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ABSTRACT OSTI

A review is given of recent theoretical and experimental work on in-plane electron trans-
port in strongly coupled double quantum wells (QWSs) in the presence of an in-plane mag-
netic field By; Il . This system displays unusual electronic and transport properties arising
from a partial minigap (~ a few meV) formed in the transverse in-plane direction k,, L By,
in Kk-space due to the anticrossing of the two QW dispersion curves displaced relative to
each other by Ak o< By. Sweeping By moves the minigap through the Fermi level (i),
deforming the Fermi surface from a two-component surface (with one orbit inside the
other) to a single-orbit surface, and then back to a two-separated-orbit structure, accord-
ingly as p lies above, inside, and below the gap, respectively. We show that the density of
states develops a sharp van Hove singularity at the lower gap edge, while transport proper-
ties such as the in-plane conductance and the cyclotron mass show sharp By-dependent
structures as (L passes through the gap edges.

1. Introduction

Currently, double quantum well (DQW) structures are receiving increasing atten-
tion for new physical phenomena and possible 2D-2D (two-dimensional) tunneling
devices. These systems consist of double layers of 2D degenerate electron gases (2DEGs)
separated by a thin barrier as shown in Fig. 1. In DQW structures, the inter-quantum-well
separation and the degree of tunneling provide a controllable extra degree of freedom
compared to single-QW structures. New phenomena arise from direct or phonon-mediated
inter-QW electron-electron interaction effects (i.e., Coulomb-drag effect) [1] as well as
from the combined effect of tunneling and electron-electron interactions (i.e., Coulomb-
barrier effect) [2]. In this paper, we review our recent theoretical and experimental work
on another class of phenomenon arising solely from tunneling effects in strongly-coupled
DQWs subject to an in-plane magnetic field By Il x. This system has been shown to have
many interesting electronic and transport properties [3-9]. These By-dependent properties
include sharp structures in the density of states (DOS), Fermi surfaces that vary continu-
ously with By;, the in-plane conductance, and the cyclotron mass. These unusual features
are caused by a partial minigap (~ a few meV) created in the transverse in-plane direction
ky (L By) by the anticrossing of the two energy-dispersion parabolas of the QWs. These
parabolas are displaced relative to each other in k-space by 4k, =d/ €2 where € = (7ic/
eB))}/? is the classical magnetic length and d is the center-to-center distance between the
two QWSs. Sweeping B;; moves the minigap through the Fermi level (w), deforming the
Fermi surface from a two-component surface (with one orbit inside the other), to a single-
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FIG. 1. GaAs/AlGaAs double quantum wells with 2DEGs shown by the shaded area. The confinement wave
functions move away from each other due to band-bending as shown by the dashed curves, increasing the
effective distance between the wells. The horizontal bars beneath the 2DEGs signify the sublevels.

orbit surface, and then finally back to a two-separated-orbit structure as w lies above,

inside, and below the gap, respectively. We show that 1) the density of states develops a
sharp van Hove singularity at the saddie point formed at the lower gap edge, 2) the in-
plane conductance exhibits maximum and minimum when g lies at the upper and lower
gap edges, respectively, and 3) the cyclotron mass undergoes abrupt B -dependent
changes as p passes through the gap edges.

The organization of the paper is as follows. In Sec. 2, we introduce the Hamiltonian
and obtain the Bj-dependent electronic structure including the Fermi surface and the
chemical potential. The in-plane magneto-conductance and cyclotron mass are discussed
in Secs. 3 and 4, respectively. Brief concluding remarks are given in Sec. 5.

