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1. Introduction 
 
Geothermal energy is recovered by circulating water through heat exchange areas within 
a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and 
metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures 
play a significant role in extraction of geothermal energy by providing the major 
pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions 
leading to formation of fractures and fracture networks is of paramount importance. 
Furthermore, in the absence of natural fractures or adequate connectivity, artificial 
fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are 
preferred because of the large size necessary when using only a single fracture. Although 
the basic idea is rather simple, hydraulic fracturing is a complex process involving 
interactions of high pressure fluid injections with a stressed hot rock mass, mechanical 
interaction of induced fractures with existing natural fractures, and the spatial and 
temporal variations of in-situ stress. As a result, it is necessary to develop tools that can 
be used to study these interactions as an integral part of a comprehensive approach to 
geothermal reservoir development, particularly enhanced geothermal systems. In 
response to this need we have developed advanced poro-thermo-chemo-mechanical 
fracture models for rock fracture research in support of EGS design. 
 
The fracture propagation models are based on a regular displacement discontinuity 
formulation. The fracture propagation studies include modeling interaction of induced 
fractures. In addition to the fracture propagation studies, two-dimensional solution 
algorithms have been developed and used to estimate the impact of pro-thermo-chemical 
processes on fracture permeability and reservoir pressure. Fracture permeability variation 
is studied using a coupled thermo-chemical model with quartz reaction kinetics. The 
model is applied to study quartz precipitation/dissolution, as well as the variation in 
fracture aperture and pressure. Also, a three-dimensional model of injection/extraction 
has been developed to consider the impact poro- and thermoelastic stresses on fracture 
slip and injection pressure.  These investigations shed light on the processes involved in 
the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the 
assessment of the potential of thermal and chemical stimulation strategies.    
 

1.1. Issues & Scope 
 
Fracture propagation and permeability enhancement are very important in development 
of geothermal reservoirs, particularly EGS. Important coupled processes that control flow 
and heat extraction in a geothermal reservoir include (i) fracture closure/opening in 
response to changing effective normal stress, (ii) fracture shear dilation during 
stimulation and circulation, (iii) poro-thermoelastic effects in stimulation and circulation 
operations, and (iv) chemical dissolution and precipitation during circulation. 
     
The purpose of the project was to investigate fracture response to water injection, and to 
study the variation of fracture permeability and fluid pressure near injection regions of 
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EGS while considering coupled poro-thermoelastic effects and mineral 
precipitation/dissolution processes. Part (I) of the project involved development of 2D 
models to study mode I and II fracture propagation and interaction as well as fracture 
opening and slip in geothermal reservoirs using the boundary element method; and 
development of a three-dimensional poro-thermoelastic fracture models to study the 
impact of injection/extraction on the reservoir’s state of stress and fracture slip with 
reference to Coso injection experiments. Part (II) consisted of the development of 
fundamental analytical and numerical models to study the individual influences of 
thermal, poroelastic, and silica dissolution/precipitation processes on the fracture 
permeability and pressure variations over temporal and spatial scales of interest to 
reservoir development and injection/extraction operations. The project has resulted in the 
completion of the following: 
 

1. development of a 2D poro-thermoelastic model for analysis of 
injection/extraction in fractured rock 

 
2. development of a two-dimensional poroelastic boundary element code for 

modeling single/multiple fracture propagation and coalescence with natural 
discontinuity such as joints and faults 

 
3. 2D modeling of permeability change caused by poro-thermo-chemical processes 

(silica precipitation/dissolution) 
 
4. Three-dimensional modeling of variation of in-situ stress due to 

injection/extraction based on three-dimensional modeling of injection induced 
thermal stresses 

 
 
By considering the relevant rock mechanics issues and processes in fracturing and natural 
fracture behavior, the project has advanced the state-of-the-knowledge and technology in 
the high pressure thermo-mechanical rock/fluid interactions. It is anticipated that utilizing 
the project outcomes will improve the technology for designing artificial fractures and 
enhanced geothermal systems. 
 
The body of this report consists of two parts. Part I deals with rock failure and fracture 
propagation and poro-thermoelastic effects on fracture permeability and fluid flow in 
fractured rock; it includes Chapters 1-5. Part II pertains to geochemistry and the impact 
of silica reactivity on fracture permeability and fluid flow; it consists of Chapter 6. The 
fundamental concepts and theoretical issues involved in rock failure and fracture 
propagation, thermoelasticity, poro-thermoelasticity, and details of the numerical 
boundary element methods are described in Chapters 1-4. Chapter 5 is devoted to 
application and analysis; it includes model applications to problems of interest such as 
fracture opening and slip, analysis of injection/production in naturally fractured 
reservoir, and fracture propagation. In addition, examples of 3D analysis of fracture slip 
are presented. Chapter 6 describes theoretical and analytical/numerical aspects of 
reactive flow in fractures. In addition, example applications are presented to illustrate the 
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combined effects of silica dissolution and precipitation and poro-thermoelastic processes 
on fracture aperture and flow and pressure distribution in a fracture during circulation 
operations. The report ends with conclusions and practical guidelines as well as a few 
recommendations for future work.  
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2. Fundamentals of Fracture Propagation & Hydraulic 
Fracturing in Geothermal Reservoirs: Concepts & 
Mathematical Framework 
 
Hydraulic fracturing and stimulation of geothermal reservoirs involves a number of 
processes such as fracture initiation, fracture propagation, fluid flow in a deformable 
fracture, fluid diffusion into the rock, and heat transfer between the fluid and rock. Each 
of these aspects forms, in itself, a complex problem which has been the subject of many 
investigations and merits further study. A detailed examination of these processes with 
the intent of simultaneously improving their treatment is beyond the objectives of the 
present investigation. However, it is beneficial to review fracture initiation and 
propagation as they are very important in understanding the dynamics of fractures in 
geothermal fields and reservoir development.  
 
 During pressurization of the borehole, the solid (rock) is subjected to a system of 
external loads under certain environmental conditions (stress, temperature, chemical 
state). The response of the rock to imposed loads is simply one of deformation in the 
sense that the rock remains topologically unchanged [1]. Application of the load will 
eventually cause the formation of a fracture creating new surface areas within the rock 
mass. Therefore, from a mathematical viewpoint, two types of problems may be 
distinguished: fracture initiation and fracture propagation.  
 

2.1. Fracture Initiation 
 
In dealing with the fracture initiation problem, one needs to evaluate the critical level of 
the applied loads that correspond to inception of a fracture. An appropriate fracture 
criterion is necessary to augment the analysis of deformation and stresses, for the purpose 
of relating it to the fracture resistance of the rock. Several different failure criteria are in 
existence for use in various applications [2]: 
 

• Maximum tensile stress theory; according to this theory, failure initiates 
when the minimum principal stress component, σ3, reaches the tensile strength, 
T₀, of the material, σ3=-T₀. 

• Coulomb's theory; it is the maximum shear stress criterion which postulates 
that fracture will occur at a point in the material for a specific value S₀, referred 

to as the shear strength [(σ1-σ3)/2] ≥ S₀ with σ1 and σ3 representing the major 
and minor principal stresses, respectively. According to this theory the failure 
plane will bisect the angle between the minor and major principal stresses so 
that in a triaxial test, the plane of failure should be at 45° to the axial stress. 
This conclusion, however, is not observed experimentally. The orientation of 
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the failure plane varies with rock type and is less than 45° to the direction of 
maximum compression. 

 
• Coulomb-Navier (Modified max. shear criterion); Coulomb's theory was 

modified by Navier to include the influence of the normal stress acting on the 
plane of failure which tends to increase the shear resistance of the material [3]. 
Representing the normal stress by σ and the shear stress by τ, the theory 
stipulates that failure occurs when the magnitude of the shear stress acting on 
the failure plane reaches a value given by |τ|=S₀ +μ∗σ in which μ∗ is the 
coefficient of internal friction. This criterion for failure indicates that the angle 
between the failure plane and the direction of maximum load, θ, will be less 
than 45° which is in agreement with experimental evidence [3]. 

 
• Mohr's Theory; it postulates that a material fractures or begins to deform 

permanently when the shear stress acting on the plane of failure increases to a 
value which is a function of the normal stress acting on the same plane τ 
=f(σ). However, if the largest tensile principal stress has reached the tensile 
strength of the material, the maximum tensile stress theory, mentioned 
previously, is assumed. The form of f(σ) is determined experimentally. Unlike 
the previously described criteria, Mohr's theory of failure predicts the 
direction of failure in addition to the state of stress at which failure occurs. 
Mohr's theory also implies that the value of the intermediate stress does not 
affect the shear stress, τ, so that failure is independent of this stress. It also 
indicates that failure will not occur in hydrostatic compression consistent with 
experimental observation. It should be mentioned that the Coulomb-Navier 
and Mohr criteria are identical if the coefficient of internal friction is constant 
[4]. 

 
• Griffith's Theory; in contrast to the previously described empirical criteria 

that do not relate failure to any internal mechanisms or processes taking place 
in the rock material, the [5] theory is based on a given mechanism and relates 
failure to it. According to Griffith, two conditions are necessary for fracture; a 
stress condition and an energy condition, i.e., the cohesive forces must be 
exceeded and the energy required to form two surfaces in the solid must be 
provided. Together, these conditions are sufficient to ensure fracture. The first 
condition provides the basis for a failure criterion, while many fracture 
propagation criteria originate from the energy condition. Griffith's theory is 
based on the assumption that rocks contain flaws such as microcracks. When 
the rock body is subjected to external loads, stress concentrations develop 
around these features. These stress concentrations cause crack initiation and 
growth, which will ultimately cause macroscopic failure. Griffith considered 
the problem of a thin, linearly elastic, isotropic, infinite plate, containing a 
thin elliptical slit of length 2a subjected to a tensile stress σ. The normal stress 
developed at the tip of the crack, due to the applied load, is given by [6]: 
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in which 2a and 2b represent the major and minor axes of the elliptical hole. 
Thus for sharp slits (i.e. large values of (a/b) the stress, σt, could be large 
enough to cause failure at moderate levels of applied load. This formed the 
basis for Griffith's analysis and formulation of his stress condition for failure. 
[7] derived his failure criterion by considering the variation of the tangential 
stress σt at the surface of a flat elliptical crack under the action of two-
dimensional stresses σ1, σ2 at infinity and obtained: 
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If σ3=0 and σ1=C₀, the uniaxial compressive strength of the rock, the above 

relation indicates that T₀=(C₀), i.e., tensile strength is exactly one eighth of the 
uniaxial compressive strength, a condition that is not consistent with 
experimental observations. The compressive strength of most rocks varies 
from 10 to 100 times the tensile strength [8]. In addition, [9] showed that the 
failure criterion corresponds to a Mohr's envelope at failure is given by: 

 
2

00
2 44 TT =+ στ                                                                          (2.3) 

 
This is a parabolic criterion, and so it is not valid for many rocks (especially 
igneous). Typically, brittle rocks, such as granite and quartzite for which the 
Griffith criterion is most likely valid, have a straight envelope in compression, 
in disagreement with the normal Griffith criterion [10]. When modified to 
include closing of cracks in compression [11], the prediction turns out to be 
linear and identical to the Navier-Coulomb criterion, upon complete closure of 
cracks. This modified version gives an improved ratio of the compressive-to-
tensile strengths for rocks of 12, but the ratio is still low in comparison with 
that obtained from measurements [10]. It should also be kept in mind that the 
Griffith theory does not predict the path of a growing crack except when 
loaded normal to its surface (simple tension). It does, however, indicate that, 
in compression, the direction in which fracture is initiated is not in the 
direction of the original crack and turns towards the direction of the maximum 
principal stress. However, Griffith's failure criterion is valid in both tension 
and compression. This is very important and adds to the attractiveness of the 
theory, particularly when viewed in light of the fact that tension and shear are 
the two basic modes causing fracture, and there is no fundamental 
compression mechanism of failure. Finally, similar to Coulomb and Mohr 
criteria; Griffith's theory predicts that the intermediate principal stress has no 
effect on the strength. 
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2.1.1. Hydraulic Fracture Initiation  
The maximum tensile stress theory is often used to predict the tensile failure of the 
borehole wall (σ3=-T₀) and hydraulic fracture initiation. For a borehole in an impermeable 
rock formation, whose axis is parallel to the major principal stress, the condition for 
failure and creation of a tensile fracture is given by: 
 
 bHh pTp =+−− max,min,3 σσ                                                                    (2.4) 
 
in which p is the initial pore pressure, and pb is the breakdown pressure which is viewed 
as the pressure at which the crack is formed; often assumed to correspond to the initial 
peak of the pressure-time record. T represents the tensile strength of the intact rock 
material, and p is the reservoir pore pressure. The term (3σh,min-σH,max) in the above 
equation represents the least stress concentration along the borehole wall due to the far-
field horizontal stresses, and is obtained from the Kirsch solution [12]. 
 
However, there are indications that shear may be a mode of failure in initiation of 
hydraulic fractures from inclined wellbores [13,14,15]. Indeed, some investigators [16], 
[17] argue that a hydraulic fracture is induced by shear rather than tensile failure and use 
a Mohr-Coulomb shear failure criterion. 
 
As noted by [18], neither the tensile nor the shear failure criterion is capable of predicting 
the high breakdown pressures observed in the laboratory as well as its dependence on 
borehole size and injection rate. A fracture mechanics model [19-23) based on the 
concept of unstable fracture propagation using the fracture toughness criterion, KI=Kc, 
seems more promising. Introduction of an additional condition, namely, ∂(KI - Kc 
)/(∂L)≥0 makes it possible to take into account phenomena such as pumping rate- and 
size-dependence of the breakdown pressure. 
 
Fracture initiation from a wellbore may be treated using the classical strength of materials 
approach [24], with Eq. (2.4) or the fractures mechanics approach [19,22-23]. The 
fracture mechanics approach can be considered by using a fracture propagation model 
based on the principles of fracture mechanics. In some instances it provides a better 
estimate of the breakdown pressure. Also, the structural criterion [25] implemented in our 
numerical mode may be used to predict both initiation and propagation. However, 
because of its practicality, the classical approach is the one that is widely used. We will 
also adopt it in this work unless otherwise indicated for a particular case (as in Chapter 5 
when estimating the SHmax magnitude). 
 
The above Eq. (2.4) for fracture initiation pressure does not take into account the 
influence of poroelastic and thermoelastic effects. Using the classical approach, 
fracturing of a vertical well in a cooled rock was considered in [26] it was found that 
thermal stresses can impose a significant influence on hydraulic fracturing and 
interpretation of its results to determine the maximum far-field stress. Cooling the rock 
induces tensile stresses and results in a lower wellbore pressure for fracture initiation. 
Numerical and analytical models have been developed that can calculate the stress 
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distribution around a wellbore of arbitrary orientation while considering, thermoelastic, 
and poroelastic effects. These are useful for calculating the failure pressure and its 
location around the wellbore based on the classical approach. The details of the 
governing equation and solution methodologies can be found in [27-28] for the analytical 
approach; and in (Ghassemi, and Zhang, 2004) for the numerical solution. Certain aspects 
of the latter appear in this report also. 
 
Once the onset of failure and fracture initiation is established from the knowledge of the 
stresses and the limit of the material's ability to carry an applied load (i.e., a failure 
criterion), the question arises as to if and how the fracture propagates. This is the subject 
of fracture propagation modeling portion of this project. But, we note that it is possible in 
principle to apply this numerical model can to study fracture initiation using a fracture 
mechanics approach. This is not, however, pursued in this work. 

2.2. Fracture Propagation 
 
Whether a fracture subject to a system of loads propagates, and if the propagation is 
stable or not is the subject of the field of fracture mechanics. In this work fracture 
propagation is studied within the framework of what is known as the field of Linear 
Elastic Fracture Mechanics (LEFM), the mathematical framework of which is described 
in detail below. In situations where the fracture process zone is not small or when dealing 
with fracture intersection and coalescence, a new non-local criterion is proposed and 
used. This criterion in effect extends the LEFM for use in the case of a non-small FPZ 
and for cases when SIFs cannot not be used. 
 
According to LEFM, near the crack tip the displacements are proportional to √r and the 
stresses contain a singularity of the form 1/√r. This modern theory of fracture mechanics 
has its roots in the work of Griffith [5] who emphasized the energy dissipated in an 
increment of fracture extension, which is now referred to as the energy release rate, G. 
 
In the previous Section, Griffith's theory was described within the framework of a failure 
criterion. It was indicated that to initiate a fracture it is necessary to have a stress 
concentration which is provided by inherent microcracks or flaws. This stress condition is 
necessary but not sufficient for fracture propagation as very sharp flaws may be present 
within a loaded body without causing failure. Indeed, Inglis' [7] results show that the 
stresses at the edge of a sharp crack can tend to infinity. This paradox can be understood 
by the second aspect of Griffith's theory, namely the energy balance which leads to a 
critical condition for fracture propagation. It is written as an equality between the change 
in the potential energy due to an increment of crack extension and the energy required to 
create two new surfaces [29]: 
 

γ=
−

dA
UWd )(                                                                                         (2.5) 

 
where W and U are the external work done on the body and its internal strain energy, 
respectively, and A=4Ba is the crack surface area for an internal fracture of length 2a in a 
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body of thickness B (it equals unity under plain strain condition). Westergaard's solution 
[30] for the opening displacement, v, of the Griffith crack is given by: 
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σ                                                                                      (2.6) 

 
in which E′=E for plane stress, E′=(E/(1-ν²)) for plane strain, and σ is the applied stress. 
Thus, it can be shown that: 
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Assuming fixed grip conditions (constant displacement at the boundary) so that the 
external work equals zero, and substituting Eq. (2.5) gives the strain energy released 
when the crack grows by an amount da: 
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=                                                                                       (2.8) 

This can be solved to yield the magnitude of the stress at failure: 
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The strain energy release rate at one tip is: 
 

'4

2

E
aG πσ

=                                                                                             (2.10) 

Therefore, Griffith's energy balance states that crack growth occurs when G reaches a 
critical value, Gc; a material property representing its resistance to crack growth. The 
parameter G can be expressed in terms of tip parameters. This became possible as a result 
of the work of Westergaard who used stress functions derived from complex potentials to 
find expressions for distribution of stresses around the tip of cracks with thicknesses 
approaching zero. Sneddon [31] applied Westergaard's results to both two- and three-
dimensional pressurized cracks. The stress field in the vicinity of the tip of a two-
dimensional crack is given by: 
 

3 1 5cos cos
4 2 4 2
5 1 5cos cos

2 4 2 4 2
1 3sin cos
2 2

x

y

xy

aP
r

θ θ

σ
θ θσ

τ θθ

⎡ ⎤+⎢ ⎥
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦

                                                        (2.11) 



 19

 
and for a penny-shaped crack, 
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where P is the internal pressure on the crack face, a is the fracture half-length in two-
dimensions and its radius in three dimensions, r is the distance from a point to the crack 
tip, and θ represents the angle that r makes on the central plane of the crack (Figure 2.1). 
 

 
Figure 2.1. Stress state near the tip of a crack. 

 
 
As can be observed, and noted by Sneddon [31] the above expressions for stress 
components around the tip in three dimensions differ from those in the two-dimensional 
case by a numerical factor only. 
 
Writing the second of Eqs. (2.11) for the case θ=0, and translating the center of the 
coordinate system to the center of the crack yields: 
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where K is the stress intensity factor. It is a quantity which depends on the geometry and 
loading and has the value σ√(2πa) where σ = limit (σy) as x → a. The crack opening 
displacement in terms of K is given by Kanninen and Popelar [29]: 
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in which κ equals (3-ν)/(1+ν) for plane stress and (3-4ν) for plane strain, and ν represents 
the Poisson's ratio. Using these equations, Irwin [32] calculated the work required to 
close the crack that has extended by an amount Δa, which may be equated to the product 
of the energy release rate and the increment of crack extension. Therefore, 
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so that:  
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E
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This expression, derived by Irwin [32], relating the Griffith's strain energy release rate, a 
global parameter, to the stress intensity factor, a local crack-tip quantity, is considered as 
a major contribution. It shows that Griffith's criterion for crack growth is essentially 
identical with that of crack growth when the stress intensity factor, K, reaches a critical 
value Kc. This parameter is known as the fracture toughness. It is a material property 
which can be determined experimentally, and is known to be a function of temperature, 
confining pressure, and moisture content [33]. But, when defining the fracture toughness, 
Kc, it is assumed that the material is homogeneous and linearly elastic. These conditions 
do not generally hold true in the case of rock, and nonlinear behavior prevails at the crack 
tip in case of a homogeneous, linear elastic rock. 
 

 
Figure 2.2. A sketch of three fundamental modes of fracture. 

 
The size of this zone has a large influence on the value of the fracture toughness and 
results in a scale effect. Indeed, laboratory tests indicate that fracture toughness increases 
with an increase in crack length or specimen size [34]. For large crack lengths or 
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specimens, Kc becomes independent of size, however, and approaches an asymptotic 
value considered to be an intrinsic material parameter called fracture toughness. When 
applied to a hydraulic fracture, the above criterion predicts that the higher the fracture 
toughness, the higher the pressure required to extend the fracture, and the longer the 
fracture, the lower the pressure required for its extension (if the overburden remains 
constant). 
 
Hydraulically-driven fractures are usually considered to propagate in Mode I or the 
opening mode, however, mix-mode propagation is possible and will be considered in the 
modeling efforts. It is useful to review other modes of fracture propagation as shear 
growth may take place on a macro-level in some geologic situations, out-of-plane 
propagation, and injection into pre-existing joints in geothermal reservoirs. 
 
In addition to a crack loaded in uniaxial tension, Irwin also considered other 
configurations of fracture loading and classified them into three independent modes. 
Mode-I is the above considered problem, Mode-II refers to a crack loaded in shear, i.e., 
the load is tangential to the crack surface in the direction of propagation; and Mode-III is 
defined by a crack loaded by a tangential load in the direction perpendicular to the 
direction of propagation. This is also called the anti-plane mode (Figure 2.2). The 
equations for stresses and displacement for these problems are as given below: 

 
2.2.1. Mode-I or opening mode 
In this mode, the displacements of the crack surfaces are perpendicular to the plane of the 
crack. Mode-I crack tip stress and displacement fields are [32]: 
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2.2.2. Mode-II or sliding mode 
During Mode-II loading, the displacement of the crack surface is in the plane of the crack 
and perpendicular to the leading edge of the crack. This is caused by in-plane shear. 
Mode-II crack tip stress and displacement fields are given by Irwin [32]: 
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In Mode-II the material failure occurs when KII reaches its critical value KIIc, known as 
the Mode-II fracture toughness. 
 
2.2.3. Mode-III or tearing mode 
In this mode, the crack surface displacements are in the plane of the crack and parallel to 
its leading edge. This is caused by out-of-plane shear. Mode-III near tip stress and 
displacement fields are given as Irwin [32]: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

2
cos

2
sin

2 θ

θ

πτ
τ

θ r
KIII

z

rz  

0==== θθ τσσσ rrz  

2
sin

2
21 θ

π
σ r

G
Kdx

G
w III

xz == ∫  

0== vu  
 

The elastic stress and displacement fields in mixed mode problems may be obtained from 
the above results using the superposition principle. For Mode-I and Mode-II combination, 
for example, this yields: 
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In the preceding expressions, G represents the shear modulus. The above stresses and 
displacements can be expressed in the integral form as: 
 

)(
2

)(
2

θ
π

θ
π

σ
ijij II

II
I

I
ij f

r
Kf

r
K

+=  

)(
24

)(
24

θ
π

θ
π ii II

II
I

I
i gr

g
Kgr

g
Ku +=  

 
where the stress intensity factors are defined as: 
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Figure 2.3. Geometry of an inclined crack. 

