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ABSTRACT: 

We present a method for hierarchical image segmentation and feature extraction. This method builds upon the combination of the 
detection of image spectral discontinuities using Canny edge detection and the image Laplacian, followed by the construction of a 
hierarchy of segmented images of successively reduced levels of details. These images are represented as sets of polygonized pixel 
patches (polygons) attributed with spectral and structural characteristics. This hierarchy forms the basis for object-oriented image 
analysis. To build fine level-of-detail representation of the original image, seed partitions (polygons) are built upon a ,triangular mesh 
composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the 
triangular mesh on the top of the detected spectral discontinuities that form a network of constraints for the Delaunay triangulation. 
A polygonized image is represented as a spatial network in the form of a graph with vertices which correspond to the polygonal 
partitions and graph edges reflecting pairwise partitions relations. Image graph partitioning is based on the iterative graph 
oontraction using Boruvka's Minimum Spanning Tree algorithm. An important characteristic of the approach is that the 
agglomeration of partitions is constrained by the detected spectral discontinuities; thus the shapes of agglomerated partitions are 
more likely to correspond to the outlines of real-world objects. 

1. INTRODUCTION 

Graph theory provides a general framework for image 
segmentation. According to the graph-theoretic approach, image 
elements such as pixels or regions (a.k.a. blobs, superpixels, 
pixel patches, polygons) are described using a weighted graph. 
Image segmentation is formulated as a graph-partitioning 
problem, where produced graph partitions have a semantic 
meaning in the real world. Although numerous graph 
partitioning based image segmentation approaches were 
developed, analyzed and showed good results for processing of 
general outdoor imagery, their scalability to the analysis of very 
large datasets of satellite imagery remains a challenge. The 
reduction of computational complexity is often achieved by 
agglomeration of pixels into larger patches, superpixels, prior to 
image partitioning. This effectively reduces the number of 
image data elements to be processed. A variety of approaches of 
grouping pixels into superpixels have been proposed. The used 
techniques include watershed transform (Vincent and Soil Ie, 
1991), Mean Shift, that is a kernel based density estimation 
technique (Cheng, 1995; Comaniciu and Meer, 2002; Fukunaga 
and Hostetler, 1975), and Delaunay triangulation. The 
normalized cuts or other method can then be applied to partition 
the graph of the pixel patches produced by the watershed 
transform, Mean Shift, or triangles and their groups (polygons) 
produced by Delaunay triangulation (DT). Bock et al. (Bock et 
aI., 2005), Monteiro and Campilho (Monteiro and Campilho, 
2008) presented combinations of watershed transform and the 
normalized cuts. Tao et al. (Tao et aI. , 2007) investigated 
integration of Mean Shift and the normalized cuts. It was also 
proposed to use constrained Delaunay triangulation (COT) to 
replace pixels with a set of triangles. Cobzas and Zhang 
(Cobzas and Zhang, 200 I) construct the triangular mesh via 
COT that is based on the detected edges. Then, generated 
triangles are iteratively merged using their spectral similarity. 
Wu and Yu (Wu and Yu, 2003) applied normalized cuts to 
group triangles of the triangular mesh that is also generated by 
COT over the detected edges. Similar to last two approaches, 

Prasad and Skourikhine (Prasad and Skourikhine, 2006) 
combined edge detection and COT. They augmented this 
combination with heuristic criteria of perceptual organization to 
create initial polygonized image partitioning. Skurikhin 
(Skurikhin, 2008) presented a hierarchical image segmentation 
method that builds upon this polygonized image representation 
and evaluated the method using general outdoor imagery from 
the Berkeley Segmentation Dataset (the Berkeley Segmentation 
Dataset and Benchmark). In this paper we extend the work of 
(Skurikhin, 2008) by (I) combining edge detection with the 
image Laplacian to refine the initial edge dataset, and (3) 
evaluating an approach using satellite imagery. 

The paper is structured as follows. The second section presents 
related research in the area of image segmentation using 
proximity graphs. The third section presents our method for 
image segmentation. The fourth section presents an evaluation 
of our approach by using satellite imagery. Finally conclusions 
are presented in the last section. 

