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Abstract

Since the early part of this century the Lotka-Volterra or predator-
prey equations have been known to simulate the stability,
instability, and persistent oscillations observed in many biological
and ecological societies. These equations have been modified in
many ways and have been used to model phenomena as varied as
childhood epidemics, enzyme reactions, and conventional warfare.
In the work to be described, similarities are drawn between various
lattice defects and Lotka-Volterra (LV) societies. Indeed, grain
boundaries are known to "consume” dislocations, inclusions
“infect” grain boundaries, and dislocations "annihilate"
dislocations. Several specific cases of lartice defect interaction
kinetics models are drawn from the materials science literature to
make these comparisons. Each model will be interpreted as if it
were a description of a biological system. Various approaches to
the modification of this class of interaction kinetics will be
presented and discussed. The earliest example is the Damask-
Dienes meatment of vacancy-divacancy annealing kinetics. This
historical mode! will be modified to include the effects of an
intermediate species and the results will be compared with the
original model. The second example to be examined is the Clark-
Alden model for deformation-enhanced grain growth. Dislocation
kinetics will be added to this mode! and results will be discussed
considering the original model. The third example to be presented
is the Ananthakrishna-Sahoo model of the Portevin-Le Chatelier
effect that was offered in 1985 as an extension of the classical
Cottrell atmosphere explanation. Their treatment will be modified
by inclusion of random interference from a pesky but peripheral
species and by allowing a rate constant to be a function of time.

Introduction

The early works of Malthus [12] and Verhulst 3.4] were
concemed that a population can evolve in number faster than crops
can be grown and reaped to feed the individuals comprising the
population. As direct consequences of their works come the terms
"Malthusian” (exponential} and “logistic” (saturable) growth.
These matiers prompted considerable effort {5} in modeling the
evolution of species populations that was crowned by a small
report by Lotka that went Jargely unnoticed and unappreciated (6},
Lotka, who was trained as a chemist, used the law of mass action
to suggest that autocatalytic chemical reactions could sustain
damped oscillation. Later Lotka {7} demonstrated that his system of
kinetic equations exhibited sustained oscillation and simulated a
type of biological coupling that is now referred to as the predator-
prey model. Independently, and with probabilistic reasoning, the
famous ltalian mathematician, Volterra [8) arrived at similar
equations for the description of biological interactions. The Lotka-
Yoltcrra (LV) equations are a coupled set of nonlinear ordinary
differential equations for thesate of evolution of two interdependent
populations. They are usually written as
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where x is the relative density (concentration) of species 1, y is
the concentration of species 2, 7 is time, and the & are rate
constants. Lotka demonstrated that these equations can exhibit
sustained oscillations but conjectured that the conditions necessary
would only occur rarely in real situations. Indeed, evidence for
sustained oscillation did not appear in the chemical literature until
decades later [9] because chemists believed (wrongly) that such
oscillations were a violation of the second law of thermodynamics.
The LV set, and modifications thereof, did receive the attention of
mathematicians who appreciated that the RHS possesses terms that
capture life's aspects including birth, competitive interaction,
disease, and death. These aspects and algebraic terms can be found
in many of the models used in materials science to describe the
evolution of lattice defect populations. For example, the Gilman-Li
equation [10.11] for dynamic recovery of dislocation density has the
precise form as the Verhulst description of logistic population
growth. Consequently, the purpose of this work is to explore the
similarities among three lattice defect models. taken from the
materials science literature, and LV type equations. The three
models will also be modified by employing the same criticisms and
techniques used by mathematicians, biologists, etc. 1o examine
what new behavior might be exhibited.

The earliest example of an evolutionary lattice defect mode] the
author could find in the literature is the Dienes-Damask treatment
[12.13] of vacancy annealing kinetics. This historical model will be
modified to include the effects of an intermediate species and the
results will be compared with the original model. The second
example to be examined is the Clark-Alden model 114] for
deformation-enhanced grain growth. Vacancy-dislocation
interaction kinetics will be added to this model and results will be
discussed considering the original model. The third example to be
presented is the Ananthakrishna-Sahoo model (15) of the Portevin-
Le Chatelier effect that was offered as a kinetic description of the
classical Cottrell atmosphere explanation. Their weatment will be
modified by inclusion of a random interference from a pesky but
peripheral species known to most experimenters.

iological Interpretation Of Lamice Defect Interaction

The designation "genus” is used in biology 10 describe a group
or class of species with common charactenistics. In materials
science we are accustomed to 4 genus categories of {attice defects;
point, line, surface, and volume. The term “phylum” is used in
biology to describe descendants or related members of a given
genus. In materials science we have vacancies, interstitial
impurities, and substitutional atoms belonging to the "point” genus,
edge. screw, partial dislocations, and disclinations tn the “line”
genus, stacking faults, grain and twin boundaries in the “surface”
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genus, and voids, precipitates, and inclusions in the "volume

genus.” The kinetics of interaction between these various lattice

defects also shares certain similarities with biological interactions.

