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ABSTRACT

A set of ¢ responses, y=(y1, Y95 -y ¥gq )T, is related to a set of p explanatory variables,
X=(Xy, Xg wnsy Xp )T, through the classical linear model, y*=a+ xT B + €”. The parameters, a and
B, are estimated during calibration using a training set. The fitted calibration model that follows is
then used repeatedly on a number of new observations where y is observed and x is to be inferred.

This procedure is often referred to as prediction (or inverse prediction).

The prediction procedure can be viewed as parameter estimation in errors-in-veriables
regression (see Thomas 1991). By using the errors-in-variables connection and assuming normally
distributed measurement errors, the mazimum likelihood estimates of the new x’s can be obtained
either individually or jointly. The limiting (q— 00) normal distribution of the maximum likelihood
estimates of the new x’s, obtained jointly, can be used to construct approximate simultaneous
confidence regions for the new x’s. In situations where the new observations are numerous and well
dispersed from the center of the training set, the uncertainty in a and B is substantial, and the
specificity of the responses is poor, joint estimation can improve significantly on individual

estimation, which is the traditional approach.




1. INTRODUCTION

Recently, calibration involving a multidimensional response has received significant
attention (e.g., see Brown 1982, and Nzs 1985). Osborne’s (1991) recent review of calibration
includes discussion of the wide variety of approaches to calibration involving a multidimensional
response. Multivariate calibration is used in a number of applications, often in analytical
chemistry. Many of these applications involve a blending of computer technology and specialized
instrumentation (e.g., spectrometers) that result in response variables of a very high dimension.
The discussion presented here is particularly relevant for this situation. Martens and Nees (1989)

and references therein provide a number of examples with a high-dimensional response variable.

Because of the cost of developing a calibration model, a single fitted calibration model is
often used repeatedly on a number of new observations (multiple-use calibration) to predict some
characteristic of interest. For example, in analytical chemistry a calibration model is often
constructed to predict some characteristic (e.g., chemical concentration) in a batch or stream
comprising a number of new specimens (observations). Within the batch (or block within a
stream), specimens are often prepared together. After the specimens are prepared, they are
subjected to measurement by the appropriate analytical instrument (e.g., spectrometer). Prediction

follows the acquisition of the instrumental measurements.

The purpose of this article is to demonstrate the potential advantage of using the responses
of the new observations jointly for prediction. This differs from the traditional approach where
prediction of the characteristic of interest for an individual new observation involves only the
multivariate response associated with that single new observation. The development of the joint
prediction approach follows from Thomas (1991) where prediction was developed as an estimation
problem in errors-in-variables regression. Maximum likelihood estimation (assuming normally
distributed errors in the responses) was proposed as an alternative to least-squares estimation
because of the consistency of the maximum likelihood estimator (MLE) with respect to the number
of relevant response variables. In this article, the underlying errors-in-variables model is used to

modify the MLE to include information inherent in the responses from all new observations.

Calibration consists of two distinct steps; calibration and prediction. In the case of
multivariate linear calibration (considered exclusively here), the calibration step consists of
estimating a = (al, a9y «.ny aq) and B = (by, by, ..., bq) in the model
Y=XTB1+E, where [1.1]



Y=(y1,y2,..., Yn )T is then x q matrix of responses,

- -

1 1 ..« 1|7
Xt= is a n x (p+1) matrix of constants, and

X Xp . . - . X

B___ a]. a2“"aq
7 b - b
1 by . - - q

Here, ¢ is the number of response variables, n is the number of calibration samples, and p is the

is a (p+1) x q matrix of unknown parameters,

number of explanatory variables. Note that this model represents controlled calibraiion, as the x;

are assumed to be fixed (see Brown 1982). For notational simplicity it is assumed that the x; are
n

centered, so that Exl =0.

i=1 )

Further, it will be assumed that the rows of the matrix of random errors,
E=(e1,e2,...,en)T, are multivariate normal with 1. E(ei)=0, 2. E(eieir)=0 for i #j, and 3.
E(eieir)=02 I, More generally, we could allow E(eie'ir) o« V, with V known, followed by the
appropriate transformation of the rows of Y to achieve condition 3. In this article, it will be
assumed that this transformation, if necessary, has been performed. In general, note that if V has a
completely arbitrary structure, it may not be possible to obtain a proper estimate of
E(eieir)za'2 Iq since we often have n much smaller than ¢q. However, in chemical applications
involving optical methods, the ordered nature of the responses (embodied in a spectrum) can often
give rise to a structured V involving only a few parameters (e.g., see Denham and Brown 1991 and
Thomas 1991). Although in practice V is unlikely to be known, transformation of Y based on an
estimate of V will approximately satisfy condition 3. This article does not address the consequences

of uncertainty in the estimate of V.
By using least-squares regression, an estimate of BT is

- é‘1 aA2 L 5“1 Ty v1yT
B,=| . . . =(X;X X; Y. 1.2
1 by By - - - » By (X;X4) t [1.2]

The errors in estimating Bf are denoted by

T Y2 - . - - 7q

5 by . . - - By

Ap=B;—B;=

It follows that (v, 6{ )* iid Normal (0,0%( X'{Xt ) -1 ).



