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ABSTRACT

We have developed a capability to make real time concentration measurements of individual chemicals in a complex
mixture using a multispectral laser remote sensing system. Our chemical recognition and analysis software consists of three
parts: 1) a rigorous multivariate analysis package for quantitative concentration and uncertainty estimates, 2) a genetic
optimizer which customizes and tailors the multivariate algorithm for a particular application, and 3) an intelligent neural
net chemical filter which pre-selects from the chemical database to find the appropriate candidate chemicals for quantitative
analyses by the multivariate algorithms, as well as providing a quick-look concentration estimate and consistency check.
Detailed simulations using both laboratory fluorescence data and computer synthesized spectra indicate that our software
can make accurate concentration estimates from complex multicomponent mixtures, even when the mixture is noisy and
contaminated with unknowns.
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1. SCIENTIFIC BACKGROUND AND GOALS

The purpose of chemical recognition software is to estimate the individual chemical concentrations in a multicomponent
mixture using a premeasured chemical catalog of calibrated spectral signatures. The software should be able to reject noise
and optical contaminants such as scattered light, and be able to reject unknown or uninteresting chemicals. A multispectral
laser remote sensing system generates a range-resolved 2-D spectral signature of a remote object or plume. The 2-D spectra
can be visualized as a surface: the surface height representing return signal intensity, with the excitation wavelength from
the laser source along one axis and emission (or fluorescence) wavelength from the interrogated object along the other
axis.Two typical uv spectra taken by a uv flucrometer are shown in Figurel, for acetone and benzene. Note that, at least in

F1 e 1. 2-D fluorescence spectra of acetone and benzene. There are 41 excitation (laser) wavelengths and
24 fluorescence (return) wavelengths

the ultraviolet, spectral features can be broad and featureless: this is not necessarily so in the visible and infrared. Our
objective is to develope software that can use both broad and featureless as well as sharply defined spectra.

When the object or plume is made up of many components, the returning 2-D mixture signal is assumed to be a linear
superposition of the contributions from each component. The signal contribution from each component depends on its
unique spectral shape amplified by its relative concentration.

Historically, algorithms designed to estimate concentrations of components in mixtures used a chemometric approach

involving 1-D least-square minimizations’, and in some cases normal-component analysis2. These techniques do tend to
work well for many applications. Nonetheless these conventional methods do not utilize all the available information in
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spectra, such as the correlation of one pixel’s intensity with another. For example when using a conventional 1-D method,
the pixels of the mixture can be arbitrarily scrambled without changing the resulting concentration estimates, as long as the
identical pixels in the database catalog are scrambled in the same way. In 2-D (and in higher dimensions) the spectra can be
converted into a 1-D problem by stringing the pixels out, as shown in Figure 2. In higher dimensions, such as in 2-D, the

Quen WuopgRanan
QuY_ MRZEMELERREN
87 2ZTUNER

Preaieotis 4414 BT o
ROGHANBL

ntensity vs. Pixel #

Figure 2. How a higher dimensional (2-D in this case) spectra can be converted into al-D problem. Important
information relating near neighbor pixels is potentially lost.

pixel-to-pixel correlations are even more structured to the human eye, and more complex in the sense that pixels along
diagonals, and well-separated pixels can be correlated with each other.

In order to take advantage of the additional information available in spectral signatures we have been developing new
techniques of analyzing spectral signatures, including new ways of adaptively extracting minute chemical concentrations in
complex multicomponent mixtures. Our chemical recognition and analysis software research effort is concentrating on
multivariate methods, neural nets and genetic optimization. We are addressing future concerns as well, for example
massively parallel implementations, accurate uncertainty estimates on concentrations, and intelligent techniques to search
for chemicals when the database catalog becomes very large (~hundreds). We expect these techniques will have important
uses that go well beyond laser remote sensing.

