

2Eb 0 8 1008

THE ROLE OF THE RESID SOLVENT IN CO-PROCESSING WITH FINELY DIVIDED CATALYSTS

Contract No. DE-AC22-91PC91055

Quarterly Report April - June 1993

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or bility for the accuracy, completeness, or usefulness of any information, apparatus, Referprocess disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommanufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or re-lect those of the United States Government or any agency thereof.

Christine W. Curtis Chemical Engineering Department Auburn University, Alabama 36849

MASTER

Nb/57QTR.RFT

1,0

TOTAL OF THE THE CHECK CONTROL OF THE

Acknowledgements

The research of Mr. Jing Shen is gratefully acknowledged. The technical and secretarial assistance of Frank Bowers, Joe Aderholdt, Patricia Sandlin, Janice Johnson, and Jia Lee are sincerely appreciated.

Table of Contents

troduction	1
xperimental	2
esults and Discussion	4
ımmarv and Future Work	8

INTRODUCTION

The overall objective of this project is to evaluate the role of the resid in coprocessing. The primary purpose of the work performed this quarter was to establish under thermal and catalytic reaction conditions whether hydrogen transfer occurred between cycloalkane type structures that are present in resids and heteroatomic species that are present in coal and liquefied coal.

The research this quarter focused upon evaluating benzophenone (BENZ) as a model acceptor for hydrogen that might be transferred from a cycloalkane, perhydropyrene (PHP), under coprocessing conditions. Hence, a number of reactions was performed in which BENZ was reacted alone in hydrogen and nitrogen atmospheres in the presence and absence of a catalytic agent, molybdenum naphthenate. Reactions were also performed using a combination of PHP and BENZ at a 1 to 1 weight ratio. These reactions were performed under thermal and catalytic conditions using two temperatures, two types of atmospheres, N₂ and H₂, and two pressures, 500 and 1250 psig. The catalyst used was Mo naphthenate with excess sulfur being added as elemental sulfur.

Also performed this quarter were initial separations with petroleum resids. Two different resids were used, Maya and LHC-362. The literature was also surveyed to determine important characteristics that should be evaluated for selecting resids. On the basis of the literature, resids with high metal and sulfur contents will most likely cause catalytic deactivation during the coprocessing of coal and resid. Hence, those characteristics should be minimized. The resids that are desired for this project are resids with high-, medium-, and low-naphthenic content. Different levels of asphaltenes are also desirable. Resids with these characteristics are currently being sought.

1

The model compound PHP that had been commercially available as naphthene representative of resids is now no longer available. Hence, several scoping experiments were performed in order to determine conditions for synthesizing PHP. The synthesis procedure reported in US Patent 3,303,227 was used as a basis for this work. Although more than 85% PHP was synthesized, partially hydrogenated pyrenes were also produced which will require separation in order to obtain pure PHP.

EXPERIMENTAL

Benzophenone and Perhydropyrene Reactions. The reactants, BENZ and PHP, were purchased from Aldrich Chemical Company and were used as received. Other chemical species used in the analysis, diphenylmethane (DPM) and biphenyl (BP), were also obtained from Aldrich Chemical Company and were used as received. Molybdenum naphthenate was obtained from Shepherd Chemical Company.

Reactions were performed with BENZ alone and with BENZ combined with PHP. All of the reactions were performed in ~20 cm³ stainless steel microtubular reactors. The reactor was charged first with catalyst and then the reactants, which were usually about 0.1 g each and were added in an amount so that the active metal content of the charge was approximately 1000 ppm. The loaded reactor was then charged with either hydrogen or nitrogen gas of either 500 or 1250 psig at ambient temperature. The reactions were then performed at two different temperatures, 400 and 440 °C, at an agitation rate of 450 rpm with the reactors being shaken horizontally.

The liquid and solid reaction products were recovered by THF and analyzed using a Varian 3300 gas chromatograph (GC) equipped with a 30 m HT-5 capillary column and flame ionization detection. Quantitation was performed using the internal standard method with

biphenyl as the internal standard. The GC retention times and response factors for the reactants and predicted products were determined by analyzing authentic compounds. Peaks of unknown products in the GC chromatogram were analyzed by GC-mass spectrometer using a VG 70 EHF mass spectrometer.