In the prediction phase, new samples are obtained where, for each sample, only the g-
vector, y, is observed. The objective is to estimate the p-vector, x, that underlies each of these new
samples. Here, no distribution of the new x’s will be assumed. The parameter estimates, BT’
obtained earlier in the calibration phase, are repeatedly used in the prediction phase. There are two
sources of error when estimating the x’s for the new samples. One source is the error in the
calibration, Af The other source is the measurement errors associated with the new y’s. The
common calibration error (Af) introduces correlation among the errors in estimating the various

new x’s.

A number of authors (e.g., see Scheffé 1973; Carroll, Spiegelman, and Sacks 1988; and
Mee, Eberhardt, and Reeve 1991) have addressed the difficult problem of simultaneous inference in
univariate calibration (q =p =1). This article develops simultarlleous inference in multivariate
calibration by exploiting the errors-in-variables representation of the prediction phase outlined by
Thomas (1991). When there are more response variables than explanatory variables (i.e. > p), the
overdetermined nature of the prediction phase makes inference in calibration with many variables a
somewhat easier problem than the analogous problem in univariate calibration where prediction is

completely determined.

The remainder of this paper consists of the following. Section 2 formulates the prediction
problem as an estimation problem in errors-in-variables regression. Sections 3 and 4 describe
individual and joint maximum likelihood estimation of the new x’s. The limiting (q—00)
distributions of the individual and joint MLE’s are given. An asymptotic comparison of the two
estimation methods is presented in Section 5. In Section 6, the two estimation procedures are

compared using simulations. Section 7 contains a short conclusion.

2. ERRORS-IN-VARIABLES MODEL FOR ESTIMATING x,’s

During prediction, r new observations are obtained where only the g-vectors, y(j), in
Yo = (y(l), y(z), . y(')) = ( y'(rl), y'(rz), ceey y'(rq))T, are observed. The p-vectors, xﬁ), in Xy = (x(l),
x(z),..., x(r)), are to be estimated. The parameter estimates obtained earlier in the calibration

phase, ﬁf’ are used for this purpose.

The prediction of the r new observations can be parametrized in terms of a linear
functional model (e.g., see Fuller 1987). The model is u; = b;rxo+at 1 (or, z; =uy—a; 1 =b{X,),
by=b+6;, & =a;+7;, and Yo = (ytl’ ¥i9r e ytr) = ut+e(‘), for t=1, 2,..., q. The

underlying linear functional relationship is z; = b;;rX0 The observed values of the response

3



variables, in Yy, contain the unobservable true values of the responses (“t) and measurement
errors, g, = (etl’ €49y v etr)’ which are assumed independent across the r new observations. Let
Z, = (Ztl’ Zigy o Ztr)= ’t+e(t)“7tl be the observed value of z; = (ztl’ Z49y -+ 24} That is
Z, =y(t)—ét 1. Also, let etjz(etj — Yt 6;1')1'. From earlier assumptions, it can be shown that for
fixed j, € id Normal (0,X) for t =1, 2,..., q, where =02 and

Q= = (x}‘x,r)'1 +diag(1, 0, 0, ..., 0).

0
Further, ¢, =(et1_7t’ €9 Tpr +- etr—'rt,oS{)T id Normal(0,X%,) for t =1, 2,..., q, where
Ea_=o'2 Q,,

O Qyy —— %y O

Qyy Q11\
Q= { \\ Ly » and Q.. = Var(y;).

Qyy Qyy 93 0

0 0 2y

Notice that the set of estimated model parameters {4,, Bt} with associated errors {7, 6;} remain
constant over all r new observations. This introduces correlation among the errors associated with
maximum likelihood (and other) estimates of the r p-vectors of Xy We will consider estimation of

the columns of Xy by maximum likelihood both individually (one column at a time) and jointly.

3. INDIVIDUAL MAXIMUM LIKELIHOOD ESTIMATION

In many calibration applications, the columns of X, are estimated individually. For
example, in analytical chemistry, it is common practice to estimate the chemical characteristic of
interest for a new sample without regard to the responses of the other new samples. This practice is
prevalent despite the fact that instrumental measurements for new samples are often acquired in a

batch.

