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SpacePy - A Python-based library of tools 
for the space sciences 

Space science deals with the bodies within the solar 
system and the interplanetary medium; the primary 
focus is on atmospheres and above - at Earth the short 
timescale variation in the the geomagnetic field, the 
Van Allen radiation belts and the deposition of energy 
into the upper atmosphere are key areas of investiga­
tion. SpacePy is a package for Python, targeted at the 
space sciences, that aims to make basic data analysis, 
modeling and visualization easier. It builds on the ca­
pabilities of the well-known NumPy and MatPlotLib 
packages. Publication quality output direct from anal­
yses is emphasized. The SpacePy project seeks to pro­
mote accurate and open research standards by provid­
ing an open environment for code development. In the 
space physics community there has long been a signifi­
cant reliance on proprietary languages that restrict free 
transfer of data and reproducibility of results. By pro­
viding a comprehensive, open-source library of widely­
used analysis and visualization tools in a free, modern 
and intuitive language, we hope that this reliance will 
be diminished. 

SpacePy includes implementat ions of widely used em­
pirical models, statistical techniques used frequently 
in space science (e.g. superposed epoch analysis), and 
interfaces to advanced tools such as electron drift shell 
calculations for radiation belt studies. SpacePy also 
provides analysis and visualization tools for compo­
nents of the Space Weather Modeling Framework - cur­
rently this only includes the BATS-R-US 3-D magneto­
hydrodynamic model and the RAM ring current model 
- including streamline tracing in vector fields. Further 

development is currently underway. External libraries, 
which include well-known magnetic field models, high­
precision time conversions and coordinate transforma­
tions are wrapped for access from Python using SWIG 
and f2py. The rest of the tools have been implemented 
directly in Python . 
The provision of open-source tools to perform com­
mon tasks will provide openness in the analysis meth­
ods employed in scientific studies and will give access 
to advanced tools to all space scientists regardless of 
affiliation or circumstance. 

Introduction 

For the purposes of this article we define space science 
as the study of the plasma environment of the solar 
system. That is, the Earth and other planets are all 
immersed in the Sun's tenuous outer atmosphere (the 
heJiosphere), and all are affected in some way by nat­
ural variations in the Sun. This is of particular impor­
tance at Earth where the magnetized plasma flowing 
out from the Sun interacts with Earth's magnetic field 
and can affect technological systems and climate. The 
primary focus here is on planetary atmospheres and 
above - at Earth the short timescale variation in the 
the geomagnetic field, the Van Allen radiation belts 
[Morl 0] and the deposition of energy into the upper 
atmosphere [M ly lO] are key areas of investigation. 
SpacePy was conceived to provide a convenient library 
for common tasks in the space sciences. A number 
of routine analyses used in space science are much 
less common in other fields (e.g. superposed epoch 
analysis) and modules to perform these analyses are 
provided. This article describes the initial release of 
SpacePy (0.1.0), available from Los Alamos National 
Laboratory. at ht t p ://spacepy .lanl .gov 

SpacePy organization 

As packages such as NumPy, SciPy and MatPlotLib 
have become de facto standards in Python, we have 
adopted these as the prerequisites for SpacePy. 
The SpacePy package provides a number of modules, 
for a variety of tasks, which will be briefly described in 
this article. HTML help for SpacePy is generated us­
ing epydoc and is bundled with the package. This can 
be most easily accessed on import of spacepy (or any 
of its modules) by running the helpO function in the 
appropriate namespace. A schematic of the organiza­
tion of SpacePy is shown in figure 1. In this article we 
will describe the core modules of SpacePy and provide 
some short examples of usage and output. 

1 X. XXX in Proc. SciPy 2010, S. J. van der Walt, J. Millman, G . Varoquaux (Eds) p. 1 
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Figure 1. A schematic of the organization and contents 
of the SpacePy package at the time of writing. 

The most general of the bundled modules is Tool­
box. At the time of writing this contains (among oth­
ers): a convenience function for graphically display­
ing the contents of dictionaries recursively; window­
ing mean calculations; optimal bin width estimation 
for histograms via the Freedman-Diaconis method; 
an update function to fetch the latest OMNI (solar 
wind/geophysical index) database and leap-second list; 
comparison of two time series for overlap or common 
elements. 

