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ABSTRACT

As tile field of computational fluid dynamics (CFD) continue:; to mature, algorithms are required to
exploit the most recent advances in approximation theory, numerical mathematics, computing
architectures, and hardware. Meeting this requirement is particularly challenging in incompressible
fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and
efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to
accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism fbr
instantaneously entbrcing conservation of mass and a force in tile mechanical balance law for
conservation of momentum. Proving this assertion has motivated the development of a new,
primitive-variable, incompressible, CFD algorithm called tile C_ontinuity Constraint Method (CCM).
The theoretical basis fbr the CCM consists ofa finite-elemen! spatial semi-discretization ofa Galerkin
weak statement, equal-order interpolation for all state-variables, a O-implicit time-integration scheme,
and a quasi-Newton iterative procedure extended by a Ta_lor Weak Statement (TWS) tbrmulation
for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of
the unsteady evolution of the divergence error, (b) investig_tion of the role of non-smoothness in the
discretized continuity-constraint function, (c) development of a uniformly tt _Galerkin weak statement
for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and
numerically well-posed boundary conditions, and (e) investigation of sparse data structures and
iterative methods for solving the matrix algebra statements generated by the algorithm. In contrast
to tile general family of"pressure-relaxation" incompressible CFD algorithms, the CCM does not use
the pressure as merely a mathematical device to constrain the velocity distribution to conserve mass.
Rather, the mathematically smooth and physically-motivated genuine pressure is an underlying
replacement for tile non-smooth continuity-constraint function to control inherent dispersive-error
mechanisms. Dominated by this dispersive-error mode, thenon-smoothness ofthe discrete continuity-
constraint function is proven to play a critical role in its ability to remove the divergence error in tile
discrete velocity distribution. The genuine pressure is calculated by the diagnostic pressure Poisson
equation, evaluated using the verified solenoidal velocity field. This new separation of tasks also
produces a genuinely clear view ofthe totally distinct bounda D' conditions required tbr the continuity-

' constraint function and genuine pressure. A broad range of 3-dimensional veritication, benchmark,
and validation lest problems, as computed by the code CFDI,.PIII3D, completes this dissertation.

xvlii



1. INTRODUCTION

1.1 PURPOSE

As the field of computational fluid dynamics (CFD) continues to mature, new algorithms are
required that are capable of exploiting the most recent advances innumerical mathematics, computing
architectures, and hardware. This requirement is particularly true in the area of incompressible fluid
mechanics, where there has been a continual interest in primitive-variable CFD formulations that are
accurate, efficient, and robust in three dimensions. Since most incompressible fluid flows ofpractical

engineering interest are turbulent and possibly unsteady, the issues of turbulence closure and time-
accuracy must also be addressed. For turbulent tlows, the promises of direct numerical simulation
(DNS), where all of the relevant length scales are resolved with highly refined meshes, and large eddy
simulation (LES), where the smallest length scales are modeled, have yet to be realized (Moin, 1992);
therefore, some form of turbulence modeling based upon the Reynolds-averaged form of the
Navier-Stokes (RANS) equations is necessary to approximate the effects oftdrbulence upon the mean
flow, For a time.accurate solution in three dimensions, an implicit time-integration technique with

its potential for high-order accuracy and larger usable time-steps is becoming the method of choice
for current CFI) algorithms.

1.2 APPLICATIONS

In the prelhce to his classic text on fluid dynamics, Batchelor (1967) explains wily he chose
to tbcus on incompressible fluids: "I regard flow of an incompressible viscous fluid as being at tile
centre of fluid dynamics by virtue of its fundamental nature and its practical importance." Whereas
compressible fluids and irrotationai flows tend to be tile primary concern of aerodynamicists,
applications for incompressible fluids and isochoric flows cut across tile boundaries of almost every
engineering discipline. The fields of industrial and environmental fluid mechanics are dominated by
fluids tbr which the incompressibility condition is a valid assumption (I lunt, 1991).

Industrial fluid mechanics (IFM)covers those aspects of the design, manutacture, and

operation of industrial products that are related to fluid.flow problems, Examples of lFM applications
involving incompressible fluids include flows of liquids in chemical processing plants, recirculating
cooling water in power plants, water flows in open channels, and air flows in the heating and
ventilation of rooms and cooling of electrical equipment, l-nvirovmental fluid mechanics (i-FM)
refers to fluid motions in the lower atmosphere, in the ground, and iw3rivers, lakes, and seas that relate

ill some way to problems connected to the environnlent.

In a recent review paper, Ilunt (1991) presents several examples of current industrial and
environmental fluid-flow problems, Incompressible CFI) plays an integral role in the solution process
tbr many of these problems, For example, safety and accident analyses now rely on a combination
ot'scale model experiments and computational experiments as a part of the "tluid-dynamicist's tool
kit", Turbulence, heat transfer, tbrced convection, buoyanc)-driven source terms, and mass transport

of toxic and/or reacting (e,g,, combustion reactions) materials are ph._sical phenomena typicall)
included in computational models.

• Ill I[lllll



The investigation of the disastrous fire at the King's Cross underground station is an important
case-study of how fluid-flow problems associated with accidents and safety-related issues are now
being studied and how the results of such EFM studies influence subsequent government decisions.
On November 18, 1087, near the end of the evening rush-hour, a fire began beneath and near the
entrance of a wooden upward-moving escalator located in a tunnel sloping up from the train platforms
to the large ticket hall of King's Cross station, one of London's busiest underground and railway
terminals. The fire burned slowly for about 15 minutes and then spread rapidly upward and ignited
the escalator in the upper part of the tunnel. Intense fumes and smoke developed on the escalator and
in the ticket hall. The fire killed 31 people and seriously injured over 80. The follow-up investigation
focused on a number of key technical questions involving the growth and movement of the fire up
through the tunnel. Included in these studies were experimental scale models and a computational
model. The CFD analyses used the 3-dimensional incompressible finite volume code FLOW3D to
simulate the motion of the turbulent flame front that flowed up the tunnel, it was postulated that the

flame front was driven by the steady release of buoyant air at ttle original point of ignition ofthe fire
and by air movement induced by arriving trains. The CFD model produced quantitative and

qualitative data on the structure and speed of the resulting buoyant plume. These data assisted in the
design and interpretation of subsequent scale-model experiments, "This investigation is just one
example where fluid-dynamics computer codes have greatly helped in solving environmental and
safety problems where there are many processes and the geometry of the flow is quite complex"
(Hunt, 1901),

1.3 ORIGINAL CONTRIBUTIONS

Recognition ofthe dual role of the pressure in the incompressible Navier-Stokes conservation
law system has motivated this investigation of a new time-accurate primitive variable CFD algorithm.

Upon imposition of the incompressibility condition, the pressure assumes the dual roles of both a
Lagrangian multiplier instantaneously entbrcing an isochoric constraint on the flow field
(conservation ot" mass) and of a dynamical state-variable acting as a part of the mechanical tbrce
balance law for the flow (conservation of linear momentunl)(ct'. (iresho and San i, 1987, and l'elletier

et al., 1989), I'he proposed algorithm accommodates both of these requirements by(I) applying a
contiwtuity-constraint potential thnction to enforce a robust conservation of mass and (2) using the
derived Reynolds-averaged pressure Poisson equation with mathematically well-posed and
physically-motivated Neumann boundar)' conditions to obtain an accurate and discretely continuous
pressure solution.

A critical requirement tbr demonstrating the feasibility of this algorithm, as an accurate and
cost-effective CFI) tinite-element technique, is its successful extension to 3-dimensional flows. As

original contributions to the study of incompressible CFD, this dissertation presents:

(a) a derivation of an accurate expression for the unraeady ew_lution of the divergence error,
thus providing a tirm and exact theoretical tbundation for the continuity-c_mstraint
algorithm,

(b) an investigation ot'the separate roles ot'the non-smooth continuity-constraint timction, _',
and the smooth physicalb-motivated genuille pressure / '_.



(c) an investigation of the Galerkin weak statement for the Reynolds-averaged pressure
Poisson equation, thus determining the required order of the Sobolev functional space
for the turbulent diffusion (eddy viscosity) source term,

(d) an investigation and resolution of physically and numerically well-posed boundary
conditions for the selected state-variable serving as the mass-conserving constraint
function,

(e) an implementation of the CCM using a finite element semi-discretization of a Galerkin
weak statement with an optional Taylor Weak Statement extension for t'2 in 1R3,

(f) an efficient solution strategy for work.station-based computing,

(g) an investigation of sparse iterative solvers and sparse data structures for solving the
terminal linear algebra problems required by the algorithm, and

(h) a verification and benchmarking for isothermal and nonisothermal test cases in IR_,

1.4 SCOPE

A discussion of the mathematical formulations that constitute the conservation law system

for incompressible fluids is presented in Chapter 2. In Chapter 3, a review of the history of
computational methods for incompressible fluids and a summary ot'tlle current state-of the-art for
incompressible CFD algorithms are presented. The present method, tile Continuity Constraint Meth_;d
(CCM), is described in Chapter 4. Numerical linear algebra issues for the CCM are addressed in

Chapter 5, and the resulting implementation on a UNIX workstation is discussed in Chapter 6. in
Chapter 7, relevant 3.dimensional benchmarking studies used to validate the theor3' and implementa-
tion of the CCM are given, and, finally, conclusions and recommendations resulting from this

research are presented in Chapter 8.
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2. CONSERVATION LAW SYSTEM

In the continuum description of fluids, the governing physical equations can be grouped into
four classes: (I) kinematic relations concerned only with the geometry of motion, (2) kinetics and
mechanical balance laws relating forces (stresses) to motion (strain-rates), (3) thermodynamic
principles producing equilibrium relations between heat, work, and system properties, and
(4) constitutive laws which relate kinematic variables to kinetic variables for specific material groups
(Reddy, 1986). The conservation law' system for incompressible viscous fluids consists of a coupled
set of partial differential equations that draw from all four categories. These physical laws are the
conservation of mass, conservation of linear momentum, and conservation of energy. Even though
the theoretical treatments by Navier (1822) and Stokes (1845) were concerned only with the

mechanical balance laws (Lamb, 1932), the complete set of equations is now commonly referred to
as the Navier-Stokes equations tbr Newtonian fluids. The details of the derivation of these equations

can be found in any basic text on fluid or continuum mechanics, for example the books by Aris
(1962), Batchelor (1967), Spencer (I 980), Shames (1962), or White (I 974). This chapter will present
the equations in their general continuum forms and demonstrate how the itlcompressibility condition
produces the snecific equation set addressed by incompressible CFD algorithms.

2.1 INCOMPRESSIBILITY CONDITION

All fluids are compressible to a greater or lesser degree. By assuming the density is constant,
the incompressibility condition represents an idealization of the physical behavior of liquids and gases
for certain flow conditions and thermodynamic states. This idealization assumes that any density
perturbations due to either pressure or temperature variations are sufficiently small to be negligible
(Tritton, It)88). Small variations in density (due to temperature and/or species-concentration
gradients) inducing buoyancy body forces can be accommodated under the incompressibility
condition by adding buoyancy source terms to the momentum equations. The incompressibility
condition requires that the kinetic equation of" state lbr the fluid have a special barotropic fom_,
specitica!13',

F(p, p) --F(p) : p - Po : 0 (I)

where p is the thermodynamic (or themlostatic) pressure, and O,,is the assumed constant density.

Rosenhead (1063)presents an extensive discussion of the conditions under which fluids may
be considered incompressible. For steady and unsteady liquid flows, the absence of cavitation and
liquid-vapor phase changes are the primal' requirements tbr neglecting temperature and pressure
el'li:cts. In order to exclude the effects of high frequency acoustic waves, the term toL,/a must be
small, where t_ is the radian frequency of small pressure waves, L, is an appropriate length scale, and
u is the acoustic celerity (speed). In gas flows, the t?equency to also refers to oscillations of any

nearby solid boundaries. Again o_L,/a must be small, implying a slowly varying tlow. Three
additional conditions must be met lbr gas flows: (I) a low Math number, U,/w__0.2,(2) small relative

ternperature difl'erences, (T,,,,_t-7"=)/7"®,near boundaries, and (3) a small reference length scale, gL,/a:,
relative to atmospheric length scales (tbr ten'estrial gravitational efli:cts) where g = ]g,j is the
magnitude of the gravitational acceleration vector.



2.2 CONSERVATION OF MASS

The principle of conservation of mass (or the continuity principle) states that, for a material
body in motion, the total mass of the body remains unchanged during the motion, d'Alembert first
developed the continuity equation in 1752 for the steady rotationally symmetric motion of a perfect
gas, and its generalized form was derived by Euler in 1757 (Malvem, 1969).

The general tbrm of the continuity equation is

Cd(p)_ 1 D p , duj _0 (2)
p Dt dxj

where t is time, xj is the spatial coordinate, p is the density, u,(xj, t) is the velocity vector field, and
D(.)/Dt is the material derivative operator defintd as

DCO) d(.) .uj d(o)

In Eqs. (2)-(3) and throughout this dissertation, the Einstein index summation convention will be
tbllowed; that is, repeated lati, indices imply summation over the dimension of the domain. From
Eq. (2), the assumption of constant density results in

P0 Dt dxy

where the divergence of the velocity field, _u/c_x_,is called the dilatation (expansion) rate. Therefore,
for an incompressible fluid to conserve mass, its velocity vector field must necessarily be solenoidal,
and its motion must be isochoric or volume preserving. One often sees references in the literature to
incompressible flows. Strictly speaking, this is incorrect. A fluid may be considered incompressible,
but the resulting flow is isochoric. Isochoric tlows may also be produced by compressible fluids.

2.3 CONSERVATION OF MOMENTUM

Newton's second law of motion for a single mass particle can be.extended to a system ot'mass

particles, assuming that Newton's third law holds for the action and reaction of internal threes, to
produce the momentum principle. In its continuum form, this principle is a basic postulate of
continuum mechanics (Malvem, 1969). The conservalion of linear momentum can be stated in tenns

ot'Cauchy's first law of motion,

Du, do,j



where pb, is a body-force vector field and _,, is the Cauchy stress tensor. Equation (5) is a mechanical
balance law in that the inertial tbrce of a material body, associated with the product of its mass and
acceleration, is balanced by all external surface and body threes. If one assumes that the conservation

of the moment of momentum (for the nonpolar case) also holds, then the symmetry of o',_can
be deduced. When distributed moments exist in the fluid, Eq. (5) is still valid; however, the stress
tensor is in general no longer symmetric.

A fimdamental assumption in the formulation of Eq. (5)is that the continuum is viewed from
an inertial (or Galiiean) frame of reference. An inertial reference frame is one which is not
accelerating. A rotating coordinate system is a special case of a non-inertial reference frame for which
corrections to the accelerations tenns in Eq. (5) are available. These corrections take the fbrm of
Coriolis ( 2c0×u ) and centrifugal (to×(t_)×r) ) accelerations that are added to the inertial terms in
Eq. (5), where tt_ is the angular velocity of'the refi:rence frame, and r is a position vector for the
material particle under study. When Coriolis inertial forces represent dominant terms in the
conservation of momentum, then the resulting condition produces geostrophic flows (Tritton, 1988).

2.4 CONSERVATION OF ENERGY

The energy equation arises from the energy-balance postulate of the first law of
thermodynamics, wherein the time-rate of change of the total energy (kinetic plus internal energy)
is equal to the sum ot'the work done on the system by all external tbrces and the heat transfer rate into
the system from both external and distributed internal heat sources, f;ir.q derived by Kirchhoff |br a
perfect gas in 1869 and tbr the general case in 1894, the energy equation takes the tbrm

De d__qj=0 (6)
_(e) : p-19t - °U_U - ps + dx)

where e is the internal energy, s is the distributed heat generation, and q_is the heat transti:r rate by
diffusion across the system boundaries. The stress power, _,_e,, is the external power input per unit
volume not contributing to the change in kinetic energy. The strain-rate tensor % is defined by

l(dU, du,} (7)

A more general energy equation can be developed by adding to Eq. (6) a relation tbr the
conservation ot" mechanical energy. The balance law tbr mechanical energy, independent of any
thermodynamic considerations, is also derivable from the conservation of momentum, Eq. (5), and
expresses the principle that the rate of change of kinetic and potential energy is equal to the rate at
which the translation forces do work on the system.

The second law of thennod)'namics, as expressed mathematically by the Clausius-Duhem
inequality (Yih, 1969), plays an important role in imposing restrictions upon the constitutive relations
tbr the conse_'ation law sy aem.



2.5 CONSTITUTIVE RELATIONS

Cauchy's equation of"motion, Eq. (5), holds t'_r any ¢ontinuunl nL_n|atter hm,_ tile stre_s

tensor a, t Is related to the strain rate. The relationship between tile stress fluid atld the corresp_tldin_
motion is defined by tile constitutive equations selected fi_rtile particular material to he m_deled ihc
Navier-Stokes equations arederived fora class of tluids called Newtonian tluids, _,_,berea l',_ev_tL_nian
tluid is a linear Stokesian fluid. The fundamental behavior of a linear Stokesian fluid i,_based upt_u
the fi_llowing assumptions (Aris, 1962):

(I) The Cauclly stress tensor eJ,_is a linear t'unction only t_l'the strain-rate ten,or f:,,|lnd the
local thermodynamic state.

(2) 'l'he tluid is holn()geneous. The spatial distribution of'the stress field is tl lhncti_,l _wJlyL_I
the positional variation ()f'the strain rate and d()es not explicitly depend Lm_

(3) The fluid is isotropie. There are n(_ preferred directions, implying that ths: prim;ip_d
directions of _,_ and t:,jare the same.

(4) When the tluid is at rest, _:,j= (), and the state ol'str_ss is hydrostatic, eJ,,-_-.p8,1, _here _,,
is the Kronecker delta,

The Navier.Poisson law (also called the Stokes visc()sity law) t_,r a Newt_,nian fluid.

satisfying the above assumptions, is

where p.and 3_.are the first and secondcneflicients o1'viscosity, respectively, N_te that the tracL,_i
the strain-rate tensor,t:_, is.just thedilatation rate_?u_/_?x_,The simplest case i'_r I-dimen_i_lml _he_r
tlow is due to Newton (1687), The 3-dimensim_ul cases were t_htained by Navier (1t422) h_r

incompressibletluids using molecular models and by P_>iss_m(1831) I_+_rthe t,tenerali+,cdt'_rm I h_:
continuun_ theoo' is due te St,.Venant ( I 1+43)and Stokes( 184._),(Malvern, 1969).

For compressible fluids. _hevariable p in I-q, (8) can he readily ,+elequal t_ tile
thermodynamic pressure as defined by a suitable kinetic equation of state. The detiniti_,_ _tl' _stn_n:
problematic lbr incort)pressible iluids, As a result oi' the incompressibility c_nditi_n, tile kinetic
equation of state does not include the pressure: therelbre, tile pressure can be defined in the
thermodynamic senseonly asthe limit point tbra sequenceof increasingly lessc_m_pres+sihletluid_,
One, therefore, must view tt_epressurep in Eq, (1+)as a dyntuuical (kinetic) variabh: (Aris, 1_62)_
_ome insight into the nature ot'p can be fi_und hy recastint_ Eq. (8) in terms _t' tile s_re_s and
strain-rate deviators, defined by

Ou _ °U - 3 U ' _'U ¢:U 3

Inserting Eqs, (9) into Eq. (8), one obtains

, ( o,,1 ,,( 2 ) , (I,,,o,, -- -- P* '3 _'_ _"' 3 p _'_ ' 2 la_,,_

Noting that t't_ran incolnpressible tluid, _:.,=(),anti hydefinition the tracet+t'tile tlevh_t_m_:stress_md
deviatoric strain-rate tensors is zero, tree tinds upon+contractit+n ot+I'_q,(Ill) that



I,,r an mc_mlpressible tluid, tile pressure is a kinetic state-variable, dependent upon the flow and

equal tt_ tile mean of tile nomaal stresses at a point. Batchelor (1967) defines p as the modified
l,'e._ure p,,, equal |O the absolute pressure minus the pressure variation due to gravity and position

t relatl_c i_ some datum cle_,ation). This modified pressure (also reli:rred to as the motion pressure,

(Jehharl el al, iqgS)arises strict l3 from the effect of the motion of the fluid.

In I'.tt (I 0), th,: grouping (;L+ g,'3Ft)is called the hulk viscositr, K. For compressible fluids, it is
a common practice (v, ith important exceptions) to adopt the Stokes assumption and assume K=0,

prlmaril._ because _: is extremel'_ difficult to determine (Yih, i%9). For incompressible fluids, the

questitm is moot. since c,-_(), obviating the need to detenninc the second coefficient of viscosity, _..

(_llccling ideas, the Naxier-Poisson stress-strain la_s for an incompressible Newtonian fluid
_an bc ,,fated as

(c_u,c_u, I (12)
........ + .......

ou p6 u,tt dxj c3x

'_ppl) lng I:q ( 12 _ to the diftilsion term in the monaentum equation gi_es, assuming constant It.

............ J ..... It ...... , .......s (13)

Ihc stress p_scr term in the energy equation can also be transtbnned using Eq. (! 2).

_jt .... P6u" la dxs dx c_xs cnx (14)

- pcu6 u ,, 21.t_uc u

t,t.cplacing the strain rate in t£q. (14) u, ith its unique dcviatoric decomposition, i.e., the sum of a

,,phcr_cal (ist)Irt)pic)lensor and the dcx ialoric strain-rate tensor.

1 (IS)
£U = 3 _E_lt(_u ' (U

pn_duccs



2 2 / / i t

aU(O = -P(kk + -_ P (k_ + 2p%% = 2p%cij
(16)

Ou,( au, auj ]

In Equation (16), it has beenrecognized that sa , asthe dilatation rate, is zero for an incompressible
fluid. The term t.t(b is the dissipation function (Yih, 1969) and represents the irreversible rate of
transformation of mechanical energy into thermal energy due to viscous effects. A scaling analysis
(Schlichting, 1979) shows that for small values of the dimensionless grouping Ec/Re, where Ec is the
Eckert number ( = U,2/crAT,), Re is the Reynolds number (= U, LJ v), and subscript "r" denotes a
suitable reference or scale value, viscous dissipation may be neglected.

Focusing on the body force term, pb,, in Eq. (5), a commonly occurring body force is due to
small local variations of density, caused typically by temperature and/or species-concentration

gradients in a gravity field. Limiting consideration to temperature gradients, the density p(7) is
assumed to be a linear function of temperature 7",obtaining

p(T): Pr[ 1-13(T-T r)] (17)

where subscript "r" denotes a suitable reference state, and [3 is the coefficient of isobaric volume
expansion, defined by

13: - -I ( ap)p --_p (18)

For an ideal gas, p=pRT, and [3=I/T. From Eq, (17), the body force pb, due to local density
perturbations becomes

Pb_ = -(Pr-P)g,=-Pr I3(T- Tr)g I_ (19)

where g = [g,[ is the magnitude of the gravity vector and g_ is a unit vector in the direction of

gravitational acceleration. Equation (19) is due to Oberbeck (1879) and Boussinesq (1903) and is
typically referred to as the Boussinesq buoyancy approximation.

Using Eq. (17) to approximate the buoyancy body force appears to violate the
incompressibility condition of constant density. This violation is considered acceptable if the density
variations are sufficiently small to induce only buoyancy forces. Gebhart et al. (1988) present a

scaling analysis, based upon a Taylor series expansion of p,(T,)-p(T ), that provides insight into the
conditions for which the Boussinesq approximation is valid. They identified two dimensionless

parameters that should be small relative to unity,

gL, Op) Rl_ Ap (20)R° gc Op r P,

where g, is a conversion constant. To ignore the modified-pressure effect on density, the parameter
R,, must be small. As an extreme case, pressure effects cannot be neglected for liquids near the
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thermodynamic critical point of a vapor-liquid system. If the density variation is sufficiently linear
in T for the temperature region of interest and the parameter R_ is small, then the Boussinesq

approximation is valid. An interesting example for which the Boussinesq approximation is not
appropriate is the case of a buoyancy-driven flow in cold water near 4°C, the point at which a density
extremum occurs. Slightly above 4°C, 13is positive, and slightly below 4°C, 13is negative. The density
variation near this temperature is significantly nonlinear, and the Boussinesq approximation should
not be applied. A more extensive analysis into the suitability of the Boussinesq approximation tbr
liquids and gases has been carried out by Gray and Giorgini (1976) in which they allowed all relevant
properties to be linear functions of temperature. They identified eleven dimensionless parameters
which must be small to validate the approximation.

The final term in the energy equation requiring a constitutive relation is the divergence of the
conduction heat flux, q,. Fourier's law of heat conduction (Yih, 1960) can be applied, introducing the

transport property k, the thermal conductivity. Fourier's law states that

q, : - k _at (2i

The divergence of the heat flux vector is, theretbre,

d-q!---c3xj_xj( k 8xiOT) (22,

Finally, the material derivative of the internal energy can be translbrmed into a term involving
the fluid temperature (Batchelor, 1967) by

De DT (23)" Dt=

where el, is the mass-specific heat capacity.

Applying the above constitutive relations and imposing the incompressibility condition, the
Navier-Stokes equations are, upon expansion of the material derivative operators,

c3uj
(P0) ......... 0 (24)

a._,

_(u,): au, a [au, au,) p_

_'(T) aT c_ ( aT] v 1
...... . ........uj T-- tx ........... • s = 0 (26)

dt cgxj t3xj ct, _ct,
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where v is the kinematic viscosity and ¢_ is the themlal diflusivity. Equations (25)-(26) are in

divergence tbml where the incompressibility condition has been applied to allow the grouping of the
advection and diffusion terms.

2.6 REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS

Most flows of engineering interest are turbulent. Turbulent flows are inherently
3-dimensional, nonlinear, and unsteady, exactly the conditions tbr which the Navier-Stokes equations
have been derived. Equations (24)-(26) should in theoo' be able to predict the physics of turbulence
lbr incompressible fluids. The difficulty arises due to the fact that turbulent motion is characterized
by a large number of 3-dimensional vortex elements (eddies) var)'ing in size and fluctuating over a
range ot'frequencies (Haroutunian, 1088). Turbulence, theretbre, involves a wide spectrum of length
and time scales. This spectrum is so wide that it presents a compulationally intractable problem, in
order to attain approximate solutions for turbulent flows using CFD algorithms based upon
Eqs. (24)-(26), spatial and time discretizations would need to be fine enough to capture the
characteristics of the smallest dissipating eddies. For practical engineering analysis, the capacity of
today's computers is unable to meet these requirements using a direct solution approach to turbulence.
Such a direct approach, called direct numerical simulation (I)NS)(Moin, 1002), is classified as one
of the (;rand ('hallenges of scientific computing, requiring the best available supercomputing
capability.

The response to this dilemma has been a statistical approach in which the instantaneous
state-variables are decomposed into mean and fluctuating parts. For the general state-vari_lble q, this
Reynolds decomposition can be represented mathematically as

q =_ . q, (_t?)

where the overbar and superscript ( ' ) denote mean and fluctuating values, respectively. Two
statistical averaging procedures employed in incompressible turbulence theoo' are time-averaging and
ensemble averaging. Time-averaging is expressed b}'

where 6, is a reference point in time and At, is a sampling inte_,al, l-nsemble aver_lging inw_lves
calculating the arithmetic average of the results of a series ot"N experiments (realizations) obtained
under identical conditions. The ensemble average is

1 _ k(

where q* (I,,)is the kth value of the state-variable obtained t'roln a single realization 1,,secondsafter
the beginning ot" the experiment. If the turbulence tield is statistically stationa_', then the ergodic
hypothesis states that the two averaging methods produce identical results (llinze, Iq75). ForI

nonstatic_nar5turbulence in which thetime scalesof the nlean tlo_ and theturbulent tluetumions are
sufficienti.s different, tl_entime-averaging is still a valid technique. It"the nonstation=lry time scales
overlap, then ensemble averaging must be used.
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When a Reynolds decomposition is executed for the state-variables in Eqs. (24)-(26),

specifically u,, p,, and 7', and when the appropriate averaging technique is carried out, the resulting
partial differential equations are the Reynolds-averaged Navier-Stokes conservation law system.

(Po) = dxj - 0 (30)

....at + ....Oxj_ffj _ a_ . ujT) ........ct,_ - P0Cr_=O (31)

The two second-moment statistical correlations, u/u/and u,'T' in Eqs, (31) and (32), come
from the nonlinear advection terms in the momentum and energy equations. These two double

correlations are the turbulent Reynolds stresses ( - 0 u/u/) and tile turbulent heal flux vector
.........

( - p % u,'T_ ).The inabilit_ to calculate them directly is the turhuh,m'e c'lo,_'ureprohh,m. Turbulence
modeling consists of developing techniques to calculate approximations for the Reynolds stresses.
thus providing an approximate closure for the Reynolds-averaged Navier-Stokes equations.

f-xcellent general reviews of turbulence modeling can be tbund in the books by Anderson el
al. (1984) and Baker (1083), the monograph by Rodi (1980), and tile review papers by l.erziger
( Iq87), Nallasamy (1985), and Speziale ( IOql ). Various methods of turbulence model classification
have been used in the literature. ()ne method depends upon the nunlher of partial differential
equations that must be solved, and another method focuses attention on the "order" of clt_sure,

referring to the order of the correlations that must be modeled through approximations and empirictd
data.

