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Relativistic U(3) Symmetry and Pseudo-U(3) 
Symmetry of the Dirac Hamiltonian 

J. N. Ginocchio 
Theoretical Division , Los Alamos National Laboratory, Los Alamos, NM , 87545, USA 

E-mail: gino@lanl.gov 

Abstract. The Dirac Hamiltonian with re lativistic scalar and vector harmonic oscillator po­
tentials has been solved analytically in two limits. One is the spin limit for which spin is 
an invari ant symmetry of the the Dirac Hamil toni an and the other is the pseudo-spin limit for 
which pseudo-spin is an invariant symmetry of the the Dirac Hamil tonian. The spin limit occu rs 
when the scalar potential is equal to the vector potential plus a constant, and the pseudosp in 
limit occurs when the scalar potential is equal in magnitude but opposite in sign to the vector 
potential plus a constant. Like the non-relativistic harmonic osci ll ator, each of these limits has 
a higher symmetry. For example, for the spherically symmetric osc illator, these limits have a 
U(3) and pseudo-U(3) symmetry respectively. We shall discuss the eigenfunct ions and eigen­
values of these two limits and derive the relati vistic generators fo r the U(3) and pseudo-U(3) 
sy mmetry. vVe a lso argue, that , if an anti-nucleon can be bound in a nucleus, the spectrum will 
have approximate spin and U(3) sym metry. 

1. Introduction 
Pseudopsin symmetry is approximately conserved in nuclei [1]. P seudospin doublets have single 
nucleon quantum numbers [71" e, e + ~l and [71, - 1, e + 2,.e + ~ ] where 71" e are the radial and 
orbita l quantum numbers, respectively, and the last quantum number in the brackets is the 
total angular momentum, j. For example, in the usual notat ion, (Is.!., Od;!), (lp ;!, Of§.), etc, are 

2 2 2 2 

pseudospin doublets. These doublets are approxi mately degenerate in energy. Some beautiful 
examples have been shown in this conference; for example, in the talk by 0 Sorlin [2]. Most 
of the properties of nuclei are explained by the non-relativistic shell model [3]. However, to 
explain pseudospin symmetry we need the relativistic Dirac Hamiltonian which has two types 
of mean fields, a Lorentz scalar VsUl and Lorentz vector Vv(f)· Pseudospin symmetry occurs 
'when the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant, VsUl 
+ Vv(f) = Cps [4]. Hence pseudospin symmetry is a relativistic symmetry. The approximate 
equality in magnitude of the vector and scalar fields in nuclei and their opposite sign have been 
confirmed in relativisitc mean field theories [1] and in QeD sum rules [5]. 

On the other hand hadrons [1] and anti-nucleons in a nuclear environment have spin symmetry 
[6]. These are relativistic systems and normally, in such systems, we would expect large spin­
orbit splittings. However spin symmetry occurs when the difference of the vector and scalar 
potentials in the Dirac Hamiltonian is a constant [7J. VS (f) - Vv (f) = C s, even though these 
systems are very relativistic. 



The non relativistic harmonic oscillator has been useful in the shell model of nuclei. However, 
the relativistic mean field has been important for pseudospin in nuclei and for mesons with one 
heavy quark [8] and for an anti-nucleon in a nuclear environment [9]. For these reasons the 
relativistic harmonic oscillator has been solved in the tri-axial, axially deformed and spherical 
limit [10]. Like the non-relativistic harmonic oscillator, each of these limits has a higher 
symmetry. For example, for the spherically symmetric oscillator, these limits have a U(3) and 
pseudo-U(3) symmetry respectively. We shall discuss the eigenfunctions and eigenvalues of these 
two limits and derive the relativistic generators for the U(3) and pseudo-U(3) symmetry. 