2. Hamiltonian and Electronic Structure

In the presence of an in-plane magnetic field, the Hamiltonian is given by

2 2
H=PL T
2m* 2m*
where p, = -ifid/0z and, for simplicity, the same isotropic effective mass m* is used in the
QW'’s and the barriers, although m* is somewhat larger in the AlGaAs barriers. However,
this is a good approximation because the confinement wave functions have negligible pen-
etration into the barrier regions owing to large barrier heights. The kinetic energy &(k,) =
(ﬁkx)2/2m* in the direction of By, is to be added to (1). Note that the 2D wave vector k is a
good quantum number in By,. The confinement potential V(z) is a superposition of the

potentials V(z) and V(z) of QW1 and QW2. In the absence of band-bending, V;(z) and

V,(z) are square-well potentials with well-widths w;, w, respectively and depths V,,. We
assume quasi-two-dimensional (i.e., wy, w, < €) thin QW’s where only the ground sublev-

(ky—fiz)z-l'V(z), 1)
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els are populated. The latter are designated by horizontal bars in Fig. 1 beneath the 2DEGs
denoted by the shaded area. While the Hamiltonian in (1) can, in general, be diagonalized
numerically, we consider here only approximate, but accurate analytic solutions by includ-
ing only the lowest two sublevels in narrow QW’s. Using the field-free ground-sublevel
eigenfunctions of the isolated single-QW’s ¢;(z) and ¢,(z) as the basis functions with
eigenvalues & and &,, we find [3]

1

&(k,) =W(H“ + Hy, —2SH,, /D), (2a)
and
D= (Hyy — Hyp)* (1= S2)+[(Hyy + Hyp)S—2H;, P, (2b)

where § = <¢l¢,>. The matrix elements Hy,, are given by

H, =¢,<¢,19,>+<§,1V.(2)19,>+<¢,1V3(2) ¢, > (n,m=12) (2¢)

where the prime on the subscript m' signifies that 1' =2, 2' = 1 and Vp(2) is the second term
in (1). For symmetric DQWs, (2a) is simplified, to the lowest order in the overlap factor
S1o = <$1(2)|Pa(2)>, as [9]

d? +(Az)’ E
EZ

E 172
g, i(4£,£(ky)dlz /£ +(78)2) =k, 3)

g.(k,)=¢elk,)+

where e(ky) = (Ak)22m*, &¢ = (A€1)212m*, d, = [<z;>], and d) = d. Here <gp> =
<¢(2)Izldy(2)> is the expectation value of z with respect to the wave function ¢,(z) and
(Azn)2 = <P, (D(z - <zn>)2|¢n(z)> is the mean square deviation of z arising from finite
widths of the QWs. In (3), use is made of Az; = Azy. The minigap is given by

E, = 2|S1,<1@IV2(2)l¢h1 (2)> - <1 (@IV1 @) by(2)>] @)

and is independent of By;. The last term in (3) is added for convenience so that the lower
branch energy € (k,) vanishes at k, =0 in zero field.

As discussed in Sec. 1, the basic effect of By is to displace the origins of the trans-
verse crystal momenta k;, in the two QWs away from each other by Ak, =d/ €2 where d =
dy + dy. As a result, the two energy-dispersion parabolas anticross in the presence of tun-
neling, yielding upper and lower branches in (2) and (3). A similar anticrossing of disper-
sion curves, although of different origin, is known to occur without magnetic fields in a
vicinal surface such as the (911) surface of a Si-inversion layer and was studied exten-
sively many years ago [10].
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FIG. 2. (a) Energy dispersion curves of a sym- FIG. 3. (a) Energy dispersion curves of an asym-
metric DQW structure with (solid curves) and metric DQW structure with (solid curves) and
without (dashed curves) tunneling. (b) The DOS without (dashed curves) tunneling. (b) The DOS
from the lower branch (dashed curves) and both from the lower (dashed curves) and both branches
branches (solid curves). . (solid curves).

