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1. Introduction

Geothermal energy is recovered by circulating water through heat exchange areas within
a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and
metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures
play a significant role in extraction of geothermal energy by providing the major
pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions
leading to formation of fractures and fracture networks is of paramount importance.
Furthermore, in the absence of natural fractures or adequate connectivity, artificial
fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are
preferred because of the large size necessary when using only a single fracture. Although
the basic idea is rather simple, hydraulic fracturing is a complex process involving
interactions of high pressure fluid injections with a stressed hot rock mass, mechanical
interaction of induced fractures with existing natural fractures, and the spatial and
temporal variations of in-situ stress. As a result, it is necessary to develop tools that can
be used to study these interactions as an integral part of a comprehensive approach to
geothermal reservoir development, particularly enhanced geothermal systems. In
response to this need we have developed advanced poro-thermo-chemo-mechanical
fracture models for rock fracture research in support of EGS design.

The fracture propagation models are based on a regular displacement discontinuity
formulation. The fracture propagation studies include modeling interaction of induced
fractures. In addition to the fracture propagation studies, two-dimensional solution
algorithms have been developed and used to estimate the impact of pro-thermo-chemical
processes on fracture permeability and reservoir pressure. Fracture permeability variation
is studied using a coupled thermo-chemical model with quartz reaction kinetics. The
model is applied to study quartz precipitation/dissolution, as well as the variation in
fracture aperture and pressure. Also, a three-dimensional model of injection/extraction
has been developed to consider the impact poro- and thermoelastic stresses on fracture
slip and injection pressure. These investigations shed light on the processes involved in
the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the
assessment of the potential of thermal and chemical stimulation strategies.

1.1. Issues & Scope

Fracture propagation and permeability enhancement are very important in development
of geothermal reservoirs, particularly EGS. Important coupled processes that control flow
and heat extraction in a geothermal reservoir include (i) fracture closure/opening in
response to changing effective normal stress, (ii) fracture shear dilation during
stimulation and circulation, (iii) poro-thermoelastic effects in stimulation and circulation
operations, and (iv) chemical dissolution and precipitation during circulation.

The purpose of the project was to investigate fracture response to water injection, and to
study the variation of fracture permeability and fluid pressure near injection regions of
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EGS while considering coupled poro-thermoelastic effects and mineral
precipitation/dissolution processes. Part (1) of the project involved development of 2D
models to study mode | and Il fracture propagation and interaction as well as fracture
opening and slip in geothermal reservoirs using the boundary element method; and
development of a three-dimensional poro-thermoelastic fracture models to study the
impact of injection/extraction on the reservoir’s state of stress and fracture slip with
reference to Coso injection experiments. Part (I1) consisted of the development of
fundamental analytical and numerical models to study the individual influences of
thermal, poroelastic, and silica dissolution/precipitation processes on the fracture
permeability and pressure variations over temporal and spatial scales of interest to
reservoir development and injection/extraction operations. The project has resulted in the
completion of the following:

1. development of a 2D poro-thermoelastic model for analysis of
injection/extraction in fractured rock

2. development of a two-dimensional poroelastic boundary element code for
modeling single/multiple fracture propagation and coalescence with natural
discontinuity such as joints and faults

3. 2D modeling of permeability change caused by poro-thermo-chemical processes
(silica precipitation/dissolution)

4. Three-dimensional modeling of variation of in-situ stress due to
injection/extraction based on three-dimensional modeling of injection induced
thermal stresses

By considering the relevant rock mechanics issues and processes in fracturing and natural
fracture behavior, the project has advanced the state-of-the-knowledge and technology in
the high pressure thermo-mechanical rock/fluid interactions. It is anticipated that utilizing
the project outcomes will improve the technology for designing artificial fractures and
enhanced geothermal systems.

The body of this report consists of two parts. Part | deals with rock failure and fracture
propagation and poro-thermoelastic effects on fracture permeability and fluid flow in
fractured rock; it includes Chapters 1-5. Part Il pertains to geochemistry and the impact
of silica reactivity on fracture permeability and fluid flow; it consists of Chapter 6. The
fundamental concepts and theoretical issues involved in rock failure and fracture
propagation, thermoelasticity, poro-thermoelasticity, and details of the numerical
boundary element methods are described in Chapters 1-4. Chapter 5 is devoted to
application and analysis; it includes model applications to problems of interest such as
fracture opening and slip, analysis of injection/production in naturally fractured
reservoir, and fracture propagation. In addition, examples of 3D analysis of fracture slip
are presented. Chapter 6 describes theoretical and analytical/numerical aspects of
reactive flow in fractures. In addition, example applications are presented to illustrate the
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combined effects of silica dissolution and precipitation and poro-thermoelastic processes
on fracture aperture and flow and pressure distribution in a fracture during circulation
operations. The report ends with conclusions and practical guidelines as well as a few
recommendations for future work.
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2. Fundamentals of Fracture Propagation & Hydraulic
Fracturing in Geothermal Reservoirs: Concepts &
Mathematical Framework

Hydraulic fracturing and stimulation of geothermal reservoirs involves a number of
processes such as fracture initiation, fracture propagation, fluid flow in a deformable
fracture, fluid diffusion into the rock, and heat transfer between the fluid and rock. Each
of these aspects forms, in itself, a complex problem which has been the subject of many
investigations and merits further study. A detailed examination of these processes with
the intent of simultaneously improving their treatment is beyond the objectives of the
present investigation. However, it is beneficial to review fracture initiation and
propagation as they are very important in understanding the dynamics of fractures in
geothermal fields and reservoir development.

During pressurization of the borehole, the solid (rock) is subjected to a system of
external loads under certain environmental conditions (stress, temperature, chemical
state). The response of the rock to imposed loads is simply one of deformation in the
sense that the rock remains topologically unchanged [1]. Application of the load will
eventually cause the formation of a fracture creating new surface areas within the rock
mass. Therefore, from a mathematical viewpoint, two types of problems may be
distinguished: fracture initiation and fracture propagation.

2.1. Fracture Initiation

In dealing with the fracture initiation problem, one needs to evaluate the critical level of
the applied loads that correspond to inception of a fracture. An appropriate fracture
criterion is necessary to augment the analysis of deformation and stresses, for the purpose
of relating it to the fracture resistance of the rock. Several different failure criteria are in
existence for use in various applications [2]:

e Maximum tensile stress theory; according to this theory, failure initiates
when the minimum principal stress component, 63, reaches the tensile strength,

To, of the material, o3=-To.
e Coulomb’s theory; it is the maximum shear stress criterion which postulates

that fracture will occur at a point in the material for a specific value So, referred

to as the shear strength [(g1-03)/2] > So with ¢, and o3 representing the major

and minor principal stresses, respectively. According to this theory the failure
plane will bisect the angle between the minor and major principal stresses so
that in a triaxial test, the plane of failure should be at 45° to the axial stress.
This conclusion, however, is not observed experimentally. The orientation of
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the failure plane varies with rock type and is less than 45° to the direction of
maximum compression.

Coulomb-Navier (Modified max. shear criterion); Coulomb's theory was
modified by Navier to include the influence of the normal stress acting on the
plane of failure which tends to increase the shear resistance of the material [3].
Representing the normal stress by ¢ and the shear stress by 7, the theory
stipulates that failure occurs when the magnitude of the shear stress acting on

the failure plane reaches a value given by |1|=So +p*c in which u* is the

coefficient of internal friction. This criterion for failure indicates that the angle
between the failure plane and the direction of maximum load, 6, will be less
than 45° which is in agreement with experimental evidence [3].

Mohr's Theory; it postulates that a material fractures or begins to deform
permanently when the shear stress acting on the plane of failure increases to a
value which is a function of the normal stress acting on the same plane
=f(0). However, if the largest tensile principal stress has reached the tensile
strength of the material, the maximum tensile stress theory, mentioned
previously, is assumed. The form of f{o) is determined experimentally. Unlike
the previously described criteria, Mohr's theory of failure predicts the
direction of failure in addition to the state of stress at which failure occurs.
Mohr's theory also implies that the value of the intermediate stress does not
affect the shear stress, t, so that failure is independent of this stress. It also
indicates that failure will not occur in hydrostatic compression consistent with
experimental observation. It should be mentioned that the Coulomb-Navier
and Mohr criteria are identical if the coefficient of internal friction is constant

[4].

Griffith's Theory; in contrast to the previously described empirical criteria
that do not relate failure to any internal mechanisms or processes taking place
in the rock material, the [5] theory is based on a given mechanism and relates
failure to it. According to Griffith, two conditions are necessary for fracture; a
stress condition and an energy condition, i.e., the cohesive forces must be
exceeded and the energy required to form two surfaces in the solid must be
provided. Together, these conditions are sufficient to ensure fracture. The first
condition provides the basis for a failure criterion, while many fracture
propagation criteria originate from the energy condition. Griffith's theory is
based on the assumption that rocks contain flaws such as microcracks. When
the rock body is subjected to external loads, stress concentrations develop
around these features. These stress concentrations cause crack initiation and
growth, which will ultimately cause macroscopic failure. Griffith considered
the problem of a thin, linearly elastic, isotropic, infinite plate, containing a
thin elliptical slit of length 2a subjected to a tensile stress 6. The normal stress
developed at the tip of the crack, due to the applied load, is given by [6]:
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o, =0'(1+421—Zj (2.1)

in which 2a and 2b represent the major and minor axes of the elliptical hole.
Thus for sharp slits (i.e. large values of (a/b) the stress, oy, could be large
enough to cause failure at moderate levels of applied load. This formed the
basis for Griffith's analysis and formulation of his stress condition for failure.
[7] derived his failure criterion by considering the variation of the tangential
stress oy at the surface of a flat elliptical crack under the action of two-
dimensional stresses o, o, at infinity and obtained:

_ 2
(0,-03) _87, (2.2)
O'1+O'3

If 03=0 and 0,=Co, the uniaxial compressive strength of the rock, the above

relation indicates that 7o=(Co), i.€., tensile strength is exactly one eighth of the

uniaxial compressive strength, a condition that is not consistent with
experimental observations. The compressive strength of most rocks varies
from 10 to 100 times the tensile strength [8]. In addition, [9] showed that the
failure criterion corresponds to a Mohr's envelope at failure is given by:

T’ +4T,0 = 4T, (2.3)

This is a parabolic criterion, and so it is not valid for many rocks (especially
igneous). Typically, brittle rocks, such as granite and quartzite for which the
Griffith criterion is most likely valid, have a straight envelope in compression,
in disagreement with the normal Griffith criterion [10]. When modified to
include closing of cracks in compression [11], the prediction turns out to be
linear and identical to the Navier-Coulomb criterion, upon complete closure of
cracks. This modified version gives an improved ratio of the compressive-to-
tensile strengths for rocks of 12, but the ratio is still low in comparison with
that obtained from measurements [10]. It should also be kept in mind that the
Griffith theory does not predict the path of a growing crack except when
loaded normal to its surface (simple tension). It does, however, indicate that,
in compression, the direction in which fracture is initiated is not in the
direction of the original crack and turns towards the direction of the maximum
principal stress. However, Griffith's failure criterion is valid in both tension
and compression. This is very important and adds to the attractiveness of the
theory, particularly when viewed in light of the fact that tension and shear are
the two basic modes causing fracture, and there is no fundamental
compression mechanism of failure. Finally, similar to Coulomb and Mohr
criteria; Griffith's theory predicts that the intermediate principal stress has no
effect on the strength.
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2.1.1. Hydraulic Fracture Initiation
The maximum tensile stress theory is often used to predict the tensile failure of the
borehole wall (63=-70) and hydraulic fracture initiation. For a borehole in an impermeable

rock formation, whose axis is parallel to the major principal stress, the condition for
failure and creation of a tensile fracture is given by:

3O-h,min - GH,max - p + T = pb (24)

in which p is the initial pore pressure, and py, is the breakdown pressure which is viewed
as the pressure at which the crack is formed; often assumed to correspond to the initial
peak of the pressure-time record. T represents the tensile strength of the intact rock
material, and p is the reservoir pore pressure. The term (36hmin-Onmax) i the above
equation represents the least stress concentration along the borehole wall due to the far-
field horizontal stresses, and is obtained from the Kirsch solution [12].

However, there are indications that shear may be a mode of failure in initiation of
hydraulic fractures from inclined wellbores [13,14,15]. Indeed, some investigators [16],
[17] argue that a hydraulic fracture is induced by shear rather than tensile failure and use
a Mohr-Coulomb shear failure criterion.

As noted by [18], neither the tensile nor the shear failure criterion is capable of predicting
the high breakdown pressures observed in the laboratory as well as its dependence on
borehole size and injection rate. A fracture mechanics model [19-23) based on the
concept of unstable fracture propagation using the fracture toughness criterion, K=K,
seems more promising. Introduction of an additional condition, namely, O(K; - K.
)/(0L)>0 makes it possible to take into account phenomena such as pumping rate- and
size-dependence of the breakdown pressure.

Fracture initiation from a wellbore may be treated using the classical strength of materials
approach [24], with Eq. (2.4) or the fractures mechanics approach [19,22-23]. The
fracture mechanics approach can be considered by using a fracture propagation model
based on the principles of fracture mechanics. In some instances it provides a better
estimate of the breakdown pressure. Also, the structural criterion [25] implemented in our
numerical mode may be used to predict both initiation and propagation. However,
because of its practicality, the classical approach is the one that is widely used. We will
also adopt it in this work unless otherwise indicated for a particular case (as in Chapter 5
when estimating the Sym.x magnitude).

The above Eq. (2.4) for fracture initiation pressure does not take into account the
influence of poroelastic and thermoelastic effects. Using the classical approach,
fracturing of a vertical well in a cooled rock was considered in [26] it was found that
thermal stresses can impose a significant influence on hydraulic fracturing and
interpretation of its results to determine the maximum far-field stress. Cooling the rock
induces tensile stresses and results in a lower wellbore pressure for fracture initiation.
Numerical and analytical models have been developed that can calculate the stress
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distribution around a wellbore of arbitrary orientation while considering, thermoelastic,
and poroelastic effects. These are useful for calculating the failure pressure and its
location around the wellbore based on the classical approach. The details of the
governing equation and solution methodologies can be found in [27-28] for the analytical
approach; and in (Ghassemi, and Zhang, 2004) for the numerical solution. Certain aspects
of the latter appear in this report also.

Once the onset of failure and fracture initiation is established from the knowledge of the
stresses and the limit of the material's ability to carry an applied load (i.e., a failure
criterion), the question arises as to if and how the fracture propagates. This is the subject
of fracture propagation modeling portion of this project. But, we note that it is possible in
principle to apply this numerical model can to study fracture initiation using a fracture
mechanics approach. This is not, however, pursued in this work.

2.2. Fracture Propagation

Whether a fracture subject to a system of loads propagates, and if the propagation is
stable or not is the subject of the field of fracture mechanics. In this work fracture
propagation is studied within the framework of what is known as the field of Linear
Elastic Fracture Mechanics (LEFM), the mathematical framework of which is described
in detail below. In situations where the fracture process zone is not small or when dealing
with fracture intersection and coalescence, a new non-local criterion is proposed and
used. This criterion in effect extends the LEFM for use in the case of a non-small FPZ
and for cases when SIFs cannot not be used.

According to LEFM, near the crack tip the displacements are proportional to Vr and the
stresses contain a singularity of the form 1/\r. This modern theory of fracture mechanics
has its roots in the work of Griffith [5] who emphasized the energy dissipated in an
increment of fracture extension, which is now referred to as the energy release rate, G.

In the previous Section, Griffith's theory was described within the framework of a failure
criterion. It was indicated that to initiate a fracture it is necessary to have a stress
concentration which is provided by inherent microcracks or flaws. This stress condition is
necessary but not sufficient for fracture propagation as very sharp flaws may be present
within a loaded body without causing failure. Indeed, Inglis' [7] results show that the
stresses at the edge of a sharp crack can tend to infinity. This paradox can be understood
by the second aspect of Griffith's theory, namely the energy balance which leads to a
critical condition for fracture propagation. It is written as an equality between the change
in the potential energy due to an increment of crack extension and the energy required to
create two new surfaces [29]:

dw-u) _,

7 (2.5)

where W and U are the external work done on the body and its internal strain energy,
respectively, and 4=4Ba is the crack surface area for an internal fracture of length 2a in a
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body of thickness B (it equals unity under plain strain condition). Westergaard's solution
[30] for the opening displacement, v, of the Griffith crack is given by:

v=22(a*-x )E (2.6)

in which E'=E for plane stress, E'=(E/(1-v?)) for plane strain, and o is the applied stress.
Thus, it can be shown that:

Bma’oc?
EV

W-U = 4Bj.%0v(x)dx = (2.7)

Assuming fixed grip conditions (constant displacement at the boundary) so that the
external work equals zero, and substituting Eq. (2.5) gives the strain energy released
when the crack grows by an amount da:

dU  mo?
da 2E 29

This can be solved to yield the magnitude of the stress at failure:

2F' 7);

i

o= (2.9)

The strain energy release rate at one tip is:

72'0'261

G AE (2.10)
Therefore, Griffith's energy balance states that crack growth occurs when G reaches a
critical value, G¢; a material property representing its resistance to crack growth. The
parameter G can be expressed in terms of tip parameters. This became possible as a result
of the work of Westergaard who used stress functions derived from complex potentials to
find expressions for distribution of stresses around the tip of cracks with thicknesses
approaching zero. Sneddon [31] applied Westergaard's results to both two- and three-
dimensional pressurized cracks. The stress field in the vicinity of the tip of a two-
dimensional crack is given by:

3 46 560
—COS—+—CoS—
- 4 2 4 2
o |=pP L écosg—lcosﬁ (2.11)
g 2ri4 2 4 2
TX
’ lsin6’cosﬁ
L 2 2]
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and for a penny-shaped crack,

3 50 |
—COS—+—C0S—
o 2P | : 0 1 529
o, |=— 212 cos~ —=cos 2= (2.12)
7 \2r| 4 2 4 2
TZF
lsin@cosﬁ
L 2 2]

where P is the internal pressure on the crack face, a is the fracture half-length in two-
dimensions and its radius in three dimensions, 7 is the distance from a point to the crack
tip, and @ represents the angle that r makes on the central plane of the crack (Figure 2.1).

2c 2c

- B =

Figure 2.1. Stress state near the tip of a crack.

As can be observed, and noted by Sneddon [31] the above expressions for stress
components around the tip in three dimensions differ from those in the two-dimensional
case by a numerical factor only.

Writing the second of Egs. (2.11) for the case 8=0, and translating the center of the
coordinate system to the center of the crack yields:
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where K is the stress intensity factor. It is a quantity which depends on the geometry and
loading and has the value oV(2rma) where ¢ = limit (oy) as x — a. The crack opening
displacement in terms of K is given by Kanninen and Popelar [29]:

v:(l+v)(K+1)K(a—xj2 (2.13)
E 2r

in which « equals (3-v)/(1+v) for plane stress and (3-4v) for plane strain, and v represents
the Poisson's ratio. Using these equations, Irwin [32] calculated the work required to
close the crack that has extended by an amount Aa, which may be equated to the product
of the energy release rate and the increment of crack extension. Therefore,

a+Aa

GAa =2 j %ay (x)v(x — Aa)dx (2.15)

so that:
KZ

G=
El

(2.16)

This expression, derived by Irwin [32], relating the Griffith's strain energy release rate, a
global parameter, to the stress intensity factor, a local crack-tip quantity, is considered as
a major contribution. It shows that Griffith's criterion for crack growth is essentially
identical with that of crack growth when the stress intensity factor, K, reaches a critical
value K. This parameter is known as the fracture toughness. It is a material property
which can be determined experimentally, and is known to be a function of temperature,
confining pressure, and moisture content [33]. But, when defining the fracture toughness,
K., it is assumed that the material is homogeneous and linearly elastic. These conditions
do not generally hold true in the case of rock, and nonlinear behavior prevails at the crack
tip in case of a homogeneous, linear elastic rock.

I I I
Figure 2.2. A sketch of three fundamental modes of fracture.
The size of this zone has a large influence on the value of the fracture toughness and

results in a scale effect. Indeed, laboratory tests indicate that fracture toughness increases
with an increase in crack length or specimen size [34]. For large crack lengths or
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specimens, K. becomes independent of size, however, and approaches an asymptotic
value considered to be an intrinsic material parameter called fracture toughness. When
applied to a hydraulic fracture, the above criterion predicts that the higher the fracture
toughness, the higher the pressure required to extend the fracture, and the longer the
fracture, the lower the pressure required for its extension (if the overburden remains
constant).

Hydraulically-driven fractures are usually considered to propagate in Mode I or the
opening mode, however, mix-mode propagation is possible and will be considered in the
modeling efforts. It is useful to review other modes of fracture propagation as shear
growth may take place on a macro-level in some geologic situations, out-of-plane
propagation, and injection into pre-existing joints in geothermal reservoirs.

In addition to a crack loaded in uniaxial tension, Irwin also considered other
configurations of fracture loading and classified them into three independent modes.
Mode-I is the above considered problem, Mode-II refers to a crack loaded in shear, i.e.,
the load is tangential to the crack surface in the direction of propagation; and Mode-III is
defined by a crack loaded by a tangential load in the direction perpendicular to the
direction of propagation. This is also called the anti-plane mode (Figure 2.2). The
equations for stresses and displacement for these problems are as given below:

2.2.1. Mode-I or opening mode
In this mode, the displacements of the crack surfaces are perpendicular to the plane of the
crack. Mode-I crack tip stress and displacement fields are [32]:

1+sin2g
o, 2
K, 2
o, | = cos268| cos —
re N2
ro sin —cos —
2 2
JZ :V(O-r +O-9)
Gz = Trz = T@Z =
z-rz :Trg =
2(1(—1)cosg—cosﬁ
u 2 2
v :& r —2(1{—1)sing+sinﬁ
4G\ 2z 2 2
w 0

2.2.2. Mode-I11 or sliding mode

During Mode-II loading, the displacement of the crack surface is in the plane of the crack
and perpendicular to the leading edge of the crack. This is caused by in-plane shear.
Mode-II crack tip stress and displacement fields are given by Irwin [32]:
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In Mode-II the material failure occurs when Kj; reaches its critical value Kj., known as
the Mode-II fracture toughness.

2.2.3. Mode-111 or tearing mode

In this mode, the crack surface displacements are in the plane of the crack and parallel to
its leading edge. This is caused by out-of-plane shear. Mode-III near tip stress and
displacement fields are given as Irwin [32]:

The elastic stress and displacement fields in mixed mode problems may be obtained from
the above results using the superposition principle. For Mode-I and Mode-II combination,
for example, this yields:

cosg(l +sin’ Q) sing(l —3sin’ Q)

o, 2 2 2 2

X, .0 K, 0 L0

o, |= cos” — + —3sin—cos” —
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In the preceding expressions, G represents the shear modulus. The above stresses and
displacements can be expressed in the integral form as:

K,
Oy _Ef[y(e) \/—fﬂ (‘9)

K, |r [ r
=——g, (0 +—” —g, (0
U 4g 27Z'g["( ) 4g zﬂ_gll[( )

where the stress intensity factors are defined as:
K, =0,Nm =omsin®

K, =0, Nm =o~masin fcos

p

Y4

L

Figure 2.3. Geometry of an inclined crack.

The above equations show that Kj and Ky are function of the crack inclination angle, 8
(see Figure 2.3). Thus, in mixed-mode, the stress intensity factors are functions of the
applied load, crack dimensions, and crack inclination with respect to vertical.