2. The Spherically Symmetric Dirac Hamiltonian with Spin Symmetry 
The Dirac Hamiltonian for a spherical harmonic oscillator with spin symmetry is 

H = ii· jJ -+- (3 M -+- (1 -+- (3)V(r-), (1) 

where ii, (3 are the Dirac matrices, jJ is the momentum, Jlil is the mass, i is the radial coordinate, 
r its magnitude, and the velocity of light is set equal to unity, c = 1. The generators for the spin 
SU(2) algebra and the orbital angular momentum SU(2) algebra,S, L, which commute with the 
Dirac Hamiltonian with any potential V(r), [H, 5] = [H, L ] = 0, are given by [11] 

~ (8 0 ) ~ (I 0 ) 
S = 0 Up 8 Up ,L = 0 Up I Up , (2) 

where 8 = (j /2 are the usual spin generators, (j the Pauli matrices, I = ('r~PJ, and Up = iJ; if 
is the helicity unitary operator introduced in [12]. 

2.1. The Dirac Hamiltonian with Spin Symmetry and Harmonic Oscillator Potential 
, 2 

With the harmonic oscillator potential V(r) = M::: r2 the eigenvalue equation is [10] 

(3) 

where N = 2n -+- £, is the total harmonic oscillator quantum number, n is the radial quantum 
number and £ is the orbital angular momentum. Hence the eigenenergies have the same 
degeneracies as the non-relativistic harmonic oscillator. This eigenvalue equation is solved with 
Mathematica, 

(4) 
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[ Av+~]3 V2 where B(AN) = J 2 N-2'1 ,and AN = ~7W(N -+- ~). The spectrum is non-linear in 

contrast to the non-relativistic harmonic oscillator; i.e., the relativistic harmonic oscillator is 
not harmonic. However for small AN (large M), the binding energy, 

(5) 

in agreement with the non-relativistic harmonic oscillator. For large AN (small M) the spectrum 
goes as 

-' 1 
EN ;:::; M (AI~ -+- "3 -+- ... ), (6) 

which, in lowest order, agrees with the spectrum for M ---4 0 [13]. 



2.2. U(3) Generators 
The relativistic energy spectrum has the same degeneracies as the non-relativistic spectrum, 
even though the dependence on N is different. This suggests that the relativistic harmonic 
oscillator has a higher U(3) symmetry. The non-relativistic U(3) generators are the orbital 

angular momentum i, the quadrupole operator qrn = ru\~Jw ~ (2M 2w2 [rr]~) + [ppl~~)), where 

[rr]~) means coupled to angular momentum rank 2 and projection rn, and the total oscillator 
quantum number operator, NNR = 2v'2~Mw (2M 2w2r2 + p2) -~. They form the closed U(3) 

algebra 
[NNR'~ '-" [NNR,qm] = 0, 

[i,~(t) = -h [Ot,l, [i,q](t) = -J6 qm Ot,2, [q,q](t) = 3V1O [Ot,l, 

(7) 

(8) 

with N tm generating a U(I) algebra whose eigenvalues are the total number of quanta N 

and .e~ qm generating an SU(3) algebra. In the above we use the coupled commutation 

relation between two tenors, Titll , TJt2) of rank tl, t2 which is [Tit!), TJt2)] (t) = [T?l )TJt2)] (t) -
(_I)tl+t2-t[TJt2)Tl(tl)](t) [14]. 

The relativistic orbital angular momentum generators L are given in Eq. (2). We shall now 
determine the the quadrupole operator Qm and monopole operator N that commute with the 
Hamiltonian in Eq. (1). In order for the quadrupole generator 

(9) 

to commute with the Hamiltonian, [Qm, H] = 0, the matrix elements must satisfy the conditions, 

One solution is 

(Qm)12 = (Qm)21, 

2[(Qm)11, V ] + [(Qmh2,p2] = 0, 

2[(QmJ12, V] + [(Qmh2,p2] = 0, 

(Qmhl = (Qrnh2 2(V + M) + (Qmh2 p2. 

Mw 2 (Mw 2 r2 + 2M)[rr]~) + [Pp]~) 
a . if Mw2 [TT·]~~) 

Mw
2 [rTl~.) a· if) 
[Pp]~) , 

(10) 

(11) 

(12) 

(13) 

(14) 

where .\2 is an overall constant undetermined by the commutation of Qm with the Dirac 
Hamiltonian. 