The other modules have more specific aims and are 
primarily based on new classes. Time provides a con­
tainer class for times in a range of time systems, con­
version between those systems and extends the func­
tionality of datetime for space science use. Coordi­
nates provides a class, and associated functions, for the 
handling of coordinates and transformations between 
common coordinate systems. OnemPy is a module 
that wraps the ONERA magnetic field library. Rad­
belt implements a I-D radia l diffusion code along with 
diffusion coefficient calculations and plotting routines. 
SeaPy provides generic one- and two-dimensional su­
perposed epoch analysis classes and some plotting 
and statistical testing for superposed epoch analy­
sis. PoPPy is a module for analysis of point pro­
cesses, in particular it provides association analysis 
tools. Empiricals provides implementations of some 
common empirical models such as plasmapause and 
magnetopause locations. PyBATS is an extensive sub­
package providing tools for the convenient reading, 
writing and display of output from the Space Weather 
Modeling Framework (a collection of coupled models 
of the Sun-Earth system). 

Time conversions 

SpacePy provides a time module that enables conve­
nient manipulation of times and conversion between 
time systems commonly used in space sciences: 
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l. NASA's Common Data Format (CDF) epoch sys-
tem 

2. International Atomic Time (TAl) 

3. Coordinated Universal Time (UTC) 

4. Gregorian ordinal time (RDT) 

5. Global Positioning System (GPS) time 

6. Julian day (JD); modified Julian day (MJD) 

7. day of year (DOY) 

8. elapsed days of year (eDOY) 

9. UNIX time (UNX) 

This is implemented as a container class built on the 
functionality of the core Python datetime module. 
To illustrate its use, we present code which instantiates 
a TickTock object, and fetches the time in different 
systems: 

»> import spacepy.time as spt 
SpacePy: Space Science Tools for Python 
SpacePy is released under GPL v3.0. 
See __ licence __ for details, 
and help() for HTML help. 
»> ts = spt . Ticktock(['2009-01-12T14:30:00', 
'2009-01-13T14:30:00'] , 'ISO') 
»> ts 
Ticktock( ['2009-01-12T14:30:00', 
'2009-01-13T14:30:00'] ), dtype=ISO 
»> ts. UTC 
[datetime .datetime(2009, 1, 12, 14, 30), 
datetime.datetime(2009, 1, 13, 14, 30)] 

»> ts.TAI 
array([ 1 . 61046183e+09, 
»> ts.isoformat() 

1.61054823e+09]) 

Current ISO output format is %Y-%m-%dT%H:%M:%S 
Options are : [('seconds', '%Y-%m-%dT%H:%M:%S'), 
('microseconds', '%Y-'l~-%dT%H:%M:%S.%f')] 

»> tS.isoformat('microseconds') 
»> tS.ISO 
['2009-01-12T14:30:00.000000' , 
'2009-01-13T14:30:00.000000'] 

Coordinate handling 

Coordinate handling and conversion is performed by 
the coordinates module. This module provides the Co­
ords class for coordinate data management. Transfor­
mations between cartesian and spherical coordinates 
are implemented directly in Python, but the coordi­
nate conversions are currently handled as calls to the 
ONERA library. 
In the following example two locations are specified 
in a geographic cartesian coordinate system and con­
verted to spherical coordinates in the geocentric solar 
magnetospheric (GSM) coordinate system. The coor­
dinates are stored as object attributes. For coordinate 
conversions times must be supplied as many of the co­
ordinate systems are defined with respect to, e.g., the 

2 
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position of the Sun, or the plane of the Earth's dipole 
axis, which are time-dependent. 

database containing a] I parameters necessary for these 
magnetic field models. These data are currently up­
dated and maintained by Dr. Bob Weigel and are 

»> import spacepy. coordinates as spc available through ViRBO (Virtual Radiation Belt Olr 
»> import spacepy. time as spt servatory) 1. 