Resid Fractionation. Preliminary experiments were performed fractionating resid in which 2 g of resid were first dissolved in 450 ml hexane which was introduced as three 150-ml aliquots. The resid-hexane solution was sonicated and then the hexane soluble material was decanted from the insoluble materials. The hexane insoluble materials were then extracted with 450 ml toluene in 150 ml aliquots. The last extraction used 450 ml THF, also in 150 ml aliquots. Both the resid-toluene and the resid-THF solutions were sonicated. The solvents were removed from the soluble resid fractions by rotary evaporation. The recovered resid fractions were dried in a vacuum desiccator for 36 hr. The resid fraction were then stored in a vacuum desiccator.

Synthesis of Perhydropyrene. Perhydropyrene was synthesized in $\sim 50 \, \mathrm{cm}^3$ stainless steel tubular reactors. The initial reactor charge was 2.0 g pyrene, 0.3 g Pt/Al₂O₃, and 1250 psig H₂ pressure at ambient temperature. The reaction was performed at 375 °C for 5 hr, at which time, the gaseous products were released and the liquid products were analyzed by gas chromatography. Subsequently, 0.3 g of fresh Pt/Al₂O₃ and 1250 psig H₂ at ambient were charged to the reactors. The reaction was repeated at 375 °C for 3 hr and then 4 hr yielding a total reaction time of 12 hr.

Definitions. The amount of hydrogen donated by PHP in the reactions is calculated on the basis of the products achieved and the moles of H_2 released in forming the dehydrogenation products. The equation used in the calculation was

 H_2 Donated = $(3 \times DCP \text{ mol }\% + 5 \times HHP \text{ mol }\% + 6 \times THP \text{ mol }\% + 7 \times DHP \text{ mol }\% + 8 \times PYR \text{ mol }\%) \times 100$

where DCP is decahydropyrene, HHP is hexahydropyrene, THP is tetrahydropyrene and PYR is pyrene. The amount of hydrogen accepted by benzophenone is calculated in terms of the formation of the reaction product, diphenylmethane (DPM). The equation used in calculating hydrogen accepted for BENZ is

 H_2 Accepted = $(1 \times DPM \mod \%) \times 100$.

RESULTS AND DISCUSSIONS

Perhydropyrene and Phenanthrene Reactions. Last quarter reactions were performed using PHP as a naphthene hydrogen donor and phenanthrene (PHEN) as an aromatic acceptor. Thermal and catalytic reactions were performed both in hydrogen and nitrogen atmospheres and at two weight ratios of PHP to PHEN. Two reaction temperatures were used, 400 and 440 °C; the results from the reactions at these two temperatures are given in Tables 1 and 2, respectively. This quarter the amount of H₂ accepted and the amount of H₂ donated for each reaction system was calculated. The amount of hydrogen accepted by PHEN is defined as

 H_2 accepted = (1 x DHPN mol% + 2 x THPN mol%) x 100 where DHPN is dihydrophenanthrene and THPN is tetrahydrophenanthrene. The amount of H_2 donated by PHP is defined as

$$H_2$$
 donated = (3 x DCP mol% + 5 x HHP mol% + 6 x THP mol% + 7 x DHP mol% + 8 x PYR mol%) x 100

where DCP is decahydropyrene, HHP is hexahydropyrene, THP is tetrahydropyrene, DHP is dihydropyrene, and PYR is pyrene. The values given in the tables for H_2 accepted and H_2 donated are based on 100 mol of product.

4

The moles of H_2 donated in a H_2 atmosphere was based totally on the dehydrogenated products formed from PHP. The reactions in H_2 which contained MoNaph and sulfur resulted in the most dehydrogenation of PHP at 400 °C at both PHP to PHEN weight ratios of 1:1 and 5:1 (Table 1). The amount of H_2 donated in the thermal reactions and the reactions with NiOct was very similar at both weight ratios.

The moles of H₂ accepted were based on the hydrogenated products of PHEN; however, the source of H₂ for hydrogenated came from both PHP and the H₂ atmosphere. Hence, when a H₂ atmosphere was used at 400 °C, more H₂ was accepted by PHEN than was donated by PHP (Table 1). At both weight ratios, the reaction with MoNaph and sulfur gave the most amount of H₂ accepted. The amount of H₂ accepted for both the thermal reactions and the reactions with NiOct were similar and less than that observed with MoNaph and sulfur.