These equations form the mathematical framework for fracture propagation studies using
the Linear Elastic Fracture Mechanics (LEFM). It can be seen that displacements are
proportional to Vr and that whatever the mode of loading, the stresses contain a
singularity of the form (1/(\r)). Therefore, the stress field becomes infinite at the tip for
all values of K not equal to zero, for any arbitrary loading. It is apparent that infinite
stresses are physically unacceptable and are a direct result of the simplified model used to
describe the real physical state. The model assumes perfectly sharp cracks and linear
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brittle material behavior. But the development of plastic zones ahead of cracks in metals,
and micro-cracking in rocks are manifestations of non-linear behavior and reduce the tip
stresses to a finite value. This region of micro-cracking ahead of a fracture in rocks is
often referred to as the process zone and differs from the region of yielding near the crack
tip in metals. For rocks, the size and shape of this zone remain the same whether the
crack tip location is a free surface or deep within the material, i.e., for plane stress and
plane strain. This does not hold for metals [35]. It is for this reason that laboratory
observations indicate that thickness has no effect on fracture toughness of rocks. So long
as the size of the process zone remains small relative to other dimensions of the problem,
linear elastic conditions prevail, and LEFM remains applicable.

To resolve the problem of stress singularity at the tip, Barenblatt [36] proposed a new
theory in which two postulates were invoked when characterizing the crack tip: (1) that
there are intense cohesive forces that act over a small region at the ends of the crack, and
(2) that the local distribution of these cohesive forces is the same for a given material
under specified conditions. The stress singularity arising from these cohesive forces is
such that it cancels out the stress singularity resulting from the applied stresses. This,
according to Goodier [37], can be regarded as a third postulate of Barenblatt's theory of
equilibrium cracks. The consequence of the third postulate is that the crack closes
smoothly and the crack opening displacement has a slope of zero at the tip (Figure 2.4).

>
>

Crack opening

>
>

X

Figure 2.4. Crack-tip closure resulting from Barenblatt's 3™ postulate.

This is in contrast to the opening of a Griffith crack used in this work which is elliptical
with a finite radius of curvature and closes with an infinite slope at the tip. The theory of
Barenblatt [36] suggests that the cohesive forces increase in response to an increase, from
zero, of the applied load on the crack. When these forces are unable to keep the crack
from opening, the crack becomes a mobile equilibrium crack and propagation ensues.
Barenblatt [36] introduced a new material property called the modulus of cohesion
defined as:
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(5) (2.17)

o'—.&

in which g(&) is a function describing the intensity of the cohesive forces over a small
interval, d, at the tip of the crack. The form of this function is unknown so that the above
integral cannot be performed. However, Barenblatt showed that it can be expressed in
terms of elastic modulus and the surface energy, v, as:

K, = (mE): 2.18)

Using the concept of the stress intensity factor, K, Barenblatt's fracture criterion can be
written as:

k=% (2.19)
T

which can be compared to the Griffith's stress condition by using K=0V(27a) to obtain
the stress required for fracture:

o, = L Zﬂ (2.20)
27\ ma

This differs from the Griffith criterion, Eq. (2.16), by only a constant.

The Griffith-Irwin criterion is a useful one when applied to situations where the fracture
propagates in its own plane. However, the direction of crack propagation is not known a
priori under combined loading situations so that the above criterion is inadequate and
other propagation theories are needed. There are a number of such theories that can be
divided into two groups, namely local criteria and global criteria. In both groups,
propagation is assumed to occur at a point where the value of the parameter of interest
reaches a critical value characteristic of the material. The propagation direction is
determined by the direction in which this parameter has its minimum or maximum as
required by the criterion.

2.3. Fracture Propagation Criteria for Combined Loading

2.3.1. Local propagation criteria: The maximum circumferential tensile stress, Ggmax,
criterion [38] and the minimum strain energy density, Semin, [39] are examples of local
propagation criteria. Propagation is determined by the value of these parameters at a
distance from the crack tip. In the oggmax-theory, proposed by Erdogan and Sih [38], the
crack extension starts at the tip, in a radial direction, and in a plane perpendicular to the
direction of maximum tension. Fracture propagates when oomax reaches its critical value.
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The Sgmin-theory was formulated by Sih [39]. In this theory, the parameter governing
fracture propagation is the strain density at the point of propagation. The initial crack
growth occurs in the direction along which the strain energy density factor possesses a
stationary (minimum) value. The crack extends when the strain energy density reaches a

critical value, Sy, a material property. The value of S, is evaluated along a contour r=ro,

with ro being a property of the material.

2.3.2. Global propagation criteria: are based on the maximum energy release rate,
G(o)max, associated with crack propagation [40-42). The global energy approach has its
roots in the Griffith criterion and is based on the universal principle of energy
minimization. It predicts that a fracture will grow in the direction along which the elastic
energy release per unit crack extension will be maximum and the crack will start to grow
when this energy release rate reaches a critical value. However, according to Sih and
Erdogan [43], the application of the energy release rate concept to cracks under mixed
mode loading are of doubtful value due to the mathematical difficulties caused by
prevailing stress singularities at the crack tip and corner where it is kinked, and because
of the problems with accuracy of numerical solutions for solving problems involving
stress singularities. Despite the above arguments and that there is no clear reason why the
propagation path has to follow the direction of maximum Gy, and authors in
[40,41,44,45] use the above approach to arrive at propagation theories for mixed mode
problems involving metals.

From a numerical modeling point of view, the computational effort required to predict the
propagation path is very important. The energy release rate needs to be calculated
numerically by taking the derivative of the energy release, G, with respect to the fracture
length or area in the direction of propagation. The direction of propagation is not known a
priori so that a trial-and-error method is needed for its determination. For three-
dimensional problems, this procedure has to be repeated at several locations along the
fracture edge (at every node when there is a possibility of branching). This makes the
energy release rate criterion relatively computationally intensive.

2.3.3. Structural (non-local) criteria

The above review indicates that since Griffith’s paper [7] on fracture of brittle materials
in compression, immense literature has appeared on the subject (see also reviews and
references in [47-59]). Most of these works has focused on the opening mode or mode I
(tensile) propagation. Meanwhile, in many cases of significance in rock mechanics, the
mode II (sliding, shear) propagation may prevail; or it may appear at some stage of crack
growth. These situations arise in the presence of sufficiently high confining pressure
[51,56-58], or even under uniaxial compression [51,59-60] and many cases of crack
coalescence [51-52,55,57,59-60].
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The importance of mode II crack propagation in rock is evident by the considerable
attention it has received both analytically [51,56,58,61-62] and numerically [53,57-60,63-
64]. These investigations have provided fundamental results and understanding, however,
it is necessary to develop a unified crack initiation criterion that is capable of predicting
both tensile and shear cracks [63], and to establish a reliable fracture criterion for
predicting Mode II fracture [56]. Such a criterion has been developed [64,65] and is used
in this work. Below, we describe certain features of this criterion.

2.4. A Unified criterion for Crack Propagation and Coalescence under
Compressive Loads

‘Structural’ criteria which are often called ‘non-local’ use a structural parameter, d. One
such approach employs the criterion of average tensile stress over a characteristic size, d,
of a fracture process zone (FPZ):

1 d
JJ.G(V)dI” =0,, (2.22)
0
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/ \
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\\ d /l
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Fig. 2.5. Graphical interpretation of the edge and structural criteria. Edge criterion: the stress
is calculated at a point B at a distance equal to the length d of the FPZ; Structural criterion:
average stress over the segment AB, | 4B | =d.

where 6 has the meaning of the microscopic tensile strength; here and henceforth, tensile
stresses are assumed positive. An alternative formulation of 2.22 employs the tensile
stress at the edge of the FPZ at a distance d rather than the average value, i.e.:

6 (d)= oo (2.23)

For a small FPZ, when d// — 0, the criteria (2.22), (2.23) are equivalent to the
propagation condition in terms of the SIFs:

K= Kic (2.24)
with K. =c,4nd/2 for (2.22); and K, =c,+2nd for (2.23). In this case, the

asymptotic formulae provide easy extensions and simple analytical results.

From a computational viewpoint, average values are less sensitive to local errors and thus
provide a better opportunity for comparing the results obtained by various methods.
Finally, average values agree with the concept of the finite element method which
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employs stresses averaged over an element, and which is often employed for simulation
of crack propagation e. g., [56,58-59] and [68, 85-87].

Criterion (2.22) in its initial form referred to tensile fractures, but its concept is quite
general and can obviously be extended to other types of fracture [74-77]. It is sufficient to
formulate the macroscopic condition of fracture (tensile, shear, time-dependent, etc.) in
terms of stresses f{c;) = 6o and substitute the values averaged over a characteristic size d
into it. Thus, one obtains the criterion:

f(e,)=0, (2.25)
where:
— 14
oy = ! o, (r)dr (2.26)
Note that (2.21) may be considered as an extension of (2.23) as well, if it is assumed that:
5, =6,(d) 2.27)

The function f{c;) and the strength o, are different for tension and compression. The

structural parameter d may also differ. We will call the function f (G“) and the parameter

g

G, as a driving force and the microscopic strength, respectively; and refer to the ratio
F=f (g)/ G, as a normalized driving force. A criterion of the form (2.25) and (2.26),

including the average normal c,, and shear o, tractions as a particular choice of &, ,

was suggested and successfully employed in [72] in 2D. The most general form of (2.25)
was suggested in [74], where the driving force f was taken as an arbitrary functional.

It is of special significance to appropriately prescribe the parameters d and oy that enter
(2.25), (2.26). In practice, they are to be found experimentally using specimens having
thin slits. Since direct measurements of o are not feasible, the following consideration is
useful. The form (2.25), (2.26) does not include the length 2/ of a crack: the latter may be
either much greater than the structural parameter d, or it may exceed the latter not too
significantly (four-ten times). In the case when the relative length of a crack is large (d//
<< 1), the asymptotic form of (2.25), (2.26), formulated in terms of the SIFs and
discussed in Sec. 4, becomes available. The asymptotic form does not contain the values

of d and o separately: they enter as the combination Jd, oo defining a critical SIF,
Kc =4/(r/2)dog. Hence, instead of measuring Gy, one may estimate the critical SIF in
an experiment with a sufficiently long crack (from our calculations it follows that it is
sufficient to have d/[ < 0.1). Then, for a prescribed d we find the valuec, = K./2/(7xd) .

Now the values of d and oy may be used for shorter cracks, when the approximation of
the small FPZ is not valid. Thus, the critical SIF for a small FPZ may serve to estimate o,
in the general case.
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A number of particular equations for the function f have been listed in [72, 74] that deal
with the case of fensile and bending external loads. But in the rock mechanics where the
applied loads are primarily compressive other particular equations for the driving force
are considered. For mode I, we will use the common choice:

fl(c_zj)zﬁ_eea Gy =6,
where (5_99 > 0, oy is the tensile strength. For mode II, the Mohr-Coulomb criterion seems
appropriate:
1,06, )=sign@@ 1o, - tanp- (-3 0, =c

where G_ee <0, p is the angle of internal friction, c is cohesion.

Each of these equations has been suggested in [25] where a unified criterion, the

o . —2 ([ 2 . .
combination of another function f; = \/ Goo + (Grth / c) for tension and the particular

form f, =sign(c,)o,, for compression, was used. This combination has been studied in
detail for a small FPZ near a notch with the angle equal to 0° (a crack), 20°, and 40°. The

unified criterion presented and used herein to numerically simulate crack propagation
under compressive loads is given by:

e,)-] Siu)=ow e, w2l oy
: fH(ch.):51gn(<5,9)0,e —tanp-(—cee):c Gy <0

Including the friction angle p into the second of (2.28) provides an additional parameter
for better approximation. It tends to account for the influence of the normal compressive
traction on the shear bearing capacity of a material at the scale of a FPZ. We believe that
this influence may be significant, as is the case for intact rock and surfaces in contact.
The parameter p is to be found in experiments, for instance, of the type suggested in [56].
Presently, not having such experimental data, we may only speculate whether the values
of p in (2.28) will agree with those obtained in compression of specimens and/or with

those obtained for surfaces in contact. Expression (2.28) was used in [8] with G_U defined

by (2.27) and with p = 0. Note that in the case of a small FPZ with p = 0, an asymptotic
form of (2.28) written in terms of SIFs was used in [58, 56]. In 3D, 0 is the angle between

the crack plane and a plane of possible propagation; sign(aﬁ is taken as the absolute

o . . _ [ 2
value of the shear traction in the propagation plane: sign(c,)c,4 =4/0 +0, , Where

G_Eﬁ and G_ne are components of the shear traction in the local co-ordinates &, n in this
plane with & normal to a crack front. Thus, the classical mode II and III are included as

particular cases when eitherc,, , or 6., equals zero.

no >
2.4.1. Mode and direction of crack propagation

For a crack front moving in a fixed mode, the direction of propagation is that for which
the driving force f and, consequently, the normalized driving force F is a maximum. In
particular, if the direction is characterized by the angle 6 (Fig. 2.5), the angle of
propagation is:
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for mode I:

0, = {9 : mngFI (6)} (2.29)
for mode 1II:

0, = {9: meaXFH(G)} (2.30)

The corresponding maximum normalized driving forces are Fima,x = Fi(0)) and Fiimax=
Fu(Bn), respectively. At a position of the crack tip where both evaluated Fimax and Fiimax

are positive, the condition of propagation f (c_y.) > o, is satisfied for both angles 0, and

0, , so that it is necessary to choose between the modes of propagation. This is achieved

by assuming that at such a point, the crack will move in the direction corresponding to
the greater of the maximum normalized driving forces Fimax and Fimax. Thus,

mode I occurs if Fimax > 0 and:

FImax > FIImax (231)
mode II occurs if Fimax > 0 and:
FHmaX > FImax (232)

With cs_l/ defined by (2.27) and with p = 0, the conditions (2.31), (2.32) were used in [8]

to determine the mode of propagation. In the case of a small FPZ with p = 0, the
asymptotic form of (2.32) written in terms of SIFs turns into (2.21). As mentioned, the
latter was used in [58, 56].

The direction 0, of fracture propagation is thus defined by:

0, = {ep : max [Fine = F(0)), Fine = Fu (en]} (2.33)

0187

Because usually the angles 0; and 0y differ, the point corresponding to the change in the
propagation mode is a kink point. Equations (2.28), (2.29)-(2.33) are applicable at every
point along a crack trajectory, i.e., for initial cracks, for smooth portions of a trajectory, at
kink points, for secondary cracks, and for coalescence. In general, a numerical
implementation of (2.29), (2.30) necessitates a search among the angles using procedures

that involve direct calculations of f[(cy.) and f, (G_U) In the case of a small FPZ, the

search may employ analytical formulae.

In summary, to find the direction of crack propagation, normalized normal and shear
driving forces are evaluated over a fracture process zone (FPZ). Directions comprising
angles from —zto +7 with the current tip elements are checked. Driving forces are
evaluated ahead of the crack tip in the direction to be checked over the distance equal to
the length of a fracture process zone (FPZ). The direction for which the normalized
tensile or shear driving force is maximum is determined and a new element is added in
this direction.
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3. Coupled Poro-thermoelastic Processes

Drilling a wellbore causes temperature variations in the formation. In a fluid-saturated
porous rock, thermal loading can significantly alter the surrounding stress and pore
pressure fields. Thermal loading induces volumetric deformation because of thermal
expansion/contraction of both the pore fluid and the rock solid. If the rock is heated,
expansion of the fluid can lead to a significant increase in pore pressure when the pore
space is confined. The tendency is reversed in the case of cooling. Therefore, the time-
dependent poromechanical processes should be fully coupled to the transient temperature
field. This can be studied in the framework of poro-thermoelasticity.

Aside from poromechanical and thermal phenomena, chemical processes are also active
in a geothermal reservoir. These processes occur on various time scales and the
significance of their interaction and coupling is dependent upon the problem of interest.
For example, during drilling operations there is a strong coupling between thermal and
poro-mechanical effects that has significant impact on wellbore failure (shear and tensile
failure). This is because usually the time required for drilling a length equal to five times
the hole's radius is much smaller than the characteristic time (az/cf), where a is the radius
of the well and ¢’ is the fluid diffusivity. On the other hand, during stimulation by
hydraulic fracturing the evolution of the fluid-rock mechanics coupling is rapid (on the
scale of minutes to hours) compared to thermal processes, thus the thermal effects have
little effect on the fluid-mechanical processes involved in fracture propagation. However,
during long term injection operations (time scale of weeks to years) or, when the fluid
pressure is below the level necessary to hydraulically derive a fracture, the thermo-
mechanical coupling can no longer be neglected. In fact, thermo-mechanical processes
are also coupled to chemical processes. Accordingly, different levels of coupling are
considered herein when studying wellbore failure, fracture propagation, and fluid
circulation.

In order to study the pore pressure and stress field under combined thermal and poro-
mechanical loading, the theory of poro-thermoelasticity [1-3] is used.

3.1. Governing Equations of Poro-thermoelasticity

In the theory of poro-thermoelasticity, it is assumed that rock (and fluid) deformation has
negligible influence on the temperature field. Heat convection can usually be neglected
because of the extremely low fluid flow velocity in a rock such as granite. So that, for
rocks with low permeability, heat conduction dominates the heat transfer process [4].
This means that the temperature and heat flux can be calculated separately without the
contribution of pore pressure and stresses. The relationships of these three main
components in poro-thermoelasticity are indicated in Figure 3.1.
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Figure 3.1. Illustration of coupling between poro-thermo-mechanical processes.

The following assumptions are made in this work:

Homogeneous, isotropic, infinite rock
Constant material parameters

Transient fluid flow governed by Darcy’s Law
Transient linear heat conduction

The governing equations for poro-thermoelasticity are briefly reviewed next; these
consist of the constitutive equations, transport laws, and balance laws.

3.1.1. Constitutive Equations

In isotropic poro-thermoelasticity, the constitutive equations can actually be separated
into a deviatoric response and a volumetric one. The latter includes volumetric response
of the solid matrix and the fluid. Deviatoric response is given by:

L foriz] G.D
g, =——, fori .
e g

where ¢, denotes the components of the deviatoric strain tensor, o, denotes the

components of the deviatoric strain stress tensor, and G is the shear modulus. Throughout
this report, subscript indices i and j have values in the range {1,2} and the summation
convention is used over repeated indices unless otherwise indicated.

The volumetric response of the solid contains both hydraulic and thermal coupling terms:

Ow , AP
BT 3.2
kk 3K K ’ ( )
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. . . O . .
where ¢, is volumetric strain, also denoted as ¢, ES is volumetric stress (mean stress),

p is pore pressure change, 7 the is temperature change. The constant K is the rock's bulk
modulus; « is Biot's [5] effective stress coefficient and can be computed using
a=1-(K/K,), where K is the bulk modulus of solid grains; f is the volumetric

thermal expansion coefficient of the bulk solid under constant pore pressure and stress.
Note that without the pore pressure term and temperature term, equation (3.2)
degenerates to the classical elastic relation. Equation (3.2) can also be written in terms f
stresses:

o, =2Ge,; + %gk,ﬁ —apo,; + KB, TS, (3.3)

in which v is Possion’s ratio.

The volumetric response of the fluid can be written as:

§ = out ol B )T (3.4)

where ¢ is the variation of the ﬂuld content per unit volume of the porous material [5], B
is Skempton's pore pressure coefficient, S, is volumetric thermal expansion coefficient

of the fluid and # is porosity. The parameter B controls the increase in pore pressure due
to an increase of mean stress under isothermal undrained condition (£ =0).

Equation (3.4) can also be written in term of pore pressure:

p:M(é’_ao-kk_'_ﬂmT) (35)
where M is the Biot modulus given as M = % , [, 1s hydro-thermal expansion
a(l-Ba

coefficient given as S, = aff, + n(f, — B,).
3.1.2. Transport Laws

The transient fluid flow in porous rocks is governed by the well-known Darcy’s law,
which can be described as:

q, = —Kp (3.6)
where g; is the fluid flux (units of fluid volume per unit area); x = k/ u( k is the intrinsic
permeability having dimension of length squared, and x the fluid dynamic viscosity).

The heat flow is governed by Fourier law, which is written as:

q, =—«'T, (3.7)
where ¢ is the heat flux, " is the thermal conductivity. One can see that the transport
laws for fluid flow and heat flow are analogous to each other.
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3.1.3. Balance Laws

For local stress balance, standard considerations of static equilibrium lead to the
equilibrium equations used in elasticity:

o, =0 (3.8)

Considerations of mass conservation for a compressible fluid yield the local continuity
equation:

o¢
- 3.9
o T (3.9

3.2. Field Equations of Poro-thermoelasticity

From the constitutive, balance, and transport laws, the field equations can be derived for
temperature, 7, displacement, u;, and pore pressure, p:

Navier Equation:

GV’u, + %(G +3K)e, =op, + KB.T, (3.10)

Diffusion equation for pore pressure p:

1o os 0T

KVp = +a—-pB, — 3.11
=M o "ot G110
Diffusion equation for temperature 7=
v =2 (3.12)
ot

In the above equations, u; denotes the components of the solid displacement vector, ¢&;

the total strain tensor, p the pore pressure change, and 7 the temperature change. The
constant ¢’ represents thermal diffusivity. As mentioned above, heat transfer is
calculated separately because stress and pressure changes do not significantly alter the
temperature field. Also, note that convective heat transport is neglected.

Ten independent parameters are needed for poro-thermoelastic theory, they are {K, G, «,
B, x, Bs, Bs ! K 7% }. Among them, five parameters {K, G, a, B, k} are from
poroelasticity, with {K, G} as the pure elastic parameters.
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3.2.1. Field Equations for poroelasticity and thermoelasticity

Poroelasticity and thermoelasticity can be considered as two special cases of poro-
thermoelasticity. Derivations of field equations for poroelasticity can be found in the
literature e.g., [6]. These equations can also be obtained from the poro-thermoelastic ones
by neglecting the thermal effect, doing so in equations (3.10) and (3.11), one can get the
field equations for poroelasticity:

Navier Equation:
GViu, + %(G +3K)e, =ap, (3.13)

Diffusion equation p:
KV2 p= 1o +a s
M ot ot (3.14)

Similarly, neglecting the pore pressure term from the field equations of poro-
thermoelasticity will result in field equations for thermoelasticity:

Navier Equation:

GV?u, + l(G +3K)e, =KB.T,
3 (3.15)

Diffusion equation for temperature, 7, would be the same as the poro-thermoelastic
equation because actually no pore pressure and stress effects are considered. The
analogies between poroelasticity and thermoelasticity have been discussed in references
[7-8].

3.3. Poro-thermoelastic Boundary Element Method

A few analytical procedures have been developed and used to solve geomechanics
problems of interest involving coupled thermal and poromechanical problems [9-10].
However, many problems formulated within the framework of poro-thermoelasticity are
not amenable to analytical treatment and need to be solved numerically. The boundary
element method (BEM) or the boundary integral equation formulation has been used
extensively for the poroelastic and thermoelastic problems e.g., [11]. The advantage of
the method is that it reduces the problem dimensionality by one, thereby reducing the
computational efforts significantly.

Boundary element method (BEM) is a powerful numerical tool for solving systems
governed by linear partial differential equations [12]. BEM is based on fundamental
solutions, which are analytical solutions corresponding to some sort of singular impulse
at a point in an infinite region. For example, in solid mechanics, the impulse can
represent a point force applied within an elastic solid. The impulse could also represent a
point fluid source, a point heat source or a displacement discontinuity in different
problems. The fundamental solutions are also called singular solutions because,
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mathematically speaking, they are well behaved everywhere in the region except at the
point of the impulse, where there is a mathematical singularity.