»> cvals = spc. Coords ( [[1,2,4] , [1,2,2]] , In SpacePy this data is made available on request on 
'GEO', 'car') install; if not downloaded when SpacePy is installed 
»> cvals. ticktock = spt. Ticktock ( and attempt to import the omni module will ask the 
[' 2002-02-02T12: 00: 00', '2002-02-02T12: 00: 00'] , user whether they wish to download the data. Should 
, ISO') the user require the latest data, the update function 
»> newcoord = cvals. convert (' GSM', 'sph') within spacepy. toolbox can be used to fetch the lat-

A new, higher-precision C library to perform time con­
versions, coordinate conversions, satellite ephemeris 
calculations, magnetic field modeling and drift shell 
calcU'lations - the LANLGeoMag (LGM) library - is 
currently being wrapped for Python and will even­
tually replace the ONERA library as the default in 
SpacePy. 

The ONERA library 

The ONERA (Office National d'Etudes et Recherches 
Aerospat iales) library [Bos07J, is a FORTRAN library 
that provides routines to compute magnetic coordi­
nates for any location in the Earth's magnetic field, to 
perform coordinate conversions, to compute magnetic 
field vectors in geospace for a number of external field 
models, and to propagate satellite orbits in time. 
A number of key routines in the ONERA library have 
been wrapped uing f2py, and a 'thin layer' module On­
emPy has been written for easy access to these rou­
tines. Current functionality includes calls to calcu­
late the local magnetic field vectors at any point in 
geospace, calculation of the magnetic mirror point for 
a particle of a given pitch angle (the angle between 
a particle's velocity vector and the magnetic field line 
that it immediately orbits such that a pitch angle of 
90 degrees signifies gyration perpendicular to the local 
field) anywhere in geospace, and calculation of electron 
drift shells in the inner magnetosphere. 
As mentioned in the description of the Coordinates 
module, access is also provided to the coordinate trans­
formation capabilities of the ONERA library. These 
can be called directly, but OnemPy is easier to work 
with using Coords objects. This is by design as we aim 
to incorporate the LGM library and replace the calls 
to ONERA with calls to LGM without any change to 
the Coordinates syntax. 

OMNI 

The OMNI database [Ki I105] is an hourly resolution, 
multi-source data set with coverage from November 
1963; higher temporal resolution versions of the OMNI 
database exist, but with coverage from 1995. The pri­
mary data are near-Earth solar wind, magnetic field 
and plasma parameters. However, a number of mod­
ern magnetic field models require derived input pa­
rameters, and [QiIl07] have used the publicly-available 
OMNI database to provide a modified version of this 
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est files from ViRBO. 
As an example, we fetch the OMNI data for the power­
ful 'Halloween' storms of October and November, 2003. 
These geomagnetic storms were driven by two solar 
coronal mass ejections that reached the Earth on Oc­
tober 29th and November 20th. 

»> import spacepy.time as spt 
»> import spacepy.omni as om 
»> import datetime as dt 
»> st = dt.datetime(2003,10,20) 
»> en = dt.datetime(2003,12,5) 
»> delta = dt.timedelta(days=l) 
»> ticks = spt.tickrange(st, en, delta, 'UTC') 
»> data = om.get_omni(ticks) 

data is a dictionary containing all the OMNI data, 
by variable, for the timestamps contained within the 
Ticktock object ticks 

Superposed Epoch Analysis 

Superposed epoch analysis is a technique used to re­
veal consistent responses, relative to some repeatable 
phenomenon, in noisy data [Chr08]. Time series of 
the variables under investigation are extracted from a 
window around the epoch and all data at a given time 
relative to epoch forms the sample of events at that 
lag. The data at each time lag are then averaged so 
that fluctuations not consistent about the epoch can­
cel. In many superposed epoch analyses the mean of 
the data, X, at each time u relative to epoch, is used 
to represent the central tendency: 

x(u) = tJ ~~1 Xi(U) 
In SeaPy we calculate both the mean and the median, 
since the median is a more robust measure of central 
tendency and is less affected by departures from nor­
mality. SeaPy also calculates a measure of spread at 
each time relative to epoch when performing the su­
perposed epoch analysis; the interquartile range is the 
default, but the median absolute deviation and boot­
strapped confidence intervals of the median (or mean) 
are also available. The output of the example below is 
shown in figure 2. 