The amount of H_2 donated and accepted at 440°C was similar to those observed at 400 °C as shown in Table 2. In a H_2 atmosphere, substantially more H_2 was accepted than was donated. The reactions with MoNaph and sulfur showed the largest amount of H_2 transferred at both weight ratios.

The reactions of PHEN alone at 400 and 440 °C in H₂ gave hydrogenated products of DHPN and THPN (Table 3). This hydrogenation resulted from hydrogenation by molecular H₂. As with the PHP and PHEN combined reactions, the reactions with PHEN alone in the presence of MoNaph and sulfur resulted in the most hydrogenation of PHEN. When the H₂ accepted with PHEN alone was compared to the H₂ accepted with PHP and PHEN combined in a 5:1 weight ratio, the reactions of PHEN with PHP resulted in more H₂ being accepted for every reaction. This comparison is given in Table 4.

Perhydropyrene and Benzophenone Reactions. Reactions were performed with PHP and BENZ under both thermal and catalytic conditions in H₂ and N₂ atmospheres as shown in Table 5. Two hydrogen pressures were used in the reactions, 500 and 1250 psig. Most of the reactions were conducted at 440 °C although a few were performed at 400 °C. The reaction products achieved from the dehydrogenation of PHP were decahydropyrene (DCP), hexahydropyrene (HHP), tetrahydropyrene (THP), dihydropyrene (DHP), and pyrene (PYR). The reaction product achieved from the hydrogenation of BENZ was diphenylmethane (DPM).

Catalytic reactions using Mo naphthenate at 1000 ppm of active metal resulted in more dehydrogenation of PHP than did thermal reactions under the same conditions. BENZ also hydrogenated substantially more under catalytic conditions than under thermal conditions regardless of the H₂ pressure.

Comparison of reactions of BENZ and PHP under N_2 atmosphere to those in H_2 showed that BENZ was much more reactive in H_2 than in N_2 . The presence of the MoNaph catalyst with N_2 had little effect on the conversion of BENZ as would be expected. The moles of hydrogen accepted by BENZ in the reactions with N_2 had to come from the H_2 donated from PHP. The moles of H_2 accepted by BENZ in N_2 were less than that donated by PHP. The hydrogen efficiency in N_2 is defined as the moles of H_2 accepted by BENZ divided by the moles of H_2 donated by PHP. The hydrogen efficiency ranged from 32 to 72%. The hydrogen efficiency of the reactions were all substantially greater than one, indicating that H_2 for hydrogenation of BENZ came from molecular H_2 as well as from PHP.

Reactions were also performed under similar reaction conditions with BENZ alone as presented in Table 6. For the thermal reactions without PHP, the amount of BENZ conversion to DPM was greater than in the reactions with PHP. Hence, the presence of PHP inhibited the

hydrogenation of BENZ (Table 7). The moles of H₂ accepted by BENZ based on 100 moles of product was 17.4 with PHP and 30.6 without PHP for reaction conditions of 500 psig H₂ at 400 °C. At 440 °C and 500 psig H₂, the moles of H₂ accepted were 48.6 with PHP compared to 65 without PHP. Likewise, at 1250 psig H₂ and 440 °C, the moles H₂ accepted were 54.8 with PHP and 77.1 without PHP. The reactions with MoNaph+S at 440 °C and 500 or 1250 psig H₂ reacted with PHP resulted in slightly less H₂ accepted than the reactions with BENZ alone.

In N_2 , a background level of DPM was observed for both thermal and catalytic reactors. This hydrogen could have been transferred from H_2 released if any dimerization of BENZ occurred. However, the moles of H_2 accepted by BENZ in N_2 was less when BENZ was reacted alone than that accepted in N_2 with PHP present.

Resid Analysis. The solvent fractionation of two resids that were available in our laboratory was performed. The resids were fractionated to determine if they contained different amounts of oils and asphaltenes. The resid LHC-362 contained considerably more hexane solubles at 83.4% that did Maya at 62.8% (Table 9). These resids will be used in the initial work that is done. However, resids of different naphthene contents, high, medium, and low, are being sought for the project.

