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ABSTRACT 
We have developed a capability to make real time concentration measurements of individual chemicals in a complex 
mixture using a multispectral laser remote sensing system. Our chemical recognition and analysis software consists of three 
parts: 1) a rigorous multivariate analysis package for quantitative concentration and uncertainty estimates. 2) a genetic 
optimizer which customizes and tailors the multivariate algorithm for a particular application, and 3) an intelligent neural 
net chemical filter which pre-selects from the chemical database to find the appropriate candidate chemicals for quantitative 
analyses by the multivariate algorithms, as well as provi$.ng a quick-look concentration estimate and consistency check. 
Detailed simulations using both laboratory~fluorescence data and computer synthesized spectra indicate that our software 
can make accurate concentration estimates from compl$x multicomponent mixtures. even when the mixture is noisy and 
contaminated with unknowns. 
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1. SCIENTIFIC BACKGROUND AND GOALS 
The purpose of chemical recognition software is to estimate the individual chemical concentrations in a multicomponent 

mixture using a premeasured chemical catalog of calibrated spectral signatures. The software should be able to reject noise 
and optical contaminants such as scattered light, and be able to reject unknown or uninteresting chemicals. A multispectral 
laser remote sensing system generates a range-resolved 2-D spectral signature of a remote object or plume. The 2-D spectra 
can be visualized as a surface: the surface height representing return signal intensity. with the excitation wavelength from 
the laser source along one axis and emission (or fluorescence) wavelength from the interrogated object along the other 
axis.Two typical UV spectra taken by a uv fluorometer are shown in Figurel. for acetone and benzene. Note that, at least in 
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the ultraviolet, spectral features can be broad and featureless: this is not necessarily so in the visible and infrared. Our 
objective is to develope software that can use both broad and featureless as well as sharply dehed spectra. 

When the object or plume is made up of many components. the returning 2-D mixture signal is assumed to be a linear 
superposition of the contributions from each component. The signal contribution from each component depends on its 
unique spectral shape ampliiied by its relative concentration. 

Historically, algorithms designed to estimate concentrations of components in mixtures used a chemometric approach 
involving 1-D least-square minimizations', and in some cases normal-component analysis2. These techniques do tend to 
work well for many applications. Nonetheless these conventional methods do not utilize al l  the available information in 
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spectra, such as the correlation of one pixel's intensity with another. For example when using a conventional 1-D method. 
the pixels of the mixture can be arbitrarily scrambled without changing the Iesulting concentration estimates. as long as the 
identical pixels in the database catalog are scrambled in the same way. In 2-D (and in higher dimensions) the spectra can be 
converted into a 1-D problem by stringing the pixels out, as shown in Figure 2. In higher dimensions, such as in 2-D. the 
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Figure 2. How a higher dimensional (2-D in this case) spectra can be converted into al-D problem. Important 
information relating near neighbor pixels is potentially lost. 

pixel-to-pixel correlations are even more structured to the human eye, and more complex in the sense that pixels along 
diagonals, and well-separated pixels can be correlated with each other. 

In order to take advantage of the additional information available in spectral signatures we have been developing new 
techniques of analyzing spectral signatures. including new ways of adaptively extracting minute chemical concentrations in 
complex multicomponent mixtures. Our chemical recognition and analysis software research effort is concentrating on 
multivariate methods, neural nets and genetic optimization. We are addressing future concerns as well, for example 
massively parallel implementations, accurate uncertainty estimates on concentrations, and intelligent techniques to search 
for chemicals when the database catalog becomes very large (-hundreds). We expect these techniques will have important 
uses that go well beyond laser remote sensing. 

2. THE MULTIVARIATE APPROACH 
The core algorithm in our chemical recognition software package is the multivariate 'patch' algorithm. This algorithm 

computes the chemical concentrations and estimates the uncertainty of those concentrations. Conceptually the multivariate 
method is like a least squares fit, where the fitted parameters (the concentrations) are chosen to minimize the residuals 
between the measured unknown mixture and the fitted solution. The 'patch' algorithm extends this approach in the sense 
that it minimixes the residuals on pixel sets which collectively contain the most important features in a particular chemical 
spechum. Since neighboring pixels often contain valuable correlated information, this approach enables better concentration 
estimation and better noise rejection. The algorithm incorporates conventional 1-D chemometrics as a limiting case. 
Visually these correlated sets of pixels appear as patches when overlaid onto a 2-D spectrum, hence the name. This is 

Figure 3. A schematic diagram of a 2-D problem. The mixture is a linear superposition of components (individual 
chemicals). 



illustrated in Figure 3. where the mixture is on the left. and is equal to a sum of chemical samples multiplied by their 
respective concentrations, and may be contaminated with noise. One patch occupies the same pixels in the mixture and in 
the chemical components. 