»> import spacepy.seapy as se 
»> import spacepy.omni as om 
»> import spacepy.toolbox as tb 

Ihttp ://virbo .org/ QinDent on 



»> epochs'" se.readepochs( 
'SI_GPS_epochs_OMNI.txt') 
»> st, en '" datetime.datetime(2005,l,l), 
datetime.datetime(2009,l,l) 

analysis is computationally expensive and, though cur­
rently implemented in pure Python may be rewritten 
using Cython or C to gain speed. 

»> einds, oinds '" tb. tOverlap( [st, en], »> import datetime as dt 
om.omnidata['UTC' ] ) »> import spacepy.time as spt 
» > omni1hr - array(om.omnidata['UTC' ) [oinds] »> onsets - spt.Ticktock(onset_epochs, 
»> delta'" datetime.timedelta(hoursE1) 'CDF') 
»> window= datetime.timedelta(days=3) »> ticksR1 - spt.Ticktock(tr_list, 
»> sevx .. se.Sea(om. omnidata ['velo'] [oinds], 'CDF') 
omni1hr, epochs, window, delta) »> lags .. [dt.timedelta(minutes~n) 
»> sevx.sea() for n in xrange(-400,401,2)] 

»> sevx. plot (epochline=True , yquan='V$_{ sw}$',»> half window .. dt.timedelta(minutes-10) 
xunits='days', yunits""km s$-{-l}$') »> pp1 '" poppy.PPro(onsets.UTC, ticksR1.UTC, 

lags, halfwindow) 

650 ,---~----~----~ __ --~ __ --~ __ --~ 

600 

~-~3----~-~2----~_71----~O~----1~----~--~ 
TI~ Sine_ ~poch [di.'p,s! 

Figure 2. A typical output from the SpacePy Sea class 
using OMNI Bolar wind velocity data. The black line 
marks the superposed epocll median, the red dashed 
line marks the superposed epoch mean, and the blue 
fill marks the interquartile range. This figure was 
generated using the code in the text and a list of 67 
events published by [1VIor 1 OJ. 

Some of the more advanced features of this module 
have been used in analyses of the Van Allen radiation 
belts and can be found in the peer-reviewed literature 
[\Iorl Oj. 

Association analysis 

This module provides a point process class PPro and 
methods for association analysis (see, e.g., [1"1or07]). 
This module is intended for application to discrete 
time series of events to assess statistical association 
between the series and to calculate confidence lim­
its. Since association analysis is rather computation­
ally expensive, this example shows timing. To illus­
trate its use, we here reproduce the analysis of [" "iJ09j 
using SpacePy. After importing the necessary mod­
ules, and assuming the data has already been loaded, 
PPro objects are instantiated. The association analysis 
is performed by calling the assoc method and boot. 
strapped confidence intervals are calculated using the 
aa_ci method. It should be noted that this type of 

@2010, x. xxx 

»> pp1.assQcO 
Starting association analysis 
calculating association for series of 
length [3494, 1323] at 401 lags 
»> pp1.aa_ci(95, n_boots-40OO) 
»> pp1. plot 0 

90,---~--~--~---. __ --~--__ --~----. 

so 

Laq.. u 1."lnut") 

Figure 3. Reproduction of tIle association analysis done 
by {\VilOUj, using the PoPPy module of SpacePy. 
The figure shows a significant association around zero 
time lag between the two point processes under study 
(northward turnings of the interplanetary magnetic 
field and auroral substorm ollSets). 

The output is shown in figure 3 and can be compared 
to figure 6a of [WiI09j. 

NASA Common Data Format 

At the time of writing, limited support for NASA 
CDF2 has been written in to SpacePy. NASA them­
selves have worked with the developers of both IDLTMi 
and Mat Lab TM. In addition to the standard C library 
for CDF, they provide a FORTRAN interface and an 
interface for Perl -- the latest addition is support for 
C#. As Python is not supported by the NASA team, 
but is growing in popularity in the space science com­
munity we have written a module to handle CDF files. 

