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To model the shock-induced behavior of porous or damaged energetic materials, a nonequilibriugn
mixture theory has been developed and incorporated into the shock physics code, CTH".
Foundation for this multiphase model is based on a continuum mixture formulation given by Baer

and Nunziato.

In this nonequilibrium approach, multiple thermodynamic and mechanics fields

are resolved including the effects of material relative motion, rate-dependent compaction, drag and

heat transfer interphase effects and multiple-step combustion.

Benchmark calculations are

presented which simulate low-velocity piston impact on a propellant porous bed and
experimentally-measured wave features are well replicated with this model. This mixture model
introduces micromechanical models for the initiation and growth of reactive multicomponent flow
which are key features to describe shock initiation and self-accelerated deflagration-to-detonation
combustion behavior. To complement one-dimensional simulation, two dimensional numerical
simulations are presented which indicate wave curvature effects due to the loss of wall confinement.

Introduction’

Hazards analysis for weapon systems safety and
surety assessment considers a variety of accidental
scenarios whereby impact conditions can lead to direct
shock initiation or other modes of combustion such as
deflagration-to-detonation transition (DDT) and delayed
detonation (XDT). These modes of combustion can
self-accelerate into detonation due to the behavior of the
energetic material microstructure at internal boundaries.
The coupled thermal/chemical/mechanical response of
these features are the key issues for assessing the
violence of reaction resulting from combustion of the
energetic material.

A continvum multiphase model has been posed
which well describes the self-accelerated combustion of
granular materials as demonstrated in references 1 and 2.
A variety of energetic materials, including explosives
and propellants, has been experimentally and
theoretically studied to provide a foundation for
simulation in multidimensional analyses. This
multiphase model has been recently incorporated into the
Sandia shock physics code - CTH. The interaction of
rapid combustion with deformable confinement is a

—yp critical aspect of sustained accelerated combustion$thus,
simulation of real systems requires the capability of
multidimensional, multi-material large deformation,
strong shock wave physics.

In the sections to follow, the mixture formulation
is outlined and its numerical implementation into the
CTH shock physics code is described. Then, one and
two-dimensional simulations are discussed which

*This work performed at Sandia National Laboratories supported by the
U.S. Department of Energy under contract DE-rACO4-94AL85000
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provide a benchmark for the nonequilibrivm mixture
theory.

Theoretical Foundation

The equations of motion for a multiphase mixture
are outlined in this section and recast to a finite volume
formulation for shock physics analyses. The full
derivation of this description is not repeated here; hence
only the final forms of the conservation laws are
described. Mixture theory is based on the concept that
separate phases simultaneously occupy regions of space.
Thus, a multiphase material possesses independent
thermodynamic and kinematic fields. Multiple balance
laws are used to describe a locally averaged thermal,
mechanical and chemical response of a collection of
condensed phases or gas-filled pores. In contrast to
single phase continubm mechanics, a mixture average
for a multiphase flow includes the effects of internal
boundaries (or phase interfaces) across which the

. interchange of mass, momentum and energy takes place.

These important microscale models are the new features
of the multiphase description in the shock physics code,
CTH.

Modern developments of continuum mixture
theory provides the framework for a thermodynamically-
consistent description of nonequilibrium processes of
fully-compressible reactive mixtures. A unique feature
of this description is the treatment of volume fractions as
independent kinematic variable allowing compressibility
of all phases without any compromise on compaction
behavior. Specifically, the theory of reactive mixtures is
firmly based on establishing balance equations using the
Second Law of Thermodynamics in the determination of
admissable constitutive relationships for a system of
multiphase equations that are well-posed®.
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To simplify the discussion of mixture theory,
consider a region in space that is occupied by two phases
(denoted by subscript a) - condensed (subscript s) and
gas (subscript g). At some appropriate scale, each phase
is viewed as occupying every spatial location in the field.
Physically, this is not the case since each phase occupies
a volume distinct from the other. Thus, to represent the
discrete nature of the mixture, each phase is assigned
independent thermodynamic and kinematic states. At
each point a phase material density, v,(x,t), is defined
representing the mass per unit volume occupied by each
phase and the space displaced by that phase is the volume
fraction, ¢,(x,f). (The volume fraction is a relative
fraction of space occupied by material regardless of
material type - the fraction of space treated as void is
excluded.) Of the fraction of space occupied by the
mixture, saturation implies that )¢, =1 and the
density of the local mixture is sum of partial
densities, p, =v,9, .or: p= Ep