2. THE MULTIVARIATE APPROACH

The core algorithm in our chemical recognition software package is the multivariate ‘patch’ algorithm. This algorithm
computes the chemical concentrations and estimates the uncertainty of those concentrations. Conceptually the multivariate
method is like a least squnares fit, where the fitted parameters (the concentrations) are chosen to minimize the residuals
between the measured unknown mixture and the fitted solution. The ‘patch’ algorithm extends this approach in the sense
that it minimizes the residuals on pixel sets which collectively contain the most important features in a particular chemical
spectrum, Since neighboring pixels often contain valuable correlated information, this approach enables better concentration
estimation and better noise rejection. The algorithm incorporates conventional 1-D chemometrics as a limiting case.
Visually these correlated sets of pixels appear as patches when overlaid onto a 2-D spectrum, hence the name. This is
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Figure 3a1A) schematic diagram of a 2-D problem. The mixture is a linear superposition of components (individual
chemicals).




illustrated in Figure 3, where the mixture is on the left, and is equal to a sum of chemical samples multiplied by their
respective concentrations, and may be contaminated with noise. One patch occupies the same pixels in the mixture and in
the chemical components.

Mathematically, the ‘patch’ algorithm computes the residuals between the mixture and a hypothetical solution, for all
pixels in each patch, then minimizes this residual, or a function of this residual, for every patch independently. The user can
chose to minimize the squared sum, the sum of the squared (as in least squares), or the summed absolute value (as in robust
estimation) of the residuals in every patch. We are currently assessing trade-offs associated with these choices. The system
of equations is inverted by computing the pseudo-inverse of the patch-sum matrix using singular value decomposition. The
concentrations are then computed when the pseudo inverse is multiplied by the mixture and component-sum matrix. The
mathematical details are unfortunately too complicated to derive in this short paper.

After the concentrations are estimated the algorithm then computes an uncertainty estimate. This uncertainty estimate is
derived from the first three terms of the Taylor series expansion of the rate of change of concentration from both mixture,
chemical database and mixture-chemical (cross product) uncertainty. This is shown in Figure 4. Conventional algorithms
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This term contains the uncertainty
expressions due to chemicals not in
database, and for low concentration effects
cross product term

This is common ‘covariance matrix’ term. It is the only term
that is usually found in textbook chemometric analysis.

Figure 4. The terms of the uncertainty of a concentration estimate.‘C’ is the concentration, ‘m’ is a mixture
measurement, and ‘s’ is a chemical component sample measurement

usually assume only the mixture has measurement uncertainty, with the curious result that the uncertainty in the
concentrations is computed from a covariance matrix that is independent of the mixture itself. In other words all mixtures
would have the same uncertainty in the concentrations. The covariance matrix is the first term in our Taylor expansion, with
the other new terms exhibiting the expected loss of confidence as the concentrations become relatively small or when there
is a chemical missing from the database. We have also implemented a Monte Carlo uncertainty estimate, so that if the
mixture measurements do not obey a normal statistical distribution we can still estimate concentration errors with a real
system response.

Patches are lists of correlated pixels, but how are these lists chosen? This question of patching strategy is a complicated
one, Patches can overlap, be sparse, or widely separated. In fact a patch does not have to made of contignous pixels at all.
Although any reasonable patching strategy will yield very good results, for many problems the optimization of the patch
algorithm is too labor intensive and too subjective. Some of the possibilities are shown in Figure 5. The optimization of the
patches will be discussed in the next section on genetic optimizations.

As an example of the benefits of the flexibility of the patch algorithm, consider the following problem. A set of three
gaussian-shaped ‘computer synthesized’ chemicals are created with their peaks on a diagonal, and the spectra of these three
chemicals are stored in the multivariate algorithm’s chemical database. The image is made up of 40x40 pixels. Mixtures are
computer created by combining these three chemicals with concentrations 0.5, 1.0, and 1.5 respectively. Then a fourth
chemical is added to the mixtures, off diagonal, with a very large concentration of 100.0. Both the conventional 1-D
algorithm and the ‘patch’ algorithm are given this problem, with increasing (0% to 100%) random noise added. The results
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Figure 5. An illustration of different patch strategies. A patch is a list of related pixels. Patches can be of any
shape. Patches can contain contiguous pixels but don’t have to, and pixels can be in more than one patch.
Pixels not in any patch are ignored.
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Figure 6. A comparison of 1-D and 2-D multivariate algorithms. The patches used in the 2-D solution are
shown in the inset.

are shown in Figure 6. The 1-D algorithm is unable to reject the contaminate as noise is increased.