2. RELATED WORK 

2.1 Proximity Graphs Based Segmentation 

Delaunay triangulation and related proximity graphs such as 
MST, Relative Neighborhood Graph, and Gabriel Graph have 
been widely used in image analysis and spatial modeling. Much 
work has been devoted to the optimal image hierarchic 
partitioning through a sequence of local computations based on 
proximity graphs, specifically MST. The MST based image 
segmentation seeks image partitioning by iteratively linking 
image elements through the lowest cost tree edges, which 
represent similarity of neighbouring elements. One of the 
earliest applications of tree-based data clustering to visual like 
point data sets analyzed histogram of MST edges and 
investigated tree characteristics such as MST "relative 
compactness", tree diameter, and point densities was proposed 



in (Zahn, 1971). Horowitz and Pavlidis (Horowitz and Pavlidis, 
1976) applied a tree-based concept image segmentation. lt was 
suggested to use global homogeneity criterion to control 
construction of an irregular pyramid starting !Tom a regularly 
sampled pixel grid. Morris et al. (Morris et aI., 1986) proposed 
hierarchic image segmentation approach based on Kruskal's 
MST construction algorithm (Kruskal, 1956), starting !Tom a 
regular pixel grid. Hierarchic merging of pixel patches is 
controlled by updated intensity dissimilarities between the 
agglomerated patches. Montanvert et a!. (Montanvert et a!., 
1991), Jolion and Montanvert (Jolion and Montanvert, 1992) 
used irregular tessellations to generate an adaptive multi-scale 
image representation. The approach employs an irregular 
sampling of the pixel grid to build the initial (fine scale) image 
representations. The irregular sampling hierarchy is then 
recursively built !Tom the lower scales. The result depends on 
the stochastic nature of the sampling procedure. Xu and 
Uberbacher (Xu and Uberbacher, 1997) used Kruskal's 
algorithm to construct MST of the image !Tom a regularly 
sampled pixel grid . The tree is then partitioned by an 
optimization algorithm into subtrees based on the subtrees' 
spectral similarities. A set of produced subtrees represents a 
sought image partition. Similar to the work of (Xu and 
Uberbacher, 1997), Felzenszwalb and Huttenlocher 
(Felzenszwalb and Huttenlocher, 1998) started !Tom a regular 
pixel grid and used Kruskal's algorithm to construct MST of the 
image. However, MST construction is based on thresholding a 
ratio of the variation between neighboring pixel patches and the 
variation within the patches. To avoid image over­
fTagmentation, the approach adjusts the measure of variation 
using the ratio of the sizes of neighboring pixel patches. The 
extent of this adjustment controls how easily small patches are 
merged with the larger neighbors. The approach proposed in 
(Kropatsch et a!., 2007; Haximusa and Kropatsch, 2004) 
controls the grouping of pixels into patches based on image 
variation in similar fashion how it is done in (Felzenszwalb and 
Huttenlocher, (998). The difference between two approaches is 
that the approach of (Kropatsch et aI., 2007; Haximusa and 
Kropatsch , 2004) uses Boruvka's MST construction algorithm 
(Boruvka, 1926; NeSeti'i1 et aI., 2001) instead cf Kruskal's 
algorithm that is used in (Felzenszwalb and Huttenlocher, 
1998). Computational complexity of Kruskal ' s algorithm is 
O(ElogE), and the complexity of Boruvka's a:gorithm is 
O(ElogN), where E is the number of edges in the graph. In 
contrast with Kruskal's MST construction algorithms, that build 
the MST one edge at a time, Boruvka's algorithm z.dds several 
MST edges at each stage. Skurikhin (Skurikhin, 2008) uses 
Boruvka's MST construction algorithm as well. In contrast with 
the stated approaches that start !Tom regular or irregular pixel 
grids the method of (Skurikhin, 2008) builds zn irregular 
hierarchy of image partitions starting !Tom triangular 
tessellation of the image. Iterative agglomeration is controlled 
by the cost function based on spectral similarity and strength of 
edges. Termination of the agglomeration is controlled by global 
thresholding. 