Given the knowledge of the distribution of €5 the individual MLE of x0) (and B) can be

obtained by maximizing the log likelihood,
— (n/2) -log| 27020 - (202)-1tzl(( Z4 BF) — (245 b)) et ((ztj, BF) = (2;:09)) T,

4



with respect to x% and B (e.g., see Fuller 1987) Recall that 24 is defined explicitly by the
underlying linear functional relationship, 2y = b;rx(’) If § is nonsingular and q > p, the individual
MLE of x) is

£0) = (Myy — 3050 ) IM§] , where B
qQ . . . q . N .
Myp=q" 3. beB], M} = o'l .82, and X is the smallest root of [ M@ - 202 |=0.

M) M@
MO = 5.1 M =q'1;(ztj’ﬁf)T(th’f’f)'

MY My,

Note that Brown and Sundberg (1987) give an approach'for obtaining the MLE of x9
when E(eieir) is arbitrary and unknown. However, the development of the MLE when E(eieir) is
completely arbitrary and unknown requires that the number of calibration samples (n) exceeds
g+ p. This condition is not likely to be met in situations in which g is very large (perhaps 1000 or
more). If E(eieir) is assumed known within a scale constant, then the approach given by Brown

and Sundberg (1987) will result in the expression given in equation (3.1).

The purpose of /\022 is to shrmk Moy towards mog=q Ebth By assuming that
F—llm lim q lzbt and m22—hm q Ebtb is positive definite, X 05, 1s strongly consistent with
respect to q (see Amemlya and Fuller 1984). Note that in many chemical applications p is
relatively small (<5), while q can be very large (sometimes >1000). Thus, the limiting
distribution of £ with respect to q (to be discussed) has particular relevance.

Coincidentally, the maximum likelihood estimates of (ztj’ b'tr)T modified by the jth
T
observation is (itj’ bg) ):

(245 89" ~ (25~ 9"39) (1, - 2971, -0 F 1 (1, - 29"} 3.2

(See e.g., Fuller 1987, page 125). Note that unique estimates of b;r are obtained for each new
sample. Also, note that because of the error structure we are not able to obtain separate estimates

of a; and Y5 from th.

In general, with arbitrary p, X, and q, the exact distribution of i(()i) is unknown.

However, with the earlier assumptions on b and My, it can be shown that as q-soo,

1 . .
I‘ﬁ(i(")— 0)) 5 Normal(O,I), where

¥y + G Qg — A AT Yz [3-3]



| - T I |
¢j=(1,—x(’) )Q(1,—- 0) )Y, Aj=—-9221(’), and T;2 is an upper triangular matrix, such that
1 1
I;2)"I;2=T; L. This expression can be used as the basis for deriving a confidence region for an
i) AT g

individual x) (see Thomas 1991). Note that the assumption about Mg implies the need for
relevant responses (i.e. by # 0) and specific responses (i.e. the rows of B = (bl’ by, ..., bq) are
different).

In practice, neither o2, x(j), or Mgy, which are elements of I‘j , will be known. An estimator
of I;, f‘j, following that given by Fuller (1987), page 130, and Thomas (1991) can be obtained by

replacing o2, x(j), OF myg in the expression for I; with appropriate estimates. An estimate of o?is
&= ((n +1)-(q—p) —n)'1 -{(n ‘(q—p- 1))&3 +(q-p) &f,}, where

1

n 4
o2 :(n-(q—p— 1))'12 2 (Yit—)gbt—éty is an estimate of &2 obtained from the
i=1 t=1
calibration phase (Y;, is the it!h element of Y and X, is the ith row of X), and
. T T d . (s
6’% =((q—p)-(1,—"(’) 18( 1, -0 )T)’l Z(th-b{i(]))2 is an estimate of &2 obtained from

t=1
the prediction phase. An appropriate estimate of ) s g0, An estimate of myy is

5§ = HO7(MO) ) 50,
where H0)= (o, Ip)T— (1, —iG)T)T[( 1,- iﬁ)T) £(1, -—i(j)T]'l (1,- i(j)T) ¥, ¥ consists of
columns 2 through p+1 of £, and $=6%Q. See Thomas (1991) for discussion concerning where the

normal approximation using I‘j is accurate in this calibration context.

The joint distribution of the columns of 5(0 = (it(,l), i((?),..., i((,r)) is unknown. However, it
is straightforward to derive the joint distribution of the X, in the limit as q—o0 (or 02-0). The

Appendix provides this limiting distribution.