2http ://cdf .gsfc .nas a .go v/ 
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The C library is wrapped for Python using SWIG and 
an object-oriented "thin layer" has been written to pro­
vide a Pythonic interface. For example, to open and 
query a CDF file, the following code is used: 

»> import spacepy.cdfpy as cdf 
»> myfile - cdf.CDF() 
»> myfile.open('filename.cdf', read-False) 

To open and read the entire contents of the file into 
a dictionary, the read keyword is omitted (or set to 
True). Development of write capability has com­
menced, but is initially to be targeted towards the 
generation of ISTP-compliant CDF files3 for the up­
coming Radiation Belt Storm Probes (RBSP) mission. 

Radiation belt modeling 

Geosynchronous communications satellites are espe­
cially vulnerable to outer radiation belt electrons that 
can penetrate deep into the system and cause elec­
trostatic charge buildup on delicate electronics. The 
complicated physics combined with outstanding op­
erational challenges make the radiation belts an area 
of intense research. A simple yet powerful numerical 
model of the belts is included in SpacePy in the Rad­
Belt module. This module allows users to easily set 
up a scenario to simulate, obtain required input data, 
perform the computation, then visualize the results. 
The interface is simple enough to allow users to eas­
ily include an analysis of radiation belt conditions in 
larger magnetospheric studies, but flexible enough to 
allow focused, in-depth radiation belt research. 
The model is a radial diffusion model of trapped elec­
trons of a single energy and a single pitch angle. 
The heart of the problem of radiation belt modeling 
through the diffusion equation is the specification of 
diffusion coefficients, source and loss terms. Deter­
mining these values is a complicated problem that is 
tackled in a variety of different ways, from first prin­
ciples approaches to simpler empirical relationships. 
The RadBelt module approaches this with a paradigm 
of flexibility: while default functions that specify these 
values are given, many are available and additional 
functions are easy to specify. Often, the formulae re­
quire input data, such as the I{p or Dst indices. This is 
true for the RadBelt defaults. These data are obtained 
automatically from the OMNI database, freeing the 
user from the tedious task of fetching data and build­
ing input files. This allows simple comparative studies 
between many different combinations of source, loss, 
and diffusion models. 
Use of the RadBelt module begins with instantiation of 
an RBmodel object. This object represents a version of 
the radial diffusion code whose settings are controlled 
by its various object attributes. Once the code has 
been properly configured, the time grid is created by 
specifying a start and stop date and time along with 

3http : //spdf.gsfc .nasa.gov/ sp_use_of_cdf. html 
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a step size. This is done through the setup_ticks in­
stance method that accepts datetime or Ticktock argu­
ments. Finally, the evolve method is called to perform 
the simulation, filling the PSD attribute with phase 
space densities for all L and times specified during con­
figuration. The instance method plot yields a quick 
way to visualize the results using Matplotlib function­
ality. The example given models the phase space den­
sity during the 'Halloween' storms of 2003. The results 
are displayed in figure 4. In the top frame, the phase 
space density is shown. The white line plotted over 
the spectrogram is the location of the last closed drift 
shell, beyond which the electrons escape the magneto­
sphere. Directly below this frame is a plot of the two 
geomagnetic indices, Dst and I{p, used to drive the 
model. With just a handful of lines of code, the model 
was setup, executed, and the results were visualized. 

»> from spacepy import radbelt as rb 
»> import datetime as dt 
»> r - rb.RBmodel() 
»> starttime - dt.datetime(2003,10,20) 
»> endtime • dt.datetime(2003,12,5) 
»> delta - dt.timedelta(minutes-SO) 
»> r.setup_ticks(starttime, endtime, 

delta, dtype='UTC') 
»> r.evolveO 
»> r.plot(climsc [4,11]) 

r----,~----~-----,------~----,g 

8 

6 

~~ IJ/r"i,~ W;¥;\'\e'ii}ri\'~' 
-500 L--....:.....--,3..tOO"------'..,3.:clO,,-------,J2'*O;;-------,3..t30,,...:...---'-.c:..Jo 
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Figure 4. RadBelt simulation results for the 2003 Hal­
loween storms. The top frame shows phase space 
deno;ity as a function of drift shell and time. The 
bottom frame shows the geomagnetic Kp and Dst in­
dices during the storm. 

