

In all of the examples here, our model for characterizing
the periphery of a multivariate distribution will be an ellip-
soid; our aim then, is to estimate a covariance matrix that
characterizes that ellipsoid. We remark that the overall scale
of the covariance is not of particular concern to us; for the
single scalar measure of overall size, we can adjust the pa-
rameter to achieve the desired false alarm rate «. What is of
more concern is the O(p?) parameters, where p is the number
of spectral channels, that characterize the shape of the ellip-
soid and its centroid.

2. IN DEFIANCE OF ROBUST STATISTICS

The goal of robust statistics is to produce characterizations
of data that are insensitive to a few bad data samples. This
is typically achieved by discounting (or de-weighting) those
samples that, because of their long “lever arm” have undue
influence on the estimation. We will consider a contrary ap-
proach that puts extra weight on points that are far from the
centroid.

For estimation of the mean p and covariance matrix R,
Campbell [3] has recommended equations of the form
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When the weights are all equal (e.g., w; = 1 for all 7), then
the standard sample estimators for mean and covariance are
obtained. For a robust estimator, one can alter these weights
depending on how far the samples are from the mean. Dis-
tance to the mean is measured in terms of the Mahalanobis

“:

R



distance .
re = [0t — ) TR~ (% — )] . @)

To make the robust estimator less sensitive to outliers, one
discounts the large r samples; for instance [3]:

) 1 ifr€r,
Robust: w(r) = { ey i 3)
To use this in practice requires an iterative approach, since
the weights depend on Mahalanobis distance, Mahalanobis
distance depends on g and R, and p and R depend on the
weights.

But for problems which depend primarily on the periphery
of the distribution, this scheme seems to be getting it exactly
backwards: it discounts just the data that we most need to pay
attention to. Therefore, we considered a weighting scheme

that discounts the small Mahalanobis points:
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Anti-robust: w(r) = { Whr® Er . (4)
Here, u = v = 0 corresponds to the standard sample covari-
ance, while 4 = 0, v = —1 corresponds to the robust estima-

tor suggested by Campbell [3]. An anti-robust estimator takes
u > 0. Note that the choice of a large r, and a negative v im-
bues the estimator with some robustness to very large values
of r.

One must also choose a value for the cutoff radius r,. For
a p-dimensional Gaussian, the squared Mahalanobis distance
72 is chi-squared distributed, with p degrees of freedom. This
distribution is approximately Gaussian with mean p and vari-
ance 2d. For our experiments, we take 7, = \/p+ b/\/§ with
b=2.

In the adaptive version of this scheme, we choose a frac-
tion a < 1 of the points to emphasize, then (at each iteration)
choose 7, so that a fraction o of the data points have Maha-
lanobis distance larger than r,,.

2.1. Anti-shrinkage estimator

One difficulty with the anti-robust estimators is that the iter-
ations are often unstable. An alternative approach is to es-
timate a robust covariance matrix and to recognize that the
sample covariance is a positive linear combination of the ro-
bust and anti-robust estimators. In general, “shrinkage” refers
to the statistical approach of modifying an estimator by taking
a positive linear combination with a simpler estimator. Since
what we want is the anti-robust estimator, we will take a non-
positive linear combination of the sample covariance and the
robust estimator:

R = Reghus + (1 — @) Rsample (5)

where o < 0 is chosen so to optimize an in-sample measure
of coverage versus volume, as described in Section 6.

3. EIGENVALUE ADJUSTMENT APPROACH

In the spirit of the anomaly detector suggested by Adler-
Golden [4], we will use the sample covariance R to align
the covariance matrix, but will adjust the magnitudes within
that alignment. Specifically, we will write R = EAE, where
E is the matrix of eigenvectors, and A is a diagonal ma-
trix whose elements are eigenvalues. In particular, the kth
element Ay is given by the variance in the e, direction,
where ey is the kth column vector in the matrix £. That is,
Ak = (1/n) ¥, (eTx;)?. Instead of using variance, we will
use inter-percentile difference; we used the square distance
between the tth lowest value of el x; and the tth highest
value, thus enclosing a fraction (n — 2¢)/n of the samples.
In our experiments, we took this fraction to be 0.999. Using
these new values Axx, we estimate the covariance matrix with
R = EAET.

In this scheme Axx > Axk just because the 99.9 inter-
percentile distance is larger than the standard deviation, even
for Gaussian data. But the overall magnitude of R doesn’t
matter. We find that the ratio lv\kk/Akk tends to be larger
for small values of k, consistent with observations made else-
where that tails are fatter in the high variance directions [4, 5].

We remark that while the eigenvalue adjustment scheme
can be applied to the eigenvector matrix £ of the original
sample covariance, it is also possible to apply this correction
to matrices that have been computed by other means, such as
the anti-robust covariances in the previous section.