 
The above equations show that KI and KII are function of the crack inclination angle, β 
(see Figure 2.3). Thus, in mixed-mode, the stress intensity factors are functions of the 
applied load, crack dimensions, and crack inclination with respect to vertical. 

 
These equations form the mathematical framework for fracture propagation studies using 
the Linear Elastic Fracture Mechanics (LEFM). It can be seen that displacements are 
proportional to √r and that whatever the mode of loading, the stresses contain a 
singularity of the form (1/(√r)). Therefore, the stress field becomes infinite at the tip for 
all values of K not equal to zero, for any arbitrary loading. It is apparent that infinite 
stresses are physically unacceptable and are a direct result of the simplified model used to 
describe the real physical state. The model assumes perfectly sharp cracks and linear 
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brittle material behavior. But the development of plastic zones ahead of cracks in metals, 
and micro-cracking in rocks are manifestations of non-linear behavior and reduce the tip 
stresses to a finite value. This region of micro-cracking ahead of a fracture in rocks is 
often referred to as the process zone and differs from the region of yielding near the crack 
tip in metals. For rocks, the size and shape of this zone remain the same whether the 
crack tip location is a free surface or deep within the material, i.e., for plane stress and 
plane strain. This does not hold for metals [35]. It is for this reason that laboratory 
observations indicate that thickness has no effect on fracture toughness of rocks. So long 
as the size of the process zone remains small relative to other dimensions of the problem, 
linear elastic conditions prevail, and LEFM remains applicable.  
 
To resolve the problem of stress singularity at the tip, Barenblatt [36] proposed a new 
theory in which two postulates were invoked when characterizing the crack tip: (1) that 
there are intense cohesive forces that act over a small region at the ends of the crack, and 
(2) that the local distribution of these cohesive forces is the same for a given material 
under specified conditions. The stress singularity arising from these cohesive forces is 
such that it cancels out the stress singularity resulting from the applied stresses. This, 
according to Goodier [37], can be regarded as a third postulate of Barenblatt's theory of 
equilibrium cracks. The consequence of the third postulate is that the crack closes 
smoothly and the crack opening displacement has a slope of zero at the tip (Figure 2.4).  

 

x
 

Figure 2.4. Crack-tip closure resulting from Barenblatt's 3rd postulate. 
 
This is in contrast to the opening of a Griffith crack used in this work which is elliptical 
with a finite radius of curvature and closes with an infinite slope at the tip. The theory of 
Barenblatt [36] suggests that the cohesive forces increase in response to an increase, from 
zero, of the applied load on the crack. When these forces are unable to keep the crack 
from opening, the crack becomes a mobile equilibrium crack and propagation ensues. 
Barenblatt [36] introduced a new material property called the modulus of cohesion 
defined as: 
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in which g(ξ) is a function describing the intensity of the cohesive forces over a small 
interval, d, at the tip of the crack. The form of this function is unknown so that the above 
integral cannot be performed. However, Barenblatt showed that it can be expressed in 
terms of elastic modulus and the surface energy, γ, as: 
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Using the concept of the stress intensity factor, K, Barenblatt's fracture criterion can be 
written as: 
 

π
0KK =                                                                                               (2.19) 

which can be compared to the Griffith's stress condition by using K=σ√(2πa) to obtain 
the stress required for fracture: 
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This differs from the Griffith criterion, Eq. (2.16), by only a constant. 
 
The Griffith-Irwin criterion is a useful one when applied to situations where the fracture 
propagates in its own plane. However, the direction of crack propagation is not known a 
priori under combined loading situations so that the above criterion is inadequate and 
other propagation theories are needed. There are a number of such theories that can be 
divided into two groups, namely local criteria and global criteria. In both groups, 
propagation is assumed to occur at a point where the value of the parameter of interest 
reaches a critical value characteristic of the material. The propagation direction is 
determined by the direction in which this parameter has its minimum or maximum as 
required by the criterion. 
 
2.3. Fracture Propagation Criteria for Combined Loading 
 
2.3.1. Local propagation criteria: The maximum circumferential tensile stress, σθmax, 
criterion [38] and the minimum strain energy density, Sθmin, [39] are examples of local 
propagation criteria. Propagation is determined by the value of these parameters at a 
distance from the crack tip. In the σθmax-theory, proposed by Erdogan and Sih [38], the 
crack extension starts at the tip, in a radial direction, and in a plane perpendicular to the 
direction of maximum tension. Fracture propagates when σθmax reaches its critical value. 
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The Sθmin-theory was formulated by Sih [39]. In this theory, the parameter governing 
fracture propagation is the strain density at the point of propagation. The initial crack 
growth occurs in the direction along which the strain energy density factor possesses a 
stationary (minimum) value. The crack extends when the strain energy density reaches a 
critical value, Sθ, a material property. The value of Sc is evaluated along a contour r=r₀, 
with r₀ being a property of the material. 
 
 
2.3.2. Global propagation criteria: are based on the maximum energy release rate, 
G(θ)max, associated with crack propagation [40-42). The global energy approach has its 
roots in the Griffith criterion and is based on the universal principle of energy 
minimization. It predicts that a fracture will grow in the direction along which the elastic 
energy release per unit crack extension will be maximum and the crack will start to grow 
when this energy release rate reaches a critical value. However, according to Sih and 
Erdogan [43], the application of the energy release rate concept to cracks under mixed 
mode loading are of doubtful value due to the mathematical difficulties caused by 
prevailing stress singularities at the crack tip and corner where it is kinked, and because 
of the problems with accuracy of numerical solutions for solving problems involving 
stress singularities. Despite the above arguments and that there is no clear reason why the 
propagation path has to follow the direction of maximum Gθ, and authors in 
[40,41,44,45] use the above approach to arrive at propagation theories for mixed mode 
problems involving metals. 
 
From a numerical modeling point of view, the computational effort required to predict the 
propagation path is very important. The energy release rate needs to be calculated 
numerically by taking the derivative of the energy release, G, with respect to the fracture 
length or area in the direction of propagation. The direction of propagation is not known a 
priori so that a trial-and-error method is needed for its determination. For three-
dimensional problems, this procedure has to be repeated at several locations along the 
fracture edge (at every node when there is a possibility of branching). This makes the 
energy release rate criterion relatively computationally intensive.  
 

 
2.3.3. Structural (non-local) criteria  
 
The above review indicates that since Griffith’s paper [7] on fracture of brittle materials 
in compression, immense literature has appeared on the subject (see also reviews and 
references in [47-59]). Most of these works has focused on the opening mode or mode I 
(tensile) propagation. Meanwhile, in many cases of significance in rock mechanics, the 
mode II (sliding, shear) propagation may prevail; or it may appear at some stage of crack 
growth. These situations arise in the presence of sufficiently high confining pressure 
[51,56-58], or even under uniaxial compression [51,59-60] and many cases of crack 
coalescence [51-52,55,57,59-60].  
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The importance of mode II crack propagation in rock is evident by the considerable 
attention it has received both analytically [51,56,58,61-62] and numerically [53,57-60,63-
64]. These investigations have provided fundamental results and understanding, however, 
it is necessary to develop a unified crack initiation criterion that is capable of predicting 
both tensile and shear cracks [63], and to establish a reliable fracture criterion for 
predicting Mode II fracture [56]. Such a criterion has been developed [64,65] and is used 
in this work. Below, we describe certain features of this criterion. 
 

2.4. A Unified criterion for Crack Propagation and Coalescence under 
Compressive Loads 
 
‘Structural’ criteria which are often called ‘non-local’ use a structural parameter, d. One 
such approach employs the criterion of average tensile stress over a characteristic size, d, 
of a fracture process zone (FPZ):  

 0
0

)(1
σ=σ∫

d

drr
d

,  (2.22) 

A

B
d

 
Fig. 2.5. Graphical interpretation of the edge and structural criteria. Edge criterion: the stress 

is calculated at a point B at  a distance equal to the length d of the FPZ; Structural criterion: 
average stress over the segment AB, ⏐ AB ⏐ = d. 

 
where σ0 has the meaning of the microscopic tensile strength; here and henceforth, tensile 
stresses are assumed positive. An alternative formulation of 2.22 employs the tensile 
stress at the edge of the FPZ at a distance d rather than the average value, i.e.: 

 σ (d) = σ0  (2.23) 

For a small FPZ, when /d  → 0, the criteria (2.22), (2.23) are equivalent to the 
propagation condition in terms of the SIFs: 

 KI = KIC (2.24) 

with 2/0IC dK πσ=  for (2.22); and dK πσ= 20IC  for (2.23). In this case, the 
asymptotic formulae provide easy extensions and simple analytical results.   
 
From a computational viewpoint, average values are less sensitive to local errors and thus 
provide a better opportunity for comparing the results obtained by various methods. 
Finally, average values agree with the concept of the finite element method which 
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employs stresses averaged over an element, and which is often employed for simulation 
of crack propagation e. g., [56,58-59] and [68, 85-87].  
 
Criterion (2.22) in its initial form referred to tensile fractures, but its concept is quite 
general and can obviously be extended to other types of fracture [74-77]. It is sufficient to 
formulate the macroscopic condition of fracture (tensile, shear, time-dependent, etc.) in 
terms of stresses f(σij) = σ0 and substitute the values averaged over a characteristic size d 
into it. Thus, one obtains the criterion: 

 0)( σ=σ ijf  (2.25) 
where:  

 ∫σ=σ
d

ijij drr
d 0

)(1  (2.26) 

Note that (2.21) may be considered as an extension of (2.23) as well, if it is assumed that: 
 )(dijij σ=σ  (2.27) 

The function f(σij) and the strength σ0 are different for tension and compression. The 
structural parameter d may also differ. We will call the function ( )ijf σ  and the parameter 

0σ  as a driving force and the microscopic strength, respectively; and refer to the ratio 

( ) 0σσ= ijfF  as a normalized driving force. A criterion of the form (2.25) and (2.26), 

including the average normal nnσ  and shear ntσ  tractions as a particular choice of ijσ , 
was suggested and successfully employed in [72] in 2D. The most general form of (2.25) 
was suggested in [74], where the driving force f was taken as an arbitrary functional. 

 

It is of special significance to appropriately prescribe the parameters d and σ0 that enter 
(2.25), (2.26). In practice, they are to be found experimentally using specimens having 
thin slits. Since direct measurements of σ0 are not feasible, the following consideration is 
useful. The form (2.25), (2.26) does not include the length 2l of a crack: the latter may be 
either much greater than the structural parameter d, or it may exceed the latter not too 
significantly (four-ten times). In the case when the relative length of a crack is large (d/l 
<< 1), the asymptotic form of (2.25), (2.26), formulated in terms of the SIFs and 
discussed in Sec. 4, becomes available.  The asymptotic form does not contain the values 
of d and σ0 separately: they enter as the combination 0σd  defining a critical SIF, 

0)2/( σπ dKC = . Hence, instead of measuring σ0, one may estimate the critical SIF in 
an experiment with a sufficiently long crack (from our calculations it follows that it is 
sufficient to have d/l < 0.1). Then, for a prescribed d we find the value )/(20 dKC πσ = . 
Now the values of d and σ0 may be used for shorter cracks, when the approximation of 
the small FPZ is not valid. Thus, the critical SIF for a small FPZ may serve to estimate σ0 
in the general case.  
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A number of particular equations for the function f have been listed in [72, 74] that deal 
with the case of tensile and bending external loads. But in the rock mechanics where the 
applied loads are primarily compressive other particular equations for the driving force 
are considered. For mode I, we will use the common choice:  

( ) θθσ=σ ijf I , tσ=σ0  

where 0>σθθ , σt is the tensile strength. For mode II, the Mohr-Coulomb criterion seems 
appropriate:  

( ) ( )θθθθ σ−⋅ρ−σσ=σ tan)sign(II rrijf , c=σ0  

where 0≤σθθ , ρ is the angle of internal friction, c is cohesion.  

Each of these equations has been suggested in [25] where a unified criterion, the 

combination of another function ( )22
I / cf tr σσ+σ= θθθ  for tension and the particular 

form θθ σσ= rrf )sign(II  for compression, was used. This combination has been studied in 
detail for a small FPZ near a notch with the angle equal to 00 (a crack), 200, and 400. The 
unified criterion presented and used herein to numerically simulate crack propagation 
under compressive loads is given by: 

 ( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

≤σ=σ−⋅ρ−σσ=σ
>σσ=σ=σ

=σ
θθθθθθ

θθθθ

0     tan)sign(
0                                        

II

tI

cf
f

f
rrij

ij
ij  (2.28) 

Including the friction angle ρ into the second of (2.28) provides an additional parameter 
for better approximation. It tends to account for the influence of the normal compressive 
traction on the shear bearing capacity of a material at the scale of a FPZ. We believe that 
this influence may be significant, as is the case for intact rock and surfaces in contact. 
The parameter ρ is to be found in experiments, for instance, of the type suggested in [56]. 
Presently, not having such experimental data, we may only speculate whether the values 
of ρ in (2.28) will agree with those obtained in compression of specimens and/or with 
those obtained for surfaces in contact. Expression (2.28) was used in [8] with ijσ  defined 
by (2.27) and with ρ = 0. Note that in the case of a small FPZ with ρ = 0, an asymptotic 
form of (2.28) written in terms of SIFs was used in [58, 56]. In 3D, θ is the angle between 
the crack plane and a plane of possible propagation; θθ σσ rr )sign(  is taken as the absolute 

value of the shear traction in the propagation plane: θθ σσ rr )sign( =
22

ηθξθ σ+σ , where 

ξθσ  and ηθσ  are components of the shear traction in the local co-ordinates ξ, η in this 
plane with ξ normal to a crack front. Thus, the classical mode II and III are included as 
particular cases when either ηθσ , or ξθσ  equals zero. 

2.4.1. Mode and direction of crack propagation 

For a crack front moving in a fixed mode, the direction of propagation is that for which 
the driving force f and, consequently, the normalized driving force F is a maximum. In 
particular, if the direction is characterized by the angle θ (Fig. 2.5), the angle of 
propagation is: 
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for mode I:  

 
⎭
⎬
⎫

⎩
⎨
⎧ θθ=θ

θ
)(   : II max F  (2.29) 

for mode II:  

 
⎭
⎬
⎫

⎩
⎨
⎧ θθ=θ

θ
)(   : IIII max F  (2.30) 

The corresponding maximum normalized driving forces are FImax  = FI(θI) and FIImax= 
FII(θII),  respectively. At a position of the crack tip where both evaluated FImax  and FIImax 
are positive, the condition of propagation 0)( σ≥σ ijf  is satisfied for both angles Ιθ  and 

ΙΙθ , so that it is necessary to choose between the modes of propagation. This is achieved 
by assuming that at such a point, the crack will move in the direction corresponding to 
the greater of the maximum normalized driving forces FImax  and FIImax. Thus,  

mode I occurs if FImax > 0 and: 

 FImax  > FIImax (2.31) 
mode II occurs if FIImax > 0 and: 

 FIImax  > FImax (2.32)  

With ijσ  defined by (2.27) and with ρ = 0, the conditions (2.31), (2.32) were used in [8] 
to determine the mode of propagation. In the case of a small FPZ with ρ = 0, the 
asymptotic form of (2.32) written in terms of SIFs turns into (2.21). As mentioned, the 
latter was used in [58, 56]. 

The direction θp of fracture propagation is thus defined by: 

 [ ]
⎭
⎬
⎫

⎩
⎨
⎧

θ=θ=θ=θ
θθ

)(  ),(   : IIIIIImaxIIImax
,

PP max
III

FFFF  (2.33) 

Because usually the angles θI and θII differ, the point corresponding to the change in the 
propagation mode is a kink point. Equations (2.28), (2.29)-(2.33) are applicable at every 
point along a crack trajectory, i.e., for initial cracks, for smooth portions of a trajectory, at 
kink points, for secondary cracks, and for coalescence. In general, a numerical 
implementation of (2.29), (2.30) necessitates a search among the angles using procedures 
that involve direct calculations of ( )ijf σI  and ( )ijf σII . In the case of a small FPZ, the 
search may employ analytical formulae.  

 
In summary, to find the direction of crack propagation, normalized normal and shear 
driving forces are evaluated over a fracture process zone (FPZ). Directions comprising 
angles from –π to +π  with the current tip elements are checked. Driving forces are 
evaluated ahead of the crack tip in the direction to be checked over the distance equal to 
the length of a fracture process zone (FPZ). The direction for which the normalized 
tensile or shear driving force is maximum is determined and a new element is added in 
this direction. 
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3. Coupled Poro-thermoelastic Processes 
 

 Drilling a wellbore causes temperature variations in the formation. In a fluid-saturated 
porous rock, thermal loading can significantly alter the surrounding stress and pore 
pressure fields. Thermal loading induces volumetric deformation because of thermal 
expansion/contraction of both the pore fluid and the rock solid. If the rock is heated, 
expansion of the fluid can lead to a significant increase in pore pressure when the pore 
space is confined. The tendency is reversed in the case of cooling. Therefore, the time-
dependent poromechanical processes should be fully coupled to the transient temperature 
field. This can be studied in the framework of poro-thermoelasticity.  

Aside from poromechanical and thermal phenomena, chemical processes are also active 
in a geothermal reservoir. These processes occur on various time scales and the 
significance of their interaction and coupling is dependent upon the problem of interest. 
For example, during drilling operations there is a strong coupling between thermal and 
poro-mechanical effects that has significant impact on wellbore failure (shear and tensile 
failure). This is because usually the time required for drilling a length equal to five times 
the hole's radius is much smaller than the characteristic time (a2/cf), where a is the radius 
of the well and cf is the fluid diffusivity. On the other hand, during stimulation by 
hydraulic fracturing the evolution of the fluid-rock mechanics coupling is rapid (on the 
scale of minutes to hours) compared to thermal processes, thus the thermal effects have 
little effect on the fluid-mechanical processes involved in fracture propagation. However, 
during long term injection operations (time scale of weeks to years) or, when the fluid 
pressure is below the level necessary to hydraulically derive a fracture, the thermo-
mechanical coupling can no longer be neglected. In fact, thermo-mechanical processes 
are also coupled to chemical processes. Accordingly, different levels of coupling are 
considered herein when studying wellbore failure, fracture propagation, and fluid 
circulation.  
 

In order to study the pore pressure and stress field under combined thermal and poro-
mechanical loading, the theory of poro-thermoelasticity [1-3] is used.  

3.1. Governing Equations of Poro-thermoelasticity 
 
In the theory of poro-thermoelasticity, it is assumed that rock (and fluid) deformation has 
negligible influence on the temperature field. Heat convection can usually be neglected 
because of the extremely low fluid flow velocity in a rock such as granite. So that, for 
rocks with low permeability, heat conduction dominates the heat transfer process [4]. 
This means that the temperature and heat flux can be calculated separately without the 
contribution of pore pressure and stresses. The relationships of these three main 
components in poro-thermoelasticity are indicated in Figure 3.1. 
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Figure 3.1. Illustration of coupling between poro-thermo-mechanical processes. 
 

 

 The following assumptions are made in this work: 

 
• Homogeneous, isotropic, infinite rock 
• Constant material parameters 
• Transient fluid flow governed by Darcy’s Law 
• Transient linear heat conduction 
 

The governing equations for poro-thermoelasticity are briefly reviewed next; these 
consist of the constitutive equations, transport laws, and balance laws. 
 

3.1.1. Constitutive Equations 
 
In isotropic poro-thermoelasticity, the constitutive equations can actually be separated 
into a deviatoric response and a volumetric one. The latter includes volumetric response 
of the solid matrix and the fluid. Deviatoric response is given by: 

jifor
G
ij

ij ≠= ,
2
σ

ε      (3.1) 

where ijε  denotes the components of the deviatoric strain tensor, ijσ  denotes the 
components of the deviatoric strain stress tensor, and G is the shear modulus. Throughout 
this report, subscript indices i and j have values in the range {1,2} and the summation 
convention is used over repeated indices unless otherwise indicated.  
 
The volumetric response of the solid contains both hydraulic and thermal coupling terms: 
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where kkε is volumetric strain, also denoted as ε , 
3
kkσ

 is volumetric stress (mean stress), 

p is pore pressure change, T the is temperature change. The constant K is the rock's bulk 
modulus; α  is Biot's [5] effective stress coefficient and can be computed using 

)/(1 sKK−=α , where Ks is the bulk modulus of solid grains; sβ is the volumetric 
thermal expansion coefficient of the bulk solid under constant pore pressure and stress. 
Note that without the pore pressure term and temperature term, equation (3.2) 
degenerates to the classical elastic relation. Equation (3.2) can also be written in terms f 
stresses: 
 

ijsijijkkijij TKpGG δβδαδε
ν
νεσ +−

−
+=

21
22    (3.3) 

in which ν  is Possion’s ratio. 
 
The volumetric response of the fluid can be written as: 

( )Tn
BK

p
K sfkk ββασαζ −−+=

3
    (3.4) 

where ζ is the variation of the fluid content per unit volume of the porous material [5], B 
is Skempton's pore pressure coefficient, fβ is volumetric thermal expansion coefficient 
of the fluid and n is porosity. The parameter B controls the increase in pore pressure due 
to an increase of mean stress under isothermal undrained condition ( 0=ζ ).  
 
Equation (3.4) can also be written in term of pore pressure: 

( )TMp mkk βασζ +−=     (3.5) 

where M is the Biot modulus given as 
)1( αα B

BKM
−

= , mβ is hydro-thermal expansion 

coefficient given as )( sfsm n ββαββ −+= . 

3.1.2. Transport Laws 
 
The transient fluid flow in porous rocks is governed by the well-known Darcy’s law, 
which can be described as: 

ii pq  ,κ−=      (3.6) 
where qi is the fluid flux (units of fluid volume per unit area); μκ /k= ( k is the intrinsic 
permeability having dimension of length squared, and μ the fluid dynamic viscosity).  
 
The heat flow is governed by Fourier law, which is written as: 

i
TT

i Tq  ,κ−=      (3.7) 

where T
iq is the heat flux, Tκ is the thermal conductivity. One can see that the transport 

laws for fluid flow and heat flow are analogous to each other. 
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3.1.3. Balance Laws 
 
For local stress balance, standard considerations of static equilibrium lead to the 
equilibrium equations used in elasticity: 

0, =jijσ      (3.8) 
Considerations of mass conservation for a compressible fluid yield the local continuity 
equation: 

0, =+
∂
∂

iiq
t
ζ            (3.9) 

 
 

 

3.2. Field Equations of Poro-thermoelasticity 
 

From the constitutive, balance, and transport laws, the field equations can be derived for 
temperature, T, displacement, ui, and pore pressure, p: 

Navier Equation: 

( ) isiii TKpKGuG ,,,
2 3

3
1 βαε +=++∇    (3.10) 

 

Diffusion equation for pore pressure p: 
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Diffusion equation for temperature T: 

t
TTcT

∂
∂

=∇2       (3.12) 

In the above equations, ui denotes the components of the solid displacement vector, ijε  
the total strain tensor, p the pore pressure change, and T the temperature change. The 
constant Tc  represents thermal diffusivity. As mentioned above, heat transfer is 
calculated separately because stress and pressure changes do not significantly alter the 
temperature field. Also, note that convective heat transport is neglected.  

