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Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow.
Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic
fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A
so-called phase transition at average maximum flow is visible in the life-times of jams. The resulfing dynamic
picture is consistent with recent fluid-dynamical results by Kiihne/Kerner/Konhiuser, and with Treiterer’s
hysteresis description. This places CA models between car-following models and fluid-dynamical models for
traffic low. — CA models are tested in projects in Los Alamos (USA) and in NRW (Germany) for large scale
microsimulations of network traffic.

1 Introduction

Simulation obeys a basic trade-off between resolution, fidelity, and scale. Many questions
in transportation simulation currently can only be treated using high-resolution models (i.e.
resolving each individual traveller) and looking at large spatial and temporal scales (e.g. for land
use forcasts). In that situation, it is straightforward to think about reducing fidelity as much as
possible. With respect to vehicular traffic flow, this means to find a minimal model of driving
behavior without loosing features which are believed to be essential for large scale questions.
One solution to this challenge are cellular automata [25, 27] models of traffic [5, 4, 23].

These models serve a multitude of purposes: They run fast on computers, which allows both
quick testing of different approaches as well as extensive statistical analysis, and they are
simple enough for analytical treatment. All this helps answering the question of a minimal
fidelity (minimal complexity [3]) model of driving behavior. In addition, the high computing
speed also offers a potential for real time applications.

Schreckenberg and Nagel [22] give a more physical view on why such models are useful.

2 The Stochastic Traffic Cellular Automaton (STCA)

The basic computational model is defined on a one-dimensional array of L sites with open or
periodic boundary conditions. This could, for example, be a link in a road network. Each site
is either occupied by one vehicle, or empty. Each vehicle has an integer velocity with values
between zero and vpnqz, where we often use v, = 5 for reasons stated below. The number of
empty sites in front of a vehicle is denoted by gap. For an arbitrary configuration, one update of

- the system consists of the following four consecutive steps, which are performed simultaneously
for all vehicles:!

1.) Acceleration: If the velocity v of a vehicle is lower than v,,,, and if there is enough space
ahead, then the speed is increased by one: If (v < vmay & v < gap) THEN v:=v + 1.

!Note that either rule 1 or rule 2 applies, but never both.

.
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Figure 1: Simulated traffic at a density of 0.09 cars per site. Each new line shows the traffic lane after one
further complete velocity-update and just before the car motion. Empty sites are represented by a dot, sites
which are occupied by a car are represented by the integer number of its velocity. Cars are moving from left to
right. — One clearly sees the jam wave moving opposite to the traffic direction.

2.) Slowing down (due to other cars): Else if the next vehicle ahead is too close, speed
is reduced to gap: ... ELSE IF (v > gap) THEN v := gap.

3.) Randomization (which is applied after rules 1 & 2): With probability p, the velocity of
each vehicle (if greater than zero) is decreased by one.

4.) Car motion: Each vehicle is advanced v sites.

Note that, because of integer arithmetic, expressions like for example v < gap and v < gap—1
are equivalent.

Since this model involves discrete space, discrete time, a small number of discrete states per
cell, and a local and completely synchroneous update, this model is formally a (stochastic)
cellular automaton.

Already this simple model shows nontrivial and realistic behavior, for example start-stop-waves
which are visible in space-time-plots (Fig. 1), or in the fundamental diagrams (Fig. 2). That
reinforces our claim that already fairly simple models of driving dynamics can be rather realistic
on more macroscopic scales.

Step 3 is essential in simulating realistic traffic flow since otherwise the dynamics is completely
deterministic. When following through the rules for special cases like a single car on an empty
road or a car approaching a thick traffic jam, one finds that it condenses three different behav-
ioral patterns into one computational rule: (i) fluctuations at maximum speed; (ii) retarded
acceleration; (iii) over-reactions at braking. Without this randomness, every initial configura-
tion of vehicles and corresponding velocities reaches very quickly a stationary pattern which is
shifted backwards, i.e. opposite to the vehicle motion, one site per time step {12, 13, 16].