4. GAUSSIAN MIXTURE MODEL APPROACH

Although weighting pixels by Mahalanobis distance makes
intuitive sense, we will provide a more formal approach which
explicitly models the data with a Gaussian mixture model. If
we write

N(x; s, R) = (2m)~*/*| R|="/2 exp (—éxTR-lx) ®)

as the normal distribution with mean p and covariance R,
then we will consider a two-component mixture model

P(x) = (1 — a)N(x; g, Rio) + N (X; pt, Rps) ()

periphery

inner core

in which we impose a number of constraints. One, we will
take p the same for both; that is, they will all be concen-
tric. In fact, for simplicity, we will use the sample mean for
p. Two, we want @ < 1 to be fixed at user-specified val-
ues. Three, we want R, <« Rp;, but we will not require
that the shapes of these covariances be the same. Subject to
these constraints, we use the usual expectation-maximization
algorithm [6] to estimate Ry, and Rp;. One minor modifica-
tion was to used a trimmed estimator that, at each iteration,
sets the weights to zero for a tiny fraction ¢ of the points with
largest Mahalanobis distance with respect to Rp;.
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Fig. 1. lllustrating the mixture-of-Gaussians model — the

smaller ellipse corresponds to R, (and is nearly identical to
R), and the larger ellipse corresponds to Rp;. Although both
Gaussians have the same centroid, they have different orien-
tations of their principal axes. The smaller ellipse more effi-
ciently characterizes the core of the distribution, but the larger
ellipse better represents the periphery of the data.

5. SUPPORT VECTOR MACHINE APPROACH

As noted in the Introduction, if both the normal and the
anomaly distributions were known then their ratio would pro-
vide the Bayes optimal anomaly detector. It follows that if
we have samples from both distributions then we can design
a support vector machine (SVM) to approximate the Bayes
optimal detector [7]. In this paper we use a training set that
contains both normal samples and synthetically generated
anomalies to design a quadratic SVM that (approximately)
optimizes a weighted linear combination of false alarm and
missed detection rates. The SVM discriminant function takes
the form'

f(x) =xTQx +aTx + g0 (8)

and can be converted to a Mahalanobis distance classifier us-
ing

R=Q7, u=-30". ©
Instead of computing moments (or Mahalanobis distance
weighted moments), the support vector machine more di-
rectly estimates the decision boundary between the two dis-
tributions. Increasing the weight on false alarms moves the
decision boundary toward the periphery of the data so that
the solution has fewer false alarms, though at the expense of
more missed detections. Furthermore the SVM solution for

I"This form can be realized by using a quadratic kerne. or by quadratically
extending the original training vectors and using a linear kernel.

Q takes the form

Q: Z aiXinT = Z

x,edata x;eanomalies

aixix? (]0)

where all a; > 0. The support vector property of SVM so-
lutions implies that the nonzero coefficients in the first sum
correspond to normal samples that lie near or beyond the de-
cision boundary. Thus the solution is defined explicitly in
terms of the peripheral normal samples.

The SVM approach requires us to generate samples from
the anomaly distribution. The results in this paper we ob-
tained using random samples from a uniform distribution
over a hyper-rectangle that encompasses the normal data.
Although increasing the number of samples promises more
accurate solutions, it also increases the computational de-
mand, and so the number of samples must be chosen to
balance these two concerns. The results in this paper were
obtained using approximately fives times as many anomalous
samples as normal samples.

6. A MEASURE OF PERFORMANCE FOR
ANOMALY DETECTION

Because anomalies are rare, measuring the performance of an
anomaly detection algorithm can be problematic. Rather than
concentrate on the anomalies, however, we will emphasize
how well the mode! fits the normal data. In particular, given
an alarm rate o (the rate at which normal samples are pre-
dicted to be anomalous), we will compute the volume V(&)
of the ellipsoid which contains a fraction 1 — « of the data.
We will plot V' versus « and our best algorithms will give the
smallest values of V' at low a. As we adjust the overall radius
of the ellipsoid whose shape is specified by a given covariance
matrix, we will trace out a curve in the V-versus-« space that
has the flavor of a ROC curve. In fact, the o directly corre-
sponds to false alarm rate. The V' corresponds to a kind of
missed detection rate, since the anomalies that are inside the
volume V are the ones that will not be detected.

Fig. 2 shows such curves. As the alarm rate decreases, the
volume necessary for achieving that alarm rate increases. For
the low alarm rates, we see that the periphery-characterizing
estimates outperform the standard and robust estimates. The
robust estimate is worse than the standard estimate at low «,
but for larger o ~ 0.5, the robust is slightly better. That
is: the robust estimator better characterizes the core of the
distribution while the periphery-characterizing estimates are
better at, well, characterizing the periphery.

7. DISCUSSION AND CONCLUSIONS

In the ideal case of a multivariate Gaussian distribution, the
contours are concentric ellipsoids, fully characterized by a
mean vector and covariance matrix. Furthermore, the opti-
mal estimator of these parameters are just the sample mean
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Fig. 2. Coverage plots show how the volume V of the ellipsoid increases as the fraction of uncovered data (the alarm rate) v de-
creases, using varjous algorithms to to estimate the covariance matrix. The top panel is for the first p = 3 principal components,
and the bottom panel is all p = 224 spectral channels of the AVIRIS (Airborne Visual/InfraRed Imaging Spectrometer [8])
hyperspectral image of the Florida coastline, from data set f960323t01p02_r04_scOl. Half of the points are used to estimate
covariance, and the other half are used to estimate performance, so these are out-of-sample results. The sample estimator uses
Eq. (1) with all weights equal to one.

and sample covariance from classical statistics. These statis-
tics give equal weight to all data samples, whether they are

from
It
more

the core or the periphery of the distribution.
is widely recognized that hyperspectral data is generally
fat-tailed than a Gaussian distribution, but it has recently

become apparent that the “fatness” of those tails is different
in different directions [4, 5, 9]. A consequence of this obser-
vation is that the best covariance matrix for characterizing the
core of the data may differ from the best covariance matrix for
characterizing the periphery. The approach we suggest here
follows Vapnik’s dictum [10] — rather that attempt to char-

acteri

ze the full distribution, we seek instead to characterize

only the contour on the periphery.
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