In generalized mixture theory, each phase is
assigned independent velocities, ¥, =¥ (x,) ,and
the conservation equations for each phase are expressed
as:

Mass: Y Ry @

Momentum: p\v =V-g +paB +M T -c,. b, ()

Bw g e Wensed - O
(rﬁj —gj ) '>a—<; (e -1-9 ;)

By definition, the Lagrangian material derivative
is given as: + f,= of79t+?,- Vf . In these conservation
equations, ¢, is the mass exchange between phases due
to chemical reaction, 5, is the external body force, m,
is the momentum exchange resulting from the forces
acting on phase boundaries, ¢, is the internal energy of

phase, r, is the external energy source, and

¢, includes the energy exchange due to heat transfer

and the irreversible work done at phase boundaries. The

symmetric stress tensor, g, is expressed in terms of the

phase pressure, p,, and the shear stress 1,; thus
g,=-¢pl+1, where tr(z) =0 .

Consistent with the derivations used in mixture
theory, summation of each balance equation over all
phases vyields the response of the total mixture
corresponding to the well known equations of motion for
a single phase material. The following constraints are

imposed on the phase interactions: c,t=0,
mt =0, and e,f=0. The total mixture
equations (the identical balance laws solved in CTH) are

given (in Eulerian form) as follows:

3
Total Mass: b= —pV v @
Total Momentum: p¥ = V-g+pb 5)
Total Energy: pé = g:V+pr ©6)

where the overdot denotes the mixture material

derivative. By definition, the mixture velocity is the

barycentric (mass averaged) velocity defined as:

Y= Zpaba/ p and the phase diffusion velocity

(discussed later in this section) is given as
=9 -9 .

‘m considering two phases, the restrictions from
the Second Law of Thermodynamics suggest admissable
forms of phase interaction. For the sake of brevity, the
algebraic manipulation will not be repeated here and the
final forms of these interactions are given as follows:

Mass Exchange c:f = —c: )]
Momentum Exchange

A= =500 +dy, +pYe, @
Energy Exchange
e:f: —e: = n’tj‘ Yo+ R(T,-T) +(§[ei-§) +Wt ()]

where the interfacial velocity is defined as,

= (3, +i’)/2 the interfacial surface stress is
p =p, themterfacxaltotalenergyls e, =e, and
the d1ss1pat1ve ompaction work is defined as:
Wi = -(p,-B,) ¢s-cs?‘/y_\, . The momentum and
energy exchange coefficients representing microscale
boundary layer effects, & and h, are modeled as
functions of local flow conditions and specific surface
area. Finally, after including appropriate equations of
state for each phase, closure is obtained by imposing a
rate description for volume fraction consistent with the
Second Law of Thermodynamics. The evolutionary
equation for solid volume fraction is

N o,¢
bty = @ -p-B) (0

where the intragranular stress, p_ is defined and the rate
of volume fraction change is controlled by the
compaction viscosity, W_. It is noted that this
nonequilibrium multiphase description is somewhat
different than that previously implemented in CTH as the
multiple pressure and temperature model.  This
description implies a slightly different set of mixture
rules because the volume fraction is treated as an
independent kinematic variable. @ With this new
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The phase conservation equations, given by
Equations 11-15, have a common mathematical
structure. All of these equations have source and phase
diffusion terms. The phase diffusion terms represent
advection in or out of the cells following phase diffusion
velocity fields. Incorporating these effects is done using
operator splitting whereby all phase quantities are
diffused in or out of cells then the phase quantities are
allowed to interact during the Lagrangian step. The
methodology of this approach is based on earlier work
given in reference 8.

During the transportive step, a Flux-Corrected
Transport (FCT)® method is used and internal boundary
conditions are incorporated with a variant of virtual cell
embedding (VCE)!®. This positivity-preserving high
order algorithm does not introduce artificial smearing at
material interfaces. It is to noted that for shocked flows,
phase diffusion quantities are weak and significant only
in boundary layer regions.