4. JOINT MAXIMUM LIKELIHOOD ESTIMATION

When the estimated parameters of a multivariate calibration model are to be used
repeatedly, responses from a batch of new samples (in Yy) can be used to estimate jointly the
columns of X, by maximum likelihood. This differs from the traditional approach where the
estimation of a single column of X, involves only the related column of Y, and the estimated
model parameters. As we shall see in Section 5, joint estimation could provide some advantages
over individual estimation, especially under conditions where individual maximum likelihood

estimation seems to perform poorly relative to least squares (see Thomas 1991).
Given the knowledge of the distribution of €., the joint MLE of X, (and B) can be

6




obtained by maximizing the log hkehhood

— (n/2) - log| 2o, |- (202) 12 (2 BF) — (2,b7) ) ((Zt,bt) (5b) 7,
1
with respect to X, and B. Amctzmlya, and Fuller (1984) give the joint MLE of X, denoted here by

z » J1
Xo- Let py 2 052> ...2pp iy be the eigenvalues of Q,2M, Q.2 and let T = (T,, T;) be the matrix

-1 -1
of corresponding orthonormal eigenvectors such that 2,2M,©,2T, = T, R,
_1
where My=q" ZStSt, S¢=(Zi1> Zios -- Ztr,bT)T R =diag(pp41: Pps2r -« Ppir)s and Q.2 i
the matrix square root of Q. 1 Further, let C= Q T2 Then,
Xo= (i(l), i@ i('))) = - C,Cah, [4.1]

where C_, consists of the first r rows of C, while G, consists of the final p rows of C. Note that if
b —hm lim q IEbt and m22—hm q Ebtb is positive definite, io exhibits strong consistency
wlth respect to q (see Amemlya and Fuller 1984).

In general, the joint distribution of )z(o is unknown. With the assumptions given for
consistency, Amemiya and Fuller (1984) and Fuller (1987), page 305, gave the distribution of io in
the limit as q—ooo Since by prior assumptions X, is known to within a proportionality constant, '
T 2vec(X0 Xo)-b Normal (0,1), as q— o0, where

Tl, T1,2 - - - » Tl,l'
Ty, Ty . - -.7T 2

r=| %1 ) 2,2 j 2r | _ %-\I@(m'212+0'2m'2%39m§12), [4.2]
Tr, 1 Tr, 2. - ‘ Tl’»l'

¥ = (Iv - X;f)ﬂa(lr, - Xg )T, 6= {(Xo, ID)Q;1 (Xo, IP)T}'I, and ®is the Kronecker product.

In practice, neither o2, Xg or Mog, which are elements of T, will be known. An estimator
of T, T can be obtained by replacing o?, Xg or moy in the expression for T with appropriate

estimates. An estimate of o2

G =((n+r)-(q-—p)—n)'1-{(n-(q—p—1))6’3+r-(q—-p)6’?)}, where 62 is from Section 3, and

~((@=2)e) (- 54 (- 7R where ¥ = (1~ KE) (1, T e

Fuller 1987, page 294) . An appropriate estimate of X is ):(o To estimate mgq, Fuller (1987, page

derived from both the calibration and prediction phases is

304) recommends using 1:n22 =HT (Ma - f)a) ]:E[, where H = f);l ( i, IP)T [( )zi, Ip) f);l ( )z(, IP)T]'1

and £, = 6%Q

a




Approximate individual and joint confidence regions can easily be developed for various
subsets of the px r elements of X, For instance, an approximate (1 —a) confidence region for the
first row of X is given by

1
[1 0.. 0](io-xo)'i*;1 ()zio—Xo)T ? ng;l-a’ where
0

'i‘s is a subset of T containing only those elements that are in rows 1, p+1, 2p +1,...,
(r—1)p+1, and columns 1, p+1, 2p+1,..., (r - 1)p + 1, of T. This particular subset of X, relates

to the first of the p underlying explanatory variables for all r samples.

Coincidentally (see Fuller 1987), the maximum likelihood estimate of (zt, b )T,
t =1,2,...,q, modified by the information supplied by all of the new samples is
(8 b7 )" = (2, B )" [i-cc™ay), [4.3]
The joint MLE of by, by, incorporates information from both the n calibration samples and r new
samples. When r =1 (i.e., individual maximum likelihood estimation) lz)tz Bt(l) won’t generally
improve much on f’t' For large r, f’t can differ significantly from the various Bt(") and be a much
better estimator of by (see Section 6). This is indicative of the potential improvement of joint

maximum likelihood estimation over individual maximum likelihood estimation.

5. ASYMPTOTIC COMPARISON OF X, AND X,

The purpose of this section is to identify situations where ).-:(0 and Xo can differ
significantly. For this analysis, we will assume that the distributions of ):(0 and Xo are well
approximated by the asymptotic results given earlier. In particular, the matrices, I‘j and Tj' j
which describe the asymptotic covariance structure among the elements of 0 and 1::6),

respectively, will be used here.