Ten independent parameters are needed for poro-thermoelastic theory, they are {K, G, α , 
B, κ, βs, βf, cT, κT, γf }. Among them, five parameters {K, G, α , B, κ} are from 
poroelasticity, with {K, G} as the pure elastic parameters. 
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3.2.1. Field Equations for poroelasticity and thermoelasticity 
 

Poroelasticity and thermoelasticity can be considered as two special cases of poro-
thermoelasticity. Derivations of field equations for poroelasticity can be found in the 
literature e.g., [6]. These equations can also be obtained from the poro-thermoelastic ones 
by neglecting the thermal effect, doing so in equations (3.10) and (3.11), one can get the 
field equations for poroelasticity: 

Navier Equation: 

( ) iii pKGuG ,,
2 3
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     Diffusion equation p: 
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                             (3.14) 

Similarly, neglecting the pore pressure term from the field equations of poro-
thermoelasticity will result in field equations for thermoelasticity: 

Navier Equation: 

( ) isii TKKGuG ,,
2 3

3
1 βε =++∇

   (3.15) 

Diffusion equation for temperature, T, would be the same as the poro-thermoelastic 
equation because actually no pore pressure and stress effects are considered. The 
analogies between poroelasticity and thermoelasticity have been discussed in references 
[7-8]. 

3.3. Poro-thermoelastic Boundary Element Method 
 
A few analytical procedures have been developed and used to solve geomechanics 
problems of interest involving coupled thermal and poromechanical problems [9-10]. 
However, many problems formulated within the framework of poro-thermoelasticity are 
not amenable to analytical treatment and need to be solved numerically. The boundary 
element method (BEM) or the boundary integral equation formulation has been used 
extensively for the poroelastic and thermoelastic problems e.g., [11]. The advantage of 
the method is that it reduces the problem dimensionality by one, thereby reducing the 
computational efforts significantly.   
 
Boundary element method (BEM) is a powerful numerical tool for solving systems 
governed by linear partial differential equations [12]. BEM is based on fundamental 
solutions, which are analytical solutions corresponding to some sort of singular impulse 
at a point in an infinite region. For example, in solid mechanics, the impulse can 
represent a point force applied within an elastic solid. The impulse could also represent a 
point fluid source, a point heat source or a displacement discontinuity in different 
problems. The fundamental solutions are also called singular solutions because, 
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mathematically speaking, they are well behaved everywhere in the region except at the 
point of the impulse, where there is a mathematical singularity. 

Partial differential equations plus certain conditions specified on the boundary of the 
region of interest R, enclosed within a boundary Γ, defines a boundary value problem. In 
contrast to the finite difference and finite element methods which make approximations 
on the whole region R, BEM makes approximations only on the boundary Γ by dividing 
it into N elements, as shown in Figure 3.2, after [13]. Therefore, a system of N linear 
algebraic equations can be formed. Once these equations have been solved, the solution 
at any point in R can be constructed. The boundary-only discretization significantly 
simplifies modeling. The system of equations need to be solved is much smaller than the 
system needed to solve the same boundary value problem by finite element method. 
However, this smaller system of equations is no longer sparse as each singular impulse 
plays a part in every equation (Crouch and Starfield, 1983). Another major advantage is 
that BEM can generate solutions at any point in the region R, instead of a number of 
fixed mesh points in finite element method. This is because BEM exploits analytical 
solutions that hold true for the whole region. Therefore, BEM is potentially more 
accurate than finite element method, where approximations are made in every subdivision 
of R [13]. 
 
 
 
 
 
 
 

 

Figure 3.2. Discretization in the boundary element method. 

 
It is worth noting that there two general methods of formulating the BE equations, the 
direct and the indirect methods. The direct method is based on the generalized Green’s 
theorem, which is sometimes expressed in the form of an energy reciprocity theorem 
[14]. Solution of the integral equations for the elements into which a boundary is 
discretized directly yields the desired values of the unknown variables on the boundary. 

In the indirect method, singular impulses (e.g., point force, heat source, fluid source, or 
displacement discontinuity) are distributed on the elements along the boundary so that the 
combined effects of all the impulses satisfy the prescribed boundary conditions.  

The indirect form as applied to the problems of our interest has two sub-formulations, 
namely, the fictitious stress method (FSM) and the displacement discontinuity method 
(DDM). The fictitious stress method is based on the analytic solution of a point force in 
an infinite solid. It is a versatile method of modeling underground openings of arbitrary 
shape. The displacement discontinuity method makes use of the fundamental solution for 
a constant discontinuity of displacement in an infinite solid. The displacement jump 
inherent in the fundamental solution of displacement discontinuity method are not 
fictitious quantities, this makes it a natural choice for modeling fractures. The fictitious 

 

N

2
1

N-1

x 

y R



 43

stress method is not suitable for such problems, because the effects of elements placed 
along one crack surface are indistinguishable from the effects of elements placed along 
the other surface [13].  

Although the coupled diffusion-deformation problems are essentially three-dimensional 
(3-D), they can be analyzed in 2-D using the concept of plane strain as long as the length 
of the excavation is much larger than its dimension in the plane perpendicular to its axis. 
The plane strain concept can also be used when the long axis of the opening is not in the 
direction of a principal stress [11,15] which is often practiced in engineering. In this 
work, a plane strain 2-D indirect boundary element model is developed and applied to 
borehole and fracture problems.  

3.3.1. Displacement discontinuity method for poro-thermoelasticity 
 

The displacement discontinuity (DD) method is based on the fundamental solution for the 
problem of constant normal and shear discontinuities in displacement over a finite line 
segment in the x, y plane of an infinite elastic solid in plane strain, as shown in Figure 3.3 
(after 13]). The line segment is chosen to occupy a certain portion: 0,|| =≤ yax , 
Consider this segment to be a line crack with two surfaces, one is on the positive side of 
y=0, denoted y=0+, and the other is on the negative side, denoted y=0-. 

 

 

 

 

 

 

 

 

 
Figure 3.3. Constant normal and shear displacement discontinuity. 

 

From one side of the line segment to the other, the displacements undergo a constant 
specified change in value Di=(Dx, Dy). The displacement discontinuity, Di is defined as 
the difference in displacement between the two sides of the segment as follows: 

)0,()0,( +− −= xuxuD xxx     (3.16) 
)0,()0,( +− −= xuxuD yyy     (3.17) 

 
The elastic solution to this problem is given by Crouch and Starfield [13]. The 
displacements and the stress components are then defined everywhere with functions of 
Dx and Dy. The corresponding fundamental solutions for continuous impulses required in 
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displacement discontinuity method are the stresses and pore pressures due to DD, fluid 

source, and heat sources: cd
ijkσ , cs

ijσ , ch
ijσ , cd

ip , csp , chp . cd
ijkσ , cs

ijσ , cd
ip , and 

csp  are poroelastic terms, and have been given in [20].  

 
 
In the DD method, temperature, pore pressure, and stresses fields on the boundary can be 
approximated at any given time, t, by the following methodology (note that the heat 
equation is not coupled to others, thus it can be solved independently first): 
 

1. Distribute point DDs, fluid sources and heat sources on the boundary elements. 
2. Temperature at each element is the sum of all temperatures caused by all heat 

sources taking place at time t≤τ . (The temperature field is decoupled from pore 
pressure and stresses because fluid sources and point DD do not contribute to 
temperature change.) The strengths of heat sources, which are functions of time, 
are calculated such that they satisfy the temperature boundary conditions. 

3. Pore pressure at each element is the sum of all pore pressures caused by all point 
forces, fluid sources and heat sources taking place at time t≤τ . The strengths of 
heat sources are known from step (2). 

4. Stresses at each element are the sum of all corresponding stresses induced by all 
DD, fluid sources and heat sources taking place at time t≤τ . The strengths of 
heat sources are known from step (2). 

5. To satisfy the boundary conditions of pore pressure and stresses, strengths of DD 
and fluid sources can be solved since the contributions from heat sources have 
been determined. The strengths of DD and fluid sources are also functions of 
time. 

 

Then, one can obtain the stresses, pore pressure, and temperature at any point using the 
history of the strengths of heat sources, fluid sources and DD forces along the boundary. 
The determination of this history requires the solution of a set of three singular integral 
equations: 
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These are called integral equations because the unknowns appear inside the integral sign. 
Aside from the heuristic approach based on the principle of superposition, the integral 
equations can be obtained using a rigorous approach based on the reciprocal theorem 
[16]. In the above equations, Γ is the boundary; x and χ  are the two-dimensional 
coordinate vectors. ),( tij xσ  denotes the stress component at x and at time t. The 

influence function ( , ; )id tijkσ τ−x χ represents the stress component ),( tij xσ due to an 

instantaneous unit point DD, located at χ  and taking place at time τ . Similarly, the 

symbols );,( τσ −tis
ij χx  and );,( τσ −tih

ij χx  represent the stress components induced by 

an instantaneous fluid source and an instantaneous heat source, respectively. id
kp , isp  

and ihp  are the pore pressure induced by an instantaneous unit point DD, fluid source 

and heat source; the latter are given by [17]. ihT is the temperature induced by a 

instantaneous unit heat source. kD , ),( τφ χ , and ),( τϕ χ  are the strengths of the point 

DD, fluid source and heat source, respectively. Superscripts “id”, “is” and “ih” denote 
instantaneous displacement discontinuity, fluid source and heat source, respectively. 
Subscript i, j, k have a range of 1-2, corresponding to the two spatial directions. It can be 
seen that the temperature part remains the same in the two methods, because temperature 
is calculated separately while pore pressure and stress are fully coupled. 

Numerical Implementation: 
 
Numerical implementation of the boundary integral equations of transient poro-
thermoelasticity requires spatial and temporal discretization. Spatial discretization is 
achieved by dividing the boundary of the problem into a number of elements and 
replacing the integrals over the boundary by a sum of integrals over these elements. 
Temporal discretization is realized by dividing the time domain into a number of time 
increments and utilizing a time marching scheme. In the present implementation, the 
following approximations are made: the boundary elements are straight-line segments; 
the singular impulses (point force, displacement discontinuity, fluid source, heat source) 
are located at the midpoint of each element; the intensity of the impulses is constant over 
each element, and the time increments, Δt, are constant. 
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Suppose p+1 is the number of time increments used, then the boundary integral equations 
for induced stresses, pore pressure and temperature can be rewritten as:  

{ }
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where kD , φ and ϕ are strengths of continuous point DD, fluid source and heat source 
in time increment . Suppose N is the number of elements used to discretize the 
boundary. The spatial integrals over the boundary are replaced by a sum of integrals over 
these elements. Then, the induced stresses, pore pressure, and temperature on element m 
due to a constant spatial distribution of continuous DDs, fluid sources and heat sources 
on element r are given by: 

m cp r cs r ch r
ij ijk k ij ijDσ σ σ φ σ ϕ= + +          (3.24)   

m cd r cs r ch r
k kp p D p pφ ϕ= + +                                     (3.25) 

rchm
ij TT ϕ=                   (3.26) 

where r
kD , rφ and rϕ are strengths of continuous point DD, fluid source and heat source 

on element r. The superscripts m and r refer to the influenced and influencing elements, 

respectively. Influence coefficients: cd
ijkσ , cs

ijσ , ch
ijσ , cdpi , csp , chp and chT now 

denote the influences of the element r, which are obtained by integrating the fundamental 
solutions for continuous point impulses over the influencing element r. The spatial 
integration over the straight-line constant elements is a relatively easy process in a two-
dimensional system.  

 

 

 

 

 

 

 
Figure 3.4. Time marching scheme for a continuous heat/fluid source or DD. 

 

There are different approaches to the temporal solution of the problem. One approach is 
to solve the problem at the end of a time step, and then use the results as the initial 
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conditions for the next time step, marching forward in time. The disadvantage of this 
method is that it requires discretizing the spatial domain of the problem. The second 
approach is a time marching technique which solves the problem at the end of a time 
step, but keeps a solution history [19]. This allows for strengths of singular impulses to 
vary with time. It involves incrementing the strengths of singular impulses at each time 
step and including the influence of all previous increments. This technique eliminates the 
need for internal discretization of the spatial domain. But, it has the disadvantage that the 
coefficient matrix must be stored to be used as required. The scheme is illustrated with 
the heat source φ(t) as an example, in Figure 3.4; after [20]. 

The implementation of this time marching scheme is possible because it is the time 
interval between the loading and receiving that affects the response rather than the 
absolute times. This is the so-called “time translation” property of the fundamental 
solutions. For example, the stress at a point x and time t due to a heat source taking place 
at point χ and at time τ is equal to the stress at point x and time t-τ due to a heat source 
occurring at time zero at the point χ. That is: 

)0,;,(),;,( χxχx τστσ −= tt ch
ij

ch
ij       (3.27) 

Due to this property of the fundamental solutions, the evaluation time and loading time 
can be shifted along the time axis without affecting the values of the fundamental 
solutions. Therefore, the influence coefficient can be calculated only once during the 
calculation history. 

 
The induced stresses, pore pressure and temperature of element m are given by: 
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where p+1 is the number of time increments, N is the number of elements. rp

kDΔ , and 
rφΔ , are the increments of strengths of certain kind of continuous impulse occurring on 

element r. Subscript k takes value from {1, 2}, which denotes the two spatial directions. 
The influence coefficient cd

ijkσ  and cd
kp are obtained by spatial integration of fundamental 

solutions of a displacement discontinuity on the influencing element r. Equation (3.28), 
(3.29) and (3.30) constitute a set of linear algebraic equations with the unknowns are the 
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increments of the singular impulses. They can be solved by applying the boundary 
conditions. 

3.3.2. Natural fracture deformation using poro-thermoelastic DD 
 

In this part of the work, we only consider those fractures with two rough surfaces to 
contact each other and the fluid flow can flow through the void spaces between them as 
illustrated in Figure 3.5.  The fracture can deform normally and laterally to the fracture 
surface as the stress acting on it changes.  

 
Figure 3.5.  A fluid filled fracture subject to normal and shear stress. 

 

Bandis et al.[21] presented a hyperbolic model for the normal deformation of fracture 
based on a large body of experimental data. 
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where σ′n is the effective normal stress and Dn is the normal closure of fracture; a and b are 
constants and related with the experimentally determined parameters initial normal stiffness (Kni) 
and the maximum possible closure (Dnmax) as a=1/ Kni and a/b= Dnmax. 

Eq. (31) can be rewritten by substituting Kni and Dnmax for a and b. 
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The normal stiffness (Kn) is therefore derived according to Eq. (32) as a function of Dn or σ′n: 
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In the elastic range, the change of shear stress has a linear relationship with the change of shear 
displacement: 

    sss DK Δ=Δσ       (35) 



 49

where Ks is the shear stiffness.  The fracture slips when the shear stress exceeds the shear strength 
(σc) of the fracture defined according to the Mohr-Coulomb failure criterion: 

' tan 'c n ocσ σ φ= +    (36) 

where 'φ is the frictional angle and c0 is the cohesion strength. The two rough surfaces slide each 
other and cause an increase in apertures which is known as frictional dilation.  We used an 
approximate linear relation for the aperture increase (ΔDn-dilation) due to shear movement. 

dilationsdilationn DD ψtanΔ−=Δ −   (37) 

where ψdilation is the dilation angle. 

Numerical implementation 

Using the stress-displacement relationship of fracture, the normal and shear stress of the 
kth fracture are related with the normal and shear displacement of the kth fracture: 
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The normal σk
n and shear stress σk

s and pore pressure pk are also related with the sum of 
the effects of the normal and shear displacement and interface flow of all of fractures in a 
fracture network according to the DD solutions: 

1 1 1 1

m m m m
k lk l lk l lk l lk l
n n s

l l l l
A D B D C Dσ φ ϕ

= = = =

Δ = Δ + Δ + +∑ ∑ ∑ ∑  (40) 

1 1 1 1

m m m m
k lk l lk l lk l lk l
s n s

l l l l
E D F D K Fσ φ ϕ

= = = =

Δ = Δ + Δ + +∑ ∑ ∑ ∑  (41) 

1 1 1 1

m m m m
k lk l lk l lk l lk l

n s
l l l l

p L D M D N Eφ ϕ
= = = =

Δ = Δ + Δ + +∑ ∑ ∑ ∑  (42) 

1

m
k lk l

l
T R ϕ

=

Δ =∑                                                                 (43) 

 

where lkA , lkB , lkC , lkE , lkF , lkK , lkL , lkM and lkN are the influence coefficients of the lth 
fracture on the kth fracture.  Combining Eqs.(40)-(43) results 8m equations for m fracture 
segments and 8m unknowns (σn, σs, Dn, Ds, p, φ , and T, ϕ ), therefore the 6m unknowns 
can be obtained by numerically solving the 6m linear equations.  

The above formulations allow one to consider both the fracture propagation problem and 
natural fracture (joint) response to hydrothermal loads in e.g., injection extraction 
problems.   Applications of these models will be shown in Chapter 5. 
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3.4. Poro-thermoelastic Fractured Rock Response to 
Injection/Extraction  
 

The porothermoelastic model for natural fractures is used to model a fractured 
geothermal reservoir and to study its response to injection/extraction operations. This is 
done by considering fluid flow and heat transport in a fracture network. To do so, we use 
the plain-strain approximation and consider a 2D horizontal section to reduce the solution 
geometry. The rock is assumed to be isotropic, homogeneous, and linearly elastic with 
constant permeability. Fluid flow in the fractures is viscous, and laminar such that 
lubrication flow theory applies and fluid properties are uniform throughout.  The fracture 
aperture and joint deformation are significantly less than the joint lengths, and there are a 
large but finite number of joints. The total normal stress in the direction normal to the 
joint varies non-linearly, but in the shear direction, the joint stresses are proportional to 
deformation when the deformation are in the elastic range (using Mohr-Coulomb 
criterion). Flow in the joints is described by non-isothermal parallel plate flow model in 
which the flow rate is proportional to the pressure gradients and also depends on the cube 
of the apparent joint aperture.       

 

3.4.1. Fluid Flow & Heat Transfer  
Assuming that Darcy’s flow is applicable in the fracture network, the intrinsic fracture 
permeability (kff) caused by the fracture aperture is defined as: 

12

2
f

ff

w
k =     (44) 

where wf is the effective fracture aperture (twice the displacement discontinuity).  On the 
other and, often the fracture permeability (kf)  is expressed according to the cubic law: 

12

3
ff

f

wn
k =     (45) 

where nf is the fracture frequency—number of fractures per unit length. 

 

The fluid balance equation in the fracture includes the flow from the connected fractures 
and the flux (interface flow) from and to the connected matrices.  

( ) ( )
sff

ff
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t
Lwn

Q ρνρ
ρ

ρ ++
∂

Δ∂
−=

,
   (46) 

where Q is the flow rate in the fracture; v is the flow velocity (linear flow rate) in m/s; Qs 
is the production or injection term; n is the fracture porosity or the ratio of actual fracture 
void volume (Vf) to the effective fracture void volume for fluid flow (Vef), and cf is the 

fluid compressibility defined by: ff
f c

p
ρ

ρ
=

∂
∂

.  The fluid diffusion equation in the fracture 

can be derived from Eq. (40). 
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Studies on the heat transfer suggest conduction and dispersion effect within the fracture 
are small, hence can be ignored [22]. Assuming that rock and fluid properties do not vary 
with temperature:, we obtain the following heat transport Eqn for the fracture equation: 

 
2

int2T f erface w w f fluid injection
T T Tk w Q c n Lw q Q

x t x
ρ∂ ∂ ∂⎛ ⎞+ = Δ + +⎜ ⎟∂ ∂ ∂⎝ ⎠

              (48) 

 
v is the interface flow between the fracture and matrix, ρw and cw is are fluid density and 
heat capacity, respectively, kT is the fluid thermal conductivity, and qf is the fluid 
velocity. The Qinj in the heat transport equation represents the heat loss/gain at the 
wellbore wall, due to fluid injection. The heat transport in the matrix is assumed 
conductive and that heat transport due to fluid leak-off is not considered. 
 

3.5. Solution Method 
 

The fluid pressure change and heat flux induce fracture deformation and the fracture 
deformation influences the fluid pressure distribution but not the heat flux.  The heat 
source (interface heat flow) is solved for the system using a given flow rate and 
temperature distribution.  Then the fluid pressure, leak-off (interface fluid flow rate), 
normal and shear fracture displacement are solved simultaneously.  

 
The displacement change and interface flow rate are time-dependent for practical 
applications. This is simulated using poro-thermoelastic DD with the time integration has 
going back to the initial homogeneous state (convolution integration).  Therefore, all the 
previous increments of source strengths need to be included while integrating the effect 
of source strengths at each time step.  The induced stress and pore pressure on the ith 
fracture element by the increments of source strengths are: 
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where ΔDn

lp,  and  ΔDs
lp is vlp are the increments of source strengths at time step p, which 

is current step;  ΔDn
lh,  and  ΔDs

lh is vlh are the previous increments of source strengths at 
time step h, which varies from 1 to p-1.  Ali(t-τh), Bli(t-τh), Cli(t-τh), Eli(t-τh), Fli(t-τh), Kli(t-
τh), Lli(t-τh), Mli(t-τh), Nli(t-τh), Rli(t-τh), Sli(t-τh), Pli(t-τh),  are the influence coefficients of 
lth fracture element on the ith fracture element at time step h. Using the same time 
discretizing, the effective stress change in ith fracture can be rewritten as: 
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where pi(t) is the fluid pressure in the ith fracture element at time t and pi

0 is the initial 
fluid pressure in the ith fracture element.  Substituting the last two Eqs. into Eqs.(49-51) 
and substituting pi(t) –pi

0 for Δpi(t)  results: 
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The fluid flow equation (47) is discretized in space and time for a given fracture network. 
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where Cp

ij is the fluid coefficient matrix.  The production rate (or injection rate) from ith 
fracture element Qi

h is also discretized in time in Eq. (57).   All terms on the left side of 
Eqs (55)–(56) are unknown and all on the right side are known.   When the production 
rate and initial reservoir pressure are specified, the normal and shear fracture 
displacement, interface flow rate, and fluid pressure can be obtained by solving the linear 
equation Eqs. (55)–(56).   Unlike uncoupled methods, the interface flow rate (leak-off) is 
solved implicitly and it need not discretize the matrix to calculate interface flow rate 
using finite difference method.   
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4. Three-dimensional Boundary Element Method for 
Calculating Natural Fracture Response and Injection-Induced 
Stresses 
 
Thermally-induced stresses significantly contribute to seismicity in petroleum and 
geothermal fields [1, 2]. Reservoir seismicity and the variation of injectivity with water 
temperature in geothermal fields have been attributed to thermally-induced stresses. It has 
been found that half the earthquakes in The Geysers field seem to be associated with cold 
water injection [2]. The mechanism by which seismicity occurs is believed to be shear 
slip on natural fractures resulting from a reduction in effective stress acting across the 
fracture. The magnitude of the thermal stresses associated with advective cooling has 
been estimated analytically [3] using an axisymmetric model of injection into a planar 
reservoir and a 1D heat flow in the rock mass. It has been shown that one- and two-
dimensional heat flow models underestimate heat transfer to the fluid from the crack [4]. 
Thus, rock cooling and the associated thermal stresses should be studied using three-
dimensional heat transfer and stress models. This requires coupling a 3D heat flow model 
to a 3D elasticity model. A reason for ignoring the three-dimensional nature of heat 
conduction in the reservoir is the difficulty in treating the infinite geothermal reservoir 
geometry by numerical discretization. However, it has been demonstrated [4] that by 
using 3D Green's function for heat conduction and the integral equation formulation the 
need for discretizing the 3D reservoir is completely eliminated. In this work, we 
developed a three-dimensional numerical model to simulate the coupled poro-and 
thermoelastic processes related to cold water injection into an arbitrary shaped fracture in 
geothermal reservoirs. In the model, the fluid flow and the convective heat transfer in the 
fracture are modeled by the finite element method; while the three-dimensional pore fluid 
diffusion and heat conductive transfer in the reservoir matrix are modeled by the 
boundary integral equation method without discretizing the reservoir domain. The 
influence of the fracture aperture variation on the fluid flow in the fracture is also 
included in the model. We present a few numerical examples to examine the physical 
process of the fluid injection/extraction and facture slip. 