Mathematically, the ‘patch’ algorithm computes the residuals between the mixture and a hypothetical solution, for all 
pixels in each patch, then minimizes this residual, or a function of this residual, for every patch independently. The user can 
chose to minimh the squared sum, the sum of the squared (as in least squares), or the summed absolute value (as in robust 
estimation) of the residuals in every patch. We are currently assessing trade-offs associated with these choices. The system 
of equations is inverted by computing the pseudo-inverse of the patch-sum matrix using singular value decomposition. The 
concentrations are then computed when the pseudo inverse is multiplied by the mixture and component-sum matrix. The 
mathematical details are unfortunately too complicated to derive in this short paper. 

After the concentrations are estimated the algorithm then computes an uncertainty estimate. This uncertainty estimate is 
derived from the first three terms of the Taylor series expansion of the rate of change of concentration from both mixture, 
chemical database and mixture-chemical (cross product) uncertainty. This is shown in Figure 4. Conventional algorithms 
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Figure 4. The tern of the uncertainty of a concentration estimate.‘C’ is the concentration, ‘m’ is a mixture 
measurement, and ‘s’ is a chemical component sample measurement 

usually assume only the mixture has measurement uncertainty, with the curious result that the uncertainty in the 
concentrations is computed from a covariance matrix that is independent of the mixture itself. In other words all mixtures 
would have the same uncertainty in the concentrations. The covariance matrix is the fist term in our Taylor expansion, with 
the other new terms exhibiting the expected loss of confidence as the concentrations become relatively small or when there 
is a chemical missing from the database. We have also implemented a Monte Carlo uncertainty estimate. so that if the 
mixture measurements do not obey a normal statistical distribution we can still estimate concentration errors with a real 
system response. 

Patches are lists of correlated pixels, but how are these lists chosen? This question of patching strategy is a complicated 
one. Patches can overlap, be sparse, or widely separated. In fact a patch does not have to made of contiguous pixels at all. 
Although any reasonable patching strategy will yield very good results, for many problems the optimization of the patch 
algorithm is too labor intensive and too subjective. Some of the possibilities are shown in Fi-pre 5. The optimization of the 
patches will be discussed in the next section on genetic optimizations. 

As an example of the benefits of the flexibility of the patch algorithm, consider the following problem. A set of three 
gaussian-shaped ‘computer synthesized’ chemicals are created with their peaks on a diagonal. and the spectra of these three 
chemicals are stored in the multivariate algorithm’s chemical database. The image is made up of 40x40 pixels. Mixtures are 
computer created by combining these three chemicals with concentrations 0.5.1.0, and 1.5 respectively. Then a fourth 
chemical is added to the mixtures, off diagonal, with a very large concentration of 100.0. Both the conventional l-D 
algorithm and the ‘patch’ algorithm are given this problem, with increasing (0% to 100%) random noise added. The results 



Figure 5. An illustration of different patch strategies. A patch is a list of related pixels. Patches can be of any 
shape. Patches can contain contiguous pixels but don't have to. and pixels can be in more than one patch 
Pixels not in any patch are ignored. 
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Figure 6. A comparison of 1-D and 2-D multivariate algorithms. The patches used in the 2-D solution are 
shown in the inset. 

are shown in Figure 6. The 1-D algorithm is unable to reject the contaminate as noise is increased. 