Typical of multiphase simulation, the interactions
of phases occur with greatly disparate time-scales and
thus sources are mathematically stiff. Since explicit time
differencing (even with subcycling) is inaccurate, an
algorithm based on asymptotic semi-analytical solutions
is used for phase interaction'!. As expected, the intemal
state variables related to the local volume fractions must
be accurately resolved to preserve consistency of the
numerical solutions. Following the Lagrangian step, the
volume fractions for the single mixed phase material are
mapped into a single field which then passed into the
remap step. These quantities are subsequently
reassembled for equation of state evaluation for the next
time step. Thus, sound speed constraints are brought
into place for evaluation of Courant conditions.

In the next section, a benchmark numerical
solution is discussed in which shock induced reaction is
induced in a porous propellant bed. Although phase
diffusion effects are minor, strong phase interactions
occur which provides a good test of the proposed
numerical strategy.

Low Velocity Impact Simulations

One and two-dimensional numerical simulations
of a piston-driven low velocity impact on a porous bed of
energetic material are conducted which replicate
conditions in a experiment done by Sandusky, et al'2. A
pictorial of this experiment is shown in figure 1. A gas
driven piston impacts on a bed of NC/NG based
propellant confined in a cylindrical tube geometry.

Following impact, a compaction wave Iis
produced and high strain rate at the compaction front
triggers multiphase combustion. This unstable process
leads to rapid combustion and the formation of a fast

X {mm}

Undisturbed

Two-phase
combustion

Figure 1. Piston driven compaction experiment
in granular propellent porous bed.

160 — & 1ONIZATION PROBE DATA

O PRESSURE TRANSDUCER DATA ___ENDOFBED _§
| = MICROWAVE DATA
120+
80
Py [
- o — v ——— i s P
a Il | 1 5 4 o i & 4
0 60 120 180 240 30

t (us}

Figure 2. Experimental trajectories of wave
fronts following a 190 m/s impact on a
granular ball propellant bed.
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deflagration wave and shock formation. The interaction
of compaction and multistage combustion is clearly a

complex wave process.
In the experimental studies by Sandusky and
1200 colleagues, numerous diagnostics were used to resolve
{ various wave features!>. Most importantly, the
Y compaction wave front was probed using microwave
\ interferomefry and pressure gauges were used to
determine various wave fields. Figure 2 displays the
trajectory of the compaction wave following a 190 m/s
impact measured using microwave interferometry. It is
to be noted that an abrupt change in wave speed was
observed well removed from the piston/propellant

interface.

Figure 3 displays several pressure gauge records
at given location along the tube confinement wall. A
weak compaction front is observed followed by the onset
of rapid pressurization.

One dimensional simulations of this experiment
using the multiphase mixture model in CTH is displayed
50 150 250 350 in the subsequent figures that replicate all of the features

t (us} observed in the experimental stady. Figure 4 displays an
overlay of the volume fraction of the solid phase
reactant. Numerical simulation shows a dispersive

B = BREAK IN GROWTH
OF REACTION

lpme lPres tsiure ﬁufe Eeasureﬁmentsl at two compaction wave originating from the piston/bed
ocanontsbeg g the porous interface and moves at a velocity consistent with the
propelian ’ experimental observation.

As a result of high strain rate at the dispersive
compaction front, low level of reactivity is induced
whereby pyrolysis combustion products are formed in an
induction zone. After approximately 100us delay,
energy release in the gas phase takes place as pyrolysis
products are converted to final stage combustion gases.