The upper and lower branches of the eigenvalues €. (k,) are shown in Fig. 2(a) for
several B)/’s for a symmetric GaAs/Alj 3Gag 7As DQW sample with d = 175 Aw =wy=
150 A, a zero-field effective mass of m' = 0.067m, (m, is the free-electron mass), and V,, =
280 meV. Band bending has been neglected here, and will be discussed later in terms of
the Hartree approximation. The sample has a total combined 2D density N=3 X 10 em2,
The dashed parabolas are the energy dispersion curves for uncoupled QW’s, namely QW1

(left side) and QW2 (right side) alone. The two parabolas coincide at By = 0. As a result of
tunneling, the parabolas anticross, forming a minigap, and separate into the upper and
lower branches shown in solid curves. At low Byj’s, the bottoms of the parabolas rise very
slowly as o By?<(z - <z>)*>. Here the angular brackets denote the expectation value. At
higher By’s, the lower edge of the minigap lies at the local maximum of the lower branch
and is a saddle point in k-space. The saddle point begins to appear at a high By, (i.e., about
4 T in Fig. 2(a)) when the energy separation of the crossing point from the bottom of the
dashed parabolas in Fig. 2(a) is large enough to overcome the energy repulsion between
the two branches. The dispersion near the saddle point of the lower branch is of the form:
e(kyky) = € + (ﬁkx)2/2m* - (ﬁky)2/2m where m (> 0) is determined from the curvature at
the saddle point and ¢, is the energy at the saddle point. This type of energy dispersion
@i.e., with a negative sign for the last term of e(k,,ky)) yields a weakly divergent Van Hove
singularity for the DOS of the form p(€) - fnle - €l. The DOS is shown in Fig. 2(b) for
several By’s. The singularity is clearly seen there and moves up with Byj in accordance



FIG. 4. Energy dispersion of the asymmetric DQW
structure cited in Fig. 3. The Fermi surface is on the
top equi-energy cross sectional layer and consists of
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with the B;-dependent behavior of the saddle point shown in Fig. 2(a). This divergence is
rounded [7] in the presence of damping of the levels.

For asymmetric DQWs, there are two different types of crossing (i.e., type I and
type II) of the parabolas depending on the magnitude of By, In the type I crossing, By is
low so that the bottom of the upper parabola is inside the lower parabola and therefore the
slopes of the tangents to the parabolas at the crossing point have the same sign. In this
case, the anticrossing distorts the energy dispersion curves without opening a minigap. In
contrast, in the type II crossing, By, is high so that the bottom of the upper parabola is out-
side the lower parabola and therefore the slopes have opposite signs, creating a minigap.
These properties are demonstrated in Fig. 3(a) at two different By’s, namely at 0.7 and 7.5
T for an asymmetric DQW structure withd = 175 A, wy =wy = 150 A, V; =280 meV, and
V, =278 meV. The DOS singularity appears only in the 7.5-T figure but not in the 0.7-T
figure. In this case, the zero-By, splitting between the upper and lower branches in Fig. 3(a)
is mainly due to different well depths, in contrast to Fig. 2.

The energy-dispersion surface of the cited asymmetric DQW structure is shown in
Fig. 4. The top equi-energy cross section is a two-component Fermi surface which consists
of a large hour-glass orbit with an inner lens-orbit. The shape of the Fermi surface varies
continuously with By as anticipated from the By-dependences of the energy dispersion
curves shown in Figs. 2 and 3. In Fig. 5, the energies of the bottoms of both branches, as
well as the lower gap edge (i.e., the saddle point), are shown in solid and long-dashed
curves, respectively, as a function of By for the symmetric DQWs. The chemical potential
i, plotted for three different electron densities in short-dashed curves, is insensitive to By,
at low By’s and rises parallel to the bottom of the lower branch at high fields. The region
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between the upper solid curve (i.e., the upper gap edge) and the long-dashed curve is the
minigap. For the following dlscussmns, 1t is important to notice that for high 2D carrier
density (i.e., for N= 1011 and 3X10!! cni?) the minigap passes through p as By is swept.
For N = 3X 10! cm™2, pu lies above, inside, and below the gap, respectively, as By, sweeps
through the three regions By < 6.6 T, 6.6 T < B; < 7.85 T, and B> 7.85 T in Fig. 5. As can
be guessed from Fig. 4 for the three concomitant equi-energy cross sections, the Fermi
surface transforms successively from a two-component structure with an hour-glass orbit
encircling a lens orbit similar to that shown in Fig. 4, to a one-component structure with
only the outer hour-glass orbit, and then finally back to a two-component structure with
two separated orbits. In the following sections, we examine the effect of the Bj-dependent
electronic structure on the in-plane magnetotransport.