 

4.1. Governing Equations 
 

A schematic view of heat extraction from a fracture or a fracture zone in rock is 
illustrated in Figure 4.1. In this work, the fracture is assumed to be flat, of finite size, and 
with arbitrary shape. The geothermal reservoir, on the other hand, is of infinite extent. 
Other physical assumptions are similar to these postulated in [5]. Specifically, it is 
assumed that the geothermal reservoir is impermeable to water, has constant heat 
conduction properties, and is non-deformable. The heat storage and dispersion effects in 
the fracture fluid flow are negligible and production rate of hot water is equal to the 
injection rate in the fracture. It is further postulated that the fracture width is small such 
that the flow in the fracture is laminar and governed by the lubrication flow equation. 
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The fracture apertures may vary during the fluid injection/extraction process. The 
reservoir is assumed to be poro-thermoelastic and its poro and thermoelastic properties 
are constant. The mathematical formulations for the problem are presented as below. 
 

 
Figure 4.1. Cartoon of injection/extraction heat extraction in a planar fracture. 

 

4.1.1. Fluid flow in fracture 
 
The laminar incompressible fluid in the fracture is governed by the cubic law: 

( ) ( ) ( )2 3

12, ,0, , ,
, ,

p x y t x y t
w x y t

μ
∇ = − q ,  ,x y A∈                 (1) 

where 2∇  is the gradient operator in the fracture plane, ( ), ,0,p x y t  the fluid pressure in 

the fracture, μ  the fluid viscosity, ( ), ,w x y t  the fracture width, ( ), ,x y tq  the fluid 

discharge, and A  is the fracture plane. It should be noted that ( ), ,w x y t  varies with the 
time.  
 
For incompressible fluid and variable fracture aperture, we can write the fluid continuity 
equation as 
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where 2∇ ⋅  is the two-dimensional divergence operator, lv  the fluid leak-off from one 
side of the fracture wall into reservoir matrix, w t∂ ∂  is the rate of volume increase, ( )iQ t  

and ( )eQ t  respectively the fluid injection and extraction rates, ( ),i ix y  and ( ),e ex y  
respectively injection and extraction well locations, and δ  the Dirac delta function. 
 
Substitution of Eq. (1) into Eq. (2) yields the following governing equation for the fluid 
motion in the fracture 
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4.1.2. Fluid flow in reservoir matrix 
 
As fluid is injected into the fracture or fracture zone, it will leak into rock matrix. This 
fluid loss can be expressed using Darcy's law: 

 ( ) ( )
0

, , ,
, ,l z

p x y z t
v x y t

n
κ =

∂
= −

∂
       (4) 

where κ  is the rock permeability, n  is the outward normal of the fracture surface, 0z =  
denotes the fracture surface. 
 
The three-dimensional field equations for the poroelastic rock matrix can be presented as 
a Navier equation with a coupling term and a diffusion equation [6]: 
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where iu  is the solid displacement in the i  direction, p  is the pore pressure, G  is the 
shear modulus, ν  and uv  respectively are the drained and undrained Poisson’s ratios, α  
is the Biot’s coefficient of effective stress, B  is the Skempton’s pore pressure coefficient, 
ε  is the volumetric strain, and the other notations are the same as those defined 
previously. Note that the same notation p is used for the pressure of reservoir matrix and 
water in the fracture, because the pressure must be continuous between the two sub-
systems (assuming no filter cake).  
 
4.1.3. Heat transport in fracture 
 
For the heat transport in the fracture, it has been demonstrated that under the conditions 
of relatively large advection velocity and continuous injection of fluid, the heat storage 
and diffusion are negligible compared to the heat advection by the fluid flow in the 
fracture [5,7]. Therefore, the heat transport in the fracture can be expressed as 
 ( ) ( ) ( )2, , ,0, , ,0, 0w w Tc x y T x y t q x y tρ ⋅∇ + =q  (7) 
where wρ  is the fluid density, wc  is the specific heat of fluid, Tq  is the heat source 
intensity which denotes the heat transfer rate between the reservoir matrix and the fluid in 
the fracture. 
 
4.1.4. Heat transport in reservoir 
 
The heat transport takes place both in the geothermal reservoir and the fracture. In the 
low permeability geothermal reservoir matrix, the heat conduction is the dominated way 
of heat transport and can be expressed as: 

 ( ) ( )2
3

, , ,
, , ,r r r

T x y z t
K T x y z t c

t
ρ

∂
∇ =

∂
,  , ,x y z∈Ω             (8) 

where T  is rock temperature, rρ  is the rock density, rc  is the specific heat of rock, 2
3∇  is 

the Laplacian operator in three dimensions, and Ω  represents the geothermal reservoir. 
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By assuming that the temperature is continuous across the fracture surface ( 0z = ), the 
heat source intensity in Eq. (7) can be expressed as 

( ) ( )
0

, , ,
, ,0, 2T r z

T x y z t
q x y t K

z =

∂
= −

∂
                                                               (9) 

where rK  is the rock thermal conductivity. 
 
Except the above governing equations, we have to set the boundary and initial conditions 
for the present problem. In this work, the injection rate ( )iQ t  or injection pressure ( )ip t , 

the extraction rate ( )iQ t  or extraction pressure ( )ep t , and the temperature of the injected 
fluid are given. We also assume the fracture circumference is fluid impermeable. 
Meanwhile, the initial fracture aperture, initial reservoir stress, pore pressure and 
temperature fields are also required. It should be noted that the temperature of the 
extracted fluid is unknown and a part of the solutions. 
 
4.2. Integral Equation Method 
 
The fracture in a poroelastic medium may be regarded as a surface across which the solid 
displacements, normal fluid flux, and normal heat flux are discontinuous. Such a 
discontinuity surface can mathematically be simulated by a distribution over time and 
space of impulse point displacement discontinuities (DD), fluid sources and heat sources. 
If the density of these singularities is known, integral representations of the field 
quantities, such as solid displacement, fluid flux, stresses, pore pressure and temperature, 
can be evaluated using the integral equation method [8]. In particular, the integral 
representations of the stresses, pore pressure, and temperature at any location in the 
reservoir can be respectively expressed as: 
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where A  denotes the fracture surface, t  denotes time, knD  (or ijD ), fD  and hD  are 
respectively the displacement discontinuity, the fluid source intensity, and the heat source 
intensity; id

ijknσ , if
ijσ , ih

ijσ , id
ijp , ifp  and ihp  are the instantaneous fundamental solutions, i.e. 

the incremental stresses, pore pressures and temperature due to a unit impulse of the 
displacement discontinuity (“id”), the fluid source intensity (“if”) and the heat source 
intensity (“ih”); and 0ijσ , 0p  and 0T  are respectively the initial stresses, pore pressure, 
and temperature. 



 59

 
Application of Eqs. (10)~(12) at the fracture yields equations for the densities of 
displacement discontinuities, fluid source intensity and heat source intensity, we obtain 
the expressions for the normal stresses, pore pressures and temperatures at the fracture 
surface as below: 
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where the left hand side of Eq. (13) is the normal and shear stress components at the 
fracture surface, and the left hand sides of Eqs. (14) and (15) are equal to the fluid 
pressure and temperature in the fracture.  
 
Based on the above discretization schemes in the spatial and temporal domains, we can 

write the integrations in Eqs. (13) and (14) as below: 

( ) ( )

( ) ( ) ( ) ( )

0

1

(1) ( 1)
1 1 1

', ' ', ' ( ') '

' ( ') ' ( ')
m m

t id
zzzz zzA

M N M
cd cd
zzzz zz zzzz N n zzA A

m n m

t t D t dA dt

dA N t dA n t

σ

σ σ
−

− +
= = =

− −

⎡ ⎤ ⎡ ⎤
= − Δ + − Δ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫ ∫

∑ ∑ ∑∫ ∫

x x x x

x x x D x x x D
    (16) 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

1

(1) ( 1)
1 1 1

', ' ', ' ( ') '

' ( ') ' ( ')
m m

t is
zz fA

M N M
m mcs cs

zz f zz N n fA A
m n m

t t D t dA dt

dA N t dA n t

σ

σ σ
−

− +
= = =

− −

⎡ ⎤ ⎡ ⎤
= − Δ + − Δ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫ ∫

∑ ∑ ∑∫ ∫

x x x x

N x x x D N x x x D
                              

(17) 
( ) ( )

( ) ( ) ( ) ( )

0

1

(1) ( 1)
1 1 1

', ' ', ' ( ') '

' ( ') ' ( ')
m m

t id
zz zzA

M N M
cd cd
zz zz zz N n zzA A

m n m

p t t D t dA dt

p dA N t p dA n t
−

− +
= = =

− −

⎡ ⎤ ⎡ ⎤
= − Δ + − Δ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫ ∫

∑ ∑ ∑∫ ∫

x x x x

x x x D x x x D
       (18) 



 60

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

1

(1) ( 1)
1 1 1

', ' ', ' ( ') '

' ( ') ' ( ')
m m

t is
fA

M N M
m mcs cs

f N n fA A
m n m

p t t D t dA dt

p dA N t p dA n t
−

− +
= = =

− −

⎡ ⎤ ⎡ ⎤
= − Δ + − Δ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∫ ∫

∑ ∑ ∑∫ ∫

x x x x

N x x x D N x x x D
    

(19) 
 

where M  and N  are respectively element numbers and the current time step, ( )mN  is 

shape functions for element m, ( )zz N tΔD  is the unknown normal DD vector and 

( )f N tΔD  is the unknown fluid source intensity vector, the superscripts cd and cs denote 

the fundamental solutions due to the continuous unit DDs and fluid source, respectively. 

Because the fundamental solution due to an instantaneous singularity is the time 

derivative of the fundamental solution due to a continuous singularity, the integrals of 

instantaneous fundamental solutions in the time domain can be conveniently expressed 

using their corresponding continuous fundamental solutions to develop the convolution 

time integrals that are then evaluated by going back to zero at every time step. In this way, 

domain integration is circumvented. In the above equations, the following definitions are 

also used: 
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and 1

cs
zzσ , ( )

cs
zz nσ , 1

cd
zzp , ( )

cd
zz np , 1

csp  and cs
np  are defined in the same way. It should be noted 

that all the second terms on the right hand side of Eqs. (16)-(19) can be evaluated directly 
because only the known DDs and fluid source intensities from the previous time steps are 
involved. Substituting Eqs. (16)-(19) into Eqs. (13) and (14), yields: 
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in which: 
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4.3. Treatment of Joint Deformation 

 
The integral equations presented in the previous section can be used to study both 
hydraulic fractures and joints. A hydraulic fracture usually is pressurized in excess of the 
minimum in-situ stress and remains open during the loading process, which means both 
the normal and shear stiffness of the fracture are zero. On the hydraulic fracture surface, 
the normal tractions equal the fluid pressures in the fracture and the shear tractions equal 
zero. However, a different approach must be used for joints, as the joint normal and shear 
stiffness are nonzero and the normal and shear tractions on a joint change with joint 
normal and shear displacements. The required procedure for modeling the joint element 
is similar to that used by Ghassemi et al. [9], however, the fracture is discretized into a 
number of four-nodded quadrilateral elements in this work. During the fracture 
pressurization, each element can be either in a state of “separation”, “stick” or “slip”; the 
element is closed in the latter two states. For any element, its state may change from one 
time step to another time step and must be determined at every time step because the 
computational methods for the terms on the left hand sides of Eqs. (21)-(23) are different 
for different element states as shown below. We denote the normal stiffness of the 
fracture as nK . The shear stiffness of the fracture may be different in different shear 
directions. However, here we assume the shear stiffnesses are the same in all shear 
directions for simplification and denote it as sK . The fracture aperture increment for any 
closed element “ i ” can be expressed as:  

 '
i

i i i i
n

zzn dil dili

n

d D a a
K

σ⎛ ⎞−Δ⎜ ⎟Δ = + = +
⎜ ⎟
⎝ ⎠

        (26) 



 62

where '
i

nσΔ  is the increment of the normal effective stress and 
i

dila  is the dilation-induced 
aperture increase due to shear slip. In this work, for simplification, we assume the shear 
dilation is the same in all shear slip directions. As a result, the shear dilation for any 
element “i” may be simply calculated by the following relation: 
 

 2 2 tan
i ii i

dil dilzx zya D D φ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 (27) 

where 
i

zxD  and 
i

zyD  are the shear displacement components in x  and y  direction, 

respectively and 
i

dilφ  is the fracture dilation angle. 
 
The problem is solved by marching in time. For any time step, k , we assume an initial 
values for the aperture change vector  ( )k

dila  for all of the elements. In this work, we 
assume ( )k

dila = 0  when 1k =  and ( ) ( )1k k
dil dila a −=  when 1k > . Firstly, we do the computations 

in the normal direction using Eqs. For normal stress and pore pressure on the fracture. If 
any element i  is closed, its corresponding component on left hand side of Eqn for normal 

stress, the increment of the normal stress, can be written as 
i i i

n n dilK d a p⎛ ⎞− Δ − + Δ⎜ ⎟
⎝ ⎠

, where 

the first part is the normal effective stress increment which is obtained from Eq. (26) 
while the second part is the pore pressure increment. If any element i  is in “separation” 
state, its normal traction is the current fluid pressure, p , and therefore, the corresponding 

component on the left hand side of the equation for normal stress is 0

i

zzp σ− , where 0

i

zzσ  
is the initial normal stress at the center of element i .  
 
At the start of the solution process, we assume that all fracture elements are closed and 
solve the linear equation system of equations for normal stress and pore pressure. Then, 

we calculate the resultant normal effective stress '
i

nσ  which equals 
i i i

n n dilK d a⎛ ⎞− Δ −⎜ ⎟
⎝ ⎠

+ 0'
i

zzσ , 

where 0'
i

zzσ  is the initial normal effective stress. As shown in Figure 4.2, the following 
element separation criterion is adopted to judge whether the element i  is closed or in 
“separation” state: 

 
i

' cotan
i i

effn cσ φ=                                                         (28) 

where 
i
c  is the cohesion and 

i

effφ  is the effective friction angle of the fracture surface. 
Each element’s predicted status in the normal direction is used for the next iterative step 
in the normal direction. The computation iteration in the normal direction stops when all 
the elements have the same status in the current iteration as in the last iteration. 
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'nσ

sσ

2 effφ

ctan effc φ

2c

' tans n effcσ σ φ= +

' tans n effcσ σ φ− = +

 
Figure 4.2. Mohr-Coulomb model used for joint elements. 

 
 
After obtaining the element states in the normal direction and the magnitudes of the 
normal effective stresses, we use the following method to determine whether a closed 
element is in “stick” or “slip” state in the shear direction and calculate the shear 
displacements. For any element i  with the state of “separation” in the normal direction, 
its current shear tractions equal zero so that its corresponding components on the left 

hand sides of Eqs. (22) and (23) become 0

i

zxσ−  and 0

i

zyσ− , respectively. However, if the 
element i  is closed in the normal direction, we use Mohr-Coulomb model (Figure 4.2) to 
judge whether its state in the maximum allowable shear direction is “stick” or “slip”. For 
a typical element, i , such a constraint can be expressed as: 

 ' tan ' tan
i i i i i i i i

s n neff in dilc cσ σ φ σ φ φ⎛ ⎞≤ + = + +⎜ ⎟
⎝ ⎠

        (29) 

where 
i

sσ  is the shear stress, 
i

inφ  the intrinsic friction angle, 
i

dilφ  the dilation angle, and 
the other notations have been defined before. 
 
If element i  is in the “stick” status, the fracture deformation in the shear direction is 
assumed to deform in a linear elastic manner with its shear stiffness  denoted by sK . As a 
result, the left hand sides of Eqs. (22) and (23) for element i  can be written as 

( ) ( ) ( )1 1k k ki i i i

s zx zxzx K D Dσ
− −⎛ ⎞
− −⎜ ⎟

⎝ ⎠
 and 

( ) ( ) ( )1 1k k ki i i i

s zy zyzy K D Dσ
− −⎛ ⎞
− −⎜ ⎟

⎝ ⎠
, respectively; where for each 

expression, the first part is the shear traction in the last time step and the second part is 
caused by the fracture elastic shear deformation in the current time step. However, if 
element i  is in the state of “slip”, the shear stress cannot exceed the value of the yield 
stress given in Eq. (29) and therefore, the left hand sides of Eqs. (22) and (23) for element 
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i  become 
( )*

0cos
ki i

s zxσ θ σ−  and 
( )*

0sin
ki i

s zyσ θ σ− , respectively, where * denotes 
the maximum shear stresses which is calculated by Eq. (29) and θ  is the angle between 
the maximum shear stress direction and the x-axis. 
 
 For any time step k , firstly we assume all the elements are in the state of “stick” and 
solve the linear equation system of Eqs. (17) and (18). Then we use Eq. (29) for all the 
closed elements to judge whether their state is “stick” or “slip”. Similar to the process in 
the normal direction, we use an iterative method to solve Eqs. (22) and (23) until the 
states of all the elements in the shear direction in the current iteration do not change 
compared to those in the last iteration.  
 
After the calculations of zzD  and fp  in the normal direction, and zxD  and  zyD in the 

shear direction, we can obtain a new fracture shear dilation vector 
( )k
dila  by substituting 

the calculated shear displacements into Eq. (27). Using this new 
( )k
dila , we repeat the 

above procedure to calculate zzD , fp , zxD  and zyD  until the following condition is 
satisfied: 

( ) ( ) ( )new old old TOLk k k
dil dil dila a a− <                                   (30) 

 
where TOL  is a prescribed tolerance. Thereafter, the next time step begins. 
 
 
Once the DDs and fluid, and heat source intensities are obtained through the method 
described above, Eqs. (10) and (11) can be used to calculate the stresses and pore 
pressures at any place in the rock matrix utilizing the same boundary integral method we 
presented previously. The resultant stress and pore pressure fields in the reservoir matrix 
are essential for analysis of the formation failure around the fracture. 
 
 
4.4. Finite Element Method for Fluid Flow and Heat Transport in Fracture 
 
We use the finite element method to model the fluid motion and heat transport in the 
fracture. The fracture plane is discretized into a number of four-noded quadrilateral 
elements and we assume the following interpolations for any element m : 
 

 
( ) ( )m mp = N p , ( ) ( )m m

f fD = N D , ( ) ( )m mT = N T , ( ) ( )m m
h hD = N D       (31) 

where the superscript m  denotes the element m , ( )mN  are the interpolative functions, 
and p , fD , T  and hD  are the vectors of nodal fluid pressure, fluid source intensity, 
temperature and heat source intensity, respectively. 
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The finite element formulas for the fluid flow and heat transport are as follows: 
 ( ) ( ) ( )1 2 1fft t t+ =A p A D B  (32) 

                                           ( ) ( )3 4 ht t+ =A T A D 0                                                (33) 
where  
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m j j
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where M  is the total number of the elements on the fracture plane, ( )
( ),i i

i T
x yN  denote the 

shape functions at the fluid injection well which is located at ( ),i ix y  within element i , 

and ( )
( ),e e

e T
x yN  denote the shape functions at the fluid extraction point which is located at 

( ),e ex y  within element e . It should be noted that here we adopted the streamline 
upwind/Petrov-Galerkin (SUPG) finite element technique proposed by Brooks and 
Hughes [10] for the convective-dominated heat transport problems because the numerical 
stability is unavoidable when the conventional Galerkin finite element method is used. 
The expressions of the SUPG parameters k , xq  and yq  in Eq. (39) can be found in [10].  
 
We denote the fracture aperture as w  which is spatial and temporal dependent. w  
influences p  and fD  as well as T  and hD  significantly; inversely, the reaction of the 

reservoir matrix due to p , fD  and hD  also affect the magnitudes of w . The iterative 
method used to solve this coupling will be explained in the next Sections. 
 
4.5. Discretization of Integral Equations for Response of Reservoir Matrix 
 
The integral equations (13)-(15) are discretized in the spatial domain by using the same 
mesh in the finite element method and in the temporal domain by using the convolution 
algorithm [11]. Here we use constant quadrilateral elements for DDs and linear 
quadrilateral elements for fD  and hD  as the same as those used in the finite element 
methods in Section 4.4. We also assume that DDs, fD  and hD  are constant over each 
time step. As a result, when t N t= Δ , we have: 
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where M  and N  are respectively element numbers and the current time step, ( )mN  is 
shape functions for element m , ( )n N tΔD , ( )f N tΔD  and ( )h N tΔD  are unknown vectors, 

( )n N tΔD , ( )f N tΔD  and ( )h N tΔD  are unknown vectors, ( )n n tΔD , ( )f n tΔD  and 

( )h n tΔD  (n<N) have been obtained in the previous time steps, the superscripts cd, cf and 
ch denote the fundamental solutions due to the continuous unit DDs, fluid source 
intensity and heat source intensity. In Eqs. (40)~(46), we used the following definitions: 
 

( ) ( )
( ) ( )( )( )

', if 1
'

', ', 1 if 1

cd
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nn k cd cd
nn nn

t k
k t k t k
σ

σ
σ σ
⎧ − Δ =⎪− = ⎨ − Δ − − − Δ >⎪⎩

x x
x x

x x x x
         (47) 

and ( )( ) 'cf
n kσ −x x , ( )( ) ' ( ')ch

n k dAσ −x x x , ( )( ) 'cd
n kp −x x , ( )( ) 'cf

kp −x x , ( )( ) 'ch
kp −x x , and 

( )( ) 'ch
kT −x x  are defined in the similar way. 
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Substituting Eqs. (55)~(61) into Eqs. Eqs. (13)-(15), yields 
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M
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m

T t T dA N t T t p
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⎡ ⎤
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∑∫x N x x x D x x               (50) 

where 1nσ , 1p  and 1T  are the sum of several terms on the right hand sides of Eq. 
(50)~(46) and can be evaluated directly, and the other notations have been defined in the 
previous text. All the fundamental solutions used in these equations can be found in 
Cheng and Detournay [8]. Applying Eqs. (48) on all element centers, and Eqs. (49) and 
(50) on all element nodes at the fracture plane, we obtain 

( ) ( ) ( )5 6 7 1 0n n f h n nt t t= + + + +σ A D A D A D σ σ                      (51) 
              ( ) ( ) ( )8 9 10 1 0n f ht t t= + + + +p A D A D A D p p                        (52) 

( )11 1 0h t= + +T A D T T                                          (53) 
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in which l  is the total number of element nodes and M  is the total number of elements in 
the mesh for the fracture surface. All these matrices and vectors can be evaluated directly. 
It is observed that we have 4l M+  unknowns ( p , T , fD , hD  and nD ) in the present 
problems. Eqs. (32) and (33) contains 2l  linear equations and Eqs. (51)-(53) contains 
2l M+  linear equations. The present problem is fully described by these equations. 
 
