LA-UR- /"’C,,.?"C/K/EC)‘?

Approved for public release;
distribution is unlimited.

Title: | SpacePy - A Python-based library of tools for the space
sciences

Author(s): | Steven K. Morley (ISR-1)
Daniel T. Welling (ISR-1)
Josef Koller (ISR-1)

Brian A. Larsen (ISR-1)
Michael G. Henderson (ISR-1)

Intended for: | Proceedings of the 9th Python in Science conference

A
o Ec?sAIamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royaity-free license to publish or reproduce the
published torm of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos Nationat
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

XX XXX (xxx@XXX) — XXX, XXX XXX

Author: Steven K. Morley

email: smorley@lanl.gov

institution: Los Alamos National Laboratory
Author: Daniel T. Welling

email: dwelling@lanl.gov

institution: Los Alamos National Laboratory
Author: Josef Koller

email: jkoller@lanl.gov

institution: Los Alamos National Laboratory
Author: Brian A. Larsen

email: balarsen@lanl.gov

institution: Los Alamos National Laboratory
Author: Michael G. Henderson

email: mghenderson@lanl.gov
institution: Los Alamos National Laboratory

SpacePy - A Python-based library of tools
for the space sciences

Space science deals with the bodies within the solar
system and the interplanetary medium; the primary
focus is on atmospheres and above - at Earth the short
timescale variation in the the geomagnetic field, the
Van Allen radiation belts and the deposition of energy
into the upper atmosphere are key areas of investiga-
tion. SpacePy is a package for Python, targeted at the
space sciences, that aims to make basic data analysis,
modeling and visualization easier. It builds on the ca-
pabilities of the well-known NumPy and MatPlotLib
packages. Publication quality output direct from anal-
yses is emphasized. The SpacePy project seeks to pro-
mote accurate and open research standards by provid-
ing an open environment for code development. In the
space physics community there has long been a signifi-
cant reliance on proprietary languages that restrict free
transfer of data and reproducibility of results. By pro-
viding a comprehensive, open-source library of widely-
used analysis and visualization tools in a free, modern
and intuitive language, we hope that this reliance will
be diminished.

SpacePy includes implementations of widely used em-
pirical models, statistical techniques used frequently
in space science (e.g. superposed epoch analysis), and
interfaces to advanced tools such as electron drift shell
calculations for radiation belt studies. SpacePy also
provides analysis and visualization tools for compo-
nents of the Space Weather Modeling Framework - cur-
rently this only includes the BATS-R-US 3-D magneto-
hydrodynamic model and the RAM ring current model
- including streamline tracing in vector fields. Further

development is currently underway. External libraries,
which include well-known magnetic field models, high-
precision time conversions and coordinate transforma-
tions are wrapped for access from Python using SWIG
and f2py. The rest of the tools have been implemented
directly in Python.

The provision of open-source tools to perform com-
mon tasks will provide openness in the analysis meth-
ods employed in scientific studies and will give access
to advanced tools to all space scientists regardless of
affiliation or circumstance.

Introduction

For the purposes of this article we define space science
as the study of the plasma environment of the solar
system. That is, the Earth and other planets are all
immersed in the Sun’s tenuous outer atmosphere (the
heliosphere), and all are affected in some way by nat-
ural variations in the Sun. This is of particular impor-
tance at Earth where the magnetized plasma flowing
out from the Sun interacts with Earth’s magnetic field
and can affect technological systems and climate. The
primary focus here is on planetary atmospheres and
above - at Earth the short timescale variation in the
the geomagnetic field, the Van Allen radiation belts
[Mor10] and the deposition of energy into the upper
atmosphere [Mly10] are key areas of investigation.
SpacePy was conceived to provide a convenient library
for common tasks in the space sciences. A number
of routine analyses used in space science are much
less common in other fields (e.g. superposed epoch
analysis) and modules to perform these analyses are
provided. This article describes the initial release of
SpacePy (0.1.0), available from Los Alamos National
Laboratory. at http://spacepy.lanl.gov

SpacePy organization

As packages such as NumPy, SciPy and MatPlotLib
have become de facto standards in Python, we have
adopted these as the prerequisites for SpacePy.