Synthesis of Perhydropyrene. The supplier of PHP has ceased to carry the chemical. Hence, some preliminary work was performed in order to synthesize PHP from PYR. The synthesis of PHP was based on the information given in U.S. Patent 3,303,227. The reaction was begun with PYR since no partially hydrogenated pyrenes were available. Initially, reactions were performed with presulfided NiMo/Al₂O₃; however, insufficient hydrogenation of PYR occurred. The catalyst was then changed to Pt/Al₂O₃. The hydrogenation of PYR was then

performed in microtubular reactors. A reaction temperature of 375 °C was used after several other reaction temperatures were tested. The reaction was performed in three stages. After the first 5 hr, the reaction was stopped and a sample taken. The primary product was DCP; a small amount of PHP was formed (Table 10). Additional catalyst and hydrogen was added to the reactor and the reaction was performed for another 3 hr. After a cumulative reaction time of 8 hr, 86.6% PHP was formed. An additional 4 hr of reaction had no effect on the product distribution. Hence, at 375°C the reaction seemed to reach equilibrium. Other reaction conditions will be evaluated in order to determine if more PHP can be formed.

Summary and Future Work

The research performed this quarter involved both experimental and calculational work. Calculation of the amount of H_2 accepted based on 100 moles of product for the phenanthrene and perhydropyrene system showed that more H_2 was accepted at all the reaction conditions when PHP was present than when it was not present. At the lower temperature of 400 °C, the presence of PHP made a greater difference than at 440 °C.

Reactions were also performed using benzophenone as an acceptor. Benzophenone was quite reactive under high temperature and catalytic conditions. For BENZ, the presence of PHI was detrimental to the amount of H_2 accepted in the reactions performed in a H_2 atmosphere. More H_2 was accepted by BENZ in the reaction where it was reacted alone. In N_2 the opposite was true; BENZ accepted more H_2 when PHP was present than when BENZ was reacted alone.

Next quarter, experimentation will begin using resids. Initially, the resids will be separated into saturate and aromatic fractions in order to evaluate the amount of naphthenes present and also to determine the effect of naphthenes on the coprocessing of coal with resids.

Table 1. Reactions of Perhydropyrene and Phenanthrene at 400°Ca

Reaction	Atmosphere	PHP:PHEN	Product	Product Distribution (mol%)	(mol%)	PHEN	H ₂ Accepted ^e Based on 100	H ₂ Donated' Based on 100
Condition	•	Ratio	PHEN	DHPN	THPN	Conversion %	Product (mol)	(mol)
-	'n	5:1	95.4(1.2)	1.8(0.4)	2.8(0.8)	4.6	7.4(2.1)	1.8(0)
I nermai	11.2 U	2:-5	82.8(0.1)	10.7(0.6)	6.5(0.1)	17.2	23.7(0.1)	6.3(0)
Monaph+5	112	5.1	94 2(0.1)	2.0(0.1)	3.8(0.0)	5.8	9.6(0.1)	1.7(0.1)
NiOct	n ₂	; :	(6 0) 1 20	(0 0)	1 4(0 2)	2.9	4.4(0.3)	1.2(0.1)
Thermal	H ₂	1:1	97.1(0.2)	(0.0)6.1	(2.0)			
MoNanh+S	H	1:1	86.9(2.0)	9.0(1.5)	4.1(0.5)	13.1	17.2(2.5)	6.2(0)
o individual	H	1:1	97.9(0.1)	1.1(0.3)	1.0(0.3)	2.1	3.1(0.7)	1.7(0.1)
MIOCE	T I	=	98.1(0.5)	0.9(0.3)	1.0(0.3)	1.9	2.9(0.7)	0.0(0)
Denzounopnene	2 2	1.5	98.4(0.2)	0.0	1.6(0.2)	1.6	3.2(0.4)	3.8(0)
I hermal	2 2	3 3	00000	0.0	1.0(0.0)	1.0	2.0(0.0)	3.9(0)

^a Reaction Conditions: 30 min; 1250 psig H₂ or N₂ charged at ambient temperature.