In this work, the space integrals over the elements are performed numerically. We adopt 
the numerical algorithm proposed by Guiggiani et al. [12] to evaluate the integrals that 
become hypersingular at the fracture surface. Apart from the treatment of the 
hypersingular integrals, the strongly singular kernel function can also be integrated with 
the same numerical algorithm [13]. The weakly integral singularity is treated by using the 
polar coordinate transformation method [14]. 
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4.6. Numerical Procedures for Flow & Deformation in Natural Fracture 
 

When flow is coupled to fracture deformation and heat transport, the fracture is 
discretized into a number of four-noded quadrilateral elements, and the equations (32), 
(33), and (51)~(53) are used to simulate the fully coupled fluid injection/extraction 
phenomena through a natural fracture. It is assumed that the fracture is a joint and its 
deformation is linear elastic. The normal fracture stiffness for any element i  is denoted as 

i
nK . In the simulation process, elements can be either open or closed. The following 

separation criterion is adopted to judge whether the element i  is closed or open: 
i

' cotan
i i

effn cσ φ= −                                   (67) 
When this condition is satisfied the joint element is cracked (separated); and if element i  

is open, we have ' 0
i i

n sσ σ= . If not, the element i  is closed 
i

' cotan
i i

effn cσ φ> − , the 
incremental increase or decrease of the normal effective stress for element i  can be 
calculated by  

'
i i i

n nn K DσΔ = −                           (68) 
 
The current transient problem is solved by marching in the time domain. Within any time 
step K , iterations areused to take into account the coupling between the fluid flow and 
heat transport in the fracture, and the reaction of the reservoir matrix. We begin with 

1j =  iteration. We assume the fracture aperture vector 1
Kw  in 1j =  iteration to be equal 

to the calculated fracture apertures in the last time step if 1K >  or the initial fracture 
aperture 0w  if 1K = , where the subscript and superscript denote the time step and and the 
iteration in the current time step, respectively. Solving Eqs. (32), (33), and (51)~(53), we 
can obtain ( )n tD , ( )f tD , ( )h tD , ( )tp  and ( )tT  for the current iteration j  within time 
step K . Then a new fracture aperture vector which is equal to 0 n+w D  and denoted as 

1j
K
+w . 1j

K
+w  will be used in the next 1j +  iteration. The iterative process continues until the 

following convergent condition 
1 1 TOLk k k

K K K
− −− <w w w                           (69) 

is satisfied, where TOL  is a prescribed tolerance. We use TOL=1% for the numerical 
examples presented in this paper. Thereafter, the simulation marches into the next time 
step 1K + . 
 
Given fracture apertures, Eqs. (32), (33), and (51)~(57) need to be solved in every 
iteration. As the rock temperature is independent on the stress state, we substitute Eq. 
(53) into Eq. (38) and then obtain 
 ( ) ( )3 11 4 3 1 0h+ = − +A A A D A T T  (70) 
in which hD  could be solved directly. Thereafter, T  could be obtained by substituting hD  
into Eq. (53). 
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The procedure for solving p , fD  and nD  are as follows. Substituting Eq. (52) into Eq. 
(32), we have 
 ( ) ( )1 8 1 9 2 1 1 10 1 1 0n f h+ + = − − +A A D A A A D B A A D A p p  (71) 
where all the terms on the right hand side have been evaluated or solved. 
 
Eq. (51) can be rewritten as 

( ) ( ) ( )5 6 0 1 7n f n n n ht t t+ = − − −A D A D σ σ σ A D                    (72) 
where nσ  should be evaluated differently for closed or opened elements. For convenience 

of description, we use 
i

nσ  to denote the ith component of nσ  and 0

i

nσ  to denote the ith 
component of 0nσ . Then, if element i is closed, we have  

0 0 00 0 0' ' ' '
ii i i i i i i i i i i i i

n nn n n n n np p p p p p K Dσ σ σ σ σ σ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = + − + = − + − = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

      (73) 

while if element i is open, we have 

0 0

i i i i

n n npσ σ σ− = −                              (74) 
Eqs. (88) or (89) can be used to evaluate 0n n−σ σ , causing the existence of the unknowns 
p  on the right hand side of Eq. (87). However, p  can be removed by using Eq. (52). 
Now only nD  and fD  are involved in Eqs. (71) and (72) and they can be determined by 
solving a linear equation system. Thereafter, p  can be obtained by substituting nD , fD  
and hD  into Eq. (52). In the current version of the fluid flow and rock deformation 
coupling, fracture slip is not considered but this phenomenon is included when flow is 
not coupled to fracture deformation.   
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5. Applications & Analysis: Poro-thermoelasticity 
 
The theoretical developments of Chapters 2-4 will now be used to study a number of 
problems pertaining to EGS development. These include 2D poro-thermoelatic analysis 
of a fracture and fracture propagation, simulation of injection/extraction in fractured 
reservoir, 3D poroelastic analysis of natural fractures, and combined poro- and 
thermoelastic study of injection/extraction into planar fractures. To the extent possible, 
the input parameters used in the analyses correspond to the Coso geothermal field. 

5.1. Poro-thermoelastic Analysis of Fracture Opening 
   
 In this section, we apply the poro-thermoelastic DD method to the problem of a 
stationary crack in a geothermal reservoir to examine the relative importance of various 
mechanisms in fracture propagation and to highlight the coupled effects in geothermal 
reservoirs. The validity of the DD approach for poro-thermoelastic problems has been 
demonstrated in Ghassemi and Zhang [1] where the numerical model has been compared 
to analytical results indicating a very good agreement. The problem under consideration 
is the opening of a suddenly pressurized and cooled crack of length 2L (shown in Figure 
5.1). This problem of fracture pressurization by a cooler fluid under pressure, P, may be 
decomposed into three sub-problems corresponding to three modes of loading: a normal 
stress loading, a pore pressure loading, and a temperature loading: 
 

Mode 1: ( , ) ( ); ( , ) 0; ( ,0) 0
Mode 2: ( , ) 0; ( , ) ( ); ( ,0) 0
Mode 3: ( , ) 0; ( , ) 0; ( ,0) ( )

n

n

n c

x t PH t p x t T x
x t p x t PH t T x
x t p x t T x T H t

σ
σ
σ

= − = =
= = =
= = =

    (1) 

 
 
 
 
 
 
 
 
 

Figure 5.1. A uniformly pressurized, cooled crack. 
 

where H(t) denotes the Heaviside step function. The initial conditions for both problems 
are zero stress and pore pressure everywhere. 
 
 
 
 

X 

Y

2L 

σn , p, Tc 
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Table 1. Input parameters 

Shear modulus G 16 GPa 
Biot’s coefficient   α 0.443 
Drained Poisson’s ratio  ν 0.25 
Undrained Poisson’s Ratio νu 0.34 
Permeability k, 4.053 x10-08 m/sec 
Porosity φ 0.01 
Thermal exp. coef. solid mα  2.4x10-5 K-1 

Thermal exp. coef. fluid fα  3x10-4 K-1 

Thermal diffusivity cT  of intact rock 5x10-6 m2/s 
Thermal diffusivity cf  of intact rock 6.48x10-5 m2/s 
Fluid density 1 x103 Kg/m3 
Heat capacity of fluid 4200 J/(kg.K) 
heat capacity of rock 790 J/(kg.K) 
Thermal conductivity of fluid 0.6 J/(s.m.K) 

 
 
where H(t) denotes the Heaviside step function. The initial conditions for each sub-
problem are zero stress, pore pressure, and a temperature of T₀. We will focus on the 
induced quantities with the aim of investigating various mechanisms. The result of Mode 
1 loading is shown in Figure 5.2. This mode of loading is responsible for the opening of 
the fracture. At time t=0⁺, the fracture opens according to the solution of Sneddon [2] 
with undrained material properties: 
 

2

2

2 (1 )( ) 1uPL xW x
G L

ν ⎛ ⎞−
= − −⎜ ⎟

⎝ ⎠
              (2) 

As time increases the crack opening also increases, approaching the steady-state solution 
given by the previous equation with drained material properties. This stage of rock 
deformation is referred to as the drained stage. The crack opening is a maximum at this 
stage reflecting the softer material behavior. Figure 5.2 shows the normalized width 

evolution (with respect to Eq. 2 as a function of normalized time as defined by 2
ftc

L
τ = .  

 
The fracture response in Mode 2 is illustrated in Figure 5.3. The crack progressively 
closes, starting from a zero value and reaching a final closure value of 0.22 given by: 

max( ) 2 (1 )n uD η ν= − ; where η is the poroelastic stress parameter defined as [e.g., 3]: 
3( )

2 (1 )(1 )
u

uB
ν νη
ν ν
−

=
+ −

                  (3) 

 
Because the two crack surfaces cannot overlap, this closure is physically possible only if 
the crack remains open under combinations of loading modes 1, 2, and 3. The numerical 
model overestimates the fracture opening by about 5 per cent. This may be attributed to 
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the used of constant elements and also the fact that the very small time fracture response 
could not be captured. This deficiency has been removed as will shown later.  
 

 
Figure 5.2. Magnitude of crack opening due to an applied stress. 

 

 
Figure 5.3. Normalized crack opening due to pore pressure loading. 
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The Mode 3 fracture response as a function of time is illustrated in Figure 4. It can be 
seen that the cooling the crack surfaces and the surrounding rock results in opening of the 
fracture. This is the opposite of the effect of fluid invasion into the rock mass that tends 
to close the crack. The fracture opening approaches the asymptotic value shown in red 
which is obtained by applying the thermal stresses that are generated by cooling, to the 
surface of a Griffith crack. For a two dimensional geometry (plane strain) it can be shown 
analytically that the stresses induced on the fracture faces (at steady-state) are given 

by:
6(1 )

s
xx xx

E Tβσ σ
ν
Δ

= = −
−

, where βs is the volumetric thermal expansion coefficient of the 

bulk solid under constant pore pressure. 
 

 
Figure 5.4. Maximum crack opening due to cooling, also shown is the steady-state analytical 

value. 
 

 
By comparing the fracture opening profiles as a function of time for various modes, it can 
be observed that the contributions of Modes 1 and 2 to fracture propagation are dominant 
for conventional hydraulic fracturing, but they become negligible in comparison to 
cooling during long term stimulation. The contribution of thermal stresses is significant 
in fracture initiation, and in circulation operations that are carried out over a long period 
of time such that the thermal front has had sufficient time to develop. It should be noted 
that the impact of Mode 2 can significantly increase if one takes into consideration the 
increase in rock permeability due to thermal cracking.  
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5.1.1. Improved solution for short time and long time crack response 
 
The previous simulation were carried out at small time steps, however, it was not possible 
to capture the very early time response of the crack. To do so, a number of improvements 
were implemented in the code including the possibility of using multiple time increments 
during the solution and also deriving the short tome solution of the time-dependent part 
of the solution.  
 
Using the improved code, we simulated the pressurized, cooled crack problem again. For 
this problem we use a crack length of 1 m with all material properties are the same as in 
Table 2. However, it is assumed that the in-situ stresses are SH  = 30 MPa; Sh = 10 MPa, 
and the crack is cooled from 200o  to 0 while pressurized with at a level of 30 MPa. 
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Figure 5.5. Crack opening for 3 loading modes using the improved DD method. Note the 
smooth transition of DD to a small time of t=0.01 sec. Crack opening is shown as negative. 
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Figure 5.6. Comparison of drained and un-drained solutions with analytical results. 
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Figure 5.7. Fracture opening caused by combined loading modes. Note the dominance of 

mode 1 during short times. 
 
 

It can bee seen that the model captures the drained and undrained responses rather well 
when using 100 element; using 10 elements results in approximately 4-5% of error.  
Figure 5.7 illustrates the fracture opening caused by combined loading modes. It can be 
seen that mode 1 loading is dominant during short times while thermal stresses dominate 
at long times. This is to be expected as in this case the thermal diffusivity of the rock is 
much smaller than rock’s fluid diffusivity so that the cooling response takes a much 
larger time to fully develop.  
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5.2. Modeling Fracture Propagation 
 
In this section, we consider the problem of fracture propagation while considering the 
impact of fluid diffusion and poroelsatic stresses. In this work, we do not consider the 
impact of thermal stresses as they develop very gradually not affecting the propagation. 
Also, the coupling between temperature and pore pressure is not considered at this time. 
The model uses a partially-coupled poroelastic formulation to calculate the fracture 
opening. The structural criterion described in the previous chapter is used to model crack 
propagation. 

 
Figure 5.8. A pressurized crack under biaxial stresses in an infinite poroelastic medium. 

 

 

As an example consider a line crack in an infinite poroelastic medium under the plane-
strain condition. The crack length is L=0.2m and is inclined θ degree with respect to x-
axis. The far field minimum and maximum principal stresses are Sh and SH, respectively. 
The crack surfaces are suddenly pressurized from t=0+ by an internal fluid with a constant 
pressure P. The crack is allowed to propagate from one crack tip. The input parameters 
are for Westerly granite, shown in Table 2. The propagation trajectories are simulated for 
different crack propagation speeds, far field stresses, rock cohesion and internal fluid 
pressures in order to investigate the poroelastic effects on the fracture propagation 
behaviors. The results are plotted from Figures 5.9-5.11 and are discussed below. 

There are three characteristic lengths for the crack propagation problem in a poroelastic 
medium [4], these are cf/v - the ratio of the diffusivity to the crack propagation velocity, L 
- the length over which the crack face load is applied and ω – the size of the breakdown 
zone. Accordingly, three different propagation regimes can be identified which are 
categorized by different values of cf/v, L and ω corresponding to different crack 
propagation speed. In the fast regime, /fL c vω>> >> , the crack propagates at a very 
fast speed, so the pore pressure at the crack tip does not have time to diffuse.  In the 
intermediate regime, /fL c v ω>> >> , the crack propagates at a considerable speed 
relative to the physical length of the crack. And in the slow regime, /fc v L ω>> >> , the 
crack propagates at such a low speed that the pore pressure is drained in the tip region. 

x

y
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Table 2. Input Parameters 

G Shear modulus 041.5 10×  MPa 
φ  Internal fiction angle 30 °
c Cohesion  MPa 

tσ  Tensile strength 2.0 MPa 
P Pressure 011.5 10×  MPa 
υ  Poisson’s ratio 0.25  

uυ  Undrained P. ratio 0.337  
sK  Solid bulk modulus 044.5 10×  MPa 
fK  Fluid bulk modulus 032.5 10×  MPa 

fc  Fluid diffusivity 056.16 10−×  m2/s 
0φ  Porosity 0.01  

k Dynamic permeability 074.053 10−×  darcy 
B Skempton’s coefficient 0.815  

 

The predicted propagation behaviours in the three different regimes were for Mode 1 
loading. In this paper a partially couple model is used so that Mode 1 loading is elastic 
and time independent. The crack poroelastic response is distinguished by he effects 
induced by Mode 2 loading (pore pressure). Adopting a similar approach, however, one 
can identify 3 regimes of crack propagation corresponding to different degrees of pore 
pressure diffusion into the rock. In the fast propagation regime, the pore pressure effect 
on the fracture growth is negligible and the rock can be regarded as an elastic medium. In 
the intermediate regime, the pore pressure diffusion has some impact on the propagation 
behavior. And in the slow regime, the crack propagates at such a low speed that the 
poroelastic effect on the fracture propagation can be significant. The relative crack 
closure can cause a possible change in the propagation mode and direction. 

In this study, cf is on the order of 10-5, L the order of 10-1 and ω the order of 10-3. 
Different crack tip propagation speeds are chosen to model the fracture propagation in 
three different regimes: v=0.1 m/s for the fast regime; v= 31.0 10−× m/s for the intermediate 
regime and v= 51.0 10−× m/s for the slow regime. 

The crack propagation path at different crack propagation speed when SH=1 MPa, Sh=0.5 
MPa, P=2.5 MPa, c/ tσ =1.5 is plotted in Figure 5.9. It can be observed from the figure 
that when the crack propagates in an intermediate or fast regime, the propagation path is 
very close to that calculated by the elastic solution. It is because that the crack propagates 
in Mode I, i.e., opening propagation mode in this example. The pore pressure diffusion 
will cause small amount of relative crack closure, which is negligible in this case. The 
pore pressure diffusion decreases the tangential stress and therefore the normal driving 
force ahead of the crack tip by nearly the same degree in all directions, so the crack 
propagation path, which is determined by the direction of maximum normal driving force 
in Mode I propagation, has not been changed.  However, when the crack propagates in 
the slow regime, the pore pressure diffusion causes the normal driving force ahead of the 
crack tip to drop below the microscopic tensile strength of the rock material, the 
propagation process therefore cannot be initiated. Another explanation of this 
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phenomenon can be made that the pore pressure diffusion into the rock at the crack tip 
causes the decrease of crack aperture, so the crack is not able to propagate forward in 
Mode I - opening mode. 

 

 
Figure 5.9. Crack propagation path at different speeds (SH=1MPa, Sh=0.5MPa, P=2.5MPa, 

c/ tσ =1.5). 

 

The crack propagation path calculated by poroelastic model at different crack 
propagation speed when SH=3MPa, Sh=0.5MPa, P=2.5MPa, c/ tσ =1.5 is plotted in Figure 
5.10 and is compared with that given by the elastic solution.  As is shown in Figure 5.10, 
the elasticity model predicts that the crack propagation path turns to the direction of 
maximum in-situ stress more quickly than the last case due to the bigger difference 
between the maximum and minimum in-situ stress. When the crack propagates in an 
intermediate or fast regime, it propagates in Mode I fashion, and the propagation path 
calculated by the poroelastic model is very close to that calculated by the elastic model. 
While for the slow crack growth, it is found that the pore pressure diffusion around the 
crack and its tip not only leads to the relative closure of the crack surfaces, but also  
increases the shear driving forces around the crack tip. The crack propagates in a shear 
mode during the early stages of the propagation process and exhibits a different growth 
path from those in the fast and intermediate regimes. 

 

In Figure 5.11, the crack propagation paths calculated by poroelastic model at different 
crack propagation speed for SH=3MPa, Sh=0.5MPa, P=2.5MPa, c/ tσ =1.1 are plotted 
and is compared with that calculated by the elastic model.  As predicted by the elastic 
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model, in a rock of lower cohesion, Mode II (shear) propagation is more likely to occur 
and can be dominant in the propagation process. For a pure elastic solution, the crack first 
propagates in Mode II, and eventually changes direction and propagates in Mode I in the 
direction of maximum in-situ stress. The crack propagation path in the fast regime 
resembles that given by the elastic solution. While for the intermediate and slow crack 
growth speed, the crack propagates in Mode II only. Therefore, for cracks propagating in 
a poroelastic rock with low cohesion, crack growth mode could be sensitive to the 
propagation speed. Poroelastic effects need to be investigated more closely in order to 
better interpret or predict the fracture propagation behavior in the permeable material. 

 

 
Figure 5.10. Crack propagation path at different speeds (SH=3MPa, Sh=0.5MPa, P=2.5MPa, 

c/ tσ =1.5). 
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Figure 5.11. Crack propagation path at different speeds (SH=3MPa, Sh=0.5MPa, P=2.5MPa, 

c/ tσ =1.1). 

 

5.2.1 Propagation of multiple pressurized cracks 
As an extension of the example shown in Figure 5.12, the propagation paths of two 
parallel line cracks in an infinite poroelastic medium under plane-strain conditions are 
investigated. For the problem under consideration, the length of each crack is L=0.2m. 
From time t=0+, the two cracks are pressurized with a constant internal pressure 
P=2.5MPa. The maximum and minimum in-situ stresses are SH=3MPa, Sh=0.5MPa 
respectively and c/ tσ =1.1. The other parameters are the same as those used in section 
3.2.  

The cracks are modeled with crack propagation speed at 31.0 10−×  m/s in an intermediate 
speed regime in the poroelastic model. The poroelastic solution predicts that the two 
cracks will propagate in Mode II in two distinct paths. In comparison, the elastic solution 
predicts that Mode I will dominate the propagation process and that the left crack will 
coalesce with the right one in a propagation path rather different from that given by the 
poroelastic model. Again, pore pressure effects in this example play an important role in 
determining the crack propagation behaviour and interaction between multiple cracks. 
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Figure 5.12. Crack propagation paths for two parallel cracks using different models (SH=3MPa, 

Sh=0.5MPa, P=2.5MPa, c/ tσ =1.1). 

 

Another example of crack propagation near an inclined crack in a poroelastic medium is 
investigated and the results are shown in Figure 5.13. Crack B is a static inclined crack, 
and crack A is allowed to propagate toward crack B. When c/ tσ =1.1,the fracture 
propagation paths are similar for crack speed of 0.1m/s and 31.0 10−× m/s, which 
corresponds to the fast and intermediate regime respectively. And crack propagates in 
Mode II in both speeds. When c/ tσ =1.5, v= 31.0 10−× m/s, the crack first propagates in 
Mode I, and then switches to Mode II before reaching crack B. While for c/ tσ =1.5, 
v=0.1m/s, the crack growth path is similar to that of the fast regime at the early stage of 
propagation process, but the pore pressure effect is more considerable and it leads to the 
termination of the fracture growth before the fracture reaches crack B. Therefore, 
poroelastic effects are important when determining the crack propagation behaviors 
involving interaction between multiple cracks. In these situations, moreover, rock and 
fluid properties, fracture geometry, in-situ stresses, internal fluid pressure and fracture 
propagation speed all play an important role in determining the fracture propagation 
behaviors. Numerical simulation by using boundary element method provides a versatile 
means for us to predict the fracture propagation trajectory.  
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Figure 5.13. Crack propagation path near an inclined crack at different crack propagation speed 

(SH=1MPa, Sh=0.5MPa, P=3.5MPa, c/ tσ =1.1). 

 

The results presented above illustrate the importance of the role of Mode 2 loading (pore 
pressure) in fracture propagation. The diffusion of pore pressure inside the crack into the 
rock can lead to change of possibility, mode and direction of fracture propagation. In 
most cases, besides fracture growth speed, rock and fluid properties, fracture geometry, 
in-situ stresses and internal fluid pressure all play an important role in determining the 
fracture propagation behavior in a permeable poroelastic medium. This numerical model 
can also be extended to further investigate the interaction between hydraulic fractures and 
natural faults in the future. A fully coupled poroelastic model can also be developed to 
fully describe the poroelastic effects of Mode 1 and Mode 2 loading on the fracture 
growth, which will enable us to have a better understanding of fracture treatments in 
complex geothermal environment. 

 

5.3. Response Injection/Extraction into a Fractured Reservoir  
 
The poro-thermoelatic DD boundary element method with joints (Section 3.4) has been 
used to develop a fractured reservoir model for simulation injection/extraction 
experiments. The model is applied herein to study the impact of poro-thermoelastic 
stresses on reservoir permeability and impedance during injection and extraction.  
 
As an example, consider the case of a reservoir with intact rock properties of Table2.  
There is an injection well and a production well in the fractured reservoir (2000x2000 
m2) that has two sets of joints with an angle of 60°. The reservoir geometry is two-
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dimensional (horizontal section) and is suitable for situation where the natural fractures 
are steeply dipping.  Both the injection and production rate are 1 liters/sec/m-thickness 
(10 m thick zone).  The initial reservoir pressure and temperature are 27 MPa and 420 K, 
respectively. The injectate temperature is 300 K and initial fracture aperture is 1 mm. The 
simulation uses a constant stiffness for the joints so that the pressure change and fracture 
aperture change are independent of the absolute in-situ stresses, thus the observations are 
valid for any appropriate stress field. Also, in this example, it is assumed that shear 
dilation is suppressed.   Other parameters are listed in Table 2.  
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Figure 5.14.  Bottomhole pressure variation with cooling (semilog). 

 
 
The pressure at the injection and extraction wells is shown in Figure 5.14 as a function of 
time. As the injection water is cooler than the reservoir, it will cause the reservoir to 
shrink and reduce the reservoir pressure. However, note that for the injection well, the 
pressure continues to increase for some time, this caused by poroleastic effects that tend 
to reduce fracture aperture. The pressure distribution in the fracture network is shown in 
the following figures for 1 day, 1 week, 1 month, and 1 year of operation, respectively.  
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Figure 5.15.  Reservoir pressure distribution with cooling effect at one day. 
 
 

 
Figure 5.16.  Reservoir pressure distribution with cooling effect at one week. 
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Figure 5.17.  Reservoir pressure distribution with cooling effect at one month. 
 