The SpacePy package provides a number of modules,
for a variety of tasks, which will be briefly described in
this article. HTML help for SpacePy is generated us-
ing epydoc and is bundled with the package. This can
be most easily accessed on import of spacepy (or any
of its modules) by running the help() function in the
appropriate namespace. A schematic of the organiza-
tion of SpacePy is shown in figure 1. In this article we
will describe the core modules of SpacePy and provide
some short examples of usage and output.

1 X. XXXin Proc. SciPy 2010, S. J. van der Walt, J. Millman, G. Varoquaux (Eds) p. 1

” Saapy :
(ot Suparposed Epech
[b T L
| s i 2w T
PyBATS i /
BATS-R-US Visualiation / Ued 2
| CDFPy - SpacePy Eo
ook
smgeegane | ETF .
,,,,,,, { Oneraby
5 Magnetic Peld Libr.
Radbait " =
Pk thrdes
oM [
te
| Yt g

T e
L Y

Figure 1. A schematic of the organization and contents
of the SpacePy package at the time of writing.

The most general of the bundled modules is Tool-
boz. At the time of writing this contains (among oth-
ers): a convenience function for graphically display-
ing the contents of dictionaries recursively; window-
ing mean calculations; optimal bin width estimation
for histograms via the Freedman-Diaconis method;
an update function to fetch the latest OMNI (solar
wind/geophysical index) database and leap-second list;
comparison of two time series for overlap or common
elements.

The other modules have more specific aims and are
primarily based on new classes. Time provides a con-
tainer class for times in a range of time systems, con-
version between those systems and extends the func-
tionality of datetime for space science use. Coordi-
nates provides a class, and associated functions, for the
handling of coordinates and transformations between
common coordinate systems. OneraPy is a module
that wraps the ONERA magnetic field library. Rad-
belt implements a 1-D radial diffusion code along with
diffusion coefficient calculations and plotting routines.
SeaPy provides generic one- and two-dimensional su-
perposed epoch analysis classes and some plotting
and statistical testing for superposed epoch analy-
sis. PoPPy is a module for analysis of point pro-
cesses, in particular it provides association analysis
tools. Empiricals provides implementations of some
common empirical models such as plasmapause and
magnetopause locations. PyBATS is an extensive sub-
package providing tools for the convenient reading,
writing and display of output from the Space Weather
Modeling Framework (a collection of coupled models
of the Sun-Earth system).

Time conversions

SpacePy provides a time module that enables conve-
nient manipulation of times and conversion between
time systems commonly used in space sciences:

1. NASA’s Common Data Format (CDF) epoch sys-
tem

International Atomic Time (TAI)
Coordinated Universal Time (UTC)
Gregorian ordinal time (RDT)

Global Positioning System (GPS) time
Julian day (JD); modified Julian day (MJD)
day of year (DOY)

elapsed days of year (eDOY)

9. UNIX time (UNX)

© NS o W W

This is implemented as a container class built on the
functionality of the core Python datetime module.

To illustrate its use, we present code which instantiates
a TickTock object, and fetches the time in different
systemns:

>>> import spacepy.time as spt

SpacePy: Space Science Tools for Python
SpacePy is released under GPL v3.0.

See __licence__ for details,

and help() for HTML help.

>>> ts = spt.Ticktock([2009-01-12T14:30:00’,
€2009-01-13T14:30:00°], ¢IS0’)

>>> ts

Ticktock([€2009-01-12T14:30:00°,
€2009-01-13T14:30:00°]), dtype=ISO

>>> ts5.UTC

[datetime.datetime (2009, 1, 12, 14, 30),
datetime.datetime (2009, 1, 13, 14, 30)]

>>> ts.TAI

array([1.61046183e+09,
>>> ts.isoformat ()
Current ISO output format is %Y-%m-%dT%H:%M:%S
Options are: [(‘seconds’, ‘%Y-Vm-%dT#H:%M:%S’),
(‘microseconds’, ‘%Y-%m-%dT#H:%M:%S.%f’)]
>>> ts.isoformat(‘microseconds’)

>>> ts.1I80

[¢2009-01-12T14:30:00.000000’ ,
€2009-01-13T14:30:00.000000°]

1.61054823e+09])

Coordinate handling

Coordinate handling and conversion is performed by
the coordinates module. This module provides the Co-
ords class for coordinate data management. Transfor-
mations between cartesian and spherical coordinates
are implemented directly in Python, but the coordi-
nate conversions are currently handled as calls to the
ONERA library.

