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Introduction

In the last quarter, we focused on steady, fully developed, gravity-
driven flows of identical, smooth spheres down bumpy inclines, with flow
depths greater than one particle diameter, solid fraction profiles everywhere
less than .65, and dimensionless granular temperature T(y=p) at the top
between 0 and 20. For prescribed boundary bumpiness (r=1 and A=0),
restitution coefficients of the boundary (e,=.5) and the flow particles (e=.5),
and angles of inclination (¢=21°, 22.5°, and 24°), we determined the complete
range of T(y=p) (within 0<T(y=B)<20) for which such flows can be maintained.
For these angles, and all others in the range 14°<¢<26° for which at least one
steady, fully developed flow could be maintained, we found that there was a
nonzero minimum value and a finite maximum value of m between which
steady, fully developed flows can be maintained.

In this quarter, we continue the same parameter study by choosing
other sets of values of 1, A, e, e, and ¢ for which we know that at least one
solution of the type described above may be maintained, and determine the
complete range of T(y=p) (within 0<T(y=B)<10) for which such flows can be
maintained. To each value of T(y=p) in this range, there correspond values

of mass hold-up (m,), mass flow rate (m), and depth B. In addition, for each
value of T(y=f) in this range, we can calculate the total fluctuation energy per
unit area (E), the slip velocity (v) at the base, the velocity (U,,p) at the top, and
the depth-averaged values of solid fraction, velocity, and granular
temperature. In this manner, we thoroughly characterize all the steady, fully
developed, gravity driven flows that are possible for prescribed sets of 1, A, e,
e, and ¢.

In this manner, we find that there are boundaries, flow particles, and
inclinations for which the kinetic theory predicts that steady, fully developed
flows can be maintained at all flow rates above a minimum value. These are
qualitatively different from the results presented last quarter, in which
maximum flow rates (above which stedy flows could not be maintained) were
determined for each case considered. The fact that it is possible to find
circumstances under which there are no maximum flow rates that limits the
occurrence of steady flows may be useful when in practice it is necessary to
steadily transport extremely high volumes of granular materials.

Overview

In Figure 1, we show as a darkened area in the ¢-A plane the values of ¢
and A for which at least one value of T(y=p) within the range 0<T(y=B)<10
yielded a solution to the boundary value problem for steady, fully developed,
inclined flows (within the bounds B=1 and v<.65.) for 0<A<.732, when r=1 and
e=e,=5. This figure was included in our last quarterly report, but is included
here for completeness. It demonstrates that when A=.414, for example, steady,




full developed flows are possible when ¢ is approximately between 21° and
35°. In what follows, we consider three intermediate angles ¢ for these two
values of A, and for each angle determine the full range of T(y=p) that yields
solutions to the boundary value problem.

In addition, we characterize the solutions by calculating the
corresponding values of mass hold-up (m,), mass flow rate (m), depth §, total
fluctuation energy per unit area (E), slip velocity (v) at the base, the velocity

(u(y=B)) at the top, and the depth-averaged values of solid fraction v, velocity

@i, and granular temperature T. Here, the dimensionless depth B and distance
y from the base are nondimensionalized by particle diameter o, the
dimensionless velocities u, v, and u(y=p) are nondimensionalized by (cg)!/?,
the dimensionless granular temperature T is nondimensionalized by og, the
depth-average of any quantity q(y) is defined by,

1P
a=§ Jaydy @
0 .

and the depth-totaled quantities m,, m, and E are equal to BV, fvu, and BVT,
respectively.

Results and Discussion

Here we consider the case in which r=1, e=e,=.5, A=.414, and choose
four angles ¢=25.5°, 27.505°, 28°, and 34" in the range 21°<¢<35°. In Figure 2, we

show for each angle the variations of B, m, m, T, V, E, @, v, and u(y=B) with
T(y=B). At the maximum value of T(y=B)=10, the flows are quite deep and
quite dilute. In each case, as T(y=B) decreases from its maximum value, the
flows become more massive and more shallow. However, as T(y=p) nears its
minimum value, the flow depths reach their minimum values and then
begin to increase. For ¢=25.5° and 27.505°, the increase in depth is not
sufficient to mitigate the increase in mass hold-up, and the assemblies
become too dense to flow as T(y=B) decreases near its minimum value. For
these two lower inclinations, the theory predicts that for values of T(y=f)
below the minima, the solid fraction somewhere within the flows exceeds .65.
For these inclinations, when T(y=B) is exactly equal to its minimum value,
the flow rate assumes a corresponding finite maximum value. However, for
the two upper inclinations ¢=28° and 34, the increase in depth as T(y=B)
decreases near its minimum value is sufficient to compensate for the increase
in mass hold-up. For these two higher inclinations, the assemblies do not
become too dense to flow, and the mass flow rates increase without bound as