Transport equations for the Reynolds stresses can be derived from the Navier.Stokes
equations (cf. Tennekes and l.umley, i972; and Rodi, 1080) with tile l'tfllowing result,

, , cu, ut du_u, uj ....,......._.dU, ....._...., auj au, auj

Po . .a-x-_" ax, u,'u,'u_' ...v axl oo

_T! - I' i

The Reynolds-stress transport equations, Eq, (33 ),are a highly nonlinear Pl)li ._yslem ctmtaining even
higher-order unknown correlations, 'lhc ('Fi) group in I,os Alamos (I)aly and i larlw,_, 1071))and the
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Imperial College _,roupin l,ondon (l,aunder ct _fl., IC)75)v,_crc_mw,ng the _:_irl.__re_c_lrcher_I,_deveh_p
second-order closuremodels h_lsedupon modeled l'_nwsot'thc trlln,spc_rlcqu_,|li_tl_tier the Re>n_fld_
stresses.

Atprcscnl,themostct1111111onmethodsoI'_spproxim_tcturbulenceclt_surc_irch_ised.portthe
concept _t' _sturhulcnt kinematic ed_lvvi,s._,n,s..in,,v', due to l_oussincsq(I 1,17'7),'lhc cdd___,isc_sit_
_lppro_chuses_ modeledconstitutive eqtmtiowrchltin_ the Rc_wolds-stresstensor_mdthe mean tim,,,
stnliw-r_ttetensor.Accounting for inv_ri_wcc,thesimplest(liv_e_iritcdlfi_rm,modeled_tier the:N_vicr-
i)oissonconstitutive rel_tion, Eq, (12), is

u,'u_' v_ au, au_ 23_t_ .__,_ (.14)

_,,,herck is ti_ctorhLil_ntkinclic cnerB3,,cqutfl to one-halt'ot"the trl|¢c o1'the Reynolds stresstcwsor
I_.qt._li_n(3_) i_ kno_,,n_sthe Ih_.ssinc_q_pproxin._tion lbr t.rhulcncc closure,

lh_scduponRcynolds-_n_llog)flrgonlcnls,theodd.,_,iscosil.,cml t_ls_hccnlplo)cd h_produce
ch_surcfi_r the Rc_nolds-_lvcri_l_edcnerl,b cqt._Iiovlh) ivllrod.¢inB IIic l.rhulcnl Pnmdll nomhcr, I_r_
(_1 for most t.rhl_lcn! tlos,_s)1he nl_delcd c_nsliIoli,,,crchtli_t_lhr the Iorh.lcnl I1c1_1iI.x sector is

(3._|

With I'.qs,(]4)_md (_,_),the nn_n_cntovlt_mdcncrl_._cqu_tti_mshcc_mc

"u' '_I, u,u, (v,v')(_u'.'_u_}.iP''2/_l_,_i'i.'(T7_)_'II,0 (36,

For n¢!l_lliCm_|lCOll_,_CllJC!lCc,the _scrh_rsdcnotm_ mc_o_-tl_,_',sar,thlcs h=_schccn Ictt _1t_i,q',. (_6)

liarc_ilc,latinl_lJ|_n¢Ix_.oscillll|_p_ir_imclcr'.()m.'oilhc ,.imp!csllorh.lunccm_d_.'i,.(lhc,,cr_._q,lil._n
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l'h_ leu_th so,lie i_/, t'randtl's fuixin_-Ien_ttl, de_crihedin the they,D_11_the tran_,er_ distanceL_vur
v,liich fluid parlicles maintain their _ri_inal m_mentUnl,Mixing.length m_d,:i_ r_ulain red p_pulnr.
e_peciallv in exterual aert_d.'.mm_iL:_applicali_.1_ The lexl h__( ehi_.iaud _mith (I_'_.11pr_en1_
delailed revie_,_,_t"th_ mellu_da_it _ipplie_i_ _:_t111_re_ii_l,:N_ ier._t_k_.._ih_s

{}ue._.quati_mm_d_l__:_._tiuueI_ u_ethemi,_itltc-lenl_th_ their leli_ili s¢ille, hUl tl1__i_¢ii_ _
_ale i_ related I_ the _quar_r_t _t'tilt: tllrhulenl kineti_ ener_._'k. _:nlcithlledh) u tran_p_rlequati_n
derived I'r¢_mthe Nil'.'ier.,_t_,_e_equati_11_,The,_11_:,.eqtitlli_nnl_del_I1=1_,e it,_tBtliUedwidea_:ceptmlCe
_iuce 1heir dependenw _m the mixinB-lenl_lh limil_ their applicati_._primaril_ t_ lurhuleul Ih)_,_
z=lread_i_deqtmtel_nl¢_deledh)the _impler _er,_.equali=)nm,)del_ lAnder_,_u el _11,,Igl_4), Ihe
a(tdi|i_nal et1_rt iu calculatinBk ha. producedre_ulls, t_heuc¢)mparedI¢_mixiu_-Ien_lh m_)d¢l,,,lh_ll

l¢_r iul,.,ru¢1111_,_,_,the t_,_,_.eqllatit_11n1,_del_are i1111_11Btl1_ 111_trep,tpill.'lr nletllt_d_ Ik_r
lur1_uleuce_h_ure Am_._ lhi_ _h_ _l*meth_d_,11..'/_,:(I Kl:i m_del. _ril_imdl_ deri_,_dh_ l i_ri_,

dis_ipnti,,l rtlt_1;.I lu,.veh_il_ _¢(11,:i_ (l_ltliltrehit,:dt¢_th,: ._qtlllrcr¢_(_l_'_flh_ftlrh|ll_lll kiticii_ ,:,l_rA_,
mid tll_ lenBth_¢=i1¢i,_pr¢_p_rlit_nall_/_' :/l: ()nee h_lh/r =rod_:di_trihiili,,_n_hay,.,hec.ncalculaled. Ihe
L,dd_ _.i_:_il_ i,, d¢lermined h_ Ih,: Prandll.K()lmt,l.l,)rm,r_.,lali,m.

v' C /_: (.tq)

_,,,iiL,r,.'{ _ i,, .,i L,mplrici111_dert,.ed_¢.i_I_i111

I_ lll_tl,Jt,'J _lJt_,'j'_ilri|nlvcl_rcJlttrtl_:!q_rl/tfl_ II,trtttlJ,l,.'fl_'_"h.,t,.'l(di_lrlhull,,lt) I',, IJl_' lurhuJi_tl_ i_¢_II,_JtJ_
,ttilllh,,.'r(R,,:'id_,'ihledh_

R¢,__ v_ (411)
v

i_r =ihuumartl_,. ,..*_-_tlt_._delhttti¢_n;ther,:ti_re,R_:_i,_=tl,,_/er,_l._r a tull_ turhulent tu¢_,upre,_ihh;
t_Uitld_t_ hl_¢r 11_,_.K_.,__._,111r=lnt_ _,u_¢dlll._fr¢_111t_r_ =it=l_¢_1i¢t,,_=!11tip t,_th,.'_r¢lcr_t I(}()o._()!}lit
the.' tull_ lurhlik'111reBuUl

111,_'h_v,I{_,'_rt_lt_ll_ n_iir t_tlll h_ulltdltri_, I¢_t_ridl_ 1t1_r_iCut _l_ttl_,tlllllli_ 1t!__,i_t!ll_ _ut_la_Cr, tr_ni

!,,,*u,,_ ha,,edttp¢_ltI,_gitrlllltlllC luu.,,ht/t,..u,_ll _,,_ht_'tl_pr¢,t_l_,,(WIIII¢. l_)'_,ti
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Low Reyuohh number TKi': models have been dcvch, l_d by several researchers (of, Jones
and I..undcr, It}72) to include the viscous .,mblaycr in the ¢omputntionai domain thmuFh the u,_eof
s_cial wall.proximity functions. Patti c! hi, (It_85) published n rcvicv,, of n number oflov, Reynolds
number TKE models. ()he of lhe more promisin_ for .tmisothermnl flows is lhnI of l.nm and
Brcmhor_t (It}81). The TKE sy_lenl ol'equntious i_

k_ 141)
Vt _ C. f_ C

,_(,1, Ok 0 u,,. ,. v,,, ,_,, ,, ®., +o (42)

_here _ i_lh_ut,mmldi_lau_lh,mthewall,lh_ _iti_¢.d_lhtil¢fhi1¢tior1(I_i_id_.li¢alIt,lh_
kinlnmlIi_lemlilllh¢m_d_'ular_i_¢t_u_di_ipiIIioni"iln¢iitql,l:q(lh),_.ul._I_._. pr_u¢Iitql
(_ourcc) Ienu thr btqh k ,rid r,

2.7 N()NDIMENNIONAL FORMS

file Iloltdilrlstil_iUll!tli/alitql of 111__¢tql_illiOl! ti1',__)_1_tll i_ i!llr_rlmll ibr b4,1hlh¢oreltetll
lind et_mptlttltionill r_a_un_ Nondinlen_tonlll _¢tlltlltl pru,,ide,_ _qlc ltlelht_d of d¢,,_l.piniit
llondinl_n_ionlii t_r_t|p_Ilml ,,'nilprt., id_tptl_ic_l ill_!t,tlllln!o Ihe imt_rlall¢_ td' _,llriotl_i_rlll_ ill Itt¢
PIll_)_i¢,11:('t.llpt!IniloIllill),u,.uldimcn_.malIi,ml.lla!¢l|leaddedb_mtflloipr!_.idjll_numeri_;_l

,¢.IinI_td'lhtttIi_¢t_I_vqlmIitql_i_,hiilpri)du¢inIli11_i_miinallin_ar_l_ebrli_lliicI!iiIII,Illu_pru_idin!_
n pll)_i¢_lll).IinkctdICdlUiqueii1rinIprt,_inllih_ill¢ondili.mnllt_!i11__qtmliou_).!_nll_pi_.l
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whc_ k' i_ the lurbulent Ihemml c_nduclivit) _and super_crip!"'" d©n_le_, n_ndimensi_)n.I vari.hle,
ApplyinF the.i_ve_¢,IInF mi_._tol!,q_.(24). (]6). and (]7). rc,_ult_in

OUI'
(p,) _ ..... _ 0 (46)

( /l', ' r_ , . I, Re' _I", 0"i' p. ,,Aj , Ar0 jA(U,)- _lU, , . US i, ...... . _ ,
(4'Y)0

_(O.) _0' . cl . i ( I Re') ' E_ ._ Re I_ IT' ' Re @ _ 0 14"1

i

_h_re Ihe no,dimen_i_,,,I mi_Juliare the RCyn_fld_number(Re),i'r.ndlinumber(Pr). Archim¢de_

defined b_

_, L, v
!_e . Pr , ^r * _r

v a Re_

p_T,L, _ U,_ , v'
_r ,, P.c• .... Re "

v_ ,_A T, v

in lh_ ._eq.et, lhe _.per_crlp! "'" will he dr_,pped,,nd .11 _l.le.variehl¢_ _ill be _umed
Itt)lldiIll¢ll _iOttttl

2.# INITIAl, AND BOUNDARY CONI)ITI()NS

l'Lqll_l!oIt_ 146)-14N)tiff _t¢iltlpled _el of Itlix¢d par,hifli_;/hypcrboiic ltolllhl_llr p, rli,I
diticr¢ttltltl cq,_llttqt_dvi'illirqt tl, tlli!illl./h_!itrtdllr_,_,ltltl_ prilbl¢llt l_hvprl_bl_mi_ v_.¢it,p!i_¢d,pu,
d_lil|ilioll oi ltppr_tpri,l_ illiii_l lllld _lillldl4t') Colldilio,_ A_ttlll¢ lhtll |l i_ ,ll _1_11_1 Of I_' viilh

Ih_ V¢ltv¢il_ Illld pr¢_|lr_ livid, Ih_ h!tllldtl_ I i_ _ltBi_,idcd illl_aI ,, .,d I:, v_hcr¢I_*1 _,_, I. m_d
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necessnril._, coincidewith l',,andI'_,,Mathematically*,theproblemi_tofindla,(xp,t),t'(.r,j), andO(x,.t)
thatsati._f)'F.qs,(4'7)and(48) in (;)and_.,/(_r,o_Oin1;}andonI' (akinematic_onstraint)subjecttothe
hounder3'condition_feart _'0 _f

u,(._,,r)ow,(.5.t) 5 _l't,

(I'R")'_u' o F.(Jr, r,

(49)

( l.R., ) o.,,

(4(xj,r) _®o(_j ,r) =__ i'rj,,

,(,. n,'io,,_, _ _, jo_,,"'"oo(_,,,) ,,,-r,,.

v_herv.. i_ then,_rmatcomp.nent.f _,_el.cit)(.utu,|irdpL_intintl.) andt_,,and ._. _lr_thet_,.
' ttnni!enlial_,_eh_il_c_mi_me.l ,m I',. ((,re_h¢,I_01)_(liven b_und.r3dataincludet,=,,/,_,I_,_.I'_,:.

('.)., andf_,, Fearthe_ial ¢a_¢of I_I_, andI_,_, netI)irichleld_taexist tbr theisre**ure,1'he

. _=d_,.nhilit)_¢(mdili,mr_quire_the_lohcll¢¢tn_e_.ti,_nof m._, i=e,,

w,n,_' _0 forr_O (_)

m¢_repenc,r.I def'IniticmG,r.¢_=_lipb_untlarie_alh_ ,=¢_relatiw ta._evtli.l _,el¢_it_bet_,wntl_
Iluidandth__,_=tll,i_,:,|;,,,u_., _ ()( u_w *_#) ('Iritltm, I_Xg)

...... I nunII = I I Illmmllll --- II ...........
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The initialconditionsare

Ou/(x,,O)...... ............"0 X,_ fl
oxj

u/(x,,o)n,- _5.j x,_ r_
(._l)

( I'Re'/0u,,

0 (x,.O) _Oo(x,.O) x,_ Pt).

,(, ,,,/°.
The above mathematicalinitial and I_iunda_ conditions must eventuallyb¢ translatedinto

the variousphysical conditions addressed by ('FD Boundarieson _,.hichvelocities may be lull)
defined (1"/.)include no.slip _.alls andp_scrihed inflo,, planes I'anial specification of velocities
occursat tanguncy, s_mmetry,and entrainmentboundaries Neumannboundariescan .tour at outflow
planes,

2.9 PRESSURE POISSON EQUATION

Eventhoughthem_lifled pressur_d_,_snotapl_ar inthekineticequationof'state, a Poisson
equation for the pressure may b¢ derived from the momentum equations Assuming the n_essa_
sm_aqhness,the divergenceoperatoris applied to the momentumequationsto pr_Juce

_o.[ °u' t a_u' ) (_2),_x, Ot Re _!,t_c_xj

On, 0 Re,(,_a, 0,,1. Are, ' -0

Equationi52)can b¢ thrthersimplified, assuming thec_,ztinuityconstraintissatisfied to obtain

O'P Ou,Ou, O_ Re'I°u,.°U,I . ArO" ('_)
_(e). o,,,._.,,',_,,a,, _akail _, I/:_i ak ai, *,"o
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The tbndarnentalassumptionsimplied by F.q,(53) are that both the velocity and the acceleration
vectorfields aresolenoidal,

Physically-motivatedhoundar3'conditionsfor thepressurePoissonequationcan hederived
(Orszagetal,, IOX6and(iresho andSani, 108"/)byprojectingthemomentumequationsonto I'.. Two
hasic options ff_r this pr_jection are available, the nomlal direction (outward.pointing) and two
tangentialdirections. Projection onto the normaldirectionproducesa Neumann bounda_..'condition
ti_rEq, (53):

_p c_ (1.Re./_u. c_u. _u. (,4)
...................................._ } uj..........Are|n

The tangentialpmiectionwith subsequentintegrationoverthe houndar),surtisceresultsina Dirichlet
pressurehoundar3.,()reshoand .%ni (10147)demonstratethat the Neurnannboundaryconditionwill
produce solutions for the pressuretieid that also satist_.,,the tangential hounda_, conditions. In
addition, the Ncum=|nnhoundar3.conditionappliesfor botht = 0 und t ;_0 andrnaintuinsa solenoidal
=|cceleration,

• " _ i r _r -= I ........ IIIII ---



3. REVIEW OF INCOMPRESSIBLE CFD ALGORITHMS

The robust ent'orcement of the conservation of mass is the primary challenge for
incompressible CFD algorithms. All admissible solutions to the momentunl equations must satisfy
the solenoidal kinematic constraint, _u,/t3x,=O,This constraint is so critical that a taxonomy for
incompressible algorithms, presented in Table I, can he developed based upon the method chosen tbr
conserving mass. 1"he two broad classifications are exact enl_._rcementand inexact (or approxitnate)
enlbrcement of the continuity constraint. This chapter presents a briet'sketch of the incompressibility
problem and a sun, mar3'of sonic of the more popular methods that have been developed over the last
thirty years,

3.1 INCOMPRESSIBILITY - THE PROBLEM

Enforcing the kinematic constraint of a divergence.free (solenoidal) vector field poses special
problems tbr any discrete appro.ximation method. The problem, called the die.stability condition
(Boland and Nicolaides, 1983), is independent of any nonlinearities in the Navier-Stokes equations:
t'orexample, it manifests itself in the linear Stokes problem in tluid mechanics and the incompressible
elasticity problem in solid meclmnics. IFone attempts to produce approximate solt|tions (independent
ot"the method, e.g., finite difference, finite volume, or finite element) for the incompressible
Navier.Stokes equations without satist_/ing or in some way circumventing the die.stability condition,
the results can he unstable and/or nonphysical velocity vector tields and spurious pressure soh|tions.
Various approaches have been developed to understand and explain the nature of the problem, ranging
from detailed mathematical descriptions using the tools of fimctional analysis to physical intuition.

(iunzburger (19BOa) presents a readable description of the die-stability problem as it relates
to the method of weighted residuals in its tinitc element Galerkin weak statement [brm for the
isothermal Navier-Stokes equations. Following (iunzburger, one begins with a few matllematical
preliminaries by detining some t'unctional spaces.

For a domain [2 in R' with houndar).'closure _£2::1',L:(£2) is the linear space ot"lunctions that
are square.integrahle(in the I,ebesguesense)over [_.,dethled by

L2(fi)_ Iq:fuq:dfl<'l (55)

I.:([2)comes equipped with the usual inner product and norm,

(P'q) _ fu pq dfl ; Ilq|o _ (q,q) II_" (56)

1"he suhspace L,,:(£2) is constrained to include fimctions witll zero mean over [2.

2O
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Table I. Taxonomyof lncompre..thlelN.vler-Sloke,_CFD Alllorithm,q

'1 ]llll ' -- r --- IL 'Hill I -- __ - 'L II II ...... _ ,, ,,,,, ,, ,,,,'1 __

C()NTINtIITY I.N,%t I1!.%/MI!Ti I()I) ()RIGIN,_
ENt:()RgEMF,NT I)I':TRA("I1()N_

V{IIII'I('II'YI I,miilnl. 19fi! tI,IiMi Prilclictil Iiir 211t,ill)
_IRI.;AIVII:IJNUIIIiN i!tttk_r, 11_7] II:t:Mt Vlirlicit,_ It{ _ll _,liiil,,

VIilITI(,ITYi It('_ |ill ll, clilf pl_lt'llllill
VF:("II)I{ I'{)II':N+IIAI. A/i/ mid II¢lluni_, Ill#i'/ _lirlicil) lti

WI'ill VIiRII('I1Y V(ilITI(TI YIVI.:('I/iR
_('AI,AR Ar¢lll'tt.,.,,tlhilind illiit_, #_I it II:int_tlt, ill !11

197'/ t tillil;il! I!i'
I'(III!NIIAI._

VI)RIIITIYi I-libel. l ilGih 121it f_ Ill II-Jiilidt, ilt ]11

VI_:I.{I('ITY l)_nni._ ¢1 ill lijG_Ji]lll llirllt_il) Iii'

u./' l)ir¢¢i lilil)/lil_llfkli) ii, l tlllllJ Iil-t!tlliltllilini,,il
I{XA(' I IttlhU.'ikil, I_t.'/.I

ilili_ietl Ilnil_ ¢l¢lili_ill:_l lliilncric'iil iiillil,dtln
Itre,,,,i, 1974

--° "ill .... [I -- __ -- ......... __Ill ] " I II

INI::XAI.'T- Iq.;NAI.I'Y +l't_lllllili, 19h_l Itl-¢_ildilitlli¢il
AI,(iI+_ItlIAI(. ' /i¢iikicv, ic/ l_l ill, ltt7_ Itl_tlliccd ilit¢l,lriillll!i,_

INI':XA("I- IL',;I':Iil)()- Nl¢iid_._tiih.' lliik
INITIAl. VJl.ifl.; (,()_IPRI':,"CNIItlI,ITY (tl_rin, I_i6"/ < "Niillit,'tlCiil ditlii,qiiii

MAt'INMA(' I liirhl_ lind Well:h, IWI_ _liiTltt'rl.'tt i!tl'_ti
Vl'tllcii) Ill

('hllrill, I IJ(ll,t _liil41_iti_il ill litin.
Pill )JI{("II()N 'i i_llltllll, I iilil) _lill, ltlttlL'it llll",ht"_

ltl < Illip h,'lilt.'illiil lilli

_IMPI.F;, ,NIMI'I,I.:I,I, liilliillkiil tllld ,Nlltlllllllll, kllil_l_rt'll llil_,h ,_hix_i
.";IMI'I +1.;(' NIMPI.I,:Sl 1972 I"ii!1%t'I_1"IIt'<t"' I1(<

iIlil_htlli_'liliil roll

INI:XAI."I- VF:I,( t('II'Y ('{ iRi,II"t'- Iqu_il._ml¢i tilliltt
Ill it ;NI)ARY "11{IN ,',¢_.'hni_idt_rl_! ill, I _1714 t.'lt_lllc'nl,_,,_,l_llici1 _,llti

VAI.III: Iqll.iltl,I.M .... ..... _ ........ ................... hiinpl'd, __liiil_'_,. tllilltlx

PIN() I_ii, Ii)l'l_ illld lltl4h _:llrle¢'ltll, ',liitll_l,'icd
ili_',,tl, Itl I/fl,',', _it tt_

(ll'l':l,tAl()l_, ( illl_ill_kl, IClt15 de_,'lillllht_ IIiIIIIIIlt:ilrll)
,";Iq.l'l"llN(i ii'lllll Illi,!itlll llrl__i_,Ihih1',

IliIph¢ll, eqiiiil.t_rtl¢i,
litlJilllillll.,i, Nllrillihii, liiikcr, lilll¢-iit,_:llriil_.', I}11t1¢'

I_RI.:,,,;I.'NI
i lJt_(I- ¢li_nicnl I hih.'rkiii _ _.'lik

_llilt_lllt'lil
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L_(f_) -_Iq_ L2(fl):fuq df_ =0J (57)

l'he .";,obolev space tt*(f2) is defined as

H_(_)-_ {q_ L2(Q): D_q_ L2(fJ)for s=l,.,k} (58)

_here k is a non-negative inleger and D' denotes all generalized derivatives up to and including order
_. l'he _obolev norm is

( i ;"IqlJk_- Jtq[o+ _D'q[2o (59)

J'he constrained subspace tt, J(f2) requires q=0 on the boundar_ F, such that

n0_(u) -_tq_ H_(t2)" q=0 on F} (60)

_here IL,_(_2) is equipped w'ith the norm

Iq[l) _z [q_0 * _q (61)

and the norm-equivalent energy semi-norm

,_ _xxl (62)

The classic Galerkin weak statement for the isothermal Navier-Stokes equations is as follows.

()nc seeks the/unctions u,(x: . t)__ H,)J(_2) and P(x, . I)E L.:(g2) such that

f v/,_(u,)d_ _- 0 v v _ HoI(Q) (63)

c_u_
...... d£_ =0 V q e Lo"( £1) (64)

aq dxj

_here J(u,) are the momentum equations in the canonRcal form as given by Eq.47. Equmion (64)

requires that all admissible velocity solutions, u,(x,, t)_ tl,/(f2), must also reside in the constrained

(solenoidal) subspace Z. defined b_.

Zz Iv,_. HIo(_) " b(v,q) =0 V qE Lo:(Q)} (65)

,.,.here t)(v . q) is a bilinear form describing the weak satisfaction of the solenoidal constraint on v,
delined b,_
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fa Ov_ d_ V vif Hl(fl),qC L2(_) (66)
b(vi,q) - _ q Ox i

[.Jp to this point, all functional spaces have been infinite-dimensional, and the Galerkin weak
statement, Eqs. (63) and (64), is expressed for the continuum Navier-Stokes equations. Assume that
by some method, e.g., the finite-element method, approximate solutions (u/') to the discrete Galerkin

J'_ I_,h and P _'weak statement have been obtained, where u, _ ,Tf satist_,

f vjh_h(u,h)dfi =0 V vjh_ Voh

(67)

f_q h OU_h df_ :0 VqhE _Soh
OXah

The superscript "h'" denotes a dependence on some measure ot the mesh, the discrete approximation
to the domain _). The finite-dimensional spaces I_,' and Sf are the subspaces from which admissible
approximating functions are selected for u/' and P_.

The fundamental problem for the incompressible Navier-Stokes equations is that I]/'c Hot and
,%/'c L,,:.alone are not sufficient conditions to produce stable approximate solutions. Define Z h to be
the subspace of discretely divergence-free functions, such that

= hZ h (v, e I/'0h" b(v, h,q_):O Vqh¢. S0hl (68)

The dilemma arises from the fact that, in general, ,,T'¢zZ, i.e., discretely solenoidal functions are not
necessarily solenoidal in the limit as h-+0. Based upon the theoretical work of Ladyzhenskaya (1969),
Babuska (1973). Babuska and Aziz (1972), and Brezzi (1974), a stability condition has been
developed ensuring, as h_O, that discretely divergence-flee functions tend to solenoidal functions
in Z.

The di_-stability condition, also known as the I.BB or inf-sup condition, states that, for a

given pair of approximating functional spaces Sf and I],h, if there exists a positive real number 7 > 0
such that

b(v_ ,qh)
inf sup :, y (69)

o,q_ so" oo_,_ v._ Ivt_ll Ilqhll0

then the discrete solutions u/'__ I,;,h and ph_ S,,hto [-qs. (63) and (64) will be stable. The selection of
interpolation functions for the velocity and pressure approximations that satisfy the div-stability
condition is the basis [br the mixedfinite-e!ements methods (Stenberg, 1987). An analogous
div-stabilitv condition also exists for finite..difference methods, of course, and the well-known

staggered-mesh technique is one method of producing a stable solution (Gunzburger, 1989a).

Zienkiewicz (1977) and Schneider and Raithbv (1980) present the div-stability problem in
terms of an over-constraint condition caused by the lack of an independent equation tbr the pressure.
As an illustration, a Galerkin-type discretization of Eqs. (67) for a steady, isothermal flow produces
a Newton linear algebra statement as
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t

where i./t;tq andl,/t/Z'lare the Jacobian submatricesarising from the momentum equations, The
submatrix [,ll/l_"*I is the contribution to the Jacobian produced Bytile continuity constraint, Before
the application of boundao' conditions, there are the same number of equations as unknowns. For a
problem in IR_and assuming an equal-order interpolation of the velocity and pressure, there are 3n
equations from the momentum equations and n equations from tile continuity equation, where n is tile
total number of nodes in the mesh. With equal-order interpolation, the velocity components and the

pressures arc evaluated at tile same locations tbr all nodes. P,efore any I)irichlet boundaD' conditions
arc applied, the number of equations (4n)is, therefore, equal to the number of unknowns, 3 velocity
components and the pressure per node.

Typically, one considers the equations produced by the rnomenturn conservation lass to be
associated with the velocity-component degrees-of freedom, and the equations produced by the
continuity constraint to be associated with the pressure degree-of-freedom. ()he procedure for
in_,oking [)irichlet velocity or pressure data is to delete tile corresponding degree-of-freedom from
tile Jacobian and to adjust the right-hand-side residual to reflect tile specitied valtles tbr tile velocities

and pressures, l,et m,, be tile number o|"fixed-velocity degrees-of-freedom, and mp he tile number of
fixcd-pressure degrees-of freedom. The number of velocity equations to be solved is llOV¢itu : 3It-m,,,

and the numbcr of pressure (continuity) equations to be solved is np:::n-mr, The resulting linear
algebra statement is

[JUU.]..., [0],, .,, 8PI,,. IFU*I.._

]o prevent the system, l-q. (71). from being ovcrdetennined, the following conditions must
bc met,

n, + % :, n,, (72)

tie e tip

Satisthction of n,,+ttr;=+.nu is o["course trivial; however, satis|hction of the condition n,_'nr is dependent
upon the degree of interpolation for the velocity and the pressure. Equal-order interpolation [i._rthe
coupled system of Eq. (71)will in general produce an overdetermined (singular) system of equations,
i.c., more equations than unknowns. The singularity can be removed b_ using an interpolation degree
for the pressure that is less than tile velocity interpolation, l,et r be the total number of

degrees-of freedom for tile pressure using a lower degree interpolation such that r'n; thereft_re, n;, is

now r-rap, and tile condition n,,_n_,can be met. Sitnilar reasoning is used to explain tile need for
reduced intcgration techniques in the penalty method (Zicnkiewicz, 1977), to bc discussed in the
sequel.