As mentioned above, the Verhulst equation was one of the first to

describe the evolution of populations. This equation takes the form
dx

dr g

where a is a rate constant and x, is the maximum number of
individuals supportable by the population. The interpretation of
this simple expression is typically that individuals are "born™ at a
rate proportional 1o its current size and are "crowded out” at a rate

proportional to —x*. The population of the United States, shown
in Fig. 1, is shown fitted with the logistic model s0 it can be stated,
with some degree of accuracy, that the Gilman-Li equation can be
used to predict the future population trends of our country! With
use of an "eyeball” fit of the data the Gilman-Li equation predicts
that the U.S. will saturate at 335 million citizens and will reach
98% of that limit by the year 2085.
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Fig. 1- Data from the U. S. Census Bureau on the population of
the United States beginning in the year 1790 fitted with the Gilman-
Li equation. The saturation population of the U.S. is predicted to
be 335 million.

Depending on the application, alternate terminology for the
algebraic terms in rate equations can be found, for example, the

"kill" rate in cannibalistic society would be proportional to —x?,
while in the Gilman-Li model the term “immobilization" is
appropriate. In a population of two species a term like -xy is
usually used 1o simulate the "consumption” rate of one species by
another and with a positive sign the term indicates that one of the
species "thrives” upon the other. These interpretations are those
used in the LV predator-prey model. Alternate algebraic forms for
the same terminology can be found. For example, it is easy to see

that terms like x° or xy can also represent birth rate. Immigration
and emigration into societies are often represented by constants,
death by natural causes by —x, and the rate of infection of a healthy
population by a diseased species is often described by xy.
Regardless of the application, these models usually find swift and
appropriate criticism even when the models appear successful in
simulating experimental data. Of course this is to be desired
because improvements to the models generally follow. Criticism of
the LV equations has included the lack of population size
dependence (logistic behavior), individual uniformity (no age, sex
or virility), and no heredity or delay effects. Modifications to the
LV equations (and other similar models) have included higher
dimensionality (more than 2 species), inclusion of higher order
terms (e.g. x°v). and additional effects such as diffusion,
convection, and fluctuation. In the following, three models for the
kinetic evolution of lattice defects will be examined and modified
with the intention of <cantipuing the analogy with LV-like

equations. E

In their 1961 paper Dienes and Damask (DD) modeled the
annealing kinetics of excess monovacancies and divacancies in a
pure lattice {13]. The excess concentrations were assumed to have
been created by quenching from an elevated temperature. Written
as a chemical reaction their model reads

2

V+V?D

V —22 3 sinks

D %2y sinks

and from the law of mass action the associated kinetics are

av
E:kqo—k,v’—k,v (la)
a 1, ., 1
—==kV =~ (=k,+k)D
7 2k1 (2 ,+ k) (1b)

where V and D are the excess atomic fractions of monovacancies
and divacancies, respectively. With use of the rate constants and
initial conditions provided by DD the rate equations were
numerically integrated and are shown in Fig. 2.
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Fig. 2- Numerical solutions to the Dienes and Damask model for
annealing of excess mono and divacancy populations.

This set of reactions, especially the two leading terms in egs. (1).
need a biological interpretation and this will be provided after
discussing a modified Dienes-Damask model.

A Modified Dienes-Damask Model

To create a simple modification of the DD mode! an "immigration”
term could be added to eq. (1a). In reality this term might be the
result of radiation exposure that creates monovacancies at a
constant rate such that steady state concentrations of both defects
would be observed after a sufficiently long anneal. These steady
state values have been calculated and are shown plotted versus the
immigration term in Fig. 3. Note that depending on the size of this
term the relative ratio of the steady state concentrations changes
significantly which suggests that the properties (e.g., resistivity)
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Fig. 3- The steady state values of the mono and divacancy is a

functon of the "immigration” rate of monovacancies.

of each defect type could be studied by proportionation. This
model can be modified further by assuming that the monovacancies
initially form an intermegiate species that is locally siable relative to
the monovacancies but unstable relative to the divacancy. These