The increase in asymptotic variance of the individual MLE when compared to that of the
Jjoint MLE can be represented by the non-negative matrix
Q=T-T,; =%€m'212((922'/’r1‘3%?) ~61;) m3h. )
Under appropriate conditions, as r—+o0, 6-+0 so that Qj—b %m'212(ﬂ22 wj —Aj AJT) m'212 For
purposes of simplification, assume W = 0, which implies that Aj Ajr = 0. The difference, Qj, could
be of practical significance if 0'2922 m'212 is large. This can be the case if: 1. the noise-to-signal
ratio, o2 m'212, is poor (large), 2. the number of calibration samples is relatively small, implying

that 922 has relatively large elements, and 3. the specificity of the response variables is poor (i.e.,

8




My, is ill-conditioned). If the number of new éé.mples, r, is large and these three conditions are

met, use of the joint MLE can offer a significant advantage.

To highlight the potential differences between joint and individual maximum likelihood
estimation, we will consider the asymptotic performances (q—c0) of individual and joint maximum
likelihood estimation in a spectroscopic context. Consider a hypothetical chemical system where
two unconstrained components, when at unit concentrations, exhibit the absorbance spectra
illustrated in Figure 1. The Gaussian spectral shapes portrayed in Figure 1 have means of 200 and
400 (arbitrary units), and a common standard deviation of 100. The response vector (y) associated
with samples containing both of these two components is assumed to follow Beer’s law. That is,
the t*! element of the g-dimensional spectrum is y; = ay + (xq, x2)(b1t, b2t)T+et, where x; and
Xq are the concentrations of the two chemical components and (el,e2,..., eq)T are uncorrelated
normally distributed measurement errors. Here the elements of the intercept vector, (al, g, .ou
a.q), are identically zero, but assumed to be unknown during calibration. The particular values of
bt=(b1t’ b2t )T depend on q. For a given value of q, the set of frequencies used is {0, Aq,

.»(g-1) Aq }, where Aq 600 . Figure 2 illustrates the values of {b;} when q=20.

As q increases, the separation between adjoining frequencies decreases. As q—oo, {b}

converge to the spectral shapes portrayed in Figure 1. It can be shown that lim mgg =
1¢ T 4

lim q° b.b; =

q"’°°q t§1 Lo

®(4/2) - 8(-2/2) '1{<1>(3\/') & 3f)} 0469 0173
12f -1{4,(3\/-) &( 3\/')} (4/2) - 8(-2/2) 0173 .0469

Conditions in which the spectra of the two chemical components are more overlapped were also
considered (see Figure 3). In this case, the response variables have less specificity (the spectral

shapes have means of 250 and 350, and a common standard deviation of 100), andqﬁ)rgo Mgg =

8(35v2)-8(25v2) < Pfe(3v2)-2(-32 )} 0470 0366
1
12v7 e"25{<1>( 3v/2) - ®(-32 )} ®(3.5/2) - (-2.51/2) 0366 .0470

Two variations of X (columns 2 and 3 are assumed to be centered) were considered. In the
first variation of X1 (denoted by Xt ), which relates to the case where relatively few calibration

samples are used, (Xt t ) -1 = diag(.2, 1, 1). In the second variation of X (denoted by Xi )

g



which relates to the case where rela.t'ilvely many calibration samples are used,
(X'{zxtz)'l = diag(.02, .1, .1). Two variations of o2 were also considered (0% € {.001, .01}). In
total, the eight conditions defined by all combinations of the three two-level factors (spectral
overlap, XT’ and o2 ) were studied. The asymptotic performances of individual and joint maximum
likelihood estimation are compared for five points in the plane, x(l)T € {(0, 0), (-.6, -.6), (-.6, .6),
(-6, -.6), (-6, .6)}, which cover the assumed design space spanned by the centered values of Xt.

The diagonal elements of I'; (normalized by q) were computed for the eight conditions
described above by using the limiting expressions for Moq. Similarly, the diagonal elements of Tl’l
were computed based on various assumptions. First to provide a benchmark, Tl,l was computed
assuming that the model parameters, {at, bt}’ are known (i.e., 222 = 0). In this case, £0) — "G),
and T, = Tih= Y9, whereY? = block diag{%zm'zg}. This approx,imates the performance of the
maximum likelihood estimators when n (the number of calibration samples) is very large. The
second variation of Tl, 1 denoted by T, relates to the case where the r new observations are
numerous and sufficiently dispersed from the origin (i.e., ©® ~ 0). The asymptotic covariance of £
in this situation (assuming © = 0)is T = '—7(;1/)1 m'212 This reflects the best possible performance of

the joint maximum likelihood estimator in the general case when 99 #0.