The model can also be seen as a discrete particle hopping model [10]. Simpler versions of the
- CA model can be related to the Lighthill-Whitham theory of traffic flow. See [22] for more
details.

3 Traffic jam dynamics

The statistics of the traffic jams in the STCA can be analyzed in a systematic way. Roughly
speaking, a so-called phase transition takes place at the density p. corresponding to maximum
average flow; at higher densities than that traffic jams can survive for infinitely long times.
This phase transition can be described using concepts from the physics of critical phenonema.

More precisely, assume a situation with laminar traffic flow at a given homogeneous density
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Figure 2: Fundamental diagram of the model (throughput versus density). Points: Averages over short times
(100 iterations) in a sufficiently large system (L = 10, 000). Broken line: Long time averages (10° iterations) in
a large system (L = 10,000). Dotted line: Long time averages in a small system (L = 100).

Figure 3: Space-time plot of traffic at density p = 0.85 in the so-called cruise control limit, i.e. fluctuations at
maximum speed are artificially set to zero. At ¢ = 5, we emulate a disturbance by setting the velocity of a
randomly selected vehicle to zero. One clearly sees the growing disturbance.

po and with a homogeneous flow g, = Vs - po (cf. Fig. 3). Now assume a small disturbance
of this laminar flow, for example by setting the velocity of one randomly selected car to zero.
Many different choices for the local perturbation give rise to the same large scale behavior.
The perturbed car eventually re-accelerates to maximum velocity. In the meantime, though. .
following car may have come too close to the disturbed car and has to slow down. This initiates
a chain reaction — an emergent traffic jam.




Now, in the average, one finds three different behaviors, depending on p,:
o For relatively low densities, the emergent traffic jam quickly dissolves.

o For relatively high densities, the emergent traffic jam grows forever, that is the inflow
into the jam ¢;, = g, is higher than the outflow ¢.,, and the average number of cars in a
jam, (n(t))eu behaves as

(n(t, po))all ~t- (qin(po) - QOut) ’

where ~ means “proportional to for ¢ — 00” and {(...)sy means the ensemble average
over all initiated jams, i.e. the average over many simulations using p, but different
Monte Carlo seeds.

o Somewhere in between, that is when p, is such that ¢;;, = ¢out, the emergent jam in the
average neither grows or shrinks. This density is called the critical density p. = ¢out/Vmaz-
Note that the critical point is given by the outflow behavior, which is in turn given by
the acceleration behavior of drivers.

See [17] for more details.

It has to be stressed again that this description is only true in the ensemble average, i.e. for
each given p, we averaged over many different Monte Carlo realizations. For an individual jam,
it happens rather often that even above p. the jam eventually dies out; others however keep on
growing forever and therefore compensate in the average.

This average picture is phenomenologically consistent with the fluid-dynamical model of Kiih-
ne/Kerner/Konhduser [9, 8, 20, 24] (KKK model), except that one has to replace (n(t)).u by
the amplitude A(¢): In the fluid-dynamical model, below a certain density p., A(t) decreases
exponentially; above p., one finds, at least initially, exponential growth, and exactly at p., the
amplitude neither grows nor shrinks. See [18].

The CA picture is also consistent with some newer mathematical car following models [2], and
also with Treiterer’s observation of a hysteresis effect: Laminar flow above the critical density
pe 1s possible for some time, but eventually traffic breaks down and separates into (i) jams, and
(ii) laminar flow at p. in between jams [18].

However, the STCA goes beyond the fluid-dynamical and (mathematical) car following models
mentioned above as it allows for a stochastic evolution of the traffic jam. This is expected to
be extremely important in traffic networks near capacity, where spill-back from disturbances
may grow back into upstream intersections, which may cause a complete network break-down.
Here, a deterministic model either always predicts network breakdown or always not, whereas
a stochastic model allows to predict the probability of such a break-down event.