3.2 EXACT CONTINUITY ENFORCEMENT WITH VORTICITY

Vorticity, as a derived state-variable, plays a major role in many incompressible CFI)
formulations, t_,_' taking the curl of the mornentunl equations and applying a vector identity, V, VI'--0,
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th_ pru.ssur_ can b_ removed t'rom the conservation law system, thus allo_,ving the aut_mlati¢
cnfor¢¢lnctlt ot'lh_ ¢ontin|iit.V ¢olzstraillt, lh_ fbllowitlg s_¢tions dcs_rib_ lh_ primary ways in whirl1

vorlicily has been Ilsed to obtain solutions tbr the inuompressihle Navicr-Nl,_kcs egLlations ill 2- and

!.dimensiotls,

3,2. I Vorlicily-Nlre.mfunction

l'hc w.wticily-strcarniht'lCtion tbrmulatiorl was atllong thv first otlstcad), ill¢onlprcssihi¢

Navi_r.Ntokes ('FI) algorilllrns, 'l'hc original l_nil_-dit'tL.rcll¢_ algoritht, was d_vclop_d at la_s Ahtmos
(l:mll|lll, 1063 alld 1064). ,lInd th_ first finit_-cl_lllclll itllplcrllclltatioll is d0t' to ltak_r (107t) It)

climirmtingthe pressureas a stat_-variabluand enlor¢i,g¢Ol|tinliit)witha vectorpotential,lh_

ru_tllod automatically producc,s an _xa_t mass-¢o,s_ning v¢io_it>, fi_hl. Arakav,.'a (I q66) _mplo>cd
th_ vor!i_ily-str_amt'un_lion melhod !,_ cart3' oul an early invenlip,nlior_ inlr. inslabililics associal_d

will1 dispur,sivu _rror.s (which I'_ct_rmml "mw, dling") arising from Ih_ advc¢l,m I_rms A lhonmgh
r_,.'i_v, of bou,dary _omlilion issues _;m bc tbuml in I/,oad_ (1_)72). (iupla amt Mam_har (Iq7q),
l_,ak_r ( I q83). ()uartap_ll_ and Napolilano ( I t,_t,l,.l),(iu./burg_r (1*)t4_)a),aml (ir_sht_ ( i()_)1). I'hc
I'ormulalion is not limil_d to it_ompr_ssibl_ Iluids as d_mo,slral_d b,,. th_ compressible

implcm_ntalion _t" l._om_rdi aml i_,_izcs (I 981).

I:or a 2-dimcn.sional domain (thr_-dimcnsiotml _xl_nsi_ms arc pr_sctttcd in th_ n_xl s_¢lio.),
;IN.NIIIII_thellov,'isisothermal,R_' ().aml I._is¢oilsllillt.lakingthu_url_Il,q ,17i.R:,dr_ppinplh_

t'_LIO)';mU>term. arid applying th_ ¢otltilltJil)' COlistrltint pn_duct,s the lh..Imh_lt/ vorlicit) Ira,sp_rt
UtlUalion in _ms_rvaliw I'orrn, a.s

_(,,,) d,,, ,) [ I (h,,)
= , u_(,) 0 ("/3)

Ot 0._:; Re r:t_,

where m is the _,-c,mlpo.¢nt ot' w_rticit>,dct'incd in IR" b)

du_ du2 Ou_ ('_4)
_,) _', u 'k eu_ r].l_ d_I ()_

where_:,,,is the pcrl]_tltatiotltctlsor.

"i'hcprc.,.;surciseliminatedl'roml'_q,(7.t)duc 1¢)thevectoridentity

0 / dl' / ,)_1' _)-_p 0 in R2 ("/,)
V _ _'P _ (:._ ')'L [ )d_'_ ()xn,)x, c)x=0_:

('tmtit_t_il',, is aut,,mlatically cnt'_rccd hy dcl]tting the reciter p()tct_tial, q,k, an

u I ; U2
(]X2 ()X I

FI I ---II ....
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Iioth the v,:ctor potential (streamfunction) and the vorticit> are automatical!)solenoidal in
2-dimension_sincetheoni.',•non-zeroscalarcomponentslie perpcndi,:ularto the liar,_plane With the
,_ectoridentit_

v,(V,tpk) V(V.qj k) V_,I,k ('_'/)
V:$ k f;.,rV.$ k _ O

the curl of"F.q ('/¢'_)producestit,,:,kinematiccompatibilit_ equationt.,,in_the _treamt_u_ctioni_ (and
thus thecontinuit_ constraint)to thevorli¢it,,

_($) _ v z$ , _,1_ O in R2 (_ll)

Equation(73), v,ith tile velocit,, replacedh_ its vector p,_te.tial,hcc,_mes

('lo_urc has, therefore, been _htaincd u,ith a P_i_o. eq.atio., l_q (?R). coupled to a n_mlin_ar
transpoll equati,,n G_rthe vorti¢it.,,_, Eq ('/¢)) Completion of the initial-/houndar).value pr,)hlem
requirestile _pecilicationof'v,ell-posedinitial andhotmda_,con,Jitio._ Ihe primar),diMcultie_ .re
du_ to the req.ired spc,.:il'ieation of the torticit)at no.slip tt.ll_ (llak_r. 1¢)l,13)and ,,i' the
_treaf.t'unctiem=itinterior .o-_lip h,_undarie_in mulli-c=mneetedd_lt|aln_ ((iu./hur_er. IqX_a) i.
hath in,_tance,_,the h_)undaric_require I)irichlet data thatarc kn_w_nonl) _1_tile _olutit). c_ol_.e_

Recentl,,, in_e,_til_atorsha_,ehad_ucce_ in not specit_in_ .n_ _orticit)_h_utldar) ¢ondition_
_t _11((iresho, 1_)(_1)The ideai.s that the strcamtimctionalone carrtc_all tile necessat3 h_,ulld._
int'_rmation =aid that there are no boundar3, cemdition_ ihr the ,_orlicit_, An carl)paper
describing thi_ tneth¢_di_ h__ Campion-Ren_onand ('roche! (!el?N) As =m example, assume the
_,_orticit_-_trc_u.l,nctionequation,,_areto h_solveda_acoupleds3,stem liaradomai. 1;;Iv,ithhoundar3.
clo.,_ure1++,+I+__+; i',, wher¢I'_ is the unior_,)t'all hounda_ sc_.|ents ,_I+_,_,hiehhath_t_arid +'_tt_/+'_n.re
kno_._,'llhut(,) i_not.e,_.+w£dlboundaries,LindI'_ i_tile uni_,)nof'all bou.dar). SeglltelttSoil _+hichboth
t41;|lid m arekno_,_,l),e,t_.,intlov_and()utllox_phmes l.et :%'be the totalnumberoi'nod_ in the m_sh
_,_,ith/_nodeson i_ aridq nodeson I,, Ihe total.umher ot'del_ree.s-_i;freedolnoil the interior_)ftile
domain is 2(N..p-¢/).and the total numberon the bou.dar3._isp ll!tkn,_wnvorlicitics on I_. l'he total
degrees.ot:t'reedomis,thcret'orc,2N.p.2,1 Campion_RensonandCrochetc.st I!iq_ ('TX)=rod(7q)il|tO
a linite element (ialerkin weak _tatementibrmulation_When the(Jrcen..(hlu_ th,_oremi._applied t¢_
the Galerki. weak statementfbr I!q, (78). the natural hounda_ c¢_riditioni_ related to th_ .,)n.ai
derivative of _!_lhi_ naturalhounda_,condition, PtI_/P_;,i_ emplo)ed a_a l_rci._ ti._cti,m t_r th,:
equations from liq (7{4) thatorea_sociatedv.ith the/_n,_deson l_ I or theq n,,de_on I:. thekno_,_,n

_t_data can bc applied, le_in_ K-q independentequati¢_.sl'romliq (78) Vahi,:_ lhr ,,_and th_ normal
d,:rivativc ot' _,);zre unknown on I, The (ialcrkin v,cak _tatcment tier liq (Tq) pr¢_duccs?,/.l).q
independent,.,quation.,,with l)irichlot data for _i'h¢ingapplied on th,:I'*_1 node_,m I, and I': I'hcrc
ar_:,tluJrel_r_:.2N.l,.Zq iwdcpende.t cql,iati_msand 2N-I,.2,t uv_kn¢_,n_;therethr_,the pr,_hh:tni_
¢lo_:d Caml_ion-I_cn_on=rod('roch_:tpresents¢_httion_ihr 11¢w_ina lid-driven _:_l_it)_up to a R_:_j(lO
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A_ dI,_..,._:d_Iih¢i_itiiiili!,_Ilhi__-h_plel,__rili_ill_q|lllr_m_nlt_,_lh__ilh_i_I_,:_',l'_:'told
_? i,_tlt_t th_ _tl_i_ th_dt_.,d_hlltt_ _tutllt_,n, thu_pl_ln_ tltv _.P ttu,,lh_l wtlhl. th_ hf_dct _1_,_

_i_tt!_,n!p_ir_ !h_l _tt_t_ dt_,4_hitit_, _i, i I1 ._tll I the' _llltl_ di!it,l, _l_tl,_ttti_l,_ hui ,_'itt_llli
dilt_l_tlt !/id'_ h_r Ih_ _h_tt_ mid p/¢_ttl_, l_t !i_tttI l¢,_lrl_.:ll.n,__,ti Ihv pl_lirv _p_t_:I_ i, lh¢
I _ h_l th_.t htqttmlltii_ _h)_!l_ _hililw_t p_|t_ _ili, mid i i ! lt,_tll!__lt_hl_ _l_m_tt!_in wht_._hih_

_.vh_tl_ _it _lt_l_i_ _i 1 dlniVli,_t_m_i_illtt_rp_tt_ t_ lh_ I_1_ 1t_t _lvlli_ill l!_ltl,_i,_pl_'_ntl/d h_
Nlvtl!_'f! i !_!II_1

i_ _,_mtd_,_h_J h_ ,u_d_.j! tit,_diit_li_m,_ h_ th_ _ttltltttii_ _qil_iti_m NIi l_lllttpt_ __t _tt_tI

_tt'_ltllt_t_qlilOlti_ lhv _ti_lt_ tuvlh_l, i_ i,_ d,..,u_d

'' '.... ' ")'' KN'I' '.11,4INF.XA( I ('()N°I'INI_ITYLNF( R( LM -I LNAI.TY MwrII()I)

_!_t_i_ill_ t__ittt!qtt_, t,iilllp/t'_l_h; ¢t_t_tl_ll_ I|iv/vh_t_ol_l lll_llililV_,ltd_ ' ¢!_I,dl_it_ |m,ht_tlI._o_li
lii_qttlm:,,_it_l_' m_dt.!u _Pill_!tlt_lV_ _ 'J!!hll_ _t1_t_'_'_!t_1_'_tt_' Appl_m! ttw !_'.i_li_ .1_1!i_1I_

tlli_il_t tl!I_tlIVllt¢ltt cd lhv i_ll_l_l_ _1t_01 I_| iI1it_

ltiitlt!!t!tillHdt I_ldcm m _h_h Ilw l_'._dl_,!_'_tu!__m _p|ll_llli_lHOl h_it t il_lil!i_V mulltldU:t Pcn_tl_
_ttlli_li'_ ii1¢" |m_!i h, _,m_¢f1_¢ h_ ih¢ _'_it_i NI_t_¢_ t|,_ _dtlll_!t 1 |¢!I!itI11. Ill/dill .'_ ph_',l_l

ltll_.rl_l:_'l_lt_ttt_,lm_, hi_'dh_ l t.l_iw', _:t_1 1l_lT_ll I fly m_.up_,.,,_h_l_i_ _md!tl_m t'_dwPl_.'d, iuut
lh¢ i'_ttl_llttlll_V I_'til!l_Ol |_ff t!t_'(ItU_lt_ ,d!t:__,IClt_iff!_ _,.pla¢_d1_

..... _ ,,,,,,,r ,,, , ..... l lll_llIT• llllll ...... IH I IIIH IIIIIIII
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_here

().e _r the rN1_iiivef_lltu_s _f the_.ail> melhod i_ lhr c,)mputillional d_mpli._ or the
pl_ur_ fh_mthe _ei¢_:it_delemlimlli,m. Nirn:eihe incompr_ssihiiit_ccm_trninlis .I_ dmpl_J, the
di,._lgh|lil_ _md|li_m i_app_fill_ _i_gilt_lll_|. he.ce ell. he ipm_rcd((igrl/h|ir_r, iq!icla),If _ri_

irll{Brilti_n" i_[ the l_.81t) lemt in th__nali/ed momenltim_uiltioli_ ..d in thel_t.p_e_sin_ i_f
the p_s_ur_ (l|aker. lqlll) Redm;_ inle_rati_mph.;_ lh_ p_n.lt) t._lh_j in the cla_,, ,,f mixed
l_hlile.et_meillmeth_s i_,_r_ertainct_mhi,ilti_m_s_fveh_ll)/p_su_ irtlelTXditlh,l.f,tlclio, l-,¢li_.
!h¢_r_s,lli,_ pr_,r_ field ilppl_imalm, i_ pi_e_ise di_o,linu_),_ Fhi_ discs_flli,m_u_p_,r_
field _n e_hihil a rank deficie,c) i, ihe a_emhl_d pr_ur_ equalts_n_prt_hlcinB"ch_ker_mrd"
o_illitliCm_ th,_ever, le_ql _,llr_ l_l_ pr_ur_._m_,_lhi,_ lech,ique_ haw _, _lcce_full_

lhe m,i_r c¢_mpuli!tmmttproblem_lth the t_nall) melh¢,Ji_thiltlhed¢mHnali,_I_nttll) term
t.lrc_Juce__ef_ ili.¢_mdili_nin_ inh_the terminal tirie,r alilehr, _itllelTl_Ol_i_he ,l_,dy Iimit_
ditlpLmald_mtn.nce, producedh) ihe rm_.tenltimequatlcm_i_ t.rth_r _e.k_ned. _.d the ._ymmel_ _
dueh_lh_ i_dv_clm, ler!lt_,_ l_inG_r¢_dh_ the ._ymmel_ _)fthe p_..ll_ ten. _.¢h ill.co.dili_nml_i
t|mtl_ the _ill_tordhmde_i_.er'_ ¢h,_icesii_r Ii.enr ali!ehrn_,l_er_ I)pi_:all._. dire_;I_olver_u,-ilh
i!to_o.d|li,mm_¢ounlemte¢l_._ _.ch a_parllnlpitettin_amr_qgi_d I*_r)odime.sitmetluppl.;.lio._.
dire_l _lter_ i.lr,_dttce el_,er)¢,_mpute.intensive aspect(rclalite to iterittive _dver_) into the
_lp¢_rilhmRet'e.ll), rewart;her_hate re!'._rl_ _,_mepm_re_ ¢_it.It #let.led pen.l!|' te|¢lh,M (of
(ium,hgri[er, Iql!=_h,#nd t4_d> el al, t*_2)in _,hleh ieeraliv©_¢_l,,_r_c.n t_ o_ed_'ith itertl!ivc
_:y_lin__iltlin nlint_ _l_p A _mallerpenall_p.rismeter(equal Iothe _qu.re r,.tt edllle direct penalty
term) is u_ed1¢_red.ce the ,ll.c=mditi,_nintim_mtallyas_¢_iated_ilh tt_edirectpcn.lly melht_d_l'he
iterat_ twtliilt_ meth,_ is _imileirt¢_the G_miulalionpmt_wd by F¢_ninand Fttrti. (IOtt5) in which
t_/aw.'_ .IF¢_rlthmh_rtheNtok_ pr_hlenti_ c.mhi.ed v_.ithi_Ne_,_t,m.Rmpll_On_¢tl=met¢__¢_lvethe

3.5 INEXACT CONTINUITY ENFOR('I,;MI,;NT -
PSE I! DO('OM PR ESSI BI LITY

'lhe pwudt_,_..pre_ihili!) (,_r artificial c.mpre_aihilily) G_m_ulation(Chorin, lOOT)_..s
¢_ri_i||all)d_itin_ _mdisprimarily u_edts_. melh,_dl,_producean iter.liVe procedureG_rconverl_in_
1¢_=!_leod)-_lale_¢_hl!i(_.,Ill| _¢)l.li¢'_rlc,,.veree:,_li_ a _lead):c(.tdilio, by pml,tre._i.t_ Ihm.ld|.
mm.ph)_i_;altr.._ie.l 'lhe c_ntinuil) cquati,mi_ mt_ifled h)*.ddi.l_. temp_r.l ten. yieldin_
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1 Oe , _uj _0 (I00)
¢

_,.h_r_ (* cnu h¢ considered 8martificial sound _p,:cd or, alternativ¢ly, i/c': is ¢in _irtiI'ici_ll

¢omp_s_ibilil_. When i!q. (I 00) is_olvcdinconjtmctiot_,_ilh lhe i11o111_lliuiiiequations,l._qs.47, the
problembecomeshyperl_lici11G_rm.l'h¢hy_rho!ictlaturuof'themelhodc_mhcdemonstnitedhy
iakili_ih¢lim_dcri_nlhcoI"l:;q,(I(I(i).ohlnini_

l ,,'P ,' [ "',1 (10l)

I'hc ri_hl.htuld _idc or i_q (I01) _i11h_ rcptacL'dh) Ih_ ,tiv_r_tcn¢coi" the momentum _qualion_
r,z_ullinl_m

I_qu_lion(102) i_ It _¢nleritli/cd',,_,a__quation u,ith _,',_1¥¢_pecd_' I'hc _ul¢,.'lionot' ltl_ parnnicter_'
i_ criti¢_zlto _t¢tli_,-iliXopiimal _.'_qz_rt_uo¢¢and Io tll_lhlh|illin_ _l_ihi!ii_, Uhorin (1,}67) used _i
llon._l_q!_r_d meshv.iih I_ap.th_ lin|_ illl_r_|liolZ forhi_oril_imllimplementation POrel mid l'_)lor
(l_)X!) SIl_¢_l th[d_i_t_z_,:_d-ul_h implementationl_i_,,.'_more |l¢¢tirzil¢revolts

P¢_r,:l _l_id l il_ lor (lql4!) demo,1_Ir_l¢ tl)[tl lhc llcrilli_c c_cI¢ produced h)thc
p_ictldo¢onlpr_:_ibilit_mcth_l i_. ill _0111¢_¢II_¢:._zl_'_i,_llt'rilll_,L'mclhod for ,,olvin[_lllc pr¢_szlr,.'
Pois_onCqUillh)il Ih,: _,clo¢il_lleld t__prcwoled h} _l I¢1}Ior _crl¢_L.xplln_l_ql_)_crIilll¢. Stl_:|lthai

. (_," (103)
u,'"-u, , ,__ . (tI,O:r)

t!_iil_th_IIIOIIICIIIUIII_qm|tion_torcphzwthefir,d,ord_rlimedcrz_,¢tti_cm l..q.(llll))ril_jd_,

." . ') ( (I'Rc"l"u,) ' ,,1"
U, -u, _ t u,u_ _ I , ( It,O,T, ) (104)

('tt,, Re _lt_ 0 t,

A !_ilck'._.tlrdcM_altsi,m of theprL's_urcprod0ccs

,,p.,, { 1'"p. _ p .,i &l ¢]t , (HOT,) p _,i, &t ¢'_OUl , (Ill,q)

r¢iirrliiI!_¢iI1¢IIIof I¢1111,',,

.................... -- =n,, - [izizl --I IIII IIIII I IIIIIIIII IIIIIII I IIIIII I I lllIl
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Ox_2
(tO6)

flu, 02 1 +Ret On, Ouj

At convergence as to++_,I'"_-.l '" , _u_/()x/_0, and |,_q,(106) conver_es to the pressure Poisson
equalion, F,q,(i02),

Turkel (!q87) suggesteda modilicationto the pseudocompressibilitymethod in which
arlificial timederivativesare introducedin boththecontinuityequation and the rnomentunlequations,

: with the restllt

,,.+(,o). !+o.P °o
c 2 at o_

(107)

Equations (i 07) arecalled theprecnnditioned Navier*Stokesequations, Fory_ +l, the preconditioned
matrix nletlmd returns to the pure pseudoconlpressibilily method, One attempts it) choose the two
parameters y and c lu compensate lbr the difference in wave speeds experienced during the
nonphysical transienl, l'tle parametersact to scale theh.vperbt_licpreconditionedsystem such thatall
of its eigel)values are approximatelythe sarne ordero1'magnitude, lisa el al, (I 992) tested a method

for adaptive retinementol'c: nnd tbund it ledto inti_riorconvergence, Constant values of.3_ y._:land
, ....I gave thelu the best results t't_r3-dimensional simulations of fully developed flow ina straightduct
Of squarecross.section, Cahuk el al, (1092) employed the preconditionedmatrixmethod with local
time.stepping and implicit residualsmoothin_ tbr 3.dimensional flow,s in a O0-deg bend and a
backward.lacing step, A four-stageexplicit Runge.Kuna scheme was used It> advance the system of I

equations through pseudo-time.

Attempts have also heel1 reportedin the literatureto applythe pset|docompressibilit_+lnethod
to unstead.__tlov, s. Rogers and Kwak (IqOI) present solutions tk_rsteady-state flov_through a
3.dimel+sional Ot)-degbend and lor unsteady 2-dimensional flo_,,,_ over a circular cylinder, Tilne
accurac) is obtained (claimed) by subiterating the equations in pseudo-time during the physical
time.step+

Itamsha'++and Mesina(1991) discussa hybridpenalty.pseudocompressibilitymethod for
perl'orn_int:time-accuratetransientincompressibletlov,+calculations,1'heycombinethetwo methods
b) computin_thepressurefrom

oP o.,+ o [o, ° 0+i oi aS, (Io.)

el'he intent ot+ the tbmlulation is to introduce a dilt"usional character into the hyperbolic

pseudocolnpressihilityequation system.'l+tlepseudocompressibilityterm (firsttermon theright-hand
side) it; liq, (It)8)introduces artificial pressure (acoustic) waves that are dissipated by the second

i .... irl
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p_naity-rclatcd t_rtn, Rnmsha_ and Mcsitm (19_}1) caution tlmt care sh(_uld h_ taken in thu
Sl)eciiication of"b_til the initial velocity and l'DrcssurL:fluids, sin_ an)' i:rn_rs ill th_s_ illilial _oluti_m_

muy p_r_ist Ibr sums.'p_riod ()I' titre: _fl_r Ntarl-up, ,%)!utions _,,,en.,r_p_)r1¢dIi_r the Z-dimrnsi_mal
driw:n-cavity pruhlcm and for ll()_v p_st a r_ctangular _hstacl_

(icm.,rali/_lti(ms (fl' flu: pS_tldl_con)pr_ssihilit.s method Ihr ¢_miprcssihl¢ Ih_,,,,,,,at hv_. Mach
tlun)hcrn Imvt: alsu hc_tl (tev_h_p_d. Ranlst'lax'_and Mousseau (I 991 ) rrp_,rt _m a t_:hniqur to Ill_rea_
c()t)vcr_n¢,¢ o1' th_ c_m_pn:ssihl_ flo,,v _,,qtlati()llsto .st_ady-stat_ h_ addin_ t_ tllu _(qi,,_r',ati_m la'v,

syst¢tl) an _vol|iliot_ _quati()r) of the:ii)ml

()q [_i2 "P. I ['_l(q-p)-pD .)(V''u) (i,,0}

In l':q,(I()()),[iisa lh_torusedt_,r_d|l¢_th__lIL'_.;tiv_:suund _pL,¢d,zi,,a r_laxatiuntln1_,aildpl) is

a dampin_ l_rn)_,,,ithth__i'I_¢i()I"alzartili_:ialIm!k vi_usil)',1h_:p_udupre_urr _Irei_la¢_',lh_

pr_s_ur_p inlh_|non|¢nlun)_quati_msonl>,TII_Iru_lh_nnudytmml_ prcs_urri,,,,Iiliused m ihL,

_t)_rgv_(.luatitm.At stead)'stair,th_tim_d_rivativ_,,,inl!q(109) g_'_tu,/¢r_:thusq p

3,6 INEXA(:TCONTINtIITY ENFORCEMENT-PRF:SSI_RE
RELAXATION

I'r_.'s_urc-ruhtxati(m I11ctlt_tt.sr_:pruscntthe htrlz_:stchics ui"in_.'ulllpru_ihlc ('1' I)tll_t_rtlhllt_ t_r

solving the primitiv¢-variablr h)nn of tl|_: Navicr._tukcs cquati_ms All Ihc_c mcth_.,t_ pr_ducu all
inexact _l)l(_rcenlL,nt _l'th_ ¢(mliiluil_ ¢_qlstrail)l, hut lhL,y _han:the'ad_£1lllllg__t h_lllt.z._.,xl_.'n,_ihh:h_
!-dim_t_si(mal implcn_entati(ms,

3.6.l MA('

l'h_: Marker _jnd C_:II (MA(') m_:th_d is the:o!dcst ui tli_:in¢,|n|pr|:_sihl,: lm.,s_ur_:relaxati,,m
m_thods (Ilar!()_,and W_Ich, 196S),havin_hcc0zdeveloped(atl.¢,sA lam_,s ,_:i_'lltll]¢lah_ratury)

initiallyl'_rlr_r-._uri'accI'Io_,,'simulali(m_.lhc MA(' mcth_d can al_uhi:u.,,¢dl'_rpCncral

in¢omr)r_s_ihl_:Navi_r-Ntuk¢_pr(_hl_ms.lhc "markcr_"arCma_s!_s l,a_rallptarlparti¢l_lhaltrack

lh_.,locationufth_l're_-_urli=¢c,l'h%,do m_tparli¢il'ml_inlh_¢ah:ulati_mliar.,,uh,,||rla¢_:m_d_,_,ltllh_

_,riginal iml_l_:,m:ntatiun, the:v_:h_city vc¢tt)r Ih:ld i._a(Ivan¢_d t_van _:xpli¢il lim_: int_:_rati_m(l_wward
l':ulrr). A muditi_:d pr_suru I'ui_un equation is d_:sigm:d t_ in_ur_: an appruxin_at_.,_:nti_r¢_:m,,.,nl_l
¢_mtinuit_, alk:r the v_:h)city update:,

At Ihu h_:_innin_ ut tim_ step _,_+/, Ih_ w:lucit> ti_:M i_ initialized with an apl_roxtmat_:
st_lution, typically Ill,,: ¢()t)vurgcd sultltion i'nm_ the.,previous tilll_'-Mup tl. 'lhr prusstlr_: lh:Id is lh_:tl
,,.'ntimat_:dfrum the: initial velocity data h> the:rnudili,:d l'm:snun: lh_isn_m,,.,qualiun,

(121, " (_" us)" i _)21) ,, (_I)", (IIll)

whk.reI) isthe'(liscr_l_dilatationrat_("discrel'mnc}_ t_rm".W_h:h el al.,I_)66).Du,/,:Klh¢'._:

discrepancy t(..'rllls ar_ in¢ludu'd in ll_.'prussur_ l)oiss(m _:quation t_ _.'untrul n_mlim:ar tittlllcril2_ll

in_tahiliti_.'s which tnav du,vuh_p _,.'_:ra s_:riusof tim_: steps (I lift and I larl_v_. 1967)

_++
_ ___ -- ...... --+ r i ii( 1111111 I r11111 I II IIII II I IIIIiiii I
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A signiticant fieature ofthe MAC" method is the introduction of a staggered mesh in which the

pressures, the discrepanc_ terms, and the residuals for the right-hand side of Eq. (110) are computed

at cell centroids, and tile velocities are computed at cell faces. Figure I presents the general layout

for a staggered mesh surrounding an interior node (i;j) in a 2-dimensional domain, and Fig. 2 shows

a typical boundar_ node. 1"he finite difference discretization is based upon central differences for all

spatial deri,, atives. Io compute the residuals for the pressure Poisson equation, velocities are required

at cell centers and cell corners. These velocities are calculated as simple arithmetic averages, e.g.,

Ui.l12.y +Ut 112 /l,f := ....................................... :
i,/ 2

u"n12'J+u"lI'_'J's (111)
_4''112' t'112 - 2

[ .u,l{,,.,,,,]Ul 1i2,J i/2.1 I _.1-1/2 I 1-1/2

(uv), Jt:,j _l: _ 2 2

v, here the sub,,cripts (i. j), (t+ JA,./), etc. refer to positions in the mesh.

Alter the pressure tield has been calculated, the velocities are advanced explicitly using a

central difli:rence discretization of spatial derivatives in the mornentum equations. For example, the

u, _ ditlerence equation is

I 2 n 2 ,I ,: n

i (u,.j) -(u,._.j) (uv),.,/2j i/, (uv),.i/2.j.i/2
u,.x,:.j _:'u,.I/:.j i 6x 6y

(112)

P,,/ P,.I,/ 1 u_.}J2,1*ua 1!2,), Z/A,.If2.] /'/_o1/2,,/,I +U,.II2.j I-2U_.!/24

_x Re 6 x " iS,,,2

_here 6t is the discrete time-step and 6x and 8v arc mesh inte_'als.

()ne of the difficulties with the staggered mesh involves the imposition of tangential velocity

tst_undar) conditions at free-slip and no-slip v,alls. A typical wall boundary for a staggered mesh is
strewn in l:ig..." Note that v, hereas the normal veh_cit,, ur is explicitly, defined on the mesh, the

tangential ,,elocw_ at the wall. v r , is not. Io deal v, ith this problem, a "belt'" of image nodes are

positioned along the boundar3 I. just outside ()1 the domain _. The boundar'>, condition is then

approximated as v,.... , ...._'_ , ,..= h for a flee-slip _,,all. For a no-slip boundary, the tangential velocity

in the image node is set at v,,, ,_ .... v_ , ,_. A linear interpolation of ti_e velocity between the

boundary and image nodes produces a zero tangential velocit> at the wall. This technique is called
the refh'c/wn melhod for tree-slip and no-slip boundaries on a staggered mesh. The local truncation

error ior the approximation of second derivatives at point (I, j-_k) is shown by Peyret and Taylor
( 1983 ) to be (XII) _,q}en the reflection method is used. i.e., the difference equation at ( i ,.j-_,6 ) is no!