 
 

Figure 5.18.  Reservoir pressure distribution with cooling effect at one year. 

p (MPa) 

Injection  

Production  

p (MPa) 

Injection  

Production  



 89

5.4. Three-Dimensional Poroelastic Analysis of Natural 
Fractures  
 
5.4.1. Model verification 
 
In this section we present a number of examples dealing with fracture slip and 
permeability change using a 3D model. The model elements were described in Chapter 4. 
To verify the numerical model, we compare its predictions with the available analytical 
solutions for the penny-shaped crack problem. Sneddon [2] solved the problem of a crack 
in infinite space, subjected to uniform normal traction p  (see Table 3 for material 
properties used). 
 

 
Figure 5.19. Mesh for a circular fracture used to verify the 3D numerical model. 

 
 
 
The fracture opening in the normal direction is given by: 

 ( ) ( ) ( )24 1
1

v pa
w r r a

Gπ
−

= −                   

where a  is the radius of the fracture, r  is the radius of the computational point, G  is the 
shear modulus, and v  is the Poisson’s ratio. Also, Segedin [7] solved the problem of an 
infinitely thin penny-shaped fracture whose faces are subjected to uniform shearing 
tractions , S . The ride of the fracture in the direction of the shear force is given by: 
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Table 3. Data set used in the numerical example. 
Parameter Value 
Shear modulus G (GPa) 4.0 
Poisson’s ratio v 0.25 
Fluid viscosity μf (N.s/m2) 0.001 
Fluid diffusivity cf (m2/s) 10-3 
Biot's coefficient α 0.95 
Fluid density ρf (kg/m3) 1000 
Rock density ρr (kg/m3) 2650 
Rock permeability κ (m2) 10-16 

 
 
As the material is poroelastic, the fracture aperture is time dependent. So, to compare our 
results with analytical solutions, we use the numerical solution at very large time (here 
we use 108s for a rock with 10-15m2 of permeability) to represent the drained behavior. 
We set the shear modulus and Poisson’s ratio of the material to 4000 MPa and 0.25, 
respectively. Figure 5.20 shows the fracture mesh with 800 four-noded quadrilateral 
elements and 841 nodes. The size of typical elements is around 1.5 1.5×  m2 and the time 
increment is 106s in the computation. Figure 5.20(a) shows the comparisons between the 
numerical and analytical solutions for the opening of the fracture under a unit uniform 
normal traction. The results for the fracture ride under a unit uniform shear tractions 
applied at the fracture surface are shown in Figure 5.20(b). Generally the numerical 
results agree well with the analytical results. The error of the numerical results increases 
near the fracture tip; this is caused by the use of constant elements instead of special tip 
elements.  
 
5.4.2. Numerical simulations 
 
As a first numerical experiment, consider a horizontal circular planar fracture in a 
poroelastic rock (Figure 5.21). The fracture is suddenly subject to a constant fluid 
pressure 15p =  MPa at time 0t = . It is assumed that the initial stresses in the field are 
isotropic and the vertical and horizontal components are 30 MPa and 20 MPa, 
respectively. The fracture normal stiffness modulus of the fracture is assumed to be 810  
Pa/m. The problem can be decomposed into two subproblems corresponding to two types 
of the loadings [11]: Mode 1, a normal stress loading ( )n pH tσ = ; and Mode 2, a pore 
pressure loading ( )p pH t= , where as before ( )H t  denotes the Heaviside step function. 
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(a) normal direction 

 
(b) shear direction 

Figure 5.20. Comparisons between numerical results and analytical results in the normal and 
shear directions. 
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Element A

 
Figure 5.21. Circular fracture mesh used in numerical example, where element A is at the 

center of the fracture. 
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(a) Normal stress loading (Mode 1) 

 
 

 
(b) Pore pressure loading (Mode 2) 

 
Figure 5.22. Variations of fracture opening at element A due to Mode 1 and 2 loadings. 
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Figure 5.23. Undrained and drained fracture opening profile in response to combined mode 1 

and 2 loading, where r  is the radius of the computational point and a  is fracture radius. 
 
Figure 5.21 shows the fracture mesh used, it contains 1047 four-noded quadrilateral 
element and 1100 element nodes. Figure 5.22(a) shows the evolution of the fracture 
aperture at the center of element A (see Figure  5.21) in response to Mode 1 loading. As 
in the 2D case, it is found that the fracture opens with time as the pore pressure that is 
initially generated in the porous rock gradually dissipates. The fracture response at the 
center of element A under Mode 2 is illustrated in Figure 5.22(b). It is observed that the 
fracture closes progressively starting from zero to a stabilized value after a long time. 
This phenomenon is caused by the rock dilation when the fluid leaks-off from the fracture 
into the reservoir matrix and also has been observed previously for the 2D case. Figure 
5.23 shows the fracture aperture profiles for the complete problem (both Modes 1 and 2) 
for the undrained and drained cases. In the undrained case, we let t=100s in the numerical 
simulation so that there is almost no pore pressure dissipation or fluid leak-off from the 
fracture into the rock; while in the drained case, we let t=108s in order to allow both of 
Modes 1 and 2 transient processes to be complete. Note that the fracture aperture in the 
early time (undrained) case is larger than that of the large time (drained) response 
because of the effect of Mode 2 which induces a fracture closure. 
 
Irregularly-shaped natural fracture subjected to shear 
 
In the following, we analyze the opening and slip of a planar fracture that is subjected to 
a fluid pressure which is less than the in-situ minimum stress. This condition can be 
expected when stimulating geothermal reservoirs. The fracture surface has a dip angle of 
60o and its strike direction is parallel to the local x-axis. It is assumed that the fracture is 
in an in situ stress of σv=60.13MPa, σhmin=34.81MPa, σHmax=50.88MPa, and p=17.4MPa 
[7]. The orientation of σHmax is parallel to the fracture strike direction. This stress field can 
be rotated to the local fracture coordinate system to obtain σzz=41.1MPa, σxz=0MPa, and 



 95

σyz=11.0MPa. It is also assumed that the effective friction angle and dilation angle of the 
fracture are 30o and 3o, respectively. Both the normal and shear stiffness of the fracture 
are assumed to be 1010 Pa/m. The other material properties used here are shown in Table 3. 
The fracture is discretized into 1834 four-noded quadrilateral elements and 1919 element 
nodes as shown in Figure 5.24. For simplicity, we assume the fluid pressure in the 
fracture is constant and uniform and its value is 25MPa.  
 

Element B

 
Figure  5.24. Discretization of an irregular fracture using 1834 four-noded quadrilateral 
elements. 
 

 
  

 
Figure  5.25. Distribution of shear displacement component Dzx on the fracture.  
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Figure  5.26. Distribution of shear displacement component Dzy on the fracture.  

 
 
 

 
Figure  5.27. Distribution of normal displacement Dzz on the fracture.  
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Figure  5.28. Variation of fracture aperture nd  for element B with time. 

 
 
 
 

 
Figure  5.29. Variation of slip in x-direction sxd  for element B with time. 
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Figure  5.30. Variation of slip in y-direction syd  for element B with time. 

 
 
 
 
 

 
Figure  5.31. Variation of normal effective stress '

zzσ  for element B with time. 

 
Figures 5.25 and 5.26 show the distributions of the shear displacement discontinuities Dzy 
and Dzx in the local fracture coordinates to a time of 510 s after the fluid pressure is 
applied in the fracture. As expected, it is found that Dzy is much larger than Dzx because 
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the in situ shear stresses σzy>>σzx  on the fracture surface. The maximum slip in the y 
direction occurs at the center of the fracture and equals 8.8 cm. Figure 5.27 illustrates the 
distribution of the fracture opening with a maximum value of 5.3 mm at the center of the 
fracture when the time is 510 s. The increase in the fracture aperture is caused by the 
reduction of the normal effective stresses and shear slip induced dilations.  
 
Because of the poroelastic nature of the rock, the fracture behavior is transient. Figures 
5.28-5.31 show the variations of fracture aperture, shear slip in the x-direction, shear slip 
in the y-direction, and the normal effective stress on element B (see Figure 5.24). It is 
observed that the magnitudes of the shear slip in both the x-direction and y-direction 
decrease with the passage of the time. This is an interesting result made possible by our 
analysis; this phenomenon can be explained by the increase of the normal stresses with 
time. The joint shear strength is directly proportional to the normal effective stress at the 
fracture surface so that the fracture aperture is influenced by the variations of the normal 
effective stress, which changes increases in response the matrix dilation due to fluid leak-
off from the fracture into the reservoir matrix and constraint dilation. 
 

5.5. Three-Dimensional Analysis of Natural Fracture Response to 
Injection and Extraction   
 
The combined poro- and thermoelastic model will now be applied to an 
injection/extraction problem to study the impact of fracture aperture change on pressure 
in the fracture. In this section, we present two numerical examples using the coupled 
model: one is for a circular fracture with one injection well and one extraction well, and 
the other is for an arbitrary shaped fracture with one injection well and two extraction 
wells. 
 
5.5.1. Circular fracture 
 
The fracture is assumed to be at a depth of 2330 m with an in situ stress of 

60.13Vσ = MPa, min 34.81Hσ = MPa, max 50.88Hσ = MPa, and a pore pressure of 
17.4p = MPa. To isolate the coupled thermal and proelastic effects, the fracture is 

considered as horizontal so that there is no shear slip during the fluid injection and 
extraction process (Figure 5.32). Initially, we consider the crack to be circular fracture 
with a radius of 100m. The water is injected at temperature injT  with flow rate injQ . The 
initial reservoir temperature is rT . The fluid extraction pressure is assumed to be equal to 
the initial reservoir pressure and keeps constant in the fluid injection process. injT , injQ , rT  
and other parameters used in this problem are shown in Table 4. Figure 5.33 shows the 
mesh used here which contains 1832 four-noded quadrilateral element and 1891 element 
nodes. In Figure 5.33, the injection and extraction wells are located at points A and B, 
respectively. 
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Figure 5.34 and 5.35 show the distributions of the vertical normal poroelastic and 
thermoelastic stresses, respectively, when the fluid injection times are 510 s (1.15 days), 

710 s (3.86 months) and 910 s (31.71 years) by using the poro-thermoelastic model. The 
poroelastic stresses are resulted from fluid leakoff from the fracture into the reservoir 
matrix; while the thermoelastic stresses are from heat exchange between the injected fluid 
and the reservoir matrix. The vertical poro-stresses are compressive while the thermo-
stresses are tensile. Note that the magnitudes of the thermo-stress are much larger than 
those of the poro-stress, and that the thermo-stresses are tensile before the extraction well 
and compressive behind the extraction well. 
 
Figure 5.36 shows the distributions of the fracture aperture for different fluid injection 
times. At the early time, the fracture aperture around the injection well is relatively than 
the other parts because the fluid pressure and the thermal stresses, both of which enlarge 
the fracture aperture, is larger around the injection well. Like the thermo-stresses, the 
fracture aperture is also relatively large before the extraction well and relatively small 
behind the extraction well. After very long time of the fluid injection, the apertures are 
larger at the zone before the extraction well and smaller at the zone behind the extraction 
partly because of the complex three-dimensional deformations of the fracture. 

 
Figure  5.32. Fluid circulation in geothermal reservoir. 
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Figure  5.33. Discretization of a circular planar fracture: A is the injection well and B is the 

extraction well. 
 
 

Table 4. Data set used in the numerical example. 
Parameter Value 
Shear modulus G (GPa) 15.0 
Poisson’s ratio v 0.25 
Fluid viscosity μf (N.s/m2) 0.001 
Fluid diffusivity cf (m2/s) 10-5 
Biot's coefficient α 0.47 
Fluid density ρf (kg/m3) 1000 
Rock density ρr (kg/m3) 2650 
Rock permeability κ (m2) 10-18 
Fluid heat capacity cf (J/kg K) 4200 
Rock heat capacity cr (J/kg K) 800 
Rock thermal conductivity Kr (W/m K) 2.9 
Rock linear thermal expansion coefficient αT (1/K) 8×10-6 
Injection fluid temperature Tinj (K) 300 
Rock temperature Tr (K) 420 
Fluid injection rate Qinj (m3/s) 0.01 
Initial average fracture aperture for flow wo (m) 5×10-5 
Joint normal stiffness Kn (Pa/m) 1011 
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(a) t=1.0×105 s 

 

 
 

(b) t=1.0×107 s 
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(c) t=1.0×109 s 

Figure  5.34. Distributions of poroelastic stress σzz from poro-thermoelastic model after different 

injection times: (a) t=1.0×105 s; (b) t=1.0×107 s; (c) t=1.0×109 s. 
 

 
(a) t=1.0×105 s 
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(b) t=1.0×107 s 

 

 
(c) t=1.0×109 s 

Figure  5.35. Distributions of thermoelastic stress σzz from poro-thermoelastic model after 

different injection times: (a) t=1.0×105 s; (b) t=1.0×107 s; (c) t=1.0×109 s. 
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(a) t=1.0×105 s 

 
 

 
(b) t=1.0×107 s 
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(c) t=1.0×109 s 

 
Figure  5.36. Distributions of the fracture aperture increment from poro-thermoelastic model after 

different injection times: (a) t=1.0×105 s; (b) t=1.0×107 s; (c) t=1.0×109 s. 
 
 

 
(a) t=1.0×105 s 
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(b) t=1.0×107 s 

 

 
(c) t=1.0×109 s 

Figure  5.37. Distributions of fluid pressure in the fracture from poro- and thermoelastic model 
after different injection times: (a) t=1.0×105 s; (b) t=1.0×107 s; (c) t=1.0×109 s. 



 108

 
(a) t=1.0×105 s. 

 

 
(b) t=1.0×107 s 
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(c) t=1.0×109 s 

Figure  5.38. Distributions of fluid temperature in the fracture from poro-thermoelastic model 
after different injection times: (a) t=1.0×105 s; (b) t=1.0×107 s; (c) t=1.0×109 s. 

 
 

Figure 5.37 shows the distributions of the fluid pressures in the fracture corresponding to 
different fluid injection times. The fracture pressures decrease with the time because of 
the increase of the fracture apertures which is mainly due to the thermal effect when the 
fluid injection time is relative long. Figure 5.38 shows the temperature distributions at 
different fluid injection times. It is observed that the low temperature zone is around the 
injection well at the early times, and then spreads to the extraction well with the 
continuation of the fluid injection into the fracture. 
 
To understand the physical processes involved in the fluid injection and extraction 
process better, in the following, we examine the developments of fracture pressures and 
fracture aperture widths on points A(-50,0), C(0,0), D(49.8,0) and E(50.2,0), where point 
A is the location of injection well, point C is the center of the circular fracture, and points 
D and E are respectively at the locations just before and behind the extraction well. 
 
Figure 5.39 and 5.40 present the variations of the fracture aperture and fluid pressure on 
point A with time by considering the poroelastic, thermoelastic, and their combined effect, 
respectively. The poroelastic model again shows that the fracture aperture increases 
significantly at the early time stage, and then slightly decreases after some times; while 
the fracture pressure increases first, then unlike the fracture aperture, continues to 
increase with the time. As we used a very small initial fracture aperture ( 55 10 m−× ), the 
initial fracture pressure is relatively large compared to the initial reservoir pressure (note 
that the fracture is not open since the fluid pressure is still less than the min- in-situ stress 
and there is no shear slip as it is not considered in this example). As a result, there is a 
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large fluid leakoff from the fracture into the reservoir, making the fluid pressure in the 
poroelastic case much smaller than that in the thermoelastic case in which no fluid 
leakoff occurs. However, the fluid leakoff decreases with the elapse of the fluid injection 
time, resulting in less and less influence of the fluid leakoff on the fracture pressure with 
the time. During the early time stage, the fracture closure due to the leakoff induced 
poroelastic stresses is not as pronounced as the fracture opening due to the increase of 
fracture pressures. This may be used to explain why both the fracture aperture and 
fracture pressure increase during this period. After some injection times, the fluid leakoff 
will be very small as the difference between the fracture pressure and reservoir pressure 
becomes small. During this period, the fracture closure due to the poroelastic stresses is 
dominant. The decrease of the fracture aperture also leads to larger fracture pressure.  

 

 
Figure  5.39. Comparison of fracture aperture increments at point A from poroelastic, 

thermoelastic, and poro-thermoelastic models in the fluid injection and extraction process.  
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Figure  5.40. Comparison of fluid pressures at the location of point A from the poroelastic, 

thermoelastic, and poro-thermoelastic models during the fluid injection and extraction process. 
 
 

 
Figure  5.41. Comparison of fracture aperture at points A, C, D and E during injection and 

extraction process from poroelastic, thermoelastic and combined models. 
 

The thermoelastic solution predicts that the fracture aperture on point A increases 
gradually as time increases due to the increased tensile thermo-stresses at the fracture 
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surface as well as in the reservoir matrix. It is observed that early on, the fracture pressure 
on point A is increasing very slightly, but the aperture on point A increases at a higher 
rate. The reason is that the fracture is not heated uniformly at the early time stage, 
resulting the distributions of the fracture apertures are also not uniform (see Figs. 36 and 
37). At the early time stage, the area around the injection well is heated first, which 
makes the fracture apertures at this area are larger than most of the other areas. That’s 
why the incremental rate of the fracture aperture is higher than that of the fracture 
pressure on point A. After a long time of fluid injection, the fracture pressure on point A 
drops fast as the increment of fracture aperture mainly occurs during that period. 
 
 

 

 
Figure 5.42. Comparison of fluid pressures at points A, C, D and E from the poroelastic, 

thermoelastic and combined models for injection and extraction process. 
 
 
 
The combined poro- and thermoelastic solutions show that at the early time stage, both 
the fracture aperture and pressure from the poro-thermoelastic model are very close to the 
poroelastic solutions, which indicates the influence of the fluid leakoff is dominant at this 
time; while both poro-thermoelastic solutions tend to the thermoelastic solutions after a 
long time of fluid injection when the thermo-effect is dominant. However, even after a 
very long time of fluid injection, the fracture apertures predicted by the porothermoelastic 
model is still smaller than that predicted by the thermoelastic model. The difference 
between them is caused by the fluid leakoff induced fracture closure. Through the poro-
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thermoelastic results, we found that the poromechanical and thermomechanical processes 
occur at different time scales for the present fluid injection and extraction problem. The 
thermomechanical coupling is important in the time scale of months to years; however, 
the poromechanical coupling occurs much rapidly after the fluid injection begins. These 
conclusions are in agreement with those in previous literature [1]. 
 
Figsures 41 and 42 present the variations of fracture apertures and pressures on points A, 
C, D and E with time from the poroelastic, thermoelastic and poro-thermoelastic models. 
The variations of the results on points C, D and E are similar to those on point A. 
However, it should be noted that there is a little difference for the thermoelastic and poro-
thermoelastic results on E, which is located just behind the extraction well. When we 
include the heat exchange between the injected fluid and reservoir matrix, relatively large 
tensile stresses are found just before the extraction well and compressive stresses just 
behind the extraction wells. As a result, we found relatively larger fracture aperture on 
point D and smaller fracture aperture on point E after some times. However, the fracture 
apertures on points D and E become closer when the fluid injection time is long enough 
that no large compressive thermo-stresses appear just behind the extraction as shown in 
Figure  35(c). 
 
5.5.2. Irregularly-shaped fracture 
 
The present numerical procedures is now applied to a fluid injection/extraction operation 
involving an arbitrarily shaped fracture. Figure 5.44 shows one such fracture and its 
discretization into surface elements. The fracture surface is divided into 1745 four-noded 
quadrilateral element and 1808 element nodes. It is assumed that the fracture plane is 
horizontal and the initial stresses and pore pressure field are the same as those in the 
preceding numerical example. The parameters in Table 4 are used here. The heat 
extraction operation involves three wells: injection well A with flow rate 0.01injQ = m3/s, 
and two extraction wells B and C with the same initial reservoir pressure. The fully 
coupled poro-thermoelastic model is used to analyze the problem. 
 
Figure  5.44 illustrates the distributions of fluid temperature in the fracture when the fluid 
injection times are 510 s (1.16 days), 710 s (115.7 days) and 910 s (31.7 years). As expected, 
with the elapse of the time, the low temperature area spreads from the injection well to 
the extraction well and the temperature of the extracted fluid decreases. The cooling area 
spreads faster towards the extraction well that is closer to the injection well. 
 
Figure 5.45 shows the distributions of the fracture aperture increment at different fluid 
injection times. The fracture aperture widths increase with the time. The fracture 
apertures are relatively larger around the injection well and near the extraction wells, and 
relatively small behind the extraction wells because of the influence of the thermo-
stresses. Figure 5.46 shows the distributions of fracture fluid pressure corresponding to 
different fluid injection times. It is found that the fluid pressures in the fracture decreases 
significantly with the time as the fracture apertures increases in the fluid injection process.  
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Figure 5.43. Discretization of an arbitrary shaped planar fracture, where A is fluid injection well, 

and B and C are fluid extraction wells. 
 
 

 
(a) t=1.0×105 s 
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(b) t=1.0×107 s 
 

 
(c) t=1.0×109 s 

Figure  5.44. Distributions of fluid temperature in the fracture from poro-thermoelastic model 
after different fluid injection times: (a) t=1.0×105 s; (b) t=1.0×107 s; (c) t=1.0×109 s. 
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(a) t=1.0×105 s 

 

 
(b) t=1.0×107 s 
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(c) t=1.0×109 s 

Figure  5.45. Distributions of fracture aperture increment after different fluid injection times: (a) 
t=1.0×105 s; (b) t=1.0×107 s; (c) t=1.0×109 s. 
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(a) t=1.0×105 s 

 

 
(b) t=1.0×107 s 
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(c) t=1.0×109 s 

Figure  5.46. Distributions of fluid pressure in the fracture from poro-thermoelastic model after 
different fluid injection times: (a) t=1.0×105 s; (b) t=1.0×107 s; (c) t=1.0×109 s. 

 
 
Consistent wit the 2D analysis, the 3D numerical examples clearly show that the fracture 
pressure and aperture are affected predominantly by the poroelastic effect at early stage 
of injection, whereas the thermo-effect dominates after a long time of water injection.  
 
When the initial fracture aperture is very small, relatively large fracture pressure is 
generated compared to the initial reservoir pressure, resulting in a large fluid leakoff that 
significantly reducers the fracture pressure and aperture compared to the case without 
fluid leakoff. However, the leakoff influence becomes less evident with the elapse of the 
fluid injection time when the fracture aperture increases significantly mainly due to the 
thermo-effect. 
 
The 3D analysis provides a more accurate representation of fracture response and 
provides means for 3D analysis of slip and stress redistribution in the reservoir. 
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6. Poro-thermoelastic Analysis of Reactive Flow in a Natural 
Fracture 

 
6.1. Introduction 
 
 
As the fluid circulates through the reservoir, it interacts with rocks causing fracture 
geometry variation in response to chemical as well as mechanical, and thermal processes. 
Chemical reactions between the rock and the circulating fluid also have been studied and 
shown to significantly impact the fracture aperture by precipitation and dissolution of 
minerals [1-3]. Experimental studies [4-6] have shown that chemical precipitation and 
dissolution of minerals significantly affect fracture aperture [1, 2]. Therefore, it is of 
interest to understand the poromechanical, thermal and chemical interactions between the 
fluid and host rock in relation to flow and heat production. Modeling chemical and poro-
thermo-mechanical processes in a fracture-matrix system involves solving equations 
describing fracture and porous media flow, heat transport, solute transport/reactions and 
poro-thermoelastic response of the rock and fracture. These mechanisms are generally 
coupled and occur in an inhomogeneous rock mass that require complex numerical 
solutions.  However, often it is beneficial to conduct a simplified analysis using an 
analytical solution to a chemical and poro-thermoelastic problem. Furthermore, analytical 
solutions are useful in testing complex numerical algorithms and also allow one to readily 
gain insight into the fundamental issues that are involved. In this work, we present a 
semi-analytical model to solve the non-isothermal reactive flow in a fracture-matrix 
system considering silica reactivity and poro-thermoelastic effects on fracture aperture. 
The reactive transport takes into account solute diffusion into the rock matrix and along 
the fracture. The latter is important because the fracture-matrix coupled system affects 
the thermal regime as well as the rate at which the concentration gradient between the 
fracture and the reservoir matrix influences the opening/closure of the fracture aperture 
(i.e. fracture permeability). 
 
