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1. Abstract

The application of computer simulation to grain growth and recrystallization was
strongly stimulated in the early 80s by the the realization that Monte Carlo models
could be applied to problems of grain structure evolution. By extension of the Ising
model for domain modeling of magnetic domains to the Potts model (with generalized
spin numbers) it was then possible to represent discretely grains (domains) by regions of
similarly oriented sets of material (lattice) points. In parallel with this fascinating
development, there also occured notable work on analytical models, especially by
Abbruzzese and Bunge, which has been particularly useful for understanding the
variation of texture (crystallographic preferred orientation) during grain growth
processes. Geometric models of recrystallization, worked on most recently and
productively by Nes et al., have been useful in connection with grain size prediction as a
result of recrystallization. Also, mesh-based models have been developed to a high
degree by Kawasaki, Fradkov and others, and, rather recently, by Humphreys to model
not just grain growth but also the nucleation process in recrystallization. These models
have the strength that they deal with the essential features of grains, i.e. the nodes, but
have some limitations when second phases must be considered. These various
approaches to modeling of recrystallization processes will be reviewed, with a special
emphasis on practical approaches to implementing the Potts model. This model has
been remarkably successful in modeling such diverse phenomena as dynamic
recrystallization, secondary recrystallization (abnormal grain growth), particle-inhibited
recrystallization, and grain structure evolution in soldering and welding. In summary,
the application of mesoscopic simulation to the phenomenon of recrystallization has
yielded much new insight into some longstanding deficiencies in our understanding.
There is an obvious need, however, to continue the effort and incorporate more of the
known microstructural complexity into the simulations.
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2. Introduction

The aim of this article is provide both a summary of the available techniques for the
computer simulation of recrystallization, and an overview of what has been
accomplished in this area. The description of the simulation techniques will focus

primarily on the Monte Carlo method because most of the literature has used that
method and because it currently appears to be the most versatile method. The
application of computer simulation to recrystallization has yielded much new insight
into some long-standing deficiencies in our understanding of the process. If this article
encourages even a few researchers to employ computer simulation, the authors will
consider this and the associated workshop to have been a success.

3. Background

The simulation of recrystallization has advanced significantly in the last decade and this
activity has prompted a resurgence of interest in the understanding of this phenomenon.
Recrystallization is of fundamental importance at all levels of metallurgy from grain
size control in commercial metal alloys to understanding the kinetics of grain boundary
motion. A key concept in the microstructural understanding of recrystallization is that
nucleation of recrystallization is invariably a heterogeneous process and is therefore
dependent on the precursor deformed state. For example, the long-lived and lively debate
over Oriented Nucleation versus Oriented Growth as to the origin of the cube texture
component during recrystallization in fcc metals has been significantly affected by
computer simulation of texture development during deformation. Also, the development
of misorientation (other than prior grain boundaries) depends on the micromechanics of
dislocation slip, the heterogeneities of which have been the subject of some elegant
computer simulation. These simulations, however, lead up to recrystallization and there
has been a significant effort to address the microstructural evolution that occurs during
the process. One issue, for example, has been that of grain size morphologies and
distributions. Mahin et al.[1, 2] and later Saetre et al.[3] examined the effect on
microstructure of different nucleation and growth kinetics. The kinetics of
recrystallization have remained a challenge and Rollett et al.[4], later Marthinsen et
al.[5], have examined how heterogeneities in nucleation and growth can affect the
apparent exponent (n in the equation above) when the standard analysis is applied. The
effect of variable grain boundary mobilities has been examined for grain growth by
Novikov[6], Holm([7], Abbruzzese[8], Rollett[9] and others and many of the conclusions
would appear to apply equally well to recrystallization. The initial growth of a
recrystallization nucleus, for example, may well correspond to the abnormal grain
growth of a subgrain.