Partial differential equations plus certain conditions specified on the boundary of the
region of interest R, enclosed within a boundary 7, defines a boundary value problem. In
contrast to the finite difference and finite element methods which make approximations
on the whole region R, BEM makes approximations only on the boundary /" by dividing
it into N elements, as shown in Figure 3.2, after [13]. Therefore, a system of N linear
algebraic equations can be formed. Once these equations have been solved, the solution
at any point in R can be constructed. The boundary-only discretization significantly
simplifies modeling. The system of equations need to be solved is much smaller than the
system needed to solve the same boundary value problem by finite element method.
However, this smaller system of equations is no longer sparse as each singular impulse
plays a part in every equation (Crouch and Starfield, 1983). Another major advantage is
that BEM can generate solutions at any point in the region R, instead of a number of
fixed mesh points in finite element method. This is because BEM exploits analytical
solutions that hold true for the whole region. Therefore, BEM is potentially more
accurate than finite element method, where approximations are made in every subdivision
of R [13].
2
1

N

X

Figure 3.2. Discretization in the boundary element method.

It is worth noting that there two general methods of formulating the BE equations, the
direct and the indirect methods. The direct method is based on the generalized Green’s
theorem, which is sometimes expressed in the form of an energy reciprocity theorem
[14]. Solution of the integral equations for the elements into which a boundary is
discretized directly yields the desired values of the unknown variables on the boundary.

In the indirect method, singular impulses (e.g., point force, heat source, fluid source, or
displacement discontinuity) are distributed on the elements along the boundary so that the
combined effects of all the impulses satisfy the prescribed boundary conditions.

The indirect form as applied to the problems of our interest has two sub-formulations,
namely, the fictitious stress method (FSM) and the displacement discontinuity method
(DDM). The fictitious stress method is based on the analytic solution of a point force in
an infinite solid. It is a versatile method of modeling underground openings of arbitrary
shape. The displacement discontinuity method makes use of the fundamental solution for
a constant discontinuity of displacement in an infinite solid. The displacement jump
inherent in the fundamental solution of displacement discontinuity method are not
fictitious quantities, this makes it a natural choice for modeling fractures. The fictitious
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stress method is not suitable for such problems, because the effects of elements placed
along one crack surface are indistinguishable from the effects of elements placed along
the other surface [13].

Although the coupled diffusion-deformation problems are essentially three-dimensional
(3-D), they can be analyzed in 2-D using the concept of plane strain as long as the length
of the excavation is much larger than its dimension in the plane perpendicular to its axis.
The plane strain concept can also be used when the long axis of the opening is not in the
direction of a principal stress [11,15] which is often practiced in engineering. In this
work, a plane strain 2-D indirect boundary element model is developed and applied to
borehole and fracture problems.

3.3.1. Displacement discontinuity method for poro-thermoelasticity

The displacement discontinuity (DD) method is based on the fundamental solution for the
problem of constant normal and shear discontinuities in displacement over a finite line
segment in the x, y plane of an infinite elastic solid in plane strain, as shown in Figure 3.3
(after 13]). The line segment is chosen to occupy a certain portion: |x[<a,y=0,

Consider this segment to be a line crack with two surfaces, one is on the positive side of
=0, denoted y=0", and the other is on the negative side, denoted y=0".

Figure 3.3. Constant normal and shear displacement discontinuity.

From one side of the line segment to the other, the displacements undergo a constant
specified change in value D;=(D,, D,). The displacement discontinuity, D; is defined as
the difference in displacement between the two sides of the segment as follows:

D, =u (x,00)—u(x,07) (3.16)
D, =u,(x,07)~u,(x,0") (3.17)

The elastic solution to this problem is given by Crouch and Starfield [13]. The
displacements and the stress components are then defined everywhere with functions of
D, and D,. The corresponding fundamental solutions for continuous impulses required in
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displacement discontinuity method are the stresses and pore pressures due to DD, fluid

d, pcs’pch‘ O_Cd oSS | piCd

cd
source, and heat sources: o lo PO
ijk> i

S cs,o.c.h , and
gk "i Ty

c
,pl-

p©® are poroelastic terms, and have been given in [20].

In the DD method, temperature, pore pressure, and stresses fields on the boundary can be
approximated at any given time, ¢, by the following methodology (note that the heat
equation is not coupled to others, thus it can be solved independently first):

1. Distribute point DDs, fluid sources and heat sources on the boundary elements.
Temperature at each element is the sum of all temperatures caused by all heat
sources taking place at time 7 <¢. (The temperature field is decoupled from pore
pressure and stresses because fluid sources and point DD do not contribute to
temperature change.) The strengths of heat sources, which are functions of time,
are calculated such that they satisfy the temperature boundary conditions.

3. Pore pressure at each element is the sum of all pore pressures caused by all point
forces, fluid sources and heat sources taking place at time 7 <¢. The strengths of
heat sources are known from step (2).

4. Stresses at each element are the sum of all corresponding stresses induced by all
DD, fluid sources and heat sources taking place at time 7 <¢. The strengths of
heat sources are known from step (2).

5. To satisfy the boundary conditions of pore pressure and stresses, strengths of DD
and fluid sources can be solved since the contributions from heat sources have
been determined. The strengths of DD and fluid sources are also functions of
time.

Then, one can obtain the stresses, pore pressure, and temperature at any point using the
history of the strengths of heat sources, fluid sources and DD forces along the boundary.
The determination of this history requires the solution of a set of three singular integral
equations:

id ey
ik XL =)D (1:7)

Uij (x,0) = Jf .1+ 02‘? (X, st —=1)p(y,7) ¢dl()dt (3.18)

+ a;]?“ (X, 75t - )p(17)
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id (g ey
P, Xxt=7)D; (%.7)

P10 = [ 4+ ™ (x5t = D7) HT(x)d (3.19)

+ P x - D)e(n, )

T(x,t) =[], {Tih (X, %1 = D)@Y T)}dF(x)dT (3.20)

These are called integral equations because the unknowns appear inside the integral sign.
Aside from the heuristic approach based on the principle of superposition, the integral
equations can be obtained using a rigorous approach based on the reciprocal theorem
[16]. In the above equations, /" is the boundary; x and 7y are the two-dimensional

coordinate vectors. O'l.j(X,t) denotes the stress component at x and at time ¢. The

influence function all.ji(x,x;t—r) represents the stress componental.j(x, t)due to an
instantaneous unit point DD, located at y and taking place at time . Similarly, the
symbols O'll.; (x,y;¢—7) and agl (x,%:¢ —7) represent the stress components induced by

an instantaneous fluid source and an instantaneous heat source, respectively. p;{d, p

and plh are the pore pressure induced by an instantaneous unit point DD, fluid source

and heat source; the latter are given by [17]. T ihis the temperature induced by a

instantaneous unit heat source. Dk’ #(1,7), and @(y,7) are the strengths of the point

DD, fluid source and heat source, respectively. Superscripts “id”, “is” and “ih” denote
instantaneous displacement discontinuity, fluid source and heat source, respectively.
Subscript i, j, k have a range of 1-2, corresponding to the two spatial directions. It can be
seen that the temperature part remains the same in the two methods, because temperature
is calculated separately while pore pressure and stress are fully coupled.

Numerical Implementation:

Numerical implementation of the boundary integral equations of transient poro-
thermoelasticity requires spatial and temporal discretization. Spatial discretization is
achieved by dividing the boundary of the problem into a number of elements and
replacing the integrals over the boundary by a sum of integrals over these elements.
Temporal discretization is realized by dividing the time domain into a number of time
increments and utilizing a time marching scheme. In the present implementation, the
following approximations are made: the boundary elements are straight-line segments;
the singular impulses (point force, displacement discontinuity, fluid source, heat source)
are located at the midpoint of each element; the intensity of the impulses is constant over
each element, and the time increments, Af, are constant.
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Suppose p+1 is the number of time increments used, then the boundary integral equations
for induced stresses, pore pressure and temperature can be rewritten as:

a,.j:fj {o6D +07°¢" +0'p' }dT (3.21)
b

p=zj ploi+psd + pile'tdT (3.22)

T= zj {reg! (3.23)

where D, ¢"and ¢"are strengths of continuous point DD, fluid source and heat source

in time increment /. Suppose N is the number of elements used to discretize the
boundary. The spatial integrals over the boundary are replaced by a sum of integrals over
these elements. Then, the induced stresses, pore pressure, and temperature on element m
due to a constant spatial distribution of continuous DDs, fluid sources and heat sources
on element r are given by:

o =onD; +o¢ +0,'¢" (3.24)
p"=p'D,+p° + pTe’ (3.25)
T =T"’ (3.26)

where D, , ¢"and ¢"are strengths of continuous point DD, fluid source and heat source

on element 7. The superscripts m and r refer to the influenced and inﬂuencing elements,
cd cs ch cd ch ch
o g . and T
k b O-U b GU 5 pl 2 p
denote the influences of the element », which are obtained by integrating the fundamental
solutions for continuous point impulses over the influencing element r. The spatial
integration over the straight-line constant elements is a relatively easy process in a two-

dimensional system.

respectively. Influence coefficients: o now

A
olt —
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£ I
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————— Ao >
To Tt Tn time

Figure 3.4. Time marching scheme for a continuous heat/fluid source or DD.

There are different approaches to the temporal solution of the problem. One approach is
to solve the problem at the end of a time step, and then use the results as the initial
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conditions for the next time step, marching forward in time. The disadvantage of this
method is that it requires discretizing the spatial domain of the problem. The second
approach is a time marching technique which solves the problem at the end of a time
step, but keeps a solution history [19]. This allows for strengths of singular impulses to
vary with time. It involves incrementing the strengths of singular impulses at each time
step and including the influence of all previous increments. This technique eliminates the
need for internal discretization of the spatial domain. But, it has the disadvantage that the
coefficient matrix must be stored to be used as required. The scheme is illustrated with
the heat source ¢(¢) as an example, in Figure 3.4; after [20].

The implementation of this time marching scheme is possible because it is the time
interval between the loading and receiving that affects the response rather than the
absolute times. This is the so-called “time translation” property of the fundamental
solutions. For example, the stress at a point x and time ¢ due to a heat source taking place
at point ¥ and at time 7 is equal to the stress at point x and time #-7 due to a heat source
occurring at time zero at the point x. That is:

ol (x,69,7) = 0" (x,t = 73%,0) (3.27)

Due to this property of the fundamental solutions, the evaluation time and loading time
can be shifted along the time axis without affecting the values of the fundamental
solutions. Therefore, the influence coefficient can be calculated only once during the
calculation history.

The induced stresses, pore pressure and temperature of element m are given by:

Z[O'l/k( -7, )AD,:" +0;“(x,x,t—rp )A¢”’ +O';h(x,x,t—rp )A(p”’]
. (3.28)
+ZZ[O'Uk (x,x.t—7,)AD]' +o (x,0.—7,)Ag" +O';lh (x,x,t—r()Ago"g]
=0 r=1
N
p (X t Z[p ( ,x,t—rp)AD,:p +p‘“(x,x,t—rp)A¢"” +p”h(x,x,t—rp)A(p’p]
p’j . (3.29)
+ Z[ _T/,‘)AD;[+pcs(X9X9t_T(')A¢M+psh(xsxat_ré)A¢r[]
(=0 r=1
N p-l N
Z[T‘h( X, 11— 7, A¢’p]+ ZZ[T‘}’ X x,t—ré,)A(p’é] (3.30)
r=l1 (=0 r=l1

where p+1 is the number of time increments, N is the number of elements. AD,”, and
Ag¢", are the increments of strengths of certain kind of continuous impulse occurring on

element 7. Subscript k takes value from {1, 2}, which denotes the two spatial directions.
The influence coefficient O';Z and p;’ are obtained by spatial integration of fundamental

solutions of a displacement discontinuity on the influencing element ». Equation (3.28),
(3.29) and (3.30) constitute a set of linear algebraic equations with the unknowns are the
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increments of the singular impulses. They can be solved by applying the boundary
conditions.

3.3.2. Natural fracture deformation using poro-thermoelastic DD

In this part of the work, we only consider those fractures with two rough surfaces to
contact each other and the fluid flow can flow through the void spaces between them as
illustrated in Figure 3.5. The fracture can deform normally and laterally to the fracture
surface as the stress acting on it changes.

Figure 3.5. A fluid filled fracture subject to normal and shear stress.

Bandis et al.[21] presented a hyperbolic model for the normal deformation of fracture
based on a large body of experimental data.

o, =1 (31

where o/, is the effective normal stress and D, is the normal closure of fracture; a and b are
constants and related with the experimentally determined parameters initial normal stiffness (K,;)
and the maximum possible closure (D) as a=1/ K,;; and a/b= D ..

Eq. (31) can be rewritten by substituting K,,; and D,,,.., for a and b.
KniDn

o, = 32
! 1-D,/D (32)

nmax

The normal stiffness (K,) is therefore derived according to Eq. (32) as a function of D, or 6 /;:

Kn = aan = Kni B (33) Or K
oD (I_Dn/Dnmax)

n

= [1 - 0';1 / (Km.l; + 0';1 )]z B9

nmax

In the elastic range, the change of shear stress has a linear relationship with the change of shear
displacement:

Ao, =K, AD, (35)
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where K is the shear stiffness. The fracture slips when the shear stress exceeds the shear strength
(o,) of the fracture defined according to the Mohr-Coulomb failure criterion:

c,=0, tang' +c, (36)

where ¢'is the frictional angle and ¢, is the cohesion strength. The two rough surfaces slide each
other and cause an increase in apertures which is known as frictional dilation. We used an
approximate linear relation for the aperture increase (AD,_giuion) due to shear movement.

AD

n—dilation

= _ADS tan Wdilatian (37)

where Wiuion 18 the dilation angle.

Numerical implementation
Using the stress-displacement relationship of fracture, the normal and shear stress of the
kth fracture are related with the normal and shear displacement of the k¢4 fracture:

N

Ac* — Ap* =K, (AD! +tany,,,,, ADF)  (38)
Aot =K, AD! (39)

The normal o, and shear stress of; and pore pressure p" are also related with the sum of
the effects of the normal and shear displacement and interface flow of all of fractures in a
fracture network according to the DD solutions:

Aot =Y A"AD!+Y B*AD!+> C"¢'+> D"¢' (40)
=1 =1 =1 =1

Aot = iE”‘AD; +iF”‘ADj +’i1<”‘¢’ +Zm:F”‘(pl (41)
=1

=1 1=1 1=1

Ap* = L"AD, +> M"AD!+ Y N"¢' +> E"¢' (42)
I=1 I=1 =1 I=1

AT* = Ry’ (43)
I=1

where 4%, B* ,C* ,E* ,F* | K" I, M" and N* are the influence coefficients of the /
fracture on the k" fracture. Combining Eqs.(40)-(43) results 8m equations for m fracture
segments and 8m unknowns (o;, oy, Dy, Dy, p, ¢, and T, @), therefore the 6m unknowns

can be obtained by numerically solving the 6m linear equations.

The above formulations allow one to consider both the fracture propagation problem and
natural fracture (joint) response to hydrothermal loads in e.g., injection extraction
problems. Applications of these models will be shown in Chapter 5.
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34. Poro-thermoelastic Fractured Rock Response to
Injection/Extraction

The porothermoelastic model for natural fractures is used to model a fractured
geothermal reservoir and to study its response to injection/extraction operations. This is
done by considering fluid flow and heat transport in a fracture network. To do so, we use
the plain-strain approximation and consider a 2D horizontal section to reduce the solution
geometry. The rock is assumed to be isotropic, homogeneous, and linearly elastic with
constant permeability. Fluid flow in the fractures is viscous, and laminar such that
lubrication flow theory applies and fluid properties are uniform throughout. The fracture
aperture and joint deformation are significantly less than the joint lengths, and there are a
large but finite number of joints. The total normal stress in the direction normal to the
joint varies non-linearly, but in the shear direction, the joint stresses are proportional to
deformation when the deformation are in the elastic range (using Mohr-Coulomb
criterion). Flow in the joints is described by non-isothermal parallel plate flow model in
which the flow rate is proportional to the pressure gradients and also depends on the cube
of the apparent joint aperture.

3.4.1. Fluid Flow & Heat Transfer

Assuming that Darcy’s flow is applicable in the fracture network, the intrinsic fracture
permeability (kj) caused by the fracture aperture is defined as:

2
_Yr
712

where wyis the effective fracture aperture (twice the displacement discontinuity). On the
other and, often the fracture permeability (k) is expressed according to the cubic law:

(44)

3
_ vy
k== (45)

where n/is the fracture frequency—number of fractures per unit length.

The fluid balance equation in the fracture includes the flow from the connected fractures
and the flux (interface flow) from and to the connected matrices.

olp,mw,AL)
ot

where Q is the flow rate in the fracture; v is the flow velocity (linear flow rate) in m/s; Qs
is the production or injection term; » is the fracture porosity or the ratio of actual fracture
void volume (7)) to the effective fracture void volume for fluid flow (V,y), and ¢, is the

(pr),i =- +p,v+p,0, (46)

op.,
fluid compressibility defined by: % =c,p,. The fluid diffusion equation in the fracture
» 1F

can be derived from Eq. (40).
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Studies on the heat transfer suggest conduction and dispersion effect within the fracture
are small, hence can be ignored [22]. Assuming that rock and fluid properties do not vary
with temperature:, we obtain the following heat transport Eqn for the fracture equation:

o°T ( oT oT
! ot ox

kTWf ax2 + Qinterface = pwcw nALw, —+ qﬂuid _j + Qinjection (48)

v is the interface flow between the fracture and matrix, py and c, is are fluid density and
heat capacity, respectively, kr is the fluid thermal conductivity, and qr is the fluid
velocity. The Qi in the heat transport equation represents the heat loss/gain at the
wellbore wall, due to fluid injection. The heat transport in the matrix is assumed
conductive and that heat transport due to fluid leak-off is not considered.

3.5. Solution Method

The fluid pressure change and heat flux induce fracture deformation and the fracture
deformation influences the fluid pressure distribution but not the heat flux. The heat
source (interface heat flow) is solved for the system using a given flow rate and
temperature distribution. Then the fluid pressure, leak-off (interface fluid flow rate),
normal and shear fracture displacement are solved simultaneously.

The displacement change and interface flow rate are time-dependent for practical
applications. This is simulated using poro-thermoelastic DD with the time integration has
going back to the initial homogeneous state (convolution integration). Therefore, all the
previous increments of source strengths need to be included while integrating the effect
of source strengths at each time step. The induced stress and pore pressure on the i
fracture element by the increments of source strengths are:

Aai(t)=iA”(t—z'p)ADip +ﬁ:B”(t—z'p)ADf’ +iC’i(t—1p)vlp
=1 =1

-1 m -1 m -1 m
S A"(t—17,)AD" + ,,Z > B"(t-7,)AD" + ,,Z > C(t-z, V" (49)
h=0 [=1 h=0 [=1 h=0 [=1
DD WA
h=0 [=1
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-1 m m
< M E"(t—7,)AD] + Z ZF"( —7, JAD! +3" > K (-7, p" (50)
h=0 [=1 h=0 [=1 h=0 [=1

Ap'()) = (e~ 7, )AD? + iM” (-7, )ADP + iN” (-7, b
iL” —7,)AD" +Z iM” —17,)AD" +Z iNl’ —z, " (51)

where AD,”, and AD,” is v are the increments of source strengths at time step p, which
is current step; AD,", and AD," is v"" are the previous increments of source strengths at
time step A, which varies from 1 to p-1. A“(t-), B"(t-1,), C"(¢t-1), E"(t-73), F'(t-13), K" (t-
o), L' (t-1), M"(-7,), N'(t-1), R"(t-13), S"(t-7,), P"(t-7), are the influence coefficients of
I" fracture element on the i fracture element at time step h. Using the same time
discretizing, the effective stress change in i fracture can be rewritten as:

Ac!(()+ p'(c)- pl ==K, (AD? + ADP tang, )

- SRR 52
—K{pz AD;h+tan¢de: AD;’“] 2)
h=0 h=0
-1
Aci(t)=K, AD” +K, ,,Z AD! (53)
h=0

where p'(#) is the fluid pressure in the i fracture element at time 7 and p'y is the initial
fluid pressure in the i" fracture element. Substituting the last two Eqs. into Eqs.(49-51)
and substituting p'(z) —p'y for Ap'(t) results:

+3 4%~z DY + K,AD? + 3 B'(r ~ 7, JAD” +K, tan ¢, AD?

<
L

NgE

B(t—z,)AD" (54)

+ic”( — Wr=— iA”(x—rh)AD;h -

~
Il
=
Il
(=]
~
Il
=
Il

0

-1 -1
Rh(t T )Vhlh _Kn( ADrih + tan¢de: ADjh )*‘ pé

h h=0

~
Il

1

=

Il
(=)
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iEli(t— ) +2Fh(t T) KAD’p iKli(t_Tp)vlp:

iKlt t_z_h )vlh (55)

=1 h=0 [=1

m -1
—ph - L'(t—=7,)AD) = > > M"(t—7,)AD!" - Nt -z, " (56)
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The fluid flow equation (47) is discretized in space and time for a given fracture network.

. r-l b4
ZC” pi() -nALADY + ALV" =nw ALc,p'(r,) - ALY V' = > 0! (57)

j=1

where C,” is the ﬂu1d coefficient matrix. The production rate (or injection rate) from i"™
fracture element 0/ is also discretized in time in Eq. (57). All terms on the left side of
Eqs (55)—(56) are unknown and all on the right side are known. When the production
rate and initial reservoir pressure are specified, the normal and shear fracture
displacement, interface flow rate, and fluid pressure can be obtained by solving the linear
equation Egs. (55)—(56). Unlike uncoupled methods, the interface flow rate (leak-off) is
solved implicitly and it need not discretize the matrix to calculate interface flow rate
using finite difference method.
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4. Three-dimensional Boundary Element Method for
Calculating Natural Fracture Response and Injection-Induced
Stresses

Thermally-induced stresses significantly contribute to seismicity in petroleum and
geothermal fields [1, 2]. Reservoir seismicity and the variation of injectivity with water
temperature in geothermal fields have been attributed to thermally-induced stresses. It has
been found that half the earthquakes in The Geysers field seem to be associated with cold
water injection [2]. The mechanism by which seismicity occurs is believed to be shear
slip on natural fractures resulting from a reduction in effective stress acting across the
fracture. The magnitude of the thermal stresses associated with advective cooling has
been estimated analytically [3] using an axisymmetric model of injection into a planar
reservoir and a 1D heat flow in the rock mass. It has been shown that one- and two-
dimensional heat flow models underestimate heat transfer to the fluid from the crack [4].
Thus, rock cooling and the associated thermal stresses should be studied using three-
dimensional heat transfer and stress models. This requires coupling a 3D heat flow model
to a 3D elasticity model. A reason for ignoring the three-dimensional nature of heat
conduction in the reservoir is the difficulty in treating the infinite geothermal reservoir
geometry by numerical discretization. However, it has been demonstrated [4] that by
using 3D Green's function for heat conduction and the integral equation formulation the
need for discretizing the 3D reservoir is completely eliminated. In this work, we
developed a three-dimensional numerical model to simulate the coupled poro-and
thermoelastic processes related to cold water injection into an arbitrary shaped fracture in
geothermal reservoirs. In the model, the fluid flow and the convective heat transfer in the
fracture are modeled by the finite element method; while the three-dimensional pore fluid
diffusion and heat conductive transfer in the reservoir matrix are modeled by the
boundary integral equation method without discretizing the reservoir domain. The
influence of the fracture aperture variation on the fluid flow in the fracture is also
included in the model. We present a few numerical examples to examine the physical
process of the fluid injection/extraction and facture slip.