It is interesting to note that a theoretic argument for the jam dynamics suggests that traffic
jam dynamics is “universal”, which is a well defined concept in the theory of critical phenomena
and means that probably many and maybe all one-dimensional traffic models with “reasonable”
rules display, again in the thermodynamic limit and in a certain coarse-grained description, the
same traffic jam dynamics. Depending on the needs for the traffic question under consideratior.
the simplest version of this jam dynamics may well be good enough and more complicated
models then only cost resources. ’

4 Computational speeds

We have performed extensive tests of computational speeds of different implementations of ..«
CA on different computer architectures [15, 19, 21, 16]. Especially for parallel machines, sy=t. -
size becomes a crucial quantity since, for example, a certain system size may run efficiently . -



small number of processors but inefficiently on a large number of processors. For simplification,
the following numbers therefore are extrapolations from a simulated system of size 10000 km
(single lane), with a CA density of p = 0.1, i.e. 133333 vehicles; for more details see the above
references. Some conclusions from the tests can be summarized as follows:

o CA models are in principle amenable to single bit coding, thereby stuffing all 32 (or 64)
bits of a computer word with information and processing this information simultaneously
using word-wise logical operations. These approaches run extremely fast on traditional
vector-computers like the Crays. We reached real time limits of 4 000 000 km or 53 0600 000
veh sec/sec (vehicle seconds per second) on a NEC SX-3.

o On non-vectorizing parallel machines though, single bit coding is not much faster, and
it is also much less flexible for more ambitious uses where one would, say, want to keep
track of travelers’ plans. We still reached, for example, a real time limit of 260000 km or
3500000 veh sec/sec on an 32-node Intel iPSC hypercube, or 220000 km (3 500000 veh
sec/sec) on a 32-node CM-5 (not using the vector units).

o An implementation of the freeway network of NRW (including freeway intersections and
lane changing) slowed the simulation speed down by less than a factor of 2. We reached
290000 km or 59000000 veh sec/sec on a 64-node Intel Paragon.

o Extrapolations for a large but existing machine, the 1024-node CM-5, let us expect
1700000 km or 27000000000 veh sec/sec, i.e. enough simulation speed for the whole
Los Angeles area in real time.

5 Simulations of the freeway network of NRW

The model has been used to make microscopic simulations of the freeway network of the German
land NRW [19, 16]. Here, we will describe some simulations which have been undertaken to
test the usefulness of a CA approach for simulating route choice behavior in realistic network
configurations.

In the simulations, there are many travelers with different origin-destination pairs. Travelers
have route plans (paths) so that they know on which intersections they have to make turns
in order to reach their destinations. FEach traveler has a choice between 10 different paths.
Each traveler chooses a path, the microsimulation is executed according to the plans of each
traveler (no re-planning during the trip), and each traveler remembers the performance of
his/her option.

Each traveler tries each option once. Afterwards, she usually chooses the option which per-
formed best in the past, except that, with a small probability p,ser, another option is chosen
randomly, in order to update the information about other options.

This approach — giving each agent a set of options and let each agent act on the basis of the
performances of these options — is a simplified version of Holland’s classifier systems [7, 1].

The simulations were based on a digital version of the freeway network of NRW (see [19, 16]
for details). The code is written for parallel computers using message passing, in principle for
an arbitrary numbers of computational nodes (CPNs). In practice, two Sparcl0 workstations.
coupled via optical link and using PVM 3.2, were used. That gives the idea that experiments
such as the following are already possible with a still modest amount of hardware, and that the
consistent use of parallel supercomputers will allow systematic analysis of much larger systems.

Apart from the network and the individual trip plans, the simulation is kept as simple and
straightforward as possible. This includes single directional lanes (i.e. only one lane in each
direction) and over-simplified ramps [14, 16].




