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Abstract. We consider the problem of placing a specified number p of
facilities on the nodes of a given network with two nonnegative edge—
weight functions so as to minimize the diameter of the placement with
respect to the first weight function subject to a diameter— or sum-—
constraint with respect to the second weight function.

Define an (o, 8)-approximation algorithm as a polynomial-time algo-
rithm that produces a solution within o times the optimal value with
respect to the first weight function, violating the constraint with respect
to the second weight function by a factor of at most B.

‘We show that in general obtaining an (e, B)-approximation for any fixed
a,f > 1is N'P-hard for any of these problems. We also present efficient
approximation algorithms for several of the problems studied, when both
edge-weight functions obey the triangle inequality.

1 Introduction and Basic Definitions

Several fundamental problems in location theory [HMT9, MF90] involve finding
a placement obeying certain “covering” constraints. Generally, the goal of such
a location problem is to find a placement of minimum cost that satisfies all the
specified constraints. The cost of a placement may reflect the price of construct-
ing the network of facilities, or it may reflect the maximum communication cost
between any two facilities. Examples of such cost measures are the total edge
cost and the diameter respectively.

Finding a placement of sufficient generality minimizing even one of these
measures is often NP-hard [GJ79]. In practice, it is usually the case that a
facility location problem involves the minimization of a certain cost measure,
subject to budget constraints on other cost measures.

The problems considered in this paper can be termed as compact location
problems, since we will typically be interested in finding a “compact” placement
of facilities. The following is a prototypical compact location problem: Given an
undirected edge-weighted complete graph G = (V, E.), place a specified number
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p of facilities on the nodes of G, with at most one facility per node, so as to
minimize some measure of the distances between facilities. This problem has
been studied for both diameter and sum objectives [RKM*93). Some geometric
versions of this problem have also been studied [AT+91)]. ‘

Consider the following extension of the compact location problem. Suppose
we are given two weight—functions ., d, on the edges of the network. Let the first
weight function . represent the cost of constructing an edge, and let the second
weight function d4 represent the actual transportation— or communication—cost
over an edge (once it has been constructed). Given such a graph, we can define a
general bicriteria problem (4, B) by identifying two minimization objectives of
interest from a set of possible objectives. A budget value is specified on the second
objective B and the goal is to find a placement of facilities having minimum
possible value for the first objective A such that this solution obeys the budget
constraint on the second objective. For example, consider the diameter-bounded
minimum diameter compact location problem denoted by DC-MDP: Given an
undirected graph G = (V, E)) with two different nonnegative integral edge weight
functions . (modeling the building cost) and &, (modeling the delay or the
communication cost), an integer p denoting the number of facilities to be placed,
and an integral bound B (on the total delay), find a placement of p facilities with
minimum diameter under the §.—cost such that the diameter of the placement
under the d;—costs (the maximum delay between any pair of nodes) is at most
B. We term such problems as bicriteria compact location problems.

In this paper, we study bicriteria compact location problems motivated by

practical problems arising in diverse areas such as statistical clustering, pattern
recognition, processor allocation and load-balancing.

2 Preliminaries and Summary of Results

Let G = (V, E.) be a complete undirected graph with n = |V| nodes and let
» (2 < p < n) be the number of facilities to be placed. We call any subset
P C V of cardinality p a placement. Given a nonnegative weight— or cost~
function ¢ : E; = @, we will use D;(P) to denote the diameter of a placement
P with respect to d; that is

Ds(P) = max o(u, v).
v

Similarly, we will let Ss(P) denote the sum of the distances between facilities
in the placement P; that is

Ss(P)= Y §(u,v).

u,vEP
ugv

We note that the average length of an edge in a placement P equals ﬁ&; (P).
As usual, we say that a nonnegative distance § on the edges of G satisfies

the triangle inequality, if we have

0(v,w) < (v, u) + 6(u, w)



forallv,w,u €V,

The Minimum Diameter Placement Problem (denoted by MDP) is to find
a placement P that minimizes Ds(P). Similarly, the Minimum Average Place-
ment Problem (denoted by MAP) is to find a placement P such that S5(P) is
minimized. Both problems are known to be NP-hard, even when the distance
§ obeys the triangle inequality [RKM*93]. Moreover, if the distances are not
required to satisfy the triangle inequality, then as observed in [RKM+93], there
can be no polynomial time relative approximation algorithm for MDP or MAP
unless P = N'P.