Other investigators have also treated the problem of non-isothermal reactive flow in a 
fracture both in the context of geological problems and geothermal reservoir development 
[7-10]. However, previous studies have not coupled chemical, mechanical and thermal 
mechanisms.  

 

6.2. Modeling Approach & Mathematical Model 
 
For all but the most soluble rocks, the solubility determines the amount of solutes that 
will be carried along the fracture under large thermal gradient between the fracture and 
reservoir matrix. A complete description of quartz dissolution and precipitation kinetics is 
impossible without accurate values for quartz solubility [11]. The reactive modeling of 
most minerals is accomplished using the local equilibrium approach without considering 
their reaction kinetics.  Silica deserves a special attention as it equilibrates at a slower rate 
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than other minerals and hence, consideration of kinetics becomes inevitable in modeling 
quartz precipitation/dissolution. 
 
The quartz-water system governed by Eq. 1 is a simple surface reaction to form silicic 
acid monomer otherwise called as dissolved silica: 
 
                                                   44222 OSiHOSiOH ⇔+                                     (1) 
 
Changes in pressure, in the range occurring in geothermal systems, have much lesser 
effect on changes in the state of mineral saturation than temperature changes. This is 
exemplified for quartz, 2OSi  [12]; the solubility of which has been well established 
experimentally over a wide range of temperature and pressure [12, 13]. The equilibrium 
solubility of silica and especially quartz is low (amorphous silica 100-140 mg/l, quartz 6-
14 mg/l at earth surface temperature) as described by [14]. As a result, the impact of 
pressure on solubility is neglected in this work. 
 
Using the above approach, we develop an analytical model to quantify the evolution of 
fracture aperture and the associated fluid pressure during the dissolution/precipitation of 
quartz in a granitic rock under laminar flow conditions. The geothermal fluid is injected 
at the injection well either super-saturated or under saturated with respect to the 
equilibrium concentration of quartz, through an initially smooth parallel-walled fracture 
between two blocks of granitic rock. 

 
 
In general, modeling of the fracture evolution in EGS requires reduction of an extremely 
complex system to an idealized one based on simple principles. Such an idealized 
concept has already been used for heat extraction and solute transport. The conceptual 
model corresponding to an idealized parallel-plate system representing a fracture-matrix 
coupled system is illustrated in Figure 6.1. The thermal transport mechanisms are thermal 
advection, thermal conduction and thermal dispersion within the fracture; conductive 
limited thermal transport from reservoir matrix into the fracture and thermal conduction 
within the reservoir matrix. The solute transport mechanisms in the fracture are 
advection, describing the motion of dissolved particles along with the circulating fluid; 
free diffusion within the fracture, dispersion, limited diffusion from the fracture into the 
reservoir matrix; dissolution/precipitation of quartz within the fracture and effective 
diffusion within the reservoir matrix. In this work, matrix diffusion is regarded as a one-
dimensional process. This assumption is justified if one considers that the solute 
migration is faster in fractures than in the matrix. The coupling between the fracture and 
matrix is provided by the continuity of fluxes and concentrations along the interface, 
assuming that diffusive flux from fracture to matrix takes place perpendicular to the 
fracture. Diffusion exchanges along the direction parallel to the fracture plane are then 
negligible as compared with that perpendicular to the fracture plane. Kennedy and 
Lennox (1995) showed the validity of such an assumption numerically for most cases, 
except for fractured clay with fracture apertures less than 20 μm and flow velocities 
lower than 1 m/day.  
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In order to incorporate quartz dissolution/precipitation described by linear reaction 
kinetics, the modified form of fracture and matrix equations is adopted. The radioactive 
decay term used in the fracture equation is replaced with a mathematically similar linear 
reaction rate law which describes a first order reaction. This term represents the 
congruent dissolution/precipitation of quartz described by the temperature dependence of 
the reaction rate constant and the equilibrium concentration of quartz. The temperature 
dependence of the equilibrium concentration of quartz is used. In deriving the governing 
equations for the problem, the following assumptions are made regarding the geometry 
and hydraulic properties: 

 

(1) the width of the fracture is much smaller than its length 
(2) transverse diffusion and dispersion within the fracture assure complete mixing 

across the fracture width at all times 
(3) the permeability of the reservoir matrix is very low and transport within the 

reservoir matrix occurs mainly by effective molecular diffusion which involves 
tortuosity 

(4) transport along the fracture is much faster than transport within the reservoir 
 

Assumptions 1 and 2 provide the basis for a one-dimensional representation of mass 
transport along the fracture itself. Assumption 3 and 4 provide the basis for taking the 
direction of mass flux density in the reservoir matrix to be perpendicular to the fracture 
axis. The result is the simplification of the two-dimensional system into two coupled 
orthogonal one-dimensional systems. In addition, the following general assumptions are 
used in the present study for analyzing the solute transport in a single fracture: 

• The fracture and the reservoir matrix are saturated 
• The water velocity of the circulating fluid in the fracture is constant 
• Quartz dissolution involves a single component system 
• Water and rock characteristics, namely longitudinal dispersion coefficient in the 

fracture, reservoir diffusion coefficient and reservoir porosity do not depend on 
position 

 
The mathematical model for analyzing silica reactivity and poro-thermoelasticity is 
formulated based on an idealized system as shown in Figure 6.1. The reservoir is 
assumed to be horizontal and constrained at top and bottom by rigid, impermeable and 
thermally insulated formations with constant-thickness (Figure 6.1.a). The fracture is 
vertical and of uniform width intersecting the entire reservoir thickness.  

 
The plain-strain approximation is used on the horizontal section of the vertical fracture to 
reduce the solution geometry as shown in Figure 6.1(b). The rock is assumed to be 
isotropic, homogeneous, and linearly elastic with constant permeability. Fluid flow in the 
fracture is incompressible, viscous, and laminar such that lubrication flow theory applies 
and fluid properties are uniform throughout.  The fracture aperture is uniform and 
significantly less than its length. Furthermore, the influence of rock-matrix deformation 
on pore-pressure is not included as its effect is not major in the current context. We have 



 124

not considered the resistance to opening at the fracture ends and any stiffness that might 
be offered by a natural fracture. 

 

 
 

Figure 6.1. Idealized fracture and rock- matrix system. 
 

  
 
6.2.1. Fluid flow in the fracture  
 
For the lubrication flow theory, the momentum balance indicates that the flow rate is 
proportional to the pressure gradient as: 

 

3

12( ,0, ) ( , )
( , )

fp x t q x t
x w x t

μ∂
= −

∂
       (1) 

 
Here p  is the pressure in the fracture caused by injection defined as: ( ,0, ) op p x t p= −  
with ( ,0, )p x t  as the total fracture pressure and op  as the ambient reservoir pressure, fμ  
is the fluid viscosity; w is the fracture aperture and ( , )q x t  is volumetric flow rate per unit 
height of the vertical fracture: ( , ) ( , ) ( , )q x t w x t v x t= . 
 

Assuming fluid is incompressible and it leaks off from the fracture wall into the 
formation, the fluid continuity equation is: 
 

( , ) 2 ( , ) 0l
q x t q x t

x
∂

+ =
∂

        (2) 

 
where ( , )lq x t is the leak-off velocity (positive for loss into the matrix), with the 
multiplier 2 reflecting the two fracture walls. Now, combining Eqs.  (1) and (2) and 
neglecting /w x∂ ∂ , a second-order partial differential equation is obtained for fluid 
pressure in the fracture as shown in below : 
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6.2.2. Fluid flow in the rock-matrix 
 
In general, the reservoir would be modeled using a fully coupled thermo-poroelasticity to 
include the coupled interaction between fluid diffusion, heat transport and rock 
deformation. However, similar to Ghassemi et al. [15], we assume that the coupling 
between flow process and the elastic deformation is small so that the fluid heat diffusion 
can be treated separately from the rock deformation. In such case, pore- pressure in the 
rock- matrix is governed by well-known diffusion equation: 
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where Dc  is the fluid diffusivity coefficient .  The initial and boundary conditions for 
Eqs. (1) and (4) are taken as: 
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where ow is the initial fracture aperture. 
 

6.2.3. Heat transfer in the fracture and rock-matrix 
 
Considering heat storage, advection, longitudinal dispersion and conduction from the 
fracture walls, the heat transport in the fracture can be expressed as: 
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Studies on the heat transfer suggest conduction and dispersion effect within the fracture 
are small, hence can be ignored [16]. With these simplifications Eq. (6) becomes: 
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 (7) 

 
Assuming the heat conduction in the rock-matrix to be one-dimensional perpendicular to 
fracture, and considering the presence of leak-off, the heat transport in the rock-matrix is 
governed by:  
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The initial and boundary conditions associated with Eqs. (7)-(8) are:  
 

( , ,0) roT x y T=        (9) 
(0,0, ) foT t T=        (10) 

 
where roT is the initial rock temperature and foT  is the fluid temperature at the injection 
point.  
 
6.2.4. Solute transport and reactivity 

 
The issue of mineral dissolution and precipitation in geothermal systems can be complex. 
But, when studying silica reactivity, using a single component reactive transport model is 
adequate under conditions of interest [17-20].  In the present work, the principal solute 
transport mechanisms in a fracture are considered to be: solute advection, diffusion-
limited mass solute transfer from the fracture into the rock-matrix; dissolution and 
precipitation of silica within the fracture, and diffusive transport within the rock-matrix.  

 
By assuming one-dimensional mass transport along the fracture and considering the 
matrix mass-flux to be perpendicular to the fracture plane, the two-dimensional system is 
simplified into two coupled orthogonal one-dimensional systems. In addition, we assume 
that fluid and rock characteristics e.g., rock-matrix diffusion coefficient and rock-matrix 
porosity do not depend on the spatial position. The resulting single-component solute 
transport system incorporates the silica dissolution/precipitation using linear reaction 
kinetics. As an extension, we consider the impact of fluid leak-off and temperature-
dependent reaction rate and the equilibrium concentration within the fracture and the 
rock-matrix [3].  By considering reaction rates and equilibrium concentration as function 
of temperature, a non-linearity (of variable coefficients) is introduced in second order 
partial differential equation system of solute transport, for example: 
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To overcome the difficulty in deriving analytical solutions for  Eqs. (11) and (12), the 
solute transport is decoupled from thermal transport, such that variable coefficients in 
solute transport are only functions of temperature and these are computed after all 
temperature field calculations are completed. The temperature dependent reaction rate is 
adopted from [21] and equilibrium concentration of quartz is obtained from [11], while 
the expressions for the effective reaction rate constants are adopted from Steefel et al. 
[18] (see details in section 6.3.1). So, the governing solute transport equations for the 
case of linear reaction kinetics and with fluid leak-off can be simplified as:  
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In Eqs.(13) and (14) , ( )' , ,c x y t and ( )' , 0,c x t are defined as: 
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The Eqs. (14) and (15) are subjected to the initial and boundary conditions; it is assumed 
that initially, before fluid injection/production begins, the fluid in the fracture is at 
equilibrium concentration. Similarly, at the injection well, a constant concentration in the 
injected fluid exists. So they are: 

 
( )' , ,0 0c x y =         (16) 

 ( )' '0,0, oc t c=         (17) 
 
where '

oc  source concentration above the equilibrium level.  
 

 
6.3. Fracture aperture change due to silica dissolution and 

precipitation and poro-thermoelastic effects 
 
The fracture aperture can change due to silica dissolution/precipitation and poro-
thermoelastic deformation caused by fluid pressure in the fracture thus affecting the 
conductivity and fluid flow. These mechanisms of fracture aperture change are described 
in detail in following: 

 
6.3.1. Silica dissolution and precipitation and aperture variation 
 
Considering quartz as the main mineral which affects the fracture aperture in dissolution 
and precipitation processes, its reactivity of quartz can be modeled using  a rate law 
[11,21]:  

 
*( )eq

r
dc K a c c
dt

= −        (18) 

 
The intrinsic rate constant, rK  and the equilibrium concentration of quartz are 

assumed to be function of temperature alone [11,21] as the pressure does not play an 
important role because the magnitude of silica concentration change with pressure is 
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generally significant order of magnitude less than its temperature counterpart and is given 
as: 
 

0.433 4090/( ) 10 T
rK T −=      (19) 

34 1.881 2.028 10 1560/( ) 6 10 10eq T Tc T
−− × −= × ×   (20) 

 
The effective reaction rate constants in the fracture and rock-matrix are computed as:  
 

( ) ( )2
;f m m

o

K T
k k A K T

w
= =      (21) 

 
where mA is mineral surface area [18].  
 
In addition to computing the concentration profile within the fracture at various times, the 
cumulative mass of silica dissolved from or deposited on the rock surfaces at each 
position along the fracture is examined. For a given time interval tΔ , the mass of silica 
dissolved or deposited per unit fracture length, qm is given by [21]: 

 
( )6 *10 eq

f f r
q

f

tV K a c c
m

L

ρ− Δ −
=       (22) 

       
where ( )* 2 /q oa f w=  is the surface area to fluid volume ratio and qf  is the volume 
fraction of quartz in the rock matrix. The quantity of quartz/amorphous silica dissolved or 
deposited can be related to the fractional change in the average fracture aperture by 
assuming fracture flow geometry in Figure 6.1. The fractional aperture change ( )ωΔ  can 
be described as the volume change of quartz/amorphous silica divided by the fluid 
volume and is given by Robinson and Pendergrass [21]  
 

( )6 *10 eq
f rf q

q f q

tK a c cL m
V

ρ
ω

ρ ρ

− Δ −
Δ = − = −     (23) 

 
The fractional aperture change due to silica dissolution and precipitation is related to 

the induced fracture aperture as 1 ( , ) / ow x t wωΔ = − . Using this expression into Eq.(23), 
the induced fracture aperture ( , )w x t  due to silica dissolution and precipitation can be 
written as: 

 

( )6 *10
( , ) 1

eq
f r

o
q

tK a c c
w x t w

ρ

ρ

−⎡ ⎤Δ −
⎢ ⎥= +
⎢ ⎥⎣ ⎦

    (24) 
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6.3.2. Aperture variation caused by poro-thermoelasticity 
 

The fracture aperture can change due to the elastic deformation exerted by the pressure in 
the fracture. It can also be affected by the thermal and pore pressure diffusion into the 
formation. The 3D field equations considering these coupled effects are (Ghassemi et al. 
[26]: 
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         (25) 

         
with ( )

( )( )u

uGM
ννα

νν
2121

2
2 −−

−
= , and where d = ( )s f sαβ φ β β+ − ; /kκ μ= ; G is shear 

modulus and M is Biot's modulus.  
 
For most rocks, heating/cooling produces thermal stresses and affects pore pressure, but 
stress and pressure changes do not significantly alter the temperature field so that the 
latter is not coupled to the equations for pore pressure and solid displacements. Also, note 
that convective heat transport is neglected. This is justified for rocks of interest, i.e. rocks 
that are impermeable or have low matrix permeability [26]. 
 
The system of Eq. (25) needs to be solved simultaneously together with boundary 
conditions on the fracture surface. The boundary conditions are temperature and pressure 
in the fracture, which are also unknown as they are governed by the fracture flow and 
heat transport equations. The solution of this system yields the information about fracture 
opening resulting from the combined elastic, pore pressure, and temperature effect as 
w(x,t) = 2uy(x,0,t).  
 
In order to solve the above sub-problem analytically, we assume the solid displacement 
to be one dimensional and perpendicular to the fracture surface (in the y-direction). In 
view of this assumption, Eq. (25).a becomes: 
 

2

2

( , , ) ( , , ) ( , , )yu x y t T x y t p x y t
y y G y

ηχ
∂ ∂ ∂

= +
∂ ∂ ∂

    (26) 

 
where

v
vT

−
+

=
1

)1(αχ , 
)1(2
)21(

v
v

−
−

=
αη , and α  is Biot’s effective stress coefficient. Tα  is the 

linear thermal expansion coefficient of the rock, ( / 3sβ ). Eqn. (26) is integrated twice 

from the fracture surface (y = 0) to infinity, assuming 0=
∞=yyu : 
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0 0

( ,0, ) ( , , ) ( , , )yu x t T x y t dy p x y t dy
G
ηχ

∞ ∞

− = Δ + Δ∫ ∫    (27) 

where: 

),,(),,(),,(
),,(),,(),,(

txptyxptyxp
txTtyxTtyxT

∞−=Δ
∞−=Δ

     (28)   

 
With T(x,∞,t) = Tro and p(x,∞,t) = po , where po is the in-situ reservoir pressure, and  
differentiating Eq. (27) with respect to time one gets: 
 

0 0

( ,0, ) ( , , ) ( , , )yu x t T x y t p x y tdy dy
t t G t

ηχ
∞ ∞∂ ∂Δ ∂Δ

− = +
∂ ∂ ∂∫ ∫   (29) 

 
 
 

6.4. Solution of Temperature, Concentration, Pore Pressure and 
Aperture with Constant Leak-off into Permeable Rock-Matrix 

 
To be able to solve equation of poro-thermo-elasticity and solute transport and its 
reactivity semi-analytically, we relax the condition of fluid leak-off into the formation by 
treating it as constant along the fracture face (i.e. fluid leaking off into the formation is 
constant in magnitude). By assuming this, we first solve for the pressure in the fracture 
and rock-matrix. Then solving for temperature and fracture aperture change due to 
thermoelasticity is followed by solute transport and its effect on fracture aperture. 
Similarly poroelastic effects i.e. change in fracture aperture due to pore pressure are 
computed. 

 
For the constant leak-off, loq  and constant injection rate, oq the integration of the 
continuity Eq. (2) gives the flow rate as: 

 
( ) 2o loq x q q x= −        (30) 

 
Here / 2lo o fq mq L= and  m  is a fluid loss coefficient, can be defined as the ratio 
between fluid loss and the injection rate [16].  Substituting Eq. (30) into Eq. (1) yields: 
 

[ ]3

12( ,0, ) 2
( , )

f
o lo

p x t q q x
x w x t

μ∂
= − −

∂
                          (31)                                

      
Integrating Eq. (31) with respect to x and applying boundary condition in Eq. (5) it 
follows: 
 

 ( )
( )3

2
( ,0, ) 12

fL
o lo

f
x

q q
p x t d

w
ς

μ ς
ς

−
= ∫      (32) 
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Fluid diffusion Eq. (4) can be solved by applying Laplace transformation and 

utilizing the boundary condition in Eq. (5) as: 
 

 
2

2

( , , ) ( , , )
D

p x y s s p x y s
y c

∂
=

∂
� �       (33) 

 
The solution for induced pressure in time domain with substitution of Eq. (32) leads to: 

 ( )
( )3

2
( , , ) 12

2

fL
o lo

f
xD

q qyp x y t erfc d
wc t

ς
μ ς

ς

⎛ ⎞ −
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∫      (34) 

 
 
 
 
6.4.1. Temperature solution and thermoelastic effects on fracture aperture 
 
For the constant leak-off as noted in Eq.(30), the solution of Eqs. (7)-(10) in Laplace 
space is [e.g., 16] is: 

 

( ), , ( ,0, )exp
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m r lo T
D D
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c qT x y s T x s yρ λ
λ

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
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2
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41 1 mm
T

m r lo

s
c q

λλ
ρ− −= +  and ( ), ,ro

D
ro fo

T T x y t
T

T T
−

=
−

 

 
To get the fracture aperture change due to thermoelasticity, considering only the effects 
of thermoelasticity in the governing equation of poro-thermo-elasticity (Eqn. (29) as: 

 

( )0

( ,0, ) 1 ( , ) ( , , )
2

yu x t w x t d T x y t dy
t t dt

χ
∞∂ ∂

= = − Δ
∂ ∂ ∫    (37) 

 
where ( , ) 2 ( ,0, )yw x t u x t= . Substituting Eq. (8) with Eq. (28) into Eq. (37) it yields:  

 
( ) ( )

0

, ,( , ) 2 2 ,0,mm
lo

m r y

T x y tw x t q T x t
t c y

λχ χ
ρ

=

∂Δ∂
= − Δ

∂ ∂
  (38) 

 
Taking Laplace transform of Eqn. (38) and with knowing that ( , , ) ( , , ) roT x y t T x y t TΔ = − , 
it yields: 
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( ) ( )

0

, , 2( , ) 2 ,0,Do mm lo
D

m r y

T x y sw T qw x s T T x s
s s c y s

λ χχ
ρ

Δ
Δ

=

∂
= − +

∂

�
��  (39) 

 
The gradient term in Eq. (39) is obtained from Eq. (35),  as : 
 

 ( )
0

, ,
( ,0, )

2
D m r lo T

D
mmy

T x y s c qT x s
y

ρ λ
λ

−

=

∂
=

∂

�
�     (40) 

 
Substituting Eq. (40) into (39) and simplifying it yields 

 
( )2

( , ) ( ,0, )lo To
D

T qww x s T x s
s s

χ λΔ
−−

= + ��     (41) 

 
Combining Eqs. (36) and (41)  leads to: 

 
( )

2

2 2( , ) 1
2

lo To m r T lo

f w o

T qw c qsw x s exp x Log x
s s v c q

χ λ ρ λ
ρ

Δ
− −

⎡ ⎤− ⎛ ⎞
= + − − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
�   (42) 

 
where ro foT T TΔ = − and initial fracture aperture i.e. ( ,0) ow x w= . The solution must be 
numerically inverted in time domain which is done using Stehfast [24] method. 

 
6.4.2.  Solution for silica concentration 

 
Considering fluid leak-off, the solution of Eqs. (13)-(17) for the concentration in the 

rock-matrix and the fracture in  Laplace space are given as: 
 

( ) ( )' '
', , ,0, exp

2
lo Cqc x y s c x s y

D
λ −⎡ ⎤= ⎢ ⎥⎣ ⎦
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with 

( ) ( )'
'

0

, 0, exp 1 2
2

fo C lo
k sc qc x s x Log x

s v q
φλ −

⎡ ⎤+ ⎛ ⎞
= − − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
�   (44) 
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Thus the fracture aperture due to silica dissolution and precipitation can now be 
calculated using the concentration in the fracture is computed from Eq. (44) and 
substituting it into Eq. (24) with other known and computed variables (e.g. effective 
reaction rate constant). 



 133

 
6.4.3.  Pore pressure solution and poroelastic effects on fracture aperture 

 
Ignoring the thermoelastic effects for the time being and considering poroelastic effects 
only Eq. (29) is thus leads to: 

 

( )0

( ,0, ) 1 ( , ) ( , , )
2

yu x t w x t d p x y t dy
t t G dt

η ∞∂ ∂
= = − ∂Δ

∂ ∂ ∫    (45) 

 
Simplifying Eqn. (45) using governing Eq. (4) as shown in below 
  

 
0

2( , ) ( , , )D

y

cw x t p x y t
t G y

η

=

∂ ∂Δ
=

∂ ∂
     (46) 

 
Now realizing ( , , ) ( , , )p x y t p x y tΔ =  from Eq. (5) and differentiating pressure Eq. 

