skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CESR Conversion Damping Ring Studies of Electron Cloud Instabilities (CESR-TA)

Technical Report ·
DOI:https://doi.org/10.2172/1020957· OSTI ID:1020957

In the International Linear Collider, two linear accelerators will accelerate bunches of positrons and electrons to over a hundred billion electron volts and collide them in a central detector. In order to obtain useful collision rates, the bunches, each containing twenty billion particles, must be compressed to a cross section of a few nanometers by a few hundred nanometers. In order to prepare these ultra high density bunches, damping rings (DRs) are employed before the linear accelerators. The DRs take the high emittance bunches that are provided by the electron and positron sources and, through the process of radiation damping, squeeze them into ultra low emittance beams that are ready for the main linear accelerators. In the damping rings, a number of effects can prevent the successful preparation of the beams. In the electron ring, an effect known as the fast ion instability can lead to beam growth and, in the positron ring, the build-up of an electron cloud (EC), which interacts with the circulating bunches, can produce the same effect. EC build-up and the subsequent interaction of the cloud with the positron beam in the DR have been identified as major risks for the successful construction of a linear collider. The CESRTA research program at the Cornell Electron Storage Ring (CESR) was developed in order to study the build-up of the EC, the details of its impact on ultra low emittance beams, as well as methods to mitigate the impact of the cloud. In the DR, the EC forms when synchrotron photons radiated from the circulating beam strike the walls of the vacuum chamber, resulting in the emission of photoelectrons. These low energy electrons can be accelerated across the vacuum chamber by the electric field of the beam, and strike the walls, causing the emission of secondary electrons. The secondary electrons are subsequently accelerated into the walls yet again via the same mechanism. The result is that the EC can rapidly begin to fill the vacuum chamber. In an electron DR, the EC build-up is limited by the Coulomb repulsion. But in a positron ring, the electrons are pulled into the potential well of the beam. The resulting interaction of the circulating bunches of positrons with the EC that ultimately limits DR performance. Typically we store long trains of closely space bunches in the damping ring. The interaction of stored beam and the EC that is generated by the long train is manifested by different mechanisms: (1) The cloud focuses the beam, which causes a tune shift that increases along the bunch train as the cloud density increases. (2) The cloud electrons couple the motion of bunches along a train. Transverse motion of a leading bunch is transferred to the cloud, and subsequently to a trailing bunch which can result in a multi-bunch instability. (3) The cloud couples the positrons in the head of the bunch to those in the tail of the same bunch, which can excite a 'head-tail' instability. (4) The nonlinear fields of the EC can lead to emittance growth before the onset of instabilities. The CESRTA collaboration, which includes researchers from Cornell University's Laboratory for Elementary-Particle Physics as well as more than 50 senior staff members from over a dozen accelerator laboratories and universities around the world, has operated CESR as a damping ring for the past three years to study these EC effects. A range of specialized instrumentation has been deployed to study the local build-up of the cloud in the vacuum chambers as well as the complicated dynamics exhibited when the beam and the EC interact. The program has significantly advanced our understanding of these issues and has helped identify the most promising methods to mitigate the impact of the EC on the DR beams. It has pointed the way towards a DR design that can meet the stringent specifications of the ILC.

Research Organization:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP)
DOE Contract Number:
FC02-08ER41538
OSTI ID:
1020957
Report Number(s):
DE-FC02-08ER41538-2011_cta01; TRN: US1202823
Country of Publication:
United States
Language:
English