Visualizing space weather models 

The Block Adaptive Tree Solar wind Roe-type Up­
wind Scheme code, or BATS-R-US, is a widely used 
numerical model in the space science community. It is 
a magnetohydrodynamic (MHD) code [Pow99], which 
means it combines Maxwell's equations for electromag­
netism with standard fluid dynamics to produce a set 
of equa.tions suited to solving spatially large systems 
while using only modest computational resources. It is 



unique among other MHD codes in the space physics 
community because of its automatic grid refinement, 
compile-time selection of many different implementa­
tions (including multi fluid, Hall resistive, and non­
isotropic MHD), and its library of run-time options 
(such as solver and scheme configuration, output spec­
ification, and much more). It has been used in a 
plethora of space applications, from planetary simula­
tions (including Earth [\'\ 110b] and Mars [ ~vl n 07]) to 
solar and interplanetary investigations [Coh09]. As a 
key component of the Space Weather Modeling Frame­
work (SWMF) [To tO 7]', it has been coupled to many 
other space science numerical models in order to yield 
a true 'sun to mud ' simulation suite that handles each 
region with the appropriate set of governing equations. 
Visualizing output from the BATS-R-US code comes 
with its own challenges. Good analysis requires a com­
bination of two and three dimensional plots, the abil­
ity to trace field lines and stream lines through the do­
main, and the slicing oflarger datasets in order to focus 
on regions of interest. Given that BATS-R-US is rarely 
used by itself, it is also important to be able to visual­
ize output from the coupled codes used in conjunction. 
Professional <:omputational fluid dynamic visualization 
software solutions excel at the first points, but are pro­
hibitively expensive and often leave the user searching 
for other solutions when trying to combine the output 
from all SWMF modules into a single plot. Scientific 
computer languages, such as IDLTM and MatLab TM, 
are flexible enough to tackle the latter issue, but do 
not contain the proper tools required by fluid dynamic 
applications. Because all of these solutions rely on pro­
prietary software, there are always license fees involved 
before plots can be made. 
The PyBats package of SpacePy attempts to overcome 
these difficulties by providing an open source, platform 
independent way to read and visualize BATS-R-US 
output as well as output from models that are coupled 
to it. It builds on the functionality of Numpy and Mat­
plotlib to provide specialized visualization tools that 
allow the user to begin evaluating and exploring out­
put as quickly as possible. 
The core functionality of PyBats is a set of classes that 
read and write SWMF file formats . This includes sim­
ple ASCII log files, ASCII input files, and a complex 
but versatile self-descriptive binary format . Because 
many of the codes that are integrated into the SWMF 
use these formats, including BATS-R-US, it is possi­
ble to begin work right away with these classes. Ex­
panded functionality is found in code-specific modules. 
These contain classes to read and write output files, in­
heriting from the PyBats base classes when possible. 
Read/write functionality is expanded in these classes 
through object methods for plotting, data manipula­
tion, and common calculations. 
Figure 5 explores the capabilities of PyBats. The figure 
is a typical medley of desired output from a basic sim­
ulation that used only two models: BATS-R-US and 
the Ridley Ionosphere Model. Key input data that 
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Figure 5. Typical output desired by users of BATS-R­
US and tIle SWMF. The upper left frame is a cut 
through the noon-midnight meridian of the magne­
tosphere as simulated by BATS-R-US at 7:15 UT on 
September 1, 2005. The dial plots to the left are the 
ionospheric electric potential and Hall conductivity 
at the same time as calculated by RIM. Below are 
tI,e solar wind conditions driving both models. 