(,,n._t._tent v, itt_ the difl_:rential equation, ttigher-order consistent methods fbr establishing velocity

boundar) ctmditions are also discussed by Peyret and Taylor (1983).
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6x

j+½

__ Pi,jj ............................. q) ..................................8y
U.

1- 1/2,j
[

j_l/_ 1

Vi,j-1/2

L
i-½ i i+1/2

Figure 1. Layout of staggered mesh at interior cells.

outside f_ in f_ __---_ 6x-==_---_

V1 , j - ,/2

1/2 1 11/2 2

Figure 2. Layout of staggered mesh at boundary.
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For the pressure at a free-slip wall, the finite-difference equivalent of a homogeneous

Neumann boundary condition is applied (P,,.I=PI j). At a no-slip wall, the pressure boundary
condition is a non-homogeneous Neumann condition produced by projecting the momentum
equations onto the outward normal unit vector at the boundary. The result is

2 (u3/:4 - Ur,j) (ll3)
Po,j = PI,j - Re 6x

It can be shown that the velocity solution produced by the MAC method is independent ofthe actual

normal pressure gradient at the boundary, when the reflection method is applied. This result has led
various researchers to use the more easily implemented homogeneous boundary condition for the

normal pressure gradient at wall boundaries. One should not lose sight of the fact, however, that this
homogenous Neumann boundary condition is a numerical convenience only for applying velocity
boundary' conditions on a staggered mesh, and it does not reflect the actual physics of the pressure
field.

The difficulty with applying nonhomogeneous Neumann boundary conditions, required by
the true pressure Poisson equation, is that a compatibility condition must be met by the discrete
equations in order to attain convergent solutions. This compatibility condition can be derived by
integrating the pressure Poisson equation and then applying the Green-Gauss theorem to the pressure
term to produce the following integral relation:

.e-Pdr=foOn

where F is the forcing function (right-hand side) for the Poisson equation and n is the outward
pointing normal on I'. It can be shown that this compatibility condition is not automatically satisfied
on either staggered (Peyret and Taylor, 1983)or nonstaggered grids (Abdallah, 1987).

Abdallah (1987)has proposed a modified MAC method based on nonstaggered grids, To
satist_' the compatibility condition for the pressure Poisson equation, consistent finite-difference
approximations tbr the velocity derivatives in the forcing function F in Eq. (114) were developed.
Abdallah also notes that, even though the viscous terms from the momentum equations do not appear
in F, they do appear in the nonhomogeneous boundary conditions for the pressure. The integral of the
viscous terms over the boundary. I"should be consistent with the compatibility condition. Abdallah

achieved compatibility by writing the viscous terms as the curl of the vorticity vector.

3.6,2 SMAC

Difficulties with applying nonhomogeneous Neumann boundary conditions for the pressure
calculation led the CFD group at Los Alamos to develop a modified version of MAC called the

_Simplified Marker and Cell (SMAC) method (Amsden and Harlow, 1970). In SMAC, the true
pressure field is never calculated. Since the vorticity transport equation does not contain the pressure,
any pressure field (or the gradient ofa sca!e.r f_,nction in the position ofthe pressure) inserted into the
Navier-Stokes equations will not prevent the subsequent time-advanced velocity solutions from
car_/ing the correct vorticity at interior points. It is important to note that vorticity production and
diffusion at a rigid wall will not be correct if the intermediate velocity field is not mass-conserving
at the wall. Assuming that the velocities from the previous time step are divergence-free, then
vorticity production at a wall will be correct only for an explicit time-integration scheme, if implicit
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time-integration is used. however, iterative cycling within the time stepis necessary,('ontinuin_ v,ith
the deveh)pment of SMAC, if the inserted pseudopressure is c(mstructcd such that tile resulting
veh_citiesare mass-c_mserving(or can he corrected to he mass-conserving), then the new.velocities
,,,,'illhethe unique and correct velocity tield. "ihe adwmta_eot'usin_,a scalarpotential function rather
tllan the true pressure is that hornc)geneousNeumann hounda_ conditions can he used with the
potential funclion.

"lhe NMA(" algorithm hegins at the top of'a time stephy initializing the pseudopressuretield,
I'*. In the original implementation of SMA(, (Amsden and I larlow, 1970),/'* is set to zero except
at free-._urt'aceboundaries where appropriate l)irichlet data are applied. A staggered mesh, as in
MAC, is use(.I.An intermediate velocity field u*"'; is then generaled hy an explicit adwmcement o1'
tile discrete momentum equations from the previous time step soluthm, u". 'lhe finite dit'terence
equation tbr the u*,,:_ j velocity, component in I_: is

I 2 n 2 n n n

(/4,,1) - (/_,,1,1) (14V),,I/2,j 1/2 (blV),,ll2d,lt2' " _ _t .................' ......... '

u"l/2's : u"lt2's cSx _Y (115)

P.., P..,., 1 ",.,2., ' ", ,!2.,_z".',!2., . ".:,_2.,:,,",.,;2,, ,: z,,:,,.,,
ax Re tJx2 _v_"

NMA(' also introduced the ZIP methodol'differencing the m_de-centcredrn(mientum advection terms
in ()rder to remove the destabilizing truncation error term that occurred in the original MA(' method.
An example of ZIP differencing is

' (116)
(/dr, j)" _ I/i 1/2,/ i/I,I/2,!

'ihc discrepant) term 1), ,frorn the MA(' method is calculated at re)de centers by the central
diftL'rencc relation

c,

l ( t4,_112, ! _l_,,l/2,j ) , 1 ( V' 12) (ll't)

A mass-conserving potential function _ is next computed al node centers frolll the Poisson cqualion

:: (I If,l)
V2_,,; _D,,j

The final step is to annihilate the divergence error hy correcting the interrnediate velocity fluid using
tile potential thncti()n _.

n.I * l

(119)
.,I . l

v,,,,_;2--v,,_,_/2" t)-_,(_,,!,, ¢,,,)

Aticr the velocities have been corrected, the solution is advanced to the next time step. Some typical

boundary condition specitications in NMAC are presented inTable 2. The subscripts on the velocities
and pressures refer to locations on a staggered mesh near a left-boundary plane vs shown in Fig. 2.
i'he retlcction method is used t(_specify tangential velocities at free-slip and no-slip boundaries. The
continuative outtlovv condition is equivalent to applying a vanishing normal derivative on both
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velocib components, For the pseudo.pressure,a homogeneous Neumann hounda_ conditmn is
1'' _ _'_i 'enforced for free.slip, tin-slip, and prescribed inllm,_,planes, lhe I s_:ud_-pr_ urn:in the image cell

just outside the bounda_ is setto zero fit a continuative o|ltllo_Aboundary,,
,

Ikohagi and Nhin (l(lql) have extended the NMA(' meth,_dm generalized 2-dimensmual
curvilinear coordinates v,here the fn()rllerlttllli (_f'the ct_ntr,_|varhlnl ',,el_cili¢:_arc _olved in lran_l_wm

.,,,;pace.and the _iscotl_ (dil'fu_i()n)|trills ill tile 111011lell||llllequatmn_are reca._ta_ contra_,arianl
vorlicities, A ,_-dimensinnaJimplementationofthe _enerali/ed-c_rdinale ,_MA(' metlmd is pmp_scd
hy ikohagi el al. (1¢)(_2),(.'ontinuinl_ _,_,,iththe staggered mesh, as in the ¢_riginai NMA(', the
contravariant vel_cities are defined at the centers_t" the cLmlputatmnalcell i'ace_:the ¢_mtravarian!
vorticities are locatedat centersof'the cell edges',and tile pressureis at the cell center, Iheir te_tca_e
was a 3-dimensional .step-v,'alldiffuser, to hedl, _:ussedfurther in ('hapler 7

'ral)le 2. I]oundaD' (_(m(ltthm _pectflcathm._ fiw SMA('
r , _lr ....:. " _ It I I JlU Pill " " : : =±:: -- : _.: _'_" 't_,.k 'IRr"_ __' III ' I

I](mndar) lypL. NCmnal Vel..._cib 'langential Velo_'it> ..... I_,,emh_.pres_ure
...............!,,,]llaill!,,,[_l,,, ,I,ri,l,,'/,,, .... =. Z7IZ I 2 J.--_L._ II ...........--.E.L II II

Free-slip u_ _ (1 v,,, v_ ,,_ /'. /',

No-slip u_ 0 v " v /, n
.,. =,.......................... , , ,,,,,i -- m,, ......... ....... , L ,,,,,,. ..

Prescribed Inth_ zfl ....I)ata v.- v_ ,.... /'. /'
..... ............................... ,,, ,, ,,, .......... ,,,,

(.'(mtinuative ()tlttlo_ z_*_: Iz*_,__ v,, : v_ , ,_ I', ()
II 1 : ll* 1

3.6.3 Projection Methods

The project ion (or fractional step)metlmdwas independently deveh_pedh_ ('h,_rin ( i _)68)and
Temarn (1%o), In his original description of the method, Ctmrin useda nonstaggeredmesh and an
implicit A I)1 time-integration ot'themodified momentun_equations.IMr tinile dit't_renceapplications,
hov,cver, it has become more colnmorll) implemented with an explicit time-integration and a
siaggered mesh.

Chorin (1068) caststhe momentum equations in tile t'ollo_,_,ing(_peratort'_rm:

Ou, OP ,'_( u,, h,, Re) (i 20)
0t Ox,

_shere,:_ is a diftL,rential operator (vector function) that dependson the velocity ticld, tile body force
field, and fluid properlies, but not on the pressure,P. The vector field :,_"can hedecomposed into the
sum ol'a rotational (thus solenoidal) vector field and an irrotationai vector field,

,_(u,) = V×A * V_ (121)

V'( V×A):O V×V_:O

This i-leln_holtz decomposition exists and is unique wl_enever the initial value problem t'_r the
Navier-.gmkes equations is well-posed, By the conlinuity constraint, the divergence of the acceleration
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(:_,,/:_t) is zero, and the curl of the L_radicntof the scahir pressurefield is identically zero (for n
sufficientI_ Slllooth pressure),()tic0tllercl_)rc,Ctlllidentii_ therotationalcomponentof :¥ (u,) v,,iththe
acceleration m_dthe irrot_tional component _,_,iththe pressure, l_q_,(120) and (121) c_ltr__ i _( _ h_

hlterprctedin termsof the orlhopotlnl prqjectiottoperators(P [llld O, _Jlcr¢ ('_ prt_jects_1_ectoronto
the null spacu of"the divcr_zenceoperator nnd ¢J pr_)jcctsn vector Otlt() the null space of the curl
operator ((irc_ho, Iqt)()),lhcrci'ore, one obtains

Ou,
.... _ .P(u,) _P _ Q,P (u,)
0t (122)

and theresultingaccelerationisdi,,crgencc-frcensrequiredh.vthecontinuityconstn)int,

Hased on the above pr()jcctions, Chorin proposed thnt the vch)city field bc ndvanced in tv_o

steps,Inthefirststep,anauxiliaryvclocit)fieldiscompt)tedfromndiscreteapproximationto,¥ hy

o n

u) -u, ,_ h(u't) (123)
6t

A distin[_uishingfeatureofChorin'smethodistheabsenceofthepressureduringthesolutionf_rthe
mlxiliar> velocit),In theSMA{' methodtheinitialestimatcfor thepressurewas settozeroasml
optionalcomputationalconvenieI_,;e',however,intheprojectionmethodthe/.eropressurefieldduring.
this stepis (1t'undamentalpart of thedevelopment.In the secondstep.theaLixilmr5 veh)cit> field is
pn)jected onto a ne_rh> solenoid_l manifold. The necessaD'Poissonequation is derived from

n,I *

....................., sTp") . 0

V'u" '_"-,0 (124)

- V'P"" 1 .

The bounda D' condition for the l)oi,,,son equation is obtained b._), n()rmal projection of' the lit'st
relation in l_qs, (I 24) onto the boundary l,

( ) '0P'"., .. I( ,,,)..O" ,,

I-or =zstag_,eredmesh and an explicit time integraticm,it can he sh()v.'nthat the velocity solution is
independentof u*r since (1)),* isa function oi'u," o))1;,'in an e×plicit scheme,and (2) u*_.t=ppearsin
both the right-hand side and in the Neumann boundaD' condition of' the I)oiss()nproblem where it
idemic_flly cancels for a stagL_eredmesh( l'eyret and 'lavlor,. 1083). l i"t_*_,isarbitn_r,),,it can bechosen
to be uv"' ', producing, a homoger_eous boundar3' condititm fi.)rthe l)oisson problem in Eq, (i 24), After
I)"' _ has been calculated, the final step in the projection is to correct the au×iliary velocity field by
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u n't u' _t V'P_'1 (126)

l',i_licethalliarIf,:almi_imflieme,talmn,lh_prqieltionmethodi_identicalh_NMA('.althoughth_
de_,_h_i',m:ntofthet,.,_omelhod_folh_,,_,eddilIErlntline_oI"reii_ouing.Iti_,ho_,,_ever,importuntI_
not_ that thede_igner_of' ,_MA(' did m_tit_o¢illle the p_tentinlfimction (u_edILl_orre_tthe mixiliar>
,,elocit)field)v,iththetr|l_pre_|ir_,the> reco_niiedthattheu_eof'holnolz_lleOil._Netilllltltll
h_mmlar,, _.._mditi_m_,,,,as_1computational c_m_,.enienceand did not relle_:tthe ph)si_all> correct
houndar> c_mdili_m_liar the pressure

I)_m_ae! al, (I _82)ha_,e proposeda tinite-elemenl impiemenl,lic, n oi'lhe projection mL,thod.
II_diag(mali/in_the ma_ matrix11,_illgthe_tamhmtrov,-_um lumpin_technique, the)ure able to It_e
a purel> e._plicit time-inle_ri|lion, lhe di_-_tahilit,, c_mdition i_ _atislied ,,_vilheither the hilinear
,,eh_cit}*aml _lement.c_m_tantpressureor the hiquadralic ,,elocit> and hilinear pre._sureinterpolati_m
t'uncli_m_, l)urin_ Ihe tntHll_llilln| ad_,ancemenl step. the _omplete ',el_.'it> i)iri_hlel I_oundar)
_ondilions ure applied. For the projectioil _tep, tlw Neumann velo¢it> hounda_, comtilion_ are
imposed, hut 1,)||1%L the normal c_mip_merllof the _,elocit_ I)irichlel I_mmhlr)data i.,,enliwced, ihe
tangential ,,eh_cit),houndar_comlition_ uresatisfied onl> in th_ v,eaksensein _rder to he _onsistent
',_ilhthe pressureh_undar3.¢ot|ditions. The fractional _tepmethodv,a._testedon an un_te_ldydriven
cm,'it), axi_mmetric Ih_ tJlnmgha suddenenhzrgemenl.11_ arounda stationar) ,_phere,1111(inatural
_ollvecIion ill a chased_'er_ic_llc_linder.

Nhimura and Kuv,,allara (1_1,11,1),usin_ un equal-order liulte-element proiecti_m mellmd,
investigated a procedure liar applying a computed nonhonml_etleousl)iri_hlet outtlo_ Imundary
condili_m liar the pressureequation, '1'tli_I)irichlel pressurecondition i_calculated h)inlegnlting a
I_ouvlda_*pressure I)oisson equation along a hlyer ot"elevvlent._adjacent to the outllov, phul_:,"I'11_
houndar) pressure_:quationis conslructed with velocit,, data from either the previ_us time stepor a
previou_ iterate, lhe resulting pressures_ornputed on the olJtflo,,,,_ phme are applied as l)irichlet
pressuredata during a suhsequentglt_hal Pois_onsolve thr the mass-conserving potential function.

['ontinuin_ v,,ilhthedevelopmentot'hoth theprojection and NMA(' metl|_ds, researchershave
investigated various semi-irnplicit techniques in _,_,hichtile advection terms are advanced explicitly
and the dil'lhsion terms implicitly. (iresho (1990) presents an extensive theoretical discussion _t"
houndao' conditi_-missues l'or a number oI"prop_sed semi-implicit projection methods, A finite
elenlent implelnentation ot' a semi-implicit techtlique is given hy (iresho and Chan (1¢990).

3.6.4 Velocity Currection

Schneider m)d Raithhy (I ¢,_78)prop(_seda tinite-element pressurerelaxatilm techniquebased
prin)arily on ihe SMAC..'method. They wereable to circumvent the div-stahility c_mditionwhile using
equal-order interpolation fimctions t'_r the velocity and pressureby maintainin_ _1"strict enfi>rcement
o1"the continuity constraint at eyeD' stage ot" the iterative process." The first step in their vehwily
unrreulmn method involves an explicit time-advancemenl ol the rnomenturn equations using a
guessedsolenoidal velocit), field (from the previous lime step) and a pressure tield calculated from
the genuine pressure Poisson equation. The new velocity field does n_t satisfy tile continuity
constraint, so a mass-conservingpotential function (seel'_q.(118)) iscomputed via a l>oissonequati(m
and the discrete divergence error. Tile potential function is then used to _orrect the velocity field.
,NchneiderandRaithhy note that the corrected vcl(_cityfield will no longer satist_' the rrlonlelHurll
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t:qttati_m.,,,_) the fhml ,_lcpt_ttti_ ileralivr t;},:t_ i_tt_rccalcuhlle Ihr pr_lirc u_illlz thr trzlr pr,,'.,,,_ztre
i_i,_mm_qllatiLql.I i111_mardliu__ith blqtimtr|lli,; Iinitt_,cl_lil_ilt_ ,,,,i1_tlm:dI_ _alctllatc_t_ad)o_titt¢
_hitioI1_l_rthriitlodrP,L.uaudnatural_11_e_tii_11ca,,iti_,Kav,aharaand()!illli)a(l_i(SIu_d thr

r_t_ i_zIii,,.,NMA( _111_111,_d,Ka_,allaraa11d()hmi,,ai11m_li_dlal,zrau_ia11niark_rpar1_i_,_li_rlh_,,q,

,,,imlali/aI1ou,andtl1_)'dr¢_pp_dlh¢pr_llr_P_iSmqlm_l'.,_,atlhr_ml_flh,.,Iimr._trp

Ri_:_atld Nchnipkt:( iqt,16,m_t:alm_N¢imipk_aud K i_.'_:.Iql( ?) di._¢u_ ant,qmll_,rd_r ,,L,hwiI_,
¢_rrt:¢lmu Ulrtllod v_r) _inlihtr i_ tilt: ,mL,pr(_p_m:dh,, N¢iltu:id_r a,ld Rallllt_) (I_XCI) It1 ta¢l IIiL:
di_lin¢lmns art: twit ,_b_,'i_ul_I lu: IlIL_IIlt.oIIltiiIIL,quali_.ql_art.',,_t_t_dt*_ratl llllCrtll_..ditttt, ° _t.'h_¢il)fi_ld
vdlich i_ thvn _,_rrt:¢lt:d_,_,itha p,_trcntiali'uticti_ql_:,qlipUtt.,dtr_111a th_i_mqlrqllatmn. I tu: t}_r_illl_
t,zrtil_l_rll1_l_',,'_i_s_tlCqtlalionar_thrdt_.'r_t,,:di_,,zr_¢ii_¢_rr_r,||lldll_llI_!_¢ll_'_II_N_|iIIIi|III!

b,_uudar)'c_11,_liti_t1,_ar_appik'dat_,_,alianditiIl¢_,_,h_ultldari_,_"Naturalhouuda_ _qldiIi_m¢'Ii_rth_

p_I_nIialfun¢ti,_mar_appliedatouIIl,,_,_,plau_:h_.,,,_r,IIi_nalur_L_iII1_,.,I_ulmlar'__qldiIi,_ql_i_
m_tdi_¢u_.'d,A slr_auiIim.,upv,,illdt11_tI1_dli_r¢_qitr_IiiuI_di_p_rsi_qlerrori_aI_ pr,,,,_tlt,:d(Ki_

aud ,_,_Imipi,_,I_)

3,6.5 NIMPI,E/NI MIq.,F._I MI'I,E('

Ilt:',_lop_d by ttlc Imperial (..'¢_ilt_l_:('1:I) _roup iu th_ hiI_ I_}(_(I_(Patankar and _paldiu_,
1_}72),tll__t:ini.[nlpl_it J_]t_tlmdthr J_rt_ur_-Uilkt_d _quati_m,_(._IMPI I ) i_a _,1dr:l,,ti_tl prt:_mlr_
relaxati,nn('l,l)t_llniqu,:,l,mph_yin_a _ta_cr_d_rid,l.i_,il,NIM,'I.I.u_c,,lh_lhlitL'._,,_hlu1,,.'

111_t11_d,a_appliudm h_attrausI_'raud iluidli,>u,pr_hl,,.'m_,i_i,ziv_uiuilIL,b_u_kh) l_aiauI,,ar(l_iI,!(I)

A _n_ri_ I'inil_-,.,_luu1__,'itht)picalNIMPI.I!m_tati_mi,,,_I1ovvuiuI,i_,l,V_I¢,¢ili,:__r_
rvaluaI_datlhrlit_s,,_I"iI1_volume,and tl1_.'pr_._llr,,.'and an),_th_r_alI1r,,ariabl_sti_lla_

t_inpcralur_arr_a_si_.11_dat111,:_I_n1¢uI_¢nI_r,A_ au_ampI_ _fNIMI'II,aII_rithmn¢_tatmu,I11_

inlpli¢itadv,m1_111_11t,_I"tl1_,,"'_,,._l,_itX ¢_>lllpOll_llt(IZ_Ic_tiilpb,_,d)ii_r_.,.,)attI1_(.n'_iiiz_of
m',.l_P iscalCulat_das i

,,,, _ _,,_,u,,_,,[ /',,t',,}.4, (Iz",'}

the stlbscript ,h r¢,l'_rst¢_th_ mirr¢_undiu_l'uCt,s (|l_:ighbors) ¢_t'nodr P, aud ..1,.is IIi,,:surliu:uar_a _I
tIle mtst t'acu.111_:u ¢_._cl'l'i¢i_ntsaru t'unCtions¢_tttl_ v_l¢_¢it)'fi_ld, the t11_._1_B_._lllctr). aud ttl_.,time-

step. III I!q. (12'7), the:correct pressur_:sat tile _,,_lunlccuntt:rsar_:assum|.'dkll_.iWll.Nillc_ it| tll_
buBinninL.z.¢_t'lllu it_rativ¢ ¢,,'¢1ca t.zll_ssCdprussur_fluid u_u.,.,th_:used. t11¢aCt|ial iulpli_it v_lo¢il)
advan¢_nluntst_p isv.'ritt_,,nas

v,,llt:rcthe supt:rscript"*" dt:nott:stllu current t:stinlatt: ft_rthe v_.:lt_citics|u!d prt:ssures.

NIMPI.li inv¢_lv_:sa vui_¢ity ct_rrcctioust_:pand a pressure:ct_rrcction sh.,p 1t1_ v_:h_cit>
¢,_rr_:¢lion_.,qualiCmsar_:¢h:riv_dby l_rsl suhlra¢liilp I!q. (12I,I)from l:,q. (127), _i_,hl_

.... ,=,,, ,,, ,,, i lll[_IIllrill IIIIIIII I IIIMI I l llllIIIII I I
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FIIlure 3. Generic finite-volume with SIMPI,E notath)n.
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liqunlion ( 12'_1i_lh_ i_iil_ implicit _,elocii_correclioneqoation [he ,_emi_implicil_uh_il_' _:ort,;-clio,_
eq||nli|mdrop_ihc underlinedlem! in iq i i _'_!to ohla,o

.,
(l.lO)

,/_rteqsintioncml h¢ deri_,-edG_rIhe pr_or¢' _orreetio. te_ h) u_inp Iq (1 !0t wilh lh_ diqc_t¢
¢onlimiit) eqtinlioil lhe fe_ollil|ii Poi_orl eq|ililion i_

V_p, _ . i V,u* (131)

1,1p_clice, thepr_s_ore¢orl_clioo_pl_c|ul:edh) l'q ( I] l ) ielld too_'erp_dictlh¢requiredildju_imeol
to the pre_sl_, ihercG_r¢._|_rltel¢_ulof oriderrclaxaliolti_ reqoi_d _h¢11 Ih¢ pre_or_ cOl'_,¢ihqli_
_pplled, e_.

P _ P' . a_P (131)

It i_ _1_ocoo.non prclcliceto u._rrel_ the momentumupdateof the ,.eh,_it) field h_

II 11

t_,her©m is lm itcrnlion ,nde_ l spic=ll _,¢lloesG_r,=_ and _= =Ire OR imd 0_. rc_pecti_,ul_,

, ,,at ,,i ,n,lm i l I I IIIIII I I I I I I ..................................
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(_,rr_ll._lh__e:h_,_IIie__idldImlpr_du_:__,_r)_,d _,_Iiil1,|I_,._i_rlh_¢,_rr_¢I_dpr_.r_ Ii_Id,lh_
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(1) l_Oe.s`sa velocityfield ,",

(2) ¢alcohitca pscudovclocit)field, ,*', u.sin_I_q.(13]) with lhc pressuresst! h,

/cro;

(_)tI`scthepscudovclociticsli'=toIbmttheri_ht-ha||d.sideofthePoksoncqu=ition,

i_q,(Ii_I),andcAflcolatc_nc'._,,cs|in|atcIbrtheprcsstlrcfield,I'=

(,t) c=ll¢olatc,' with theprcs.surc.s/" t"1'o111step .1usin[lEq.(132);

(_) solve tilt Poissonequation,I':q.(I 31), tbr file pressurecorrectionterms,!", osinB

the tt' i'rom,step4 to lbrm theri_ht-ha|ldside;

(6) corrcclI_* _'i111tile /" calculalcdin slcp5. i)o nolcorrectthepressure,P*;

(?) repealsteps2.6, onlil convcrl,lcncc;lhctt

Nolice llml .slcp 2 is nll itllplicil ti,nll ot' lhc firsl ,step it1Chorin'_ pr¢Licction mclhod.

Ihc ,_1MPI.liC method(v=mI)oormalandRaithhy,i ¢)114)u_a.sako developedtoimprovethe
¢¢mvcrl_ctlccralc!i_rthe pressurelicld. In.NIMPI.I_(',the t'ullyimplicitvelocitycorrectionequation
is moditicdh). `stihtractinBthe term_ _l,_, ', I'romboth_i¢lcsot'F.q.(I 2g).

f ! t 1 t

( ,, _ .._)u,o _ ,.,( u,_: u,) . ( P_..P,)A, (I._4)

Ihc ondcrlincdicrm ht l'_q.(I 3,1)isdropped._tndthemodifiedvch,cilycorr_',,_mn ¢qunlion is

., od, ( P;, t',_l

A, (i3.q)
do _ ....................._ ';=_ ....

(,o __ r_,,_,)

ihc itcrtttivccyclethrSIMPI,I_.Cprocccclsexactlyasin SIMi)I,E withthenewdefinitiontbr _/,and
v.ith(iF_ I.().

('onncll and_low(I ¢tfl6)comp=trcdco|wcrk!cncctalcsol'll_cN!MPI,Eall_orithm1olhcrest|Its
ol'tw'oextendedprcsstlrccorrectioneql.llltions.Theextensionsinvolvedaddinl_higher-orderadveclion
tempstotheriid|t-hand-sideot'thepressurecorrectionPoissonequation,Withtheseextensions,they
lbundthtttundcrrchtx=ltiollof'tilt nlomcntumcquctlionswasnotnccessalT;however,undcrrclaxation
ot' the pressurecorrectionwas still reqoircd.I_lascdon testswith thedrivencavityproblem,the
extendedpressurecorrectioneqoationsprodtlccdupIoa S0% decreaseinCPIIlimecomparedto
SlMPI.E,

...... - , ...... _llill_,llmi iil IIIII III II l[llllll .....] ....
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A m_ditied _IM PI.I.I(' melh_d h_lsbeenproposedFornon_t_lg_eredgrids bv Aksov and(,hen
( I_... ). l'hc M_m_rllum W_i_tlt_d/t_terp_l_ti_n _etl'iod (M WI M) c_ll_uhile_vch_citiesend pressures
_ltelement colliers MWIM is vet) sinlihlr t_ _lnothertlonst_:ggeredv_lri_tltot' SIMPI,i:I ¢_lled tile
l_ress_ircWeighted irlterpol_itic_nMeth,,_d(I'_:IM)due t_ l;,hie Cmd(_'llov.(I(}8.1). 10 ilv(_idspuri,_us
presnures¢_llllJolls,tll_ di_crgct_¢eerror (rcq(lircd fls tilt.,rJBht-hal_d-sJdet,._rthe t-)ressure.¢orrectJ_,)n
Pniss{_rtcquitti_n) is c','_tiu_ttcdusinl_vcl_citics intcrp_httcdt_element l_ices Aks_)' _mdChcn _tpplied
the tinite tlllill)tjc ltlcthod {('hen, l_)Xl'l) I_'_djscrctizc the nlonlelllun! cqllzltjolls. A c_mp_tnltjvc
_t.sscsslllcnt_d'tlle peri_mll|ll¢¢ (_t'MWIM t{_SIMPI_I'_R,SIMPI.liC, I}WIM, _lnd_ ll(_nst_lggercdBrid
,.ersi_'_nof MA(' b,, Abd_ilhth (l{}I,l"l), ,,,,_sct_rried_ut t_)_Akso)_md ('hen using the lid-driven cilvjt),
pn_blem 1he)_l'_}undlhilt the l')crti_nl_mcc_1'Itll the _lB_rithtns dctcrj(_n|tcd lls lhc grid size v,,_ls
retincd, The n_nst_tggcrcd_crsi_n ot'MA(' h_tdexcellent c{_nvcrgencc_tndst_lbilitv properties _ts_tI_
exl)ljcit mettl_d_h_',_,_ver,_c()nscrviltjon ot' IllI|ss _.vllsi'_or in is_l_te(I Ilrclls _t' the mesh ne_r tl_
singuhlrities. MWIM _nd I'WIM pmdu_;edm_re or lessthe s_nlepert'_rmtlncech_n_clerislics.They
_,ere ,_hle tu _lli_Jtl h_rger sl[_bletime-step sizes th_n either ,_IMPI_I:R _r SIMPI.I.:(': ht_,ever,
Sll'vlPl.l_il_,trod NIMI_I,F(..' required ti.,_,.eriten_ti_nstbr c_nvergenc_.'th[_nthe implicit nt_n._t_ggered
grid _ilg_rithms.