To demonstrate the algorithm on 'real' data, Figure 7 shows the results of the 'patch' algorithm identifying methanol, 
xylene, and toluene with relative concentrations of 0.5. 1.0. and 1.5 respectively, as up to 100% noise is added. The 



spectrum for each chemical was taken with a uv fluorometer, and the mixhms were generated by the computer by adding 
the spectra according to the concentrations. and then adding additional random noise. The random noise was uniformly 
distributed from -1.0 to 1.0 multiplied by the percentage. The size of the images was 41 x 1024 pixels. No attempt was made 
to remove the scattered light from the raw data. The code achieves good concentration estimates (accurate to a few percent) 
even at 100% noise. 
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Figure 7. Patch Algorithm performance: Methanol, Xylene, and Toluene as noise increases to ~ W O  

3. GENETIC OPTIMIZATION OF THE PATCH ALGORITHM 
To overcome the need for trial and error optimization of the 'patch' algorithm we have developed a novel Genetic 

Algorithm (GA) to optimize the lists of correlated pixels for any set of candidate chemicals. In a genetic algorithm a set of 
geneticlike sequences are created in which each sequence can completely describe a possible solution to a problem. Every 
genetic sequence. or 'bug', must compete with its peers on the problem, and the most fit are allowed to generate offspring 
for the next generation, with occasional mutation to introduce new genetic material into the population. Generation after 
generation the population relentlessly improves its fitness. Genetic algorithms are exceptionally good at search and 
optimization when applied to problems with very large multidimensional solution spaces. GA's. used carefully, are not 
easily trapped in local minima or maxima, a problem that can plague hill climbing methods or variations on Newton's 



method. A schematic diagram of a genetic algorithm is shown in Figure 8. 
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Figure 8. A schematic diagram of a genetic algorithm is shown 

Applied to the patch algorithm problem, the GA’s genetic sequences are the patch-lists. which describe which pixels are 
in a given patch The GA ferrets out which pixels contribute to the solution and organizes them optimally. Figure 8 shows a 
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Figure 9. How a genetic sequence can control a patched multivariate algorithm 

GA controlling rectangular patches. We have also written GA’s not restricted to rectangular patches, and are currently 
evaluating the trade-offs. 

In the trnining sessions we have conducted so far, the genetically optimized code can frequently achieve an order of 



magnitude improvement in speed and accuracy, and frequently comes up with novel and better solutions to complex 
problems than those anticipated by the authors. The speed increase comes from the fact that the genetically optimized 
‘patch’ algorithm typically uses only a small fraction of the total pixels in the solution, greatly reducing the number of 
operatians required. 

Figure 9 illustrates a GA outimiziug 24 patches on toluene, xylene, and methanol. The upper left panel is a historical plot 
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Figure 10. A GA optimizing 24 patches on toluene. xylene, and methanol 

Over 500 generations of the average fitness (lower curve) and superbug fitness (upper curve). A superbug is the most fit bug 

. The in a generation. The fitness is defined so that a perfect bug gets a 1 0  fir (bug) = 

middle upper panel is a history of the patch size, the fact that the curve flattens out is a good indication the GA had found the 
optimal solution after about 200 generations. The right upper panel shows the location of the 24 patches corresponding to an 
‘average’ bug. The patches are not really as distorted as the figure indicates. There is a severe aspect ratio distortion s ine 
there are 41 rows of pixels and 1024 columns. There are 100 bugs competing. The lower left panel shows the superbug 
patches after 500 generations. Experience has taught us that it is usually better to use the average solution rather than the 
super solution since the average is adapted to a wide range of conditions whereas the super solution is adept only on a 
special case. The lower middle panel shows a snapshot of the training set: a linear combination of toluene, xylene, and 
methanol added together using random concentrations and 10% noise added as well. The right bottom panel is a snapshot of 
the fitness of all 100 bugs taken at the end of the run. The actual raw fitness is indicated by the dots at the top of the panel. 
The asterisks are the weighted fitnesses. Weighted fitnesses are a tool used in GA’s to force competition very early and very 
late in the run when all bugs are almost equally fit. 
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It is important to note that the GA is run only once for a given application. Once the patches are found that optimally 
solve for a given set of chemicals, that patch set can be used over and over. Also note that a variety of strategies can be used 
to train the GA. For example patches can be optimized to recognize certain chemicals while at the same ignoring others and 
so on. As system modeling improves, and as we gain experience with a real remote sensing system. it will be possible to 
train the GA using the real system response to optimize concentration estimates while rejecting systemic distortion, noise 
and contaminates. 