4.1. Governing Equations

A schematic view of heat extraction from a fracture or a fracture zone in rock is
illustrated in Figure 4.1. In this work, the fracture is assumed to be flat, of finite size, and
with arbitrary shape. The geothermal reservoir, on the other hand, is of infinite extent.
Other physical assumptions are similar to these postulated in [5]. Specifically, it is
assumed that the geothermal reservoir is impermeable to water, has constant heat
conduction properties, and is non-deformable. The heat storage and dispersion effects in
the fracture fluid flow are negligible and production rate of hot water is equal to the
injection rate in the fracture. It is further postulated that the fracture width is small such
that the flow in the fracture is laminar and governed by the lubrication flow equation.
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The fracture apertures may vary during the fluid injection/extraction process. The
reservoir is assumed to be poro-thermoelastic and its poro and thermoelastic properties
are constant. The mathematical formulations for the problem are presented as below.

extraction

injection

-

-
- geothermal reservoir

Figure 4.1. Cartoon of injection/extraction heat extraction in a planar fracture.

4.1.1. Fluid flow in fracture

The laminar incompressible fluid in the fracture is governed by the cubic law:

12
V,p(x, y,O,t):—W/;t)q(x,y,t), X, yeA Q)

where V, is the gradient operator in the fracture plane, p(x, y,O,t) the fluid pressure in
the fracture, u the fluid viscosity, w(x,y,t) the fracture width, q(x,y,t) the fluid

discharge, and A is the fracture plane. It should be noted that W(x, y,t) varies with the
time.

For incompressible fluid and variable fracture aperture, we can write the fluid continuity
equation as
ow(Xx,y,t)

Vo a(% ) =20 (Y, )+Q ()8 (x =%,y =¥) = Qu (1) (X%, Y =¥, ) = — = (2)
where V, - is the two-dimensional divergence operator, v, the fluid leak-off from one
side of the fracture wall into reservoir matrix, ow/at is the rate of volume increase, Q, (t)

and Q,(t) respectively the fluid injection and extraction rates, (x;,y;) and (X,,Y,)
respectively injection and extraction well locations, and & the Dirac delta function.

Substitution of Eq. (1) into Eq. (2) yields the following governing equation for the fluid
motion in the fracture

2 Mvzp(x, y,0,t) [—2v, (X, y,t)
e )
- OID) o (05(x-x,y- 1)+ QD5 (x- 1,y -,
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4.1.2. Fluid flow in reservoir matrix

As fluid is injected into the fracture or fracture zone, it will leak into rock matrix. This
fluid loss can be expressed using Darcy's law:

p(xy,zt)
T|z:0 (4)

where « is the rock permeability, n is the outward normal of the fracture surface, z=0
denotes the fracture surface.

v (xyt)=-«

The three-dimensional field equations for the poroelastic rock matrix can be presented as
a Navier equation with a coupling term and a diffusion equation [6]:

GV3u, +%uk,ki —ap; =0 (5)
ap 2;«(382(1—2v)(1+vu)2Vz _ 2GB(L+v,)oe ©)
ot 9(v,-v)(1-2v,) P= 3(1-2v,) ot

where u, is the solid displacement in the i direction, p is the pore pressure, G is the
shear modulus, v and v, respectively are the drained and undrained Poisson’s ratios, «

is the Biot’s coefficient of effective stress, B is the Skempton’s pore pressure coefficient,
¢ Is the volumetric strain, and the other notations are the same as those defined
previously. Note that the same notation p is used for the pressure of reservoir matrix and
water in the fracture, because the pressure must be continuous between the two sub-
systems (assuming no filter cake).

4.1.3. Heat transport in fracture

For the heat transport in the fracture, it has been demonstrated that under the conditions
of relatively large advection velocity and continuous injection of fluid, the heat storage
and diffusion are negligible compared to the heat advection by the fluid flow in the
fracture [5,7]. Therefore, the heat transport in the fracture can be expressed as

P.CA (X% Y)- VT (X Y,0,t)+0 (%,y,0,t)=0 @)
where p,, is the fluid density, c,, is the specific heat of fluid, ¢, is the heat source

intensity which denotes the heat transfer rate between the reservoir matrix and the fluid in
the fracture.

4.1.4. Heat transport in reservoir

The heat transport takes place both in the geothermal reservoir and the fracture. In the
low permeability geothermal reservoir matrix, the heat conduction is the dominated way
of heat transport and can be expressed as:

aT(x,y,2,t)
ot

where T is rock temperature, p, is the rock density, c, is the specific heat of rock, V3 is

the Laplacian operator in three dimensions, and Q represents the geothermal reservoir.

K, ViT (XY, 2,t)=pcC, , X,Y,2eQ (8)
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By assuming that the temperature is continuous across the fracture surface (z =0), the
heat source intensity in Eq. (7) can be expressed as
aT (X, Y,2,t)

T s

where K, is the rock thermal conductivity.

4 (X, y,0,t)=-2K, 9)

Except the above governing equations, we have to set the boundary and initial conditions
for the present problem. In this work, the injection rate Q, (t) or injection pressure p, (t),

the extraction rate Q. (t) or extraction pressure p,(t), and the temperature of the injected

fluid are given. We also assume the fracture circumference is fluid impermeable.
Meanwhile, the initial fracture aperture, initial reservoir stress, pore pressure and
temperature fields are also required. It should be noted that the temperature of the
extracted fluid is unknown and a part of the solutions.

4.2. Integral Equation Method

The fracture in a poroelastic medium may be regarded as a surface across which the solid
displacements, normal fluid flux, and normal heat flux are discontinuous. Such a
discontinuity surface can mathematically be simulated by a distribution over time and
space of impulse point displacement discontinuities (DD), fluid sources and heat sources.
If the density of these singularities is known, integral representations of the field
quantities, such as solid displacement, fluid flux, stresses, pore pressure and temperature,
can be evaluated using the integral equation method [8]. In particular, the integral
representations of the stresses, pore pressure, and temperature at any location in the
reservoir can be respectively expressed as:

o;(x,1) jjaukn x—x't—t")D,, (x"t")dA(x )dt+jj (x—x"t—t")D; (x"t")dA(x")dt’
+II (x—x"t-t")D, (x",t")dA(x")dt "+ oo (x)

xt jj p x x't— t) (x',t')dA(x')dt'+I;IApif(x—x',t—t')Df(x',t')dA(x')dt'
+jOJA p'h X—x',t—t')Dh(X',t')dA(x')dt'+ po(x)

T(x,t)=j;jATi“ (x—x',t—t")D, (x"t")dA(x)dt'+T, (12)

(10)

(11)

where A denotes the fracture surface, t denotes time, D,, (or D; ), D, and D, are

respectively the displacement discontinuity, the fluid source intensity, and the heat source

intensity; i, oif , o', p;, p" and p" are the instantaneous fundamental solutions, i.e.

the incremental stresses, pore pressures and temperature due to a unit impulse of the
displacement discontinuity (“id”), the fluid source intensity (“if”) and the heat source
intensity (“ih”); and o;,, p, and T, are respectively the initial stresses, pore pressure,

and temperature.
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Application of Egs. (10)~(12) at the fracture yields equations for the densities of
displacement discontinuities, fluid source intensity and heat source intensity, we obtain
the expressions for the normal stresses, pore pressures and temperatures at the fracture
surface as below:

Xt jj x x't— t D(x',t')dA(x')dt'+

t (13)
Jja'f x—x't—t' D, (x't')dA(x')dt'JrI I 0':1(x—x',t—t')Dh(x',t')dA(x')dt'Jrano(x)
o, (x,1) J.J. O (X —t")D, (x",t")+ oy, (x—Xx't—t")D, (X', )}dA(x)dt +0,0(x)
fj O (X —t")D, (x t)+o*zyzy(X—x',t—t')Dzy(X',t')}dA(X')dt'+o-zyo(x)
p(x,t) II (x—x"t—t")D, (x"t")dA(x)dt" + (14

IOIA p'f x—x,t-t' Df(x',t')dA(x')dt'+I;IA pih(x—x',t—t')Dh(x',t')dA(x')dt'+ po(x)

= I; J-ATih (x—x"t—t")D, (x"t")dA(x)dt'+ T, (x) (15)

where the left hand side of Eq. (13) is the normal and shear stress components at the
fracture surface, and the left hand sides of Egs. (14) and (15) are equal to the fluid
pressure and temperature in the fracture.

Based on the above discretization schemes in the spatial and temporal domains, we can
write the integrations in Eqgs. (13) and (14) as below:

Ha x—x',t—t)D, (xt")dA(x)dt’

[ZI azm X x' dA(x)} NA'[ +Nl{i

n=1[ m=1

(16)
J‘ zzzz(N —-n+1) X X')dA(Xl):|DZZ(nAt)

II x x't— t D (x',t')dA(x')dt'

|:ZI zz(l) X- X)dA(X ):| NAt +Nzl|:iJ‘AﬂN zz(N n+1) X_Xl)dA(X‘):|Df(nAt)

o 17)
II pY x x't— t (x',t')dA(x')dt'

:{ZJ‘% pgg(l)(x—x')dA(x')} (NAt) +Nz_‘i{ I Parin-niy (X— x')dA(x')}Dzz(nAt)

n=1

(18)
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[], p*(x-x\t-t)D, (x't")dA(x)dt

O{Zj "o (x-x )dA(x')}Df (NAt)+N1[

n=1

ij% N™ps L (x- x')dA(x')}Df (nAt)
_ (19)

where M and N are respectively element numbers and the current time step, N™ is

shape functions for element m, D, (NAt) is the unknown normal DD vector and
D, (NAt) is the unknown fluid source intensity vector, the superscripts cd and cs denote

the fundamental solutions due to the continuous unit DDs and fluid source, respectively.
Because the fundamental solution due to an instantaneous singularity is the time
derivative of the fundamental solution due to a continuous singularity, the integrals of
instantaneous fundamental solutions in the time domain can be conveniently expressed
using their corresponding continuous fundamental solutions to develop the convolution
time integrals that are then evaluated by going back to zero at every time step. In this way,
domain integration is circumvented. In the above equations, the following definitions are
also used:

o ol (x—x',At) if n=1

GZZZZ(n)(X_X):{O-zzzz(X X' nAt) zzzz( (n 1)At) if n>1

(20)

and 63, o5, P, Py PEand pg are defined in the same way. It should be noted

that all the second terms on the right hand side of Egs. (16)-(19) can be evaluated directly
because only the known DDs and fluid source intensities from the previous time steps are
involved. Substituting Egs. (16)-(19) into Egs. (13) and (14), yields:

Gzz(x't zzO |:ZJ. O-zzzzl X X"y_ylio)dA(X‘)i|Dzz(NAt)

[ij% N (x—x')dA(x )} (NAD) + 0, (x.1)

1

(21)

+

p(x,t) { jp X— deA(x)} ,(NAt)

+{i-[% N(™ pe (x—x')dA(x')}Df (NAt)+ p,(x,t)
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sz(Xt sz |:Z'[ o-zxle X X',y—y',O)dA(X'):|DZX(NAt)
(22)

-{ZI O'Myl (x— X',y—y',O)dA(X')}DZy(NAt)+O'ZX1(X,t)

T, (X,1) =0, ( {ZJ‘ T (X— X',y—y',O)dA(x')}DZX(NAt)
(23)

+{Zj. oo (X— X',y—y',O)dA(x')}Dzy(NAt)+O'Zyl(x,t)
in which:

N-1
le = |:Z.[ O-zxzx(N n+1) X X')dA(X')i|sz(nAt)

1 y (24)
+ {ZI O'ZXZY(N n1) x x')d/—\(x')}DZy(nAt)
Zyl {ZJ‘ O'ZyZX(N n1) x x') dA(x')}DZX (nAt)
n=1| m=1 (25)

+Z|:ZI O-zyzyN n+1) X-= X dA(X|):|DZy(nAt)

n=l| m=1

4.3. Treatment of Joint Deformation

The integral equations presented in the previous section can be used to study both
hydraulic fractures and joints. A hydraulic fracture usually is pressurized in excess of the
minimum in-situ stress and remains open during the loading process, which means both
the normal and shear stiffness of the fracture are zero. On the hydraulic fracture surface,
the normal tractions equal the fluid pressures in the fracture and the shear tractions equal
zero. However, a different approach must be used for joints, as the joint normal and shear
stiffness are nonzero and the normal and shear tractions on a joint change with joint
normal and shear displacements. The required procedure for modeling the joint element
is similar to that used by Ghassemi et al. [9], however, the fracture is discretized into a
number of four-nodded quadrilateral elements in this work. During the fracture
pressurization, each element can be either in a state of “separation”, “stick” or “slip”; the
element is closed in the latter two states. For any element, its state may change from one
time step to another time step and must be determined at every time step because the
computational methods for the terms on the left hand sides of Egs. (21)-(23) are different
for different element states as shown below. We denote the normal stiffness of the
fracture as K, . The shear stiffness of the fracture may be different in different shear

directions. However, here we assume the shear stiffnesses are the same in all shear
directions for simplification and denote it as K, . The fracture aperture increment for any

closed element “i” can be expressed as:

A(IjnIbzz-l-é.dil —{Aio-"J—i-éldn (26)
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where Ao, is the increment of the normal effective stress and aai is the dilation-induced

aperture increase due to shear slip. In this work, for simplification, we assume the shear
dilation is the same in all shear slip directions. As a result, the shear dilation for any
element “i”” may be simply calculated by the following relation:

Eizldil =1/ Dizzx+ DIZZy tan ((iéd"j (27)

where D, and IIDzy are the shear displacement components in x and y direction,

respectively and qlﬁd” is the fracture dilation angle.

The problem is solved by marching in time. For any time step, K, we assume an initial
values for the aperture change vector a\) for all of the elements. In this work, we
assume @) =0 when k=1 and af) =als™ when k >1. Firstly, we do the computations

in the normal direction using Eqgs. For normal stress and pore pressure on the fracture. If
any element i is closed, its corresponding component on left hand side of Egn for normal

stress, the increment of the normal stress, can be written as —Kn(Adn—adilj-i-Ap, where

the first part is the normal effective stress increment which is obtained from Eq. (26)
while the second part is the pore pressure increment. If any element i is in “separation”
state, its normal traction is the current fluid pressure, p, and therefore, the corresponding

component on the left hand side of the equation for normal stress is p—OI'zzo, where OI'ZZO
is the initial normal stress at the center of element i .

At the start of the solution process, we assume that all fracture elements are closed and
solve the linear equation system of equations for normal stress and pore pressure. Then,

we calculate the resultant normal effective stress o, which equals - K, (Adn_ Al ) +0'z0,
where o' is the initial normal effective stress. As shown in Figure 4.2, the following

element separation criterion is adopted to judge whether the element i is closed or in
“separation” state:

al'n _ ccotan ;i/}eﬁ (28)

where ¢ is the cohesion and ;'zﬁeﬁ Is the effective friction angle of the fracture surface.

Each element’s predicted status in the normal direction is used for the next iterative step
in the normal direction. The computation iteration in the normal direction stops when all
the elements have the same status in the current iteration as in the last iteration.
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o,=C+o' tang,

24,
| 4 2C

[

cctang,,

—o,=C+o' tang,

Figure 4.2. Mohr-Coulomb model used for joint elements.

After obtaining the element states in the normal direction and the magnitudes of the
normal effective stresses, we use the following method to determine whether a closed
element is in “stick” or “slip” state in the shear direction and calculate the shear
displacements. For any element i with the state of “separation” in the normal direction,
its current shear tractions equal zero so that its corresponding components on the left

hand sides of Egs. (22) and (23) become &0 and —clrzyo, respectively. However, if the

element i is closed in the normal direction, we use Mohr-Coulomb model (Figure 4.2) to
judge whether its state in the maximum allowable shear direction is “stick” or “slip”. For
a typical element, i, such a constraint can be expressed as:

os <C+o'htan ;ﬁeﬁ = (iH- Ol"n tan (éin + ;ﬁdil j (29)

where o is the shear stress, éﬁin the intrinsic friction angle, qlﬁdi, the dilation angle, and
the other notations have been defined before.

If element i is in the “stick” status, the fracture deformation in the shear direction is
assumed to deform in a linear elastic manner with its shear stiffness denoted by K. As a

result, the left hand sides of Egs. (22) and (23) for element i can be written as
i) ik (kY k) i)k )
ox —Ks| Dx —Dx and oy —Ks| Dy —Dy , respectively; where for each

expression, the first part is the shear traction in the last time step and the second part is
caused by the fracture elastic shear deformation in the current time step. However, if
element i is in the state of “slip”, the shear stress cannot exceed the value of the yield
stress given in Eq. (29) and therefore, the left hand sides of Egs. (22) and (23) for element
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i *(k) i i *(k) i
i become Os COSHO —O o and Os SINO— 0o, respectively, where * denotes

the maximum shear stresses which is calculated by Eq. (29) and & is the angle between
the maximum shear stress direction and the x-axis.

For any time step k, firstly we assume all the elements are in the state of “stick” and
solve the linear equation system of Egs. (17) and (18). Then we use Eq. (29) for all the
closed elements to judge whether their state is “stick” or “slip”. Similar to the process in
the normal direction, we use an iterative method to solve Egs. (22) and (23) until the
states of all the elements in the shear direction in the current iteration do not change
compared to those in the last iteration.

After the calculations of D,, and p, in the normal direction, and D, and D, in the

k
shear direction, we can obtain a new fracture shear dilation vector a((j”) by substituting

k
the calculated shear displacements into Eq. (27). Using this new a(g“), we repeat the
above procedure to calculate D, , p,, D, and D, until the following condition is

satisfied:

where TOL is a prescribed tolerance. Thereafter, the next time step begins.

new al)—old al¥|/[old al¥|<TOL (30)

Once the DDs and fluid, and heat source intensities are obtained through the method
described above, Egs. (10) and (11) can be used to calculate the stresses and pore
pressures at any place in the rock matrix utilizing the same boundary integral method we
presented previously. The resultant stress and pore pressure fields in the reservoir matrix
are essential for analysis of the formation failure around the fracture.

4.4. Finite Element Method for Fluid Flow and Heat Transport in Fracture

We use the finite element method to model the fluid motion and heat transport in the
fracture. The fracture plane is discretized into a number of four-noded quadrilateral
elements and we assume the following interpolations for any element m:

p(m) _ N(m)f), Df(m) _ N(m)f)f 1 TM — N(m)T, Dh(m) = N(m)f)h (31)

where the superscript m denotes the element m, N™ are the interpolative functions,
and p, D,, T and D, are the vectors of nodal fluid pressure, fluid source intensity,

temperature and heat source intensity, respectively.
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The finite element formulas for the fluid flow and heat transport are as follows:

Ap(t)+A,D, (t)=B,(t) (32)
A T(t)+AD, (t)=0 (33)
where
M
A, = — V' NMVYN"dA 34
! zj&l&u (39
_ TNy (m)
Az_mZ;J'AEN N™dA (35)
M
OW _ (m T
b= X[, AINTOA TN | @ (0)-INT| Q) 66)
M —(m m
A, = pWCW; J.AE(N““)+N( ))q(x, y)VN™dA (37)
M
_ (mT ()
A_Z‘{L\EN N™dA (38)
_ kg N
NS oy j=xy (39)
0,0

where M is the total number of the elements on the fracture plane, NOT denote the

(%.%1)
shape functions at the fluid injection well which is located at (x;,y;) within element i,

and N©T

_— denote the shape functions at the fluid extraction point which is located at

(X..Y,) within element e . It should be noted that here we adopted the streamline

upwind/Petrov-Galerkin (SUPG) finite element technique proposed by Brooks and
Hughes [10] for the convective-dominated heat transport problems because the numerical
stability is unavoidable when the conventional Galerkin finite element method is used.

The expressions of the SUPG parameters k , q, and q, in Eq. (39) can be found in [10].

We denote the fracture aperture as w which is spatial and temporal dependent. w
influences p and D, as well as T and D, significantly; inversely, the reaction of the
reservoir matrix due to p, D, and D, also affect the magnitudes of w. The iterative
method used to solve this coupling will be explained in the next Sections.

4.5. Discretization of Integral Equations for Response of Reservoir Matrix

The integral equations (13)-(15) are discretized in the spatial domain by using the same
mesh in the finite element method and in the temporal domain by using the convolution
algorithm [11]. Here we use constant quadrilateral elements for DDs and linear
quadrilateral elements for D, and D, as the same as those used in the finite element

methods in Section 4.4. We also assume that DDs, D, and D, are constant over each
time step. As a result, when t = NAt, we have:
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II (x—x"t—t") D(x',t')dA(x')dt'

N-1| M (40)

{Zj oy (x—x') dA(x)} (NAt)+ {Zj O sy (X x)dA(x)} L (kAt)
”a'f (x—x',t-t)D, (x',t")dA(x)dt’

N-1[ M (41)

{Zj ooy (x—x' dA(x)} (NAt)+ {Zj O (X=X dA(x)}D (kAt)

j.j. oy (x—x"t-t")D (x't')dA(x')dt'

N-1[ M T (42)
= ZI oy (x— x)dA(x) D, (NAt)+ ZIAEO'S?MH)(X—X')dA(x') D, (kAt)
J:J (x—x"t- t D (x t)dA(x')dt'

r N 7 (43)
= Zj p<, (x—x")dA(x) |D, (NAL)+ Zj Py (x—x")dAKX) D, (kAt)
H T(x—x't-t')D, (x' t)dA(x)dt

N-1[ M - (44)

{Zj pe (x—x' dA(x)} ((NAt)+ > Zj Py (X— X')dA(X')}Df(kAt)
jOIA p"(x—x"t—t')D, (x't")dA(x)dt’

M N-1[ - (45)

:[ZI& pr(x—x')dA(x')} (NAt)+ ] ZI PNy (X— x')dA(x')}Dh(kAt)

Itj Tih (x—x't—t")D, (x",t")dA(x)dt’
(46)

{Zj T (x—x) dA(x)} (NAt +NZ{ J Tovny (x-x) dA(x)} 2 (kAt)

k=1

where M and N are respectively element numbers and the current time step, N™ is
shape functions for element m, D, (NAt), D, (NAt) and D, (NAt) are unknown vectors,

D,(NAt) , D,(NAt) and D,(NAt) are unknown vectors, D (nAt) , D,(nAt) and

D, (nAt) (n<N) have been obtained in the previous time steps, the superscripts cd, cf and

ch denote the fundamental solutions due to the continuous unit DDs, fluid source
intensity and heat source intensity. In Egs. (40)~(46), we used the following definitions:

cd ' i
cd . O',m(x—x,At) if k=1
= 47
Ty (X—X) {ch(x_x' kAt)—gsg(X—X',(k—l)AI) if k>1 (47)

and of, (x—x'), oy (x=x")dAX), P, (x=x"), P (x—x'), P (x—x'), and
T (x—x') are defined in the similar way.
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Substituting Eqs (55)~(61) into Egs. Egs. (13)-(15), yields

{Zj oy (x—x' dA(x)} L(NAt)
{iLEN( ot (x— x)dA(x)} (NAt)+ {Zj (x- x)dA(x)} L(NAt) (48)

m=1

[Zj Proy (x—x') dA(X)} L (NAt)

{MleeNm)pg)(x_x')dA(x')} (NAt)+ {Zj " pd (x - x)dA(x‘)}f)h(NAt) (49)
+p(x )+ po( )
{Zf T (x- x)dA(x)} b (NAD) +T, (x,t) + py (x) (50)

where o, , p, and T, are the sum of several terms on the right hand sides of Eg.