3.6.6 PIN()

The _resmire-Lnlpli_:itwith Splitting _1'_en_t()rs (I)IS())method is _ n_)n-iten_tivepredic-
l_r/correclor _lgorithm developed bs_Iss_ (1_)I'15)(see_ls_,Iss_ el _1., 1_,_6)tbr inc_mpressible _nd
h_v_M_:h number c_tnprensible ('1:1) _ppli_:_lions.Tin_e-integniti_n is t'ullv implicil (h_:kv.'_trd
iiuler), _nd the sp_lti_ldis_:reti,,_ltionis h_lsedon _ tinite-w)lun)e sti_l.'.geredmesh, I._)lh_,.ving,h_ngel
_1.(I()X6), PIM)_:_n he presentedusinB SlMI)l.l':-Iike n()t_iti_ntbr e_s>_comp_ris()nt(_the SIMi)I,I':
I]m)il_' _)1'_lgorithms. N(_te in the _:()rrect()rstep for the pressure, the _enuine pressure l)(_iss_n
egutition is used t(_ Jllsllre theirthe tin_li prcsstlre distribtltion is c_nsistent _,.itll the IllOlnelltlllll-
egtlilti()n upd_lte()t'the _elo_:it._Ih..iddistributi_)nin the sec(_nd_:_)rre_:torstep tbr the velocities.
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The two-staBe version _f"I)1,_()is us tbllows:

(I) _pJitr vc!_)¢it_- Adyllllce the implicit discrete momentumequations_ith
the pressurefield ff_tm Ihe previ_tustittle-step:

(2) l!rediqmr_s_tep_!'or_pres_LJr_.- .',;_lvea Poissonequaiion thr I'*:
v'p ..... IIAI V' u*.

(3) .].'iir_!co_n'e_:t_eslep litr 5¢lo_;ils -llse, SIMPl.l.i-like vel_tcits c_,rrector:
.,** I,,* + [ ( I,,,*- p,,")- ( * - p,")1,

(4) (,(_rrecLor_t_ thr p_s_ur_- Solve the y,enuine pressue I)(_iss(,1equiltit)n thr p**:
'¢:p** ::_- V.[u**.Vu** -(I/Re)V:u**]

(.,i) 5.econd¢orr_t_t_rstep!'or?,,elo__J!_,i.- Llse an explicit advimcement ,tl' the m¢m_entt|m
equationswith ( p** -p* ).

(6) Ad_-_!___t]i_ n__t tJl!l_=_tep- u,." _ = u,_*** _mdp"' __-:p**

l I¢_ln¢_ene¢,usNet.natln botmdar)' c;;_l|ditJ_;tnsarei_pplied t'tlrthe pressurePt,isstmequatiems.
I,ike SIM I)I.I;,R, tv,'¢_P_issonsol,,usare required. ! I¢,v,ever, in I)lS() the secondveh_cit_,c¢_rrect¢_rstep
is accepted as the converged solution t_r the veh_cit_, and thealgorithm advances1¢_Ihe nexl lime
step. Issa( i _,_t,15)perthrmed a heuristic error =m=_l.v_is¢_l'thetwo-_t=_Beversi¢,n_1"PI_() ,nd determined
that the errors in the s¢_luti,m¢_t'the line,rized dit'lerence equati¢msthr the pressure_nd velocit._'are
_t' ¢,rderAt' =rod,'xl', respeclivel__,

J_tngel _zl.(Iqtlh) c_zrriedout _zcompzzrativeassessment _! the l_ert'{,rinance_,t_PIN(),
SIMPI,I'_R, lind SIMPI.li('. "l'h_:_)'thund tht_t I_._ris_thennal laminar tl_v_s, w'here the nmlz_entun_
equati¢msare n¢_lstronBl), occupiedto a scalar state-variable with its own transp¢_tlequatitm, the
noniter=_tiveI*1,",;()alB¢_rithmoutperl_._rmedthe iterative SIMPI,I']R =rod,";IMPI.I;(' meth¢,dsin lerms
_t' computati¢malett_wt. I:¢_rproblems with a stronBc¢_uplin_,het,,veenthe 111Olllellttlll|all(.t scalar
transport eqtmti¢ms(e.t;., c¢,upling with the enerB_'equt_tionthrould_a II¢_ussinesqt_uo_,anc_'term._r [
udth a k-_:iurhulence model thmuBh the eddy'visct_sitv v' ), I)IS()did n¢_lexhibit y,_¢_¢1¢:o,verye=;ce
rate_ rel==tiveto ,',;IMPI.I_R and SIMPI.E('. PIS() als¢_required small time steps Ihr the stm=_gl_,
c_upled cases in {}rder to obtttil_accept_hles_lutions.

13ra_tenand Sh),),(I 91t7)studied a multi-step pressurec_}rrectmn_l_rithm, similar t_,I"1,',;(),
with extensi_msthat inclt_dedn{mortlmBonalcur_,ilinear c_,c}rdi,alesand a multi-l_rid s{}lver t_,}rthe
I>¢_issonequations, They I'ound improved performance, relative to a single pressurecorrecti¢_nstep
alBorithm, l_r hm_marll_ws and !l_ws tmnearly _rtho_,c}nalmeshes,i i_v_ever,c_mverl_enceratesdid
not improve l_r morecomplicated t'lr}wsandyeometries,e.g,, turbulent andreactin_ t'h_w.,,,and highly'
=mnorth¢_gonalmeshes, l,ittle peri'_rmance Bain was obtained hv s¢_lviny,the pressure I_iss¢m
eguations to _ tiy,ht tolerance at each pressurect_rrectionstep.
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3.6.'/()perator Splitting

(ilo_inski and Pironneau (I 002) have recently presented a review of a class of'finite element

methods fl_r the incompressible Navier-Stokes problem based on op¢'rator .splitting. These time-

integration schemes produce at each time step t,.vo groups of subproblems, the advection-diffusiorl

problem and Ihe linear incompressible Stokes problem. A generalized fbrm is the 0-scheme, described

below tbr the unsteady Navier-Ntnkes equations with no body/brces.

(!) Firsl _lokcs Problem - Solve for u ''_ and P"'_

U n'O -U _ (X V:u'" + VP_'° 13 V'u" -(u".V)u"
0 ,.'$t Re Re (136)

V'u "'e _ 0

. ' I.fl
(2) .Ad_ecti(,n-l)iffusi(m Problen_ - Solve for u

u"l ° u ''° 13 V2u,.I o , (u,.O _)u,.I o

( 1 _ 20 _ t) Re (13'7)

a V2un.e VP"'_
Re

('_) Second %tokes Problem - Solve for I/_'/ alld P"'/

u_.l u,.I e a V:u,,,I _ VP"'I 13 V:u,.I o ( un.I o.V)u,.J o
0 ,5 t Re Re (138)

V'u ''i _ 0

The continuity constraint is enforced in the linear Stokes problems, Steps I and 3. In Step 2,

the advecti_m-diftiision problem has been linearized by lagging the coefficient of the nonlinear
advection term. The splitting parameters, ct and 13,can be chosen such that

a = (_!__-__0_! ; 13 - 0 (139)
(1-0) (1-0)

(ilowinski and Pironneau suggest an optimal value for 0 is ! - 1A/2.

The operator splitlir_g scheme succeeds in decoupling the nonlinearity in the Navier-Stokes

equations t?om the incompressibility constraint. The algorithm designer is still faced, however, with
the nontrivial tasks of solving the incompressible Stokes problem and the advection-diffusion

problem. Taking advantage of the symmetric positive-definite terminal matrix statement produced
for the Stokes equations, a preconditioned conjugate gradient algorithm can be used (Cahouet and
Chabard, 1988). A number of methods have been developed to control the dispersive errors associated

with advection-diffusion equations, e.g., Taylor-Galerkin methods (cf. Baker and Kim, 1987; and

Donea, 1084), Petrov-Galerkin methods (el. Hughes et al., 1986a and b), and Lagrangian/Eulerian
schemes based on the method of characteristics (Giowinski and Plronneau, 1992).
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Shen and Temam (1989) have proposed an interesting variant of the projection method in
terms of an operator splitting scheme. This algorithm was designed to produce an approximation of
a nonhomogeneous Neumann boundary, condition for the pressure while retaining the computationally
attractive properties of homogeneous Neumann boundary conditions for the intermediate
pseudopressure q. The scheme proceeds in two steps as follows:

(1) Stokes Problem -Solve tbr u''_ and q"'_

u ''1/2 -u n _1 V2u,,,llZ + Vq.,_/2 = 0
( At/2 ) Re (140)

V.u n'il2 : 0

(2) Advection-Diffusion Problem - Solve for u"' J

u ''l -u n'jl2 1 _.2u n.I _ 2U "'II2"VU n.l = -_Tq n.112 (141)
(At/2) Re

Shen and Temam postulate that

p _ : _1( q ,.It2 + qn 112) (142)2

is a good approximation for P(t,) based on the observation that, upon summing Eqs. (140) and ( 141)
at time step n -l and then projecting the result onto the outward normal at the boundaD,, one obtains

OP"(lon: _2ReV2(u""/2"u") - u " '`2,Vu') . n (143)

which corresponds to a discrete approximation of the nonhomogeneous Neumann boundary condition

for the pressure Poisson equation. Their stability and convergence study found that the new scheme
is unconditionally stable and convergent. An error analysis, in which numerical results produced by
the new scheme and by Chorin's projection method were compared to an analytical (exact) solution,
showed the new scheme to be more accurate. They also discovered that the precision of the pressure
approximation produced by the new scheme slightly improved as the Reynolds number was increased.

3.7 SUMMARY

The algorithms discussed in this chapter demonstrate the range of formulations that have been

developed to enforce the continuity constraint. The pressure gradient in the momentum equations
provides a mathematical linkage to the continuity equation; however, the absence of the pressure in
the barotropic equation of state for an fi_compressible fluid presents severe computational difficulties.

Exact enforcement of continuity typically involves eliminating the pressure by recasting the
problem in terms of a derived state-variable, the vorticity. Conservation of mass can then be satisfied
automatically by coupling the resulting Helmholtz vorticity transport equation to a streamfunction in
1_2or vector and/or scalar potential functions in l__. These potential functions can be bypassed with
formulations linking the vorticity directly to the velocities. With all of these methods, the elliptic
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nature of the incompressible continuity principle is manifest by the presence ot'one or more Poisson

equations. The u-P direct tormulation, as a mixed-finite element method, has found some application
to 2-dimensional problems; however, the ill-conditioning of the final matrix statement presents
obstacles to extending it to 3-dimensions.

Formulations designed to produce inexact or approximate enforcement of the continuity
constraint require a modification to the conservation law system. The conservation of mass can be
transtbrmed into either an algebraic relation (e.g., penalty methods), a hyperbolic initial-value PDE
(e.g., pseudo-compressibility methods), or a boundary-value PDE (e.g., pressure relaxation methods).
tiowever, all of these formulations must eventually be implemented within a semi-discrete
approximation statement, and, as a consequence, resolvability on the spatial discretization [2 _'is a key
issue. The computational impact is truly significant, since eveD' inexact theory centrally involves
"'measuring" the error in 7h'Uh , and then correcting it (Baker et al., 1992c). Any code
implementation can accomplish this operation only modulo the discrete approximation V j' to the
gradient and divergence operators, 7 and V., respectively. As an example of the difficulties arising
from the use of an inappropriate V h consider the discrete velocity solution shown in Fig. 4. The
velocities are located at cell centers, and the solution is clearly nonphysical. However, if central

differences are used to evaluate V _'.uh_,, the discrete divergence error at node I' will be zero. Such
difficulties led the developers of MAC to the staggered mesh.

The dominant approximation error mode for 7;' is dispersive, and, as a result, V;'. u _ is not
only non-smooth but usually piecewise discontinuous on £)J'. Therefore, for any of the inexact
formulations, the created discrete approximations to the theoretical pressure estimate may contain
short wavelength oscillations which can become vers' pronounced. In fact, such oscillations appear
to be critical to the numerical enforcement of approximate continuity, to be discussed, but this
constraint potential function bears little relation to the genuine (smooth) pressure distribution.

The theoretical framework for the new method to be presented in Chapter 4 assumes that the
continuity constraint fields q_',as computed modulo V h are no more than ,just that, i.e., they are not
accurate approximations to the genuine pressure P. Assuming that one can achieve V h. u _ _ r, then
a genuine pressure field can be approximated by the solution to the pressure Poisson equation with
physically motivated and numerically well-posed boundary conditions.
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I I

vh.up: o

v'lO0

U" -100

_g -_v"__o_ov-lO0 v-lO0
........ ,,, ,, ...... ,,,, -

u=100
v=lO0

Figure 4. Example of a spurious velocity solution with Vh. up=Ousing central
differences.



4. CONTINUITY CONSTRAINT METHOD

A new primitive-variable finite-element CFD algorithm, the Continuity Constraint Method
(CCM), has been developed to produce approximate solutions for the unsteady Navier-Stokes
equations in three dimensions. Falling in the general class ofpre,s'sure rehtralion algorithms, the new
method has its origins in the finite-difference SMAC method (Amsden and Harlow, 1_70), the finite-
element velocity-correction method of Schneider and Raithby (1978), and early developments in
research on incompressible algorithms at the University of Tennessee's CFI) Laboratory (cf.
Noronha, 1989; and Noronha et al., 1990).

Recognition of the dual role of the pressure, as both an enforcer of the continuity constraint
and as a fbrce in the mechanical balance law for the conservation of linear momentum (Gresho and
Sani, 1987), has been a guiding principle in the algorithm's development. An implicit time integration
with iterative cycling within the time step allows the two roles for the pressure to be completely

separated. Specifically, a mass-conserving potential function is used to enforce continuity while the
genuine pressure, as induced by a solenoidal velocity field, is calculated with well-posed and
physically-motivated boundary conditions by the pressure Poisson equation. This separation of tasks
produces a clear view of the individual and totally distinct bounda D' conditions required for the
continuity constraint function and the pressure.

i Additionally, the CCM employs a 0-implicit time-integration scheme, a consistent mass
matrix, an optional Taylor Weak Statement (TWS) formulation for dispersion error control, and
equal-order interpolation of all state-variables. Implicit time-integration ,allows larger stable
time-steps compared to explicit schemes. A consistent full mass matrix, as opposed to the "lumped"
mass matrix commonly used in explicit methods, exploits the cross-coupling in the inertial terms of
the momentum and energy equations produced by the finite-element semi-discretization. The TWS
theory has been employed by Baker and Kim (1987) to identify a multi-dimensional tensorial
mechanism for hyperbolic conservation law systems. The derived stability formulation was later
verified for incompressible systems as highly effective in control of third-order dispersive error
mechanisms (Noronha and Baker, 1989). Equal-order interpolation of the velocity, pressure, and
temperature state-variables with trilinear and bilinear (for bounda_, condition surface integrals) basis
functions produces a continuous and more accurate pressure solution.

4.1 CONTINUITY ERROR DISTRIBUTION

Gresho (1990) presents an investigation of the continuity error distribution for semi-implicit
projection methods. Expressing the solenoidal velocity solution at time-step n+ 1 in terms of a Taylor
series expansion about the solution at time-step n results in

n.l . dUil At2 82U_1u_ -- u, + At-- + + O(At 3) (144)
Of 1. 2 at2 In
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Assuminganyapproximationto tile velocityfield, u,*, canhemadewith anyguessedpressurefield,
P' _ I'", the Taylor seriescompanionto Eq.(144) is

. .. au,] At 2 02u, (145) I
Ot [.. 2 Ot 2 °.

At l=/, ,

, '1 ] u_S I 02U_r._Xs:z OP (146)., Ou, Ou, Out- Re O.,q .u, u, at . bt . '

and (iresho specifies thai the second derivatives ol" u," and Us'" with respect I0 lime arc

I Ou_ 1 O2uj OP
02u_ 0 us (147)
.......... :z _ ............. _ .................... -_ .

r?t2. c?t Oxs Re r?xsa 0x, .

Ou' - Re02u, O Ulox; 1 02u, (148)

where, apparently, for the guessed pressure field Ol'*"/Ot_::O. Although the rationale for setting

OP*"/Ot=O is not given by (iresho, one explanation may be that the genuine pressure field, I'", is

assumed to be evolving in time with the solution, and the guessed pressure field is not. Subtracting

Eq. (144) from F.q. (145), one obtains the following expression tbr the error in the velocity field,

.., . At 2 O2u, _2u,') t_t2 a (aP)u, - u, 2 Ot2 Or: _O(At_) ...........................2 cgx_ _t +O(At:_) (149)R n

The curl of F.q. (149)is identically zero; hence the divergence error for explicit time integration can

be expressed as the gradient o['a scalar field, i.e.,

,,,I . _ Oq_
u, - u, ........ (150)

This divergence-error distribution, Eq. (149), is used to develop "optimal" semi-implicit prqjection

schemes that require the estimation of(OP/Ot)". These schemes are semi-implicit in the sense that the

diffusion terms are advanced in time implicitly, and the advection term:; are advanced explicitly.

A 0-implicit time integration scheme can be derived with the aid of two 'l'aylor series

expansions for u, '''_°, about u," and u, "'_, thus obtaining
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+ _ + O(At3) (151)
uI = ut .(1- O)At-_- . 2 dt 2 .

,.1 , ,.l OU, [ 0:At: d:Ut I
u _- + O(At 3) (152)

ut = u, - OAt Ot ..t 2 0t2 ..t

Subtracting Eq. (152) from Eq. (15 !) and rearrangingterms, the O-implicitintegration scheme is

. /°,f °,l/- = + (1 -o)-_- + o( At 2) (153)ut urn At 0 _ n*l n

Using the momentum equations to replace the time derivatives in Eq. (153) results in

u,l..,-u,i"=-0_, % -#_ --g;- b_ o_, +0-S; ..,
(154)

_(l_0)At[a(_u2)) O [ l+RetC au, Ouj)} OP+ArOll, l + O(At2 )

Integrating the momentum equations with a guessed pressure field, P*, results in a velocity field,
u,*, that does not in general satisfy the continuity constraint. Equation (154) becomes

du/' a 1 +Ret Our' auj aP'
. • ___+___ + ..... + ArO'g t

u, I,.l - u_l,=-OAt uj Oxj axj Te axj Ox_ ax, n"l
(155)

a(u/u,) O (l+Re, Ou._.2+O._ ) OP+ArO,|] + O(At,)

Note that the advection term for u,' in Eq. (I 55) is not in divergence form since

Ouj' . Ou_" O(uj'u_')
#0 ". Ui _ _

Oxj oxj axj

Subtracting Eq. (! 55) from Eq. (I 54), the relation for the 0-implicit divergence error is
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.Out' O(uju,)1
n.t ' = OAt uj .........................

0 ....l+Ret Ou, O} l_Re' ' Ou," Ouj (IS6)

" a'l

40_t O(P'-P)[ .Ar(O'-O).._ gl' O(_t2)_'?Xl n I

There are four modesin l_q.(156) producing errorsill the velocity field, i.e.,error modesdue
to .dvection. diffusion, pressure,_md_ nonconservative (rotational) body three, Taking the curl of
Eq. (156) shows that in general the ()-implicit error is not irrotationul, Only the error induced by the
incorrect pressure field can be represented by the gradient of _lscalar potenti.I t'unction. The
remaining errors in Lq. (156) must bereducedby insuring that u,'=_u,"' _through iterntive cycling with
the momentum equations and, in the c.se ol'nonisothemlal flow, the energy equation.

.An iteration strategycan be devised to drive the divergence error to below some specified
level. The first step is to assumethatthe divergenceerror at iterationp+ 1c_nbe npproximated hy the
gradient ot'a potential function', hence,

. i.., o a_l''_
( u, - u, ) ,. i Ox_I (15't)

The advection term in Eq. (156) can be approximated by

.Ou, Ou, t, .O(u, -u_) l, . O2d0 _'

", - ", ° " .... " -o-x/a-xl (,5,)nol n*l n_l

and the diffusion term, for Re'=0, by

1 a (_0u_+0u__z_) a [ Ou,' Oui') t'Ox, Re tgx_2,'_ ,._ (159)

= eat 1 0._ i,

Re 0x_20% n°l

Equation (156)is, therefore, approximated by
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d0[ I''l ( I d_¢_ ul d20 /P ]
......................' ....................+0At_(P' P) p H' . (1601

Continuing w.ithsimplifying Etl. (I 60), the advection, diffusion, and body lbrce terms are neglected
to obtain

d, IP" d(P' _P) I'
_ 0 l_t .......................... (161) !

dx, c)x,n,I n,i

Integrating Eq. (161) and setting the constant of infestation to zero result in a pseudo-pressure
correction equation of the Ibnn

1 i,,t {161iPI_.t _'P'I" ' .............4_1,.,
_.z 0_t

The ditTiculty posed by Eq. (162) is that it requires a correction tbr the presstire at iteration p usinl_
the unknown ¢ solution at iteration p+l. A computable strategy, therefore, must rely on the
accumulation of_ solutions, i.e.,

where, as the iterations converge. II,t,II,-.0.nd

With the above strategy, the error in the velocity field at iterution p is delhled as the gradient
ol'a scalar potential function at iteration p+l, giving

( , .)p . d_,"/4in' "_i m ..........
c3x, (164)

Tuking the diversence of Eq. (I 64), the resultant Poisson equation tbr _ is

o

ff(_)= d2_ duy 0 (1651
0,j% o5

The Neumann boundary condition tbr Eq, (165) is obtained by projecting Eq. (164)onto the
outward-pointing normal direction at the boundary I', i.e.,

'1 t

. d___n,= (u," -u, )n, on P (166)
_gxt

For that portion of the boundary where all the efflux velocity components arc fixed with Dirichlet
data, u,,(x_,t)=w,(x, t) for x_ c I'_,, Eq. (166) becomes a homogeneous Neumann boundary condition.



[ !si.g l_itl_(I{_41n_a mechanismfbr a _,elo¢it} _¢)rr¢ctio.¢quati(m _i*lhe G_rm

¢e e

¢)_t[i

tt,.her¢tt,** i_the"corrected" %'¢lOCi|_r. prodtl¢¢_spllri,..is crror_.car the t_otmdar)lh¢ holmt_¢ncotl_
N_llltilll111 llOtlltCJil_ Col|diti(m. l'q, ( I¢_6),allov,s thenormal _['dltpolli_ltt ()i*11,'* |o _atisi_ the l)irichlct
data, i,c_..,** pa_......',, Ibr ___ l_t_;hov,c,,,cr,i. i_el)eral

u, t, u, d(_ _, , w, on l l, tn R_ (15#)

_hcr¢ .,. is th¢ ta._¢ntial ¢omp¢)l|e.t _t'th,: I)irichlct vch)_:it.__,¢ctorat thehoundal3.,_lh¢_,*¢lo_it_.
corrc.ction(or proiectio.) step.th_r¢tbr¢. _¢.¢rat¢_. spuriousslip _.¢lo_:it_th.t viohltes the .osiip
houltd.13,¢o.ditio. ((iresh¢), 1990). If _,** t, is setequalt. w, after thevelocity ¢o_¢tion, a ..*,_rtex
sheetis prt)du¢cdat !'/,. th.s disc¢_nti.uouslyi.jecti. B additional_.,orlicitF ildo (l, Agai., iteration
v,_itl_i,the time _tcpis requiredto minimi/e theamountot'sp.rious vor!i_:ityproducedo. i'/,.

4.2 POISSON EQUATION FOR $

The ibllowi.g dis(:ussio, presentsa tbrmal dcv¢lopm¢.l of the P,_is_o. ¢qualio. Ibr the
¢ontintlily co.straint potentialI'u.ction,_, ..d its .at.ral bound.ry c,.=ditions.risi. Bfrom a(.iaicrkin
w_lk StIltelli¢llt,

Recall that thed¢fi.i.g relatio, fbr q_is

d:(,

where., is the s_l_noidal velo_:ityfield, and .,* is the computedv¢lo_it)_field not 5.tisl_ing the
continuity Condition,1"h¢I:oiss(_nequation tbr _ resultsfrom applying the divcrg¢l)c¢ ,)pcratoron
liq_( 16()),

(1 (_u, du,' ,_u,'
,:), (,.,,.)o .......

_)._,_x, dx, ( i?(i)

dX,dr dx,
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fu._,.){,| ' _j.._2. ¢|{)._, d" (}
(171)

I

Appl_in_th_(irc_,-(inu._thc_rcmI,the(Itfi_J_i_mterminFiq(I?I)Izivc_

_,_tl_rc_a, ix the ,_ul,_,=lrd-p_)inlin_n(!mlat unit ve¢l,_r (). the h(_u_l¢la_ In_ertin_ I_.q.(1'72) into
I_q ( i ?i ). there_ulli_F (ialerkin u,_ak.,_ltltell}ertli_

' OX, r)l'_ '_ (173)

V_H _o((] )and_r: H_(g ),u, _: tt_((_ )

'lhe ,t=_lur_=lh¢_und=_ry¢(.=dili(._ I_)r ¢ i_ lh_: pr(uecli¢)n ,,f the _r==di=nl_1 ¢ eml. the
,_ulv,=ird.p(_inlin_n()rmal ¢)Flhc b,_u.d==_, It)' l_q,(! _q). Ihi_ prqje_:liemi_ relatedt,_thaterr_r in th_
v¢l(_cil_tk.id i_ilhch.und=_

O_

0_, n, . (u, u, )n, (174)

l'he six l_pe_ ,d' h(_undnri_ l(:)h_invc_ti_,cdarc int1(_w,_,ulll(_vv,enlr_linmenl,,_ymmelr)_,
m_-_lip,nml fre_._lip (tan_ency ¢(._dilion) h,)undarie_,

4.2,1 Inflow Iloundarte_

A_sume=elan inllew_*he)uncle=r)Ih=|llhe n_)nn_41vch_ciliesar_prescribedby pmhlcm dat_,and,
th(creti_r¢,

., ° (u, u,')., oo

lt_¢=spr(}ducin[z{=hom(_:ne(_u_ Neum=mnh()unda.ry condition tbr the _urth¢=:inle_ral in liq, (I 73),
t_,_in_==t)¢).)()_neou,,_N_um=mnboundarycondition, Ih_r_l'or_,_st=lhlisl)e.,,=l_¢.)lvahilityconstraint
Ibr the d=ll_isupplied to)the_ P{_is_¢)l)equation',that is, tile l)irict_let veh_citydat==mustbe diverBencc
l'rcc.
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4.2°2 Outflow floundBrtes

For outtlo_, houndnries,a tractiont_rce-halance(Neumann)houndar3'condition is typically
applied fbr the m(mtentunlequations. Therel_rc, thediver_en('e error is _enerally not zero at the
heBinnin[,tot"the iterations,that is,

04_n, (u,u, n,, 0 (I'7(,)• _ ........ _ _ ' )

0x,

For a local nonnnl-tangentinlcoordinatesystem,the gradie,t ot'_ is

_n
(IT'!)

4

Assuming lhattheoutflowhoundar-_,,ispositionedsuchtha!thepredominantflow =,crossthehourldar3,
is in thenormal direction,onema)_expect,thcreE_re,thatthroughoutthe iterativecycle,Ihe langential
diver_tenccerror remainssmall, suchthat

i .........(u,....u,) o O_ _ ¢ .,:.c.:I" 0.V

or _ 0
0.,r

' $ ,, constantalonl_s

The value for _ a! _utt'low houndariesis usuallyse!t;_zer¢_.

4.2.3 Entrainment Boundaries

ltased on theahovcohservationsfor_ultlo__boundaries,_ simil_r =|rgumentc=mhemade tier
entrainment boundaries, speciticall_,,that the I||ngenlial divergence error is small throughout the
ilerative c)'cle, unda _toodapproximation t'or_ is to setit to zero. *lhe divergenceerror canhemade
identically zero hy lixing the tangential v¢locit), at a|| entrainment houndes_.

4.2.4 ,_ymmetr), Boun¢lartes

I:_r symmet_: boundaries,thenormalveh_cit)'components_reset to zero.=u_d,h_'F.q.(I 74),
thenormalcomponentoi'thedivergenceerroratthesehound=triesisidentic=dly_.er,.Thcrel'ore,the
houndar3'conditionl'or_ ishomogent:ousNeum=mn.