To demonstrate the algorithm on ‘real’ data, Figure 7 shows the results of the ‘patch’ algorithm identifying methanol,
xylene, and toluene with relative concentrations of 0.5, 1.0, and 1.5 respectively, as up to 100% noise is added. The




spectrum for each chemical was taken with a uv fluorometer, and the mixtures were generated by the computer by adding
the spectra according to the concentrations, and then adding additional random noise. The random noise was uniformly
distributed from -1.0 to 1.0 multiplied by the percentage. The size of the images was 41 x 1024 pixels. No attempt was made
to remove the scattered light from the raw data. The code achieves good concentration estimates (accurate to a few percent)
even at 100% noise.
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Figure 7. Patch Algorithm performance; Methanol, Xylene, and Toluene as noise increases to 100%

3. GENETIC OPTIMIZATION OF THE PATCH ALGORITHM

To overcome the need for trial and error optimization of the ‘patch’ algorithm we have developed a novel Genetic
Algorithm (GA) to optimize the lists of correlated pixels for any set of candidate chemicals. In a genetic algorithm a set of
genetic-like sequences are created in which each sequence can completely describe a possible solution to a problem. Every
genetic sequence, or ‘bug’, must compete with its peers on the problem, and the most fit are allowed to generate offspring
for the next generation, with occasional mutation to introduce new genetic material into the population. Generation after
generation the population relentlessly improves its fitness. Genetic algorithms are exceptionally good at search and
optimization when applied to problems with very large multidimensional solution spaces. GA’s, used carefully, are not
easily trapped in local minima or maxima, a problem that can plague hill climbing methods or variations on Newton’s




method. A schematic diagram of a genetic algorithm is shown in Figure 8.
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Figure 8. A schematic diagram of a genetic algorithm is shown

Applied to the patch algorithm problem, the GA’s genetic sequences are the patch-lists, which describe which pixels are
in a given patch. The GA ferrets out which pixels contribute to the solution and organizes them optimally. Figure 8 shows a

The Gene Sequence Controls
the Patching Strategy

Figure 9. How a genetic sequence can control a patched multivariate algorithm
GA controlling rectangular patches. We have also written GA’s not restricted to rectangular patches, and are currently

evaluating the trade-offs.
In the training sessions we have conducted so far, the genetically optimized code can frequently achieve an order of




magnitude improvement in speed and accuracy, and frequently comes up with novel and better solutions to complex
problems than those anticipated by the authors. The speed increase comes from the fact that the genetically optimized
‘patch’ algorithm typically uses only a small fraction of the total pixels in the solution, greatly reducing the number of
operations required.

Figure 9 illustrates a GA optimizing 24 patches on toluene, xylene, and methanol. The upper left p
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Figure 10, A GA optimizing 24 patches on toluene, xylene, and methanol

over 500 generations of the average fitness (lower curve) and superbug fitness (upper curve). A superbug is the most fit bug

in a generation. The fitness is defined so that a perfect bug gets a 10:  fit(bug) = = .
( |Ctmining:et - Cbugl + 0'1)
chemicals

middle upper panel is a history of the patch size, the fact that the curve flattens out is a good indication the GA had found the
optimal solution after about 200 generations. The right upper panel shows the location of the 24 patches corresponding to an
‘average’ bug. The patches are not really as distorted as the figure indicates. There is a severe aspect ratio distortion since
there are 41 rows of pixels and 1024 columns. There are 100 bugs competing. The lower left panel shows the superbug
patches after 500 generations. Experience has tanght us that it is usually better to use the average solution rather than the
super solution since the average is adapted to a wide range of conditions whereas the super solution is adept only on a
special case. The lower middle panel shows a snapshot of the training set: a linear combination of toluene, xylene, and
methanol added together using random concentrations and 10% noise added as well. The right bottom panel is a snapshot of
the fitness of all 100 bugs taken at the end of the run. The actual raw fitness is indicated by the dots at the top of the panel.
The asterisks are the weighted fitnesses. Weighted fitnesses are a tool used in GA’s to force competition very early and very
late in the run when all bugs are almost equally fit.

The




It is important to note that the GA is run only once for a given application. Once the patches are found that optimally
solve for a given set of chemicals, that patch set can be used over and over. Also note that a variety of strategies can be used
to train the GA, For example patches can be optimized to recognize certain chemicals while at the same ignoring others and
so on, As system modeling improves, and as we gain experience with a real remote sensing system, it will be possible to
train the GA using the real system response to optimize concentration estimates while rejecting systemic distortion, noise
and contaminates.