4, Simulation Methods

The application of computer simulation to grain growth and recrystallization was
strongly stimulated in the early 1980s by the realization that Monte Carlo models could
be applied to problems of grain structure evolution. By extension of the Ising model for
domain modeling of magnetic domains to the Potts model (with generalized spin
numbers) it was then possible to represent discretely grains (domains) by regions of
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similarly oriented sets of material (lattice) points. In parallel with this fascinating
development, there also occurred notable work on analytical models, especially by
Abbruzzese[8], which has been particularly useful for understanding the variation of
texture (crystallographic preferred orientation) during grain growth processes. Geometric
models of recrystallization, worked on most recently and productively by Furu[10], have
been useful in connection with grain size prediction as a result of recrystallization.
Also, mesh-based models have been developed to a high degree by Fradkov(11, 12} and
others, and, rather recently, by Humphreys[13] to model not just grain growth but also
the nucleation process in recrystallization. These models have the strength that they
deal with the essential features of grains, i.e. the nodes, but have some limitations when
second phases must be considered.

We review three methods of mesoscopic simulation for recrystallization. The first,
geometrical, method addresses the final microstructural state and cannot be used to
investigate microstructural evolution. The second method, cellular automata, discretizes
the microstructure and has also been successfully applied to recrystallization. Physically
based rules are used to determine the propagation of a transformation (e.g.
recrystallization, solidification) from one cell to its neighbor. It has not, however, been
used for as wide a range of metallurgical phenomena as has the Monte Carlo method.
This latter relies on the Potts model to both discretize the structure and simulate
boundary motion via an energy minimization procedure.

4.1. GEOMETRICAL

For investigations in which the details of how boundaries move and interact are
unimportant, it is sufficient to construct geometrical models. Rules are chosen for the
selection of nucleation sites (in a continuum space); this allows for the clustering of
sites if so desired. Then a rule is chosen for the intersection of the grains (e.g.
perpendicular bisectors between pairs of points), and the space is tesselated. The result,
for the case where the growth rates of the grains are isotropic and constant, is the
Voronoi polygon structure. The simplest nucleation conditions are those of site
saturation. If the growth of each individual grain is tracked, however, considerable
varjations in microstructure can be obtained by varying the nucleation conditions[14].
Simple rules can be used to exclude previously recrystallized material from nucleation
during continuous nucleation thereby achieving the decrease in effective nucleation rate
that is observed. The microstructures obtained from such purely geometrical models
suffer from the disadvantage of not allowing for grain growth during the recrystallization
process. Grain shapes are non-compact in many cases, in contrast to typical
experimentally observed structures. Grain size distributions from the models exhibit
long tails towards small grain sizes.

4.2. CELLULAR AUTOMATA

The general modeling technique of cellular automata has been applied to recrystallization
by Hesselbarth and others [15]. Automata exploit the quasi-deterministic characteristic
of recrystallization in that the motion of a recrystallization front is irreversible.
Therefore if one only seeks to describe the motion of the recrystallization fronts then the
cellular automaton is very efficient. This method shares the characteristic with the
Monte Carlo method to be described below that it discretizes the space by mapping
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microstructure onto a lattice of cells. Nucleation is modeled by forcing individual cells
to the recrystallized state. As in most simulations of recrystallization, nucleation is
applied in a spatially random manner. This approach has also proved to be useful in
simulating solidification in which undercooling of a melt provides the driving pressure
for transformation.

One drawback of the method is that the growth morphology of the new grains is
prescribed by the choice of the neighborhood of each cell. Hesselbarth et al. [15) model
heterogeneous recrystallization by introducing a long range interaction between grains
into the model. The result of this is grain shapes of (umimpeded) growing grains that
are far from compact, and not physical in appearence.

The effect of heterogeneous stored energy has also been investigated with the
cellular automaton approach[16]. For this case, the propagation rates for the
recrystallization fronts were variable from one location to another. As with earlier
Monte Carlo simulations[4], the results indicated marked deviations from the kinetics of
homogeneous transformations, as indicated by a linear Kolmogorov-Johnson-Mehl-
Avrami plot (see kinetics section below).