For this quadrupole operator to form a closed algebra, the commutation with itself must be 
the orbital angular momentum operator as in Eq. (8). This commutation relation gives 

[~. if) = V10 .\~ jHw2n2(H + M) L ot,l, 

(15) 
and we get the desired result if .\2 = J Mw21i.2~H+M). The quadrupole operator then becomes 

3 ( Mw 2 (Mw2 r2 + 2M)[rr]~) + [Pp]~) 
Mw 2n2(H + lVI) a· if Mw 2 [rrl~) 

Mw
2 [rrl~.) a· if) 

(2) (16) 
[Pp]rn 



which can also be written as 

Qm = (17) 

which reduces to the non-relativistic quadrupole generator for H ----> lVI. In the original paper 
that derives the quadrupole generators there are two typos. In Eq (6) of that paper [15], M:( r2 

should be replaced by M w2 r2 and in the non-relativistic quadrupole operator M 2w2 [rr]~~) should 

be replaced by 2M2w2[T'7']~) ' Also, the expression for B(A N) in that paper has a misplaced factor 
of 2 in the denominator. 

For the monopole generator , we can solve the same equations. This has been done [15]. But 
there is a simpler way. From Eq (3) we get, 

N = JH + M(H - M) _ ~. 
liJ21vlw2 2 

(18) 

In the non-rela tivisitc limit , H + M -> 2M and the non-relativistic Hamiltonian (H - M) ----> 

liw( N + ~) which gives the correct result . 
The commuta tion relations are then those of the U(3) algebra, 

[N, L] = [N, Qm] = O. (19) 

[L , L](t) = -J2 L Ot ,1, [L , Q](t) = - J6 Q Ot,2, [Q , Q](t) = 3J1O L Ot,I' (20) 

The spin generators in Eq. (2), S, commute with the U(3) generators as well as the Dirac 
Hamiltonian , and so the invariance group is U(3) x SU(2) , where the SU(2) is generated by the 
spin generators, [S, SJ(t) = -J2 S Ot ,I ' 

3. The Spherically Symmetric Dirac Hamiltonian with Pseudospin Symmetry 
The Dirac Hamiltonian with pseudospin symmetry is [4] 

if = a· p + /3 M + (1 - p )V(r) , (21 ) 

which explains the pseudospin doublets observed in nuclei [1]. This pseudospin Hamiltonian can 
be obtained from the spin Hamiltonian with a transformation 

15 = (~ ~) and M ----> - M , (22) 

which gives the pseudospin and pseudo-orbital angular momentum generators [11] 

(23) 

3.1. The Dimc Hamiltonian with Pseudospin Symmetry and Harmonic Oscillator Potential 
2 

With the harmonic oscillator potential V(r) = AI:: r2 the eigenvalue equation in the pseudospin 
limit is [10] 

(24) 

where iii = 2ii + i, is the ps~udo total harmonic oscillator quantum number , i~ is the pseudo 
radial quantum number a.nd .e is the pseudo-orbita.l angular momentum . While n is the number 



of radial nodes and f the rank of the spherical harmonic of the upper Dirac radial amplitude, n 
is the number of radial nodes and l the rank of the spherical harmonic of the lower Dirac 
radial amplitude. Again the eigenenergies have the same degeneracy pattern as the non­
relativistic harmonic oscillator in the spin symmetry limit. This eigenvalue equation is solved 
on Mathematica, 

(25) 

_ 

[

AN+ A~+~l ~ __ V2n.w - 3 . 
where B (A IV) - 2 ' and A N - r::;j (N + 2)' The spectrum is non-linear in 

contrast to the non-relativistic harmonic oscillator; i.e., the relativistic harmonic oscillator is 
not harmonic in either limit. Even for small A N (large M), the binding energy, 

(26) 

and hence goes quadratically with the the total pseudo-number of quanta and is non-linear even 
for large M. For large AN (small M) the spectrum goes as 

~ 1 
EN ~ M (A~ - '3 + ... ), (27) 

which , in lowest order , agrees with the spectrum for spin symmetry. 