4. CHEMICAL RECOGNITION USING NEURAL NETS 
As our chemical database grows we will need to intelligently choose which chemicals in the database will be actually 

used in the quantitative analysis. Some chemicals of interest are mission determined, but an intelligent neural net smmbg 
the input could automate this selection, note unusual occurrences. and provide a useful double check on concentration 
estimates, Neural nets are attractive in the sense that they can be very fast to evaluate. A feed forward neural net has an easy 
to follow structure, has favorable scaling with number of chemicals (linear) and can be evaluated in a straightforward series 
of multiplies and adds. Neural nets do not require an iterative solve or a matrix inversion as do multivariate methods. The 
disadvantage of a neural net is that it is diflicult to construct (train), and does not provide a rigorous uncertainty estimate. 
These deficiencies may someday be relaxed as research in neural nets continues at a rapid pace. A neural net designed for 
chemical recognition is potentially quite different from neural nets used in pattern recognition, which are basically 
classifiers. In the chemical recognition problem similar spectra are superimposed, so instead of asking ‘what letter is this?’, 
we are asking ‘how much of every letter?’. is superimposed on top of every other in the image. 

We are currently developing and prototyping a new genetically trained neural net for chemical recognition. as shown in 
Figures 12 and 13. The most common training technique of neural nets is back propagation. Our novel use of a genetic 
algorithm to train the net may have advantages in that a GA can also design the net. Whether or not there are any speed or 
accuracy advantages compared to the conventional training method is under investigation. 
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Figure 11. A feed-forward multilayered neural net for chemical recognition 

In Figure 12, a 4 layer neural net is training on three gaussian-shaped chemicals along the diagonal, similar to the test 
case displayed in the earlier Figure 6. The upper left panel is a snapshot of the training set used during generation 50. The 
training set is recomputed every generation, using a different set of concentrations on each chemical, chosen randomly 
between 0.0, and 1.0 The second panel on the top row is a history of the raw fitness throughout the first sfty generations. 
The lower curve is the average fitness of all the 100 nets that are competing, while the top points are the fitness of the 
superbug at each generation. The gap between the superbugs and the average population is an indication that the general 
population has a lot of learning to do. The good performance of a superbug compared to the average on these early training 
sets indicates that it is too overspecialized for a particular special case. The next panel is a snapshot of the raw and scaled 
fitness at generation 50. The right most panel is a plot of the weights on all 400 neurons in the topmost layer. The weights 
are initially random, and are not showing much structure this early in the training session. The middle panel plots the 400 
weights of each of the 12 neurons in the second layer. The bottom panel plots the 12 weights of each of the 12 neurons in the 



Figure 12. A 4 layer neural net genetically training on 3 gaussian-shaped chemicals after 50 generations. 
The weights are not yet showing visible stnrcture. 

Figure 13. The same 4 layer neural net after 3000 generations. The weights are showing considerable structure. 

bottom layer. The bottom 4th layer is not plotted, its output is the net's concentration estimates and are used to compute the 
fitness. 

Figure 13 shows the same net after 3000 generations. The fitness of both the superbugs and the overall population are 



achieving fitnesses over 8. which is very good. The population is still learning, and we are not sure of its ultimate capability. 
Notice the plots of the weights now exhibit considerable structure; the information in certain pixels being amplified and 
differentiated by the net, while other pixels are multiplied by zero and are effectively discarded. 

5. SUMMARY AND FUTURE ACTIVITIES 
We have completed the major routines for a chemical recognition software package. The main components of the 

package are a multivariate ‘patch’ algorithm, a genetic optimizer for the multivariate routine. and a genetically engineered 
neural net. 

We envision c o m b h g  the routines in the near future into an expert system, as shown in Figure 14. An expert system as 

Figure 14. The configuration of a future expert system using multivariate algorithms, genetic optimization, 
and Intelligent neural nets 

would feed the remote sensing signal first to the neural net. which would quickly identify the most important chemicals in 
the signal and estimate their concentrations. The neural net would hand off the candidate list to the multivariate algorithm, 
which then uses this list plus any user-specifkd chemicals in it’s analysis and uncertainty estimates. The neural net keeps the 
work load on the multivariate algorithm to a reasonable level. Good agreement between the neural net and the chemical 
concentration estimates from the multivariate algorithm will provide a CompeUing consistency check. 

In the future we will be using and testing our software in a multispectral uv fluorescence system. We will continue to 
research newer more advauced recognition techniques such as constrained multivariate. spectral, and maximum entropy 
methods and will investigate the properties and performance of new types of neural nets such as holographic. fuzzy and 



internally structured Kohonen nets. 
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