3. IMAGE SEGMENTATION 

In a polygon-based image pyramid, each level r~resents a 
polygonal tessellation of the image. The pyramid is built 
iteratively !Tom bottom-up using only local interac~ions of the 
neighboring polygons. On the lowest level (1=0, fine level of 
detail) of the pyramid the polygons are constructed !Tom an 
irregular triangular tessellation of the image; they are unions of 
triangles. On higher level (/>0, coarser level of detail) of the 

pyramid the polygons are unions of neighboring polygons on a 
lower finer level (I-I). The polygons on level I of the pyramid 
are considered as the vertices of an undirected graph C/. The 
edges of the graph describe the adjacency relations between the 
polygons on level I. Thus C/ =( VI. E/) , where V/ is the set of 
vertices, and E/ is the set of edges. The derivation of C/+/ !Tom 
C/ is formulated as construction of an MST of C/. MST 
construction is based on Boruvka' s algorithm. The built 
pyramid P is described as a stack of graphs C/ representing the 
image in a fine-to-coarse hierarchy. 

3.1 J nitial [mage Partitioning 

Polygons on the lowest (fine) level of a pyramid are built upon 
the triangular tessellation of the image. The tessellation is based 
on COT of the detected edges. In contrast with (Skurikhin, 
2008) that applies the triangulation directly to the edges, such 
as those detected with Canny detector (Canny, 1986), we 
introduce filtering of the detected edges using the image 
Laplacian and morphological processing prior to the 
triangulation. The basic idea is that the Laplacian is close to 
zero in regions with relatively uniform intensity and where the 
edges are. By differentiating these two cases, it is possible to 
filter out the edges detected inside "flat" regions. This 
effectively reduces the number of edges for further analysis. At 
the same time, because we use edges detected at fine scale, the 
localization accuracy of the kept edges remains high. Given the 
detected edges and computed image Laplacian, the filtering 
steps are: 

I. Threshold the image Laplacian to detect "flat" regions, which 
have the Laplacian magnitude close to zero. The threshold is set 
to 4% of the absolute range of the image Laplacian. The result 
is binary Laplacian image. 
2. Apply morphological erosion to the binary Laplacian image 
to delete small "flat" regions. 
3. Apply morphological closing to the binary Laplacian image. 
This steps keeps those regions, where the edges are detected. 
4. Delete edges inside "flat" regions. 

The example result of the edge filtering processing is shown in 
Fig.l. The filtered edge set is then triangulated based on CDT 
(Schewchuk, 1996). Therefore, the generated mesh is adapted to 
the image content, because the constraints are the detected 
edges. The generated triangle edges link the (Canny) detected 
edges which are often fTagmented. In order to create initial set 
of polygons (superpixels), which serves as fine level-of-detail 
(LOD) image representation and is used as a starting point for 
hierarchical segmentation, the generated triangle edges are also 
subject to filtering process. The used triangle edge filtering is 
similar to the one in (Prasad and Skourikhine, 2006). Steps of 
triangle edges processing are: 

I . Delete triangle edges based on their length. The threshold is 
set to three times median triangle edge length. 
2. Process the remaining triangle edges using proximity and 
closure principles (Fig. 2) inspired by the visual psychology and 
perception studies (Wertheimer, 1958). 

Proximity keeps the shortest triangle edge that connects end 
point of an edge chain to the other edge chain end point or 
interior (Fig. 2a). The closure rule is responsible for filtering 
out triangle edges which are bounded by the same detected edge 
chain (e.g., " U"-shape) or the same pair of the detected edges 
(Fig. 2b). This triangle edge filtering results in a set of closed 
contours consisting ofa combination of the preserved triangle 



(a) Result of Canny edge detection; no edge filtering applied. 

(b) Result of edge filtering using the image Laplacian. 

Figure I. An illustration of the edge filtering using the image 
Laplacian. Edges are shown in black. The image is a 
crop of the image shown in Fig. 5. 

edges and spectrally detected edges. Finally, a graph traversal 
algorithm (e.g. depth-first search or breadth-first search) groups 
triangles within the constructed closed contours into polygons. 
These polygons are assigned median colour based on a 
sampling of triangles forming polygons. Thus the image is 
segmented in a set of spectrally attributed polygons. 

3.2 Hierarchical Image Segmentation 

Once the polygon-based image representation on the fine 
(lowest) level of a pyramid is produced, we iteratively group 
neighbouring polygons on levell into larger polygonal chunks, 
producing level (/+ J) of the image pyramid. Polygon 

(a) Triangle edge filtering based on proximity. Shortest edges 
closing gaps are kept. Cyan edges are kept, blue 
edges are deleted. 

(b) Triangle edge filtering based on closure. 

