

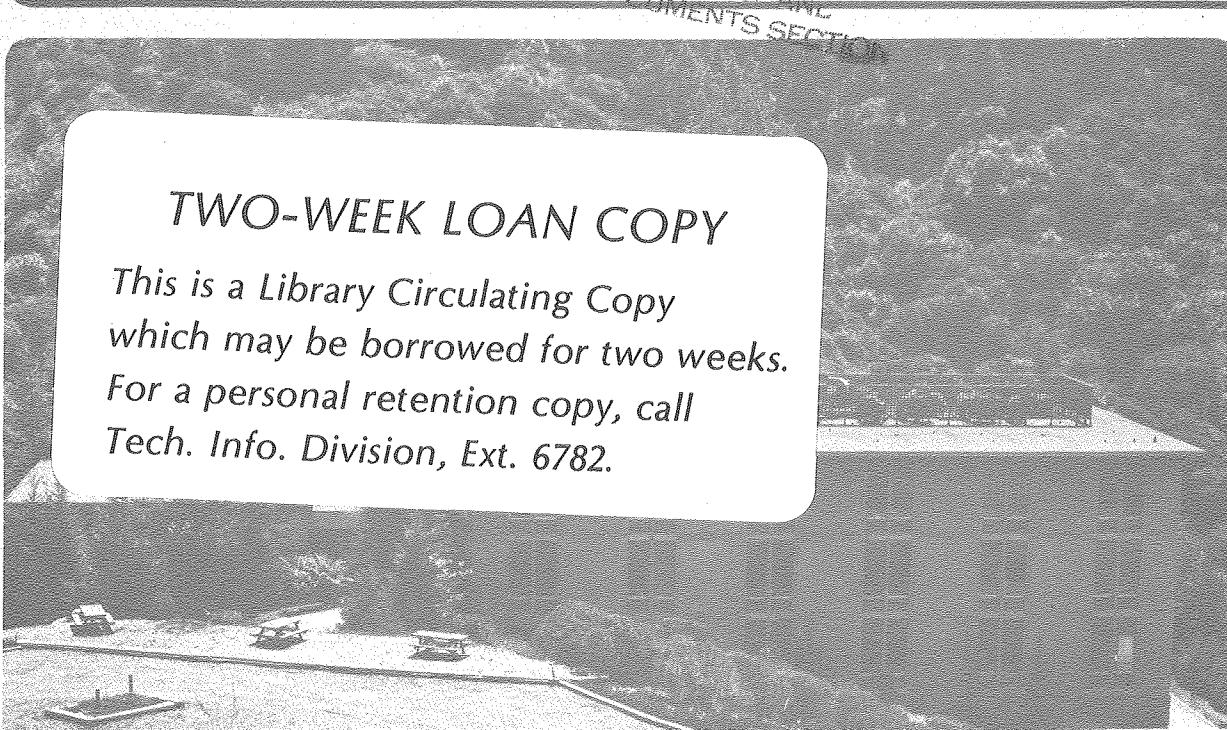
Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Materials & Molecular Research Division

Submitted to The Journal of Chemical Physics

THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE,
AND TRIPLE BONDS: $Al - CH_3$, $Al = CH_2$, and $Al \equiv CH$


Douglas J. Fox, Douglas Ray, Philip C. Rubesin,
and Henry F. Schaefer, III

June 1980

RECEIVED
BELL-LAWRENCE
LABORATORY
AUG 15 1980

TWO-WEEK LOAN COPY

*This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 6782.*

10871-2

DISCLAIMER

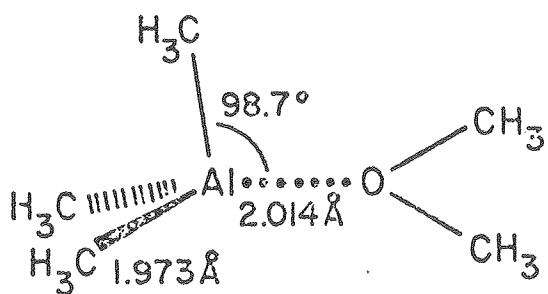
This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

The Prototype Aluminum - Carbon Single, Double,
and Triple Bonds: $\text{Al} - \text{CH}_3$, $\text{Al} = \text{CH}_2$, and $\text{Al} \equiv \text{CH}$

Douglas J. Fox, Douglas Ray,
Philip C. Rubesin and Henry F. Schaefer III

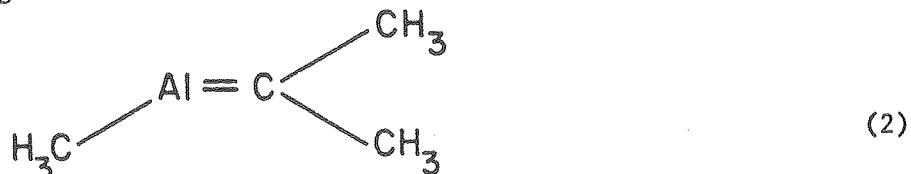
Department of Chemistry and Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Abstract


Nonempirical quantum mechanical methods have been used to investigate the AlCH_3 , AlCH_2 , and AlCH molecules, which may be considered to represent the simplest aluminum-carbon single, double, and triple bonds. Equilibrium geometries and vibrational frequencies were determined at the self-consistent-field level of theory using double zeta basis set: $\text{Al}(11s7p/6s4p)$, $\text{C}(9s5p/4s2p)$, $\text{H}(4s/2s)$. The $^1\text{A}_1$ ground state of AlCH_3 has a reasonably conventional Al-C single bond of length 2.013 Å, compared to 1.96 Å in the known molecule $\text{Al}(\text{CH}_3)_3$. The CH equilibrium distance is 1.093 Å and the Al-C-H angle 111.9°. The structures of three electron states each of AlCH_2 and AlCH were similarly predicted. The interesting result is that the ground state of AlCH_2 does not contain an Al-C double bond, and the ground state of AlCH is not characterized by an $\text{Al}\equiv\text{C}$ bond. The multiply-bonded electronic states do exist but they lie 21 kcal (AlCH_2) and 86 kcal (AlCH) above the respective ground states. The dissociation energies of the three ground electronic states are predicted to be 68 kcal (AlCH_3), 77 kcal (AlCH_2), and 88 kcal (AlCH). Vibrational frequencies are also predicted for the three molecules, and their electronic structures are discussed with reference to Mulliken populations and dipole moments.

Introduction

After silicon, aluminum is the most abundant (8% by weight) metal in the earth's crust and is of considerable industrial importance owing to the fact that it is light, malleable, ductile, highly reflective, and resistant to oxidation.¹ Furthermore, organoaluminum compounds are used on an industrial scale as components of the Ziegler-Natta catalysts for olefin polymerization.² In the form of LiAlH_4 , aluminum also plays a key role in synthetic organic and inorganic chemistry.³ Although aluminum has a notable chemistry of its own,⁴ this is primarily restricted to single bonded and/or electron-deficient species. A very useful example of the latter is the $\text{Al}_2(\text{CH}_3)_6$ molecule,⁵ which has the diborane structure. However, a notable feature of aluminum is that to date the larger boron hydride analogues⁶ such as $\text{Al}_5\text{H}_9(\text{B}_5\text{H}_9)$ have not been prepared.


