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Application Of Faceted Yield Surfaces For Simulating Compression
Tests Of Textured Materials

P.J. Maudlin2, S. I. Wright?, G. T. Gray III2, and J. W. House ®

Constitutive modeling used for most forming calculations
assume an isotropic yield function with isotropic hardening. This
assumption usually takes the form of an isotropic elastic stiffness
tensor, a realistic flow stress model and a von Mises vyield function.
Real materials deviate from isotropy both in elasticity and plasticity.
The calculations described here relax the assumptions of isotropic
elasticity and plasticity by utilizing direct measurements of the elastic
stiffness tensor and anisotropic representations of yield surfaces, in
particular surfaces tessellated from direct measurements of material
texture. This effort validates the use of such constitutive modeling
by simulating quasi-static, uniaxial stress compression and Taylor
Cylinder impact, and comparing their cross-sectional "footprints” to
experimental data.

1. INTRODUCTION

Most metallic materials used in high-rate forming are polycrystalline
aggregates having a mechanical response that is strongly dependent on
dislocation distribution, dislocation interactions with interstitial atoms and other
barriers, and a variable crystallographic texture. The elastoplastic constitutive
description needed for accurate simulation of high-rate forming must include a
strain-rate dependent flow stress model and often some description of the
anisotropic yield behavior resulting from the material's texture. A directionally

averaged behavior for a given material can be described with a flow stress (o)
model representing the isotropic yield response as a function of work hardening,
strain-rate hardening, and thermal softening. Such flow stress models range from
simple forms! to more complicated path dependent descriptions with internal
state variables such as the Mechanical Threshold Stress?2 (MTS) model.

The directionality of yield behavior as determined by grain orientation
(texture), grain size, or grain aspect ratio can be described by a anisotropic yield
surface shape that can evolve with deformation. If it is assumed that the yield
surface shape is dominated by textural effects, this shape can be computed from a
polycrystalline average, taken over a range of grain orientations, of the
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microscopic behavior of constituent grains. It is this type of modeling that is
embodied in a polycrystal plasticity code such as LApp34.

The combination of a rate-dependent flow stress model? describing isotropic
hardening and a tessellated or fitted yield surface form (quadraticé or piece-
wise?:8:9,10) providing a shape, both coupled together in a continuum mechanics
code, represents an improved computational capability for simulating forming
problems.

2. YIELD SURFACE REPRESENTATION

In general, yield functions can be viewed as five dimensional in terms of
deviatoric stress components Sij, i.e.,

S11 812 813
[Sij] ={S12 S22 823 (1)
813 823 833

where this tensor has five independent components (recall sxx = 0). Therefore the
stress components (s11, 522, 812, 513, 523) define the general five-dimensional space
that needs to be spanned by some convex yield function, constraining the
magnitude of the stress state during plastic flow.

Now consider the 5D case where a set of stress points are generated by
repetitive polycrystal probes of a measured material orientation distribution
function (ODF). This set of points can be tessellated (a linear fitting complete with
associated connectivity) into a piece-wise surface in five space using a tessellation
algorithm®, the whole of which can be mathematically expressed (using indicial
notation) as the set:

[ =5, -5 =0.8=12...M] 0y

The linear functions (say M hyperplanes) appearing in Eq. (2) are expressed in
normal form that defines the a% as coefficients of a vector normal to the
hyperplane and & as the minimum distance between the origin and the f

hyperplane.
The yield function given by Eq. (2) represents only a normalized yield shape

and thus needs to be scaled with a flow stress function!! ¢ (in equivalent stress
units) to obtain the absolute surface ( in terms of s, o? ) in deviatoric stress space,
ie.,

~ 1
and o =6° o= (3a,b)
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where the quantities overscored with a tilde represent normalized variables: the
results of tessellated polycrystal calculations. The average Taylor Factor M
appearing in Egs. (3) corresponds in direction to that of the uniaxial stress data

obtained to characterize the flow stress ©.

Tessellation of a general 5D yield surface from a set of stress points to obtain
the coefficients needed for Eq. (2) can be a difficult process. Under the assumption
of mirror plane symmetry (orthotropy) and sign independence for the yield
surface, Canova, Kocks and Tome* have shown that the 5D surface can be
decoupled into two closed subspaces of lower dimension: a 2D subspace

represented on the m-plane and a 3D shear subspace. The n-plane contains the
yield envelope for the normal stress components, and the shear subspace contains
the yield envelope for the shears. An example of such a yield surface tessellation
is shown in Figs. 1, which is a tantalum (BCC) yield surface corresponding to a
uni-directional rolling texture and thus closely approximates an orthotropic

mechanical response. Figure la presents the m-plane yield surface for Ta being
compared to a von Mises circle, and Fig. 1b shows the shear surface; an isotropic
von Mises shear response in this subspace would be a sphere. The round symbols
in Fig. 1a and the vertices in Fig. 1b are the stress points generated via a polycrystal
code4, probing a discrete Ta ODF with a set of strain increments in the context of a
polycrystal calculation.