Figure 2. Triangle edge filtering based on closure and 
proximity. Canny edges are shown in red , triangle 
edges are shown in cyan and blue. 

agglomeration is based on Boruvka's algorithm to construct 
MST. Boruvka's algorithm proceeds in a se<:Juence of stages, 
and in each stage it identifies a forest F consisting of the 
minimum-weight edge incident to each vertex in the graph G, 
then forms the graph G1 = G\F as tbe input to the next stage. 
G\F denotes the graph derived from G by contracting edges in 
F. This agglomeration iteratively goes until dissimilarity 
threshold is exceeded. 

The quality of segmentation depends on the pairwise polygon 
adjacency matrix, containing £,. The attributes of edges are 
defined using two features : colour similarity in CIELab space, 
f).Ci;' and strength of the contour fragment separating polygons, 
SUo We evaluate the affinity Wij between two neighbouring 
polygons i and): 

(I) 

(2) 

where f).Cij is the distance between two polygons in 
ClELab space, 
N is the number of edge fragments shared by two 
neighboring polygons (Fig. 3), 
L is the length of the shared contour segment, 
h is the length of the shared edge fragment belonging 
to a given contour fragment , 
s, is the strength of the shared edge fragment. 

The spatial layout of the polygons changes after each 
agglomeration iteration. Therefore the adjacency matrix 
corresponding is re-eval uated each iteration. 



Polygon B 

Figure 3. An example of the contour fragment shared by two 
neighbouring polygons A and B. The shared contour 
fragment consists of five edge fragments that can be 
spectrally detected (Canny) edge and triangle edges. 

4. EXAMPLES 

Figures 4 through 7 illustrate segmentation results produced by 
our approach. it should be noted that we have used the same 
settings in all experiments. Fine level of detail of a pyramid is 
constructed using Canny edge detector with the UCI/I/IIY = I, 
hysteresis low threshold = 5, and hysteresis high threshold = IS. 
We use the Triangle code (Schewchuk, 1996) to generate 
triangular tessellation over the detected edge map. TIlreshold for 
the image Laplacian is 4%. Color images were processed using 
CIELab space. Global threshold was set to IS because the 
perceptually significant difference in color space is estimated in 
the range (15,30). A method produces consistent outlines of the 
real-world objects. However, note that that some objects that are 
present at finer LODs are missing at coarser LODs. For 
instance, Fig. 5 shows an example of segmenting most pixels of 
the plane in the top left comer of Fig.5 together with 
surrounding background, though at finer LODs the plane 
chunks are distinct from the background (Fig. 6d). This is the 
subject of further investigation. 

Figure 4. Segmentation example corresponding to S(c). 
Contours of the constructed polygons (in white) are 
superimposed on the top of the original image. 

(a) ©Digital Globe, Inc .. Original image, 867 x 867 pixels. 
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(b) Segmentation result at LOD 
polygons = 884 . 
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(c) Segmentation result at LOD 
polygons = 286. 
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Figure 5. Segmentation example. 



(a) ©Digital Globe, Inc .. Original image of 2,897 x 2,891 
pixels. 

(b) Result of the image segmentation on the 12th LOD. The 
number of constructed polygons is 602. Each 
polygon is attributed with the colour averaged over 
the colours of the pixels covered by polygon. Data 
reduction factor (number of pixels divided by 
number of polygons) is 13,912. Triangulation 
tessellation generated by the Constrained Delaunay 
triangulation over the edge set contained 1,722,514 
triangles. 

Figure 6. An example of the hierarchical image segmentation. 

(c) Zoomed in region that is located in the middle of the 
original along the coast line. Contours (in red) of the 
constructed polygons are superimposed on the top of 
the original image. 

(d) Zoomed in region corresponding to that in (c). Constructed 
polygons are outlined with the contours in red. 

Figure 7. Details of the segmentation shown in Fig.6(b). 



5. CONCLUSIONS 

We have presented a segmentation method to construct a fine­
to-coarse hierarchy of image partitions by means of edge 
detection, the exploitation of image derivatives and minimum 
spanning tree construction. The method yields good results that 
can be used by the search for objects of interest across the 
generated image hierarchy. Further improvement of the edge set 
that can preserve semantically salient but weak edges might 
require combination with region-based approaches. A future 
area of work will also be scale-space texture analysis, in 
particular, adding textures characteristics to the feature vectors 
describing polygons and their pairwise relations. 
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