3. In-Plane Conductance

The longitudinal in-plane conductance is given in a relaxation-time approximation
by [3]

_ (uevy)?
_anhj L al ®

where u is a unit vector in the direction of the electric field, v = % 1Vy e, € = € (k) +
es(ky), Vi = Ivgl, 7 is the transport relaxation-time, and Idk“ is the linear integration along
the orbit on the Fermi surface. We consider only elastic scattering at low temperatures. It is
seen from (5) that the contribution from each portion of the Fermi surface is proportional
to the velocity times the relaxation time. When w is above the gap at low fields, the contri-
bution to G arises from both the hour-glass orbit and the lens orbit in Fig. 4. However, the
lens orbit contributes little to the current because 1) the electrons in the lens orbit move
very slowly owing to the fact that they have small k values and 2) the number of states in
the lens orbit is much smaller than in the hour-glass orbit. On the contrary, the lens orbit
reduces 7y, and therefore G in (5) by providing states into which the electrons in the hour-
glass orbit are scattered rapidly at low fields. As B, is increased, the Fermi level p passes
through the upper gap edge depopulating the lens orbit. In this case, the electrons in the
hour-glass orbit cannot be scattered into the upper branch elastically. As a result, 7y as well
as G increases significantly. This behavior is shown by the solid curve (i.e., I'; = 0 meV) in
Fig. 6, where we plot G calculated from (5) for the symmetric DQW sample withd =175
A by approximating 7 « p(e) . Here p(¢) is the DOS. The abrupt i 1ncrease in G in Fig. 6
occurs at the B; where p crosses the upper solid curve for N = 3X 101 em2in Fig. 5. On
the other hand, when p lies on the saddle point (i.e., at By =7.85 T in Fig. 5), G vanishes
because T « p(e)! =0 due to the divergence of the DOS for Iy = 0 meV as shown in Fig.
6. The effect of band bending is taken into account, by a self-consmtent Hartree approxi-
mation. The new potential moves the confinement wave functions toward the external
interfaces as illustrated by the dashed curves in Fig. 1, resulting in the increase of the
effective well-to-well distance to d = 2l<z;>| = 200 A. Since By enters the Hamiltonian
approximately as d/£* « Byd, the B positions of the maximum and minimum of G in Fig.
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FIG. 6. Calculated in-plane conductance as a func- FIG. 7. In-plane conductance data from the
tion of By, for the symmetric DQWSs. The arrows indi- DQW sample as a function of By. Charges are
cate new positions of the maximum and minimum in approximately balanced at the gate bias Vg = -
the self-consistent Hartree approximation. 01V

6 is then reduced to 175X By /200 as indicated by the thick arrows. In the absence of damp-
ing G vanishes at the minimum. The sharp minimum and maximum are rounded by the
level damping as shown by the I'; > 0 curves in Fig. 6. The theoretical result agrees rea-
sonably well with our data shown in Fig. 7 [4].