4.3. MONTE CARLO METHOD

The Monte Carlo also uses a discretized representation of microstructure; however, cell
interactions are energetically controlled. A continuum microstructure is mapped onto a
two-dimensional (2D) or three dimensional lattice (3D) lattice. Each lattice site is
assigned a number, S;, which corresponds to the orientation of the grain in which it is
embedded. Lattice sites which are adjacent to sites having different grain orientations are
regarded as being separated by a grain boundary, whilst a site surrounded by sites with
the same orientation is in the grain interior. Each site contributes a bulk energy H(S;)
to the system; in recrystallization modeling, H(S;) is the energy stored during
deformation in the form of dislocations at site i. In addition, each unlike pair of nearest
neighbors contributes a unit of grain boundary free energy J to the system. Summing
bulk and surface energy contributions, the total energy of the system is calculated via
the Hamiltonian

N b4

E=§Z[H(S,-)+Z(l—5sisl )] )
i J

where the sum on i is over all N sites in the system, the sum on j is over the z nearest

neighbor sites of site i, and Jj; is the Kronecker delta.

The evolution of the structure is modeled by picking a site and a new orientation
at random from the set of allowable values. The change in total system energy AE for
reorienting the site is computed, and the reorientation is implemented with transition
probability, p, such that

A=>T]; )

June 30, 1995 4



where k is the Boltzman constant and T is the simulation temperature. It is important
to note the difference between the meaning of temperature in the context of the Monte
Carlo model and the physical parameter relevant to recrystallization. In the simulation,
temperature governs the degree of disorder in the lattice, and above some critical
temperature, dependent on the lattice type, the system disorders. Only second order
effects are observed for variations in simulation temperature [17] on the kinetics of grain
growth. Because of this lack of effect, all simulations of recrystallization known to the
authors have been performed at zero temperature. The consequence of this is simplify
the transition probabilities as follows.

1 fAE<O

0 fAE>O 3

P(AE) ={

N reorientation attempts is defined as one Monte Carlo Step (MCS). The number
of Monte Carlo Steps is proportional to time.

Particles are introduced into the simulation as sites which have an orientation
different from any of the grains and which can not be reoriented during the course of the
simulation. This assumption results in an equality of the particle-matrix interfacial
energy and the grain boundary energy, which is reasonable for particles that are
incoherent with respect to the matrix. Also, the particles cannot move through the
lattice which means that grain boundary drag of particles is not permitted[18] .

In static recrystallization simulations, the stored energy per site is assumed to be
positive for initially unrecrystallized material and zero for recrystallized material. When
dynamic recrystallization is simulated, however, the stored energy at each point is a
function of both time and position.

4.4. CONTINUOUS TIME METHOD or N-FOLD WAY

The Monte Carlo method would be very inefficient if it were applied in its basic form to
large data sets because of the sparseness of the problem to be worked. Once much
coarsening has occurred in grain growth, or recrystallization is nearly complete, most
sites in the lattice are surrounded by sites of the same orientation, i.e. they are in the
bulk of a grain. Therefore the probability of their changing orientation is nil and
expending computational effort there is wasted. The crucial contribution of Bortz et
al.[19] was to propose a method (for the Ising model) for eliminating the need to
compute unsuccessful changes in orientation. The key feature of the algorithm is that
the time step after each orientation change is calculated as

——-—(Q_l)rlnl“

At= )

where T is a random number over the range [0,1], T is 1 MCS, and A is the system
activity. The system activity is defined as the sum of the transition probabilities for all
possible reorientations at each site,

A=Y TI Q)
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where IT; is the activity of site i, defined as

where ;; is the probability of reorienting site i to orientation Sje [1,Q]. The
derivation of Eq. 4 is obtained by considering the probability in the conventional Monte
Carlo scheme {19] of whether or not a successful reorientation has occurred in a certain
time interval. This leads to a differential equation which is integrated to give Eq. 4.
Sahni et al. [20] and Holm [21] extended the continuous time method to the Monte
Carlo Potts model with Q different grain orientations in the system. Eq. 4 then
becomes:

I o

To perform a simulation using the continuous time method, each site is visited in
proportion to its activity IT;; at zero temperature, bulk sites have IT; = 0 so are never
selected. One of the allowed reorientations is chosen with probability proportional to
; and is performed. Time is then incremented according to Eq. (7). Since the system
activity A decreases as the number of energetically favorable reorientations decreases (i.e.
as the system coarsens), the time increment increases as the simulation progresses.