4.2.._No-Sliplloundarles

For no.sliphoundaries,allvelocitiesaresetto_.ero,and thedivergenceerroratti_ese
boundariesisidenticallyzero.Again,thehounda_,conditionl'or_ ishomogeneousNeum=mn.

_ .... llll I --- III .......
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4.2.6 Free-Slip (TanRency Condition) Boundaries

*lhe tangency hounda__co.dJtion is

u,n, _ 0 (t79)

l'or a l'rcc.slip ',,,'all.liq, (174)can, thcrcibrc, bc rewrittenas

# l

aJ,_
(180)

or _-_ n I _ U,i nI , 0
{'TX!

resulting in u nonhonlogeneous Ncumann boundu_ condition tatfree-slip boundaries, lhc resulting
surlhce integral sh()uld hecon_puiedifu. is not specified. Equation (I 80)provides an effective means
,_1"e.tbrcinl_ a range.c} L:ondilionalong an arbitrarily oriented surface without explk:itly having i()
specit_'u._O, With the tmlgem:_,boundar}. _:_mditi()n,the (ialerkin weak statementfor _ is

s,, s. i0,,.
I 'q;U_ n, dl" _' 0 (IHI)

(iU llmll_

V ill _7H_(II ) and I _ It01({1 ), U,' _ t/i( [,i )

I-valiiating the surface integral in I.;q,( 181) _ill ¢llt'orccall approximation to the tlintienc) comliiioll i
as the solution Ctlllvl/r_cs,

4,3 PRESSURE POISSON EQUATION

()lie diftlculi) in solvfll_.IIIC pressurel)oissonequationfor turbulent flows is thatthe turbulent
Rcyn(ildsnilllibcr, i.c,, liic odd),viscosit),v', isnol COli.,ilanlI_utvariessiTnillClilllly over the tlo,,_field.
The pri_ssiircIhiisst)ii i_qiiiltiOli, therefore, has lhc lCllerlil t'orlil
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o [ ou_ i o2u,)
...... + (182)
ox,_-/ mcOxjox,

a lap ou,+..a (,c'[ au, a,,))+AreR+)=_o

where, due to the presenceof the Re' term,thirdorderspatial derivativesexist for the velocity ti¢1d.
The Followinganalysis demonstrateshow the Galerkinweak statement, alter selective applications
ot'Green's theorem,revealsthe appropriatenessof the classic tf (_) Sobolev space forthevelocity,
thus producingan easily computed right-handside for the pressurePoisson equation. The analysis
also reveals the naturalboundaryconditions associated with the (Jalerkin weak statement tbr the
pressurein laminarandturbulentflows.

Equation(I 82) can befurthersimplifiedby imposingthecontinuityconstrainton theflow
field. Assuming the necessary smoothness in the flow field's dependence on time allows the
commutation of the temporal derivative with the divergence operator, thus implying that the
acceleration is solenoidal forall time, hence

+ /+,]
Next, sufficient smoothness for the spatial derivatives is assumed to allow them to commute. The
reference Reynolds number, Re, by definition does not vary over the tlow field, therefore,

d 1 @u, 1 a2[ du,}
..................... =, ................. ,

ax, Re ax/ Re ax/ a_+i+ = o (i84)

Applying, Eqs. (I 83) and(184) to Eq. (182) yields the pressure Poisson equation for divergence-free
flow fields as

_(e). (_'(u,)) _

(IS_)

0 OP + u_ ....o+,_ g ox,o+,

.... , ,, _liT +I - + I- IIIIIIIII -- IIIIIII-- I......
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Note that _'( u, ) is defined as

ff.(u,) _ Op Ou, O (Re,[ 0u, duj) /ox_+";ox, a_; _ o_+o-1: +A,o
(186)

Oui d ( 1 Ou,)ff(u') Ot Oxj Re Oxj

in Eq. (185), the continuity constraint has eliminated the diffusion term associated with the mean flow
Reynolds number; however, the spatial dependence of the Ret diffusion term has forced a third-order
derivative on the velocity to remain in the formulation.

A Galerkin weak statement for the pressure is now

0 ,(
fo,_(e)d_ - fo, _-( _ u,))d_=o (187)

2
V,__ Lo(fi) andu, e Ho3(fi), P __no2(f_)

specifically, u_lies in Ho_(f)). Employing Green's theorem with Eq. (187) results in

O

LO_(E_'(u,))dt3 = -L a_____f'(u,)dt3 + _ota* ff'(u,.)n, dP =0ax_ (188)

J H2(fi ) P e H01(Q )Vt_ _ Ho(fi ) and u, _

From the momentum equations observe that

•(u,)=ax_+_ a_j Oxj-_ a,j Ox_
(189)

aui I a2 u,
- +

at Re axj 2

Therefore, Eq. (188) becomes
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L *

a. ap a., a.,))- _ + --+-- +Areal df_
f"-_x_ 8x, uj axj axj -_e 8xj dx, (190)

dui 1 a=u,
- _ + fan_--_nidY =0

' Ho2(fi)V _ e Ho(t')) and u; e

In Eq. (190), both the turbulent diffusion term and the fi,,aal surface integral act to constrain the

velocity to reside in H2(O). The following analysis verifies that the Sobolev space for velocity can
be expanded to H _(£2),

4.3.1 Treatment of the Re t Term in Eq. (190)

Focusing attention on the term in Eq. (190) involving the turbulent Reynolds number Re¢, the

pressure Poisson equation, Eq. (185), can be expressed as

O d , .

where

_(ui) = OP Ou---2_+ ArOl_i (192)
Ox_ + uj Oxj

From Eq. (187), the weak statement for the pressure is

LLo.
(194)

a • 0 .

=fo ,_( _,(.,))dn +fo ,_( _(.,))d_ =o

The wcak statement for .ff_:,upon expanding terms, becomes

..... , llllll - II I I III .... II IIIIIII ..... I I ......
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Note that

Ou_
. OP + uj + ArO _i =

ffl(u') = Ox--_ -0_
(199)

o, RoOx,_+ox-,_ a_+ox--,

. . o,{ap o., )Ox_ (200)

O2u_ o Re t ( Oui Ouj

Ou, 1 ,Io_n*_n'dr + ao_'n* _ +-- n, dr

The weak statement for the pressure is now, after multiplying through by -l,

OP Oui )

O2ut
Oui 1 fon * -_ nidP -

+ foca _ --O-t-n_dP --Re 3 xi2

(201)

- 2 L a.Ox,a( ReOx,'lRe) au____.Ox,dO + 2 fo. * a( Reox,'/Re) O_.Ox,n, dr = 0

V tp e Hot(f2 ) and u, e H2(fl ) , P e HI(f) )

The surface integrals in Eq. (201) involving Re' can be further simplified by

O [ Re,( au, auj)) a(RetlRe)OU,
..... + -.-- n_dI" + 2fo n * ..... n/dF =

_ + _ nidl'

Oxj --Oxi + ax, Re Ox.t2 n_dP 2 fon_ a( Retgx,tt/Re ) dUJc3xi

The second term on the right-hand side of Eq. (202) can also benefit from an application of Green's

theorem'

....
................ , ,,, i_ll

II _lt IIII I I I _1



68

RetRe c32u_nidl"0x,2 : fan a(_ (Ret/Re))axj du-2dxj RetRedu_- f_o,., dr - foo_ % ",",dr,. -,o (203)

fat_qx O( Re t/Re ) dui t Re
dxj --dxjn_dl" + fan Re aql au_ ntdr- _ t au kR_ a_,ax,-_o,0* R--_ax--S

drlo

In Eq. (203); the dyadic n, nj for an orthogonal coordinate systenl is equal to the Kronecker delta, 8!/,
and, therefore, the continuity constraint will remove the final integral. Equation (202), with the use

of Eq. (203), becomes

(Ret( an, duj)] d(Ret/Re) an,

)°9£0qJ 0(Ret/Re)(_ aut auj n, g ¢ 3(Ret/Re) duin i (204)
- +-- dl" + ./on -- dPaxj _ ax, axj a5

.T0_nRetRedqldxjOxjdui
dP + 2ja_n ql 0(Ret/Re) duj n_dP

+ ni
axj ax_

or

- --+--- + 2 ,o * ---njdP =foo*-4 ox, ox, (205)

fan Re t 0, Ou_ 0( Re t/Re) Ouj+ + -- n_dP i
Re 8x, 8.¢1n, dI" fo. * -Oxj dx,

The pressure weak statement with the above considerations is

fo,_(e)an =fo._ ax_+u,o_+ A,.,, do
au_ d2uli

f,m * __ n, dr (206)+ Jo, * -at n, dr - r,,S x;2O

fe_ Re t a_p Oui 0_.___O( Re t/Re ) du_ O( Re t/Re ) Outox,ox,"'"i"- +foo* ox, ox-,
+ dr 0

V, e Hot(fl)andu, _=Ht(fl)

To complete the analysis, two cases will be examined tbr the surface integral involving the second
derivative of u,,.
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4.3.2 Case 1: Inflow Boundaries

A second application of Green's theorem for the final surface integral in Eq. (190)results in

d2ui 1 a_ aut 1 aui

_ 1 fort * ...... n, dr .... _oa ox, Ox,n,dr ....... _o_ * nt dr (207)Re Oxj2 Re Re _ln Oxj nj

As noted previously, for orthogonal coordinate systems the dyadic or second order tensor arising from

the outer product of two unit vectors, n, nj, is equal to the Kronecker delta. _,j. Therefore, the final
l-dimensional integral in Eq. (207) is

Out 1 Out 1 Ouj

.lRe fore-,o* d-_j "t njdP = --RefOa-,D0 dxj 6udp ....Re J_0fl-l.OlP-aX/dr = 0 (208)

Therefore, with Eqs. (207) and (208), the weak statement, for Case 1. is

( 0u, /OP + uj--- + ArO 1_1dfl

Ou, R-'-elf ota O_,__Ou.__2+ SJ0n* ntdr + n, dF (209)
axj dxi

fcm Re( r3, Ou, d, a(Ret/Re) Out 0(Ret/Re) duj
+ Re axj 0x ,,,dr- 2f, ....ax, ax, Ox, df_ + .c,,_, .........................cgxj ax, n, dr: 0

V, e HoZ(f_) and ut _ H'(tg), P e H I(f_ )

4.3.3 Case 2: No-slip and Free-slip Boundaries

For no-slip and free-slip walls, an alternate formulation of the surface integral of the viscous
flux vector can be examined. For convenience, the analysis is set in I_2.

At the surface of a wall one can construct a local normal/tangential or n-s coordinate system.
The proper boundary conditions for the velocity field at an impenetrable no-slip wall are, in the n-s
coordinate system.

u_ n, = 0
(2t0)

Ut S_ = 0

_flliH Iltll II ' IIII III
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Note that the continuity equation in the n-s coordinate system is

Ou., Ou, 0 (21 I)
as an

82 02 0 2
:-->----- + ---- Transtbrming the surface integral

and the Laplacian operator has the form 0x2 0n 2 as 2 •

from the global to the local n-s coordinate system gives

d2UndI' -- -_I r ( ......02u_ + a2unr dI" (212)

Re dxj2 Re ds 2 On2

At a no-slip wall, the derivative of the normal component of the velocity field with respect to the wall
tangential direction is zero, since u, is 0 along s, thus

a2u,- O (Ou.)ds2 Os _s : 0 (213)

By the continuity equation, the second derivative of u,,with respect to the normal coordinate becomes

d2un d (Ou.) d (Ous) (214)dn 2 dn _ dn 'O--ss"

Therefore, the surface integral along the no-slip wall is

- R--e ds 2 On 2 Re _s -d'-n-n

Applying Green's theorem results in

Re ds -dn dr = Re w.,.............. O-]_--d-t_- dl" + tOd-n-.s (216)

As was true in the previous Case !, the final term in Eq, (216) is zero since it represents the projection
of a vector in the n direction onto the s direction, Since n and s are orthogonai, their inner product

must be zero. Note that the derivative dujdn represents the shear strain rate (and also the vorficity)
at the wall, Coupled with the viscosity in the Reynolds number pre-multiplying the surface integral,

the term also represents a nondimensional shear stress at the wall.

4.3.4 Inflow Boundaries: Treatment of Adveetion Term

The term in the pressure residual arising from the kinematic flux vector in the momentum

equations can provide natural boundary conditions for inflow planes. Applying Green's th_',_zem,

i ii fl i
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au_ auj aui au,

fo-_-_u,o-;,d.=-fo, a_,ox,dt_+fo,_* u,_;-,, dr ,=,',

The surface integral in Eq. (217) must be computed at inflow boundaries.

4.4 CCM OVERVIEW

in a preceding section it was demonstrated that an iterative cycle within the time-step is
required tbr an implicit integration. During these outer iterations, the CCM replaces the genuine

pressure with a continuity constraint state-variable, Cf. ,, where the superscript p is an iteration index.

The 0-implicit semi-discrete momentum equations, therefore, have the form

. , a(_,ju____s,)_' o [ 1+Re' Ou__t, _ OC
u, I...=., I.- ozxt ax, - e___ e,, e,,, +e,,_

.., I (218)

.O(uju,! 0 ( l +Ret{ Ou, Ouj )) OP + ArOl_,/-__-o),,, e_, - ;¢;,_-g .....eT,+o_--_+ e7

When the genuine pressure, I', is required, it is assumed computable, as discussed in the previous
section, from the pressure Poisson equation, i.e.,

i

for any u, I.,J , a converged, solenoidal velocity vector field, The genuine nonhomogeneous
Neumann boundary condition for Eq. (219) is

OP O [( l +Ret ] Ou. Ou. Ou.

= _-7,,.,.,,,['[ iRe -}xj - -0t - u, -dx;- - Ar 0 I_. on r o (220)

where 1"_,is the union ofall boundary segments where the velocities are fixed by Dirichlet data, e.g.,
walls and inflow planes,

The iterative cycle in the CCM requires the solution of a Poisson equation for a continuity
constraint potential function _. This Poisson equation has the form

V20 t,,I _ V'u 'p (221)

The boundary conditions tbr _ on ['_,are homogeneous Neumann.

O_ t,.I
........... 0 on Po (222)On

-- ,..... ,,,, ,',,, , i I IIIIIIIII II IIIIII II III I
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The CCM iterative solution strategy is:
/ _ ,,i,, , - , ,,,,,, ,, - .... :, -- ..... _ .... : :::-:-- -- _ , ---- __ -- ,,,, _- -_ .... , ............. -....

41 TIME STEP n + I
'1 = /'' I'll (_' = pn .(1) initialize the constraint state-variable b3, either C ,,,_ _ ,, or _,,,i ,

(2) solve the momentum and energy equations implicitly for u '_' and (,.)'e ;
(3) solve Poisson equation for _r;

(4) update approximation for C,,,_ by

_k
_,,I = Cn'l + _ kol

(5) repeat steps (2)-(4) until

II• p Iltr< c. , convergence tolerance

(6) advance time step ; solve genuine pressure Poisson equation tbr P"'/
.................. ......,, lit i,l,lii .... ____ -. _ - ,,,, _ ......

Since equal-order interpolation of all state-variables is employed, which is the finite-element
equivalent of using a nonstaggered mesh, the div-stability condition is not satisfied by the CCM. As
a result, there is a dominant dispersive error mode, modulo V j' , associated with @. One significant
computational attribute of the genuine pressure Poisson solve in Step 6 is that it prevents the
dispersive error from polluting the velocity and temperature solutions. Step 6 also provides the means
for establishing a basis (i.e,, a continuous ('_,,,_ based on the genuine pressure P" ) for an
approximation of P"'_ during the iterative cycle. Experience with the CCM has shown that the
pressure Poisson solve can be subcycled (e.g,, solved every third, tburth, or fbrtieth time-step) to
improve computational efficiency.

Step 5 defines the stopping test for the outer iteration cycle in terms ofthe energy semi-norm
of _, defined as

I f c3_ a_ dfJ t,

Volume of fl h

where the [I• 11,hasbeen normalized by the volume of the mesh. Fly the definition of _, Eq. (! 64),
the nomaalized energy norm can be seen to be a measure of the kinetic energy per unit volume of the
error in the current approximation for u, I ,,i.

4.5 GALERKIN WEAK STATEMENT

The conservation law system described in Chapter 2 constitutes a nonlinear coupled set of
initial-value partial differential equations (PI)E) whose solutions are constrained by the
incompressibility condition. These PDEs can be expressed in the general tbrm

_.__ d )_(q) = Oq ,.........(fj_fjv _ s = 0 on _q c_Rn , t _ to (224)
at a5
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where _(q) is a differential equation system written on the state-variable q(x,,t). The function f is
called the kinematic flux vector, and f" is the viscous flux vector. For the Reynolds-averaged
Navier-Stokes equations in IR_ with Boussinesq buoyancy body threes and negligible viscous

dissipation, q,f,, and f, ' have the tbllowing definitions:

(l+Ret) 0u ,Re "Oxj

u I [uluj . P61j (]1 +Re t i9u2 _ AfOOt

u, l u'u2 . P6,j , _ , Re ) -dXj_ - Ar@,,
q" u3 " fJ" u/u3 +p631 /l+Ret]C3u_

O ujO [ )Re -dx'j s

1(I Re') dO

The algorithm auxiliary quasi-linear Poisson PDEs have the general form

ff(qa) = V2q_ - sa(q) = 0 on fl c_-R" , t _ to (226)

where

q_ V.u' (227)e " - v,(_d(u)- vP)

Proceeding to the discrete form of Eq. (224), the state-variables q and q,_are replaced by a
continuous approximation that assumes the separability of space and time, thus

N

q(xj,t) = qN(xl,t) E _ rf,(xj) Q_(t) (228)

where the function set W,(XJ), called the approximation "trial space," is user-selectable. The
superscript N in Eq. (228) denotes any approximate solution produced via the inner product of the

known trial function W,(x_)and the set of unknown coefficients QM).

The weak statement is a continuum form of the method of weighted residuals for constraining

the error in qN. Using the functional spaces defined in Chapter 3, one seeks the vector ftmction u,U(xJ)
V0and the scalar functions OX(xj,t) e I,_,, ON(xl,t) _ So, and PN(x,t) e ,S],such that

fow(xj,t ) _(qN) d.c = 0 , V w _ Vo ('229)

where the velocity vector function lit N is also constrained to sit in Z, the space of weakly

divergence-free functions. The requirement that Eq. (229) must hold for any test fimction w(xrt) E Vo
is enforced by making the integral stationary with respect to any set of Wj(t), where the interpolation
of w(xrt) is carried out by
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M

wM(x/,t),,_ ,_,(xj) w,(t) (23o)

*l'hisextremunl is termeda "weak statement" with tile form

WSN * 'O-'fWM(XI't)Ju _(qN)dz , V i0w, (231)

= fa_(xj) _(q'V)dt = 0 , for 1 • i . M

The optimal choice for the test function set_,(x) is that it bc identical to the trial spaceq',(x_)(Baker,
1983), This decision yields a (;aierkin weak ,_'it/lemetl!

GWS_ " .,u/"T,(xj) _' (qN)d_ - 0, fl_r 1% i _ N (232)

Mathematically, the (;_'A_' is optimal since the approximation error in qv(r_ ,t) is required to be
orthogonal to the space of functions supporting q_ for any choicc of trial space (ct', Baker et al,,
1992b),

For any approximate solution, the "'""_t,.,_ fbnu for Eq, (224) is

ot o5 /' -_ _' " d_
(233)

where Green's theorem hasbeenapplied to projf:ct the divergence operator f'rom the flux vectors,./_
andf", to the approximation ,trial space,q',, and to produce a surface integral in Eq, (233) that is the
mathematical placeholder for all natural bounda_ conditions in the GWS".

The finite-element method uses a spatial semi-discretization (or partitioning) (_h, of the
continuum domain [L made up of the union of a set of non-overlapping subdomains _'_or finite
elements, such that

t'

The approximation q'_is then formed as q ;', the union of finite-element approximations q,. on D., i,e,,

q(xj,t) = qt_(xj,t) _ qh(x/,t) : U q,(x:,t) (235)
e
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()n any finite-element domain l;),,,the generic fom_ tbr q,, is

q,(xj,t) + t N_(_lj) I rl Q(t) I, (236)

where each element in the row vector I,_\'kl_ (called tl_e thlJte-elementbasis set) is a kth degree
polynomial. There arc as many ot'these polynomials as there are nodal degrees.of-freedom in _),.,

The indicated integrals in Eq, (2.t3) _re evaluated at the element level, and tile resulting
element-rank expressionsare then summed (assemhh,d) into a global matrix statementof the tbrm

OWS_ = [ M ldJ_9! + I R(O)I = IOl (237)
dt

In Eq, (237), [M] and {R} are a global rank squarematrix and column vector, respectively, and
{Q}_ {Q(t)} istile arrayof thestate-variableapproximation coefficients at the geometric nodesof W',
The residual {R} isa nonlinear functionof {Q}, andcontainscontributions from all terms in Eq, (233)
except the time term, i,e., convection, diffusion, source,and boundao' ¢o||ditions,

For tile present CCM implementation, the discretizmion ot"the time derivative employs the
O.implicit, one.stepalgorithm family (Euler/trapezoidal) derived in the previous section. The terminal
algebraic statement for F,q,(237) is of the form

IFQI : [M]IQ,.j-Q,I . _t( OlRl,,._ , (I_0)IRI,) = 10l (238)

= " Cwhere t,,,_ t,,+At and 0.550al.0. A GW,9_' is also developed for any Poisson equation in the C _M,
directly producing the algebraic system as

, {FOa i _ [ D ll O_ I - I S_( Q(t)) } (239)

The (;tf:V' finite.element methodology has, therelbre, produced a coupled, nonlinear system
of algebraic equations that must be solved iteratively. The classic Newton method constitutes the
tbllowing iterative cycle,

IOl °..I = IQI, ; IFQI°._ IFQI,,

for p = 0,1,2,.,. until convergence

[ d{RI 1' p., (240)
................. 16Ol.. _= - IFQIP..I

M+ 0AtOIQI .._

.I IQIp+ + 16Q)_.,li01_., = i t

Quasi.Newton approximations amount to the use ot" simplified fomls ot" the Jacobian
[M+OAtO{R }/O{Q} ].
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. .. (..3 _)has the matrix statementThe quasi-iincar algebraicsystem I'_q. " _

IDIIQAI _, I S,_(Q(t)) I (2,11)

4.6 FINITE-ELEMENT BASIS OPERATIONS

"lhe CCM (ialcrkin weak stalelllelll algorithm is cast into computable tbrm via a ti,ite.
eletnent semi-discretization of the domain ot' integration ot" the (';W3";, with a (i-implicit time
inlcgruti(mprocedure. Theelemenl geomelr) c(msideredmostappropriatetbr verification ot'lhc ('CM
is the lrilincar, plmmr-t'aced hexahedron,Fig. 5. This 3-dimetlsional tinitc elementcan hedi,_torted
easily to fit most applicable _cometries. in traust'onn (q) space, it appears as a Cartesiau uriil cube,
The lrilinear basis t'unclions spanuing the 8.node hcxahcdron, in the m_dal order given iu I:ig, .5.are

(i _n )(I _2)(I one)

(I +vl )(1 ._2)(1-- ¢1_)

(1 _ )(1 ,_2)(! _-n_)

, I

IN(n,)} o 8 _ (1 - n )(1 - _2)(1. n_)

(1 ,n )(! -_:)(1 ,nj)

(1, nm)(l ,_2)(1 +rl_)
I
I(1- rll)(I _"q2)(| '_])

A t'undamentalaspector the t'inite-elementmethod is the use t_l"a m.ster eh,mem wllere all
element-dataitmcr products and integrationsareperlbrmed in _eneralizedcoordiualcs, The coordinate
lraustbrmalion (or mapping) that bridges thecomputational (translbrm) q-space and I,_uclidcanspace
IR_is

_': rl '- x_= z_('q) (243)

The mapping 1:" is nm,.l_.nm' and nnm its range provided the trailsrormation Jacobian ./is
no.singular, where

r a

d_ll Jil J12 Jl_

ia J_ J_: Jr_
..........

Ld'q_

The inverse ot' l'_q.(244) is required to evaluate the flux vector divergence term in the (jWS 'v.The
closed tbrm solution is
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Figure 5. TrlUnear hexahedron with one-to.one mapping onto ils.
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(J22J33-s32s23),(s13s32-s12J33),(s2J23-s13J22)

[j]-I= a_j..._- detl[j](j31J23_j21J33),(jtij33_j_3J3_),(j2_j_3_j23j_1) (245)
(J21J32-J31J22),(Jl2J31- J32J11),(SllJ22-J12J21)

where

det[J] = J11(J22J33-J32J23)- Jl2(J21J33- J3tJ23) + J13(J21J32-J31J22)

aq,l,aq2aq3 aq3aq2) aqI aq2 aq3 aT13aq2 (246)

ax3: axl ax2 axl ax2

aq _[ aq_aq3 aq3 aq2

The metric tensor c_j/t_x_ is required only on the master element f2,,; therefore, the specific
local form for Eq. (243) uses the interpolation Eq. (242) yielding

e _ (247)xj = xj(rli) = {N(rl_)lr{XJ}e

where the entries in {Xa]e are the (x_, x:, x3 ) coordinates of the eight nodes of_') e . (The notational

convention from here on is that capital letters denote discrete data at the nodes off) h,while lower case
defines the continuum forms.) Since the element transformation generates piecewise smooth data, on

quality discretizations it is appropriate to evaluate the metric data Orlfax, at the centroid of f_,,
yielding a significant DO-loop economy in the code. Using a subscript to denote node numbers on
f2,, one obtains, for example,

axl 1
- (_ Xll+ x12+ x13- x14-x15+ x16+ X17- X1 s)

aql 8

ax2 1
- (_ x21+ X22+ x23- x24- x25+ x26+ x27- X28)

arll 8

ax3 1 (248)
- (- x3t+ x32+ x33- x34- x3s+ x3_+ x37- x3 s)

arl l 8

ax3 1
- (- x31- x32- x33- x34+ x35+ x36+ x37+ x38)

arl3 8

The final steps for the finite-element implementation are to form the basis q:derivatives, needed for
the flux vector terms, and to complete all integrals. The derivative operation on Eq. (242) is trivial
and produces
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-(1 -h2 )(1 -r13) -(1-1] 1)(1-113) -(1 -_ _)(1-112 )

(1-1"12)(1-113) -(1 +111)(1-113 ) -(1 +111)(1-1"12)

(1 +1"12)(1-1"13) (1 +1] l)(1 -h 3) -(1 +111)(1 +112)

{.____i.}= 1 -(l+y12)(1-'r13) . {.._2} 1(1-yll)(1-rl3)_ . c3{-_3}=1 -(1-hi )(l+r12) ;49)_(1_1,12)(1+1.}3) ' -_ _(1_111)(1+h3 ) ' -_ (1_hl)(1_112)

(1-112)(1 +_3) -(1 +111)(1 +113) (1+1] t)(1-112)

(1 +112)(1 +113) (1 +1]1 )(1 +1"13) (1 +'q 1)(1 +112)

-(1 +112)(1+113) (1-111)(I +113) (1-111)(I +112)

Products of {N(rlj)} with itself, and/or 0{N}/0rli, are required to be integrated over f'2_to form the
master matrix library for the selected basis. A compact notation, (of. Baker and Pepper, 1991, Ch. 5),

for any 1-, 2-, or 3-dimensional matrix is [Mabcd], where

M: prefix denoting the dimensionality of the element master matrix,
M= A for ID, B for 2D, and C for 3D

a: an integer indicating how many bases occur in the integral

b,c,d: integers 1,2, or 3, denoting the rl,-direction of the derivatives in the matrix,
or 0 for no derivative

The master element matrices appearing in Eq. (238) are of the form [B2bc] for boundary condition
2-dimensional surface elements, [C200] for the mass matrix and source terms, and [C2bc] or [C3bcd]
for the kinematic and viscous flux vector terms. Since the summation convention operates therein,

(b,c,d) can also become (/,J,K) in compact notation for inner products on EJKo, where "EJKo," is the

name in compact notation for (0rlk/Ox/)e.

As an example, the kinematic flux vector term is nonlinear and, with P extracted via the CCM
continuity theory, yields the finite-element matrix equivalent as

alN} Oh, f.e OIN} Orlk (qUj)edet[J] dt]fo.an, ox, da = f", arl, Ox,

-_(OH,)_,DETfoluJIT. I"l a{N} {N'r{ O}tdrlah----T (250,

/ % , o. on,

- EJK BET, IUJITIC30K0]IO1,,

The three master hypermatrices [C30K0], K=1,2,3 , each consist of nine 8xl column arrays of
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integers norma_:, d by an integer, since 1 _<(J, K) _<n = 3 is a summation index. The formulation of
its contribution into {R}e of the Newton statement, Eq. (240), involves a DO-loop to multiply the
various element-dependent data (with subscript e) as inner products.