T(y=B) approaches its minimum value. Consequently, we find here that for
r=1, e=e, =.5, A=.414 (unlike for the case considered last quarter) there are
relatively high inlinations at which the flow rates are unbounded. For the
same values of 1, e, e,, and A, there are lower inclinations at which the flow
rate is bounded by a finite maximum. In the next quarter we will focus on the
transition from inclinations at which the flow rates are bounded to those at
which the flow rates are unbounded.

To make the variations with T(y=B) near its minimum value more
clear, in Figure 3 we replot the variations of m, and v with T(y=8) on log-log
scales. The variations of m with T(y=B) shown in both Figures 2 and 3 also
suggest that corresponding to each inclination is a nonzero minimum value
of m above which steady, fully developed flows can be maintained.

According to Figure 2, as T(y=B) decreases from 20 over most of its
range, the flows become less thermalized (as might be expected) and slower.
However as T(y=B) continues to decrease near its minimum value, these

trends are reversed. Furthermore, the quantities m, m, v, and E are
extremely sensitive to changes in T(y=f) near its minimum value but
relatively insensitive to changes in T(y=B) away from its minimum value.
These observations indicate that there is no simple relationship between
T(y=B), which can not be controlled experimentally, and such parameters as m
and E, which may be controllable. For this reason, when presenting the
results, it is probably better to parameterize the solutions by either m or E.

In Figure 4, for example, we eliminate T(y=g), and plot the variations of
E and m, with m when r=1, e=e,=.5, and A=.414, for ¢=25.5°, 27.505°, 28° and
34°. The left-hand panel of Figure 4 indicates how much thermal energy
should be imparted to the particles at the inlet to to ensure that their initial
states are near to the steady, fully developed states predicted by the theory.
For each inclination, the endpoints of these curves at the lower flow rates
correspond to very deep, very dilute flows of nonzero mass hold-ups. The
endpoints for the two lower inclinations at the upper flow rates correspond to
relatively dense flows in which the solid fraction is somewhere equal to .65.
The two upper inclinations have no corresponding (high-flow-rate)
endpoints.

In the upper portion of Figure 5, we plot the variations of §,V, and @
with m corresponding to those of E and m, shown in Figure 4. Of particular

interest is the variation of v with m shown in the middle panel. At the two
lower inclinations, Near the higher-flow-rate end points, the depth-averaged
solid fraction increases rapidly with small changes in flow rate. This indicates
that these endpoints occur because the assemblies become too dense to flow
rapidly. At the two lower inclinations, the depth-averaged solid fractions are
quite insensitive to large increases in the high flow rates, and appear to
approach relatively dilute asymptotic values. This indicates that at these
inclinations, the flows do not become too dense regardless of how large the
flow rates become.




For completeness, we have included in the lower portion of Figure 5,
the corresponding variations of B, ¥, and @ with E.
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Figure Captions

The area in the ¢-A plane in which steady, fully developed,
gravity driven flows are possible when r=1, e=e,=.5, and
0<A<.732.

The variations of B, m,, m, T, ¥, E, &, v, and u(y=g) with T(y=B) for
$=25.5°, 27.505°, 28° and 34° when r=1, e=e =.5, and A=.414.

The variations of m, and v with T(y=p) for ¢=25.5°, 27.505°, 28°
and 34° when r=1, e=e =.5, and A=.414..

The variations of E and m, with m for ¢=25.5°, 27.505°, 28° and 34°
when r=1, e=e,=.5, and A=.414.

The variations of B, v, and @ with m and E for ¢=25.5°, 27.505°, 28°
and 34° when r=1, e=e=.5, and A=.414.
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Figure 2:  The variations of B, m,, m, T, V, E, @, v, and u(y=f) with T(yéﬁ) for
$=25.5°, 27.505°, 28° and 34° when r=1, e=e =5, and A=.414.
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Figure 3: The variations of m, and ¥ with T(y=B) for $=25.5°, 27.505°, 28°
and 34° when r=1, e=e,=.5, and A=.414.
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Figure 4:  The variations of E and m, with m for ¢=25.5°, 27.505°, 28" and 34°
' when r=1, e=e =.5, and A=.414.
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The variations of B, v, and @« with m and E for ¢=25.5°, 27.505°, 28°
and 34° when r=1, e=e_=.5, and A=414. .