In the following example two locations are specified
in a geographic cartesian coordinate system and con-
verted to spherical coordinates in the geocentric solar
magnetospheric (GSM) coordinate system. The coor-
dinates are stored as object attributes. For coordinate
conversions times must be supplied as many of the co-
ordinate systems are defined with respect to, e.g., the

©2010, X. XXX

T LS A A N TR Sy s TR B Y At

position of the Sun, or the plane of the Earth’s dipole
axis, which are time-dependent.

>>> import spacepy.coordinates as spc
>>> import spacepy.time as spt

>>> cvals = spc.Coords([[1,2,4],[1,2,21],
‘GEQ’, ‘car’)

>>> cvals.ticktock = spt.Ticktock(
[€2002-02-02T12:00:00°,
‘IS07)

>>> newcoord = cvals.convert{‘GSM’, ‘sph’)

A new, higher-precision C library to perform time con-
versions, coordinate conversions, satellite ephemeris
calculations, magnetic field modeling and drift shell
calculations - the LANLGeoMag (LGM) library - is
currently being wrapped for Python and will even-
tually replace the ONERA library as the default in
SpacePy.

The ONERA library

The ONERA (Office National d’Etudes et Recherches
Aerospatiales) library [Bos07], is a FORTRAN library
that provides routines to compute magnetic coordi-
nates for any location in the Earth’s magnetic field, to
perform coordinate conversions, to compute magnetic
field vectors in geospace for a number of external field
models, and to propagate satellite orbits in time.

A number of key routines in the ONERA library have
been wrapped uing f2py, and a ‘thin layer’ module On-
eraPy has been written for easy access to these rou-
tines. Current functionality includes calls to calcu-
late the local magnetic field vectors at any point in
geospace, calculation of the magnetic mirror point for
a particle of a given pitch angle (the angle between
a particle’s velocity vector and the magnetic field line
that it immediately orbits such that a pitch angle of
90 degrees signifies gyration perpendicular to the local
field) anywhere in geospace, and calculation of electron
drift shells in the inner magnetosphere.

As mentioned in the description of the Coordinates
module, access is also provided to the coordinate trans-
formation capabilities of the ONERA library. These
can be called directly, but OneraPy is easier to work
with using Coords objects. This is by design as we aim
to incorporate the LGM library and replace the calls
to ONERA with calls to LGM without any change to
the Coordinates syntax.

OMNI

The OMNI database [Kin03] is an hourly resolution,
multi-source data set with coverage from November
1963; higher temporal resolution versions of the OMNI
database exist, but with coverage from 1995. The pri-
mary data are near-Earth solar wind, magnetic field
and plasma parameters. However, a number of mod-
ern magnetic field models require derived input pa-
rameters, and [Qin07] have used the publicly-available
OMNI database to provide a modified version of this

€2002-02-02T12:00:00°1,

database containing all parameters necessary for these
magnetic field models. These data are currently up-
dated and maintained by Dr. Bob Weigel and are
available through ViRBO (Virtual Radiation Belt Ob-
servatory)!.

In SpacePy this data is made available on request on
install; if not downloaded when SpacePy is installed
and attempt to import the omni module will ask the
user whether they wish to download the data. Should
the user require the latest data, the update function
within spacepy.toolbox can be used to fetch the lat-
est files from VIRBO.

As an example, we fetch the OMNI data for the power-
ful ‘Halloween’ storms of October and November, 2003.
These geomagnetic storms were driven by two solar
coronal mass ejections that reached the Earth on Oc-
tober 29th and November 20th.

>>>
>>>
>>>
P>
>>>
>>>
>>>
>>>

import spacepy.time as spt

import spacepy.omni as om

import datetime as dt

st = dt.datetime(2003,10,20)

en = dt.datetime(2003,12,5)

delta = dt.timedelta(days=1)

ticks spt.tickrange(st, en, delta, ‘UTC
data = om.get_omni(ticks)

data is a dictionary containing all the OMNI data,
by variable, for the timestamps contained within the
Ticktock object ticks

Superposed Epoch Analysis

Superposed epoch analysis is a technique used to re-
veal consistent responses, relative to some repeatable
phenomenon, in noisy data [Chr08]. Time series of
the variables under investigation are extracted from a
window around the epoch and all data at a given time
relative to epoch forms the sample of events at that
lag. The data at each time lag are then averaged so
that fluctuations not consistent about the epoch can-
cel. In many superposed epoch analyses the mean of
the data, Z, at each time u relative to epoch, is used
to represent the central tendency:

Z(u) = § i, 7:(w)

In SeaPy we calculate both the mean and the median,
since the median is a more robust measure of central
tendency and is less affected by departures from nor-
mality. SeaPy also calculates a measure of spread at
each time relative to epoch when performing the su-
perposed epoch analysis; the interquartile range is the
default, but the median absolute deviation and boot-
strapped confidence intervals of the median (or mean)
are also available. The output of the example below is
shown in figure 2.

>>> import spacepy.seapy as se
>>> import spacepy.omni as om
>>> import spacepy.toolbox as tb

'http://virbo.org/QinDenton

>>> epochs = se.readepochs(
‘SI_GPS_epochs_OMNI.txt’)

>>> st, en = datetime.datetime(2005,1,1),
datetime.datetime (2009,1,1)

>>> einds, oinds = tb.tOverlap([st, en],
om.omnidata[‘UTC’])

>>> omniihr = array(om.omnidatal[‘UTC’]) [oinds]
>>> delta = datetime.timedelta(hours=1)

>>> window= datetime.timedelta(days=3)

>>> gevx = se.Sea(om.omnidatal[‘velo’] [oinds],
omniihr, epochs, window, delta)

>>> sevx.sea()

>>> gevx.plot(epochline=True, yquan=‘V$_{sw}$’,
xunits=‘days’, yunits=‘km s$~{-1}$’)

650

550

v lkms ']
Y
g 8

400

-1 e 1 2
Time Since Epoch [days]

-2

Figure 2. A typical output from the SpacePy Sea class
using OMNI solar wind velocity data. The black line
marks the superposed epoch median, the red dashed
line marks the superposed epoch mean, and the blue
fill marks the interquartile range. This figure was
generated using the code in the text and a list of 67
events published by [Morl10].

Somme of the more advanced features of this module
have been used in analyses of the Van Allen radiation
belts and can be found in the peer-reviewed literature
[Mor10].

Association analysis

This module provides a point process class PPro and
methods for association analysis (see, e.g., [Mor07]).
This module is intended for application to discrete
time series of events to assess statistical association
between the series and to calculate confidence lim-
its. Since association analysis is rather computation-
ally expensive, this example shows timing. To illus-
trate its use, we here reproduce the analysis of [Wil09)
using SpacePy. After importing the necessary mod-
ules, and assuming the data has already been loaded,
PPro objects are instantiated. The association analysis
is performed by calling the assoc method and boot-
strapped confidence intervals are calculated using the
aa_ci method. It should be noted that this type of

analysis is computationally expensive and, though cur-
rently implemented in pure Python may be rewritten
using Cython or C to gain speed.

>>> import datetime as dt

>>> import spacepy.time as spt

>>> onsets = spt.Ticktock(onset_epochs,
‘CDF’)

>>> ticksR1 = spt.Ticktock(tr_list,
‘CDF’)

>>> lags = [dt.timedelta(minutes=n)

for n in xrange(-400,401,2)]

>>> halfwindow = dt.timedelta(minutes=10)
>>> ppl = poppy.PPro(onsets.UTC, ticksR1.UTC,
lags, halfwindow)

>>> ppl.assoc()

Starting association analysis

calculating association for series of
length [3494, 1323] at 401 lags

>>> ppl.aa_ci(95, n_boots=4000)

>>> ppl.plot()

=3

d
=

FY
=

]
g
S
]
<
2
E
z
:

w

100 o 100 200 300 400

Lag, u [minutes)

-300 =200

Figure 3. Reproduction of the association analysis done
by [Wil09], using the PoPPy module of SpacePy.
The figure shows a significant association around zero
time lag between the two point processes under study
(northward turnings of the interplanetary magnetic
field and auroral substorm onsets).

The output is shown in figure 3 and can be compared
to figure 6a of [Wil09)].

NASA Common Data Format

At the time of writing, limited support for NASA
CDF? has been written in to SpacePy. NASA them-
selves have worked with the developers of both IDLT™
and MatLab™. In addition to the standard C library
for CDF, they provide a FORTRAN interface and an
interface for Perl -- the latest addition is support for
C#. As Python is not supported by the NASA tean,
but is growing in popularity in the space science com-
munity we have written a module to handle CDF files.