^b Mo = Mo naphthenate

Ni = Ni octoate

c PHEN = phenanthrene; DHPN = dihydrophenanthrene; THPN = tetrahydrophenanthrene; PHP = perhydropyrene d Benzothiophene: 1000 ppm S used as a catalyst to promote hydrogen transfer between cycloalkanes and aromatics.

e H₂ Accepted = (2 x THPN mol% + 1 x DHPN mol%) x 100

f H₂ Donated = (3 x DCP mol% + 5 x HHP mol% + 6 x THP mol% + 7 x DHP mol% + 8 x PYR 1.001%) x 100

Table 2. Reactions of Perhydropyrene and Phenanthrene at 440°Ca

								4
Reaction		PHP:PHEN	£	Product Distribution (mol%)		PHEN	H, Accepted Based on 100	H ₂ Donated Based on 100
Condition	Atmosphere	Ratio	PHEN	DHPN	THPN	Conversion (%)	motes of Product ^d (mol)	Product (mol)
Thermal	Ĥ	5:1	87.1(1.1)	9.0(0.0)	3.9(1.2)	12.9	16.8(2.3)	8.6(0.1)
WoNaph+ &	H	5:1	79.5(3.6)	14.9(2.1)	5.6(1.5)	20.5	26.2(5.1)	10.7(0.6)
O I III	H.	5:1	87.0(3.4)	9.0(1.3)	4.0(2.1)	13.0	17.1(5.4)	8.7(0)
Thems	H,	Ξ	93.2(1.4)	4.4(0.8)	2.4(0.6)	6.8	9.3(2.1)	0.9(0.1)
MoNorb+C	£ ±	==	87.2(1.3)	9.9(0.7)	2.9(0.6)	12.8	15.8(1.9)	7.5(0.1)
S Indevious	£	==	93.3(0.0)	5.1(0.0)	1.5(0.0)	6.7	8.2(0.0)	7.5(0)
MoNaph+S	Z Z	5:1	97.8(0.2)	0.5(0.1)	1.7(0.7)	2.2	3.9(1.0)	8.9(0.1)

A Reaction Conditions: 30 min; 1250 psig H₂ or N₂ at ambient temperature.

MoNaph = Mo naphthenate

NiOct = Ni octoate

S = sulfur

PHEN = phenanthrene; DHPN = dihydrophenanthrene; THPN = tetrahydrophenanthrene; PHP = perhydropyrene

d = H₂ Accepted = (2 x THPN mol % + 1 x DHPN mol %) x 100

d = H₂ Donated = (3 x DCP mol % + 5 x HHP mol % + 6 x THP mol % + 7 x DHP mol % + 8 x PYR mol %) x 100

Table 2. Reactions of Perhydropyrene and Phenanthrene at 440°Ca

Reaction		PHP:PHEN	Pr	Product Distribution (mol%)		PHEN	H ₂ Accepted Based on 100	H ₂ Donated Based on 100
Condition	Atmosphere	Ratio	PHEN ^c	DHPN	THPN	Conversion (%)	motes of Product ^d (mol)	Product (mol)
Thermal	H ₂	5:1	87.1(1.1)	(0.0)0.6	3.9(1.2)	12.9	16.8(2.3)	8.6(0.1)
MoNaph+S	H ₂	5:1	79.5(3.6)	14.9(2.1)	5.6(1.5)	20.5	26.2(5.1)	10.7(0.6)
NiOct	H ₂	5:1	87.0(3.4)	9.0(1.3)	4.0(2.1)	13.0	17.1(5.4)	8.7(0)
Thermal	H ₂	1:1	93.2(1.4)	4.4(0.8)	2.4(0.6)	8.9	9.3(2.1)	0.9(0.1)
MoNaph+S	H ₂	1:1	87.2(1.3)	9.9(0.7)	2.9(0.6)	12.8	15.8(1.9)	7.5(0.1)
S	H ₂	1:1	93.3(0.0)	5.1(0.0)	1.5(0.0)	6.7	8.2(0.0)	7.5(0)
MoNaph+S	N ₂	5:1	97.8(0.2)	0.5(0.1)	1.7(0.7)	2.2	3.9(1.0)	8.9(0.1)

^a Reaction Conditions: 30 min; 1250 psig H₂ or N₂ at ambient temperature.