The effect of damping is considered in the following linear response theory for G.
The in-plane conductivity is given by

2 -]
o= (ev,) [ @) (2= 10)Gu (2 +i0)dz, (6)
JZ'SZ ak

where f (z)' = 8(z - ) is the first derivative of the Fermi function and {} is the sample vol-
ume. The vertex correction can be neglected for isotropic scattering, relevant for short-

range impurity potentials. The spin degeneracy is included in (2). The Green’s function is
defined by

G (2) =[z— €4 — Su (DT Q)

Here we employ a simple approximation for the self-energy part:

S (D =U" Y G (2) @®

a'k'

where U represents the scattering matrix. The real and imaginary parts of the self-energy
then become independent of the subscripts o and k:

S (z—i0) = M(z) +il'(2). )]
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The DOS per area is given by

1 . *
pa)=—"TmG(z~i0)= (%—Z—)F(z)/l“o, (10)

where 2T, = Am*U*/%? is the field-free damping at the Fermi surface in the Born approxi-
mation with both branches populated and A is the area of the QW. For short-range scatter-
ing, the quantity I'j can be estimated from the mobility. The k,-integration in (8) is
performed, yielding self-consistent coupled equations for the real and imaginary parts of
the self energy:

5 2 172
{__F (z)}_—_i%(O.l%mo/m*)mj:Z( e 20 iu“) d(kyx1004). (D

M(z) u,? +I'(z)*

o

Here u, =z - &(ky) - M(2), the energy is in units of meV, and the square root vanishes for a
negative argument. Eq. (11) is solved by an iterative method. The DOS is obtained from
(10) and (11). The DOS is similar to those displayed in Figs. 2(b) and 3(b) except that
sharp corners as well as the divergences are rounded, yielding the rounding effect for G
[6]. Also, the energies are slightly lowered. A cutoff is introduced for the integrals in (11)
to avoid a logarithmic divergence. The result is, however, insensitive to the cutoff. The lat-
ter is implicitly assumed in the k' summation in (8) because U vanishes for large £'. The
conductance is obtained by inserting I{z) and M(z) in (6) and summing over k and is plot-
ted in Fig. 6 as a function of By for three values of I, It is seen that damping rounds the
sharp By-dependent conductance structures, bringing the theoretical result closer to the
data shown in Fig. 7. The minigap can be determined experimentally from the two values
of By where p lies on the upper and lower gap edges [4]. Finally, our model predicts that in
a low-density system (e.g., N =5X 1019 ¢m™ in Fig. 5) with p below the upper gap edge at
B, = 0, the By-dependent conductance has only a minimum, without the maximum peak
arising from the depopulation of the upper branch. This interesting behavior has not been
observed yet due to the difficulty of growing low-density high-mobility samples.

4, Cyclotron Mass

A small perpendicular magnetic field B; superimposed on an arbitrary parallel in-
plane field By induces Shubnikov-de Haas (S-dH) resistance oscillations 6R which are
much smaller than the total resistance Ry at B, =0 [11]:

oR _ - X exp(_m)cos(zmgF —ST0). 12)
4Ry 5 sinh(X;) T ho,

Here the right-hand side includes contributions from all orbits, X = 27 sk T/%w,, @, =
eB,/mc, and m is the cyclotron mass. The quantities &g, 7, and T are the Fermi energy,

quantum scattering time, and temperature, respectively. The coefficient of the cosine factor
in (12) is a monotonically decreasing function of m for arbitrary B, and T. This coeffi-
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FIG., 8. Fit of SdH amplitude data to (13) for FIG. 9. Comparison of the reduced cyclotron mass
two By, values and T, =0.5 K. data (black dots) with theory (solid curve) without

adjustable parameters.

cient is dominated by the exponential factor. The main contribution to (12) arises from the

fundamental component s = 1 for typical sitvations w,7 < 1 [6, 8]. The exponent is pro-
portional to the cyclotron mass m.. As will be shown later, m. of the hour-glass orbit in
Fig. 4 is much larger than m,, of the lens orbit, causing the former to yield a negligible con-
tribution to the S-dH oscillations in (12): the electrons in the hour-glass orbit move slowly
and are scattered before completing a cycle.