In the sequel we will restrict ourselves to those instances of the problems
where the weights on the edges obey the triangle inequality. Given a problem
IT, we use TI-IT to denote the problem IT restricted to graphs with edge weights
satisfying the triangle inequality.

Following [HS86], the bottleneck graph bottleneck(G,J, A) of G = (V,E.)
with respect to § and a bound A is defined by

bottleneck(G, §, A) := (V, B'), where E' := {e € B : §(e) < A}.
We now formally define the problems studied in this paper.

Definition 1. [Diameter Constrained Minimum Diameter Placement Problem
(DC-MDP)]

Input: An undirected complete graph G = (V, E;) with two nonnegative
weight functions d¢,dq : Ec — Q, an integer 2<p<nanda number 2 € Q.
Output: A set P CV, with |P| = p, minimizing the objective

Ds5.(P) = max 6.(v,w)
vEw
subject to the constraint
Ds,(P) = max da(v,w) < 2.
::;éw

Definition 2. [Sum Constrained Minimum Diameter Placement Problem (SC-

MDP)]

Input:  An undirected complete graph G = (V, E.) with two nonnegative
weight functions d;,da : B — @, an integer 2 < p < nand a number {2 € Q.
Output: A set P CV, with |P| = p, minimizing the objective

Ds,(P) = max 64 (v, w)
L;&w
and satisfying the budget—constraint

Ss.(P)= Y bovi,vj) < 8.

vivj eP
viFv;



Let IT € {TI-DC-MDP, TI-SC-MDP}. Define an (a, B)-approzimation algo-
rithm for II to be a polynomial-time algorithm, which for any instance I of IT
does one of the following:

(a) It produces a solution within o times the optimal value with respect to
the first distance function (d.), violating the constraint with respect to the
second distance function (d4) by a factor of at most 8.

(b) It returns the information that no feasible placement exists at all.

Notice that if there is no feasible placement but there is a placement violating
the constraint by a factor of at most 3, an (a, 8)-approximation algorithm has
the choice of performing either action (a) or (b).

In this paper we study the complexity and approximability of the prob-
lems DC-MDP and SC-MDP. We show that, in general, obtaining an (e, 8)-
approximation for any fixed o, 8 > 1 is N'"P-hard for any of these problems.
We also present efficient approximation algorithms for several of the problems
studied, when both edge-weight functions obey the triangle inequality. For TI-
DC-MDP problem, we provide a (2, 2)-approximation algorithm. We also show
that no polynomial time algorithm can provide an (a,2 — €)- or (2 — ¢, 8)-
approximation for any fixed € > 0 and «,8 > 1, unless P = AP. This result
is proved to remain true, even if one fixes & > 0 and allows the algorithm
to place only 2p/[V|'/6~¢" facilities. Our techniques can be extended to devise
approximation algorithms for TI-SC-MDP. For this problem, our heuristics pro-
vide performance guarantees of (2 — 2/p, 2) and (2,2 — 2/p) respectively. These
techniques can also be used to find efficient approximation algorithms for Tl-
DC-MDP and TI-SC-MDP when there are node and edge weights. Due to lack
of space, the discussion on the node-weighted cases is omitted in this version of
the paper.

3 Related Work

While there has been much work on finding minimum-cost networks (see for ex-
ample [DF85, FG88, Go85, IC+86, LV92, Won80)]) for each of the cost measures
considered in our bicriteria formulations, there has been relatively little work
on approximations for multi-objective network-design. In this direction, Bar-
Ilan and Peleg [BP91] considered balanced versions of the problem of assigning
network centers, where a bound is imposed on the number of nodes that any cen-
ter can service. Warburton [Wa87] has considered multi-objective shortest path
problems. We refer the reader to [MR+95, RMR*93] for a detailed survey of the
work done in the area of algorithms for bicriteria network design and location
theory problems. Other researchers have addressed multi-objective approxima-
tion algorithms for problems arising in areas other than network design. This
includes research in the areas of computational geometry [AF+94], numerical
analysis, network design [ABP90, KRY93, Fi93] and scheduling [ST93].

Due to lack of space the rest of the paper consists of selected proof sketches.



4 Diameter Constrained Problems

As shown in [RKM+93], TI-MDP is N'P-hard. Here we can extend this result to
obtain the following non-approximability result.