2http://cdf.gafc.nasa.gov/

©2010, X. XXX

The C library is wrapped for Python using SWIG and
an object-oriented “thin layer” has been written to pro-
vide a Pythonic interface. For example, to open and
query a CDF file, the following code is used:

>>> import spacepy.cdfpy as cdf
>>> myfile = cdf.CDF()
>>> myfile.open(‘filename.cdf’, read=False)

To open and read the entire contents of the file into
a dictionary, the read keyword is omitted (or set to
True). Development of write capability has com-
menced, but is initially to be targeted towards the
generation of ISTP-compliant CDF files® for the up-
coming Radiation Belt Storm Probes (RBSP) mission.

Radiation belt modeling

Geosynchronous communications satellites are espe-
cially vulnerable to outer radiation belt electrons that
can penetrate deep into the system and cause elec-
trostatic charge buildup on delicate electronics. The
complicated physics combined with outstanding op-
erational challenges make the radiation belts an area
of intense research. A simple yet powerful numerical
model of the belts is included in SpacePy in the Rad-
Belt module. This module allows users to easily set
up a scenario to simulate, obtain required input data,
performm the computation, then visualize the results.
The interface is simple enough to allow users to eas-
ily include an analysis of radiation belt conditions in
larger magnetospheric studies, but flexible enough to
allow focused, in-depth radiation belt research.

The model is a radial diffusion model of trapped elec-
trons of a single energy and a single pitch angle.
The heart of the problem of radiation belt modeling
through the diffusion equation is the specification of
diffusion coefficients, source and loss terins. Deter-
mining these values is a complicated problem that is
tackled in a variety of different ways, from first prin-
ciples approaches to simpler empirical relationships.
The RadBelt module approaches this with a paradigm
of flexibility: while default functions that specify these
values are given, many are available and additional
functions are easy to specify. Often, the formulae re-
quire input data, such as the Kp or Dst indices. This is
true for the RadBelt defaults. These data are obtained
automatically from the OMNI database, freeing the
user from the tedious task of fetching data and build-
ing input files. This allows simple comparative studies
between many different combinations of source, loss,
and diffusion models.

Use of the RadBelt module begins with instantiation of
an RBmodel object. This object represents a version of
the radial diffusion code whose settings are controlled
by its various object attributes. Once the code has
been properly configured, the time grid is created by
specifying a start and stop date and time along with

ahtt.p: //spdf .gsfc.nasa.gov/sp_use_of _cdf.html

a step size. This is done through the setup_ticks in-
stance method that accepts datetime or Ticktock argu-
ments. Finally, the evolve method is called to perform
the simulation, filling the PSD attribute with phase
space densities for all L and times specified during con-
figuration. The instance method plot yields a quick
way to visualize the results using Matplotlib function-
ality. The example given models the phase space den-
sity during the ‘Halloween’ storms of 2003. The results
are displayed in figure 4. In the top frame, the phase
space density is shown. The white line plotted over
the spectrogram is the location of the last closed drift
shell, beyond which the electrons escape the magneto-
sphere. Directly below this frame is a plot of the two
geomagnetic indices, Dst and Kp, used to drive the
model. With just a handful of lines of code, the model
was setup, executed, and the results were visualized.

>>>
>>>
>>>

from spacepy import radbelt as rb

import datetime as dt

r = rb.RBmodel ()

>>> starttime = dt.datetime(2003,10,20)

>>> endtime = dt.datetime(2003,12,5)

>>> delta = dt.timedelta(minutes=60)

>>> r.setup_ticks(starttime, endtime,
delta, dtype=‘UTC’)

>>> r.evolve()

>>> r.plot(clims=[4,11])

Halloween Storms: Oct. and Nov. 2003

O =N WRMRUUVODON ® O

330

310 320
DOY in 2003

Figure 4. RadBelt simulation results for the 2003 Hal-
loween storms. The top frame shows phase space
density as a function of drift shell and time. The
bottom frame shows the geomagnetic Kp and Dst in-
dices during the storm.