(50)~(46) and can be evaluated directly, and the other notations have been defined in the
previous text. All the fundamental solutions used in these equations can be found in
Cheng and Detournay [8]. Applying Egs. (48) on all element centers, and Egs. (49) and
(50) on all element nodes at the fracture plane, we obtain

6, =AD, (t)+AD, (t)+A,D, (t)+6, +0, (51)
p=AD,(t)+AD, (t)+A,D,(t)+p, +p, (52)
T=A,D, (t)+ T, +T, (53)

where

ZI O-nn(l) X =X,y — Y',O)dx'dy'

A5= ZJ. O-nn(l) ’yz_ylio)dxlyl (54)

ZI O-nn(l) !yM_yI!O)dX'yI

ZI N"o%, (%~ X"y, ~y',0)dx'dy’

Ae _ ZI n(l) ,yz—y',O)dx'dy' (55)

ZI N n(l) =X,y —y'0)dx'dy’
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n (1)

—y',0)dx'dy"

—y',0)dx'dy’

—-y',0)dx'y’
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Po (%, ¥1,0)
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- po(xzsy ) (64)

po(XNYwO)

Ty(%: %2,0)
Tl — Tl(XZ ': yZ’O) (65)

T.(%,,0)

To (% ¥1,0)
TO — TO (XZ’: yZ’O) (66)

TO(X,,y,,O)

in which [ is the total number of element nodes and M is the total number of elements in
the mesh for the fracture surface. All these matrices and vectors can be evaluated directly.
It is observed that we have 41+M unknowns (p, T, D,, D, and D,) in the present

problems. Egs. (32) and (33) contains 2l linear equations and Egs. (51)-(53) contains
21+ M linear equations. The present problem is fully described by these equations.

(% ¥1,0)
Xz’ Y,,0) (61)

In this work, the space integrals over the elements are performed numerically. We adopt
the numerical algorithm proposed by Guiggiani et al. [12] to evaluate the integrals that
become hypersingular at the fracture surface. Apart from the treatment of the
hypersingular integrals, the strongly singular kernel function can also be integrated with
the same numerical algorithm [13]. The weakly integral singularity is treated by using the
polar coordinate transformation method [14].
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4.6. Numerical Procedures for Flow & Deformation in Natural Fracture

When flow is coupled to fracture deformation and heat transport, the fracture is
discretized into a number of four-noded quadrilateral elements, and the equations (32),
(33), and (51)~(53) are used to simulate the fully coupled fluid injection/extraction
phenomena through a natural fracture. It is assumed that the fracture is a joint and its
deformation is linear elastic. The normal fracture stiffness for any element i is denoted as

Kn. In the simulation process, elements can be either open or closed. The following
separation criterion is adopted to judge whether the element i is closed or open:

c, = s cotan glzﬁeﬁ (67)

When this condition is satisfied the joint element is cracked (separated); and if element i

i i i i i
is open, we have o', =0,0. If not, the element i is closed o, > —ccotang,, , the

incremental increase or decrease of the normal effective stress for element i can be
calculated by

Ao’ :—Kn Dn (68)

The current transient problem is solved by marching in the time domain. Within any time
step K, iterations areused to take into account the coupling between the fluid flow and
heat transport in the fracture, and the reaction of the reservoir matrix. We begin with
j =1 iteration. We assume the fracture aperture vector wy in j=1 iteration to be equal

to the calculated fracture apertures in the last time step if K >1 or the initial fracture
aperture w, if K =1, where the subscript and superscript denote the time step and and the

iteration in the current time step, respectively. Solving Egs. (32), (33), and (51)~(53), we
can obtain D, (t), D, (t), D,(t), p(t) and T(t) for the current iteration j within time
step K. Then a new fracture aperture vector which is equal to w,+ D, and denoted as
wit. wi™ will be used in the next j+1 iteration. The iterative process continues until the
following convergent condition

o i <ToL ©

is satisfied, where TOL is a prescribed tolerance. We use TOL=1% for the numerical
examples presented in this paper. Thereafter, the simulation marches into the next time
step K +1.

Given fracture apertures, Egs. (32), (33), and (51)~(57) need to be solved in every
iteration. As the rock temperature is independent on the stress state, we substitute Eq.
(53) into Eq. (38) and then obtain

(AjA;, +A,)D, =-A, (T, +T,) (70)
in which D, could be solved directly. Thereafter, T could be obtained by substituting D,
into Eq. (53).
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The procedure for solving p, D, and D, are as follows. Substituting Eq. (52) into Eq.
(32), we have

A1Asl~)n + (A1A9 +A, )ﬁf =B, - AlAlOf)h -A, (pl +po) (71)
where all the terms on the right hand side have been evaluated or solved.

Eq. (51) can be rewritten as
A.D (t)+ AD, (t)=6,-6,, -6, — A.D, (t) (72)
where o, should be evaluated differently for closed or opened elements. For convenience

of description, we use Ol'n to denote the i component of ¢, and OI'nO to denote the i
component of ¢,,. Then, if element i is closed, we have

én_&n(,:(é-ﬁbj_(;no+bpo_boj+[é-n_é-noj=[‘_.‘ooj_knﬁsn (73)

while if element i is open, we have

G100 = P00 (74)
Egs. (88) or (89) can be used to evaluate ¢, —o,,, causing the existence of the unknowns
p on the right hand side of Eq. (87). However, p can be removed by using Eq. (52).

Now only D, and D, are involved in Egs. (71) and (72) and they can be determined by
solving a linear equation system. Thereafter, p can be obtained by substituting D,, D,

and D, into Eg. (52). In the current version of the fluid flow and rock deformation

coupling, fracture slip is not considered but this phenomenon is included when flow is
not coupled to fracture deformation.
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5. Applications & Analysis: Poro-thermoelasticity

The theoretical developments of Chapters 2-4 will now be used to study a number of
problems pertaining to EGS development. These include 2D poro-thermoelatic analysis
of a fracture and fracture propagation, simulation of injection/extraction in fractured
reservoir, 3D poroelastic analysis of natural fractures, and combined poro- and
thermoelastic study of injection/extraction into planar fractures. To the extent possible,
the input parameters used in the analyses correspond to the Coso geothermal field.

5.1. Poro-thermoelastic Analysis of Fracture Opening

In this section, we apply the poro-thermoelastic DD method to the problem of a
stationary crack in a geothermal reservoir to examine the relative importance of various
mechanisms in fracture propagation and to highlight the coupled effects in geothermal
reservoirs. The validity of the DD approach for poro-thermoelastic problems has been
demonstrated in Ghassemi and Zhang [1] where the numerical model has been compared
to analytical results indicating a very good agreement. The problem under consideration
is the opening of a suddenly pressurized and cooled crack of length 2L (shown in Figure
5.1). This problem of fracture pressurization by a cooler fluid under pressure, P, may be
decomposed into three sub-problems corresponding to three modes of loading: a normal
stress loading, a pore pressure loading, and a temperature loading:

Mode 1: o,(x,t)=—PH(t); p(x,t)=0; T(x,0)=0
Mode 2: 0,(x,t)=0; p(x,t)=PH(t); T(x,0)=0 (1)
Mode 3: o,(x,t)=0; p(x,£)=0; T(x,0)=TH(¢t)

“Y
O-n,p: TC

_,
—
—»
—

>

'

i \

Figure 5.1. A uniformly pressurized, cooled crack.

where H(t) denotes the Heaviside step function. The initial conditions for both problems
are zero stress and pore pressure everywhere.
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Table 1. Input parameters

Shear modulus G 16 GPa

Biot’s coefficient « 0.443

Drained Poisson’s ratio v 0.25
Undrained Poisson’s Ratio v, 0.34
Permeability k, 4.053 x10™ m/sec
Porosity ¢ 0.01

Thermal exp. coef. solid a.,, 2.4x10° K
Thermal exp. coef. fluid o , 3x10°* K
Thermal diffusivity ¢’ of intact rock 5x10° m’/s
Thermal diffusivity ¢/ of intact rock 6.48x10° m*/s
Fluid density 1 x10° Kg/m’
Heat capacity of fluid 4200 J/(kg.K)
heat capacity of rock 790 J/(kg.K)
Thermal conductivity of fluid 0.6 J/(s.m.K)

where H(t) denotes the Heaviside step function. The initial conditions for each sub-
problem are zero stress, pore pressure, and a temperature of To. We will focus on the

induced quantities with the aim of investigating various mechanisms. The result of Mode
1 loading is shown in Figure 5.2. This mode of loading is responsible for the opening of

the fracture. At time t=0*, the fracture opens according to the solution of Sneddon [2]
with undrained material properties:

2PLA-v)(. x°
W(ix)=—""— 7| ] - 2
(x) G [ i )
As time increases the crack opening also increases, approaching the steady-state solution
given by the previous equation with drained material properties. This stage of rock
deformation is referred to as the drained stage. The crack opening is a maximum at this
stage reflecting the softer material behavior. Figure 5.2 shows the normalized width

tc
evolution (with respect to Eq. 2 as a function of normalized time as defined by 7 = Tzf .

The fracture response in Mode 2 is illustrated in Figure 5.3. The crack progressively
closes, starting from a zero value and reaching a final closure value of 0.22 given by:
(D)),... =2n(1—v,); where 1 is the poroelastic stress parameter defined as [e.g., 3]:

B 3(v,—v)
7= 2B1+v ) (1-v) ®)

Because the two crack surfaces cannot overlap, this closure is physically possible only if
the crack remains open under combinations of loading modes 1, 2, and 3. The numerical
model overestimates the fracture opening by about 5 per cent. This may be attributed to
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the used of constant elements and also the fact that the very small time fracture response
could not be captured. This deficiency has been removed as will shown later.

MaxIimum crack opening, m

Maximurn crack opening, m

Moda 1 Ioading (normal siress), o /3= - 0.001

0.00155
SNNEIY B L] MY - b bl Lapa 1L
0.00150 f
li
0.00145 — z
0.00140— -+
11112'4
0.00135 i~
a
0.00130 -
10° 10° 10* 10° 10° 10"
Time, sac
Figure 5.2. Magnitude of crack opening due to an applied stress.
Mode 2 loading (pore pressure), PA3= 0.001
-0.00025
-0.00020
B
-0.00015
-0.00010 FF/" 7
-0.00005 e
_r#
olL: -
10" 10° 10* 10° 10° 10"

Time, sec

Figure 5.3. Normalized crack opening due to pore pressure loading.
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The Mode 3 fracture response as a function of time is illustrated in Figure 4. It can be
seen that the cooling the crack surfaces and the surrounding rock results in opening of the
fracture. This is the opposite of the effect of fluid invasion into the rock mass that tends
to close the crack. The fracture opening approaches the asymptotic value shown in red
which is obtained by applying the thermal stresses that are generated by cooling, to the
surface of a Griftfith crack. For a two dimensional geometry (plane strain) it can be shown
analytically that the stresses induced on the fracture faces (at steady-state) are given

BEAT
by:o, =0, =————r

6(1-v)
bulk solid under constant pore pressure.

, where Bs is the volumetric thermal expansion coefficient of the

Mode 3 loading, cosling erack by 200°C

0.005 .

0.004 | —

200 steady state; 0004 m |
o] thermalealstic (20
Poro-thermoelastic (20)

0.002—

Maximum opening, m

P e T T e e e e T

0.001 |—

Time, sec

Figure 5.4. Maximum crack opening due to cooling, also shown is the steady-state analytical
value.

By comparing the fracture opening profiles as a function of time for various modes, it can
be observed that the contributions of Modes 1 and 2 to fracture propagation are dominant
for conventional hydraulic fracturing, but they become negligible in comparison to
cooling during long term stimulation. The contribution of thermal stresses is significant
in fracture initiation, and in circulation operations that are carried out over a long period
of time such that the thermal front has had sufficient time to develop. It should be noted
that the impact of Mode 2 can significantly increase if one takes into consideration the
increase in rock permeability due to thermal cracking.

76



5.1.1. Improved solution for short time and long time crack response

The previous simulation were carried out at small time steps, however, it was not possible
to capture the very early time response of the crack. To do so, a number of improvements
were implemented in the code including the possibility of using multiple time increments
during the solution and also deriving the short tome solution of the time-dependent part
of the solution.

Using the improved code, we simulated the pressurized, cooled crack problem again. For
this problem we use a crack length of 1 m with all material properties are the same as in
Table 2. However, it is assumed that the in-situ stresses are Sy = 30 MPa; S, = 10 MPa,
and the crack is cooled from 200° to 0 while pressurized with at a level of 30 MPa.

Mechanical and hydraulic effect
3.E-04
Mode Il

2.E-04 .’V_,..-—-—-——-
E
e /
3 1.E-04
5 J
Q.
<
S 0.E+00
S Mode | + Mode Il
©
3
9 -1E-04 /
=}
kel
£

-2.E-04

Mode |
-3.E-04 T T T T |
1.E-02 1.E+02 1.E+06 1.E+10 1.E+14 1.E+18 1.E+23
Time (Sec)

Figure 5.5. Crack opening for 3 loading modes using the improved DD method. Note the
smooth transition of DD to a small time of t=0.01 sec. Crack opening is shown as negative.
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Figure 5.6. Comparison of drained and un-drained solutions with analytical results.
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Figure 5.7. Fracture opening caused by combined loading modes. Note the dominance of
mode 1 during short times.

It can bee seen that the model captures the drained and undrained responses rather well
when using 100 element; using 10 elements results in approximately 4-5% of error.
Figure 5.7 illustrates the fracture opening caused by combined loading modes. It can be
seen that mode 1 loading is dominant during short times while thermal stresses dominate
at long times. This is to be expected as in this case the thermal diffusivity of the rock is
much smaller than rock’s fluid diffusivity so that the cooling response takes a much
larger time to fully develop.
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5.2. Modeling Fracture Propagation

In this section, we consider the problem of fracture propagation while considering the
impact of fluid diffusion and poroelsatic stresses. In this work, we do not consider the
impact of thermal stresses as they develop very gradually not affecting the propagation.
Also, the coupling between temperature and pore pressure is not considered at this time.
The model uses a partially-coupled poroelastic formulation to calculate the fracture
opening. The structural criterion described in the previous chapter is used to model crack
propagation.

bodob

Y
P A
<_SH
X <

Figure 5.8. A pressurized crack under biaxial stresses in an infinite poroelastic medium.

As an example consider a line crack in an infinite poroelastic medium under the plane-
strain condition. The crack length is L=0.2m and is inclined 6 degree with respect to x-
axis. The far field minimum and maximum principal stresses are Sy, and Sy, respectively.
The crack surfaces are suddenly pressurized from t=0" by an internal fluid with a constant
pressure P. The crack is allowed to propagate from one crack tip. The input parameters
are for Westerly granite, shown in Table 2. The propagation trajectories are simulated for
different crack propagation speeds, far field stresses, rock cohesion and internal fluid
pressures in order to investigate the poroelastic effects on the fracture propagation
behaviors. The results are plotted from Figures 5.9-5.11 and are discussed below.

There are three characteristic lengths for the crack propagation problem in a poroelastic
medium [4], these are /v - the ratio of the diffusivity to the crack propagation velocity, L
- the length over which the crack face load is applied and w — the size of the breakdown
zone. Accordingly, three different propagation regimes can be identified which are
categorized by different values of ¢/, L and @ corresponding to different crack
propagation speed. In the fast regime, L >> @ >>c¢’ /v, the crack propagates at a very
fast speed, so the pore pressure at the crack tip does not have time to diffuse. In the
intermediate regime, L>>c¢’/v>>®, the crack propagates at a considerable speed

relative to the physical length of the crack. And in the slow regime, ¢/ /v >> L >> @, the
crack propagates at such a low speed that the pore pressure is drained in the tip region.
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Table 2. Input Parameters

G | Shear modulus 1.5x10* MPa
¢ Internal fiction angle 30 °

c Cohesion MPa
o, | Tensile strength 2.0 MPa
P Pressure 1.5x10" MPa
v Poisson’s ratio 0.25

v, Undrained P. ratio 0.337

K, | Solid bulk modulus 4.5x10™ MPa
K, | Fluid bulk modulus 2.5x10% MPa
¢/ | Fluid diffusivity 6.16x10™" m’/s
# Porosity 0.01

k Dynamic permeability 4.053x10™" darcy
B Skempton’s coefficient | 0.815

The predicted propagation behaviours in the three different regimes were for Mode 1
loading. In this paper a partially couple model is used so that Mode 1 loading is elastic
and time independent. The crack poroelastic response is distinguished by he effects
induced by Mode 2 loading (pore pressure). Adopting a similar approach, however, one
can identify 3 regimes of crack propagation corresponding to different degrees of pore
pressure diffusion into the rock. In the fast propagation regime, the pore pressure effect
on the fracture growth is negligible and the rock can be regarded as an elastic medium. In
the intermediate regime, the pore pressure diffusion has some impact on the propagation
behavior. And in the slow regime, the crack propagates at such a low speed that the
poroelastic effect on the fracture propagation can be significant. The relative crack
closure can cause a possible change in the propagation mode and direction.

In this study, ¢’ is on the order of 107, L the order of 10" and w the order of 107.
Different crack tip propagation speeds are chosen to model the fracture propagation in
three different regimes: v=0.1 m/s for the fast regime; v=1.0x10"m/s for the intermediate
regime and v=1.0x10"m/s for the slow regime.

The crack propagation path at different crack propagation speed when Sy=1 MPa, S;=0.5
MPa, P=2.5 MPa, c¢/o,=1.5 is plotted in Figure 5.9. It can be observed from the figure

that when the crack propagates in an intermediate or fast regime, the propagation path is
very close to that calculated by the elastic solution. It is because that the crack propagates
in Mode 1, i.e., opening propagation mode in this example. The pore pressure diffusion
will cause small amount of relative crack closure, which is negligible in this case. The
pore pressure diffusion decreases the tangential stress and therefore the normal driving
force ahead of the crack tip by nearly the same degree in all directions, so the crack
propagation path, which is determined by the direction of maximum normal driving force
in Mode I propagation, has not been changed. However, when the crack propagates in
the slow regime, the pore pressure diffusion causes the normal driving force ahead of the
crack tip to drop below the microscopic tensile strength of the rock material, the
propagation process therefore cannot be initiated. Another explanation of this
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phenomenon can be made that the pore pressure diffusion into the rock at the crack tip
causes the decrease of crack aperture, so the crack is not able to propagate forward in
Mode I - opening mode.

Crack Propagation Path at Different Propagation Speed
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Figure 5.9. Crack propagation path at different speeds (Sy=1MPa, S;=0.5MPa, P=2.5MPa,
c/o,=1.5).

The crack propagation path calculated by poroelastic model at different crack
propagation speed when Sy=3MPa, S;=0.5MPa, P=2.5MPa, ¢/o,=1.5 is plotted in Figure

5.10 and is compared with that given by the elastic solution. As is shown in Figure 5.10,
the elasticity model predicts that the crack propagation path turns to the direction of
maximum in-situ stress more quickly than the last case due to the bigger difference
between the maximum and minimum in-situ stress. When the crack propagates in an
intermediate or fast regime, it propagates in Mode I fashion, and the propagation path
calculated by the poroelastic model is very close to that calculated by the elastic model.
While for the slow crack growth, it is found that the pore pressure diffusion around the
crack and its tip not only leads to the relative closure of the crack surfaces, but also
increases the shear driving forces around the crack tip. The crack propagates in a shear
mode during the early stages of the propagation process and exhibits a different growth
path from those in the fast and intermediate regimes.

In Figure 5.11, the crack propagation paths calculated by poroelastic model at different
crack propagation speed for Sy=3MPa, S,=0.5MPa, P=2.5MPa, ¢/o,=1.1 are plotted

and is compared with that calculated by the elastic model. As predicted by the elastic
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model, in a rock of lower cohesion, Mode II (shear) propagation is more likely to occur
and can be dominant in the propagation process. For a pure elastic solution, the crack first
propagates in Mode II, and eventually changes direction and propagates in Mode I in the
direction of maximum in-situ stress. The crack propagation path in the fast regime
resembles that given by the elastic solution. While for the intermediate and slow crack
growth speed, the crack propagates in Mode II only. Therefore, for cracks propagating in
a poroelastic rock with low cohesion, crack growth mode could be sensitive to the
propagation speed. Poroelastic effects need to be investigated more closely in order to
better interpret or predict the fracture propagation behavior in the permeable material.

Crack Propagation Path at Different Propagation Speed
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Figure 5.10. Crack propagation path at different speeds (Sy=3MPa, S;=0.5MPa, P=2.5MPa,
c/o,=1.5).
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Crack Propagation Path at Different Propagation Speed
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Figure 5.11. Crack propagation path at different speeds (Sy=3MPa, S;,=0.5MPa, P=2.5MPa,
c/o,=1.1).

5.2.1 Propagation of multiple pressurized cracks

As an extension of the example shown in Figure 5.12, the propagation paths of two
parallel line cracks in an infinite poroelastic medium under plane-strain conditions are
investigated. For the problem under consideration, the length of each crack is L=0.2m.
From time t=0", the two cracks are pressurized with a constant internal pressure
P=2.5MPa. The maximum and minimum in-situ stresses are Sy=3MPa, S;,=0.5MPa
respectively and ¢/o, =1.1. The other parameters are the same as those used in section

3.2

The cracks are modeled with crack propagation speed at 1.0x10” m/s in an intermediate
speed regime in the poroelastic model. The poroelastic solution predicts that the two
cracks will propagate in Mode II in two distinct paths. In comparison, the elastic solution
predicts that Mode I will dominate the propagation process and that the left crack will
coalesce with the right one in a propagation path rather different from that given by the
poroelastic model. Again, pore pressure effects in this example play an important role in
determining the crack propagation behaviour and interaction between multiple cracks.
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Multiple Crack Propagation Path
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Figure 5.12. Crack propagation paths for two parallel cracks using different models (Sy=3MPa,
Sy=0.5MPa, P=2.5MPa, ¢/ o,=1.1).

Another example of crack propagation near an inclined crack in a poroelastic medium is
investigated and the results are shown in Figure 5.13. Crack B is a static inclined crack,
and crack A is allowed to propagate toward crack B. When ¢/ o, =1.1,the fracture

propagation paths are similar for crack speed of 0.lm/s and 1.0x10” m/s, which
corresponds to the fast and intermediate regime respectively. And crack propagates in
Mode II in both speeds. When ¢/, =1.5, v=1.0x10"m/s, the crack first propagates in

Mode I, and then switches to Mode II before reaching crack B. While for ¢/o, =1.5,

v=0.1m/s, the crack growth path is similar to that of the fast regime at the early stage of
propagation process, but the pore pressure effect is more considerable and it leads to the
termination of the fracture growth before the fracture reaches crack B. Therefore,
poroelastic effects are important when determining the crack propagation behaviors
involving interaction between multiple cracks. In these situations, moreover, rock and
fluid properties, fracture geometry, in-situ stresses, internal fluid pressure and fracture
propagation speed all play an important role in determining the fracture propagation
behaviors. Numerical simulation by using boundary element method provides a versatile
means for us to predict the fracture propagation trajectory.
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Crack Propagation Path near an Inclind Crack
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Figure 5.13. Crack propagation path near an inclined crack at different crack propagation speed
(Sy=1MPa, S;=0.5MPa, P=3.5MPa, c¢/c,=1.1).

The results presented above illustrate the importance of the role of Mode 2 loading (pore
pressure) in fracture propagation. The diffusion of pore pressure inside the crack into the
rock can lead to change of possibility, mode and direction of fracture propagation. In
most cases, besides fracture growth speed, rock and fluid properties, fracture geometry,
in-situ stresses and internal fluid pressure all play an important role in determining the
fracture propagation behavior in a permeable poroelastic medium. This numerical model
can also be extended to further investigate the interaction between hydraulic fractures and
natural faults in the future. A fully coupled poroelastic model can also be developed to
fully describe the poroelastic effects of Mode 1 and Mode 2 loading on the fracture
growth, which will enable us to have a better understanding of fracture treatments in
complex geothermal environment.

5.3. Response Injection/Extraction into a Fractured Reservoir

The poro-thermoelatic DD boundary element method with joints (Section 3.4) has been
used to develop a fractured reservoir model for simulation injection/extraction
experiments. The model is applied herein to study the impact of poro-thermoelastic
stresses on reservoir permeability and impedance during injection and extraction.

As an example, consider the case of a reservoir with intact rock properties of Table2.