^b MoNaph = Mo naphthenate

NiOct = Ni octoate

c PHEN = phenanthrene; DHPN = dihydrophenanthrene; THPN = tetrahydrophenanthrene; PHP = perhydropyrene d c H₂ Accepted = (2 x THPN mol % + 1 x DHPN mol %) x 100 c H₂ Donated = (3 x DCP mol % + 5 x HHP mol % + 6 x THP mol % + 7 x DHP mol % + 8 x PYR mol %) x 100 S = sulfur

Reaction			Product	Distribution (mol %)	PHEN Conversion	H ₂ accepted (mol) Based
Condition	Atmosphere	Temperature (°C)	PHEN°	DHPN	THPN	(%)	on 100 mol Product ^d
Thermal	H ₂	400	95.3(0.7)	2.6(0.5)	2.1(0.2)	4.7	6.8(0.9)
MoNaph+Sb	H ₂	400	91.0(0.0)	6.0(0.0)	3.0(0.1)	9.0	12.0(0.1)
NiOct	H ₂	400	98.4(0.4)	0.7(0.4)	0.9(0.0)	1.6	2.5(0.4)
Thermal	H ₂	440	90.9(1.2)	5.9(0.7)	3.2(0.5)	9.1	12.3(1.7)
MoNaph+S	H ₂	440	81.3(3.8)	12.8(2.4)	5.9(1.4)	18.7	24.6(5.2)

 $^{^{\}rm a}$ Reaction Conditions: 30 min; 1250 psig ${\rm H_2}$ at ambient temperature. $^{\rm b}$ MoNaph = Mo naphthenate

NiOct = Ni octoate

S = sulfur

^e H_2 Accepted = $(2 \times THPN \text{ mol } \% + 1 \times DHPN \text{ mol } \%) \times 100$

Table 4. Comparison of \mathbf{H}_2 Accepted in Reactions of Perhydropyrene with Phenanthrene and Phenanthrene Alone

Reaction Condition	Atmosphere	Temperature	Based on 100 n	ccepted noles of Product nol)
		(°C)	PHEN	PHP:PHEN 5:1
Thermal	H ₂	400	6.8(0.9)	7.4(2.1)
MoNaph+S	H ₂	400	12.0(0.1)	23.7(0.1)
NiOct	H ₂	400	2.5(0.4)	9.6(0.1)
Thermal	H ₂	440	12.3(1.7)	16.8(2.3)
MoNaph+S	H ₂	440	24.6(5.2)	26.2(5.1)

^c FHEN = phenanthrene; DHPN = dihydrophenanthrene; THPN = tetrahydrophenanthrene; PHP = perhydropyrene

Table 5. Product Distributions from Reactions of Benzophenone and Perhydropyrene^a

Reaction*	Catalyst	Atmos-	Pressure (regio)	Reaction			Produ	ct Distribut	Product Distribution (mole %)	(6			H ₂ Accepted	H ₂ Donated
Condition	(mdd)		(Seed)	-ture	BENZ ^d	DPM	PHP	DCP	HHP	THP	DHP	PYR	based on 100 moles of product	100 moles of product
Thermal	0	H2	500	400	82.6 (5.4)	17.4 (5.4)	9.66	0.40	0	0	0	0	17.4	1.2
Thermal	0	H ₂	200	440	51.4 (0.4)	48.6 (0.3)	97.0 (0.3)	0.9	0.0)	0.7	0	0.7	48.6	16.0
Thermal	0	H ₂	1250	440	45.2	54.8 (1.3)	99.1	0.6	0.2 (0.02)	0.0	0	0.1	54.8	3.6
Mo Naph +S ^b	200	H ₂	200	440	0.2	99.8	96.4 (0.3)	1.1 (0.0)	1.3 (0.1)	0 (0)	0	1.2 (0.3)	8.66	19.4
Mo Naph+S	200	H,	1250	440	9.0	91.0	97.8	0.7	0.4	0.3	0	0.8	91.0	12.2
Thermal**	0	Z Z	200	440	94.5	5.5	98.3	9.0	0.3	0	0.3	0.5	5.5	9.4
Mo Naph+S	1000	z z	800	400	92.4	7.6	98.1	0.3	0.4	0.2	0	0.9	7.6	10.5
Mo Naph+S	1000	Z ₂	1250	400	96.2	3.8	97.2 (1.5)	0.5 (0.1)	1.5 (0.1)	0	0	0.8 (0.4)	3.8	15.4
MoNaph + S**	0001	Z ₂	200	440	94.0 (0.4)	6.0 (0.4)	98.0 (0.3)	0.3 (0.1)	0.8	0	0	(0.3)	6.0	12.1

*Only one reaction performed.
*Asterik indicates reactions performed in July.