The actual construction of any [C30K0] employs a Gaussian quadrature rule, e.g.,

1 1 1

tcaoloj: f f f/(n,, n )dn,
-I -I -i (251)

/1 n tl

i=lj=lk=l

where the function in the integrand is

O{N(q ti'rl2y'q3_)} {N(B_t, _2/,vl3k)} r (252)
f(tllt'q2J'TI3k): {N(qt_' q21'q3k)} arlt

4.7 FINITE-ELEMENT RESIDUAL STATEMENTS

The construction of finite-element residuals {FQ} (as specified by Eq. (238)) for the velocity
components is representative of data base operations for the CCM. The lead term in Eq. (238), from
the time derivative in Eq. (224), becomes

fo IN} {N}r det [J] dfI({UI}"+t-{UI}n)=DETe[C2OO]({UI}n+_-{UI}"). (253)¢

since no derivatives are involved, and DETe is evaluated at the centroid of f2_. The kinematic flux
vector term yields, after application of Green's theorem (Baker, 1983),

_Vlk O{N} {N}rdet[J] df_{UI} =
- At {UJlrfaIN} c3x1 ank (254)

-At DeL EJK, {UJ},r [C30K0] IUI},

The viscous flux vector term. with effective diffusion coefficient 1/ReE- (l+Re t )/Re evaluated at the
centroid, yields

At f 1 arlk c_{N} a'q,,, a{N}rdet[J] df _ lUllJn
• Re E c3xy c_rlk axj arl,, (255)

At DET e _ EJK, EJM e [C2KM] IUI},
Re E
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The Boussinesq body-force term is

At Ar fn {N} {N}rg_det [J] d_ {O }e =¢ (256)

At DET e As GI [C200] {O }e

where GI is a unit vector in the direction of gravity. Finally, the continuity constraint function is
applied via the directional derivative

At Jl"o,c3rlkdx,IN} alNJ--------rdet [J]dfldrlk {CNPIIe= At DETe EIJ e [C20J] {CNP1}, (257)

At DET(EI1 [C2011 + EI2 [C202] + EI3 [C203]){CNP1}e

p.l

where {CNPI} contains the current evaluation of C,t,_ + _ ¢Dk_.

k--2 OAt

The residual statement for all other members of the initial-valued state variable is similarly
formed. For example, the residual for the energy equation in compact form is

[FO} = DETe[C200]({O} n._- [O}")e

- AtDET_ EJK, {UJ}er[C30KO] [O }e

(258)

+At 1(1 Re t )R-_ -_ + _ DET, EJK e EJM [C2KM] 10 }epr t . •

- at DeL [C200]ISO}

Two Poisson discrete weak statements for the auxiliary variables close the CCM algorithm.

For the continuity constraint, the GWS hyields the residual

{Fd9 } = DE L EJK e EJM e [C2KM] {¢ }e

+ DET, EJK e [C20K] {UJ}e"*_ (259)

+ DET2,[B200] NJe IUJ 1:+1= 10}

The last term in Eq.(259) is the Neumann boundary condition resulting from the application of
Green's theorem to the residual for cD. Since this boundary condition ,is imposed on a 2-dimensional

boundary segment c_f2e, it produces a [B ... ] master matrix and the corresponding determinant DET2e
as indicated.



82

The discretized residual for the pressure is, using Eq. (209) as a guide,

{FP} = fn °lN}oxd({ N}r{P})ox_ +{N}rIUJ} d(lN}rlUl})+Ox/ Ar {N}r {O } g_] dfi

O({RETURBlrlN}) dIN} O({N} r {UI}) dr2

- 2 fa Ox_ Oxj Oxj

+ :oalN}lN}rlouIOt}n'dF + R----elon OlNloxj O({NlrlUll)dxj n, rlP (260)

+ :onlRETURBlr{N } d(lNl)0xj O({NlrlUl})axj n_dF

+ /oo O({RETURB}rIN})04 {N} O({N}rlUJl)oxi n idr - 10}

In compact notation, the 3-dimensional residual for the pressure is

{FP }e = DETe EJK, EJM e [C2KM] {P}e

+ DET_ EIKe EJM, {UJ }r [C30KM] {UI}_

+ DET_ GI Ar e EIK e [C2K0] 1t9 },

- 2DET, EIM, EJK, EJLe {RETURB} r [C3MKL] {UI},

+ DET2 e [B200] {DUIDt}, NI (261)

1 EJKe EJM e [B2KM] { UI }_ NI+oer2,-Re

+ DET2, EJK, EJM, IRETURB} r [B30KM] I Oq},NI

+ DET2 EJK, EIM, IRETURB}r[B3KOM] IUJ},M --101

4.8 A QUASI-NEWTON ITERATION PROCEDURE

Any linear algebra matrix iteration approximation starts with the formation of the Newton
Jacobian. For Eq. (240), the developed finite-element residual statements are readily differentiated
to produce the necessary master matrix expressions. The element contribution to the Newton Jacobian
from the residual time term for {FUI}e is
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a{FUI} _ DET_ [C200] (262)a{ui}

Similarly,

aIFUI}
- Ate DET. [IUJIreEJK. tC3OKO]

dIUI} (263)

+ {uI}r(EII_ [C3010] + EI2 e [C3020] + EI3 e [C3030])]

is the velocity self-coupling contribution from 0At{R}. The non-self-coupling momentum
contributions, from Eq. (254), are

a{FUI} _

tg{UJ} (264)

- _to BET, IuIIr(EJ1, [C3010]+ EJ2, [C3020]. E J3e [C3030])

for the restriction J¢:l. The dissipative flux vector term in eAt{R} yields

d{FUI} _ AtDET e 1 t_---?_( 1+ Re )EJK t EJM e [C2KM] (265)
d{UI} Ke

and the temperature coupling term is

OAFUIA = A tO DET_ Ar [C2001GI (266)ale l

Expressions similar to Eqs. (262)-(266) are readily derived for all other state variable
contributions to the Newton Jacobian. The segregated Jacobians for the two Poisson equation discrete
statements are identical and of the form

c3{F_ } _ DETe EJKe EJMe [C2KM] (267)a{ol

4.9 BOUNDARY CONDITIONS

Four common boundary types that must be addressed by any incompressible Navier-Stokes
CFD algorithm are: (1) no-slip impenetrable boundaries, (2) free-slip and drag-slip tangential
boundaries, (3) inflow boundaries, and (4) outflow boundaries. The following discussion details the
treatment of these boundaries by the CCM.

No-slip impenetrable boundaries require that the flow velocity at the boundary equal the
velocity of the boundary; therefore, all velocity components are fixed at the no-slip boundary velocity,

w_(xj,t). For a fully-contained flow, FN=_, a solvability condition exists for the Dirichlet data, such
that
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_rWi n_dI"= 0 (268_,

which is a requirement tbr global conservation of mass.

Free-slip boundaries require the satisfaction ofa tangency condition, i.e., u, n, = w,,. if the wall
is parallel to a coordinate axis, then the tangency condition can be easily enforced by setting u, n, = w,,.
For stationary boundaries at arbitrary angles with respect to the coordinate system, an approximate
tangency condition may be applied using a nonhomogeneous Neumann boundary condition with
Poisson equation tbr the continuity constraint potential function.

A tangential traction or drag is imposed on the flow-field through the evaluation of the natural
boundary condition produced by applying Green's theorem to the viscous flux vector for the
momentum equations. For example, for laminar flow,

Ou_
1 O2ui 1 0____Ou_.__2 1 Yo°(n

- R--efta _ Oxi O--"_jdD = Re fn Oxj Oxj dr) - R--e * --On
dr (269)

Focusing on the surface integral in Eq. (269), the integrand can be related to the shear stress at a slip
wall by

1

Re E gc Lref p, U I On Re E

where x,..,,_ is the dimensionless traction at the wall in the ith direction. The dimensional traction, x_*
has been scaled by ( g, L,e///z U,,,j) such that

Oui (271)
0---_ = - "_i-wall

The traction at the wall can be expressed by a general function, e.g.,

,,_.,, l a + bU,_ + Ub_ )] (272)

where U,., is the tangential velocity of the fluid near the wall, and Ub._is the velocity of the wall
boundary itself. By Eq. (272), the boundary condition in It_3 is applied to the residuals for each
momentum equation by

1

+ At O _ [ 8200 ] [ TAUIW }eDET2e (273)

For the energy equation at wall boundaries, the temperature or the heat flux may be fixed. The
heat flux may be applied as a constant or as a linear or nonlinear function of boundary and near-wall
fluid temperatures. The heat flux boundary condition arises from the diffusion term in the weak
statement for the energy equation. Applying Green's theorem results in
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I ae dO - l ae
fo % % R_ Pr/r * _ nj dF (274)

The surface integral in Eq, (274) can be related to the dimensional heat flux at the boundary by
Fourier's Law of Conduction

qwatt : - k d_._T (275)an

Eq. (275) can be non-dimensionalized such that

L..,/an AT,,: k qwau = QFLUX (276)

in Eq. (276), QFLUX is the non-dimensional heat flux at the boundary where a positive value
indicates that heat is being removed from the flow. The residual for the energy equation is now, using

compact notation for the 3-dimensional case,

1 [ B200] {QFLUX } (277)
[ F O } = [ other terms } + DET2e Re----_ e

The contribution to the Jacobian for the energy equation is

a[ Fe } DET2e OQFLUX
- OAt [B200] (278)

a {e I Re Pr de

The overbar in Eq. (278) indicates that any explicit appearance of ® in the derivative term will be
replaced by an average value for the 2-dimensional boundary element.

A general function describing three possible methods of imposing a heat flux at a boundary
is

qwalt - a + b T + c ( T- Tb ) d (279)

The constants a, b, c, d, and T_are data. Note that Eq. (279) is a dimensional equation, and a, b,
c, and T_must, therefore, have dimensions consistent with any other dimensional data in the problem.
The temperature Th is a prescribed boundary temperature located outside of the computational
domain. The three positionally dependent boundary conditions that can be applied using Eq. (279)
are a prescribed heat flux, tbrced convection, and natural convection.

4.9.1 Case 1 -Prescribed Heat Flux

The heat flux q,.,,u is imposed by some external means and is independent of any solution
variables. This boundary condition is applied by setting
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a = Qwo# ; b = c = d = 0

4.9.2 Case 2 - Forced Convection

For a forced convection boundary condition, Newton's Law of Cooling Ilas the form

q_. --h ( T- Tb) (280)

where h is a user-prescribed heat transfer coefficient (film coefficient). Eq. (279) requires that

a = -hT h ; b =h ; c _d-- 0

In terms of a, b, and 0, the result is

q_,, = b [ OAT, e: + T</ ] + a

4.9.3 Case 3 - Natural Convection

In the case of natural convection from a surface, there are a number of empirical correlations
expressing the film coefficient for natural convection as a nonlinear function of the difference
between the fluid temperature, T, and the surface temperature, T_. (Recall that Tb is located outside
of the computational domain.) These correlations typically can be cast in the dimensional form

h = C l (r-rb) q . (281)

The relation for the boundary heat flux is now

q_au = h ( T - Tb) _- C I ( T - Tb ) l+c' (282)

In terms of the general function,

a - b = 0 ; c = C I ; d- 1 +C 2 ; specify T_

The complete nondimensional form for Eq. (279) is

QFLUX
A Tref k .. A Tref J

(283)

r.:k [OAr,,:+r,,f-

and the required derivative for the Jacobian is

o{ol =t ) tJ-r- k (OmATref + T,.I Tb) d'

The explicit appearance of ® in Eq. (284) has been replaced by the arithmetic average O,, of the
temperatures of the four points defining the surface element over which the integration is taking place.
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An alternative would be to ir,terpolate the (,9and change the [B200] to a [B3000] tbr the Jacobian
only,

Outflow boundaries present a unique problem tbr CFD algorithms. Their location is typically
arbitrar3, and somewhat artificial, arising from the need to truncate the domain at some point in order
to establish a tinite donlain, thus a tractable problem. The physics of the flow field generally offers

little guidance. Application of Green's theorem to the kinematic and viscous flux vectors, however,
does produce mathematically well-posed natural boundary conditions tbr outflow planes. Tile
advection term in divergence tbml in the (;WS x tbr the momentum equations is

O(u,u ) o,
ft_* Ox, dfl = - L u,_. uj.dtq + _,, u, u;,,, dr (28S)

The volume integral on the right-hand side of L:,q.(285) has been discussed in a previous section, and
its ibrmulation in compact flotation for the residual {FUi} is

- At BET, { UJ ire EJKe [C30K0] [UIJ, (286)

The contribution of the surface integral to the residual {I,'UI} is

+ At DET2, {UN )flB3OOo] I Ol), (287)

where {l_t} is the projection of" u, onto the outward-pointing normal at each node in tile surl'ace
element. The surface iutegral represented by Eq. (287) is evaluated at an outflow boundary using the
latest estimate tbr the velocity solution. A similar boundao' cowidition tbr the energy equation can bc
developed.

The viscous flux vector or dittilsion term in the momentum equations produces the following
volume integral ibr {FUI }

1 (_. Orlk OINI 011,, OIN] T
At-Re at_ Oxj cgqk Oxj Orlm det[d]dfl [Ul}e : (288)

+ At DET_ 1 EJKe EJM [C2KM]{UI},
Re

and the corresponding surface integral is

fr o,1,,O{N} dr {UI } nJ :1 IN} det[J]2o
-"At Re

Oxj Orl_ (289)

1 EJK [B20K]IUI}e nJ
- At DET2 e R--e

TI_esurlhce integral in Eq. (289) requires the evaluation of the normal gradient of the velocity at the
outflow plane. This gradient is in general unknown in the absence of specific data on downstream
conditions. A common approach is to assume a vanishing normal derivative (a "continuative" outtlow
boundary). A more accurate teclmique is the one proposed by Freels (1092) in which it is assumed
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that the gradient at the element adjacent to the boundary is equal to the gradient at the hounda_,,
Implementation of this boundary condition involves setting to zero the ro_,,of the di_ion matrix
associated with the bounda_' node during assembly of the global system tnatrix, This approximation
improves in accuracy as the mesh is refined near the outflow plane, The continuative assumption
cannot be inlproved through mesh refinement,

4.10 DISPERSION ERROR CONTROL

In the development of any CFD algorithm, a key theoretical issue is stability in convection
-dominated flows, With increasing Reynolds and Peclet nuinbers, the naturaldissipation mechanisms,

associated with the physical diffusion terms in the momentum and enersy conser_vation laws, be_in
to lose their ability to moderate a dominant dispersive error mode, The spatial discreti_,_|tionof the
hyperbolic advection tenus is the source or this numerical dispersive error which manifests itself as
characteristic "2-A_ waves" in the velocity and temperature distributions (Baker, 1983), To address

the issue of dispersion error control, a 7'qvlor Weak Statement is employed wherein a temporal
Taylor-series-derived modification to the conse_ation law statement is added to the n_o|||e,tum and
energy equations.

in finite,difference/finite-volume CFD applications, various upwmddifferetlcinl_ scheme,_ are

employed for dispersion error control, ranging from donor-cell upwindinB (Gent_ _el al,, 1_66) to
high-order upwind operators such as QUICK/QLIICKEST schemes (l,eonard, 197!_), tlpwind
differencing involves approximating convective derivatives with upstream and cell-centered _olution
values. As discussed by Roache (1972), upwinding methods inherently introduce som¢_ level of
artificial diffusion into the flow field. A particularly troublesome manifestation of this error
mechanism is "cross-wind" diffusion in which velocity tields experience a dissipation error normal
to the flow direction,

Finite-element upssinded convective terms can be developed in several ways, includJn_
modified weighting functions (Christie et al., 1976), modified quadrature rules (llughcs, 1978),
stream-line-upwind Petrov-Galerkin (SUPG)methods (Brooks and Hughes, 1982), multi-dimensional
"tensor viscosity" schemes (Dukowicz and Ramshaw, 1979), "balancing tensor difl'usivity" (BTD)
methods (Gresho et al., 1984), and Taylor-Galerkin methods (Donea, 1984; and [laker and Kinl,
1987),

The theoretical treatment of dispersive error instability has relied typically upon the linear,
l-dimensional, scalar advection equation as a hyperbolic model problem,

c.3t cgx

where a is a scalar constant. Equation (290) describes an evolutionary process fi_r which existenctt
of the Taylor series

q ,,l = q , + _t Sq , At2 02_! , .......
c_t . 2 Ot 2 6 Ot _tl n
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is guaranteed. Baker and Kim (I 987) present a generalization of the Taylor Weak Statement algorithm
for Eq. (290) which permits selective control of both time accuracy and stability. As noted by
Noronha and Baker (1989), "the Taylor Weak Statement (TWS) procedure provides the broader
generalized perspective for nonlinear stability mechanisms for hyperbolic and/or partially parabolic
conservation law systems."

The TWS formulation for the incompressible Navier-Stokes equations was derived and
verified by Noronha and Baker (1989). in the limit of large Re (and neglecting source terms), the
multidimensional form of the conservation laws can be restated as

(q) . 0_ + ay_ = d___q,+Aj 0_qq _ 0 (292)
at axj axj

where A_is the Jacobian of the kinematic flux vector (_/aq). Following Baker and Kim (1987), the
higher order time derivatives in Eq. (291) arc replaced with spatial derivatives obtained from
Eq. (292), For example, it can be shown that the second derivative of q with respect to time is

d 2q _ d ( ot. mj ,::!!q Oq ) (293)at 2 a5 + f .aja kTxk

subject to the convexity constraint tx*- 13'= 1, Similar manipulations can produce an expression for
the third-order temporal derivative in Eq. (291) in terms of spatial derivatives. Substitution of the
revised Taylor series into Eq. (290) results in the Taylor-modified conservation law statement,

aq Ata(3 ax k aq)]
aq + Aj a_._qq A t a "Aj _t V _lYre(q)- at" o5 2 05 ot + * AjA k

(294)

At o . aq + At a lAjAkAl aq l ]2 axj f_ mjA'ff-_xk S OX---kk _ =0

where Oq/Ot*-_Oq/Ot as At-_0. A Galerkin weak statement can be formed with Eq. (294) that, based
upon the specification of the parameter set et*, 13', _,*,and _t*, contains over a dozen independently
derived dissipative CFD algorithms (Baker and Kim, 1987).

For the current application, dispersion error control is based upon the use of the [3*-term in
Eq. (294). Noronha and Baker (1989) show that the required TWS form for the momentum
conservation law involves adding

- 13"At O ( c3ui OuJI (295)2 ax,u'U'ox +U'U
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to the momentum equations. The 13*-modified energy equation includes the term

-13_ At d (uju, de)"-2 a_ _ (296)

J

As a computational convenience, (295) can be approximated by neglecting u_uk_-_k.
This approximation produces a _term similar in form to (296), i.e.,

_ fj. At c3 ( Oui)2 axj uju k_ (297)

Equation (297) is identical in form to a "balancing tensor diffusivity"or BTD term (cf. Gresho et
ai.,1984; and Dukowicz and Ramshaw, 1979). Following Raymond and Garder (1976), an
approximate element-level Courant number replaces the time-step At in (296) and (297), thus,

fS* At _ _5h, TM ; fS_ A t ~ _o heTM (298)
2 lul. 2 lul.

where 13and 13oare user-selectable parameters (_>0),n is the problem dimension, he is an appropriate

local mesh measure (with the dimensions of area for n=2 and volume for n=3), and ]ule is an
element-based reference speed.

The Taylor weak statement for the momentum equations is, therefore,

fo, u,., do- 0(299)

v,et..2(t3) , u_U2(o)

Applying Green's theorem to the 13-term in Eq. (299) gives

TWS = L*_m(ui) dfi = L*_(u')df2

[5hel/n O, Oui f5heTM Oui (300)

u,u,- o foo*u,+ _ Oxk luI. _ ujnjdr: o

v, _Ho_(t_) , u_H_(fa)
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The discrete form of the 13-terms in Eq. (300) is, therefore,

r_h,'"f an,alNI a,lmalN}_______
lul Jo {Uj}r{N} {UK}r{N} dxj Or] l dx k 011 {Ulldet[J]e drl, m (3ol)

fo O_m O{N} rP h'l/n {UK} r{N} {N} Oxk arlm {UI} {N} r{ UN} det[J]zodrl2lul, o

where {ON} are the boundary velocities projected onto the outward-pointing normal. In compact
form, one obtains the TWS contribution to the {FUI}e residual

he 113
EJL e EK1VI e DET e {UJ}f( {UK} r [C400LM] { UI},)

lul, (302)
13h_',_

EKMe DET2, I UN}r(IUKIr[B4OOOM]IUI},)
lul,

The assembly of the [C400LM] and [B4000M] hypermatrices into the global residuals and Newton
Jacobian matrix is a prohibitively compute-intensive operation for large problems. As an
approximation, the order of these terms can be reduced through the formation of element-averaged
velocity components, hence,

he 113
EJL e EK1VIeDET, UJ , {UK} r [C30LM] {UI},

lul,
(303)

EKM DET2 UN, I UK}r [B300M]I UI},
lul,

Similar terms can be developed for the energy equation residual {F®} with the result

_a he 1/3
EJL_ EKM_ DET, UJ, {UK} r [C30LM] {O},lul,

(304)
1, 112

[30 _'2e
EKM_ DET2, _ {UK }r [ B300M] {O },

lul,

The surface integrals in (303) and (304) should be evaluated for those boundaries at which the normal
velocities are not fixed by Dirichlet data, e.g., outflow boundaries.

The 13-terms can be differentiated to obtain their contributions to the element-level Newton
Jacobians. For the momentum equations, the self-coupling term is
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c3{FUI } _ [Jh_I/3
EJL EKM_ DET, UJ [ UK}: [C30LM]alui) lul.

[3h, II3
+ gJL e _ilV[ e DET e UJ--'-'_e{UI}/[C3ML0]J.I,

heID
+ emoLT,Moper, uK----:{UI}/[C3MLO] (305)

0h_:
EK1VI, DET2, UN, [ UKI: [ B300M]

l.l.

luI, EnVlcBET2,UN,IUIIr [B3M00]

and the cross-coupling term is

d {FUI } _ hem- eJLomMooer, uJ, luz): [caML0]
al UKI I,1.

+ fJh)/3 EJLc EJM_ DEI, UK, I UII,T [C3ML0] I, K (306)
lul.

h_/_2 EKM, DET2, UN I UII: [B3MO0]
J,,I,

For the energy equation, the self-coupling term in the Jacobian is

d {FO } Dohe 113
- EJLoEKMoDE,T, uJ, IUK)r [C30LMI

alo ) lu I, (3o7)
1, 112

_0 '_2e
EKM e DET2_ UN e {UK}__ [ B3OOM]

lul,
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and the cross-coupling term is

d{FO} _ _ohe t/3
EJ'L e EIM e OET e UJ-"-_e{O ] T [C3M].,O]

OlOl} lul,

_0 he II3
+ eILoer, DeL uK. IO}r [C3ML0] (308)

[u ,

F,nvie DE_, UN, IO}: [ B3M00]
lul,

It remains to select an appropriate measure for the mesh he. For rectangular hexahedra, the
determinant of the transformation Jacobian, det [J_.], is equal to one-eighth of the volume of the
element; therefore, one choice for he is to set it equal to 8xdet [Je]. The cube root of he will, theretbre,
be dimensionally correct. The boundary conditions are evaluated with bilinear quadrilateral elements.
For rectangular quadrilaterals, det [Je] is equal to one-fourth of the element area; therefore, an

appropriate choice for h_eis 4xdet [J:,,].

, , , II If IIIIIIIIII1[11[I III II IIII IIII II "



5. NUMERICAL LINEAR ALGEBRA

In the translation from algorithmic theory to practical computer code, the CFD practitioner
is ultimately presented with the task of solving a sequence of linear algebra problems of the form

Ax - b (309)

where the square matrix A and the vector b are known, and x is the vector of unknowns. For many
incompressible formulations, the ellipticity associated with the continuity constraint produces one or
more Poisson equations. The resulting terminal matrix statements have A matrices that are symmetric
positive semi-definite (SPSD), an important property in the design of numerical linear algebra
procedures. When implicit time-integration techniques are used for the momentum and energy

equations, the A matrices are nonsymmetric, indefinite, and ill-conditioned. In both instances,
however, A is characteristically large and sparse. Golub and Van Loan (1989) note that two important
measures of efficiency for linear algebra algorithms are exploitation of matrix data structures and
economy of computational effort. This chapter presents a review of some of the latest methods in data
management and linear algebra solution techniques, hence identification of those feasible for CFD
implementation in a workstation computing environment.

The matrix shown in Eq. (310) is an example of the type of matrices produced by the

Laplacian operator for the • and pressure Poisson equations. The model problem consists of a
unitcube with a M=- 2×2×2 discretization. No boundary conditions have been applied. The matrix A

is symmetric with positive diagonal elements and nonpositive off-diagonals. Since A is symmetric,
its spectrum (set ofeigenvalues) are real, as shown in Eq. (311). The presence of the zero eigenvalue
indicates that the matrix is singular, i.e., det (,4)= 0, and ,4-_ does not exist. However, since the
remaining eigenvalues are positive, A is classified as symmetric positive semi-definite. The singularity
can be removed by applying a Dirichlet boundary condition on one node. One method of imposing
Dirichlet boundary data is (on the row of the corresponding Dirichlet node) to replace the diagonal
element with a large number. For example, when the element in the (1,1) position in A is replaced

by 106, the resulting set ofeigenvalues are shown in Eq. (312). Examination of the matrix spectrum
in Eq. (312) shows that all the eigenvalues are now positive. The modified A is an example of a
class-M matrix, where the diagonals are all positive, the off-diagonals are nonpositive, and A is
irreducibly diagonally dominant (Ortega, 1972). The definition of irreducible diagonal dominance

is given in a subsequent section. A symmetric M-matrix is called a Stieltjes matrix, and it can be
shown (cf. Ortega, 1972; and Horn and Johnson, 1985) that a Stieltjes matrix i,; symmetric positive
definite (SPD). A more formal definition of positive definiteness is (Wachspress, 1966):

_l illl I II __ II illl illl i II Ill I I II illlllll _ i i_ I i IlJllI i II _

IGiven the square matrix A, if the quadratic form x lax > 0 for all x #0, then A ispositive de/?nitc. If x TAx _ 0 for all x ¢ 0, then A is positive semi.de/inite.

.... i __ ,i, i i,,,i i mi, _.

One property of a SPD matrix is that its spectrum consists of all positive eigenvalues.

94



95

ooooooooooooo_o_ooooo_.ooo__
oooooooooooo__.o_ooo_o_.o_,.,. ,. , . ,. ,
oooooooooooo_oo_ooooo_o_
oooooooooo_o_oo_o_ooo_.,. .

ooooooooo_oo_o_oo_o_,_
oooooooooo_oo_ooooo_,_
ooooooooo_o__oooo_....
oooooooooo_o_oooo_,.
oooo_o_ooooo_ooo_.. ,. .
ooo__o_ooo_o_o_,_, , , ,
ooo_,_oo_ooooo_,o__
o_o_oo_o_ooo_• ' i 1' ' * •

__o__o_o_
_oo_o_oo_o_
o_oo_o°ooo_
_,o_,_oooo_
°_,o_ooo°_
oooo_ooo_

i

oo°_o_o_

o_°oo_ _
i i

II

........... - , ,,,,,,r_.,,_r,¸ , , IIII ..... II III II IIIIIIII I] H |



ba
m



m



98

5.1 MATRIX DATA STRUCTURES

Symmetry, bandedness, and sparsity are among the matrix structural properties that have a

potential for exploitation in the design of linear algebra solvers (Golub and Van Loan, 1989). The
obvious advantage ot"symmetry is that only the upper (or lower) triangular part and the main diagonal
of the matrix need be stored. The term bandedness includes the properties of bandwidth, profile, and
root-mean-square (rms) wavefront, all of which depend solely on the ordering of the unknowns in
Eq. (309). Sparsity is the property of a matrix that is sparsely populated witll nonzero elements.

To produce "optimal" orderings, various heuristic resequencing strategies have been
developed to minimize bandwidth, profile, or rms wavefront (Everstine, 1979). For a symmetric
square matrix A oforder n, the bandwidth w, for row i is defined as the number of columns from the
first to the last nonzero in the row. The matrix bandwidth BW and profile PR are defined as

BW _ max w_
I,_PI

{313)

_ (w,+l)PR

The wavefront f, is the number of active columns in row i, where a column j is active in row i if j'el
and there is a nonzero in that column in any row with index k_i. Tile matrix m_ wavefront WF is
defined as

. l-I

Everstine (1979) presents a comparative study of three popular resequencing algorithms, testing the
performance of the CuthilI-McKee, Gibbs.Poole.Stockmeyer, and l.evy methods. For the test
problems that Everstine examined, the Gibbs-Poole-Stockmeyer method was found to be the fastest
and best able to reduce profile and rms wavefront. Schwa_ (1988) gives a description of the Rosen,
Cuthili-Mckee, and reverse CuthilI-Mckee methods in terms of graph theory. The CuthilI.Mckee
algorithm has the advantage of reducing both the bandwidth and the profile, simultaneously.

Assuming an approximate "optimal" ordering has been accomplished, a number of compact
storage techniques are available. The hand storage method in the general linear algebra package
I,INPACK (Coleman and Van Loan, 1988)is an example of how the banded structure of a matrix can

be exploited. The lower bandwidth is defined as that positive integer p such that a,,=Owhenever Y:_j+p,
and the upper bandwidth q implies that a,-0 whenever i<j.q. As betbre, the matrix bandwidth is

BW=p+q+l. in I.INPACK's band storage technique, a square n × n matrix is mapped to a (2p+q. I)×n
matrix, e.g.,
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a(i,j) - ,4_(i-/.q+ l,j)

all aj2 al3 0 0
0 0 aj._ a_4 a_

a21 a_2 a_3 a24 0
0 al 2 a2._a_4 a45 (315)

A = 0 a32 a3_ a34 a_ - A_,_--
all a2_ a_ a44 a_

0 0 a43 a44 a4s
O21a3:z a4_ a_4 0

0 0 0 a_4 a_s

[:or the above storage scheme to be effective, it is necessary that p,q << n.