There is an injection well and a production well in the fractured reservoir (2000x2000
m?) that has two sets of joints with an angle of 60°. The reservoir geometry is two-
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dimensional (horizontal section) and is suitable for situation where the natural fractures
are steeply dipping. Both the injection and production rate are 1 liters/sec/m-thickness
(10 m thick zone). The initial reservoir pressure and temperature are 27 MPa and 420 K,
respectively. The injectate temperature is 300 K and initial fracture aperture is 1 mm. The
simulation uses a constant stiffness for the joints so that the pressure change and fracture
aperture change are independent of the absolute in-situ stresses, thus the observations are
valid for any appropriate stress field. Also, in this example, it is assumed that shear
dilation is suppressed. Other parameters are listed in Table 2.

28.0 I
Injection well

27.5 - Pt -

27.0

26.5 - \\-\jroduction we
26.0 ‘ ‘ N

Bottom hole pressure (MPa)

1.E-06 1.E-04 1.E-02 1.E+00 1.E+02 1.E+04 1.E+06

Time (hr)

Figure 5.14. Bottomhole pressure variation with cooling (semilog).

The pressure at the injection and extraction wells is shown in Figure 5.14 as a function of
time. As the injection water is cooler than the reservoir, it will cause the reservoir to
shrink and reduce the reservoir pressure. However, note that for the injection well, the
pressure continues to increase for some time, this caused by poroleastic effects that tend
to reduce fracture aperture. The pressure distribution in the fracture network is shown in
the following figures for 1 day, 1 week, 1 month, and 1 year of operation, respectively.
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Figure 5.17. Reservoir pressure distribution with cooling effect at one month.
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Figure 5.18. Reservoir pressure distribution with cooling effect at one year.
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5.4. Three-Dimensional Poroelastic Analysis of Natural
Fractures

5.4.1. Model verification

In this section we present a number of examples dealing with fracture slip and
permeability change using a 3D model. The model elements were described in Chapter 4.
To verify the numerical model, we compare its predictions with the available analytical
solutions for the penny-shaped crack problem. Sneddon [2] solved the problem of a crack
in infinite space, subjected to uniform normal traction p (see Table 3 for material

properties used).

——/

111

i
o

Y (m)

-5Q50

Figure 5.19. Mesh for a circular fracture used to verify the 3D numerical model.

The fracture opening in the normal direction is given by:
4(1 - v) pa >
= 71—
w(r) — (r/a)
where « is the radius of the fracture, r is the radius of the computational point, G is the
shear modulus, and v is the Poisson’s ratio. Also, Segedin [7] solved the problem of an
infinitely thin penny-shaped fracture whose faces are subjected to uniform shearing
tractions , S . The ride of the fracture in the direction of the shear force is given by:
8(1 - v) Sa 2
= — 1 —
u(r) 71'G(2—v) (r/a)
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Table 3. Data set used in the numerical example.

Parameter Value
Shear modulus G (GPa) 4.0
Poisson’s ratio v 0.25
Fluid viscosity z (N.s/m") 0.001
Fluid diffusivity ¢;(m°/s) 10~
Biot's coefficient o 0.95
Fluid density p, (kg/m’) 1000
Rock density p, (kg/m’) 2650
Rock permeability x (m°) 107"

As the material is poroelastic, the fracture aperture is time dependent. So, to compare our
results with analytical solutions, we use the numerical solution at very large time (here
we use 10°s for a rock with 10°m?* of permeability) to represent the drained behavior.
We set the shear modulus and Poisson’s ratio of the material to 4000 MPa and 0.25,
respectively. Figure 5.20 shows the fracture mesh with 800 four-noded quadrilateral
elements and 841 nodes. The size of typical elements is around 1.5x1.5 m”and the time
increment is 10% in the computation. Figure 5.20(a) shows the comparisons between the
numerical and analytical solutions for the opening of the fracture under a unit uniform
normal traction. The results for the fracture ride under a unit uniform shear tractions
applied at the fracture surface are shown in Figure 5.20(b). Generally the numerical
results agree well with the analytical results. The error of the numerical results increases
near the fracture tip; this is caused by the use of constant elements instead of special tip
elements.

5.4.2. Numerical simulations

As a first numerical experiment, consider a horizontal circular planar fracture in a
poroelastic rock (Figure 5.21). The fracture is suddenly subject to a constant fluid
pressure p =15 MPa at time 1=0. It is assumed that the initial stresses in the field are
isotropic and the vertical and horizontal components are 30 MPa and 20 MPa,
respectively. The fracture normal stiffness modulus of the fracture is assumed to be 10°
Pa/m. The problem can be decomposed into two subproblems corresponding to two types
of the loadings [11]: Mode 1, a normal stress loading o, = pH (¢); and Mode 2, a pore

pressure loading p = pH (t), where as before H () denotes the Heaviside step function.
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Figure 5.20. Comparisons between numerical results and analytical results in the normal and
shear directions.

91



Y (m)

0
X (m)
Figure 5.21. Circular fracture mesh used in numerical example, where element A is at the
center of the fracture.
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Figure 5.22. Variations of fracture opening at element A due to Mode 1 and 2 loadings.
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Figure 5.23. Undrained and drained fracture opening profile in response to combined mode 1
and 2 loading, where 7 is the radius of the computational point and a is fracture radius.

Figure 5.21 shows the fracture mesh used, it contains 1047 four-noded quadrilateral
element and 1100 element nodes. Figure 5.22(a) shows the evolution of the fracture
aperture at the center of element A (see Figure 5.21) in response to Mode 1 loading. As
in the 2D case, it is found that the fracture opens with time as the pore pressure that is
initially generated in the porous rock gradually dissipates. The fracture response at the
center of element A under Mode 2 is illustrated in Figure 5.22(b). It is observed that the
fracture closes progressively starting from zero to a stabilized value after a long time.
This phenomenon is caused by the rock dilation when the fluid leaks-off from the fracture
into the reservoir matrix and also has been observed previously for the 2D case. Figure
5.23 shows the fracture aperture profiles for the complete problem (both Modes 1 and 2)
for the undrained and drained cases. In the undrained case, we let =100s in the numerical
simulation so that there is almost no pore pressure dissipation or fluid leak-off from the
fracture into the rock; while in the drained case, we let =10%s in order to allow both of
Modes 1 and 2 transient processes to be complete. Note that the fracture aperture in the
early time (undrained) case is larger than that of the large time (drained) response
because of the effect of Mode 2 which induces a fracture closure.

Irregularly-shaped natural fracture subjected to shear

In the following, we analyze the opening and slip of a planar fracture that is subjected to
a fluid pressure which is less than the in-situ minimum stress. This condition can be
expected when stimulating geothermal reservoirs. The fracture surface has a dip angle of
60° and its strike direction is parallel to the local x-axis. It is assumed that the fracture is
in an in situ stress of g,=60.13MPa, oymin=34.81MPa, oym.x=50.88MPa, and p=17.4MPa
[7]. The orientation of opmax 1 parallel to the fracture strike direction. This stress field can
be rotated to the local fracture coordinate system to obtain ¢,,=41.1MPa, ox,~0MPa, and
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oy,~11.0MPa. It is also assumed that the effective friction angle and dilation angle of the
fracture are 30° and 3°, respectively. Both the normal and shear stiffness of the fracture
are assumed to be 10" Pa/m. The other material properties used here are shown in Table 3.
The fracture is discretized into 1834 four-noded quadrilateral elements and 1919 element
nodes as shown in Figure 5.24. For simplicity, we assume the fluid pressure in the
fracture is constant and uniform and its value is 25MPa.

300 —
- Element B

200

100 h

Y (m)

-100

Figure 5.24. Discretization of an irregular fracture using 1834 four-noded quadrilateral
elements.
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Figure 5.25. Distribution of shear displacement component D, on the fracture.
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Figure 5.26. Distribution of shear displacement component D, on the fracture.
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Figure 5.27. Distribution of normal displacement D,, on the fracture.
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Figure 5.28. Variation of fracture aperture d, for element B with time.
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Figure 5.29. Variation of slip in x-direction d_ for element B with time.
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Figure 5.31. Variation of normal effective stress o for element B with time.

Figures 5.25 and 5.26 show the distributions of the shear displacement discontinuities D,y
and D, in the local fracture coordinates to a time of 10°s after the fluid pressure is
applied in the fracture. As expected, it is found that D,y is much larger than D, because
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the in situ shear stresses 0, >>0,, on the fracture surface. The maximum slip in the y

direction occurs at the center of the fracture and equals 8.8 cm. Figure 5.27 illustrates the
distribution of the fracture opening with a maximum value of 5.3 mm at the center of the
fracture when the time is 10°s. The increase in the fracture aperture is caused by the
reduction of the normal effective stresses and shear slip induced dilations.

Because of the poroelastic nature of the rock, the fracture behavior is transient. Figures
5.28-5.31 show the variations of fracture aperture, shear slip in the x-direction, shear slip
in the y-direction, and the normal effective stress on element B (see Figure 5.24). It is
observed that the magnitudes of the shear slip in both the x-direction and y-direction
decrease with the passage of the time. This is an interesting result made possible by our
analysis; this phenomenon can be explained by the increase of the normal stresses with
time. The joint shear strength is directly proportional to the normal effective stress at the
fracture surface so that the fracture aperture is influenced by the variations of the normal
effective stress, which changes increases in response the matrix dilation due to fluid leak-
off from the fracture into the reservoir matrix and constraint dilation.

5.5. Three-Dimensional Analysis of Natural Fracture Response to
Injection and Extraction

The combined poro- and thermoelastic model will now be applied to an
injection/extraction problem to study the impact of fracture aperture change on pressure
in the fracture. In this section, we present two numerical examples using the coupled
model: one is for a circular fracture with one injection well and one extraction well, and
the other is for an arbitrary shaped fracture with one injection well and two extraction
wells.

5.5.1. Circular fracture

The fracture is assumed to be at a depth of 2330 m with an in situ stress of
o, =60.13 MPa, o, . =34.81 MPa, o, . =50.88 MPa, and a pore pressure of
p=17.4 MPa. To isolate the coupled thermal and proelastic effects, the fracture is
considered as horizontal so that there is no shear slip during the fluid injection and
extraction process (Figure 5.32). Initially, we consider the crack to be circular fracture
with a radius of 100m. The water is injected at temperature 7, with flow rate O, . The

initial reservoir temperature is 7, . The fluid extraction pressure is assumed to be equal to
the initial reservoir pressure and keeps constant in the fluid injection process. 7., O, T,

inj > r
and other parameters used in this problem are shown in Table 4. Figure 5.33 shows the
mesh used here which contains 1832 four-noded quadrilateral element and 1891 element
nodes. In Figure 5.33, the injection and extraction wells are located at points A and B,
respectively.
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Figure 5.34 and 5.35 show the distributions of the vertical normal poroelastic and
thermoelastic stresses, respectively, when the fluid injection times are 10°s (1.15 days),
10’ s (3.86 months) and 10°s (31.71 years) by using the poro-thermoelastic model. The
poroelastic stresses are resulted from fluid leakoff from the fracture into the reservoir
matrix; while the thermoelastic stresses are from heat exchange between the injected fluid
and the reservoir matrix. The vertical poro-stresses are compressive while the thermo-
stresses are tensile. Note that the magnitudes of the thermo-stress are much larger than
those of the poro-stress, and that the thermo-stresses are tensile before the extraction well
and compressive behind the extraction well.

Figure 5.36 shows the distributions of the fracture aperture for different fluid injection
times. At the early time, the fracture aperture around the injection well is relatively than
the other parts because the fluid pressure and the thermal stresses, both of which enlarge
the fracture aperture, is larger around the injection well. Like the thermo-stresses, the
fracture aperture is also relatively large before the extraction well and relatively small
behind the extraction well. After very long time of the fluid injection, the apertures are
larger at the zone before the extraction well and smaller at the zone behind the extraction
partly because of the complex three-dimensional deformations of the fracture.
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production well production
well 4 W ell

L 4 L

——

geothermal
reservoir
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Figure 5.32. Fluid circulation in geothermal reservoir.
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Figure 5.33. Discretization of a circular planar fracture: A is the injection well and B is the

Table 4. Data set used in the numerical example.
Parameter Value
Shear modulus G (GPa) 15.0
Poisson’s ratio v 0.25
Fluid viscosity z; (N.s/m”) 0.001
Fluid diffusivity ¢;(m”/s) 107
Biot's coefficient a 0.47
Fluid density py(kg/m’) 1000
Rock density p, (kg/m) 2650
Rock permeability x (m”) 10"
Fluid heat capacity ¢,(J/kg K) 4200
Rock heat capacity ¢, (J/kg K) 800
Rock thermal conductivity K, (W/m K) 2.9
Rock linear thermal expansion coefficient a7 (1/K) 8x10°
Injection fluid temperature 7;,; (K) 300
Rock temperature 7, (K) 420
Fluid injection rate Q,,; (m’/s) 0.01
Initial average fracture aperture for flow w, (m) 5%107
Joint normal stiffness K, (Pa/m) 10"
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unit: Pa
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1.41E+06
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unit: Pa
2.11E+06
1.85E+06
1.59E+06
1.33E+06
1.07E+06
8.15E+05
5.57E+05
2.98E+05
4.03E+04
-2.18E+05
-4, 76E+05
-7.34E+05
-9.92E+05
-1.25E+06
-1.51E+06

0
X (m)

(b) t=1.0x10" s

102



100

unit: Pa
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2.69E+05
2.13E+05
1.56E+05
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(c) t=1.0x10° s
Figure 5.34. Distributions of poroelastic stress g, from poro-thermoelastic model after different

injection times: (a) t=1.0x10’ s; (b) t=1.0x10" s; (c) t=1.0x10’ s.
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unit: Pa
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Figure 5.35. Distributions of thermoelastic stress 0, from poro-thermoelastic model after

different injection times: (a) t=1.0%10°s; (b) t=1.0%10" s; (c) t=1.0x10’ s.
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unit: m
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unit: m
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Figure 5.36. Distributions of the fracture aperture increment from poro-thermoelastic model after
different injection times: (a) t=1.0x10%s; (b) t=1.0%10" s; (c) t=1.0%10’ s.
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Figure 5.37. Distributions of fluid pressure in the fracture from poro- and thermoelastic model
after different injection times: (a) t=1.0x107 s; (b) t=1.0x10" s; (c) t=1.0x10 s.

107



100

50

0
X (m)
(a) t=1.0x10° s.

100

50

0
X (m)
(b) t=1.0x10" s

108

unit: K
4396
430.3
421.0
411.7
4024
393.0
383.7
374 .4
365.1

355.8
346.5
337.2
327.9
3186
309.3



Y (m)

0
X (m)
(c) t=1.0x10° s
Figure 5.38. Distributions of fluid temperature in the fracture from poro-thermoelastic model
after different injection times: (a) t=1.0x10’ s; (b) t=1.0x10" s; (¢c) t=1.0x10’ s.

Figure 5.37 shows the distributions of the fluid pressures in the fracture corresponding to
different fluid injection times. The fracture pressures decrease with the time because of
the increase of the fracture apertures which is mainly due to the thermal effect when the
fluid injection time is relative long. Figure 5.38 shows the temperature distributions at
different fluid injection times. It is observed that the low temperature zone is around the
injection well at the early times, and then spreads to the extraction well with the
continuation of the fluid injection into the fracture.

To understand the physical processes involved in the fluid injection and extraction
process better, in the following, we examine the developments of fracture pressures and
fracture aperture widths on points A(-50,0), C(0,0), D(49.8,0) and E(50.2,0), where point
A is the location of injection well, point C is the center of the circular fracture, and points
D and E are respectively at the locations just before and behind the extraction well.

Figure 5.39 and 5.40 present the variations of the fracture aperture and fluid pressure on
point A with time by considering the poroelastic, thermoelastic, and their combined effect,
respectively. The poroelastic model again shows that the fracture aperture increases
significantly at the early time stage, and then slightly decreases after some times; while
the fracture pressure increases first, then unlike the fracture aperture, continues to
increase with the time. As we used a very small initial fracture aperture (5x10~°m), the
initial fracture pressure is relatively large compared to the initial reservoir pressure (note
that the fracture is not open since the fluid pressure is still less than the min- in-situ stress
and there is no shear slip as it is not considered in this example). As a result, there is a
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large fluid leakoff from the fracture into the reservoir, making the fluid pressure in the
poroelastic case much smaller than that in the thermoelastic case in which no fluid
leakoff occurs. However, the fluid leakoff decreases with the elapse of the fluid injection
time, resulting in less and less influence of the fluid leakoff on the fracture pressure with
the time. During the early time stage, the fracture closure due to the leakoff induced
poroelastic stresses is not as pronounced as the fracture opening due to the increase of
fracture pressures. This may be used to explain why both the fracture aperture and
fracture pressure increase during this period. After some injection times, the fluid leakoff
will be very small as the difference between the fracture pressure and reservoir pressure
becomes small. During this period, the fracture closure due to the poroelastic stresses is
dominant. The decrease of the fracture aperture also leads to larger fracture pressure.
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Figure 5.39. Comparison of fracture aperture increments at point A from poroelastic,
thermoelastic, and poro-thermoelastic models in the fluid injection and extraction process.
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Figure 5.40. Comparison of fluid pressures at the location of point A from the poroelastic,
thermoelastic, and poro-thermoelastic models during the fluid injection and extraction process.
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Figure 5.41. Comparison of fracture aperture at points A, C, D and E during injection and
extraction process from poroelastic, thermoelastic and combined models.

The thermoelastic solution predicts that the fracture aperture on point A increases
gradually as time increases due to the increased tensile thermo-stresses at the fracture
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surface as well as in the reservoir matrix. It is observed that early on, the fracture pressure
on point A is increasing very slightly, but the aperture on point A increases at a higher
rate. The reason is that the fracture is not heated uniformly at the early time stage,
resulting the distributions of the fracture apertures are also not uniform (see Figs. 36 and
37). At the early time stage, the area around the injection well is heated first, which
makes the fracture apertures at this area are larger than most of the other areas. That’s
why the incremental rate of the fracture aperture is higher than that of the fracture
pressure on point A. After a long time of fluid injection, the fracture pressure on point A
drops fast as the increment of fracture aperture mainly occurs during that period.
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Figure 5.42. Comparison of fluid pressures at points A, C, D and E from the poroelastic,
thermoelastic and combined models for injection and extraction process.

The combined poro- and thermoelastic solutions show that at the early time stage, both
the fracture aperture and pressure from the poro-thermoelastic model are very close to the
poroelastic solutions, which indicates the influence of the fluid leakoff is dominant at this
time; while both poro-thermoelastic solutions tend to the thermoelastic solutions after a
long time of fluid injection when the thermo-effect is dominant. However, even after a
very long time of fluid injection, the fracture apertures predicted by the porothermoelastic
model is still smaller than that predicted by the thermoelastic model. The difference
between them is caused by the fluid leakoff induced fracture closure. Through the poro-
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thermoelastic results, we found that the poromechanical and thermomechanical processes
occur at different time scales for the present fluid injection and extraction problem. The
thermomechanical coupling is important in the time scale of months to years; however,
the poromechanical coupling occurs much rapidly after the fluid injection begins. These
conclusions are in agreement with those in previous literature [1].

Figsures 41 and 42 present the variations of fracture apertures and pressures on points A,
C, D and E with time from the poroelastic, thermoelastic and poro-thermoelastic models.
The variations of the results on points C, D and E are similar to those on point A.
However, it should be noted that there is a little difference for the thermoelastic and poro-
thermoelastic results on E, which is located just behind the extraction well. When we
include the heat exchange between the injected fluid and reservoir matrix, relatively large
tensile stresses are found just before the extraction well and compressive stresses just
behind the extraction wells. As a result, we found relatively larger fracture aperture on
point D and smaller fracture aperture on point E after some times. However, the fracture
apertures on points D and E become closer when the fluid injection time is long enough
that no large compressive thermo-stresses appear just behind the extraction as shown in
Figure 35(c).

5.5.2. Irregularly-shaped fracture

The present numerical procedures is now applied to a fluid injection/extraction operation
involving an arbitrarily shaped fracture. Figure 5.44 shows one such fracture and its
discretization into surface elements. The fracture surface is divided into 1745 four-noded
quadrilateral element and 1808 element nodes. It is assumed that the fracture plane is
horizontal and the initial stresses and pore pressure field are the same as those in the
preceding numerical example. The parameters in Table 4 are used here. The heat
extraction operation involves three wells: injection well A with flow rate Q,, = 0.01m’/s,

and two extraction wells B and C with the same initial reservoir pressure. The fully
coupled poro-thermoelastic model is used to analyze the problem.

Figure 5.44 illustrates the distributions of fluid temperature in the fracture when the fluid
injection times are 10°s (1.16 days), 10’s (115.7 days) and 10°s (31.7 years). As expected,
with the elapse of the time, the low temperature area spreads from the injection well to
the extraction well and the temperature of the extracted fluid decreases. The cooling area
spreads faster towards the extraction well that is closer to the injection well.

Figure 5.45 shows the distributions of the fracture aperture increment at different fluid
injection times. The fracture aperture widths increase with the time. The fracture
apertures are relatively larger around the injection well and near the extraction wells, and
relatively small behind the extraction wells because of the influence of the thermo-
stresses. Figure 5.46 shows the distributions of fracture fluid pressure corresponding to
different fluid injection times. It is found that the fluid pressures in the fracture decreases
significantly with the time as the fracture apertures increases in the fluid injection process.
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Figure 5.43. Discretization of an arbitrary shaped planar fracture, where A is fluid injection well,
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300

200

100

Y (m)

-100

_2001111||1_11 rif R EEE R BN SN
-300 -200 -100 0 100 200 300

X (m)

(a) t=1.0x10 s

114



Unit: K
4231
414.9
406.7
398.5
390.3
3821
373.9
365.7
357.5
349.2
341.0
3328
3246
316.4
308.2

300

200

100

Y (m)

-100

o, | - l | - - =l l | R T - l Ll 1 1 I L1 l
2{::'-0.300 -200 -100 0 100 200 300

X (m)

(b) t=1.0%10" s

unit: K
4125
405.0
3975
390.0
3825
375.0
367.5
360.0
3525
345.0
3375
330.0
3225
315.0
307.5

300

200

100

Y (m)

-100

o f NI R )| l | ) | | I | T | l I T | I | I T T | I
209300 -200 -100 0 100 200 300

X (m)
(c) t=1.0x10" s

Figure 5.44. Distributions of fluid temperature in the fracture from poro-thermoelastic model
after different fluid injection times: (a) t=1.0x10’ s; (b) t=1.0%10" s; (c) t=1.0x10" s.
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Figure 5.45. Distributions of fracture aperture increment after different fluid injection times: (a)
t=1.0x10 s; (b) t=1.0x10" s; (c) t=1.0%10’ s.
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Figure 5.46. Distributions of fluid pressure in the fracture from poro-thermoelastic model after
different fluid injection times: (a) t=1.0%10°s; (b) t=1.0%10" s; (c) t=1.0%10’ s.

Consistent wit the 2D analysis, the 3D numerical examples clearly show that the fracture
pressure and aperture are affected predominantly by the poroelastic effect at early stage
of injection, whereas the thermo-effect dominates after a long time of water injection.

When the initial fracture aperture is very small, relatively large fracture pressure is
generated compared to the initial reservoir pressure, resulting in a large fluid leakoff that
significantly reducers the fracture pressure and aperture compared to the case without
fluid leakoff. However, the leakoff influence becomes less evident with the elapse of the
fluid injection time when the fracture aperture increases significantly mainly due to the
thermo-effect.