Other variations of Tl,l considered here assume that there are r = 20 new observations to
predict. In many applications in analytical chemistry, the number of new observations to predict
within a batch could easily exceed this number. Three cases are considered in order to provide some
'insight. with regard to the effect of the range of the values in X, on performance. In the first case,
each element of columns 2-20 of Xy was obtained by independently sampling the uniform
distribution on [-.9, .9], giving rise to T2, In the second case, columns 2-20 of X, were obtained
by sampling U[-.3, .3], giving rise to T?P. In the third case, columns 2-20 of X, were obtained by
sampling U[-.9, .9] for the first row, and sampling U[-.3, .3] for the second row, giving rise to T2,

The asymptotic efficiencies of the individual and joint maximum likelihood estimators
(with various assumptions on Xp) relative to the performance achieved when all model parameters
are known (i.e., 222 = 0) are given in Tables 1-5. For each estimator, the best performance is
achieved when x() = (0, 0)T where, in fact, T1 =179 Naturally, uncertainty in the model
parameters causes poorer performance when M s distant from the center of the design space (e.g.,
xW = (£.6, £.6)7). This can be an important issue when the uncertainty in the model
parameters is relatively large (i.e., Xt = th). Also, apart from effect on the distance of x(*) from

the center of design space, the asymptotic performances of these estimators depend somewhat on

10



the orientation of x(*) due to the overlap of the spectral features. Asymptotic performance is

slightly better in some cases when xW = (@, —a)T versus when xM = (e, &)™

From Tables 1-5, note the hierarchy, T (i,i) > T2 (i, i) > T1(i, 1), for each value of x{*)
for the eight conditions considered. This indicates the gains in asymptotic efficiency that are
possible by using joint rather than individual maximum likelihood estimation when r is moderate
and very large. When the response error variance, 0'2, is small (here ol = .001), there is little
difference between individual and joint maximum likelihood estimation. However, as presented in
Tables 1-5, the joint maximum likelihood estimator can offer significant increases in efficiency
when the response error variance is not trivial with respect to the underlying signal (here ol = .01},
especially when the response variables have poor specificity (here spectral features have severe
overlap) and relatively few calibration samples are used (here X}: th). This is precisely the
condition where individual maximum likelihood estimation exhibits poor relative performance with

respect to the classical least squares estimator (see Thomas 1991).

The asymptotic efficiency of z0) depends to some degree on the values in the other
columns in X, When the values are relatively highly dispersed from (0, 0), the asymptotic
efficiency of FM 55 improved when compared to the case when values are relatively poorly

dispersed (compare Tables 2 and 3). This difference is most notable when o2

is large, overlap is
high, and the number of calibration samples is small. Note that the asymptotic performance of M
given in Table 2 can be only marginally improved with additional new samples as A.R.E (Tz‘ (i,1))
is not much smaller than A.R.E.(T!(i, i)). The asymptotic performance of £, summarized in
Table 4, is intermediate when compared to Table 2 (high dispersion) and Table 3 (low dispersion).
Although, the second row of X is less dispersed than the first row of X,, A.R.E (T%(2, 2)) is very

close to the A.R.E. (T2¢(1, 1)).

6. SIMULATION COMPARISON OF X, AND X,

The previous analysis relates to the asymptotic case where q—+c0. To get a feel for the
difference between io and X, with finite q (chosen here to be 100), a small simulation experiment
was performed. We consider two conditions based on the setup described in the previous section
where ):(o and )-(0 are expected to perform differently (a’2 = .01, Xf = X,',l, with both low and high

overlap).

For each of the two conditions studied, two values of 1) were considered; xW = (0, 0)*

and xV) = (.6, .6)T. 1000 independent simulations were performed in each case. For each
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simﬁla.tion, the individual and joint MLE’s in\}blving =1 were obtained. In addition, £« was
estimated by least-squares (i.e. PLO . Mi% Mgl)) In the case of the joint MLE, a single realization
of columns 2-20 of X, was obtained by independently sampling the uniform distribution on [-.9, .9]
38 times. These simulations were carried out on an IBM-compatible personal computer using
MATLAB® (Moler, et al., 1991).