Perhaps the most common single-bonded organoaluminum species is the monomeric trimethyl aluminum, $\text{Al}(\text{CH}_3)_3$, the molecular structure of which has been determined by electron diffraction.⁷ $\text{Al}(\text{CH}_3)_3$ has D_{3h} symmetry with freely rotating methyl groups and an Al-C distance of 1.957 Å. The C-H distance is 1.113 Å and the Al-C-H angle 111.7°. Since aluminum alkyls often appear in complexes with ethers, it is noteworthy that the structure of the dimethyl ether complex

has also been determined recently.⁸

Comparison with the above cited monomer structure demonstrates that complexation has only a mild effect (e.g. 0.016 Å in the Al-C distance) on the free $\text{Al}(\text{CH}_3)_3$ geometry.

No aluminum-carbon multiple bond has yet been prepared in the laboratory. This is usually thought not to be due to the inability of molecules such as

to exist as isolated species. Rather, it seems likely that such molecules do represent relative minima on their respective potential energy surfaces, but are extremely reactive.⁹ As such the structures and bond energies of these novel species are the proper domain of modern chemical theory. Such theoretical studies should in turn shed light on the possibility of observing such molecules in the laboratory.

The relevance of the aluminum-carbon double bond to experimental studies has already been demonstrated by the work of Trenary and co-workers.¹⁰ They pursued the experimental conclusion of Kasai, McLeod, and Watanabe¹¹ (based on matrix isolation spectroscopy) that the σ -bonded



structure lies lower in energy than the more conventional¹² aluminum-acetylene π -bonded structure

Although the Kasai energetic ordering¹¹ was confirmed, the (nominally)

Al=C double bonded structure

was predicted to lie \sim 12 kcal lower than the σ -bonded radical (3). A plausible reconciliation between theory and experiment was based on the possible inability of (3) to rearrange to (5) under the 4° K conditions of the experiment.

In the present paper are reported theoretical studies of the prototype single, double, and triple bonds

and

Al-CH₃ is quite analogous to the spectroscopically characterized BH¹³ and AlH¹⁴ molecules and should be "makable." The prototype aluminum carbene (7) and aluminum carbyne (8) species bear less obvious resemblances to already known¹⁵ molecules, but should be accessible in the near future via the rapidly expanding techniques of metal atom synthesis.¹⁶ In addition to their obvious relation to fundamental organoaluminum chemistry, these three molecules may allow us to establish further the ill-defined relationship¹⁷ between the former discipline and the world^{18, 19} of heterogeneous catalysis and surface chemistry. The theoretical prediction of vibrational frequencies for the three prototype molecules may be particularly helpful²⁰ in that regard.

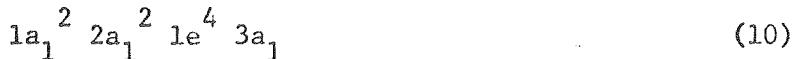
Theoretical Approach

The equilibrium geometrical structures of AlCH_3 , AlCH_2 , and AlCH were initially determined at the self-consistent-field (SCF) level of theory. This was accomplished using a standard double zeta basis set for aluminum²¹ $\text{Al}(11s7p/6s4p)$, carbon²² $(9s5p/4s2p)$, and hydrogen²² $\text{H}(4s/2s)$. The energy minimization procedures were accelerated using closed and open shell gradient procedures described previously.^{23,24} Also determined at the DZ SCF level were the quadratic force constants and subsequently the harmonic vibrational frequencies.

With the optimized geometries thus determined, several more complete levels of theory were explored. First, polarization functions were added to the basis set. These specifically included six primitive d-like Al functions (d_{xx} , d_{yy} , d_{zz} , d_{xy} , d_{xz} , d_{yz}) with gaussian exponent $\alpha = 0.6$, an analogous set of carbon d functions with $\alpha = 0.75$, and a set of p functions ($\alpha = 1.0$) on each hydrogen atom. Such polarization functions are often critically important²⁵ in predictions of relative energies, e.g. dissociation energies and electronic excitation energies.

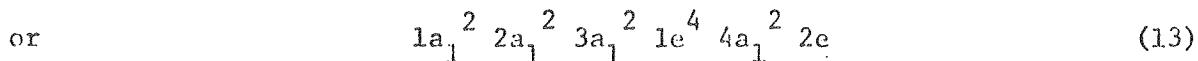
The effects of electron correlation were explicitly investigated using the loop-driven graphical unitary group approach.^{26,27} The specific configuration interaction (CI) procedure used here included all singly- and doubly- excited configurations relative to the appropriate SCF reference configurations. For molecules of the size considered here, this type of CI will yield more than 90% of the valence shell correlation energy.²⁸ By constraining the six lowest (Al 1s, 2s, 2p; C 1s) molecular SCF orbitals to be doubly occupied in all configurations, core and core-valence correlation effects were excluded. Furthermore, the six highest virtual orbitals, which are also localized in the core regions, were deleted from

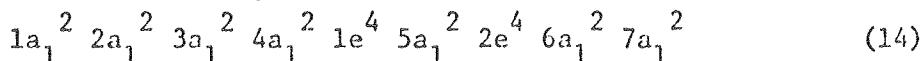
the CI. The largest CI reported here included 18, 491 configurations.


Al-CH₃ Results

Since the aluminum atom and the methyl radical each have a single unpaired electron, it is intuitively sensible to bring them together to form a conventional single bond. This is precisely the qualitative picture presented by Goddard and Harding²⁹ in their description of the closely related AlH molecule.

As a preliminary step, the geometrical structure of the planar (D_{3h}) methyl radical in its ²A₂" ground state was determined. At the DZ SCF level of theory the CH distance is 1.073 Å (in good agreement with Herzberg's experimental value³⁰ 1.079 Å) and the ground state electron configuration


When resolved into the lower point group C_{3v} appropriate to the Al-CH₃ complex, (9) becomes


The aluminum atom ground electron configuration

becomes in C_{3v} symmetry either

Of the two only (12) is suitable for engaging in a σ bond with the methyl radical, and the resulting Al-CH₃ electron configuration is

The predicted molecular structure of ground state Al-CH₃ is given in Figure 1. Of greatest interest is the aluminum-carbon distance,

2.0129 Å, which may be compared with the 1.957 Å determined experimentally for $\text{Al}(\text{CH}_3)_3$. The agreement is reasonable and it seems fair to conclude that the Al-C bond in $\text{Al}-\text{CH}_3$ is a conventional single bond. The predicted equilibrium CH distance, 1.0925 Å, is 0.0196 Å longer than predicted for the isolated CH_3 radical. Furthermore, the Al-C-H angle, which would be 90° if CH_3 retained its isolated planarity, is increased to 111.89° for the $\text{Al}-\text{CH}_3$ complex. Thus the structural evidence suggests that the CH_3 group in $\text{Al}-\text{CH}_3$ is much more similar to a methyl group in a saturated hydrocarbon than to the methyl free radical.