drove the simulation is shown as well. Creating the 
upper left frame of figure 5, a two dimensional slice 
of the simulated magnetosphere saved in the SWMF 
binary format, would require far more work if the ba...;;e 
classes were chosen. The bats submodule expands the 
base capability and makes short work of it. Rele­
vant syntax is shown below. The file is read by in­
stantiating a Bats2d object. Inherited from the base 
class is the ability to automatically detect bit ordering 
and the ability to carefully walk through the variable­
sized records stored in the file. The grid type, either 
unstructured (vectors of coordinates and correspond­
ing values), structured (multi dimensional arrays with 
varying grid spacings), or regular (multi dimensional 
arrays with constant grid spacings) is also detected. 
Because BATS-R-US has an adaptive Cartesian grid, 
unstructured files are simpler to create, smaller to 
store, and thus more common. The data is again 
stored in a dictionary as is grid information; there is 
no time information for the static output file. Extra 
information, such as simulation parameters and units, 
are also placed into object attributes. The unstruc­
tured grid is not suited for Matplotlib, so the object 
method regrid is called. The object remembers that it 
now has a regular grid; all data and grid vectors are 
now two dimensional arrays. Because this is a compu­
tationally expensive step, the regridding is performed 
to a resolution of 0.25 Earth radii and only for a subset 
of the total domain. The object method contourf, a 
wrapper to the Matplotlib method of the same name, 
is used to add the pressure contuur to an existing axis, 
ax. The wrapped function accepts keys to the grid and 
data dictionaries of the Bats2d object to prevent the 
command from becoming overly verbose. Extra key­
word arguments are passed to Matplotlib's contourf 
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method. If the original file contains the size of the 
inner boundary of the code, this is reflected in the ob­
ject and the method add_body is used to place it in 
the plot. 

»> import pybats.bats as bats 
»> obj = bats.Bats2d('filename') 
»> obj.regrid(0 .25, [-40, 15], [-30,30]) 
»> obj.contourf(ax, 'x', 'y', 'p') 
»> obj.add_body(ax) 
»> obj.add_planet_field(ax) 

The placement of the magnetic field lines is a strength 
of the bats module. Magnetic field lines are simply 
streamlines of the magnetic field vectors and must be 
traced through the domain by solving the differential 
equation 
S = v(S) 
where S is the streamline for a given time and v is 
the vector field through which to trace. The field line 
is traced through the domain numerically using the 
Runge-Ku tta 4 method. This step is implemented in 
C to expedite the calculation and wrapped using f2py. 
The Bats2d method add_planet_field is used to add 
multiple field lines; this method finds closed (beginning 
and ending at the inner boundary), open (beginning or 
ending at the inner boundary, but not both) , or pure 
solar wind field lines (neit her beginning or ending at 
the inner boundary) and attempts to plot them evenly 
throughout the domain. Closed field lines are colored 
white to emphasize the open-closed boundary. The 
user is naive to all of this, however, as one call to the 
method works through all of the steps. 
The last two plots, in the upper right hand corner 
of figure 5, are created through the code-specific rim 
module, designed to handle output from the Ridley 
Ionosphere Model (RIM) [Rid02]. 
PyBats capabilities are not limited to what is shown 
here. The Stream class can extract values along the 
streamline as it integrates, enabling powerful flow­
aligned analysis. Modules for other codes coupled to 
BATS-R-US, including the Ring current Atmosphere 
interactions Model with Self-Consistent Magnetic field 
(RAM-SCB, ram module) and the Polar Wind Outflow 
Model (PWOM, pwom module) are already in place. 
Tools for handling virtual satellites (output types that 
simulate measurements that would be made if a su ite of 
instruments could be flown through the model domain) 
have already been used in several studies. Combining 
the various modules yields a way to richly visualize 
the output from all of the coupled models in a single 
language. PyBats is also in the early stages of devel­
opment, meaning that most of the capabilities are yet 
to be developed. Streamline capabilities are currently 
being upgraded by adding adaptive step integration 
methods and advanced placement algorithms. Bats3d 
objects are being developed to complement the more 
frequently used two dimensional counterpart . A GUI 
interface is also under development to provide users 
with a point-and-click way to add field lines, browse 
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a time series of data, and quickly customize plots. 
Though these future features are important, PyBats 
has already become a viable open-source alternative 
to current, proprietary solutions. 

SpacePy in action 

A number of key science tasks undertaken by the 
SpacePy team already heavily use SpacePy. Some ar­
ticles in peer-reviewed literature have been primarily 
produced using the package (e.g. [lVIor l Oj, [WellOa]). 
The Science Operations Center for the RBSP mis­
sion is also incorporating SpacePy into its processing 
stream. 
The tools described here cover a wide range of routine 
analysis and visualization tasks utilized in space sci­
ence. Providing this package in Python makes these 
tools accessible to all, provides openness in the analy­
sis methods employed in scientific studies and will give 
access to advanced tools to all space scientists regard­
less of affiliation or circumstance. 
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