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED




defects could form if only partial, but metastable, lattice relaxation
occurred along a particular lattice direction. The probability of their
formation would be sensibly equal (o that of the divacancy and their
expected life would depend on the rate constants. Viewed as a
chemical reaction the model would be

‘I
V+V < E
’ 2
EesD
14
4
V —sinks
&
E—sinks
&,
D —sinks
and the rate equations would be
%=a+k75-k,vz-k,v (2a)

dE 1, .. 1

—==kV'—(=k +k +BE+ 2b
AL (zl, BYE+ D (2b)
dabD

7= -(k,+7)D+pE (2¢)
where « is the immigration term discussed above. The initial
conditions for V and D were taken from DD as were the rate

constants k,. These data were supplemented by arbitrary values for

a, B, and v, and an initgal condition for the intermediate species
that equaled that for the divacancy. The numerical solutions are
shown in Fig. 4. As expected, the defects seek steady states that
reflect the magnitude of the immigration term and the rate
constants. If performed, the experiment could be used to provide
evidence for the existence of an intermediate species. A possible
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Fig. 4- The Dienes-Damask model with constant immigration and
an intermediate species, £.  The rate constants, k;, are those

used in Fig. 2 above while @ =0.04, $=0.2,and y=0.05.

biological interpretation of the modified DD equations are offered
by a model for the process of marriage. People (V) meet, fall in
love, and become engaged (V +V — E). After a period of time
they either decide to get married (E — D) or agree to separate
(E—>V+V)., Unfortunately, some marriages also end in
separation ( y) or divorce (k,).

The Clark-Alden Model

Microstructural evolution and strain localization during
mechanical testing at elevated temperatures occur in a wide variety
of metal alloys. Dynamic recrystallization is a vivid example of the
coupling of microstructure and deformation that can, under centain
conditions of temperature and strain rate, yield oscillatory
behaviorl!6.17)  Another well-known example of this coupling is
strain-enhanced grain growth during superplastic deformation!!8-
221, Modeling of this process has been based on the grain growth
analysis of Clark and Alden (CA){14] which, in turn, received
guidance from the early work of Girafalco and Grimes(23}. The
fundamental idea is that grain boundary mobility is directly

proportional to the excess vacancy concentration that is augmented
by continuous deformation. The alloy of interest to CA was Sn-
1% Bi that was known 10 be superplastic and which exhibited
normal grain growth. They considered a small, polycrystalline
volume of this material that is subject to a shear strain rate, €, and
as a result has an excess atom fraction of vacancies, n,. CA

argued that the rate of change of the vacancy population can be
described by

dn,= -
7 k.,C k7’l, (38)

where k, and 4, are rate constants and the first term on the RHS
describes vacancy production by the deformation process and the
second term describes vacancy annihilation at sinks. Grain growth
was described by
dL _ki(n +n)
—_—— el 2 3b
dr L @)

where L is grain size, n, is the equilibrium atom fraction of
vacancies, and &, is a rate constant. These equations demand that

if deformation should stop, the excess vacancy population will
decay to zero and the rate of grain growth will revert to its normal
form. After making the following substitutions
-3
. T=10, a=&kl. B=10"k, and
n

o o v

y= 10'3%19 the CA equations become

x=—, = —_

n

dx

e ot - fBx (4a)
d 1

a _ yﬁ. (4b)
ar y

where L is the initial grain size. Numerical solutions to eqs. (4a)
and (4b) are shown in Fig. 5, are similar to those determined
analytically by CA, and clearly indicate that deformaton assists
grain growth according to their model. The inital conditions were

x=0and y=1.
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Fig. 5- The Clark-Alden model showing grain size as a function of
time for various applied strain rates.

A Modified Clark-Alden Model

The results of many grain growth experimenis suggested to
Burke!24] and later Grey and Higgins(23] thar growth is limited by
impurities and other effects to a grain size. D,. So. in modifying
the CA model the process of grain growth will first be made
logistic. A third species, glissile dislocations, will also be added
since constant strain rate testing generates these as well and it has
been suggested that dislocations support grain growth through pipe
diffusionl26. 27), To describe the evolution of the dislocation
population during constant strain rate testing (utilized by CA) the
model of Peczak and Lutton will be used!?8l. This model has the
form

dp

8P etk o' -k
4 ek o)




where p is the mobile dislocation density. If the steady state
dislocation density, p, = (-ki)z. is used to define a dimensionless

b
dislocation density, the modified CA model becomes

g_x; =aé - fix (5a)
-“% = y(1+x)1+ 5z)(§ - yl) (5b)
% = ¢é(z"* - 2). (5¢)

where y_ is the dimensionless grain size limit and the Greek letters
are rate constants. The numerical solutions were obtained with
initial conditions given by (107,1,107) and are shown in Fig. 6.