Proposition3. Lete > 0 and ¢’ > 0 be arbitrary. Suppose that A is a polyno-
mial time algorithm that, given any instance of TI-DC-MDP, either returns a
subset S CV of at least I—"T‘%%:? nodes satisfying D5,(S) < (2—¢)42, or provides
the information that no placement of p nodes having communication diameter
of at most 2 does exist. Then P = N'P. o

We can interchange the roles of §. and d, in the proof of the last proposition to
show that the optimal value of the problem cannot be approximated by a factor
of (2 — €). Moreover, replacing 2 by a suitable function f € 9(2’”‘3’(“")), which
given an input length of ©(|V]) is polynomial time computable, it is easy to see
that, if the triangle inequality is not required to hold, there can be no polynomial
time approximation with performance ratio O(2p°‘y(|vl)) for neither the optimal
function value nor the constraint (modulo P = AP). Thus we obtain:

Lemmad. Unless P = NP, for any fited € > 0 and g > 0 there can be
no polynomial time approzimation algorithm for TI-DC-MDP that is required to
place at least 2p/ [V 6—¢' facilities and has a performance guarantee of (o, 2—¢)
or (2—¢, B). If the triangle inequality is not required to hold, then the existence of
an (F(IV)), 9(|V]))-approzimation algorithm for any f,g € 0(2pWUVDY implies
that P = NP. O

Procepure HEUR-FOR-DIA

. G' := bottleneck(G, &4, 2)
. Veana 1= {v € G’ : deg(v) 2 p—1}
IF Veand = @ THEN RETURN “certificate of failure”
. Let best := +o00
. Let Ppest := 0
. For each v € Veana DO
(a) Let N(v) be the set of p — 1 nearest neighbors of v in G with respect to éc
(b) Let P(v) := N(v) U{v}
(c) IF Ms,(P(v)) < best THEN Pyest = P(v)
best := M;s (P(v))

S T WD

7. OUTPUT Phest

Fig. 1. Details of the heuristic for T1-DC-MDP and TI-DC-MAP

Using the results in [RKM*93] in conjunction with the results in [MR+95]
we can devise an approximation algorithm with a performance guarantee (4,4)



for TI-DC-MDP. Here we present an improved heuristic HEUR-FOR-DIA for this
problem. This heuristic provides a performance guarantee of (2,2). In view of
Lemma 4, this is the best approximation we can expect to obtain in polynomial
time. The heuristic is quite simple. The details of the heuristic are shown in
Figure 1.

Theorem5. Let I be any instance of of TI-DC-MDP such that an optimal
solution P* of diameter cost OPT(I) = D; (P*) exists. Then the algorithm
HEUR-FOR-DIA, called with Ms, := Ds,, returns a placement P satisfying
Dsy(P) < 212 and D5, (P)/OPT(I) < 2.

Proof: Consider an optimal solution P* such that Dj,(P*) < 2. Then by defi-
nition this placement forms a clique of size p in G’ := bottleneck(G, 84, £2). Thus
in this case Vigna is non—empty and the heuristic will not output a “certificate
of failure”.

Moreover, any placement P(v) considered by the heuristic will form a clique
in (G')2. By the definition of G’ as a bottleneck graph with respect to &, the
bound {2 and by the assumption that edge weights obey triangle inequality, it
follows that no edge e in (G')? has weight §4(e) more than 262. Thus every place-
ment P(v) considered by the heuristic has communication diameter Ds,(P(v))
no more than 22.

Consider an arbitrary v € P*. Clearly v € Viegna. Consider the step of the
algorithm HEU-FOR-DIA in which it considers v. For any w € N(v) we have
c(v,w) < OPT(I), by definition of N(v) as the set of nearest neighbors of v
and by the fact that every node from the optimal solution is adjacent to v in G'.
Thus for w,w' € N(v) we have §.(w,w') < &:(v,w) + 5:(v,w') < 20PT(I) by
the triangle inequality. Consequently, Ds_ (P(v)) = D5, (N(v)U{v}) < 20PT(I).

Now, since the algorithm HEU-FOR-DIA chooses a placement with minimal
diameter among all the placements produced, the claimed performance guarantee
with respect to the cost diameter Ds, follows. o

5 Sum Constrained Problems

Next, we study bicriteria compact location problems where the objective is to
minimize the diameter Dj, subject to budget—constraints of sum type.

Again, it is not an easy task to find a placement P satisfying the budget—
constraint or to determine that no such placement exists. Using a reduction from
CLIQUE [GJ79)] one obtains the following.