4. CHEMICAL RECOGNITION USING NEURAL NETS

As our chemical database grows we will need to intelligently choose which chemicals in the database will be actually
used in the quantitative analysis. Some chemicals of interest are mission determined, but an intelligent neural net scanning
the input could automate this selection, note unusual occurrences, and provide a useful double check on concentration
estimates. Neural nets are attractive in the sense that they can be very fast to evaluate. A feed forward neural net has an easy
to follow structure, has favorable scaling with number of chemicals (linear) and can be evaluated in a straightforward series
of multiplies and adds. Neural nets do not require an iterative solve or a matrix inversion as do multivariate methods. The
disadvantage of a neural net is that it is difficult to construct (train), and does not provide a rigorous uncertainty estimate.
These deficiencies may someday be relaxed as research in neural nets continues at a rapid pace. A neural net designed for
chemical recognition is potentially quite different from neural nets used in pattern recognition, which are basically
classifiers. In the chemical recognition problem similar spectra are superimposed, so instead of asking ‘what letter is this?’,
we are asking ‘how much of every letter?’, is superimposed on top of every other in the image.

We are currently developing and prototyping a new genetically trained neural net for chemical recognition, as shown in
Figures 12 and 13. The most common training technique of neural nets is back propagation. Our novel use of a genetic
algorithm to train the net may have advantages in that a GA can also design the net. Whether or not there are any speed or
accuracy advantages compared to the conventional training method is under investigation,
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Figure 11. A feed-forward multilayered neural net for chemical recognition

In Figure 12, a 4 layer neural net is training on three gaussian-shaped chemicals along the diagonal, similar to the test
case displayed in the earlier Figure 6. The upper left panel is a snapshot of the training set used during generation 50. The
training set is recomputed every generation, using a different set of concentrations on each chemical, chosen randomly
between 0.0, and 1.0 The second panel on the top row is a history of the raw fitness throughout the first fifty generations.
The lower curve is the average fitness of all the 100 nets that are competing, while the top points are the fitness of the
superbug at each generation. The gap between the superbugs and the average population is an indication that the general
population has a lot of learning to do. The good performance of a superbug compared to the average on these early training
sets indicates that it is too overspecialized for a particular special case. The next panel is a snapshot of the raw and scaled
fitness at generation 50. The right most panel is a plot of the weights on all 400 neurons in the topmost layer. The weights
are initially random, and are not showing much structure this early in the training session. The middle panel plots the 400
weights of each of the 12 neurons in the second layer. The bottom panel plots the 12 weights of each of the 12 neurons in the
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Figure 12, A 4 layer neural net genetically training on 3 gaussian-shaped chemicals after 50 generations.
The weights are not yet showing visible structure.
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Figure 13. The same 4 layer neural net after 3000 generations. The weights are showing considerable structure.

bottom layer. The bottom 4th layer is not plotted, its output is the net’s concentration estimates and are used to compute the
fitness.

Figure 13 shows the same net after 3000 generations. The fitness of both the superbugs and the overall population are
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achieving fitnesses over 8, which is very good. The population is still learning, and we are not sure of its ultimate capability.
Notice the plots of the weights now exhibit considerable structure; the information in certain pixels being amplified and
differentiated by the net, while other pixels are multiplied by zero and are effectively discarded.

5.SUMMARY AND FUTURE ACTIVITIES

We have completed the major routines for a chemical recognition software package. The main components of the
package are a multivariate ‘patch’ algorithm, a genetic optimizer for the multivariate routine, and a genetically engineered
neural net,

We envision combining the routines in the near future into an expert system, as shown in Figure 14. An expert system as

Figure 14. The configuration of a future expert system using multivariate algorithms, genetic optimization,
and Intelligent neural nets

would feed the remote sensing signal first to the neural net, which would quickly identify the most important chemicals in
the signal and estimate their concentrations. The neural net would hand off the candidate list to the multivariate algorithm,
which then uses this list plus any user-specified chemicals in it’s analysis and uncertainty estimates. The neural net keeps the
work load on the multivariate algorithm to a reasonable level. Good agreement between the neural net and the chemical
concentration estimates from the multivariate algorithm will provide a compelling consistency check.

In the future we will be using and testing our software in a multispectral uv fluorescence system. We will continue to
research newer more advanced recognition techniques such as constrained multivariate, spectral, and maximum entropy
methods and will investigate the properties and performance of new types of neural nets such as holographic, fuzzy and
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internally structured Kohonen nets.
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