Given the $\text{Al}-\text{CH}_3$ equilibrium geometry, all quadratic force constants were predicted in terms of cartesian coordinates.³¹ This 15 x 15 matrix was then diagonalized to yield the nine real, positive harmonic vibrational frequencies seen in Table I. The use of cartesian force constants for the $\text{Al}-\text{CH}_3$ molecule gives rise to an internal self-checking in that the three degenerate E vibrational modes should in fact be degenerate. In the present calculations this degeneracy was satisfied to within 1.2 cm^{-1} in every case. In addition, the six eigenvalues corresponding to translational and rotational degrees of freedom were satisfactorily small, namely 44, 23, 17, 1, -2, and -4 cm^{-1} . A further discussion of these vibrational frequencies will be postponed in order to examine all three molecules simultaneously.

Total energies for AlCH_3 are summarized in Table II. At the DZ SCF level of theory, the predicted Al-C dissociation energy is 45.1 kcal/mole. This, of course, corresponds to independent geometrical optimizations for $\text{Al}-\text{CH}_3$ and the separated asymptote $\text{Al} + \text{CH}_3$. Using the larger DZ+P basis set, the SCF dissociation energy is 48.3 kcal/mole.

To predict the $\text{Al}-\text{CH}_3$ dissociation energy using configuration

interaction (CI) methods is a bit more difficult.³² This is because the SCF energy of (14) does not approach that of Al + CH₃ as the Al-C bond distance is lengthened. In this case configuration (14) dissociates to the closed-shell fragments Al⁺ + CH₃⁻. To obtain proper dissociation, of course, a two configuration SCF wave function of the form

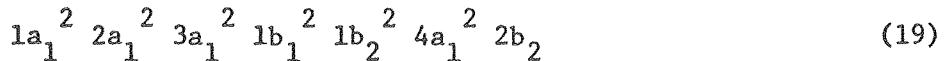
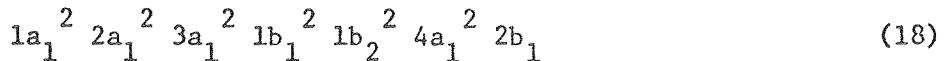
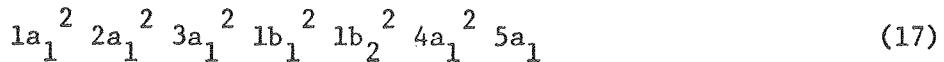
$$\begin{aligned} C_1 & \dots 5a_1^2 2e^4 6a_1^2 7a_1^2 \\ + C_2 & \dots 5a_1^2 2e^4 6a_1^2 8a_1^2 \end{aligned} \quad (15)$$

may be used. This two configuration SCF wave function yields Al-C dissociation energies of 52.6 (DZ basis set) and 56.9 (DZ+P) kcal/mole.

The straightforward way to predict the CI dissociation energy of Al-CH₃ is by including all single and double excitations with respect to both of the configurations in (15). This two reference configuration interaction (TRCI) description yields a double zeta dissociation energy of 60.2 kcal. With the larger DZ+P basis set, there are no fewer than 18,491 configurations, in C_s symmetry, making these among the largest CI calculations performed to date on our minicomputer. In this way the DZ+P TRCI dissociation energy was predicted to be 67.8 kcal, somewhat greater than the results obtained from the less complete levels of theory. Experience suggests²⁵ that this dissociation energy is probably still less than the (unknown) experimental D_e, which might be as much as 10 kcal greater. In this respect, it is noteworthy that the Al-CH₃ dissociation energy is quite comparable to the analogous binding energy¹³, 70 kcal, of the Al-H molecule. This comparison may be placed in context by the observation that the C-C and C-H average single bond energies are 99 and 83 kcal. Thus, while C-H bonds are generally stronger than C-C single bonds, the diatomic Al-H bond is quite similar in this regard to the Al-C bond investigated here.

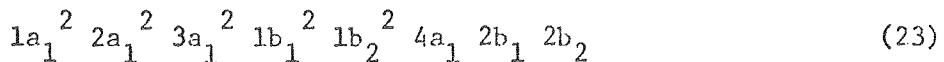
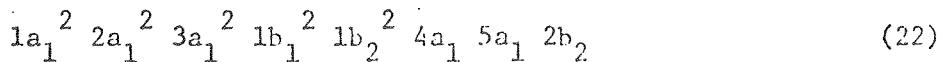
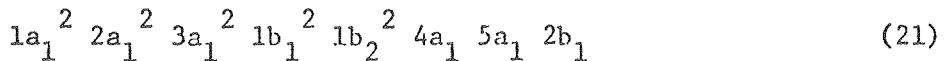
The $\text{Al}-\text{CH}_3$ molecule has a small but notable dipole moment, 0.56 debye at the DZ SCF level and 0.53 debye using the larger DZ+P basis set. Intuition suggests an $\text{Al}^{+\delta}\text{CH}_3^{-\delta}$ polarity and this is born out. The small magnitude of the $\text{Al}-\text{CH}_3$ dipole moment supports the contention (suggested above on the basis of structural data) that the $\text{Al}-\text{C}$ bond is a reasonably normal covalent single bond. Further data in this regard is given by the Mulliken population analysis seen in Table III. There it is seen that in the Mulliken picture³³ (using the DZ+P basis set) the charge distribution is $\text{Al}^{+0.55}\text{CH}_3^{-0.55}$, implying a considerable measure of ionicity. However, we view the dipole moment, which is a nonarbitrary physical observable, as more meaningful in this regard, and conclude that the bond in $\text{Al}-\text{CH}_3$ is best regarded as covalent. The Al atom hybridization is $s^{1.9}p^{0.6}$ in this picture and polarization functions are seen to be of quantitative rather than qualitative importance.