The 3D analysis provides a more accurate representation of fracture response and
provides means for 3D analysis of slip and stress redistribution in the reservoir.
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6. Poro-thermoelastic Analysis of Reactive Flow in a Natural
Fracture

6.1. Introduction

As the fluid circulates through the reservoir, it interacts with rocks causing fracture
geometry variation in response to chemical as well as mechanical, and thermal processes.
Chemical reactions between the rock and the circulating fluid also have been studied and
shown to significantly impact the fracture aperture by precipitation and dissolution of
minerals [1-3]. Experimental studies [4-6] have shown that chemical precipitation and
dissolution of minerals significantly affect fracture aperture [1, 2]. Therefore, it is of
interest to understand the poromechanical, thermal and chemical interactions between the
fluid and host rock in relation to flow and heat production. Modeling chemical and poro-
thermo-mechanical processes in a fracture-matrix system involves solving equations
describing fracture and porous media flow, heat transport, solute transport/reactions and
poro-thermoelastic response of the rock and fracture. These mechanisms are generally
coupled and occur in an inhomogeneous rock mass that require complex numerical
solutions. However, often it is beneficial to conduct a simplified analysis using an
analytical solution to a chemical and poro-thermoelastic problem. Furthermore, analytical
solutions are useful in testing complex numerical algorithms and also allow one to readily
gain insight into the fundamental issues that are involved. In this work, we present a
semi-analytical model to solve the non-isothermal reactive flow in a fracture-matrix
system considering silica reactivity and poro-thermoelastic effects on fracture aperture.
The reactive transport takes into account solute diffusion into the rock matrix and along
the fracture. The latter is important because the fracture-matrix coupled system affects
the thermal regime as well as the rate at which the concentration gradient between the
fracture and the reservoir matrix influences the opening/closure of the fracture aperture
(i.e. fracture permeability).

Other investigators have also treated the problem of non-isothermal reactive flow in a
fracture both in the context of geological problems and geothermal reservoir development
[7-10]. However, previous studies have not coupled chemical, mechanical and thermal
mechanisms.

6.2. Modeling Approach & Mathematical Model

For all but the most soluble rocks, the solubility determines the amount of solutes that
will be carried along the fracture under large thermal gradient between the fracture and
reservoir matrix. A complete description of quartz dissolution and precipitation Kinetics is
impossible without accurate values for quartz solubility [11]. The reactive modeling of
most minerals is accomplished using the local equilibrium approach without considering
their reaction kinetics. Silica deserves a special attention as it equilibrates at a slower rate
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than other minerals and hence, consideration of kinetics becomes inevitable in modeling
quartz precipitation/dissolution.

The quartz-water system governed by Eqg. 1 is a simple surface reaction to form silicic
acid monomer otherwise called as dissolved silica:

2H,0+5i0, < H,SiO, (1)

Changes in pressure, in the range occurring in geothermal systems, have much lesser
effect on changes in the state of mineral saturation than temperature changes. This is
exemplified for quartz,SiO, [12]; the solubility of which has been well established

experimentally over a wide range of temperature and pressure [12, 13]. The equilibrium
solubility of silica and especially quartz is low (amorphous silica 100-140 mg/l, quartz 6-
14 mg/l at earth surface temperature) as described by [14]. As a result, the impact of
pressure on solubility is neglected in this work.

Using the above approach, we develop an analytical model to quantify the evolution of
fracture aperture and the associated fluid pressure during the dissolution/precipitation of
quartz in a granitic rock under laminar flow conditions. The geothermal fluid is injected
at the injection well either super-saturated or under saturated with respect to the
equilibrium concentration of quartz, through an initially smooth parallel-walled fracture
between two blocks of granitic rock.

In general, modeling of the fracture evolution in EGS requires reduction of an extremely
complex system to an idealized one based on simple principles. Such an idealized
concept has already been used for heat extraction and solute transport. The conceptual
model corresponding to an idealized parallel-plate system representing a fracture-matrix
coupled system is illustrated in Figure 6.1. The thermal transport mechanisms are thermal
advection, thermal conduction and thermal dispersion within the fracture; conductive
limited thermal transport from reservoir matrix into the fracture and thermal conduction
within the reservoir matrix. The solute transport mechanisms in the fracture are
advection, describing the motion of dissolved particles along with the circulating fluid;
free diffusion within the fracture, dispersion, limited diffusion from the fracture into the
reservoir matrix; dissolution/precipitation of quartz within the fracture and effective
diffusion within the reservoir matrix. In this work, matrix diffusion is regarded as a one-
dimensional process. This assumption is justified if one considers that the solute
migration is faster in fractures than in the matrix. The coupling between the fracture and
matrix is provided by the continuity of fluxes and concentrations along the interface,
assuming that diffusive flux from fracture to matrix takes place perpendicular to the
fracture. Diffusion exchanges along the direction parallel to the fracture plane are then
negligible as compared with that perpendicular to the fracture plane. Kennedy and
Lennox (1995) showed the validity of such an assumption numerically for most cases,
except for fractured clay with fracture apertures less than 20 um and flow velocities
lower than 1 m/day.
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In order to incorporate quartz dissolution/precipitation described by linear reaction
kinetics, the modified form of fracture and matrix equations is adopted. The radioactive
decay term used in the fracture equation is replaced with a mathematically similar linear
reaction rate law which describes a first order reaction. This term represents the
congruent dissolution/precipitation of quartz described by the temperature dependence of
the reaction rate constant and the equilibrium concentration of quartz. The temperature
dependence of the equilibrium concentration of quartz is used. In deriving the governing
equations for the problem, the following assumptions are made regarding the geometry
and hydraulic properties:

(1) the width of the fracture is much smaller than its length

(2) transverse diffusion and dispersion within the fracture assure complete mixing
across the fracture width at all times

(3) the permeability of the reservoir matrix is very low and transport within the
reservoir matrix occurs mainly by effective molecular diffusion which involves
tortuosity

(4) transport along the fracture is much faster than transport within the reservoir

Assumptions 1 and 2 provide the basis for a one-dimensional representation of mass
transport along the fracture itself. Assumption 3 and 4 provide the basis for taking the
direction of mass flux density in the reservoir matrix to be perpendicular to the fracture
axis. The result is the simplification of the two-dimensional system into two coupled
orthogonal one-dimensional systems. In addition, the following general assumptions are
used in the present study for analyzing the solute transport in a single fracture:

The fracture and the reservoir matrix are saturated

The water velocity of the circulating fluid in the fracture is constant

Quartz dissolution involves a single component system

Water and rock characteristics, namely longitudinal dispersion coefficient in the
fracture, reservoir diffusion coefficient and reservoir porosity do not depend on
position

The mathematical model for analyzing silica reactivity and poro-thermoelasticity is
formulated based on an idealized system as shown in Figure 6.1. The reservoir is
assumed to be horizontal and constrained at top and bottom by rigid, impermeable and
thermally insulated formations with constant-thickness (Figure 6.1.a). The fracture is
vertical and of uniform width intersecting the entire reservoir thickness.

The plain-strain approximation is used on the horizontal section of the vertical fracture to
reduce the solution geometry as shown in Figure 6.1(b). The rock is assumed to be
isotropic, homogeneous, and linearly elastic with constant permeability. Fluid flow in the
fracture is incompressible, viscous, and laminar such that lubrication flow theory applies
and fluid properties are uniform throughout. The fracture aperture is uniform and
significantly less than its length. Furthermore, the influence of rock-matrix deformation
on pore-pressure is not included as its effect is not major in the current context. We have
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not considered the resistance to opening at the fracture ends and any stiffness that might
be offered by a natural fracture.
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Figure 6.1. Idealized fracture and rock- matrix system.

6.2.1. Fluid flow in the fracture

For the lubrication flow theory, the momentum balance indicates that the flow rate is
proportional to the pressure gradient as:

6p(x’ O’ l) _ 12'uf
ox w?(x,1)

q(x,7) (1)

Here p is the pressure in the fracture caused by injection defined as: p = p(x,0,7)—p,
with p(x,0,7) as the total fracture pressure and p, as the ambient reservoir pressure, x,

is the fluid viscosity; wis the fracture aperture and ¢(x,¢) is volumetric flow rate per unit
height of the vertical fracture: g(x,z) = w(x,?)v(x,?) .

Assuming fluid is incompressible and it leaks off from the fracture wall into the
formation, the fluid continuity equation is:

%40 L og () =0 )
ox

where ¢,(x,7)is the leak-off velocity (positive for loss into the matrix), with the

multiplier 2 reflecting the two fracture walls. Now, combining Egs. (1) and (2) and
neglecting ow/ox, a second-order partial differential equation is obtained for fluid
pressure in the fracture as shown in below :
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o°p(x,0,t) 24u,
= : ’t
ox? w?(x,1) 4 (x )

(3)

6.2.2. Fluid flow in the rock-matrix

In general, the reservoir would be modeled using a fully coupled thermo-poroelasticity to
include the coupled interaction between fluid diffusion, heat transport and rock
deformation. However, similar to Ghassemi et al. [15], we assume that the coupling
between flow process and the elastic deformation is small so that the fluid heat diffusion
can be treated separately from the rock deformation. In such case, pore- pressure in the
rock- matrix is governed by well-known diffusion equation:

2
Cpleyn) 1 apEr oo )
oy Cp ot

where c,, is the fluid diffusivity coefficient . The initial and boundary conditions for
Egs. (1) and (4) are taken as:
P(x1y10):0 p(Lf,O,t):(),

where w, is the initial fracture aperture.

3

x=0 w

o

6.2.3. Heat transfer in the fracture and rock-matrix

Considering heat storage, advection, longitudinal dispersion and conduction from the
fracture walls, the heat transport in the fracture can be expressed as:

aT(x,o,z)_D_aZT(x,o,t)_D O*T(x,0,8) 24, OT(x,y.1)| ©)

m

0T (x,0,1)
—— 2+ v(x,1) ; > R > =
ot ox ox ox prew(x,t) 0Oy

=0

Studies on the heat transfer suggest conduction and dispersion effect within the fracture
are small, hence can be ignored [16]. With these simplifications Eq. (6) becomes:

aT(x,o,t)thaT(x,o,z)_ 24,, OT(x.y.1)]

ot ( ’ ) Ox - prew(x,t) oy

()

‘y:O

Assuming the heat conduction in the rock-matrix to be one-dimensional perpendicular to
fracture, and considering the presence of leak-off, the heat transport in the rock-matrix is
governed by:

6T(x,y,t) A 82T(x,y,t)

o pe ot 4l

8T(x,y,t)
y

(8)
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The initial and boundary conditions associated with Egs. (7)-(8) are:

I'(x,y,0)=T, (©)
7(0,00)=T, (10)

where 7, is the initial rock temperature and 7, is the fluid temperature at the injection
point.

6.2.4. Solute transport and reactivity

The issue of mineral dissolution and precipitation in geothermal systems can be complex.
But, when studying silica reactivity, using a single component reactive transport model is
adequate under conditions of interest [17-20]. In the present work, the principal solute
transport mechanisms in a fracture are considered to be: solute advection, diffusion-
limited mass solute transfer from the fracture into the rock-matrix; dissolution and
precipitation of silica within the fracture, and diffusive transport within the rock-matrix.

By assuming one-dimensional mass transport along the fracture and considering the
matrix mass-flux to be perpendicular to the fracture plane, the two-dimensional system is
simplified into two coupled orthogonal one-dimensional systems. In addition, we assume
that fluid and rock characteristics e.g., rock-matrix diffusion coefficient and rock-matrix
porosity do not depend on the spatial position. The resulting single-component solute
transport system incorporates the silica dissolution/precipitation using linear reaction
kinetics. As an extension, we consider the impact of fluid leak-off and temperature-
dependent reaction rate and the equilibrium concentration within the fracture and the
rock-matrix [3]. By considering reaction rates and equilibrium concentration as function
of temperature, a non-linearity (of variable coefficients) is introduced in second order
partial differential equation system of solute transport, for example:

oc (x,y,t 0% (x,3.0) k [f(T(x,y,0)] . oc (x, .t

C(;y )_p Cg;fzy ) kLS ;xyt)]c(x,y,t)—ql(x,t) c(xunt) gy
ac'(x,O,t)__ ac'(x,O,t)_ . 26D Oc'(x,y,t)|
— v(x,t)—ax k Lf(T(x,y,0]c (x’o’t)+w(x,t) & g (12)

To overcome the difficulty in deriving analytical solutions for Egs. (11) and (12), the
solute transport is decoupled from thermal transport, such that variable coefficients in
solute transport are only functions of temperature and these are computed after all
temperature field calculations are completed. The temperature dependent reaction rate is
adopted from [21] and equilibrium concentration of quartz is obtained from [11], while
the expressions for the effective reaction rate constants are adopted from Steefel et al.
[18] (see details in section 6.3.1). So, the governing solute transport equations for the
case of linear reaction kinetics and with fluid leak-off can be simplified as:
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oc (x,y,t) o o°c (x,y,t) _k, . B oc (x,y,t)
o =D P y c(xpt)—q (x 1) ————= (13)
oc (x,0,t) ~ oc (x,0,1) L 20D Oc (x,y,t)|
— v(x,t) — k,c (x,O,t)+ ) & ‘y:O (14)
In Egs.(13) and (14) , ¢ (x, y,t)and ¢ (x,0,)are defined as:
c'(x,y,t):c(x,y,t)—ce" (x,y,t) (15)

c (x,O,t) = c(x,O,t)—ceq (x,O,t)

The Egs. (14) and (15) are subjected to the initial and boundary conditions; it is assumed
that initially, before fluid injection/production begins, the fluid in the fracture is at
equilibrium concentration. Similarly, at the injection well, a constant concentration in the
injected fluid exists. So they are:

c (x,y,O) =0 (16)
c (0,0,t) =c, (17)

where ¢, source concentration above the equilibrium level.

6.3. Fracture aperture change due to silica dissolution and
precipitation and poro-thermoelastic effects

The fracture aperture can change due to silica dissolution/precipitation and poro-
thermoelastic deformation caused by fluid pressure in the fracture thus affecting the
conductivity and fluid flow. These mechanisms of fracture aperture change are described
in detail in following:

6.3.1. Silica dissolution and precipitation and aperture variation

Considering quartz as the main mineral which affects the fracture aperture in dissolution
and precipitation processes, its reactivity of quartz can be modeled using a rate law
[11,21]:

dc *
—=K.a (¢ —-c 18
.~ Kal ) (18)
The intrinsic rate constant, K, and the equilibrium concentration of quartz are

assumed to be function of temperature alone [11,21] as the pressure does not play an
important role because the magnitude of silica concentration change with pressure is

127



generally significant order of magnitude less than its temperature counterpart and is given
as:

K (T)= 100-433-4090/7 19)

¢ (T) = 6x10* x 10881202840 T-1560/7 20

The effective reaction rate constants in the fracture and rock-matrix are computed as:

_ 2K (T)

w

o

ky

ik, = A4,K(T) (1)

where 4, is mineral surface area [18].

In addition to computing the concentration profile within the fracture at various times, the
cumulative mass of silica dissolved from or deposited on the rock surfaces at each
position along the fracture is examined. For a given time interval A7, the mass of silica
dissolved or deposited per unit fracture length, m,_is given by [21]:

~ 10°° pfAtVfKra* (ceq - c)

q
Lf

m (22)

where a*(: 2f, /wo) is the surface area to fluid volume ratio and f, is the volume

fraction of quartz in the rock matrix. The quantity of quartz/amorphous silica dissolved or
deposited can be related to the fractional change in the average fracture aperture by
assuming fracture flow geometry in Figure 6.1. The fractional aperture change (Aw) can

be described as the volume change of quartz/amorphous silica divided by the fluid
volume and is given by Robinson and Pendergrass [21]

_Lym, _ _1076 pfAlKra* (c“’ - c)
quf Py

Aw =

(23)

The fractional aperture change due to silica dissolution and precipitation is related to
the induced fracture aperture asAw =1-w(x,t)/w,. Using this expression into Eq.(23),

the induced fracture aperture w(x,#) due to silica dissolution and precipitation can be
written as:

10°° pfAtKra* (ceq - c)
Pq

w(x,t)=w, |1+

(24)
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6.3.2. Aperture variation caused by poro-thermoelasticity

The fracture aperture can change due to the elastic deformation exerted by the pressure in
the fracture. It can also be affected by the thermal and pore pressure diffusion into the
formation. The 3D field equations considering these coupled effects are (Ghassemi et al.
[26]:

2 ou .
Gl [ G N P sy @
oxox; \1-2v )oxx, ox, ox,
2
1o _kop —ag au; +dal (b) (25)
M ot p Ox0Ox, Ot \ Ox, Ot
or 4, 0T oT
B — -4, (©
ot p,c. Ox.Ox, Ox,

with - 260 —v) and where d =ap, +¢(B,~p.); x=klu; G is shear
a’(l-2v)i-2v,) ‘ T

modulus and M is Biot's modulus.

For most rocks, heating/cooling produces thermal stresses and affects pore pressure, but
stress and pressure changes do not significantly alter the temperature field so that the
latter is not coupled to the equations for pore pressure and solid displacements. Also, note
that convective heat transport is neglected. This is justified for rocks of interest, i.e. rocks
that are impermeable or have low matrix permeability [26].

The system of Eg. (25) needs to be solved simultaneously together with boundary
conditions on the fracture surface. The boundary conditions are temperature and pressure
in the fracture, which are also unknown as they are governed by the fracture flow and
heat transport equations. The solution of this system yields the information about fracture
opening resulting from the combined elastic, pore pressure, and temperature effect as
w(x,t) = 2uy(x,0,t).

In order to solve the above sub-problem analytically, we assume the solid displacement
to be one dimensional and perpendicular to the fracture surface (in the y-direction). In
view of this assumption, Eg. (25).a becomes:

o%u, (x, y,t
u, (xzy ) _y oT (x, y,t) +16p(x,y,t) (26)
oy oy G oy
whereZ:M _a=2) ‘and o is Biot’s effective stress coefficient. a, is the

N/
1-v 21-v)
linear thermal expansion coefficient of the rock, (s, /3). Eqn. (26) is integrated twice

from the fracture surface (y = 0) to infinity, assuming u},‘ =0:
y=oo
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-u,(x,0,1) = ;(! AT(x,y,t)der%_!Ap(x,y,t)dy (27)
where:
AT(x,y,t) =T(x,y,t) —T(x,0,1)

28
Ap(x,y,t):p(x,y,t)—p(x,oo,t) ( )

With T(x,,7) = T,, and p(x,,f) = p, , Where p, is the in-situ reservoir pressure, and
differentiating Eq. (27) with respect to time one gets:

ou,(x,0,t)  FOAT(x,y,1) n [ OAp(x, y,1)
7 = St dy+— | ————=d 29
ot d ot g G! 0 g .

0 ¢

6.4. Solution of Temperature, Concentration, Pore Pressure and
Aperture with Constant Leak-off into Permeable Rock-Matrix

To be able to solve equation of poro-thermo-elasticity and solute transport and its
reactivity semi-analytically, we relax the condition of fluid leak-off into the formation by
treating it as constant along the fracture face (i.e. fluid leaking off into the formation is
constant in magnitude). By assuming this, we first solve for the pressure in the fracture
and rock-matrix. Then solving for temperature and fracture aperture change due to
thermoelasticity is followed by solute transport and its effect on fracture aperture.
Similarly poroelastic effects i.e. change in fracture aperture due to pore pressure are
computed.

For the constant leak-off, g, and constant injection rate,q the integration of the
continuity Eq. (2) gives the flow rate as:

q(x)=q, —2q,x (30)

Here g, =mgq,/2L,and m is a fluid loss coefficient, can be defined as the ratio
between fluid loss and the injection rate [16]. Substituting Eq. (30) into Eq. (1) yields:

op(x,0,7) 124,
ox w?(x,1)

[qo - quox] (31)

Integrating Eq. (31) with respect to x and applying boundary condition in Eq. (5) it
follows:

L _
p(x,0,¢) :lZ,quMdg (32)

w(¢)
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Fluid diffusion Eq. (4) can be solved by applying Laplace transformation and
utilizing the boundary condition in Eq. (5) as:

*p(x, v, s S .
M =2 B(x,p,5) (33)
oy ¢

The solution for induced pressure in time domain with substitution of Eq. (32) leads to:

o el 2 | Fla—20,6)
p(x,y,t)—lnyefc[z\/cT)tJl. wg(g) d¢ (34)

6.4.1. Temperature solution and thermoelastic effects on fracture aperture

For the constant leak-off as noted in Eq.(30), the solution of Egs. (7)-(10) in Laplace
space is [e.g., 16] is:

I (x,y,5)=T,(x,0,5) exp[%"’%‘y} (35)

with

f”D(x,O,s):1 exp{—ix—MLog(l—%xﬂ (36)
S v prcw qo

/ T,-T(xyt
where A, =1- 1+L'"S2 and 7, :w
pmcr'QI() ]:,0 _TfO

To get the fracture aperture change due to thermoelasticity, considering only the effects
of thermoelasticity in the governing equation of poro-thermo-elasticity (Eqn. (29) as:

auy (x,0,7)
ot

ow(x,t)
Ot

—% —Z%(IOWAT(x,y,t)dy) (37)

where w(x,#) = 2u, (x,0,7) . Substituting Eq. (8) with Eq. (28) into Eq. (37) it yields:

m

OW1) _ oy OAT (3 201)
o T o

—2;(q,0AT(x,0,t) (38)

=0

Taking Laplace transform of Eqn. (38) and with knowing that AT (x, y,t) =T (x, y,t)-T,,
it yields:
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Ao oT, (x, S)|
sp,C, oy ‘

A
(x5 = 2o —27% W20 (x05) (39
S S

y=0

The gradient term in Eq. (39) is obtained from Eq. (35), as:

6T'D (x,y,S) :f (x O S) pmcrqloﬂ'T— (40)
dy PR 22

=0 mm

Substituting Eq. (40) into (39) and simplifying it yields

A p—
ns)= e T X4, (2—4;)
A S

T, (x,0,s) (41)
Combining Egs. (36) and (41) leads to:

w(x,s) = Wo 4 24 (2 _ ﬂrf) exp l:—ﬁ xX— MLog [l— %xﬂ (42)

s s v 2p,c,

o

where 7% =T T, and initial fracture aperture i.e. w(x,0)=w,. The solution must be
numerically inverted in time domain which is done using Stehfast [24] method.

