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Status of Electron Transport in MCNP™
H. Grady Hughes (LANL) |
Introduction

In recent years, an ongoing project within the radiation transport group
(XTM) at Los Alamos National Laboratory has been the implementation
and validation of an electron transport capability in the Monte Carlo code
MCNP.! In this paper I document the continuous-energy electron transport
methods currently in use in MCNP, and describe a recent improvement of
the energy-loss straggling zﬂgorithm. MCNP also supports electron transport
calculations in a multigroup mode. This capability is described in another
paper in this conference.?
Electron Transport Methods in MCNP

The principal original reference for the condensed history Monte Carlo
method is the 1963 paper by Berger.® Based on the techniques described in
that work, Berger and Seltzer developed the ETRAN series of electron/photon
transport codes.* These codes have been maintained and enhanced for many
years at the National Institute of Standards and Technology. The ETRAN
codes are also the basis for the Integrated TIGER Series (ITS),®> developed

and maintained by Halbleib and his collaborators at Sandia National Lab-
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oratories in Albuquerque, New Mexico. The electron physics in MCNP is
largely derived from that of the ITS.

The electron random walk in MCNP is based on a precalculated set i+
condensed—hiétory steps selected so that, on the average, the kinetic energy
of the electron decreases by a fixed ratio (specifically 2~1/%) during each step.
After the selection of step lengths, the radiative stopping power is modeled
explicitly by the sampling of bremsstréhlung photons. The average collisional
stopping power is obtain;ed analytically from Bethe's® theory for small energy
transfers combined with an integral of the Mgller’ cross section to account
for larger energy transfers. Collisional energy straggling is also modeled, as
discussed in the next section.

For the actual representation of the electron’s path, the electron step is
divided into smailer substeps. Substep angular deflections are sampled from
the Goudsmit-Saunderson® theory applied to a combination of the Mott® and
Rutherford!® cross sections, with a screening correction due to Moliere.!
For partial substeps to a boundary, MCNP approximates the Goudsmit-
Saunderson distribution by a linear interpolation in the cosine of the deflec-
tion angle.

Bremsstrahlung photons are sampled from tabulated data based on Bethe-

2



Heitler!? Born-approximation results. The sampling of a bremsstrahlung
photon.causes a correlated decrease in the electron energy. By contrast, the
sampling of a secondary electron is not correlated with the electron energy,
since the collisional stopping power has already been included in the substep
energetics. Secondary “knock-on” electrons are sampled from an appropri-
ately normalized cumulative integral of the Mgller cross section.’
Improved Energy Straggling

Because an energy step represents the cumulative effect of many individ-
ual random collisions, fluctuations iI; the energy loss rate will occur, leading
to a probability distribution f(s, A)dA from which the energy loss A for the
step of length s can be sampled. Landau'® studied this situation under sev-
eral simplifying assumptions, including the assumption that the formal upper
limit of energy loss can be extended to infinity. With these simplifications,

Landau found that the energy loss distribution can be expressed as
f(s, A)dA = g(A)dA (1)

in terms of ¢(\), a universal function of a single dimensionless variable A

related to A, s, the energy of the electron, and various properties of the

medium. The asymptotic form of ¢(A) is such that an unrestricted sampling




of A leads to an unbounded mean energy loss. Therefore, a cutoff value A, is
imposed to ensure a finite mean energy loss A.

Blunck and Leisegang'* extended Landau’s result to include the second
moment of the expansion of the cross section. Their result can be expressed

as a convolution of Landau’s distribution with a Gaussian distribution:

* /o _ 1 oo ’ (A — A’)2 /
Fed) = g [ e e (B ey
with the variance of the Gaussian ¢ = 10eV - Z¥/? A, as giver " 3lunck

and Westphal.l®

Earlier versions of MCNP, following Version 1.0 of the ITS, sampled
A from Egs. 1 and 2 using a 501-point tabulation of ¢(A) in the range
—4 < X < 100, based on the work of Borsch-Supan.'® This approach suf-
fered from two major shortcomings. First, the resolution of the table was
insufficient to provide a smooth sampled function for large values of A. Sec-
ond, the arbitrary fixing of A. = 100 caused the mean energy loss to be
incorrect except in a limited electron energy range. As is done in the cur-
rent version of ITS, MCNP now employs a tabulation with greater resolution
(5001 points in —4 < A < 100), an analytic approximation to the asymp-

totic form given by Borsch-Supan for A > 100, and a variable energy- and




material-dependent cutoff A, to ensure correct mean energy loss. In addition,
an empirical modification of ¢* described and recommended by Seltzer!” is
made. Figure 1 shows the effect of these improvements on the energy-loss
spectrum for 10-MeV electrons in silicon, and also shows the excellent agree-
ment between the current version of ITS and the new version of MCNP for
this case.
Conclusions

The current methods used in MCNP for condensed history electron trans-
port have been briefly presented. An important correction to the energy-loss
algorithm has been successfully implemented and tested.
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Figure Caption
Fig. 1. Collisional energy loss spectrum for 10 MeV electrons in silicon

as calculated by ITS 1.0, ITS 3.0, MCNP4A, and the new modified MCNP.
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