The great advantage of the continuous time method is that it greatly speeds up the
computation of microstructural evolution in sparse systems. For 2D grain growth, for
example, Holm found that the conventional Monte Carlo method was more efficient
only when the mean grain radius was less than 3 and efficiency increased monotonically
as the simulation progressed [21]. Even at high fractions of the critical temperature, the
continuous time method was more efficient for long simulation times.

The fact that recrystallization introduces new grains means that is not practicable
to work with a fixed list of orientation values as can be done in grain growth, wherein
the maximum numbers of grains occurs at time zero. Therefore it is convenient to
introduce each new grain with a unique orientation value. The computational efficiency

of the continuous time method is unaffected by this characteristic of recrystallization
siinulations.

4.5. LATTICES

Implicit so far in the discussion has been the connectivity of the points that represent
the discretized microstructure. It turns out that the lattice can have a strong effect on the
results of the simulation. A survey of lattice types for both two and three dimensions is
available in the thesis by Holm[21]. The grain boundary energy per unit length is
anisotropic with respect to the boundary orientation in the lattice. This anisotropy can
be characterized by a Wulff shape which is directly related to the coordination number
and symmetry of the lattice. Tables 1 and 2 list the lattice types with their geometries
and the anisotropy of the Wulff plot. The number in parentheses after the lattice type
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denotes the number of shells of neighbors, such that square(1,2) means a square lattice
with first and second nearest neighbors. The lattice type cubic (2*) denotes a simple
cubic lattice with first, second, third nearest neighbors and neighboring points located at
[222].

TABLE 1. Listing of 2D lattice types with geometries and anisotropies.

Lattice Type Wulff Shape Coordination Anisotropy Grain Growth
Number
Square (1) square 4 1.414 inhibited
Triangular hexagon 6 1.154 normal
Square (1,2) octagon 8 1.116 normal
Triangular (1,2) dodecagon 18 1.057 normal

TABLE 2. Listing of 3D lattice types with geometries.

Latuce Type Wultt Shape Coordination Grain Growth
Number
Cubic (1) cube 6 1nhibited
Cubic (1,2) 18-hedron 18 inhibited
Cubic (1,2,3) 26-hedron 26 normal
Cubic (2*) 98-hedron 124 normal
fec (1) rhomboid 12 inhibited
dodecahedron
fee (1,2) 18-hedron 18 inhibited
hep (1) trapezoidal 12 inhibited
dodecahedron

Figure 1. Diagram of the triangular 2D lattice, showing orientation numbers at each
site, and boundaries drawn between sites with dissimilar orientations.

The characteristic of many lattices that has been ignored by several authors is the
tendency towards self-pinning (for grain growth) in simulations performed at zero
temperature. The last column in each table shows which lattices can sustain grain
growth without self pinning and are therefore suitable for studies of microstructural
evolution. For example, in three dimensions, both of the close packed lattices, face
centered cubic and hexagonal, can not sustain coarsening to long times. The reason for
this is a combination of high lattice anisotropy tending to favor grain facets that lie on
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high symmetry planes, and a tendency for kinks or steps in boundaries to anneal out
with time. If the microstructural features that allow boundaries to move are lost, then it
is not surprising that self pinning occurs. Finite temperature can be used, however, to
maintain a population of kinks and steps thereby allowing grain growth to proceed.

If the grain boundary energy J is uniform for all boundary segments in a
recrystallization simulation, these authors have concluded that the triangular lattice is
suitable for the simulation of recrystallization in two dimensions, and that the
cubic(1,2,3) lattice is suitable in three dimensions. For other types of simulations,
careful examination for lattice effects must be made even for these lattices. Figure 1
shows a 2D triangular lattice with boundaries drawn between regions of uniform

orientation.
4.6. NUCLEATION

Nucleation of recrystallized grains is modeled by adding small embryos to the material at
random positions at the beginning of the simulation (i.e. site saturated nucleation). The
stored energy is set to zero at each site belonging to the embryo. Continuous
nucleation is simulated by adding embryos at regular intervals during the simulation. In
both cases the effective nucleation rate decreases with time because, at long times, most
the available space has been recrystallized and has zero stored energy; embryos placed in
recrystallized material will shrink and vanish. Dynamic recrystallization is modeled by
adding stored energy to each lattice point continuously. This means that it is not
possible to distinguish between recrystallized and unrecrystallized material after the first
cycle of recrystallization is complete. The process of work hardening starts anew with
each new grain which means that the stored energy at any given point is related to the
length of time that has elapsed since the nucleation event associated with that grain.