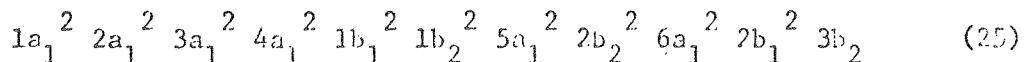
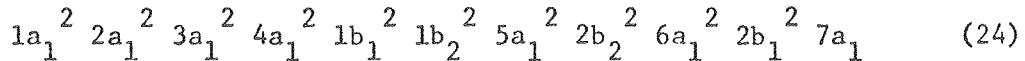
$\text{Al} = \text{CH}_2$ Results




In analogy with formaldehyde ($\text{O} = \text{CH}_2$) or thioformaldehyde ($\text{S} = \text{CH}_2$), the doubly bonded $\text{Al} = \text{CH}_2$ species should have a planar C_{2v} structure. To construct the prerequisite σ and π bonds, it is perhaps easiest to begin with triplet methylene

The $3a_1$ orbital is the σ orbital and the $1b_1$ orbital is generally called a π orbital. The DZ SCF structure of $^3\text{B}_1\text{CH}_2$ was found to be $r_e(\text{CH}) = 1.074 \text{\AA}$, $\theta_e(\text{HCH}) = 130.3^\circ$, in reasonable agreement with more complete theoretical treatments.³⁴

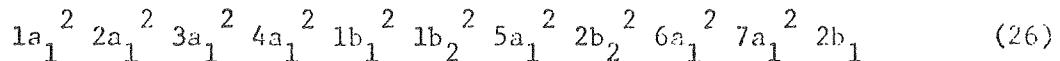
When the Al atom ground state electron configuration (11) is resolved into C_{2v} symmetry, the threefold degeneracy of the singly occupied 3p




orbital yields three distinct orbital occupancies:



To bring Al up to CH_2 and form a double bond, it is clear that, in a simple picture, the Al atom must have at least two unpaired electrons. The obvious choice is to use the Al configuration

which is resolved in C_{2v} symmetry (maintaining three singly-occupied orbitals, as required to construct the $\text{Al} = \text{C}$ double bond) into three new configurations

Given the singly-occupied $3a_1$ (σ) and $1b_1$ (π) orbitals of methylene, it is seen that either (21) or (23) may be used to create the desired $\text{Al} = \text{CH}_2$ moiety. These two choices yield the electron configurations



In either case, the $6a_1$ orbital nominally contains the σ bond, and the $2b_1$ orbital the π bond.

Preliminary investigations were designed to determine whether the 2A_1 state (24) or 2B_2 state (25) is the lower lying of the two "double-bonded" electronic states. The structures of these two states are seen

in Fig. 1, which demonstrates that both Al-C bond distances are indeed less than the 1.95 Å normally associated with an Al-C single bond. Of the two doubly-bonded states, the 2A_1 state (24) lies lower, with DZ SCF energy of -280.80072 hartrees. The Al=C bond distance of 1.802 Å is seen to be 0.211 Å less than reported above for the single bond $\text{Al}-\text{CH}_3$ structure. Later comparison with the triply-bonded $\text{Al}\equiv\text{CH}$ confirms that this 2A_1 AlCH_2 structure is indeed characteristic of an Al=C double bond. However, the higher-lying of the two states expected to manifest Al=C bonds has at best a 3/2 bond, with AlC distance 1.925 Å. The DZ SCF energy of the 2B_2 state is -280.6602 hartrees, or 84.5 kcal above the 2A_1 state, and thus rules out the 2B_2 state as a chemically significant species.

The actual ground electronic state of AlCH_2 does not contain an Al=C double bond. Rather it arises from the electron configuration

and is of 2B_1 symmetry. At the DZ SCF level of theory, the 2B_1 state is found to lie 32.9 kcal below the 2A_1 state. At the most reliable level of variational theory (DZ+P CI), this separation is reduced to 22.9 kcal. The structure of 2B_1 state is shown in Fig. 1 and the total energies at various levels of theory given in Table II. Figure 1 shows clearly that the AlC bond in the ground 2B_1 state of AlCH_2 is a simple single bond. The Al-C distance, 1.989 Å, is in fact only 0.024 Å shorter than that for the "standard" single bond in AlCH_3 . This structural similarity is nicely complemented by the fact that the Mulliken populations (Table III) show essentially identical Al atom hybridization and charge (+0.54) for the ground states of AlCH_3 and AlCH_2 .

The methylene HCH bond angles for the three electronic states of AlCH_2 are of particular interest. In previous studies¹⁷ of the related MnCH_2 system, a simple qualitative molecular orbital argument was found to explain several such methylene angles. Examination of the Walsh diagram for AH_2 molecules suggests that the $3a_1$ orbital plays the critical role. This orbital much prefers bent geometries, and comparison with experiment suggests the following:

$$3a_1^0 \theta = 180^\circ; 3a_1^1 \theta \sim 133^\circ; 3a_1^2 \theta \sim 102^\circ$$

By projecting out carbon and hydrogen atom a_1 populations from the MnCH_2 Mulliken analysis, this same simple picture qualitatively explained the MnCH_2 bond angles.

For the three AlCH_2 electronic state at the DZ SCF level of theory we find

$$\begin{array}{ccc} {}^2B_1 & 3a_1 & 1.16 \\ & 3a_1 & 1.35 \\ 110.8^\circ & & 115.0^\circ \\ & & 138.4^\circ \end{array}$$

These results show indeed that there is a good correlation between methylene bond angle and population of the $3a_1$ orbital. The smallest bond angle is that for the 2B_1 state, and it is about 8° greater than observed for singlet CH_2 . This difference is nicely explained by the fact that the ${}^2B_1 \text{AlCH}_2$ angle is about 5° greater than for isolated triplet CH_2 , and this is consistent with its $3a_1$ population of 0.73, or 0.27 less than the triplet CH_2 value of unity. Taken together with our previous analogous explanation¹⁷

of several $MnCH_2$ bond angles, it would certainly appear that Walsh-like arguments can be very helpful in explaining the structures of simple organometallic species.

The 2B_1 ground state dissociation energy $D_e(A\ell^1-CH_2)$ has been predicted at four levels of theory. The results are 53.0 kcal (DZ SCF), 57.2 kcal (DZ+P SCF), 68.8 kcal (DZ CI), and 77.4 kcal (DZ+P CI). The latter prediction is the most reliable and is about 10 kcal greater than that predicted for the unquestionably single-bond $AlCH_3$. Thus the dissociation energies leave open the possibility of a small amount of double bond character for ground state $AlCH_2$.

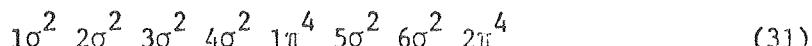
Finally, the predicted dipole moments for $^2B_1 AlCH_2$ were 0.76 debye (DZ SCF) and 0.74 debye (DZ+P SCF). These dipole moments are only marginally greater than the analogous values for ground state $AlCH$ and support the view that the 2B_1 ground state of $AlCH_2$ is primarily covalent, with a bit of Al^+C^- character. The two higher $AlCH_2$ states have larger dipole moments, however. The 2A_1 state has $\mu = 3.15$ debye at the SCF level with either the DZ or DZ+P basis set. The dipole moments of the energetically higher-lying 2B_2 state are 3.01 debye (DZ SCF) and 2.93 debye primarily ionic Al^+C^- character for the two excited states of $AlCH_2$.

Al \equiv CH Results

In analogy with HCN or HCP, the triply bonded AlCH should have a collinear equilibrium geometry. Such a species cannot be formally constructed from the CH ground state

since it has only a single unpaired electron. At the DZ SCF level of theory used for all geometry optimizations here, the $^2\Pi$ bond distance is predicted to be 1.1197 Å, in nearly perfect agreement with experiment³⁵, 1.120 Å.