^{*}Reaction Conditions: 30 min, 1:1 BENZ to PHP weight ratio
bMo Naph + S = Mo Naphthenate + Sulfur
cNumbers in parenthesis are standard deviations
dBENZ = benzophenone; DPM = diphenylmethane; PHP = perhydropyrene; DCP = decahydropyrene; HHP = hexahydropyrene; THP = tetrahydropyrene; DHP = dihydropyrene; PYR = pyrene

Table 6. Product Distribution from Reactions of Benzophenone^a

Thermal 0 Thermal 0 Thermal 0 MoNaph + S* 10000			Temperature	(mol%)	(%)	Conversion
*S+			(2.)	BENZ	DPM	(%)
h+S*	H,	200	400	69.4(4.0) ^c	30.6(4.0)	30.6
1+S*	H,	200	440	35.0(6.2)	65.0(6.2)	65.0
-	H ₂	1250	440	22.9(2.5)	77.1(2.5)	77.1
	H ₂	200	400	4.2(0.8)	95.8(0.8)	95.8
MoNaph+S* 500	H ₂	200	440	0.(0)	100.0(0)	100
	Н,	1250	440	0.2(0)	99.8(0)	8.66
	H	200	440	0.4(0.2)	99.6(0.2)	9.66
+-	H H	1250	440	1.8(0.1)	98.2(0.1)	98.2
Thermal*	ź	200	400	97.5(0.8)	2.5(0.8)	2.5
F.S*	Z Z	200	400	97.8(0.5)	2.2(0.5)	2.2
-	N ₂	200	440	0.0)6.86	1.1(0.0)	1:1
MoNaph + S* 1000	N ₂	200	440	94.2(0.7)	5.8(0.7)	5.8

^aReaction Conditions: 30 min, 0.1 g of BENZ

^bBENZ = benzophenone, DPM = diphenylmethane

^cNumbers in parenthesis indicate standard deviation

^d*indicate reactions performed during July

Table 7. Comparison of $\rm H_2$ Accepted in Reactions of Perhydropyrene with Benzophenone and Benzophenone Alone

Reaction	Catalyst	Atmosphere	Pressure	Temperature	moles o	Based on 100 f Product nol)
Condition	Loading (ppm)		(psig)	(°C)	BENZ	BENZ+PH P
Thermal	0	H_2	500	400	3 0.6	17.4
Thermal	0	H_2	500	440	65.0	48.6
Thermal	0	H ₂	1250	440	77.1	54.8
MoNaph+S	500	H_2	500	440	100.0	99.8
MoNaph+S	500	H ₂	1250	440	99.8	91.0
Thermal	0	N ₂	500	440	1.1	5.5
MoNaph+S	1000	N ₂	500	400	2.2	7.6
MoNaph+S	1000	N ₂	500	440	5.8	12.1

Table 8. Reaction Products from Catalytic Anthracene Reaction in Hydrogen at 440°Ca

Reaction	P	roduct Distributio (mol%)	on	H ₂ Accepted
Condition	ANT ^b	DHA	ТНА	Based on 100 moles of Product
ANT alone	9.33 (0.52)	81.34 (0.74)	9.33 (1.27)	100
ANT + PHP	9.59	72.61	17.80	108.21

14

^a Reaction Condition: Mo naphthenate, 500 ppm, 440° C, 1250 psig N₂, 30 min. ^b ANT = anthracene, THA = tetrahydroanthracene, DHA = dihydroanthracene.

Table 9. Analysis of Resid

Resid ^a	Hexane Soluble	Toluene Solubles	THF Solubles
LHC-362	83.4(1.1)	14.8(0.3)	1.8(0.8)
Maya	62.8(1.1)	37.2(1.1)	0(0)

^aResids Obtained from Amoco

Table 10. Catalytic Hydrogenation of Pyrene^a

Composition	After 5 Hours	After 8 Hours	After 12 Hours
PHP	6.7	86.6	87.0
DCP	40.6	5.5	5.4
ННР	16.7	2.5	2.4
THP	27.6	4.0	3.9
DHP	5.1	0.7	0.7
PYR	3.3	0.7	0.5

Reaction Conditions:

375°C, 1250 psig $\rm H_2$ at ambient, 0.3 g Pt/Al₂O₃ for the first stage. Each subsequent stage contained an additional 0.3 g Pt/Al₂O₃ and 1250 psig $\rm H_2$ charged at ambient temperature.

DATE FILMED 1 / 5 / 94