Figures 4 and 5 summarize the distributions of the first elements of three estimators when
M = (0, 0)T and ) = (-6, .6)", respectively. Note that the distributions of the second elements
of the three estimators are similar to the distributions of the first element because of symmetry and
are not displayed. When the spectral overlap is relatively high, the joint MLE offers a significant
reduction in variability when compared to the individual MLE; whereas when the spectral overlap
is relatively low, the joint MLE offers a more modest reduction il‘l variability. Significantly, wild
values that occasionally appeared in the individual MLE when the overlap was high (maximum
and/or minimum values of the first element of £(*) were offscale in Figures 4 and 5) did not appear
when using the joint MLE. For example, the maximum value of the first element of £ exceeded

3.8, when M = (-6, .6)T and the overlap was relatively high.

It is also interesting to compare the performance of the simpler least-squares estimator
with the two MLE’s for the cases considered. In these cases, the least-squares estimator, i(l), has
smaller dispersion than the two MLE’s. However, when x(!) = (-6, .6)T the least-squares estimator
exhibits significant shrinkage towards (0, 0)T. When x(!) = (0, 0)7, the shrinkage towards (0, 0)T

causes no problem.

These simulations indicate that the joint MLE is an improvement over the individual MLE
by reducing dispersion while maintaining quasi-unbiasedness. When compared to the least-squares
estimator, both MLE’s offer relative unbiasedness while sacrificing dispersion. The bias associated
with the least-squares estimator can be significant if the new x is far from the center of the x’s in

the training set.

It is also informative to compare various estimates of B that can arise during the
calibration experiment (calibration and prediction). Here, for example, we will consider a single
realization when q = 100, the overlap is relatively high (see Figure 3), o2 = .01, and Xi = th.
Columns 2-20 were obtained as described earlier in this section while x(!) = (0, 0)T. Figure 6
portrays the estimate of B based only on the calibration phase for one realization of the simulation
(see equation 1.2). Figure 7 portrays the analogous estimate of B based only on the calibration

phase and y(l), corresponding to equation 3.2. (individual MLE). Figure 8 portrays the analogous
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estimate of B based on the calibration phase and all columns of Y, corresponding to equation 4.3
(joint MLE). The estimator of B obtained by joint maximum likelihood estimation incorporates all
available information from both the n calibration samples and r new samples. As illustrated in
Figures 5, 6, and 7, the estimator of B obtained by using all columns of Y, can be much more

precise than either of the other two estimators given. This advantage is present when d '; I is much

larger than one.

7. CONCLUSION

When a classical multivariate calibration model is used repeatedly to predict some
characteristic, maximum likelihood estimation involving the simultaneous use of responses from a
batch of new samples can significantly improve prediction. This is éspecially true when the number
of calibration samples is small, the response specificity is poor, and the new samples are numerous
and well spread out. Furthermore, the limiting distribution of the joint maximum likelihood
estimator, obtained directly from the errors-in-variables literature, can be used directly to develop

approximate simultaneous confidence regions for X,

The inherent batch nature of chemical assays makes joint estimation a potentially useful
improvement in a number of calibration applications in analytical chemistry. The explicit nature of
the causal model discussed in this paper makes it possible to take advantage of joint estimation.
However, without an explicit model, as is the case of some of the popular methods in the
chemometrics literature (e.g., partial least squares regression), it is probably more difficult to

simultaneously incorporate the responses from a batch of new samples during prediction.
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APPENDIX - DERIVATION OF THE LIMITING DISTRIBUTION OF vec (X, — X,)

In derivation of the limiting distribution of %,, Fuller (1987), page 129, provides
an intermediate result that is used here. As a special case of this result, with Q@ known to
within a multiple,

xo"') xé’) = m'12 q? i &+ 0 (q° 1), where

8t _( Vit — tl% A,vﬁ), and v; it = e(’) 7t—6{xg)

To obtain the limiting distribution of vec (X — X,), we first find that
Cov (g;¢ 8;) = o2 ¥;b b'f-i- ot {922 ¥; — A, AJT} and

Cov (&8 = 2 2 (95— 1)bbf + 00y (4 1 - 1)+ AjA] +2A; AT(

- A { (%) + (B0}

Let g = vec (gu, €2t ---» Bm¢)- From previous assumptions, we know that the g are i.i.d.

%)

random variables with E[gi] = 0. Therefore, using the central limit theorem we find that
_1 -

as q—=00, T 2 vec(X, _.xo):"; Normal (0,1), where

rll rl,?O"’I‘l

P rz,z - r2,m

G,;= ¢m22+ m22(922¢j_AiAiT)m_212’

(%)