Embryos have orientations that differ from those of all other grains and particles as
discussed above. If the bulk stored energy H is too small, the embryos are sub-critical
and shrink away. The value of H required for embryo growth depends on its
surroundings. Above some critical H/J, an isolated embryo is super-critical and can
grow as a new grain nucleus. Below that H/J, the embryo must be adjacent to an
existing grain boundary in order to become a nucleus; its growth then occurs
preferentially along the prior grain boundaries. In the 2D triangular lattice,
homogeneous nucleation cannot occur for H/J <2. Embryos of two lattice sites can
grow when 2 <H/J < 4. Single-site embryos can grow when H/J > 4.

4.7. INITIALIZATION OF RECRYSTALLIZATION SIMULATIONS

Monte Carlo recrystallization simulations are typically initialized by performing grain
growth simulations [22, 23] for a period of 103 MCS after which the microstructure
contains approximately 1000 grains with a mean grain area of approximately 40 sites.
At this point, single site "particles" are randomly placed within the microstructure to
obtain a certain area fraction. The stored energy is initialized to the desired value for
each site,
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4.8. RELATIONSHIP OF PHYSICAL GRAIN SIZE TO SIMULATION GRAIN
SIZE

Most computer simulations require significant amounts of computer time so it common
practice to minimize the size of the lattice that is used. Therefore it is useful to analyze
the relationship between grain size in the Monte Carlo recrystallization model, and
physical grain sizes [24].

Assume that the ratio of stored energy to grain boundary energy per unit volume
can be equated in the model and in real materials.

The physical process has the following characteristic driving pressures P. From
the stored dislocation content, Ps"¢ = 10 MPa, typically. For grain growth driven by
grain boundary curvature, P8'8" = y/<r>, where 7 is the grain boundary energy per unit
area, and <r> is the mean grain radius.

In the 2D triangular lattice, the stored energy per unit area is given by
Ppstore = H/[3 s2sin(60°)] where s is the unit boundary length on the lattice. The stored
energy due to boundary curvature is

model
pew =1 u— ®

<p>mdl g o pomoddd

The initial grain size in the Monte Carlo simulations is typically about 6s. Thus, for
the model

store model
P =H<r.> =2.5£ ©
pEEr 3sJ sin 60° J

Using a typical value for the grain boundary energy, 1= 0.5 J.m2, for physical systems

store

=20<r>pum™ (10)

perer
Equating the energy densities for the model and physical systems and rearranging gives
<r>=0.125 H/J pm an

Then for a typical simulation with H/J =2, we can estimate <r> = 0.25 um, which is
a small but not unphysical grain size. Clearly, however, it would be preferable to
simulate recrystallization with lattices with linear dimensions an order of magnitude
larger than is currently typical.

4.9. KINETICS

The kinetics of recrystallization can be measured by the fraction of the structure that has
been transformed. A more useful analysis for comparison with theory is given by
converting the data to a Kolmogorov-Johnson-Mehl-Avrami (KJMA) plot. The standard
analysis for the kinetics of phase transformations has been given in many other places
and will not be derived here. The central concept for accounting for impingement
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between neighboring grains is that of extended volume for transforming grains to grow
into; a differential relation is then deduced between the increment of transformed volume
that would have been obtained in the absence of impingement and the actual volume
increment. For the simplest case of spatially random nucleation, the relationship is
simply

dVactual = (1-V) dVextended (12)
where V is the volume fraction transformed or recrystallized. The extended volume

increment is given an appropriate definition of the temporal and spatial dependence of
the growth of new grains. Integration then leads to a the form

