skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba(Fe1-xCox)2As2 above the Spin Density Wave Transition

Journal Article · · Submitted to Proceedings of National Academy of Science

Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors exhibit a tetragonal to orthorhombic structural transition (i.e. a broken C{sub 4} symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d{sub xz} and d{sub yz} character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T{sub S}) precedes the magnetic transition (T{sub SDW}), an anisotropic splitting is observed to develop above T{sub SDW}, indicating that it is specifically associated with T{sub S}. For unstressed crystals, the band splitting is observed close to T{sub S}, whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-76SF00515
OSTI ID:
1022459
Report Number(s):
SLAC-PUB-14499; TRN: US1104223
Journal Information:
Submitted to Proceedings of National Academy of Science, Vol. 108, Issue 17; ISSN 0027--8424
Country of Publication:
United States
Language:
English