6.4.2. Solution for silica concentration

Considering fluid leak-off, the solution of Egs. (13)-(17) for the concentration in the
rock-matrix and the fracture in Laplace space are given as:

~' ~' qlo/lC—
H H = lol ' 43
& (57,5) = (x s)exp[ L y} (43)
with
, ' k,+
5(x,o,s)=c_oexp{(, 5) e Log[lzﬁxj] (44)
K % 2 9
where

e :1—\/1+ 412) (&+s]
q/o ¢

Thus the fracture aperture due to silica dissolution and precipitation can now be
calculated using the concentration in the fracture is computed from Eq. (44) and
substituting it into Eqg. (24) with other known and computed variables (e.g. effective
reaction rate constant).
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6.4.3. Pore pressure solution and poroelastic effects on fracture aperture

Ignoring the thermoelastic effects for the time being and considering poroelastic effects
only Eqg. (29) is thus leads to:

ou,(x,0,8) 1ow(x,t) 7 d( -
) _Lowtnt)_ _md(reoy ,td) 45
ot 2 o G dt Jo 08w (s, .0y (43)

Simplifying Eqgn. (45) using governing Eq. (4) as shown in below

ow(x,t)  2nc, 8Ap(x,y,t)|
ot G oy

(46)

|y:0

Now realizing Ap(x, y,t) = p(x, y,t) from Eq. (5) and differentiating pressure Eqg.
(34) w. r. t. y and combining it with Eq. (46), it leads to:

ow(x,1) _ ZU\/ZAp(x, 0,1)
ot Gt

(47)

where Ap(x,0,7)=p,,, (x,0,8)-p,.,,(x,0,z) is the pressure difference between the
permeable and impermeable cases. Simplifying for the permeable and impermeable cases

L
yieldSZAp(x,O,t)=24,ufqlojiﬁdg . Substituting this expression into Eq. (47) and
» WS

integrating w. r. t. time knowing initial condition as w(x,0)=w, yields:

L,

96m1L,q, [cf

w(x,t)=wa—M C_Dtj‘%dg (48)
G 7 I w(s)

6.5. Solution for Temperature, Concentration & Aperture for
Impermeable Rock

Impermeable solutions play important role if the reservoir can be treated as impermeable
with respect to the fluid leak-off from the fracture into the rock-matrix. Moreover, these
solutions can be readily solved and can be used to validate e.g. bound solution (no leak-
off) of complex numerical algorithm. The impermeable solutions for chemo-poro-thermo

model can be found by neglecting leak-off into the formation i.e. g,(x,¢)=0 in the

governing equations. However, for this case poroelastic effects are not considered here.
The impermeable solution for temperature can be calculated as (e.g. in Gringarten et al.
[25]:
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A x vp, C
mm m_r for S t
T, (x,0,t)= e’f{qopfcw 2 (vt—x):l T (49)

mm

0 forx >t

Substituting Eqg. (49) into Eg. (29) with considering only thermoelastic effects, the
fracture aperture change due to thermoelastic can be given as:

Ey(x,1) = w, +§1Wexp[ fz( ] Sox erfc(\/i WJ for x < vt (50)

w forx > vt

o

4yT" 2 44T A
Where 51 — Z mm mmpm r and 53 Z mm

\,.C, =S (q ,ofcw)2 DoPC

Similarly, neglecting leak-off into the formation and assuming constant velocity in the
fracture, the solution for solute concentration (Egs. (13)-(17) ) in time domain is (e.g. in
(Steefel et al., 1998) :

c'(x,O,t)zo, ift<X
\

. L1 (51)
c'(x,O,t)z%”{eXp(—%jerfc(f )+exp{—x(lo P ﬂerfc(f)}, ift>%

f m

where
£, = * -1 D-(t_fj (52)
N X //Lm \%
2Pe\/D'(t—
A%
_ W, ., _¢D., L o v 53
T k,, AT ,/”tf—ka/if 53

—+
Ay Pel,
Similarly, solution of concentration in the rock-matrix in time domain can be solved and
given as:

¢ (3r7:£) =0, if(t<—
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where, 7, :P@—ii D (z—fj

, A
o)
=

6.6. Numerical Examples

Silica dissolution or precipitation occurs when the injectate is either under- or super-
saturated. The amount of mass transfer is governed by the kinetics of the reaction. When
the injectate is pure water, silica in the rock-matrix get dissolved and thus fracture
aperture is increased (Figure 6.2). Fracture aperture along the fracture is amplified as the
injection of fluid continues which can be attributed to falling of concentration along the
fracture as shown in Figure 6.2 .

Table 5. Input parameters used in the example case

Parameter Value Units
o 1 x10™ m?s™
Wo 0.001 m

¢ 0.01 -

v 0.25 -

ar 8.0 x 10° K*

O 2650 kgm®
o 1000 kgm®
C, 800 Jkg'K?
C, 4200 Jkg'K?
Ly 0.001 Nsm
A 2.9 wm?k?
T 575 K

7D 150 K

D’ 1.0x 10° m?day™
Ly 1000 m

D 2650 kgm®
7 0.2 -

a 0.47 -

Cp 1.0 x 107 m?st

G 15,000 MPa

In fracture aperture profile (in Figure 6.2), the rising limbs (positive slope) corresponds to
an increase in fracture aperture resulting from dissolution, whereas the falling limbs
(negative slope) represent a decrease in net fracture aperture resulting from dissolution
followed by precipitation. This is because of the varying equilibrium concentration
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(Figure 6.3) and variation of reaction constant in
6.4).
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Figure 6.3. Concentration distribution in the fracture after 1 week, 1 month and 3 months when
zero concentration fluid (water) is injected in the fracture.
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The corresponding silica concentration for the fracture aperture evolution (Figure 6.2) is
depicted in Figure 6.3, where the injectate is pure water (zero concentration). It can be
seen that the silica concentration increases within the fracture as the fluid moves away
from the injection point. However, the concentration profile in the crack shows a
reduction with time as it approaches the equilibrium concentration away from the
injection point. This is because at early times, the injectate attains the rock matrix
temperature (higher) at a shorter distance from the injection point. Moreover, in the
diffusion dominated solute transport, the circulating fluid attains its equilibrium
concentration close to the injection point for early injection time.

The influence of temperature on silica dissolution and precipitation can be described by
observing the temperature profile in the fracture in (Figure 6.4). For the case considered,
the temperature of the circulating fluid nearly reaches the rock temperature at 225 m, 500
m and 850 m from the injection point for 1 week, 1 month and 3 months of injection
times, respectively. As the heat is extracted from the formation over the fracture length,
the rock is cooled to a lower temperature. Therefore, the fluid temperature profile in the
fracture decreases with time affecting the dissolution/precipitation process in the crack.
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Figure 6.4. Temperature distribution in the fracture after 1 week, 1 month and 3 months.

137



l//m———————e——————
" No Leakoff
0.8
T === t=1week
B — —s# — t=1month
B ———— t=3 months
= 06 F
8 .
o L
:;5': L
o 04
0.2 +
| \\\\\l \\\\\l \\\\
10° 10" 10° 10°

Distance along the fracture(m)

Figure 6.5. Normalized pressure profile in the fracture after 1 week, 1 month and 3 months.

In  Figure 6.5, the normalized pressure profile corresponding to silica
dissolution/precipitation along the fracture is shown for 1 week, 1 month and 3 months of
injection time. The pressure is normalized with respect to the isothermal impermeable
injection pressure, (Pimp(0,t) =1.2 MPa). As in this case, the fracture aperture is not
influenced by an appreciable amount due to silica dissolution/precipitation, the pressure
profiles for various injection times differ only by a small amount.

Fluid leak-off into the formation influences the dissolution/precipitation of silica in the
fracture. To see the effects of fluid leak-off on the silica dissolution/precipitation,
consider the results of under-saturated and supersaturated fluid injections as shown in
Figure 6.6 and Figure 6.7. The fracture aperture profile corresponding to silica
dissolution/precipitation by pure water injection for 1 week and 3 months are shown in
Figure 6.6 for the cases of leak-off and no leak-off. Note that fluid leak-off tends to
accelerate dissolution up to about half the fracture length. Precipitation is also accelerated
but at longer injection times. Essentially the curve attains a higher peak and shifts to the
left with increased leak-off. This pattern of acceleration/deceleration is observed at short
times (i.e. of 1 week) but at a lower magnitude. Thus, the leak-off enhances both
dissolution and precipitation in under-saturated case because more silica mass is
exchanged in between fracture and rock-matrix.
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Figure 6.6. Normalized fracture aperture due to silica dissolution/precipitation at 1 week and 3
months (under-saturated case; Solid lines: No leak-off: and symbols: m = 0.5).
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Figure 6.7. Normalized fracture aperture due to silica dissolution/precipitation at 1 week and 3
months (super-saturated case; Solid lines: No leak-off: and symbols: m = 0.5).

On the other hand, if supersaturated fluid of 500 ppm is injected in the fracture, the
aperture decreases appreciably with longer injection time (Figure 6.7). This effect is
enhanced by leak-off and the peak aperture reduction shifts away closer to the injection
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point. This is because the injectate in the fracture attains its equilibrium stat at a smaller
distance in view of a temperature dependent of temperature reaction rate.

Figure 6.8-6.10 show the normalized fracture aperture resulting from poroelastic and
thermoelastic deformation in the presence of fluid leak-off, respectively. In Figure 6.8,
the normalized fracture aperture is plotted against distance along fracture for various
values of leak-off ratio (m) after 3 months of injection time. It can be observed that the
fracture closure is relatively small and evolves slowly for lower levels of leak-off. The
maximum reduction of fracture aperture occurs at the injection point where the induced
pressure p(x,t) and hence leak-off is the greatest.
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Figure 6.8. Normalized fracture aperture due to influence of poroelastic stress on fracture aperture
after 3 months. The figure is drawn for different fluid loss/injection ratios (m).

Figure 6.9 and 6.10 show the normalized fracture aperture history at the injection point
for poroelastic and thermoelastic cases, respectively. The aperture profile has same shape
in both plots, but the effects are opposite. Figure 6.9 shows that the fracture aperture
change due to poroelastic effects is pronounced with higher fluid leak-off (m>0) and at
early time. However in the thermoelastic case, the fracture aperture at the injection point
becomes larger at a later time when compared to the impermeable case (m=0) as shown
in Figure 6.10. This is because leak-off increases the fluid residence time and the heat
having been extracted from the rock but this effect evolves very slowly.
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Figure 6.9. Normalized fracture aperture at the injection point due to influence of poroelastic
stress on fracture aperture for different fluid loss/injection ratios () and injection times.
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Figure 6.10. Normalized fracture aperture at the injection point due to thermoelastic effects for
different fluid loss/injection ratios () and injection times.
Figure 6.11 shows induced pressure distribution in the fracture corresponding to the
poroelastic effects (as illustrated in Figure 6.8) and thermoelastic effects after 3 months
of injection time; the pressure is normalized with respect to the isothermal impermeable
injection pressure of (Pimp(0,t) =1.2 MPa). It can be seen that the pressure profiles in the
poroelastic case have higher magnitudes compared to those of thermoelastic case
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(because of the larger poroelastic width contraction). The poroelastic and thermoelastic
pressure profiles are nearly identical near the extraction point as the poroelastic fracture
aperture change becomes negligible (see Figure 6.8) in response to pressure reduction in
the fracture. Pressure profiles in the thermoelastic case change their slope near half
fracture length where the thermoelastic stresses in the fracture are largely reduced.
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Figure 6.11. Normalized pressure profile along he fracture for different fluid loss/injection ratios
(m) after 3 months of injection. Lines: poroelastic case and symbols: thermoelastic case.

We have analyzed reactive chemistry and poro-thermoelastic effects of low-temperature
fluid injection in a natural fracture using semi-analytical poro-thermo-chemo model. The
governing equations of the model were solved analytically (but some requires numerical
inversion) to investigate fracture aperture change caused by low temperature fluid
injection and fluid leak-off into the formation. The corresponding pressure profiles were
also calculated. Both the solute reactivity along the fracture and its diffusion into the
rock-matrix are considered using temperature depended reaction Kkinetics for a single
component (silica system). The results indicate that the circulating fluid concentration
attains its saturation farther away from the injection point for longer injection times. The
under-saturated fluid injectate has tendency to widen up the aperture however
supersaturated fluid leads to fracture closure. Similarly fluid leak-off can influence the
silica dissolution/precipitation with considerable amount after longer injection time. The
thermoelastic effects are dominant near the injection point. Although fluid leak-off does
not change the fracture aperture significantly, it can lead to pore-pressure increase.
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7. Conclusions & Future Research

The role of poro-thermo-mechanical processes in rock failure and fracturing, and
permeability change were investigated through development and implementation of poro-
thermoelastic displacement discontinuity boundary element methods, and coupled
geochemical models.

A number of applications and analyses were presented to highlight the impact of various
mechanisms. In particular, fracture opening and slip, injection/production in naturally
fractured reservoir, and fracture propagation were considered and 3D fracture slip was
studied. Finally, examples were presented to illustrate the combined effects of silica
dissolution/precipitation and poro-thermoelastic processes on the fracture aperture and
pressure distributions during circulation operations.

7.1. Injection into Fractured Reservoir, Fracture Propagation and
Permeability Change

The opening of a crack under combined poro-thermomechanical was considered under
geothermal conditions and very small and very large times. It was found that the
poroelastic effects on fracture opening are generally small for granitic rocks. This
poroelastic mechanism corresponding to fluid diffusion from a fracture into the rock
tends to close the fracture with time i.e., the width of the crack decreases. This is because
the fluid injected into the fracture diffuses into the porous formation, increasing the pore
pressure around the crack which, in turn, induces a dilatation of the rock formation. This
increased pore pressure, however, can cause rock failure in the vicinity of the main
fracture and contribute to overall permeability enhancement.

The thermoelastic effect causes the crack to open gradually and in a much slower pace
compared to the poroelastic effect. The crack opens as a result of the shrinking of the
rock formation. The rock shrinking can also cause additional tensile fractures.

By comparing the temporal variations of fracture opening due to stress, pore pressure,
and thermoelastic loading, it is concluded that in many practical situations in EGS
development, modes 1 and 2 contribute to fracture propagation during conventional
hydraulic fracturing jobs. However, during injection operations their effect can become
negligible in comparison to that of cooling. This is evident from the results showing that
the contribution of mode 3 or thermal stress is much higher in stimulation and circulation
operations which are conducted over a long period of time. For example, for rock types

of Coso, a 200 °C cooling for a time of t=10° sec, the cooling-induced opening is

approximately 2.5 times that of the instantaneous crack opening in response to the
applied hydraulic pressure of 15 MPa.
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By developing and implementing a joint model for the poro-thermoelastic DD methods,
a fractured reservoir simulator has been developed that allows investigation of the
reservoir response to injection and extraction operations while considering natural
fracture slip and opening. Preliminary applications explicitly show the previously
described poroelastic and thermoelastic phenomena in the context of reservoir
engineering. In particular, permeability change and variation of pressure at the injection
and production wells are clearly observed. The results provide an explanation for the
phenomenon noted during water injection in well number 83-16 in Coso, i.e., injectivity
varies water temperature; injecting cold water decreases injection pressure and
subsequent hot water injection increases it.

Continued fluid injection tends to increase the pore pressure inside the rock thus reducing
the crack width to some extent by Mode 2 or poroelastic effects. However, as noted
previously, cooling induces large tensile stresses in the rock, thus creating new cracks
and increasing the width of existing ones. If the pre-existing crack surfaces are
continuously cooled, the major portion of the influence of cooling tends to materialize
within a week of injection for the rock properties considered. This mechanism is reversed
once the well is put on hot water injection. Heating tends to reduce the fracture widths
and tends to close some of the newly opened fractures. Furthermore, continued hot water
injection will lead to additional poroelastic effects which also contribute to crack closure.

The fracture propagation work included development and implementation of a new
fracture propagation criterion in a partially-coupled DD code. An extension of the
Neuber-Novozhilov structural fracture propagation criterion was used for mode | (tensile)
and mode Il (shear) propagation under compressive loads. In addition to allowing
numerical simulation of crack growth, the criterion can model change of propagation
mode, crack branching, and coalescence. The results of example simulations illustrated
the importance of the role of Mode 2 loading (pore pressure gradient) in fracture
propagation. The diffusion of pore pressure inside the crack into the rock can lead to
change of possibility, mode and direction of fracture propagation. In most cases, besides
fracture growth speed, rock and fluid properties, fracture geometry, in-situ stresses and
internal fluid pressure all play an important role in determining the fracture propagation
behavior in a permeable poroelastic medium.

7.2. Three-Dimensional Thermoelastic Effects

The two-dimensional plane strain crack model is only an approximation of the three-
dimensional crack opening and propagation. In fact, the two-dimensional model tends to
significantly overestimate the fracture width due to cooling (by 57%). Therefore, a 3D
model was developed in the time domain to calculate poroelastic and thermally-induced
stresses associated with injection and extraction.
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This was achieved using a 3D integral equation formulation to model heat extraction
from a planar fracture in an infinite reservoir and to calculate the temperature and heat
flux distributions within the crack and the matrix. This model was then used to determine
the 3D thermal stresses resulting from cold water injection, and to estimate the natural
fracture slip using a Mohr-Coulomb joint model. The approach used is distinguished
from existing analytical and numerical works that treat the heat conduction in the
geothermal reservoir as one-dimensional and perpendicular to the fracture. The analytical
procedures and computational schemes were tested by considering the problem of
injection into an infinite fracture and comparing the results with a semi-analytical
solution. Then, using data from Coso, the thermally induced stresses were calculated for
the injection experiment in Well 83-16. It has been found that the normal (axial) stress on
the fracture surface is smaller than that predicted by uniform cooling of the crack surface.
Also, the normal stress is tensile up to some distance from the injection well, its
maximum occurs near the injection point and gradually approaches zero away from it.
The normal stress becomes compressive at some distance away from the cooled region
because as the cooled rock shrinks, it tends to pull on the exterior rock material (strain
compatibility) inducing a compressive stress in it. It was interesting to note that the
induced tensile stress near the injection well causes the rock to contract causing the
aperture to open wider. Then, for a constant injection rate, the injection pressure drops
due to the increased conductivity. This is indeed observed in Well 83-16 of the Coso. The
explicit consideration of the fracture provides more insight for this mechanism and was
subsequently considered.

In considering a 3D fracture, the model was first applied to study the impact of
poroelasticity on the fracture opening and slip. It was found that the application of a
normal stress loading on the fracture surfaces increases the fracture opening with time
because of the dissipation of the pore pressures in the rock. On the other hand, a pore
pressure loading causes fracture closure as fluid leaks-off from the fracture into the rock
matrix. This is consistent with our previous 2D studies. Simulations of injection into a
critically stressed fracture at pressures insufficient to jack it open showed that the fracture
slips and dilates. Thereafter, the fracture slip decreases as the matrix dilates in response to
pore pressure diffusion, increasing the normal stress on the fracture surface and reducing
the crack opening. This transient slip can contribute to the injection pressure variations as
well as to induced reservoir seismicity observed in enhanced or engineered geothermal
systems

Consideration of fracture slip, opening and injection pressure variation in response to
injection/extraction clearly showed that the fracture pressure and aperture are
predominantly affected by the poroelastic effects at the early stage and by the
thermoelastic effect after a long time of fluid injection. When the initial fracture aperture
is assumed to be small enough to generate a relatively large fracture pressure compared to
the initial reservoir pressure, the large fluid leakoff decreases the fracture pressure and
aperture at early stages when compared to the case of no fluid leakoff. However, the
leakoff influence becomes less evident for longer injection times. After a long time of
fluid injection, the fracture aperture increases significantly, mainly due to the
thermoelastic effect.
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7.3. Influence of Quartz Precipitation and Dissolution on Fracture
Permeability

An analytical model was developed to simulate the combined effect of poro-mechanical,
thermal, and reactive solute transport (with quartz dissolution/deposition kinetic model)
in a fracture-matrix system. Both the solute reactivity along the fracture and its diffusion
into the rock-matrix were considered using temperature depended reaction kinetics for a
single component (silica system). The solution of the governing equations was used to
investigate the fracture aperture change caused by low temperature fluid injection and
fluid leak-off into the formation. The corresponding pressure profiles were also
calculated. Simulations were carried out to analyze the effects of reactive chemistry and
poro-thermoelasticity when injecting into a natural fracture under the conditions of Coso
geothermal reservoir. The results indicated that the circulating fluid concentration attains
its saturation further away from the injection point for longer injection times. An under-
saturated fluid injectate has a tendency to widen the aperture, while a supersaturated fluid
leads to fracture closure. Similarly, fluid leak-off can influence the silica
dissolution/precipitation to a considerable degree after longer injection times. The
thermoelastic effects are dominant near the injection point. Although fluid leak-off does
not significantly change the fracture aperture, it can lead to pore-pressure increase.

7.4. Future Work

The fracture propagation and coalescence algorithms need to be coupled to fluid flow
calculation to allow one to calculate the pressure necessary to extend a fracture into the
reservoir. The full coupling between heat transfer and fluid flow should be considered
and the capability of propagation in the presence of natural fractures added.

The reactive transport component should be added to the 2D naturally fractured reservoir
simulator to take into account the influence of porothermal stresses and silica reactivity
on permeability evolution in a coupled manner. In addition, it will be of interest to
consider a multi-component chemical system. This can be important as the net result of
the process of precipitation/dissolution of various minerals in the reservoir matrix
influence the amount of exposed fracture surfaces (fracture walls) and subsequently
affect fluid circulation in the system.

The 3D fracture algorithms should be improved to efficiently model multiple fracture
systems. Also, addition of reactive transport models would be useful in understanding the
impact of non-isothermal reactive transport using a geometrically realistic fracture model.

148



8. PUBLICATIONS & Technology Transfer/ Student Training

The research activities have trained a number of graduate students in the field of Rock
Mechanics for geothermal reservoir development namely, Andrew Nygren, Jun Ge,
Qingfeng Tao, Chakra Rawal, Wenxu Xue, and Xiaoxian Zhou. Mr. Andrew Nygren was
awarded the best M.S. Thesis Award by the American Rock Mechanics Association in
2006. These students have participated in preparing publications and making
presentation in national/international conferences. We have published several papers, and
have 3 additional manuscripts under review:

1. Ghassemi, A., Nygren, A., Cheng, A.D.-H. 2008. Effects of heat extraction on
fracture aperture: A poro-thermoelastic analysis. Geothermics, 37 (5), 525-539.

2. Zhou, X., Ghassemi, A., and Cheng, A.H.-D. 2009. A Three-Dimensional Integral
Equation Model for Calculating Poro- and Thermoelastic Stresses Induced by
Cold Water Injection into a Geothermal Reservoir. Int. J. Num. Anal. Methods
Geomech. DOI:10.1002/nag.

Papers under Review

3. Ghassemi, A., X. Zhou. 2009a. A Three-dimensional poroelastic displacement
discontinuity method for simulating hydraulic and natural fractures. It. J. Rock
Mech. Min. Sci.

4. Ghassemi, A., X. Zhou. 2009b. Simulation of aperture and pressure variation
caused by poro- and thermoelastic effects of injection into a geothermal reservoir.
It. J. Rock Mech. Min. Sci.

5. Ghassemi, A. Rawal, C. 2008. Reactive silica transport in hot poroelastic rock
and its effects on fracture aperture. Geothermics.

Conference Papers

6. Xue, W., Ghassemi, A., 2009. Poroelastic Analysis of Hydraulic Fracture
Propagation. 43rd US Rock Mech. Symp., Asheville, NC June 28th — July 1,
2009.

7. Zhou, A., Ghassemi, A. 2009. Three-dimensional poroelastic displacement
discontinuity simulation of natural fractures. 43rd US Rock Mechanics
Symposium and 4th U.S.-Canada Rock Mechanics Symposium, held in Asheville,
NC June 28th — July 1, 2009.

8. Ghassemi, A., 2009. Rock joints & fractures in geothermal & petroleum reservoir
development: poro-thermoelastic effects. International Conference on Rock Joints
and Jointed Rock Masses, Tucson, AZ, Jan. 20009.

9. Zhou, A., Ghassemi, A. 2009. Three-Dimensional Poroelastic Simulation of
Hydraulic and Natural Fractures Using the Displacement Discontinuity Method.
34th Stanford Geothermal Workshop, Feb. 9-11th, Palo Alto.
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10.

11.

12.

13.
14.
15.

Rawal, C., Ghassemi, A. 2008. Fracture aperture change in response to reactive
transport of silica and thermoelastic effects. Proc. 42nd U.S. Rock Mech. Symp.,
June 29 — July 2, San Francisco.

Zhou, X., Ghassemi, A. 2008. A three-dimensional model for calculating poro-
and thermoelastic Stresses Induced by Cold Water Injection into a Geothermal
Reservoir. Proc. 42nd U.S. Rock Mech. Symp., June 29 — July 2, San Francisco.
Zhou, X., Ghassemi, A. 2008. A three-dimensional poroelastic model for water
injection into a geothermal reservoir. 33rd Stanford Geothermal Workshop of
Reservoir Engineering.

Ge, J., Ghassemi, A. 2007. Pore pressure and stress distributions around an
injection-induced fracture. Transactions, Geothermal Res. Coun., Reno.
Nygren, A. and Ghassemi, A. 2006. Coupled Poroelastic and Thermoelastic
Effects of Injection into a Geothermal Reservoir. 40th U.S. Rock Mech. Symp.,
Golden, CO.
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