(a) (b)

Figure 1: a) Normal subspace (n-plane) comparison of a piece-wise Tantalum yield surface (shown by
the solid lines and points) with a von Mises function (dotted curve). b) Shear subspace

( X,Y.Z: 85,535 59 ) perspective of a piece-wise Tantalum yield surface. This surface contains 800
stress vertices and 628 planes.




Under the assumptions of orthotropy and sign-independence, the yield
function given by Eq. (2) mathematically decouples into the two sub-functions

{fB =of 5, +085, -5 =0,p= 1,2,...,m} (42)

{205+ h5u + 32~ =0,B=12....n} (4b)

where the linear functions are expressed in normal form defining CB and ocﬁ as

coefficients of a vector normal to the line or plane, respectively, and oP as the
minimum distance between the stress origin and the B line or plane. The 2D yield
function represented by Eq. (4a) and Fig. 1a is basically a linear interpolation of 36

n-plane stress points into 36 lines, and the 3D yield function represented by Eq.
(4b) and Fig. 1b is a linear interpolation of 800 shear stress points into 628 planes.

3. MULTISURFACE PLASTICITY THEORY

The set of piece-wise linear functions represented by Egs. (4) and Figs. 1 were
utilized in a three-dimensional continuum mechanics code (EPIC-9212) in a
multisurface elastoplastic constitutive algorithm!10. This algorithm is based on the
multisurface plasticity theory of Koiter” and Simo® with modifications that
facilitate its use in the constitutive framework of an explicit continuum code
whose purpose is high-rate applications. The multisurface plasticity algorithm
was described in detail in Ref. 10 for the case of a general 5D yield function; here
we only indicate the modifications associated with the orthotropic simplification.

The multisurface plasticity theory follows classical associated flow theory
starting with an anisotropic form of Hooke's law, §; =E;,é};, written in terms of a
deviatoric stress rate and strain rate ¢;; (deviatoric portion of the symmetrical part
of the velocity gradient tensor), where Eg,, is a symmetric elastic constant

(stiffness) tensor. Assuming the standard practice of partitioning the strain-rate &;;

into elastic, ¢j, and plastic parts, éf, the flow rule for the plastic part is expressed

ij’
as a summation of contributions from those linear functions’.8 which are active:
(hence the subscript "act"):

Mo af ﬁ
xB
g{ ds; )

Here #° is a time dependent proportionality scalar. Note that the stress gradients

in Eq. (5) are just the constants ocg or CB since the individual f‘*( ) functions are
linear; thus we have for our particular choice of Egs. (4):




ef = Sij BZ},?\,B(XS + (1 - Sij);juﬁgg ,N0 Y, (6)

where §; is the Kronecker delta function.

The next step is the standard enforcement of yield surface consistency by taking
the time derivative of Egs. (4) and substituting for the stress rate and the plastic
strain rate using Hooke's law and Eq. (6), respectively. This process is straight-

forward associative flow treatment that results in a system of (m,, +n,,) linear

equations for (m,, +n,,) unknowns A's. The mathematical advantage of using

the orthotropic and sign-independence assumptions is the decoupling of the
normal and shear equation sets: The use of the general yield function given by Eq.
(2) results in a set of M,, (where M,, =m,, +n_) coupled linear equations,
whereas the use of the orthotropic yield functions given by Egs. (4) results in two
uncoupled systems of equations (mact and nact, respectively) that can be solved
independently.

As might be anticipated, most of the work associated with the use of this

algorithm involves identifying the active linear functions (m,,.n,,) out of a total

population of functions (m,n) that can be made arbitrarily large for numerical
accuracy. The logic for discriminating the active linear functions is discussed in
some detail in Ref. 10.