- 2Aj AE{(%,‘/; 1)+(¢k¢; 1)}}m22’ where ¢ ( —x(()j)T) Q(l,—x(()k)T)T,

T

=128} ), om0 Ay (- )
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Table 1- Comparison of the diagonal elements of YO andT! for various values of (xq5 X9).
AR.E.(TL(, 1)) = T°(, i)/, i);i=1,2

a2 X;  Overlap qT(, i) AR.E. (T (i, i) AR.E.(T (i, 1))
x = (0, 0)T = (.6, +.6)T
01 X; High 649 1 62
001 X;  High .0649 1 .62
01 X; High 552 1 93
001 X;  High 0552 1 93
01 X Low .296 1 .62
001 X;  Low .0296 1 .62
01 X;  Low .252 1 .94
001 Xy Low 0252 1 94

Table 2- A.R.E. (T22(i, 1)) = T°(i, i)/Y22(i, i) for various values of x,

AR.E.(T2(1, 1)) = AR.E.(T22(2, 2))

o’ Xt Overlap x
0, )T (--6, -.6)T or (.6, .6)T (--6, .6)T or (.6, -.6)T

01 X;  High .92 57 .58
.001 th High 99 .62 .62
.01 th High .96 .89 .89
.001 th High 1.00 .93 93
.01 xh Low 97 .61 .61
.001 Xh Low 1.00 .62 .62
.01 X,r2 Low .98 .92 92
.001 X,[z Low 1.00 93 .93
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Table 3- A.R.E.(T®(i, i) = T, i)/Y? (i, i) for various values of x®.

ARE.(T%(1, 1)) = A.RE.(T?(2, 2))

o? Xt Overlap x(V
(0, 0)T (-6, -6)T or (.6, .6)T (-6, .6)T or (.6, -.6)T

.01 th High .65 41 .45

.001 th High 95 .60 .60

.01 th High 92 .86 87

.001 th High 99 .93 ;.93

.01 th Low .85 .54 .55

.001 th Low 99 .62 .62

.01 sz Low .98 91 91

.001 sz Low 1.00 93 .93

Table 4- A.R.E. (Y2 (i, i)) = 10(i, i)/ Y2 (i, i) for various values of x(1),
ARE.(T%(1, 1)) [A.R.E.(T2(2, 2))]
o? Xt Overlap x(
(0, 0)T (-.6,-.6)T or (.6, .6)T (-6, .6)T or (.6, -.6)T

.01 th High 75 [.71] AT [.45] .50 [.48]

001 Xh High .97 [.97] .60 [.59] .61 [.60]

.01 X,‘z High .93 [.93] .87 [.87] .87 [.87]

.001 th High 1.00 [1.00] .93 [.93] .93 [.93]

.01 th Low .92 [.86] .58 [.55] .59 [.56]

001 Xn Low .99 [.98] .62 [.62] .62 [.62]

.01 th Low .98 [.98] .92 [.91] .92 [.91]

.001 th Low 1.00 [1.00] .93 [.93] .93 [.93]
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Table 5- A.R.E.(T, (i, i)) = TO(3i, i)/ Iy (i, i) for various values of W,

AR.E.(Ty(1, 1)) = AR.E.(Ty(2, 2))

19

o2 Xf Overlap <
(0, 0)T (--6, -.6)T or (.6, .6)T (--6, .6)T or (.6, -.6)T

.01 th High .53 34 40
.001 th High .92 57 .59
01 Xh High .92 .86 .86
.001 XT2 High 99 93 . 93
01 th Low .78 49 .52
.001 th Low 97 .61 .61
01 th Low 97 91 91
.001 X,tz Low 1.00 93 93
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Figure 1- Hypothetical Spectra When Components Are At
Unit Concentration. The spectra of components 1 and 2 are
represented by a dashed curve and a solid curve, respectively.

The frequency index is given in arbitrary units from 0 to 600.
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Figure 2- The Values of B When q=20. The elements of the
first row of B are given by the ordinates of the a’s. The

elements of the second row of B are the ordinates of the +’s.
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Figure 3- Hypothetical Spectra With Severe Overlap.
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Figure 4- Box Plots of the distributions of the three estimators
of the first element of x*=(0, 0)". The order statistics
indicated are the minimum, lﬂth, 250th, median, 7515t, 9918t,
and maximum. The simulation condition is indicated by the
spectral overlap (OL). OL=L refers to the conditions of Figure
1 (relativelyl low overlap), while OL=H refers to the conditions

of Figure 3 (relatively high overlap).
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Figure 5- Box Plots of the distributions of the three estimators
of the first element of x = (.6, .6)".
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Figure 6- Estimates of the first () and second (+) rows of B
based only on the calibration phase. The spectra that defines

the first (----) and second (—) rows of B are overlaid for

comparison.
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Figure 7- Estimates of the first (a) and second (+) rows of B
based on individual maximum likelihood estimation (see

equation 3.2).
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Figure 8- Estimates of the first (A) and second (+) rows of B
based on joint maximum likelihood estimation (see equation

4.3).
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