Al a strain rate of & =107, dislocations contribute to grain growth
as expected from the model. There was considerable
controversyl26.27] over whether dislocations do
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Fig. 6- The Clark-Alden model modified as suggested by Brown
[26.27) showing additional grain size enhancement due to the
dislocations created by strain and pipe diffusion of vacancies.

contribute in this fashion, but it is not the purpose of this report to
resolve this issue but only to continue the analog described earlier.
The biological interpretation of eq.(5a) is one involving
immigration and natural death. By transforming variables

according to y=n"" and z=v? it can be shown that eq. (5b)
becomes the logistic equation with a quadratic birth term and eq.
{5¢) becomes describable as immigration and natural death.

A ishna-Sah |

Step-like serrations observed on stress-strain curves are
commonly referred to as the Portevin-Le Chatelier effect. The
classical mechanism used to explain this phenomenon is due to
Cotirelll?%) and involves the thermodynamic attraction of impurities
or alloy components to dislocation cores. This segregation
stabilizes the dislocations and the Cottrell atmosphere of secondary
atoms such that if a critical stress is applied the dislocations break
away from the atmosphere and provide a local burst of plastic
strain. Biologisis would describe this as a dislocation species
gradually being polluted in a manner that affects their normal
behavior. Ananthakrishna and Sahoo (AS) developed a method to
describe the formation of this atmosphere, with use of Volterra's
ideas on heredity. and applied it to the phenomenon of stair-case
creep which is another manifestation of the Portevin-Le Chatelier
effect 115.30], In dimensionless form their equations read

%:(l—a)x+y—xy—bx’ (6a)
% = b(kbx? — xy— y + az) (6b)
%au -2 ()

where @, b, ¢ and 4 are constants while x, is the glissile density,
y the sessile density, and z is the density “polluted” by the Cottrell

atmosphere. These equations have remarkabie properties and, as
pointed out by AS, are similar to an oscillator known as the
"Oregonator” {31). AS showed that if the constants take cerain
limited values a stable limit cycle is obtained, as shown in Fig. 7,
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Fig. 7- The limit cycle of the Ananthakrishna-Sahoo mode! of the
Portevin-Le Chatelier effect showing large amplitude oscillation of
glissile and small amplitude oscillation of sessile dislocations.

in which the glissile dislocations oscillate in number density with
very large amplitude and sessile dislocations oscillate with small
amplitude. The density of poliuted dislocations also oscillates with
time. By integrating the glissile dislocation density over time (to
obtain the strain by means of the Orowan equatdon) AS were able to
show that an increasing step-like function is obtained that is
reminiscent of stair-case creep. Equations (6) are also capable of
exhibidng chaotic behavior.

A Modified Ananthakrishna-Sahoo Model

It can be shown that if the constants in egs.(6) are modified to
any significant degree the limit cycle loses its stability and the
dislocations cease oscillating. Within this range of stable limit
cycle behavior small fluctuations of the rate constants and,
consequently, dislocation densities should be expected in a physical
sense. The affect of this intrusion of experimental justice is a more
disorderly appearing limit cycle and a noisy dislocation density
versus time curve. Ananthakrishnal3? states that the coefficient “a”
in egs. (6) refers to the concentration of solute atoms that
participate in the immobilization of glissile dislocatons. It stands
to reason that these atoms are liberated when “polluted”
dislocations break loose and that the concentration of these atoms
might oscillate as well. They would also be expected to drift and
be adsorbed by other sinks such as grain boundaries, inclusions,
vacancies, etc. In this circumstance, the effective concentration of
solute atoms would continuously decrease and at some critical
value of the coefficient a the limt cycle would become unstable.
Figure 8 shows an arbitrary
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Fig. 8- An arbitrary decrease of the coefficient that is proportional
to the solute atom concentration plotted from the value (0.43) used
by AS to a value that makes the limit cycle unstable.

decrease of this coefficient, now viewed as a function of time,




beginning with the value used by AS and ending at a value that
makes the limit cycle unstable. A suitable model would assure that
solute atoms are conserved. The solution to egs. 6 begins as it did
in the AS model but after a certain induction period, oscillation of
glissile dislocations ceases as shown in Fig. 9. The limit cycle as
well begins as before but the oscillations spiral into a "sickly™ but
persistent steady state as shown in Fig. 10.
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Fig. 9- The glissile dislocation density oscillation as affected by the
continuous depletion of solute atoms at other sinks. Similarity to
the cessation of a heart beat can be discerned.
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Fig. 10- The Ananthakrishna-Sahoo limit cycle gradually shifts and
becomes unstable as the solute concentration dips below a critical
value.