The 6R / 4R, S-dH data show periodic oscillations in 1/ B, [6, 8]. Both the
observed period (« 1/ m) and the oscillation amplitudes change significantly as a func-
tion of By, indicating that the measured cyclotron mass goes through drastic changes [6,
8]. For the fundamental component s = 1, the ratio of the amplitudes of the oscillations in
(12) at temperatures T, and T are given by

A(T) _ Tsinh(X,(T,)) (13)
A(T,)  T,sinh(Xy(T))’

We plot this ratio in Fig. 8 as a function of T for several values of m; and T, = 0.5 K and
compare with the data from the same symmetric DQW sample at two B, values [6, 8].
(Because the small B; was experimentally introduced by tilting the applied magnetic field
3° out of the sample’s growth plane, B = Bytan3° is different for the two By, values.) The
sensitive dependence of the curve on m and the degree of the fitting to the data indicate
the high accuracy of the determination of the mass. The cyclotron mass so determined is
plotted as black dots in Fig. 9 as a function of By [8].

The mass is given by m, = (%% 21)9S/9e where S is the area of the orbit in k-space

and € is the energy of the electron in the orbit on the Fermi surface [12, 13]. In 2D struc-
tures, this relationship can be rewritten as
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me= m*P(gF)/ Po> (14)

where p, = m*A/(2wh?) is the well-known constant DOS per spin of a 2D parabolic
energy dispersion. Spin splitting is neglected. The reduced mass m; /m* then equals the
reduced DOS p(&g)/p,. The reduced mass is calculated from (14) in the absence of damp-
ing by employing (3) and using the sample parameters d = 195 A and (Azl)2 = 1150 A2
determined by the self-consistent Hartree approximation, and E; = 1.2 meV determined
experimentally from the By values of the maximum and minimum in G shown in Fig. 7
[4]. The contribution from the hour-glass orbit is neglected at low fields (B;; < 6.1 T),
because S-dH oscillations from the lens orbit are expected to dominate whenever the hour-
glass orbit is occupied. The result contains no adjustable parameters and yields excellent
agreement with the data as shown in Fig. 9. The various orbits responsible for the mea-
sured m,, are indicated therein. The mass m, from the sample’s hour-glass orbit is shown in
a dash-dotted curve at low fields (< 6.1 T) and is much larger than m from the inner lens
orbit, as mentioned earlier. The abrupt increase of m at 6.1 T and sudden drop at 6.9 T
occur when & crosses the upper and lower gap edges, respectively. As discussed earlier,
the conductance exhibits a maximum and a minimum at these fields. In a low-density sys-
tem (e.g., N=3X 10%¢m2), the By-dependent behavior of m, is strikingly different from
that of a high-density system, as shown by the dotted curve in Fig. 9. In this case, w is
below the upper gap edge and the electrons are in the hour-glass orbit at all low fields B <

3 T. The mass m,, increases rapidly until

(. passes through the saddle point at By ' saddlepoini%\ ®

= 3 T. The orbit splits into two sepa- 2r

g k
rated orbits beyond this field and m, 3 2 -
drops abruptly, saturating at m*. > z
g % [ B=S8T
=] =]
A qualitative understanding of
the By-dependent behavior of the mea- 0

sured m, is gained from the reduced
DOS at several characteristic Byj's -
shown in Fig. 10. At zero field, the con- B=11T
tribution to p(€)/p, from the inner orbit

in the upper branch equals unity as

shown in Fig. 10(a), yielding m_; / m* =

Fig Wih.
1. As By is increased to By=5.8T, p s

sweeps through the shaded region Encrgy (meV) Energy (meV)

toward the bottom of the upper branch FIG. 10. Reduced DOS from the lower branch

in Fig. 10(a) and moves t0 a new posi-  (dashed curve) and the upper branch (between the
tion as shown in Fig. 10(b). At the same dashed and the solid curves) at several By ‘s. 1t lies

s : . above, inside, and below the minigap in (a, b), (c), and
time, the energy dispersion as well as (d), respectively. The double-arrowed thick bars at [t

the DOS goes through a dramatic  denote mJ/m* and sweep through the shaded area

. ; ; with increasing By,. In (d), the shaded part indicates
change; a saddle point with a large DOS half the DOS from ihe lower branch.