(34) w. r. t. y and combining it with Eq. (46), it leads to: 
  

 
2 ( ,0, )( , ) Dc p x tw x t

t G t
η

π
Δ∂

= −
∂

     (47) 

 
where ( ,0, ) ( ,0, ) ( ,0, )imp permp x t p x t p x tΔ = −  is the pressure difference between the 
permeable and impermeable cases. Simplifying for the permeable and impermeable cases 

yields:
( )3( ,0, ) 24

fL

f lo
x

p x t q d
w

ςμ ς
ς

Δ = ∫  . Substituting this expression into Eq. (47) and 

integrating w. r. t. time knowing initial condition as w(x,0)=wo yields: 
 

 
( )3

96
( , )

fL

f lo D
o

x

q c tw x t w d
G w

ημ ς ς
π ς

= − ∫     (48) 

 
6.5. Solution for Temperature, Concentration & Aperture for 

Impermeable Rock  
 
Impermeable solutions play important role if the reservoir can be treated as impermeable 
with respect to the fluid leak-off from the fracture into the rock-matrix. Moreover, these 
solutions can be readily solved and can be used to validate e.g. bound solution (no leak-
off) of complex numerical algorithm. The impermeable solutions for chemo-poro-thermo 
model can be found by neglecting leak-off into the formation i.e. ( ), 0lq x t =  in the 
governing equations. However, for this case poroelastic effects are not considered here. 
The impermeable solution for temperature can be calculated as (e.g. in Gringarten et al. 
[25]: 
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  (49)  

 
Substituting Eq. (49) into Eq. (29) with considering only thermoelastic effects, the 
fracture aperture change due to thermoelastic can be given as: 
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where 
( )1 2 32

4 4;  and mm mm m r mm

o f wm r o f w
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χ χλ λ ρ λξ ξ ξ
ρπρ ρ

Δ Δ

= = =  

 
Similarly, neglecting leak-off into the formation and assuming constant velocity in the 
fracture, the solution for solute concentration (Eqs. (13)-(17) ) in time domain is (e.g. in 
(Steefel et al., 1998) : 
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Similarly, solution of concentration in the rock-matrix in time domain can be solved and 
given as: 
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6.6. Numerical Examples 
 
Silica dissolution or precipitation occurs when the injectate is either under- or super-
saturated. The amount of mass transfer is governed by the kinetics of the reaction. When 
the injectate is pure water, silica in the rock-matrix get dissolved and thus fracture 
aperture is increased (Figure 6.2). Fracture aperture along the fracture is amplified as the 
injection of fluid continues which can be attributed to falling of concentration along the 
fracture as shown in Figure 6.2 .  
 
 

Table 5. Input parameters used in the example case 
Parameter  Value Units 
qo 1 ×10-4   m2s-1 
wo 0.001   m 
φ 0.01 - 
υ 0.25 - 
αΤ 8.0 × 10-6   K-1 
ρm 2650  kgm-3 
ρf 1000  kgm-3 
Cr 800  Jkg-1K-1 
Cw 4200  Jkg-1K-1 
μf 0.001  Nsm-2 
λmm 2.9  Wm-1K-1 
Τro 575  K 
ΤD 150  K 
D′ 1.0 × 10-5` m2day-1 
Lf 1000  m 
ρq 2650  kgm-3 
fq 0.2 - 
α 0.47 - 
CD 1.0 × 10-5  m2s-1 
G 15,000  MPa 

 
 
In fracture aperture profile (in Figure 6.2), the rising limbs (positive slope) corresponds to 
an increase in fracture aperture resulting from dissolution, whereas the falling limbs 
(negative slope) represent a decrease in net fracture aperture resulting from dissolution 
followed by precipitation. This is because of the varying equilibrium concentration 
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(Figure 6.3) and variation of reaction constant in the fracture with temperature (Figure 
6.4). 
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Figure 6.2.  Normalized fracture aperture due to silica reactivity for different injection times (no 

leak-off). 
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Figure 6.3. Concentration distribution in the fracture after 1 week, 1 month and 3 months when 
zero concentration fluid (water) is injected in the fracture. 
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The corresponding silica concentration for the fracture aperture evolution (Figure 6.2) is 
depicted in Figure 6.3, where the injectate is pure water (zero concentration). It can be 
seen that the silica concentration increases within the fracture as the fluid moves away 
from the injection point. However, the concentration profile in the crack shows a 
reduction with time as it approaches the equilibrium concentration away from the 
injection point. This is because at early times, the injectate attains the rock matrix 
temperature (higher) at a shorter distance from the injection point. Moreover, in the 
diffusion dominated solute transport, the circulating fluid attains its equilibrium 
concentration close to the injection point for early injection time.  

 
The influence of temperature on silica dissolution and precipitation can be described by 
observing the temperature profile in the fracture in (Figure 6.4). For the case considered, 
the temperature of the circulating fluid nearly reaches the rock temperature at 225 m, 500 
m and 850 m from the injection point for 1 week, 1 month and 3 months of injection 
times, respectively. As the heat is extracted from the formation over the fracture length, 
the rock is cooled to a lower temperature. Therefore, the fluid temperature profile in the 
fracture decreases with time affecting the dissolution/precipitation process in the crack. 
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Figure 6.4. Temperature distribution in the fracture after 1 week, 1 month and 3 months. 
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Figure 6.5. Normalized pressure profile in the fracture after 1 week, 1 month and 3 months. 

 
In Figure 6.5, the normalized pressure profile corresponding to silica 
dissolution/precipitation along the fracture is shown for 1 week, 1 month and 3 months of 
injection time. The pressure is normalized with respect to the isothermal impermeable 
injection pressure, (Pimp(0,t) =1.2 MPa). As in this case, the fracture aperture is not 
influenced by an appreciable amount due to silica dissolution/precipitation, the pressure 
profiles for various injection times differ only by a small amount. 
 
Fluid leak-off into the formation influences the dissolution/precipitation of silica in the 
fracture. To see the effects of fluid leak-off on the silica dissolution/precipitation, 
consider the results of under-saturated and supersaturated fluid injections as shown in 
Figure 6.6 and Figure 6.7. The fracture aperture profile corresponding to silica 
dissolution/precipitation by pure water injection for 1 week and 3 months are shown in 
Figure 6.6 for the cases of leak-off and no leak-off. Note that fluid leak-off tends to 
accelerate dissolution up to about half the fracture length. Precipitation is also accelerated 
but at longer injection times. Essentially the curve attains a higher peak and shifts to the 
left with increased leak-off. This pattern of acceleration/deceleration is observed at short 
times (i.e. of 1 week) but at a lower magnitude. Thus, the leak-off enhances both 
dissolution and precipitation in under-saturated case because more silica mass is 
exchanged in between fracture and rock-matrix.  
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Figure 6.6. Normalized fracture aperture due to silica dissolution/precipitation at 1 week and 3 

months (under-saturated case; Solid lines: No leak-off: and symbols: m = 0.5). 
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Figure 6.7. Normalized fracture aperture due to silica dissolution/precipitation at 1 week and 3 

months (super-saturated case; Solid lines: No leak-off: and symbols: m = 0.5). 
 
On the other hand, if supersaturated fluid of 500 ppm is injected in the fracture, the 
aperture decreases appreciably with longer injection time (Figure 6.7). This effect is 
enhanced by leak-off and the peak aperture reduction shifts away closer to the injection 
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point. This is because the injectate in the fracture attains its equilibrium stat at a smaller 
distance in view of a temperature dependent of temperature reaction rate.   
 
Figure 6.8-6.10 show the normalized fracture aperture resulting from poroelastic and 
thermoelastic deformation in the presence of fluid leak-off, respectively. In Figure 6.8, 
the normalized fracture aperture is plotted against distance along fracture for various 
values of leak-off ratio (m) after 3 months of injection time. It can be observed that the 
fracture closure is relatively small and evolves slowly for lower levels of leak-off. The 
maximum reduction of fracture aperture occurs at the injection point where the induced 
pressure p(x,t) and hence leak-off  is the greatest. 
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Figure 6.8. Normalized fracture aperture due to influence of poroelastic stress on fracture aperture 

after 3 months. The figure is drawn for different fluid loss/injection ratios (m).  
 

Figure 6.9 and 6.10 show the normalized fracture aperture history at the injection point 
for poroelastic and thermoelastic cases, respectively. The aperture profile has same shape 
in both plots, but the effects are opposite. Figure 6.9 shows that the fracture aperture 
change due to poroelastic effects is pronounced with higher fluid leak-off (m>0) and at 
early time. However in the thermoelastic case, the fracture aperture at the injection point 
becomes larger at a later time when compared to the impermeable case (m=0) as shown 
in Figure 6.10. This is because leak-off increases the fluid residence time and the heat 
having been extracted from the rock but this effect evolves very slowly. 
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Figure 6.9. Normalized fracture aperture at the injection point due to influence of poroelastic 

stress on fracture aperture for different fluid loss/injection ratios (m) and injection times.  
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Figure 6.10. Normalized fracture aperture at the injection point due to thermoelastic effects for 

different fluid loss/injection ratios (m) and injection times. 
Figure 6.11 shows induced pressure distribution in the fracture corresponding to the 
poroelastic effects (as illustrated in Figure 6.8) and thermoelastic effects after 3 months 
of injection time; the pressure is normalized with respect to the isothermal impermeable 
injection pressure of (Pimp(0,t) =1.2 MPa). It can be seen that the pressure profiles in the 
poroelastic case have higher magnitudes compared to those of thermoelastic case 
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(because of the larger poroelastic width contraction). The poroelastic and thermoelastic 
pressure profiles are nearly identical near the extraction point as the poroelastic fracture 
aperture change becomes negligible (see Figure 6.8) in response to pressure reduction in 
the fracture. Pressure profiles in the thermoelastic case change their slope near half 
fracture length where the thermoelastic stresses in the fracture are largely reduced. 
 
. 
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Figure 6.11. Normalized pressure profile along he fracture for different fluid loss/injection ratios 

(m) after 3 months of injection. Lines: poroelastic case and symbols: thermoelastic case.  
 
We have analyzed reactive chemistry and poro-thermoelastic effects of low-temperature 
fluid injection in a natural fracture using semi-analytical poro-thermo-chemo model. The 
governing equations of the model were solved analytically (but some requires numerical 
inversion) to investigate fracture aperture change caused by low temperature fluid 
injection and fluid leak-off into the formation. The corresponding pressure profiles were 
also calculated. Both the solute reactivity along the fracture and its diffusion into the 
rock-matrix are considered using temperature depended reaction kinetics for a single 
component (silica system). The results indicate that the circulating fluid concentration 
attains its saturation farther away from the injection point for longer injection times. The 
under-saturated fluid injectate has tendency to widen up the aperture however 
supersaturated fluid leads to fracture closure. Similarly fluid leak-off can influence the 
silica dissolution/precipitation with considerable amount after longer injection time. The 
thermoelastic effects are dominant near the injection point. Although fluid leak-off does 
not change the fracture aperture significantly, it can lead to pore-pressure increase. 
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7. Conclusions & Future Research 
 
The role of poro-thermo-mechanical processes in rock failure and fracturing, and 
permeability change were investigated through development and implementation of poro-
thermoelastic displacement discontinuity boundary element methods, and coupled 
geochemical models.  
 
A number of applications and analyses were presented to highlight the impact of various 
mechanisms. In particular, fracture opening and slip, injection/production in naturally 
fractured reservoir, and fracture propagation were considered and 3D fracture slip was 
studied. Finally, examples were presented to illustrate the combined effects of silica 
dissolution/precipitation and poro-thermoelastic processes on the fracture aperture and 
pressure distributions during circulation operations.   
 

7.1. Injection into Fractured Reservoir, Fracture Propagation and 
Permeability Change 
 
The opening of a crack under combined poro-thermomechanical was considered under 
geothermal conditions and very small and very large times. It was found that the 
poroelastic effects on fracture opening are generally small for granitic rocks. This 
poroelastic mechanism corresponding to fluid diffusion from a fracture into the rock 
tends to close the fracture with time i.e., the width of the crack decreases. This is because 
the fluid injected into the fracture diffuses into the porous formation, increasing the pore 
pressure around the crack which, in turn, induces a dilatation of the rock formation. This 
increased pore pressure, however, can cause rock failure in the vicinity of the main 
fracture and contribute to overall permeability enhancement.  
 
The thermoelastic effect causes the crack to open gradually and in a much slower pace 
compared to the poroelastic effect. The crack opens as a result of the shrinking of the 
rock formation. The rock shrinking can also cause additional tensile fractures. 
 
By comparing the temporal variations of fracture opening due to stress, pore pressure, 
and thermoelastic loading, it is concluded that in many practical situations in EGS 
development, modes 1 and 2 contribute to fracture propagation during conventional 
hydraulic fracturing jobs. However, during injection operations their effect can become 
negligible in comparison to that of cooling. This is evident from the results showing that 
the contribution of mode 3 or thermal stress is much higher in stimulation and circulation 
operations which are conducted over a long period of time. For example, for rock types 
of Coso, a 200 0C cooling for a time of  t=10⁶ sec, the cooling-induced opening is 
approximately 2.5 times that of the instantaneous crack opening in response to the 
applied hydraulic pressure of 15 MPa.  
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By developing and implementing a joint model for the poro-thermoelastic  DD methods, 
a fractured reservoir simulator has been developed that allows investigation of the 
reservoir response to injection and extraction operations while considering  natural 
fracture slip and opening. Preliminary applications explicitly show the previously 
described poroelastic and thermoelastic phenomena in the context of reservoir 
engineering. In particular, permeability change and variation of pressure at the injection 
and production wells are clearly observed.  The results provide an explanation for the 
phenomenon noted during water injection in well number 83-16 in Coso, i.e., injectivity 
varies water temperature; injecting cold water decreases injection pressure and 
subsequent hot water injection increases it. 
 
Continued fluid injection tends to increase the pore pressure inside the rock thus reducing 
the crack width to some extent by Mode 2 or poroelastic effects. However, as noted 
previously, cooling induces large tensile stresses in the rock, thus creating new cracks 
and increasing the width of existing ones. If the pre-existing crack surfaces are 
continuously cooled, the major portion of the influence of cooling tends to materialize 
within a week of injection for the rock properties considered. This mechanism is reversed 
once the well is put on hot water injection. Heating tends to reduce the fracture widths 
and tends to close some of the newly opened fractures. Furthermore, continued hot water 
injection will lead to additional poroelastic effects which also contribute to crack closure.  
 
The fracture propagation work included development and implementation of a new 
fracture propagation criterion in a partially-coupled DD code. An extension of the 
Neuber-Novozhilov structural fracture propagation criterion was used for mode I (tensile) 
and mode II (shear) propagation under compressive loads. In addition to allowing 
numerical simulation of crack growth, the criterion can model change of propagation 
mode, crack branching, and coalescence.  The results of example simulations illustrated 
the importance of the role of Mode 2 loading (pore pressure gradient) in fracture 
propagation. The diffusion of pore pressure inside the crack into the rock can lead to 
change of possibility, mode and direction of fracture propagation. In most cases, besides 
fracture growth speed, rock and fluid properties, fracture geometry, in-situ stresses and 
internal fluid pressure all play an important role in determining the fracture propagation 
behavior in a permeable poroelastic medium.  
 
 

7.2. Three-Dimensional Thermoelastic Effects  
 
The two-dimensional plane strain crack model is only an approximation of the three-
dimensional crack opening and propagation. In fact, the two-dimensional model tends to 
significantly overestimate the fracture width due to cooling (by 57%). Therefore, a 3D 
model was developed in the time domain to calculate poroelastic and thermally-induced 
stresses associated with injection and extraction.  
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This was achieved using a 3D integral equation formulation to model heat extraction 
from a planar fracture in an infinite reservoir and to calculate the temperature and heat 
flux distributions within the crack and the matrix. This model was then used to determine 
the 3D thermal stresses resulting from cold water injection, and to estimate the natural 
fracture slip using a Mohr-Coulomb joint model. The approach used is distinguished 
from existing analytical and numerical works that treat the heat conduction in the 
geothermal reservoir as one-dimensional and perpendicular to the fracture. The analytical 
procedures and computational schemes were tested by considering the problem of 
injection into an infinite fracture and comparing the results with a semi-analytical 
solution. Then, using data from Coso, the thermally induced stresses were calculated for 
the injection experiment in Well 83-16. It has been found that the normal (axial) stress on 
the fracture surface is smaller than that predicted by uniform cooling of the crack surface. 
Also, the normal stress is tensile up to some distance from the injection well, its 
maximum occurs near the injection point and gradually approaches zero away from it. 
The normal stress becomes compressive at some distance away from the cooled region 
because as the cooled rock shrinks, it tends to pull on the exterior rock material (strain 
compatibility) inducing a compressive stress in it. It was interesting to note that the 
induced tensile stress near the injection well causes the rock to contract causing the 
aperture to open wider. Then, for a constant injection rate, the injection pressure drops 
due to the increased conductivity. This is indeed observed in Well 83-16 of the Coso. The 
explicit consideration of the fracture provides more insight for this mechanism and was 
subsequently considered. 
 
In considering a 3D fracture, the model was first applied to study the impact of 
poroelasticity on the fracture opening and slip. It was found that the application of a 
normal stress loading on the fracture surfaces increases the fracture opening with time 
because of the dissipation of the pore pressures in the rock. On the other hand, a pore 
pressure loading causes fracture closure as fluid leaks-off from the fracture into the rock 
matrix. This is consistent with our previous 2D studies. Simulations of injection into a 
critically stressed fracture at pressures insufficient to jack it open showed that the fracture 
slips and dilates. Thereafter, the fracture slip decreases as the matrix dilates in response to 
pore pressure diffusion, increasing the normal stress on the fracture surface and reducing 
the crack opening. This transient slip can contribute to the injection pressure variations as 
well as to induced reservoir seismicity observed in enhanced or engineered geothermal 
systems 
 
Consideration of fracture slip, opening and injection pressure variation in response to 
injection/extraction clearly showed that the fracture pressure and aperture are 
predominantly affected by the poroelastic effects at the early stage and by the 
thermoelastic effect after a long time of fluid injection. When the initial fracture aperture 
is assumed to be small enough to generate a relatively large fracture pressure compared to 
the initial reservoir pressure, the large fluid leakoff decreases the fracture pressure and 
aperture at early stages when compared to the case of no fluid leakoff. However, the 
leakoff influence becomes less evident for longer injection times. After a long time of 
fluid injection, the fracture aperture increases significantly, mainly due to the 
thermoelastic effect. 
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7.3. Influence of Quartz Precipitation and Dissolution on Fracture 
Permeability 
 
An analytical model was developed to simulate the combined effect of poro-mechanical, 
thermal, and reactive solute transport (with quartz dissolution/deposition kinetic model) 
in a fracture-matrix system. Both the solute reactivity along the fracture and its diffusion 
into the rock-matrix were considered using temperature depended reaction kinetics for a 
single component (silica system). The solution of the governing equations was used to 
investigate the fracture aperture change caused by low temperature fluid injection and 
fluid leak-off into the formation. The corresponding pressure profiles were also 
calculated. Simulations were carried out to analyze the effects of reactive chemistry and 
poro-thermoelasticity when injecting into a natural fracture under the conditions of Coso 
geothermal reservoir. The results indicated that the circulating fluid concentration attains 
its saturation further away from the injection point for longer injection times. An under-
saturated fluid injectate has a tendency to widen the aperture, while a supersaturated fluid 
leads to fracture closure. Similarly, fluid leak-off can influence the silica 
dissolution/precipitation to a considerable degree after longer injection times. The 
thermoelastic effects are dominant near the injection point. Although fluid leak-off does 
not significantly change the fracture aperture, it can lead to pore-pressure increase. 
 

7.4. Future Work 
 
The fracture propagation and coalescence algorithms need to be coupled to fluid flow 
calculation to allow one to calculate the pressure necessary to extend a fracture into the 
reservoir. The full coupling between heat transfer and fluid flow should be considered 
and the capability of propagation in the presence of natural fractures added.  
 
The reactive transport component should be added to the 2D naturally fractured reservoir 
simulator to take into account the influence of porothermal stresses and silica reactivity 
on permeability evolution in a coupled manner. In addition, it will be of interest to 
consider a multi-component chemical system. This can be important as the net result of 
the process of precipitation/dissolution of various minerals in the reservoir matrix 
influence the amount of exposed fracture surfaces (fracture walls) and subsequently 
affect fluid circulation in the system.  
 

The 3D fracture algorithms should be improved to efficiently model multiple fracture 
systems. Also, addition of reactive transport models would be useful in understanding the 
impact of non-isothermal reactive transport using a geometrically realistic fracture model.  
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8. PUBLICATIONS & Technology Transfer/ Student Training 
 
The research activities have trained a number of graduate students in the field of Rock 
Mechanics for geothermal reservoir development namely, Andrew Nygren, Jun Ge, 
Qingfeng Tao, Chakra Rawal, Wenxu Xue, and Xiaoxian Zhou. Mr. Andrew Nygren was 
awarded the best M.S. Thesis Award by the American Rock Mechanics Association in 
2006.  These students have participated in preparing publications and making 
presentation in national/international conferences. We have published several papers, and 
have 3 additional manuscripts under review:   
 
 

1. Ghassemi, A., Nygren, A., Cheng, A.D.-H. 2008. Effects of heat extraction on 
fracture aperture: A poro-thermoelastic analysis. Geothermics, 37 (5), 525-539. 

 
2. Zhou, X., Ghassemi, A., and Cheng, A.H.-D. 2009. A Three-Dimensional Integral 

Equation Model for Calculating Poro- and Thermoelastic Stresses Induced by 
Cold Water Injection into a Geothermal Reservoir. Int. J. Num. Anal. Methods 
Geomech. DOI:10.1002/nag. 

 
Papers under Review 
3. Ghassemi, A., X. Zhou. 2009a. A Three-dimensional poroelastic displacement 

discontinuity method for simulating hydraulic and natural fractures. It. J. Rock 
Mech. Min. Sci.  

4. Ghassemi, A., X. Zhou. 2009b. Simulation of aperture and pressure variation 
caused by poro- and thermoelastic effects of injection into a geothermal reservoir. 
It. J. Rock Mech. Min. Sci. 

5. Ghassemi, A. Rawal, C.  2008. Reactive silica transport in hot poroelastic rock 
and its effects on fracture aperture. Geothermics. 

 
Conference Papers 
6. Xue, W., Ghassemi, A., 2009. Poroelastic Analysis of Hydraulic Fracture 

Propagation. 43rd US Rock Mech. Symp., Asheville, NC June 28th – July 1, 
2009. 

7. Zhou, A., Ghassemi, A. 2009. Three-dimensional poroelastic displacement 
discontinuity simulation of natural fractures. 43rd US Rock Mechanics 
Symposium and 4th U.S.-Canada Rock Mechanics Symposium, held in Asheville, 
NC June 28th – July 1, 2009. 

8. Ghassemi, A., 2009. Rock joints & fractures in geothermal & petroleum reservoir 
development: poro-thermoelastic effects. International Conference on Rock Joints 
and Jointed Rock Masses, Tucson, AZ, Jan. 2009. 

9. Zhou, A., Ghassemi, A. 2009. Three-Dimensional Poroelastic Simulation of 
Hydraulic and Natural Fractures Using the Displacement Discontinuity Method. 
34th Stanford Geothermal Workshop, Feb. 9-11th, Palo Alto. 
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10. Rawal, C.,  Ghassemi, A. 2008. Fracture aperture change in response to reactive 
transport of  silica and thermoelastic effects. Proc. 42nd U.S. Rock Mech. Symp., 
June 29 – July 2, San Francisco. 
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and thermoelastic Stresses Induced by Cold Water Injection into a Geothermal 
Reservoir. Proc. 42nd U.S. Rock Mech. Symp., June 29 – July 2, San Francisco. 

12. Zhou, X., Ghassemi, A. 2008. A three-dimensional poroelastic model for water 
injection into a geothermal reservoir. 33rd Stanford Geothermal Workshop of 
Reservoir Engineering. 

13. Ge, J., Ghassemi, A. 2007. Pore pressure and stress distributions around an  
14. injection-induced fracture. Transactions, Geothermal Res. Coun., Reno. 
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