V=1-exp(-Bth (13)
where the constants B and n contain information about nucleation rate and growth. For

the purposes of plotting kinetic data, it is convenient to use the logarithmic form of the
equation:

1
ln{ln 1_V}—n.ln{t}+B (14)

Many authors plot their data in this form with the aim of extracting activation energies
where temperature was a variable, and microstructural information from the slope (the
exponent n). For example, for site saturated nulceation conditions and two dimensional
growth, n=2: for continuous nucleation and three dimensional growth, n=4. As
Vandermeer[25] has pointed out, however, nucleation conditions may both the form of
dVextended and the differential relationship.

A characteristic of the Monte Carlo model of recrystallization is that a finite
recrystallized volume is introduced at the beginning of simulations when site saturated
nucleation conditions apply. This becomes apparent in a KIMA plot as a curvature at
early times. A simple correction may be made for the finite initial fraction transformed
by adding a constant to the measure of time. The correction is of course heuristic
because it depends on the results themselves.

The growth rate of recrystallized grains in the Monte Carlo model is also not
linearly related to the stored energy density. As with nucleation, each integer increment
of H/J leads to a discrete change in which sites can change orientation with a neutral or
negative change in system energy.

5. Results of Simulation of Recrystallization

The section provides a review a number of areas in which useful results have been
obtained from recrystallization simulation.

5.1. ABNORMAL GRAIN GROWTH

The early stages of recrystallization are labeled as nucleation even though no new phase
appears in the material. At the level of the dislocation structure, however, the existing
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heterogeneities of the deformed structure coarsen in the process known as
polygonization. The heterogeneities exist at several length scales from cells to shear
bands to prior grain boundaries. Many observations have been made which suggest that
individual subgrains acquire a growth rate advantage over their neighbors and become
identifiable as new grains. This growth advantage can result from a difference in
mobility between the boundary of the new grain and the boundaries in the surrounding
material. This process of competitive growth has been observed in the Monte Carlo
model in both 2D [9] and 3D [26] simulations. By altering the rate at which sites are
sampled for reorientation, the mobility of specific grain boundaries can be varied. Small
ratios in mobility between one grain and another lead to marked abnormal grain growth
behavior, which may correspond to the early growth of new grains in recrystallization.

5.2. STATIC RECRYSTALLIZATION

A key observation in grain growth is that an isolated grain will shrink and eventually
vanish in response to tendency to mininiize grain boundary area. When an isolated grain
can eliminate stored energy by growing, however, it does so, provided that the grain is
not smaller than a critical size. In a polycrystalline structure with O<H/J<1, any
recrystallized grain will grow at the expense of its neighbors because of the bias
imposed on the unit step of the grain growth process. That is to say, the motion of
kinks along a boundary is reversible when the change in energy associated with a step is
zero, as is often the case for the 2D triangular lattice; however, such energy neutral steps
become irreversible when biased by the elimination of stored energy at each step.
Clearly, the Monte Carlo simulation of the motion of recrystallization fronts is much
closer to a deterministic model than for grain growth.

T T
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= F 9
g oL
E e
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[ s ¥ J
10.4 . y s g4 gt N N PP
10 10 10’
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Figure 2. KIMA plot of the kinetics of recrystallization under homogeneous
nucleation conditions. Continuous nucleation at various rates was applied with
H/J=5. Curves a-g correspond to 0.2, 0.5, 1, 2, 10 and 50 nuclei/MCS,
respectively.

The kinetics of recrystallization have been found to reproduce those anticipated
from theoretical analysis very closely. For example, in 2D simulations [27] site
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saturated nucleation conditions with a high enough stored energy density (H/J>2), a
KIMA plot of the fraction recrystallized versus time show a slope of 2 at long times;
continuous nucleation gives a slope of 3, as shown in Fig. 2 above. Both results are as
predicted from classical KIMA analysis. For low stored energy densities (H/J<2),
nucleation is heterogeneous in the sense that embryos must be adjacent to existing
boundaries in order to survive and grow, as shown in Fig. 3 below. In this case the
kinetics show significant deviations from the classical KIMA pattern[28]. The key
observation here is that the growth of new grains at low stored energies is highly
dependent on the prior structure. For H/J<I, the recrystallization front grows out from a
triple point and is concave with respect to the unrecrystallized side. The net effect is
that growth is very slow in early stages of recrystallization.