4. RESULTS: UNIAXIAL COMPRESSION TESTS AND TAYLOR CYLINDER
TESTS

Consider a plate of tantalum having a right-handed material coordinate
system (axes 1', 2, 3') where the 3' axis is thru-thickness and the 1' and 2' axes are
both in plane; it is in such a coordinate system that the stresses of Figs. 1 are cast.
This tantalum plate was subjected to a cross-rolling process that produces an
orthotropic material texture. A cylindrical compression specimen was cut from
this plate for a so-called in-plane (IP) orientation (the axis of the cylindrical
specimen is parallel to the 1' or 2' direction). Consider also a fixed laboratory
reference frame (axes x, y, z) representing the principle axes of the uniaxial
compression such that for the IP specimen the loading is applied along the
laboratory z-axis (cylindrical specimen centerline) that is identical to the material

2'-axis, and the y-axis is identical to the 3'-axis. The Fig. 1a n-plane yield function
indicates that the 3' direction is the "hard" direction, since the distance between
the stress origin and the yield function is at a maximum, and the 1' or 2'
directions are "weaker."

A uniaxial compression test was simulated with the explicit, finite-element
EPIC92 code using the orthotropic elastoplastic modeling discussed above and in
Ref. 10. Since the test was quasi-static, the strain-rate and thermal dependencies of
the used flow stress model were constrained to 10-3 s71 and room temperature,
respectively. The specimen (L/D = 1.196, L = 7.615 mm) was spatially modeled



with about 5200 tetrahedral elements. The specimen was loaded uniaxially
between two elastic tool steel platens. Since an explicit, time-dependent code
cannot economically simulate the specimen deformation quasi-statically, the
platens were accelerated from zero to 100 m/s until the experimentally measured
axial displacement (3.307 mm) was achieved; stress wave effects were thus
minimized.

Figure 2a presents a computed final IP specimen geometry compressed to a
axial true strain of -77%. The specimen's footprint is elliptic with a calculated
eccentricity (ratio of major to minor axes) of 1.33. Superimposed on the calculated
footprint is the experimental result (digitized footprint interface) that has an
eccentricity of 1.34; the experimental footprint matches closely the calculated
result in the y (3") direction, and is slightly larger in the x (1') direction.

Cells
plastic

Figure 2: Comparison of a (a) uniaxial stress compression (b) Taylor Cylinder simulation results
showing the cylinder footprint at late-times with experimental footprint from three tests. The
tantalum elastic stiffness tensor given in Ref. 10, the yield functions shown in Figs. 1, a Mie-
Gruniesen equation-of-state, and the MTS flow stress model given in Ref. 11 (characterized for the
this Ta) were used in the simulations. The material axes for the initial cylinder are rotated 90° (in
the 1° - 3’ plane) from the laboratory impact axes.




A Taylor Cylinder test series was conducted that consisted of three shots using
tantalum 30 caliber (7.62 mm diameter) cylinders 1.5-inch long (38.1 mm). The
cylinders were launched using powder gun propellant from a caliber 30 Mann
barrel. The velocity of the projectiles was measured by both pressure transducers
and parallel laser beams crossing the flight path. Velocities determined from the
two systems were about 175 m/s, agreeing to within +/- 3.0 m/s. The target was
constructed of 4340 steel heat treated to a surface hardness of Rc 58. After testing,
geometric data of the deformed specimen was generated using an optical
comparitor. The data consist of three digitized footprints that define the cross-
sectional area at the impact interface, and are shown as points in Fig. 2b.

The Taylor cylinders were initially cut from the same Ta plate in the same
orientation as discussed above for the compression specimens. Assuming
isotropic strength (or even anisotropic strength with transverse isotropy), a Taylor
impact event is normally an axisymmetric problem that can be simulated with a
continuum code with two space dimensions. However, with the introduction of a
directionally dependent constitutive description using an orthotropic yield
surface, the Taylor problem will develop a three-dimensional deformation
distribution that needs to be simulated in three dimensional space.

The Taylor Cylinder tests were simulated with the EPIC-92 code using the
orthotropic yield functions of Figs. 1. The simulated impact results are shown in
Fig. 2b in terms of late-time cylindrical footprints at the impact interface and
compare well with the experimental data. The elliptical footprint shown in Fig. 2b
has an eccentricity of 1.15 that compares to 1.17 for the experimental footprints; for
isotropy the footprint would be round with an eccentricity of 1.

5. CONCLUSIONS

A faceted, two-subspace yield function representation for rolled orthotropic
tantalum was successfully used as the constitutive description in three
dimensional simulations of uniaxial stress compression tests and Taylor Cylinder
tests. These calculational results were in good agreement with the experimental
footprint data. It should be noted that the material texture in these simulations
was assumed to be constant with respect to material deformation, where in reality
some texture evolution certainly would have occurred, changing the shape of the
Figs. 1 yield functions. The good agreement between simulations and experiments
indicates that the texture evolution was small for these specific problems.
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