, secondary compaction wave A secondary compaction wave is formed and is

.0 pnm&try m’?pa?i?n wajle — 20902"‘/3 supported by the reaction. When heat transfer conditions

ous kL NC/NG ] are sufficient to trigger grain burning, very rapid

osl pressurization occurs. Eventually, the combustion wave

) coalesces with the primary compaction wave and an

g orr ] apparent abrupt change in wave speed occurs. Details of

'g o.8f e the pressurization field is shown in figure 5.

g osr 595 m/s | As a demonstration of the importance of treating

3 °4f . pressure nonequilibrium, figure 6 displays only the gas

3 os} phase component of the principle stress. In the early

o2} 4 stages of reaction, greatly disparate pressure fields

o1l 20 us At ] evolve. Much of the initial stresses of the primary

0.0 e compaction wave is supported by the solid reactant

° 4 3 12 18 material; later, it is the gas phase pressure which supports
e e e o, S ) the combustion driven reactive compaction wave.

e e e In figures 7 and 8, the temperature fields are

shown for the gas and solid phases, respectively. As
expected, greatly different temperatures arise because
much of the energy release occurs in the gas phase. The
effects of multistage combustion are clearly evident.
Figure 8, weak compressional heating occurs early and

Figure 4. Overlay of volume fraction wave
fields for a 190 m/s impact.
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Figure 5. Overlay of pressure wave fields
during impact and subsequent reaction
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Figure 6. Gas phase pressures at 20 ms intervals
during compaction and reaction.
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Figure 7. Overlay of gas phase temperatures in

one-dimensional CTH simulation of
low velocity impact.
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Figure 8. Overlay of solid reactant phase
temperatures in ope-dimensional CTH
simulation of low velocity impact.
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later during gas phase pressurization heat transfer
enhances the heatup of the solid phase. Additional
compressional heating takes place as the supported
secondary compaction wave strengthens to a shock.

In similar experimental studies conducted at
LANL by McAfee, et al.!# thin wall tubes were used and
that release of confinement near the burning region
auggested the formation of multiple *“shocks” prior to the
onset of rapid burning. These observations are based on
sequential x-ray radiographs. Only gross features of the
wave fields were measured in these experiments, hence
interpreted wave behavior is speculative.

A two-dimensional simulation of a weakly
confined column of propellant is presented as a
preliminary numerical simulation of these piston impact
experiments. A thin-walled steel tube, confining NC/NG
propellants, is modeled at with impact conditions similar
to the previous one-dimensional simulations. Figure 9
displays three 50 ps time interval following the low
velocity impact. In these CTH output plots, materials are
rendered on the right half of the plots and color contours
of the solid phase volume fraction is shown on the left
half image plane. Low to high reactant volume fraction
contouwrs corresponds from blue to red variations,
respectively.

At these early times following impact, it is seen
that a curved compaction wave evolves as the lateral
release from the wall takes place. The compaction wave
is weakly supported and the weakened pressure field
lessens the extent of reaction. At a later time, (not
displayed here due to space limitations), reaction is seen
to first arise near the center of the column and a radial
wave appears which leads to the secondary compaction
wave. As this wave interacts with the confinement a
secondary release takes place and sustained reaction
greatly depends on the pressurization from low level
combustion competing with the dissipation by
rarefaction of confinement release. As expected, the
interaction with the combustion reactions and
compaction fields in multidimensional simulation is
strongly influenced by the effects of confinement and
simulation of the LANL experiments may lead to a
bettere understanding of multidimensional behavior.

Future work is planned to simulate these low
velocity experiments for a granular bed of HMX
explosive. Additionally, statistical crack fracture models
are being incorporated into CTH and the reactive
multiphase mixture model will be coupled to address
simulation of delayed detonation. Additionally, mixture
theory is being formulated to treat more than two phases
and this is be incorporated as an extension of multiphase
predictive capabilities.

Figure 9. Two-dimensional CTH simulations
of low velocity impact of a weakly
confined porous column of propellant.
Split images correspond to materials
on right and solid phase volume
fraction contours on left.
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Summary

A nonequilibrium multiphase mixture model has
been described in this paper which has been
implemented into shock physics analysis. The effects of
strong phase interaction including combustion,
momentum and energy exchange are included by
allowing mixed phases to have relative velocities and
independent thermal and stress fields. An operator
splitting methodology is described for numerical
implementation of this model.

Preliminary benchmarks of this mixture approach
has addressed low-velocity impact experiments in one
and two-dimensional simulations. All of the observed

. Jeactive wave behavior are replicated by the modeling,
Multidimensional simulation can serve§ as #important
numerical diagnostic for probing the of complex

wave fields. Future work is aimed toward using this tool
with experimental studies of energetic material response
to enhance predictive capabilities for weapon safety and
surety assessment.
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