1 = 10 t = 30 t = 50

Figure 3. Illustration of the growth mode of new grains at 1<H/J<2. Note that the
most rapid growth direction is parallel to the prior boundary.

5.3. RECRYSTALLIZATION IN THE PRESENCE OF PARTICLES

Recrystallization with inert particles present is easily modeled by assigning sites
orientation values that cannot be changed, as described above. Although only the effect
of single site particles have been studied [24] to date (whereas particle shape and size has
been examined for grain growth), the results appear to be general, at least for small
particles. Large particles in physical systems have the effect of stimulating nucleation,
an effect that has not been addressed by microstructural simulations.

During recrystallization simulation with sufficient stored energy (H/J 23 in the
triangular lattice) the recrystallization front can readily bypass particles regardless of
particle size or area fraction. Under these circumstances the recrystallization growth
kinetics are unaffected by particles. The overall kinetics are accelerated slightly,
however, by heterogeneous nucleation on particles.

At intermediate stored energies (1 SH/J <3) nearly all recrystallization
boundaries can move past single-site particles. Boundaries with a very high particle

density will stop moving. However, the irreversible propagation of grain boundary
kinks allows most boundaries to achieve a configuration from which two kinks can join
to move past single-site particles. The presence of prior grain boundaries further
enhances recrystallized boundary motion. In these systems, boundaries intersect
particles at random, and recrystallization kinetics are substantially unaffected by
particles, as shown in Fig. 4, where a single recrystallized grain shows unrestricted
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growth for H/J = 1. Larger particles may inhibit recrystallization in this stored energy
regmine, however, since two boundary kinks cannot join directly.
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Figure 4. Plot of the fraction recrystallized versus time for two different stored
energies, various area fractions of particles and a single nucleus.

At low stored energies (H/J < 1) grain boundary energy governs boundary motion,
and the recrystallization front is strongly pinned by particles which leads to a much
higher than random density of particles on the recrystallization front. In these
circumstances recrystallization is strongly inhibited which usually results in incomplete
recrystallization, as shown in Fig. 4. When only small particle fractions are present,
however, recrystallization may go to completion because pinning does not occur until
after the transformation is complete.

In addition, prior grain boundaries may still enhance motion of recrystallized grain
boundaries, so that the recrystallized grains can grow (at low particle fractions) much
larger than the deformed matrix grains. This is sufficient to drive the recrystallizing
grains past some particles, but only if the matrix grain size is much smaller than the
interparticle spacing. In other words, recrystallization at low stored energy and at very
low particle fractions is similar to abnormal grain growth.

Grain boundaries undergoing curvature driven growth (both in the deformed state
and after complete recrystallization) rapidly acquire a higher than random density of
particles which then inhibits grain growth. If the recrystallized grain size is smaller
than the normal grain growth particle pinned grain size, grain growth continues until
pinning occurs and the microstructure is a normal grain growth microstructure.
However, when the recrystallized grain size is large compared to the normal grain
growth particle pinned grain size, particle pinning occurs almost immediately following
the completion of recrystallization thus preserving the non-compact grain shapes and
sharply peaked grain size distribution that are characteristic of randomly distributed
nuclei. The following figure illustrates the point that the density of particles on
boundaries is higher for ordinary boundaries than for recrystallization fronts. The latter
intersect with particles at near random values.

Analysis of recrystallization in particle containing materials suggests that there are
two limiting values of particle drag; a low (Zener) value with a random density of
particles and a much higher value if particles have become highly correlated with the
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recrystallization front (as in grain growth). The simulation results show both these
behaviors, depending on the H/J ratio. The figure below plots the density of particles
on boundaries for two types of boundaries; recrystallization fronts have a lower, near
random density of particles; general boundaries exhibit a higher than random density,
suggesting that they are more strongly pinned. Experimental studies appear to show
only the lower particle drag (Zener) as studied by Ashby et al.[29].
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Figure 5. Plot of the fraction of particles on boundaries for H/J=1.01, with a
particle area fraction of 5% and 1000 nuclei (site saturation conditions). The solid
symbols represent results for recrystallization fronts, which intersect particles on a
near random basis. General boundaries have a higher than random density of
particles.