The specific simulation set-up is described in the following. The simulation is an approximation
of long distance traffic through NRW. Let us denote by boundary points the points where the
freeways cross the borders of North-Rhine-Westfalia. In the way the network was prepared [19,
16], these are the only open ends of the network. At each of these endpoints, 2000 vehicles were
assumed to be in an ordered queue with the desire to enter as early as possible. Each vehicle
has a destination, which is one of the other boundary points of the networks, and which remains
the same through all repetitions of the simulation. The destinations are chosen randomly, with
a higher probability of choosing destinations which are far away; using different distributions
gave only small differences on the level of detail which is discussed here [16].

Then, each vehicle gets a list of 10 different paths to reach its destination. These lists have
been pre-calculated for all allowed O-D-pairs, and contain the 10 geometrically shortest paths
which do not use the same node twice ([11], see [16]). Each vehicle individually now decides
which path to use. In the first day (= period), each vehicle uses the shortest path; during the
subsequent 9 days, each vehicle randomly selects one of the not yet tested options. Afterwards,
it selects, as mentioned in the introduction, the option with the best performance, apart from
the probability poiher = 5% to re-test one of the other options, which is then chosen randomly.

After these preparations, the microsimulation starts. Vehicles are updated according to the
standard dynamical rules, and they change segments when they are at an intersection. Each
vehicle then follows its plan until it reaches its destination, where it notes the arrival time t4,riy,
i.e. the current iteration step of the simulation, which is used as performance criterion for this
specific path. When this is the first time this specific path has been used, this is used as the
first guess; for repeated trials of the same route, both a myopic and an averaging scheme were
tested without visible differences.

After all vehicles have reached their destinations and recorded the above information, the
simulation is restarted, where all vehicles have the same initial position and the same destination
as before, but may choose a different path according to the rules described above.

Figs. 4 demonstrates the result of the learning algorithm. Both the top and the bottom figure
uses exactly the same initial configuration of cars with their individual destination. Both figures
are snapshots of the situation after 6000 iterations (100 minutes). The top figure shows the
situation when every driver follows the geometrically shortest path. Meanwhile, in the bottom
figure, drivers act according to their previous experiences, i.e. they usually use the path where
they were fastest in the past. Note that, generally speaking, people “learn” according to the
programmed rules to equilibrate the jams between different paths, so that all options are equally
slow.

Further experimentation reveals that the day-to-day pattern of these simulations after the
learning phase is fairly stable. Together with the result that also the learning algorithm (myopic
vs. averaging) nor the specific distance distribution do not matter very much, one can conclude
quite in general that many of the results are robust, in spite of the stochasticity of the model.

Both the TRANSIMS project in Los Alamos [26] and the “Verkehrsverbund NRW” in Germany
plan to use CA approaches as a microsimulation option.

6 Summary

Already a simple, grid-based particle hopping model yields realistic traffic jam behavior aun
realistic fundamental diagrams. The model was used to investigate the regime of maximum
flow. It was found that there is a phase transition at a critical density p.; above p. traffic jam~
in the average never dissolve, therefore defining average maximum flow after the break-down of
laminar flow. This behavior is similar to recent fluid-dynamical and continuous car-followi:
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" Figure 4: Top: Situation at the “first day” after 6000 iterations (100 minutes), when trips through the network
are chosen with a fourth order preference for long trips, and when all drivers follow the geometrically shortest

path. — Bottom: Situation at “day 15” after 6000 iterations (100 minutes), for the same initial conditions as
for the top figure, but where drivers have “learned”.

theories of traffic flow, as well as with Treiterer’s hysteresis description. Implementations on
different supercomputers confirm that the computational speed is sufficient to perform regional
traffic simulations in faster than real time. Results from simulations of the freeway network of
the German land North-Rhine-Westfalia show in a more practical case, that this model makes



simulations based on individual behavior possible with only a modest amount of hardware.
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