Visualizing space weather models

The Block Adaptive Tree Solar wind Roe-type Up-
wind Scheme code, or BATS-R-US, is a widely used
numerical model in the space science community. It is
a magnetohydrodynamic (MHD) code [Pow99], which
means it combines Maxwell’s equations for electromag-
netism with standard fluid dynamics to produce a set
of equations suited to solving spatially large systems
while using only modest computational resources. It is

unique among other MHD codes in the space physics
community because of its automatic grid refinement,
compile-time selection of many different implementa-
tions (including multi fluid, Hall resistive, and non-
isotropic MHD), and its library of run-time options
(such as solver and scheme configuration, output spec-
ification, and much more). It has been used in a
plethora of space applications, from planetary simula-
tions (including Earth [Well10b] and Mars [Ma07]) to
solar and interplanetary investigations [Coh09]. As a
key component of the Space Weather Modeling Frame-
work (SWMF) [Tot07], it has been coupled to many
other space science numerical models in order to yield
a true ‘sun to mud’ simulation suite that handles each
region with the appropriate set of governing equations.
Visualizing output from the BATS-R-US code comes
with its own challenges. Good analysis requires a com-
bination of two and three dimensional plots, the abil-
ity to trace field lines and stream lines through the do-
main, and the slicing of larger datasets in order to focus
on regions of interest. Given that BATS-R-US is rarely
used by itself, it is also important to be able to visual-
ize output from the coupled codes used in conjunction.
Professional computational fluid dynamic visualization
software solutions excel at the first points, but are pro-
hibitively expensive and often leave the user searching
for other solutions when trying to combine the output
from all SWMF modules into a single plot. Scientific
computer languages, such as IDL™ and MatLab™,
are flexible enough to tackle the latter issue, but do
not contain the proper tools required by fluid dynamic
applications. Because all of these solutions rely on pro-
prietary software, there are always license fees involved
before plots can be made.

The PyBats package of SpacePy attempts to overcome
these difficulties by providing an open source, platform
independent way to read and visualize BATS-R-US
output as well as output from models that are coupled
to it. It builds on the functionality of Numpy and Mat-
plotlib to provide specialized visualization tools that
allow the user to begin evaluating and exploring out-
put as quickly as possible.

The core functionality of PyBats is a set of classes that
read and write SWMTF file formats. This includes sim-
ple ASCII log files, ASCII input files, and a complex
but versatile self-descriptive binary format. Because
many of the codes that are integrated into the SWMF
use these formats, including BATS-R-US, it is possi-
ble to begin work right away with these classes. Ex-
panded functionality is found in code-specific modules.
These contain classes to read and write output files, in-
heriting from the PyBats base classes when possible.
Read/write functionality is expanded in these classes
through object methods for plotting, data manipula-
tion, and common calculations.

Figure 5 explores the capabilities of PyBats. The figure
is a typical medley of desired output from a basic sim-
ulation that used only two models: BATS-R-US and
the Ridley Ionosphere Model. Key input data that

GSM 2 (/)

GSM X ()

26— —

Solar Wind Conditions
V

150001 0000 RO 0006 uT

e i e S o T

Figure 5. Typical output desired by users of BATS-R-
US and the SWMF. The upper left frame is a cut
through the noon-midnight meridian of the magne-
tosphere as simulated by BATS-R-US at 7:15 UT on
September 1, 2005. The dial plots to the left are the
ionospheric electric potential and Hall conductivity
at the same time as calculated by RIM. Below are
the solar wind conditions driving both models.

12:60 U1

drove the simulation is shown as well. Creating the
upper left frame of figure 5, a two dimensional slice
of the simulated magnetosphere saved in the SWMF
binary format, would require far more work if the base
classes were chosen. The bats submodule expands the
base capability and makes short work of it. Rele-
vant syntax is shown below. The file is read by in-
stantiating a Bats2d object. Inherited from the base
class is the ability to automatically detect bit ordering
and the ability to carefully walk through the variable-
sized records stored in the file. The grid type, either
unstructured (vectors of coordinates and correspond-
ing values), structured (multi diinensional arrays with
varying grid spacings), or regular (multi dimensional
arrays with constant grid spacings) is also detected.
Because BATS-R-US has an adaptive Cartesian grid,
unstructured files are simpler to create, smaller to
store, and thus more common. The data is again
stored in a dictionary as is grid information; there is
no time information for the static output file. Extra
information, such as simulation parameters and units,
are also placed into object attributes. The unstruc-
tured grid is not suited for Matplotlib, so the object
method regrid is called. The object remembers that it
now has a regular grid; all data and grid vectors are
now two dimensional arrays. Because this is a compu-
tationally expensive step, the regridding is performed
to a resolution of 0.25 Earth radii and only for a subset
of the total domain. The object method contourf, a
wrapper to the Matplotlib method of the saine name,
is used to add the pressure contour to an existing axis,
ax. The wrapped function accepts keys to the grid and
data dictionaries of the Bats2d object to prevent the
command from becoming overly verbose. Extra key-
word arguments are passed to Matplotlib’s contourf