5.4, DYNAMIC RECRYSTALLIZATION

As described in the methods section, dynamic recrystallization has been successfully
modeled with the Monte Carlo model[{30]. In its simplest form, stored energy at each
point of the lattice is increased at a fixed rate and embryonic new grains are continually
added at a constant rate. The basic result is that temporal oscillations are observed both
in the grain size and in the stored energy which is analogous to the flow stress, as
shown in Fig. 6 below. These oscillations are observed over almost the entire range of
recrystallization parameters examined (energy storage rate, nucleation rate, initial grain
size) and damp out over time periods that decrease with increasing storage rate and
increasing nucleation rate. The oscillations in both grain size and stored energy have the
same period but are out of phase by approximately one quarter of a period. Examination
of the simulated dynamic recrystallization microstructures which were formed under the
same conditions but with different initial grain sizes shows that the evolution of the
microstructure may be divided into three distinct stages: an initial microstructure
dependent transient stage, an initial microstructure independent transient stage, and a
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steady state stage. While necklacing was observed in these simulations under some
circumstances, it is apparent that it is not a necessary condition for grain refinement in
dynamic recrystallization. This phenomenon is associated with refinement of the
relatively coarse initial microstructure and overdamped oscillations in the flow stress.
Therefore, even when there are no obvious oscillations in the flow curve and no
necklacing is observed, dynamic recrystallization cannot be precluded.
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Figure 6. Plot of a) the variation of the stored energy (as representative of the flow
stress) and b) of the mean grain size as a function of time.

It should be noted that the geological community had applied the Monte Carlo
model to dynamic recrystallization but had only examined the microstructural aspects.
Jessel[31] published a description of an adaptation of the Monte Carlo model for the
simulation of deformation of quarzite. Although the model is similar to the combined
grain growth and recrystallization model described above, the Jessel work used only
differences in stored energy between sites to evaluate transition probabilities for
orientation changes. Also, the only results given were for microstructural evolution,
with no attempt to investigate stress-strain relationships. The simulations were used to
investigate the development of texture (fabric in geological terms), based on the Taylor
model (strain compatibility enforced on all grains) with some degree of success.

Peczak and coworkers have investigated several aspects of the correspondence
between this type of simulation and have added several refinements to the model, see for
example [32], in order to allow detailed comparisons with experimental data. They have
modified the nucleation process such that the probability of an embryo appearing in a
region of high stored energy is higher than for low stored energies. This has the
consequence that the effective nucleation rate increases with time as stored energy is
added to the system and is also position dependent during the simulation. They have
also modified the rate of stored energy addition from the original constant addition rate to
correspond to a Voce-type equation (i.e. an exponential work hardening curve) with a
saturation (asymptotic) flow stress given by a Zener-Holloman parameter. By making
these modifications they have been able to reproduce many of the characteristics of the
phenomenon of dynamic recrystallization. For example, the transition from multiple
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peaks to a single peak in the flow curve occurs when the ratio of the initial to the steady
state grain size drops below 2.3. The relationship between the steady state grain size
and flow stress in the model shows grain size decreasing with increasing stress as
expected; the slope is ~1, Fig. 7, which is close to the experimental value of 0.7 [33].
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Figure 7. Plot of asymptotic grain size, Dy, versus asymptotic stress, G, for a
variety of simulation conditions, from Peczak[32]. Slope of -0.96 is close to
experimental observations.

6. Summary

The principal methods for modeling the phenomenon of recrystallization have been
reviewed. In view of the frequency with which the Monte Carlo model has been used in
the literature, that method has been reviewed in more depth. The characteristics of the
various lattice types, the Hamiltonians for the system energy, the transition
probabilities, and the continuous time method were briefly treated. Key results from the
simulation literature have been reviewed and summarized.
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