Turning to the first excited state of CH, the $^4\Sigma^-$ state, we note that it lies only 17.1 kcal³⁶ above the $^2\Pi$ ground state and arises from the electron configuration



This configuration has precisely the one unpaired σ orbital and two unpaired π orbitals to make up the desired triple bond.

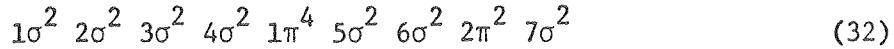
In $C_{\infty v}$ symmetry the (first excited) $1s^2 \ 2s^2 \ 2p^6 \ 3s \ 3p^2$ configuration (20) of the aluminum atom resolves (maintaining three unpaired electrons) as

The latter is properly designed to interact with (28) to form the triply bonded electronic state of AlCH

In a certain sense (31) is the most "conventional" molecular electronic state of the three organoaluminum complexes considered here, because

(a) it is a closed shell species and (b) the full trivalent nature of Al is utilized.

The predicted linear equilibrium geometry of the triply bonded AlCH^+ state is seen in Figure 1. The aluminum-carbon distance is 1.668 Å, which is remarkably short and indeed indicative of a genuine $\text{Al} \equiv \text{C}$ triple bond. For example, one of the shortest known aluminum-carbon distances is 1.86 ± 0.02 Å, for the cubane-like structure³⁷ $\text{Al}_4\text{N}_4\phi_8$, where the phenyl groups are analogous to the hydrogen atoms in cubane. This structure clearly contains four Al-C single bonds, although most such distances fall in the range 1.9 - 2.0 Å.


A second indication of the Al-C triple bond is the shortness of the adjacent CH bond, namely 1.068 Å. It is well known that CH distances decrease as they are placed adjacent to C - C single, double, and triple bonds. For example, the experimental CH distances³⁸ in ethane, ethylene, and acetylene are respectively 1.091 Å, 1.086 Å, and 1.058 Å. The predicted CH distance for AlCH^+ is clearly closest to that found experimentally for acetylene.

The remarkably short Al-C distance in AlCH^+ makes its electronic structure of particular interest. In this regard, Mulliken populations are given in Table III. These populations immediately stand out with the very first entry showing an Al s population of 4.7, much less than for any of the other molecular electronic states characterized in Table III. This Al 3s population of only 0.66 e⁻ is indeed indicative of the Al 3s 3p² electron configuration formally required for a triple bond. Confirmation is provided by the Al 3p population of 1.7, the highest recorded in Table III. The reason both 3s and 3p populations fall short of the classical sp² picture is the strong polarity $\text{Al}^{+\delta}(\text{CH})^{-\delta}$ of the AlCH^+ state. In the

Mulliken picture, the positive charge δ on aluminum is $0.59 e^-$. Actually, the more complete picture of the Mulliken electronic structure of the $^1\Sigma^+$ state is $Al^{+0.6} C^{-0.8} H^{+0.2}$. Table III shows in fact that the positive charge on hydrogen is the greatest of any reported here.

The dipole moment of $^1\Sigma^+$ $AlCH$ is 6.14 debye at the DZ SCF level of theory and 6.17 debye using the larger DZ+P basis. Such a large dipole moment is, of course, consistent with the substantial Mulliken atomic charges on Al and C for the $^1\Sigma^+$ state.

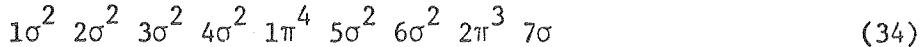
Although the $^1\Sigma^+$ triple $Al \equiv C$ bond represents a strong confirmation of qualitative molecular orbital theory, this is not the ground electronic state of $AlCH$. That honor goes to the $^3\Sigma^-$ state, arising from the

Gradient procedures showed that this state is also linear, with the structure shown in Figure 1 and energetics summarized in Table II.

At the DZ+P CI level of theory, the $^3\Sigma^-$ state lies 95.7 kcal below the triply-bonded $^1\Sigma^+$ state. However, this separation is almost certainly too high, since the single configuration SCF treatment is quite poor for the $^1\Sigma^+$ state. A simple, but nevertheless, useful approximate treatment of the importance of higher than doubly excited configurations is Davidson's approximation³⁹

$$\Delta E = (1 - C_o^2) \Delta E_{SD} \quad (33)$$

In (33), C_o is the coefficient of the Hartree-Fock configuration in the CI wave function, and ΔE_{SD} is the correlation energy due to single and double excitations. Since $C_o = 0.929$ for the $^1\Sigma^+$ state and 0.957 for the $^3\Sigma^+$ state, it is clear that higher excitations are more important for the former.


To be precise, application of (33) reduces the $^3\Sigma^-$ - $^1\Sigma^+$ separation to 86.5 kcal.

We must conclude that, although the $^1\Sigma^+$ state represents a triple bond by virtue of its extremely short Al-C equilibrium distance and its electronic structure, this is a very weak bond. Although this result seems contrary to common chemical intuition, we expect such examples to become more common in the future. An experimental example is given by the XeF molecule ⁴⁰, bound by only 3 kcal, but possessing a bond distance only 20% longer than that found for XeF_2 , which contains two more conventional single bonds with average energy greater than 30 kcal. A second example, this one theoretical, is the Cr_2 molecule, with a rather weak Cr-Cr bond, but one which is extremely short ⁴¹, indeed suggestive perhaps of a sextuple bond.

The $^3\Sigma^-$ ground state dissociation energy D_e (Al-CH) has been predicted at four levels of theory. The results are 77.9 kcal (DZ SCF), 79.8 kcal (DZ+P SCF), 84.7 kcal (DZ CI), and 87.7 kcal (DZ+P CI). The predictions form a smooth progression and suggest a bond energy \sim 20 kcal greater than that found for the unambiguously single bonded Al-CH₃. This difference would seem to suggest a certain amount of Al-C multiple bond character for $^3\Sigma^-$ AlCH. This notion is given some support by the predicted $^3\Sigma^-$ structure (Figure 1), which has an Al-C bond distance 0.0039 Å shorter than in AlCH₃. However, the Mulliken populations (Table III) suggest a $^3\Sigma^-$ electronic structure quite similar to the single bonded AlCH₃. In fact, there is even less 3s to 3p promotion observed in $^3\Sigma^-$ AlCH than for AlCH₃. Thus, while the $^3\Sigma^-$ state does appear to have a somewhat stronger than single Al-C bond, a simple electronic picture confirming this view does not appear at hand.

The predicted dipole moments for $^3\Sigma^-$ AlCH were 0.37 debye (DZ SCF) and 0.42 debye (DZ+P SCF). Comparison of these μ values with those for the $^1\Sigma^+$ state of AlCH is interesting. Although the two electronic states have qualitatively similar Mulliken gross atomic charges, the $^3\Sigma^-$ state has a small dipole moment, while the $^1\Sigma^+$ μ value is in excess of six debye. This points out once again the danger inherent in taking Mulliken populations too seriously. From the predicted dipole moments, we conclude that the triply-bonded $^1\Sigma^+$ state is highly polar, while the $^3\Sigma^-$ state is only weakly polar.