©2010, X. XXX

SRS = B TR R bl e I S s e S S e em SIS WRASE SN TS

method. If the original file contains the size of the
inner boundary of the code, this is reflected in the ob-
ject and the method add_body is used to place it in
the plot.

>>> import pybats.bats as bats

>>> obj = bats.Bats2d(‘filename’)

>>> obj.regrid(0.25, [-40, 151, [-30,30])
>>> obj.contourf(ax, ‘x’, ‘y’, ‘p’)

>>> obj.add_body(ax)

>>> obj.add_planet_field(ax)

The placement of the magnetic field lines is a strength
of the bats module. Magnetic field lines are simply
streamlines of the magnetic field vectors and must be
traced through the domain by solving the differential
equation

S =w(S)

where S is the streamline for a given time and v is
the vector field through which to trace. The field line
is traced through the domain numerically using the
Runge-Kutta 4 method. This step is implemented in
C to expedite the calculation and wrapped using f2py.
The Bats2d method add_planet_field is used to add
multiple field lines; this method finds closed (beginning
and ending at the inner boundary), open (beginning or
ending at the inner boundary, but not both), or pure
solar wind field lines (neither beginning or ending at
the inner boundary) and attempts to plot them evenly
throughout the domain. Closed field lines are colored
white to emphasize the open-closed boundary. The
user is naive to all of this, however, as one call to the
method works through all of the steps.

The last two plots, in the upper right hand corner
of figure 5, are created through the code-specific rim
module, designed to handle output from the Ridley
lonosphere Model (RIM) [Rid02].

PyBats capabilities are not limited to what is shown
here. The Stream class can extract values along the
streamline as it integrates, enabling powerful flow-
aligned analysis. Modules for other codes coupled to
BATS-R-US, including the Ring current Atmosphere
interactions Model with Self-Consistent Magnetic field
(RAM-SCB, ram module) and the Polar Wind Outflow
Model (PWOM, pwom module) are already in place.
Tools for handling virtual satellites (output types that
simulate measurements that would be made if a suite of
instruments could be flown through the model domain)
have already been used in several studies. Combining
the various modules yields a way to richly visualize
the output from all of the coupled models in a single
language. PyBats is also in the early stages of devel-
opment, meaning that most of the capabilities are yet
to be developed. Streamline capabilities are currently
being upgraded by adding adaptive step integration
methods and advanced placement algorithms. Bats3d
objects are being developed to complement the more
frequently used two dimensional counterpart. A GUI
interface is also under development to provide users
with a point-and-click way to add field lines, browse

a time series of data, and quickly customize plots.
Though these future features are important, PyBats
has already become a viable open-source alternative
to current, proprietary solutions.

SpacePy in action

A number of key science tasks undertaken by the
SpacePy team already heavily use SpacePy. Some ar-
ticles in peer-reviewed literature have been primarily
produced using the package (e.g. [Morl10], [Well0Oa]).
The Science Operations Center for the RBSP mis-
sion is also incorporating SpacePy into its processing
stream.

The tools described here cover a wide range of routine
analysis and visualization tasks utilized in space sci-
ence. Providing this package in Python makes these
tools accessible to all, provides openness in the analy-
sis methods employed in scientific studies and will give
access to advanced tools to all space scientists regard-
less of affiliation or circumstance.

References

[Bos07] D. Boscher, S. Bourdarie, P. O’Brien and
T. Guild ONERA-DESP library v4.1, http://
irbem.sourceforge.net/, 2007.

C. Chree Magnetic declination at Kew Observa-
tory, 1890 to 1900, Philosophical Transactions
of the Royal Society of London A, 208, 205-246,
doi:10.1098 /rsta.1908.0018, 1908.