) saddle point—>‘ @

Deasity of States
Deansity of States
Pt
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emerges in the lower branch, while the contribution to the DOS at . from the upper branch
continues to decrease as shown in Fig. 10(b). As a result, the contribution to p(€)/p, from
the upper branch decreases monotonically to m;/ m* = 0.26 until By = 6.1 T as shown in
Fig. 9. As By rises above 6.1 T, the upper branch becomes empty and the electrons are in
the hour-glass orbit. In this field range, the contribution to the S-dH oscillation comes
from this large orbit. As a result, p(€)/p, increases abruptly as shown in Fig. 10(c), leading
to a sudden increase of m_ above 6.1 T in Fig. 9. As B increases further, 1 sweeps through
the shaded region in Fig. 10(c) from the bottom of the upper branch to the lower-branch
saddle point where the DOS is very large. The DOS as well as m, increases monotonically
as shown in Fig. 10(c) and Fig. 9, respectively. At By = 6.9 T, u falls below the saddle
point and the electrons are divided into two identical separated orbits. Each orbit contrib-
utes an equal amount of states to the DOS corresponding to half of the total DOS (in sym-
metric DQWs), as indicated by the shaded area in Fig. 10(d). The mass m_ decreases
abruptly above 6.9 T and then saturates at unity in high fields. Sharp edges in Fig. 9 are
rounded in the presence of damping [7]. Finally, we plot mc/m* from the hour-glass orbit
in a dash-dotted curve in Fig. 9 for the sample (i.e., N =3X 10! ¢mr°2). This curve joins the
solid curve in the region 6.1 T < B < 6.9 T smoothly at By = 6.1 T. The sum of m/m* from
the lens orbit and the hour-glass orbit equals 2 approximately in the low field region B <
6.1 T. This is consistent with the fact that the total p(&g)/p, = 2 as shown by the solid
curves in Figs. 10(a) and 10(b).

5. Conclusions

We have reviewed our recent theoretical and experimental work on 2DEGs in
strongly coupled double quantum wells in the presence of an in-plane magnetic field. This
system dlsplays unusual electronic and transport properties arising from a partial minigap.
The minigap is formed due to the anticrossing of the two QW dispersion curves displaced
relative to each other in the transverse in-plane direction in k-space by By Sweeping By
moves the minigap through the Fermi level, deforming the Fermi surface from a two-com-
ponent surface (with a lens orbit inside an hour-glass orbit), to a single-component surface
(with only an hour-glass orbit), and then finally back to a two-separated-orbit structure, as
p lies above, inside, and below the gap, respectively. We showed that the density of states
develops a sharp van Hove singularity at the lower gap edge, while transport properties
such as the in-plane conductance and the cyclotron mass show sharp Bj-dependent struc-
tures as . passes through the gap edges. In a high-density system, we have shown both
theoretically and experimentally that the in-plane conductance has a maximum and a min-
imum when p lies at the upper and lower gap edges, respectively. The cyclotron mass
exhibits giant distortions, increasing abruptly from a minimum value at the conductance-
maximum By and droppmg rapidly from a maximum value at the conductance-minimum
By The conductance maximum and the abrupt increase of the mass are shown to arise
from the depopulation of the upper branch, while the conductance minimum is due to the
van Hove singularity of the saddle point at the lower gap edge. On the other hand, the
abrupt drop of the mass at the saddle point was shown to arise from splitting of the orbits.
In low-density systems with only the lower branch populated at ail fields, our theory pre-
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dicts strikingly different behaviors for the conductance as well as the cyclotron mass [3,
9]. In this case, the conductance has only a minimum [3], while the cyclotron mass has
only a sharp maximum [9]. There has been no experimental confirmation of these last pre-
dictions due to the difficulty of growing low-density high-mobility samples. High in-plane
magnetic fields were shown to turn off the effective 2D-2D tunneling of the 2DEGs.
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