After this research was well underway, we noted the appearance of a paper by Pelissier and Malrieu⁴² on the AlN molecule, isoelectronic with AlCH. Since Pelissier and Malrieu found the $^3\Pi$ state of AlN to lie 2900 cm^{-1} (8.3 kcal) below the $^3\Sigma^-$ state, it was decided to examine the analogous state of AlCH. The $^3\Pi$ state arises from the electron configuration

and hence might have properties intermediate between those of the triply-bonded $^1\Sigma^+$ state and the $^3\Sigma^-$ ground state.

Table II shows that $^3\Pi$ AlCH is indeed reasonably low-lying, being placed at 31.0 kcal above the $^3\Sigma^-$ state in the most reliable level of theory, namely DZ+P CI. Nevertheless, it seems clear that the ordering of these two AlCH states is the opposite of that reported⁴² for the isoelectronic AlN. The $^3\Pi$ AlCH equilibrium geometry, seen in Fig. 1, confirms the expectation that the structure of (34) should be intermediate between those of electronic states (31) and (32). The predicted dipole moments for the $^3\Pi$ state, namely 3.25 (DZ SCF) and 3.26 (DZ+P SCF) debye, also support this view, that they lie roughly halfway between the triply-bonded ($^1\Sigma^+$) value 6.2 debye and the singly-bonded ($^3\Sigma^-$) result 0.4 debye.

Vibrational Frequencies

The harmonic vibrational frequencies of Table I provide some interesting comparisons. Perhaps most obvious is the fact that AlCH_3 , AlCH_2 , and AlCH have respectively 3, 2, and 1 high frequency C-H stretching vibrations. These increase in the order given, a result which may be compared with related series.^{38,43} One of the more obvious comparisons is with the family HO-CH_3 (methanol), $\text{O}=\text{CH}_2$ (formaldehyde), and OCH (formyl radical). The observed CH stretching frequencies for the latter molecules are 2840, 2980, and 2980 cm^{-1} (CH_3OH); 2770 and 2840 cm^{-1} (H_2CO), and 2490 cm^{-1} (HCO). After one appreciates from experience that predicted DZ SCF harmonic frequencies (of the type seen in Table I) are typically 10-15% greater than experiment, the general agreement is reasonable. However, the trend for the aluminum molecules is to increasing C-H frequencies across the series AlCH_3 , AlCH_2 , AlCH , which the opposite trend is observed for the family CH_3OH , CH_2O , CHO .

The family of molecules perhaps most closely related to the single bond Al-CH_3 species is the methyl halides. Their vibrational spectra have been carefully analyzed⁴³ and are compared with AlCH_3 in Table IV. It should be noted that based strictly on atomic masses, the vibrational frequencies of CH_3Al should fall between those of CH_3F and CH_3Cl . Although this analogy does not hold strictly, Table IV does seem to indicate a strong similarity between AlCH_3 and the methyl halides. The principal difference is that the $\text{H}_3\text{C-Al}$ bonding and C-Al stretching frequencies are smaller than would be expected from the methyl halides. Both of these results suggest that the C-Al bond is weaker than the C-F bond in CH_3F or the C-Cl bond in CH_3Cl . In fact, the three bond strengths are ~ 75 kcal (this work), 108 ± 8 kcal, and 83 ± 2 kcal.

Similar analogies have been constructed in Table V for $^2\text{B}_1$ AlCH_2 and $^3\Sigma^-$ AlCH . The aluminum carbene is compared with formaldehyde ($\text{O} = \text{CH}_2$) and thioformaldehyde ($\text{S} = \text{CH}_2$), while the aluminum carbyne is compared with hydrogen cyanide ($\text{N} \equiv \text{CH}$) and ($\text{P} \equiv \text{CH}$). As expected, the best agreement occurs for the C-H stretching frequencies. The other frequencies for AlCH_2 and AlCH are notably smaller than the analogous frequencies of the comparison molecules. This, of course, reflects the fact that the Al-C bonds are weaker than the X-C multiple bonds of the comparison molecules. Put another way, the potential energy surfaces of AlCH_2 and AlCH are much flatter near the minima than those of the comparison molecules. This fact could prove helpful in the identification of hydrocarbon fragments chemisorbed on aluminum metal surfaces. 16-20

Ionization Potentials

A final comparison of the electronic structures of AlCH_3 , AlCH_2 , and AlCH is based on the orbital energies (Koopmans theorem ionization potentials) given in Table VI. There we see first of all a reasonable correlation between aluminum core (1s, 2s, 2p) orbital energies and Mulliken positive charges on the Al atom. That is, the triply-bonded $^1\Sigma^+$ state of AlCH has by far the greatest ionic character (as noted above, this is only partially revealed by the Mulliken populations), and the greatest Al 1s ionization potential.

The weak Al-C bond in $^1\Sigma^+$ AlCH is perhaps reflected in the relatively high orbital energy ϵ for the 2π orbital. However, the other electronic species also display orbital energies in the vicinity of -0.3 hartrees.

An indicator of the relative complexity of the bonding in these four species is the seventh orbital energy, counting from Al 1s. This is the $5a_1$ orbital for AlCH_3 and AlCH_2 , and the 4σ orbital for the two states of AlCH . This orbital is relatively carbon 2s-like for the classical $\text{Al}-\text{CH}_3$ single bond, where $\epsilon(5a_1) = -0.9090$. However, this orbital becomes more complicated for AlCH_2 and its ϵ value is raised. For both states of AlCH , the 4σ orbital lies much higher (-0.8136 and -0.7979 respectively). As mentioned above, the total carbon 2s population for $^1\Sigma^+$ AlCH is only 0.66 electrons, requiring the 4σ orbital to be much more strongly mixed.

Concluding Remarks

This paper represents a first step in what is hoped will be a comprehensive study of the interaction between naked aluminum clusters (Al , Al_2 , Al_3 , Al_4) and small organic fragments. The key questions answered here concern the ability of atomic aluminum to form multiple bonds to carbon. Although it has been demonstrated that such multiple bonds are indeed predicted for certain electronic states of $AlCH_2$ and $AlCH$, these multiple bonds are in fact weaker than electronically single bonds of the analogous molecular models. Whether double $Al = C$ bonds will be possible for Al_n clusters ($n = 2, 3, 4$) remains to be seen. However, the study of such clusters raises the additional possibility of bonding schemes (e.g. bridge, threefold) not possible for the simple prototypes examined here.

Acknowledgements

This research was supported by the Materials and Molecular Research Division of the Lawrence Berkeley Laboratory, through the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract No. W-7405-Eng-48. We thank Professor Earl Muetterties for a very helpful discussion.