O. Cohen, 1.V. Sokolov, 1.I. Roussev, and T.I.
Gombosi Validation of a synoptic solar wind
model, Journal of Geophysical Research, 113,
3104, doi:10.1029/2007JA012797, 2009.

J.H. King and N.E. Papitashvili Solar wind
spatial scales in and comparisons of hourly
Wind and ACFE plasma and magnetic field data,
Journal of Geophysical Research, 110, A02209,
10.1029/2004JA010804, 2005.

Y.J. Ma, A.F. Nagy, G. Toth, T.E. Cravens,
C.T. Russell, T.I. Gombosi, J.-E. Wahlund,
F.J. Crary, A.J. Coates, C.L. Bertucci, F.M.
Neubauer 3D global multi-species Hall-MHD
simulation of the Cassini T9 flyby, Geophys.
Res. Lett., 34, doi:10.1029/2007GL031627,
2007.

M.G. Mlynczak, L.A. Hunt, J.U. Kozyra, and
J.M. Russell III Short-term periodic features ob-
served in the infrared cooling of the thermosphere
and in solar and geomagnetic indexes from 2002
to 2009 Proceedings of the Royal Society A,
doi:10.1098 /rspa.2010.0077, 2010.

S.K. Morley and M.P. Freeman On the asso-
ciation between northward turnings of the in-
terplanetary magnetic field and substorm on-
set, Geophysical Research Letters, 34, L08104,
doi:10.1029/2006 GL028891, 2007.

S.K. Morley, R.H.W. Friedel, E.L. Spanswick,
G.D. Reeves, J.T. Steinberg, J. Koller, T. Cay-
ton, and E. Noveroske Dropouts of the outer
electron radiation belt in response to solar wind

[Chr08]

[Coh09]

[Kin05]

[Ma07]

[Mly10]

[Mor07]

[Mor10]

[Pow99]

[Qin07]

[Rid02]

[Tot07]

stream interfaces: Global Positioning System ob-
servations, Proceedings of the Royal Society A,
doi:10.1098/rspa.2010.0078, 2010.

K. Powell, P. Roe, T. Linde, T. Gombosi,
and D.L. De Zeeuw A solution-adaptive upwind
scheme for ideal magnetohydrodynamics, Jour-
nal of Computational Physics, 154, 284-309,
1999.

Z. Qin, R.E. Denton, N. A. Tsyganenko, and
S. Wolf Solar wind parameters for magneto-
spheric magnetic field modeling, Space Weather,
5, S11003, doi:10.1029/2006SW000296, 2007.
A.J. Ridley and M.W. Liemohn A model-derived
storm time asymmetric Ting current driven elec-
tric field description Journal of Geophysical Re-
search, 107, doi:10.1029/2001JA000,051, 2002.
Toth, G., D.L.D. Zeeuw, T.I. Gombosi, W.B.
Manchester, A.J. Ridley, I.V. Sokolov, and
1.1I. Roussev Sun to thermosphere simulation of
the October 28-30, 2008 storm with the Space
Weather Modeling Framework, Space Weather,
5, 806003, doi:10.1029/2006SW000272, 2007.

[Vai09]

[Well0a]

[Wel10b]

[Wil0g]

R. Vainio, L. Desorgher, D. Heynderickx, M.
Storini, E. Fluckiger, R.B. Horne, G.A. Ko-
valtsov, K. Kudela, M. Laurenza, S. McKenna-
Lawlor, H. Rothkaehl, and I.G. Usoskin Dy-
namics of the Farth’s Particle Radiation Envi-
ronment, Space Science Reviews, 147, 187--231,
doi:10.1007/s11214-009-9496-7, 2007.

D.T. Welling, and A.J. Ridley Exploring sources
of magnetospheric plasma using multispecies
MHD, Journal of Geophysical Research, 115,
4201, doi:10.1029/2009JA014596, 2010.

D.T. Welling, V. Jordanova, S. Zaharia, A. Glo-
cer, and G. Toth The effects of dynamic iono-
spheric outflow on the ring current, Los Alamos
National Laboratory Technical Report, LA-UR
10-03065, 2010.

J.A. Wild, E.E. Woodfield, and S.K. Morley, On
the triggering of auroral substorms by northward
turnings in the interplanetary magnetic field,
Annales Geophysicae, 27, 3559-3570, 2009.

©2010, X. XXX