Equations (6) are replete with biological interpretation. In eq. (62)
we see the various birth and death terms along with the
competitive, feeding, and crowding terms discussed earlier. Taken
together the equations exhibit a symbiotic relationship with x
thriving on ¥, v thriving on x and z, and z thrivingon x. ltis
curious that the more mobile species, x, falls prey to the polluted
species, z. In the animal kingdom it is usually the slow species
that provides sustenance to the predator. Equation (6b) shows that
the slow species is a predator as well and survives on the very
abundance of the mobile species but not without an occasional loss
of its own in the encounter. In the laboratory we would ordinarily
interpret the fluctuation term as evidence of Murphy's Gremlin. In
the biological world it could be interpreted as spurious influence
from other species not incorporated into the model. The
continuous depletion of the solute concentration could be
interpreted as a deadly virus that consumes a crucial gland until
biological rhythms are destroyed and the system wanes to a static
and relatively lifeless existence that we call steady state.

Summary and Conclusions

In this report an attempt has been made to interpret and modify
existing temporal models for lattice defects in the manner of a
biologist or epidemniologist. In the process no attempt has been
made to justfy the original models or validate the modified models.

It was found that the three chosen models could be modified in
several ways and that it was tempting to include them all.
However, this temptation was resisted and only rather simple
modifications were made to each of the three original models. Only
modifications that made physical sense were considered. For
example, a biologist might be concerned about the age factor in
population dynamics but the properties of an "old" and a "young"
vacancy or dislocation are probably quite similar so this was not
considered.

The Diencs-Damask model could have been modified by
including interstitia] and substitutional species but this has been
done, at least in part (3233]. The simple addition of an immigration
term gave the surprising result that the steady state ratio of
vacancies to divacancies can be controlied. One could argue that if
radiation or plastic deformation were the physical embodiment of
this term more complicated behavior would be expected than is
described by the modified Dienes-Damask equations. This kind of
critical commentary is analogous to that found in the biological
literature and suggests that mechanisms and models can and will
always be improved. The addition of an intermediate species was
biologically inspired and analogous to adding grasshoppers to the
coyote-rabbit Lotka-Volterra society. The expected life of the
intermediate species is, of course, unknown but one can certainly
imagine an energy diagram having three descending wells in
succession and can certainly write down the reactions taking place
between species in these wells. The analogy with the institution of
marriage was convenient if not useful.

The Clark-Alden model could also have been modified in
several ways. The modification chosen came strictly from the
materials science literature (2427.28] angd can be nicely transformed
into an easily interpretable biological society. It was very tempting
to add vacancy-dislocation interaction terms to egs. (5a) and (5¢) to
complicate the society. In view of the remarkable effects that
ultrasonic energy has on thermokinetic phenomena [34.35] the
addition of another dislocation source term, perhaps as an
immigration, would be worth investigation. As it stands the
modified Clark-Alden model! described in eq. (5) does capture grain
growth enhancement and might be useful if the 1960's controversy
was revisited.

The Ananthakrishna-Sahoo model is one possessing a chemical
analogy in the "Oregonator™ which is a model of the Belousov-
Zhabotinskii [36) oscillating chemical reaction. Its interpretation as a
biological system is obvious if it is examined term by term which
was done in this report. If examined as a whole it is difficult to
imagine a particular biological society that would display the same
properties because of the many terms involved. It was, therefore,
decided to imagine it as a single living. breathing, pulsating
creature that is susceptible to infection by a growing and toxic
intruder. Despite the stability (will to live) of its limit cycle the AS
system eventually succumbs without the appropriate antibody.

Analogies between e.g., mechanical and electrical systems and
the equations used for their description are well known in science
and engineering. Models of systems should be and are constantly
improved as new information becomes available. Improvements to
models also arise from the alternative perspectives that analogies
provide. Other models from the materials science literature that
seem to lend themselves to this comparison are the terrace-ledge-
kink mode! of a surface, deformation in amorphous materials, and
the kinetics of the order-disorder transformation. While it might be
presumptuous for a non-biologist to have drawn the above
comparisons between lattice defects and biology it has been an
enjoyable and informative exercise.
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