3.2. Pseudo-U(3) GenemtoTs 

The pseudo-U(3) generators which commute with the Dirac Hamiltonian, [ii , S] [ii, f] 
[ii , QmJ = [H ,N] = 0, are then obtained by the transformation in Eq (22) and are given by 

(28) 

if = vii -M(ii + M ) _ ~ 
nJ2Mw2 2 

(29) 

The commutation relations are then those of the U (3) algebra, 

[N, LJ = [N, Qml = O. (30) 

[f , flit) = -)2 f Ot,l, [f, Ql (t) = - V6 Q Ot,2, [Q, Ql(t) = 3J16 f 0(,1' (3 1) 

The pseudospin generators in Eq.(23) , 5, commute with the U(3) generators as well as 
the Dirac Hamiltonian , and so the invariance group is pseudo-U(3) x pseudo-SU(2) , where the 

pseudo-SU(2) is generated by the pseudospin generators, [S, S] (t) = -)2 S Ot,l' 

4. The Axially Deformed Dirac Hamiltonian with a Harmonic Oscillator Potential 
The relativistic non-spherical harmonic oscillator has also been solved analytically in these two 
limits [10]. The non-relativistic a.xially symmetric deformed harmonic oscillator will have a 
U(2) xU(I) symmetry. Likewise the relativistic axially symmetric deformed harmonic oscillator 
will have a U(2)xU (I) symmetry in the spin symmetry limit and a pseudo-U (2) x pseudo-U(I ) 
symmetry in the pseudospin limit. This will be discussed in a forthcoming paper. 



5. Pseudospin Symmetry Limit and Perturbation Theory 
Even though the harmonic oscillator eigenenergies for the pseudospin symmetry limit, Eq(25) , 
are positive, the eigenstates [10] are not those of Dirac valence states but of Dirac hole states. 
This follows from the fact that the eigenstates have the radial nodal structure of hole states 
rather than valence states . For example, the state 'with ii = i = 0, has by definition a lower 
amplitude with zero radial nodes. This state corresponds to a IPl state. Using a theorem 

which relates the radial nodes of upper and lower amplitudes [16], th~ lower amplitude of a IPl 
2 

state would have to have one radial node if it were a valence state. Hence this state is a hole 
state. This means that perturbation theory can not be used to describe nuclei even though 
nuclei have approximate pseudospin symmetry. In general, the pseudospin limit does not have 
bound valence states independent of the form of V(r) [16] and hence perturbation theory is not 
possible. For this reason, the analytical solution of the Dirac Hamiltonian with general scalar 
and vector harmonic oscillator potentials would be useful. 

6. Spin Symmetry Limit and Anti-nucleons 
The fact that a nucleon moving in the mean field of a nucleus has a vector and scalar potential 
almost equal in magnitude but opposite in sign has been substantiated by experimental evidence 
in nuclei [1]. An anti-nucleon moving in the mean field of a nucleus will then have a vector and 
scalar potential almost equal in magnitude because charge conjugation leaves the Lorentz scalar 
field invariant while changing the sign of the Lorentz vector field. Thus pseudospin in nuclei 
predicts spin symmetry for an anti-nucleon in a nuclear environment [6 , 1]. 

7. Summary 
We have shown that a Dirac Hamiltonian with equal scalar and vector harmonic oscillator 
potentials has an U(3) x SU(2) symmetry and with scalar and vector harmonic oscillator 
potentials equal in magnitude but opposite in sign has a pseudo-U(3) x pseudo-SU(2) symmetry 
and we have derived the corresponding generators for each case. If speculation that an anti­
nucleon can be bound inside a nucleus is valid [9], the anti-nucleon spectrum will have an 
approximate spin symmetry and , most likely, an approximate U(3) symmetry, because the vector 
and scalar potentials are approximately equal and very large [1]. 
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