Proposition 6. If the distances 8,84 are not required to satisfy the triangle
inequality, there can be no polynomial time (o, B)-approzimation algorithm for
SC-MDP for any fizxed o, > 1, unless P = N'P. Moreover, if there is a polyno-
mial time (o, 1)-approzimation algorithm for TI-SC-MDP for any fired o > 1,
then P = N'P. m]

We proceed to present a heuristic for TI-SC-MDP. The main procedure shown
in Figure 2 uses the test procedure from Figure 3.



Procepurge HEUR-FOR-SUM

1. Sort the edges of G in ascending order with respect to 84
2. Assume now that Jz(e;) < da(e2) £--- < éd(e(;))

3. Let Ppest :="“certificate of failure”

4, 1:=1

5. Do

(a) Gi := bottleneck(G, da4,d4(e:))
(b) Prese := test(Gi, b:la;, £2)
(c) i:=%+1
6. UNTIL Ppese 7 “certificate of failure”
7. OuTPUT Piest

Fig. 2. Generic bottleneck procedure

PROCEDURE test(G, 6, 2)

. Veand := {v € G : deg(v) > p—1}
IF Veana = @ THEN RETURN “certificate of failure”
. Let best := +co
. Let Pyest :=0
. For each v € V;:a.nd Do
(a) Let N(v) be the set of p — 1 nearest neighbors of v in G with respect to §
(b) Let P(v) := N(v) U{v}
(c) Ir S5(P(v)) < best THEN Poest := P(v)
best := 85(P(v))
6. Ir best > (2 — 2/p)$2 THEN RETURN “certificate of failure”
ELSE RETURN Prest

OV W

Fig. 3. Test procedure used for TI-SC-MDP

Lemma'7. Let I be an instance of TI-SC-MDP such than there is an optimal
placement P*. If the test procedure test(Gi, 0c, $2) returns a “certificate of fail-
ure”, then we have OPT(I) > da(es)- 0

Now we can establish the result about the performance guarantee of the
heuristic:

Theorem 8. Let I denote any instance of TI-SC-MDP and assume that there
is an optimal placement P* of diameter OPT(I) = Ry, (P*). Then HEUR-FOR-
SUM with the test procedure test returns a placement P with S5, (P) < (2-2/p)%2
and D5, (I)/OPT(I) L 2.

Proof: Consider the case when d4(e;) = OPT(I). Since in G; we have deleted
only edges e having weight d4(e) > OPT(I) and we assume that there is a
feasible solution satisfying the budget—constraint, it follows that the bottleneck
graph G; must contain a clique C of size p such that S5.(C) < 2.



For a node v € C let

Sy = Z e (v, w)-
wel
wHv
Then we have
85.(C) = _ S,
velC
Now let v € C be so that Sy is & minimum among all nodes in C. Then clearly
85.(C) = pS.y. (1)

By definition of the bottleneck graph G; and the clique C, the node v must
have degree at least p — 1 in G;. Thus v is one of the nodes considered by the
test procedure. Let N(v) be the set of p — 1 nearest neighbors of v in G;. Then

we have
Z 60(1}’ w) S SU) (2)

weN(v)
wFv

by definition of N(v) as the set of nearest neighbors, P(v) := N(v) U {v}. Let
w € N(v) be arbitrary. Then

Y ) =8wu)+ Y. S(wu)
ueN(v)U{v\{w} uEN(\{w}

<Sw,v)+ Y, (6o(w,v) + (v, 1))
ueN(v)\{w}

= (p - 1)60(1”7 'U) + Z Jc(v’ ’LL)

ueN (v)\{w}
= (p — 2)é.(v,w) + Z de(v, u)
uEN(v)
18]
< (p—2)éc(v, w) + Sy (3
Now using (3) and again (2), we obtain
5. (P(v)) = S5, (N(v) U {v})
= Y dvu)+ X > dc(w, v)
uwEN(v) weEN(v) uveN(w)U{v}\{w}

(2)
<SS+ T > be(w, u)
wEN(v) ueN(v)u{v}\{w}

(3)
<SS+ Y ((p—2)6c(v,w) +Sy)
wEN(v)

= Sy +(p~-28+ -1,

= (217 - 2)511
< 2 2/pOPT(D).



Thus the placement P(v) violates the budget—constraint by a factor of at most
2 — 2/p. Consequently, as the algorithm chooses the placement with Ppest with
the least constraint—violation, it follows that the test—procedure called with G; =
bottleneck(G, dq, OPT(I)) will not return a “certificate of failure”.

The placement Py, that is produced by the algorithm turns into a clique
in G?. Thus the longest edge in the placement with respect to 6q is at most
20PT(I). a
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