References

1. K. Wade and A. J. Banister, pages 993-1172 of Volume 1, Comprehensive Inorganic Chemistry, editor A. F. Trotman-Dickenson (Pergamon Press, 1973).
2. T. Mole and E. A. Jeffery, Organaluminum Compounds (Elsevier, Amsterdam, 1972).
3. See, for example, page 196 of Volume 7, Reagents for Organic Synthesis, editors M. Fieser and L. F. Fieser (Wiley-Interscience, New York, 1979).
4. J. D. Smith, J. Organomet. Chem. 163, 97(1978).
5. J. P. Oliver, Adv. Organomet. Chem. 16, 111(1977).
6. W. N. Lipscomb, Science 196, 1047(1977).
7. A. Almenningen, S. Halvorsen, and A. Haaland, Acta Chem. Scand. 25, 1937(1971).
8. A. Haaland, S. Samdal, O. Stokkeland, and J. Weidlein, J. Organomet. Chem. 134, 165(1977).
9. E. L. Muettterties, personal communication.
10. M. Trenary, M. E. Casida, B. R. Brooks, and H. F. Schaefer, J. Amer. Chem. Soc. 101, 1638(1979).
11. P. H. Kasai, D. McLeod, and T. Watanabe, J. Amer. Chem. Soc. 99, 3521 (1977).
12. M. J. S. Dewar and G. P. Ford, J. Amer. Chem. Soc. 101, 783(1979).
13. K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
14. A. Lagerqvist, L. E. Lundh, and H. Neuhaus, Physica Scripta 1, 261 (1970); and references therein.
15. E. O. Fischer, Adv. Organomet. Chem. 14, 1(1976).
16. G. A. Ozin, Accounts Chem. Res. 10, 21(1977).

17. H. F. Schaefer, Accounts Chem. Res. 10, 287(1977); R. Mason, Israel J. Chem. 15, 154(1977); E. L. Muetterties, Angew. Chem. Int. Ed. Engl. 17, 545(1978).
18. R. J. Madix, Accounts Chem. Res. 12, 265(1979).
19. G. A. Somorjai, Science 201, 489(1978).
20. S. Lehwald, W. Erley, H. Ibach, and H. Wagner, Chem. Phys. Lett. 62, 360(1979).
21. T. H. Dunning and P. J. Hay, pages 1-27 of Volume 3, Modern Theoretical Chemistry, editor H. F. Schaefer (Plenum, New York, 1977).
22. S. Huzinaga, J. Chem. Phys. 42, 1293(1965); T. H. Dunning, J. Chem. Phys. 53, 2823(1970).
23. P. Pulay, pages 152-185 of Volume 4, Modern Theoretical Chemistry, editor H. F. Schaefer (Plenum, New York, 1977).
24. J. D. Goddard, N. C. Handy, and H. F. Schaefer, J. Chem. Phys. 71, 1525(1978).
25. H. F. Schaefer, The Electronic Structure of Atoms and Molecules: A Survey of Rigorous Quantum Mechanical Results, (Addison-Wesley, Reading, Massachusetts, 1972).
26. I. Shavitt, Intern. J. Quantum Chem. Symp. 11, 131(1977); 12, 5(1978).
27. B. R. Brooks and H. F. Schaefer, J. Chem. Phys. 70, 5092(1979); B. R. Brooks, W. D. Laidig, P. Saxe, N. C. Handy, and H. F. Schaefer, Physica Scripta, 21, 312(1980).
28. F. Sasaki, Intern. J. Quantum Chem. Symp. 11, 125(1977).
29. W. A. Goddard and L. B. Harding, Annual. Rev. Phys. Chem. 29, 363 (1978).
30. G. Herzberg, Proc. Roy. Soc. 262A, 291(1961).
31. M. C. Flanigan, A. Komornicki, and J. W. McIver, pages 1-47 of Volume 8,

Modern Theoretical Chemistry, editor G. A. Segal (Plenum, New York, 1977).

32. G. Das and A. C. Wahl, *J. Chem. Phys.* 44, 876(1966).
33. R. S. Mulliken, *J. Chem. Phys.* 23, 1833, 1841(1955).
34. C. W. Bauschlicher and I. Shavitt, *J. Amer. Chem. Soc.* 100, 739(1978).
35. G. Herzberg and J. W. C. Johns, *Astrophys. J.* 158, 399(1969).
36. A. Kasden, E. Herbst, and W. C. Lineberger, *Chem. Phys. Lett.* 31, 78(1975).
37. T. R. R. McDonald and W. S. McDonald, *Acta Cryst.* B28, 1619(1972).
38. G. Herzberg, Electronic Spectra of Polyatomic Molecules (Van Nostrand, Princeton, New Jersey, 1967).
39. S. R. Langhoff and E. R. Davidson, *Int. J. Quantum Chem.* 8, 61(1974).
40. P. C. Tellinghuisen, J. Tellinghuisen, J. A. Coxon, J. E. Velazco, and D. W. Setser, *J. Chem. Phys.* 68, 5187 (1978).
41. S. R. Ungemach, H. F. Schaefer, and P. S. Bagus, unpublished.
42. M. Pelissier and J. P. Malrieu, *J. Mol. Spectroscopy*, 77, 322(1979).
43. G. Herzberg, Infrared and Raman Spectra (Van Nostrand Reinhold, New York, 1945), pages 312-316.

Table. I. Predicted harmonic vibrational frequencies
(in cm^{-1}) for the ground electronic states
of AlCH_3 , AlCH_2 , and AlCH .

AlCH_3	AlCH_2	$^3\Sigma^-$ AlCH
3200		3350 C-H Stretch
3200	3290 C-H Stretch	670 Al-C Stretch
3120	3140	380
1580	1070 C-H ₂ Scissor	380
1400	660 Al-C Bend	
1400	640 Al-C Stretch	
630	630 Al-C Bend	
630	CH ₃ -Al Bending	
600	C-Al Stretch	

Table II. Total energies for three prototype aluminum-carbon bonds and their respective dissociation limits. The abbreviation TRCI stands for a configuration interaction (CI) including all single and double excitations relative to two reference configurations.

	AlCH_3	$^2\text{B}_1 \text{AlCH}_2$	$^3\Sigma^- \text{AlCH}$	$^1\Sigma^+ \text{AlCH}$	$^3\Pi \text{AlCH}$
DZ SCF	-281.47650	-280.85321	-280.23756	-280.02514	-280.16976
DZ TCSCF	-281.48853	--	--	--	--
DZ+P SCF	-281.50030	-280.87471	-280.25457	-280.04734	-280.19126
DZ+P TCSCF	-281.51400	--	--	--	--
DZ CI	-281.61183	-280.97113	-280.33630	-280.18452	-280.28625
DZ TRCI	-281.61416	--	--	--	--
DZ+P CI	-281.70189	-281.04916	-280.39410	-280.24153	-280.34476
DZ+P TRCI	-281.70571	--	--	--	--
	$\text{Al} + \text{CH}_3$	$\text{Al} + \text{CH}_2$	$\text{Al} + \text{CH}$		
DZ SCF	-281.40463	-280.76871	-280.11342		
DZ+P SCF	-281.42334	-280.78358	-280.12739		
DZ CI	--	-280.86154	-280.20135		
DZ TRCI	-281.51821	--	--		
DZ+P CI	--	-280.92577	-280.25440		
DZ+P TRCI	-281.59766	--	--		

Table III. Mulliken populations for AlCH_3 , AlCH_2 , and AlCH from self-consistent-field wave functions constructed from a double zeta plus polarization basis set.

		AlCH_3	AlCH_2	3_{Σ^-}	AlCH	1_{Σ^+}
Al	s	5.866	5.865	5.888	4.660	
	p	6.573	6.574	6.535	7.686	
	d	0.014	0.020	0.013	0.068	
	total	12.454	12.458	12.436	12.413	
C	s	3.401	3.467	3.596	3.363	
	p	3.545	3.330	3.081	3.370	
	d	0.050	0.052	0.047	0.046	
	total	6.996	6.849	6.724	6.779	
H	s	0.834	0.830	0.821	0.786	
	p	0.016	0.017	0.018	0.022	
	total	0.850	0.847	0.840	0.805	

Table IV. Comparison between the vibrational frequencies
of AlCH_3 and those of the methyl halides.

	Description	Al-CH_3	CH_3F	CH_3Cl	CH_3Br
$\nu_4(e)$	C-H Stretch	3200	2980	3040	3060
$\nu_1(a_1)$	C-H Stretch	3120	2960	2970	2970
$\nu_2(a_1)$	CH_3 Deformation	1400	1480	1350	1310
$\nu_5(e)$	CH_3 Deformation	1580	1470	1450	1450
$\nu_6(e)$	$\text{HC}_3\text{-X}$ Bending	630	1200	1020	950
$\nu_3(a_1)$	C-X Stretch	600	1050	730	610

Table V. Comparison between the vibrational frequencies of AlCH_2 (ground state) and AlCH ($^3\Sigma^-$ ground state) with those of related molecules.

Description	AlCH_2	$\text{O} = \text{CH}_2$	$\text{S} = \text{CH}_2$ ^a
C-H Stretch	3290	2870	3030
	3140	2780	2970
C-X Stretch	1070	1740	---
HCl Bend	660	1500	---
HCH Wag	640	1280	1440
Out-of-Plane Bend	630	1170	---
	AlCH	$\text{N} \equiv \text{CH}$	$\text{P} \equiv \text{CH}$
C-H Stretch	3350	3310	3220
C-X Stretch	670	2100	1280
Bend	380	710	670

^a J. W. C. Johns and W. B. Olson, J. Mol. Spectroscopy 39, 479 (1970).

Table VI. Orbital energies for three organoaluminum
molecules at the double zeta plus polarization
SCF level of theory.

	AlCH ₃	AlCH ₂		AlCH		AlCH	
				3 _Σ ⁻		1 _Σ ⁺	
1a ₁	-58.4704	1a ₁	-58.4725	1σ	-58.4854	1σ	-58.5260
2a ₁	-11.1778	2a ₁	-11.2057	2σ	-11.2270	2σ	-11.2248
3a ₁	- 4.8840	3a ₁	- 4.8258	3σ	- 4.8977	3σ	- 4.9435
1e	{ - 3.1929	1b ₂	- 3.1946	1π	{ - 3.2061	1π	{ - 3.2551
	- 3.1929	1b ₁	- 3.1945		- 3.2061		- 3.2551
4a ₁	- 3.1916	4a ₁	- 3.1936	4σ	- 3.2056	4σ	- 3.2553
5a ₁	- 0.9090	5a ₁	- 0.8690	5σ	- 0.8136	5σ	- 0.7974
2e	{ - 0.5292	2b ₂	- 0.5501	6σ	- 0.5513	6σ	- 0.5310
	- 0.5292	6a ₁	- 0.5012	7σ	- 0.3052	--	--
6a ₁	- 0.4681	7a ₁	- 0.2875	2π*	{ - 0.3820	2π	{ - 0.2650
7a ₁	- 0.2770	2b ₁ *	- 0.3603		- 0.3820		- 0.2650

* = Half-occupied orbital

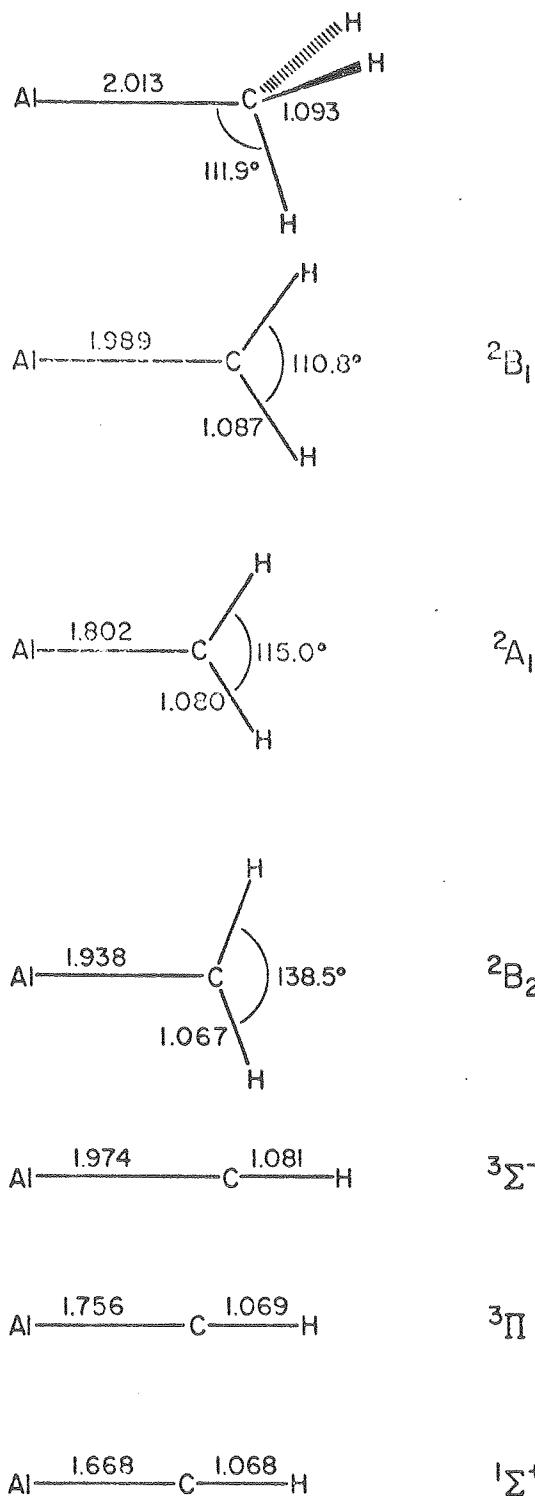


Figure Caption

Figure 1 - Predicted equilibrium geometries of several electronic states of AlCH, AlCH₂ and AlCH₃. Bond distances are in Å.

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720