The NSP(_'G linear algebra package (Oppe et al., 1988) uses a primary storage technique |br
unstructured matrices. The method is efficient for matrices that have a relatively constant number of
nonzeros on each row. The n ×n matrix A is represented by two n xmaxn,.- matrices, a real.valued
matrix C'OEF and an integer matrix 3COEF, where each row in C()EF holds the nonzeros of the
corresponding row in the full matrix A, and JC()EF contains the respective column numbers. The
positive integer ma.,:nz is the maximum number of nonzeros per row over all the rows of A. An
example of primary storage is

all 0 0 al4 al-_ all al_ als 1 4 5

0 a22 0 0 0 t252 0 0 2 0 0

A - 0 0 a33 0 0 - COEF _: a_ 0 0 ; JCOEF- 3 0 0 (316)

a_l 0 0 a. a4._ a. a4_ a4_ 4 I 5
514

a_l 0 0 aS4 ass a_s asl as4

l:or the above example, n:5 and ma_n,"=3. If a row in A has fewer than mwcnz nonzeros, then the
corresponding row in ('()El," is padded with zeros.

The diagonal storage technique is et't}_ctivefor matrices with a block or diagonal structure.
The diagonals of A are stored in the colum;,s of the compressed matrix ("()El,', and the oft_ets from
the main diagonal are stored in the integer vector ,IC'OEF. An example ot'diagonal storage is

all 012 0 O14 0 all _!12 1214 0

0
a21 a22 a2_ 0 a2_ a2_ a2_ a_ a_

A _ 0 a_ a_ a_ 0 - COEF _ a_ a_ 0 a_2 ; JCOEF = 1 (317)3
0 0 a4_ a_ a4_ a44 a_._ 0 a4_" -1
0 0 0 12S4as_ a_._ 0 0 as4

The superdiagonals inA are top-justified, i.e., short superdiagonals are padded with zeros from below,
and subdiagonals are bottom-justified. Positive integers in J('OEI" indicate a superdiagonal, and
subdiagonals have negative ot't_ets.
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For more generalunstructuredsparse matrices,diagonal storagecan result ina large number
of zeros being stored and computed on.Coordinate storage (also known as triad storage) is effective
for general sparsity structures at the cost of additionalinteger overhead, In coordinate storage, only
the nnz nonzeros of A are stored in the vector COEF. Two nnz length integer vectors or one nnzx2
integer matrix hold the row and column indices of the corresponding elements in COEF. For the
following example, nnz=i 7.

all

an 1 1

at4 1 2

a2 t 1 4
2 1

a22
2 2

a23 2 3

all a_2 0 a14 0 a2s 2 5

a21 a22 a23 0 a2s a32 3 2

A _ 0 a32 a33 a34 0 - COEF _ a3_ ; JCOEF = 3 3 (318)

a4! 0 a43 a44 a,ts a34 3 4
4 1

0 a52 0 a54 ass a4t
4 3

a43
4 4

a44 4 5

a45 5 2

as2 5 4

as4 5 5

ass

In Eq. (318), the nonzeros of A are stored by row, but they can also be stored by column.

The Yale Sparse Matrix Package (Eisenstat et al., 1977b)has an even more compact storage
format in which only the nonzeros of A are stored in the vector COEF, either by column or row, and
two integer vectors, IA of length n+l and JA of length nnz, hold the structural data.The integer vector
JA stores the row (or column) indices of the corresponding elements in COEF, and/,4 contains
pointers to positions in JA and COEF where each new column (or row) begins. The following
example uses Yale Sparse Matrix (YSM) column storage with the main diagonal positioned at the
beginning of each new column.
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all

a21 1

a4s 2
4

a12

2
a12

1

a3_ 3

all at_ 0 al4 0 as2 5 1
4

a21 a22 a23 0 a25 a33 3

A = 0 a32 a33 a3,t 0 - COEF- a23 ; JA = 2 ; bl = 8 (319)
il

a41 0 a43 a,l,l a4s a43 4 15

0 ass 0 a_ ass a_ 4 18
1

O14
3

%4 5

au 5

ass 2

a2s 5

045

An advantage of the both the coordinate and YSM techniques is that the storage requirements
are independent of the bandedness of the matrix, since only the nonzeros of A are included in its
sparse representation. The disadvantage is that some integer overhead is incurred to decode the
sparsity structure.

5.2 SPARSE SOLUTION TECHNIQUES

Linear algebra solution techniques for Eq. (309) can be classified into two main groups, direct
methods and iterative methods. Direct methods involve a factorization of A into triangular (and easily
solvable) systems, lterative methods are designed to generate a convergent sequence of vectors x r

where A -t b is the limit point of the sequence. The data management techniques discussed in the
previous section can be incorporated into many direct and iterative linear algebra algorithms. The
following discussion gives a brief overview of some of the more popular sparse linear algebra
algorithms currently employed in finite-element applications.

5.2.1 Dtre,:t Methods

For any nonsingular square matrix A, a basic theorem of linear algebra (Horn and Johnson,
1985) states that a permutation matrix P exists such that the factorization
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PA "_LU (320)

exists, whereL is a unitlowertriangularmatrix(ones on thediagonal)and U is uppertriangular."I_¢
matrix1_acts to reordertherows of/l before factorization.The vectorof unknowns x is obtainedby
the solution of two triangularsystems,

Ly . Pb (321)
Ux = y

The factorization described by Eq. (320) is called gaussian elimination with partial pivoting,
Completepivoting requiresa second permutationmatrix_), such that

PAO _"tU - (PAQ)(Qrx) _ Pb

Ly : Pb (322)

U(Qrx) ,, y

The factorizationin Eq. (322) takes advantageof the fact thatpermutation matricesare orthogonal,
thus

Qr = Q_l . QQr =QTQ . i (323)

where I is the identity matrix.

If,4 is symmetric, then the permutation matrices in Eq. (322) arerelated by _)=P t resulting
in the factorization, i.e.,

PAp r = LL r - (pApT)(px) = Pb

Ly = Pb (324)

L r(Px) . y

IrA is SPD, then P=I, and no pivoting is required,restllting in thewell-knownCholesky thctorization,
The solve steps (called forwardand backsubstitution) forthe triangularsystems in Eqs. (321), (322),
and (324) requirea smallcomputational effortrelativetothe factorizationsteps. For bandedmatrices,
direct methods have theadvantage of preservingthe bandwidthduringthe factori_,ation;however, the
original sparsity structurewithin the bandwidthis lost due to a processcalled "fill-in." Bandeddirect
solvers are, therefore,most efficient when thematrix is dense within the bandwidthand the ordering
of the unknowns is "optimal," i.e,, the bandwidth is as small as possible relative to the orderof the
matrix. If the matrix is sparse within the bandwidth, then special sparse direct methods may be
required.

Dongarra et al. (1991) group sparse direct methods into three main categories: frontal
methods, multifrontal methods, and general sparse techniques. Frontal schemes were originally
designed for symmetric positive definite matrices produced by finite-element structural analysis
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codes; however, they can also be applied to nonsymmetric matrices. Performing well on systems
whose bandwidth or profile is small, frontal methods can be interpreted as extensions of band or

variable-band schemes. For symmetric systems, the frontal method consists of setting up a subset of
the equation system while simultaneously carrying out a Cholesky factorization and forward
substitution. The method exploits the fact that, for a banded matrix of bandwidth BW, it is necessary
to store only BW+I successive rows of the matrix in core memory (Schwarz, 1988). This submatrix,
called the "frontal" matrix, is used as a "window" that runs down the band as the elimination

progresses (Dongarra et al., 1991). The results of each elimination step are stored in "out-of-core"
memory (also called "backing" or auxiliary storage). After a complete sweep of the band, the
unknowns can be obtained by back substitution. A small bandwidth/profile is critical, since, for large
bandwidth matrices, frontal methods can require more storage and many more floating point
operations than general methods. Multifrontai methods are an attempt to improve computational
efficiency while maintaining some of the benefits of frontal methods. The details of both frontal and
multifrontal methods are discussed in the book by Duff et al. (1986).

An example of a general sparse direct solver is Harwell's MA28 code (Duff, 1980). MA28
is composed of a suite of Fortran subroutines for the solution of sparse nonsymmetric linear algebra
systems using a variant of Gaussian elimination and employing sparsity pivoting to minimize fill-in
as v,'cll as complete numerical pivoting for round-off error control. The rows and columns of A are
first reordered so that the coefficient matrix is block triangular, i.e.,

i
i

Al_ [01 ...... [0]

A2! A22 [0] !

PAQ = A31 A32 A33 [0] i (325)

_ ! '.. [0]

Am ......... A_N

where P and Q are permutation matrices. The diagonal blocks, A,,, are square matrices, and the
off-diagonal blocks, A,_ 0'<i), are rectangular. The block triangular system is then solved by block
forward substitution, where each block is solved with its own LU factorization with complete

numerical pivoting. Information gained during the initial permutation and factorization of A can be
saved in order to reduce the computational effort for subsequent factorizations of new matrices that

have the same sparsity structure as A. MA28 uses the coordinate scheme for top-level (input) storage
of,4; however, several linked lists are employed as dynamic storage for the internal representation
of tile permuted and factored blocks.

Finally, Gunzburger (1989) notes that"although for two-dimensional problems direct solution
techniques have proven to be popular and successful, it seems that they cannot be used for solving
realistic three-dimensional problems on today's super-computers." For 3-dimensional problems in
CFD, therefore, the current methods of choice fall in the broad class of iterative algorithms.

5.2.2 lterative Methods

lterative methods have two main advantages over direct schemes for large sparse linear

algebra problems: they preserve the original sparsity structure of the matrix, and the accuracy of the
iterated solution can be estimated and, thereby, controlled. Since sparsity is preserved, memory and

storage requirements tbr iterative methods are significantly less than direct methods. For many
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applications, a machine-precision direct solution is not necessary; therefore, the ability to apply a
stopping-test during the iteration cycle can result in significant reductions in computational cost.

In general, iterative methods may be broadly categorized as either stationary or accelerated
(nonstationary) procedures (cf. Hageman and Young, 1981; and Wachspress, 1966). Within these
classes, the diagonal or non-diagonal structure of the iterative matrices is also a delimiting
characteristic. The basic stationary methods such as Jacobi, Gauss-Seidel, and successive
overrelaxation (SOR) can be formulated both as point-iterative (diagonal structures) schemes or as
line-iterative (non-diagonal block structures) schemes. The stationary Alternating Direction Implicit
(ADI) and approximate factorization (AF) methods use non-diagonal matrices exclusively.
Accelerated methods involve applying techniques such as Chebyshev or conjugate gradient
acceleration to the basic iterative methods.

Hageman and Young (1981) define linear stationary iterative methods of the first degree as
having the general form

x p.I = Gx p + k, p = 0,1,2, ._ (326)

where G is called the iteration matt&. The specific iterative procedure is uniquely defined by the form
of its splitting matrix Q, where

G = I-Q -1A ; k = Q -Ib (327)

The known matrix A and vector b are the original system coefficient matrix and right-hand-side
"load" vector as given in Eq. (309). if the sequence x o,x j , x 2 .... converges to A -_ b for an arbitrary
x°, then the iterative method is defined to be convergent (Young and Gregory, 1972). It is a I

fundamental theorem of linear algebra (Ortega, 1972) that a necessary and sufficient condition for
Eq. (326) to be convergent is

S(G) < 1 (328)

where S(G) is the spectral radius of the matrix G. The spectral radius is the maximum in modulus of
the eigenvalues of a matrix. S(G) is also a measure of the efficiency of an iterative procedure since
the asymptotic rate of convergence is defined as

R (G) - - logS(G) (329)

The convergence rate, therefore, increases as S(G) decreases.

!
Five stationary procedures are designated by Hageman and Young (1981) as basic iterative

methods: the Richardson (RF), Jacobi, Gauss-Seidel, successive overrelaxation (SOR), and symmetric
SOR (SSOR) methods. These basic methods can be described in matrix form with the following
decomposition:

A = D - L - U (330)

where D holds the diagonals of A, and L and Uare strictly lower and upper triangular, respectively.
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RF iteration is a variant of Richardson's method where Q=L and i

X p.I = (I-A)x p + b (331)

Conjugate gradient methods can be categorized as acceleration techniques applied to the RF method.
Without acceleration, the RF method has little utility since line-iterative forms cannot be
accommodated (Hageman and Young, 1981).

The Jacobi method has the splitting matrix Q=D _ such that

X p'l = BX p + k
(332)

B = I - D-IA ; k =-D -lb

where B is the Jacobi iteration matrix, in its point-iterative form, Jacobi iteration solves for each
unknown on the diagonal of//in terms of the corresponding off-diagonals using values obtained from
the previous iteration, i.e.,

x_p" - bi - a_j xjp , i = 1,.,.,n (333)
a. j,,

Gauss-Seidel improves upon the convergence rate of the Jacobi method by using current
values for the lower off-diagonal terms as they are updated. The splitting matrix for Gauss-Seidel is
Q=D- L, and

x P'l = _x p + k
(334)

f_ =-(I-D-tL)-IDIU ; k _-(l-O-lL)lD-Ib

where _ is the Gauss-Seidel iteration matrix.

A fundamental property of,,/that ensures convergence of both the Jacobi and Gauss-Seidel
iterations is given by the Diagonal Dominance Theorem (Ortega, 1972).

IrA is either strictly diagonally dominant or irreducibly diagonally
dominant, then S(B) < 1 and S(_) < I, and both the Jacobi iterates,
Eq. (332), and the Gauss-Seidel iterates, Eq. (334), converge to,4 _b tbr

any x".

Diagonal dominance requires that the absolute values ofthe diagonal terms in a matrix be greater than
or equal to the sum of the absolute values of their respective off-diagonals, i.e.,

la,,I a _ l a,jl, i:l,..,n (335)
1¢!
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If strict inequality holds in Eq. (335) for all the rows of ,4, then the matrix is ,_trictly diagonally
dominant. Irreducible diagonal dominance requires the matrix to be irreducible and diagonalJy
dominant, and strict inequality must hold for at least one row. Definitions of irreducibility in terms
of either directed-graph structure or canonical forms can be found in the books by Ortega (1972) and
Horn and Johnson (1985). Note that the Diagonal Dominance Theorem does not require that ,4 be
symmetric: therefore, Jacobi and Gauss-Seidel iterative schemes have a potential application for
nonsymmetric problems.

The SOR method is a modification of the Gauss-Seidel method: however, unlike

Gauss-Seidel, its primary convergence theorem assumes that ,4 is symmetric positive definite (SPD).
SOR overrelaxes the Gauss.Seidel iterate and, as a point-iterative scheme, can be expressed as

z x,P ( ' )xl p' = ._ t_ xt i,.t_xtl, (336)

where x, 'r,_ is the Gauss-Seidel iterate. In matrix form, the SOR method is

x p'l = _ x p + k u
(337)

The Ostrowski-Reich theorem is a fundamental convergence theorem for SOR.

converge to`4 b for anY x.il., ...................

The splitting matrix for SOR is (m _D - L), where for ¢0=I the Gauss-Seidel method is recovered. In
order to fully exploit the high convergence rates of SOR, an "optimal" value for the iteration

parameter to should be used. Wachspress (]966)and }tageman and Young (1981)describe adaptive
techniques for estimating an optimal ¢_by monitoring the convergence history of the iterative cycle.
An SSOR iteration is a two-step procedure consisting of a forward SOR and a backward SOR sweep.

Increased convergence rates are possible as a result of applying acceleration schemes fbr
those basic iterative methods that can be classified as symmetri:ahh, (tlageman and Young, 1981).
An iteration method is symmetriz_ble if, fbr some nonsingular matrix W, the matrix W(Q _`4)W is
SPD. For example, if both `4and Q are SPD, then the method is sy|nmetrizable. The Jacobi and SSOR
methods are symmetrizable and suitable candidates fbr acceleration if,,! is SPD.

Polynomial acceleration is a semi-iterative procedure inwflving a new vector sequence v e

produced by a linear combination ol'the basic iterates, x r. One chooses the coeflicients tzr,,, (_ .....
C_r,r such that

¢xp,t = 1 , p _ 0,1,2,, (33B)
t,o
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and determines the accelerated iterates v°. v_.... by

p

vr = _ np,, x* (33q)
k.O

With suitable choices ol'(xr _,it is theoretically possible to substantially improve the converttencc rate
of the basic method, A popular technique for accelerating Jacobi iteration is hased on theuse of
Chebyshev polynomials ofthe first kind (Young and (Jreg( n', 1972), Ill Chehvshev acceleration, tile
iterates v_, _, arc calculated by the three-term recurrence relation

v p., ........ Pr._']........[(2B-(l_.a)l)v t' , 2k], (I-p_,.,)v _' ' p_O,I 2, (340)2-(a*[]) ' '

where

2z z
p_ I , p:o , 2_(a,p)

2z 2 I Z ................ Ifa, I_

( '1'
The matrix B is the iteration matrix for Jacobi iteration, litt, (332), the vector k is/) _h dad the

parameters c_tand [I are tile upper and Iov,'er bounds of the eiL_envaluesof B, As | h|t!eman and Youn_
11qSI) note. in order for ('hebyshev acceleration to be effective on sh_ly con_,er_ent problems, it
is important that nearl.,, optimum iteration parameters be used, specifically' the typicall_ unknown
minimt|m and maximt|m ell_cnvttlues of/'L Assumint_ a SPI) coelTicient matrix ,,f,adaptive procedures
have been developed to provide estimate,i for (z and [_,during tilt iterative cycle,

A diflicult._' _,ith iterative procedures like S()R and (,hebvshev acceleration i_ that, in order
It1 obtain optimal convergence rates, tile user is required h) ¢ilt)Ose or ill _Ollle _,,,.a)_calculat_ tlood
cstinlates Ibr various iteration parameters, Iv1Feneral. these parameters are tlllkllo_,ll alld in man)
crises Ilia)be ditticull tt_ detenlline ((iolub and Van I_oall, Ig8¢1). A thnlil) of iterative procedurc_
ha_ ing Conlpetiti_e convergence rate_ and 11ouser-specified iteration paratucter_ have tlained Illttch

l_t_pularit) in recent _cars. Included ill thi_ famil)arc tile precondititmed ctmjug_He gradient,
biconjutlatc _radient. ctmjugate gradient squared, and Fener_llited minimal re_idtml ((iMRI(S)
ll_ethotls,

l'he co,kjugatc gradient method lhlls ill a clttss t)l"altlorithms that ar_ _Olllgtiill¢_ called
Krvh_v.,_uh,V_a_'eorproiectnm metht_ds (I)ont_arn_ el al,, IOt_l), ()lie Call reca_t l'q, 1126) ill terlll_ t_l'
Ihe splitting lllalrix {), thu,,i

._e., . .1v , Q _(b A._ _') , p_O.l,., "_ 13411

i)cthlin_ tile initial residual _,ectt_rr" _ h ..1__''. it can he prow:n h_ mathc||u|tic_tl imh,ction ttmt tile
iterate ,_'_i_ t!t_tcrmint:db_ a linear ct_l||hinalitm oI' vectt_r_ol*thc tbrm

............................... _1 IIHII iiiiiiiiiiiiiiiiii IIIIIIIIII I I II
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v,herc a superscript in parenthesesdenotes a matrix raised to a po_,er, [he itcrntc _ is, thereGve, seen
to be equal to _" plus n vector taken Rom the suhspdcc detined b_ tttc spa..i,F set

sp.n I r o,,4r _,A_2)r o, ,A_e i)rO I (343)

This vector space is c.lled, p.dimensionnl Krvlm, suhspacc, Kr(,.l; r _' ), 1he basic iterative methods
involve selcctinF special elements from this suhspnce',how_ever, projection methods ._ dc,,.i_ed to

search for more optim,I clements_ tJpon constructio, or. suitnh!c basis l_r Kr(.4; r" ), one sol,,_e_the
system .4x_h l)r.i=,c'tcd onto this Kr3.'lo_'subspace, Projection method, can also he I'omtulntcd as
.¢¢c!erntion techniques t_r the basic itcrativ_ .lForithms (Youn_ and Mat. 1=)ItTL

Follo_,inll (ioiuh and Van l,oan (Itlllg), the col0ol_nlu Fr.die.t method is _,ie_,_,cdas.
minimi_ation tech.iq.r_ Speci_.ll). pi.._cnthe ,_PI) matrix A, I_.d the value of t _uch thnt tile
qmldratic l_ntl

I _A _h
d)(t) _ 2 _= i = (J4,1)

i_, minlnltmt I)ificrentintinlt! $(t) u,ith r_pect to t and seltinF tile result h,/ero, one flmh ttlat the
0.mctiofl.l $(t) is stationao _at r_,4 _h _ince ,.t is _l:l), lhl_ _tatiollar}. _int l_ llri .h_olot_ lltilliltltlllt,
therefore, tile original It.ear algebra prohtcm, t;q (Hlq). i_ equi_,nlertt to th_ llltltiltlt/aliolt prohlem

I!,q_(!44)'l'ttc m_,ll.M ./,tl=,,,pr_l dr_,'vnt (.i_o kno_,,.._ Richard_o.'_ method) is. _ilrtlpleapproach
to mmimi/in_ $(:t) hosed ollthe rcc.rrcltccrclatton

_,,,hcrcr'_ b ..t t,' isthe rc_id..l _,ector Ihc ,Iclt_lc _' i_ eq.=d to the _,cctor _om o/tl_c prctnm_
iterate .rid a search _ltr,,¢'t.m vcclor lhc dir_..clio, vcch_r_ ill Iq (!4_) nrc t0_l VS, _l.d tile

p¢lrm.ctcr_ (=, are dc_temli.ud _odl Ihtll #(t= _* (w* _)i_ miltlmllcd, tt.

{r* = * *, r ) (.146)
(_* _..4r+ _)

where (_, _)dcnotc_ the ml|_r pro(hie! _ l,' Jhl_mcttlod ot _t_p_l d_ccllt pcncr.ll_ c_ql_.crtlv__C_,
Nio_l) _hc. the condtttOlI ..mhcr ol ,,t i_ vcO tarot

()thor direction seclor_m==_hc _eleclcdlhal do .ol cxpcr,c.cetile to.stridenceproh!cm_ oi
the _r.dlcl)t dlrcclnul_, V_ Ih_ =../.,_.lr _r=M_rm I._thod. ('1;, ,_ _lt cll'h.'l_.l v,il_ oi: lcncratml!
11sol of dtrcClloll _,CCIoI,,/,' _¢l_hthat

(p', Ap/) . (l , i • J tJ4'_)

Ih_ ¢rit_rl. Ill I,q 11471 _tt!tc th_! the p* _,¢ctor,, t)|o_t he m.t._tll_ ,*l."cOlUOt!lllC, !C, lhc_ |Ir_
orthotlo.id _tth r_pcc! to the' inner pr,_ducl t_, _*itl a_dctincd h_ _
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The basic ('(; alForilhm is
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l'reconditioninF is carried out by n conBnJencetrnnsformntionoFthe l'onn

A' o SA $ r (3411)

_,here;','is..onsinFulnr matrix chosenso thal the conditionnuml_.rof A' i_ le_sthan A. I_he('(;
method, in lhcoD', i._nppliedio Ihe preconditionedsystem

i (.14_i1

d*i' -, h °

Since theconlml_nc_ irnn_Fo_niion d_tro)*_ the ._pa_ii)*_lnJctureof A,/'( '(; i_ de_iFnedin _,,ork
_ilh A nnda precondiiion_rmntrix ,_ (A"_,_')' ralherIhanexplicill.',con_lmclintt,4'_ I1 t_desired1o
ch_e k/_uch lhal lhe ¢cindition.ureter of,4' i_a_imail ._ _ihle the relalion_hip_lw_n Ihe
_pe_lralcondilion n.ml_r oFA' ..d Ihe pr_coiiditionerM i_

wher_ ).,._,andIt.,are thema_xtl,unl andminimumet_en_alue_(tf ,_l 'A (()rle_a, l_ltT)Ihe ideal
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()._ c_111_L'L'lhtll tln_ttlcr r¢iltlir_:tll;.,.llt for _,tl is thtlt thL' i_r_._:omlili(_ni.l_ _tcp ,l/1_,_r ilv q:il_il>_
compulIihl_
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_4 I1 i !tH _ , R t.!_1!
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|lvritll_v .i_,lh_d_ I_r I_|_. _p_;r_ _PI)pr_hl_,._

lt_ _i_.hit_,_° lll|tlttitJl_ t_rlht_}_;_tl_lltl,*_iduitl _i_*l_f_ r* tl_ltt_ _1_i!llplt;' lhrv_'_lL,rt!l rl_._|lrlVtl_Vll.,hlltlltl ill
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.!m!.ml r.'_.h_._l I(iMRI _1
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When ,,! is, PD, theprojectionot'A._h onto theKrylov subspaceKr(,4; r") resultsinan easily
solvabletridiagonal matrix fbmled by a simplethree-termrecurrencerelation([)ont!arraetal., Iggl).
For rlonsymmetric indefinite systems,theprojectedsXstemis an upper i lessenbergmatrix. A family
¢d'aigorithmsincludingORTI IOMIN, ORTtiODIR. ()RTt lORES, and (i(:'R ((ieneralized Conjugate
Residual)have beendevelopedIo construct thisIlessenbergsystem(ct: I iagemanand _ _un[.l, 191tl;
and Chandra el al., 1977). The (ieneralized Minimal Residual((IMRF, S). due 1¢_Saad and, chultz
(1986). is one of the mL)repopular alg(_rithnt,_in this _roup. (IMRE,_(m) as presentedby ._aadand
_¢hultt (101t6) is:
..... -:_: ::: ................. .......... ii ii llll I l]lrll I - [i nnMlJlr ii -; lllllill I l II 11 Ml]mll T l[ L I u[i

(;ENERALIZEI) MINIMAl, RESIDUAL- (;MRES(m)

For/_'_ 1,2. . m

computethe/:-,rthonormal basi_v'

h,, .....(.4v'. v' ). i _' 1.2. ,i

'.,_ _ t'_i 'i_'a _,'IV' _ /: i h,i

con_tru¢lelementsi_l'upper I le_senb_rgmatrix //

h,,,,o I1,""'II

I:oml the approximatesolution'

I'" matrix consisl_ ed'the Anmldi _:ectorsv'

t'" _", l"r" u,hercv" n,inimi/e_ III+,', n..,,ll

Restart*

l_sl tbr co,werFence
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The constructionof the uppert iessenbergsystemtypically involvestechniquesdevelopedfor
the algebraic eigenvalue problem suchas ttouseholder transformationsor a modified Gram-Schmidt
ortho_onalization, A practical implementation ot'the method is (]MRES(nO in which the iterations
are restarted ever>' t. steps,thus avoiding, the disadvanta_teof havin_ to store all of the residual
vectorsup to ¢onverl_ence,

A comparative stud), of a number ol'K_,lov subspace methods, specifically I_C(], C(i,_, and
C(JR, and a direct nonsyn)metric frontal solver is presented by tloward el al, (1_c90)i_.)r2- and
3-dimensional I'EM semi-discretizations of the Navier.Stokes equations, The model problem is
natural convection in a unit-square boxsolved with the mixed tinite-element tt.P direct method, t_toth
unpreconditioned and II,tl preconditioned forms oi" the iterative methods were tested on a {'ray
XMl)/48 and a {'ray 2, The results of the study indicate that the unpreconditioned BCG method is
robust for moderately nonlinear problems, and the II.t)-[3C(i method is very robust and more
economic than a nonsymmetric f_'ontalsol_,eron a Cra)_2_The direct method hadadvantages over
the iterative methods in the ahilit), to vectorize signiticant Cl)LJ-intensive portions of the coding,
()primal implenlentatJonsof the iteralive methodson vector supercomputerswere more ditticult to
tlttain since pert_)rmance (i.e,, ¢onverBence rate) is dependentupon the spectral (eigenvalue)
properties of the speciiic matrix beingsolved,and there isno single portion ofthe codethatdominates
the CI)t) usage_
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6. IMPLEMENTATION ON A UNIX WORKSTATION

The Continuity Constraint Method (CCM), described in Chapter 4, has been implemented in
the Fortran 77 computer code CFDL.PHI3D, The target computer for CFDL.Pttl3D was an
engineering workstation running under the UNIX operating system, specifically an IBM Risc/6000-
UNIX(AIX) Model 320 with a 20 mltz clock speed and 32 mbytes of random-.ccess-memory

(RAM), This machine is typical of the "[JNIX-X Windows" systems that are emerging as the
dominant platforms ibr modern CFD and general scientific computing. A summary of the methods,
approximations, and decisions required to implement the CCM for this computing environment is
presented in this chapter,

6.1 LINEAR ALGEBRA PROCEDURES

As discussed in Chapter 5, iterative methods appear to hold the greatest promise as efficient
solution techniques t_r 3-dimensional CFD implementations. In a workstation environment, where

internal memory capacity represents a significant capital investment, the efficient management of
sparse linear algebra data structures is of critical importance.

After a survey of the literature, a library of sparse solver routines was assembled. The main
source tbr the library was public,domain software, available through the netlib service based at the
Oak Ridge National Laboratory (Dongarra et al., 1991). A number of Krylov-subspace solvers ibr
SPD and general nonsymmetric problems developed at the Courant ltlstitute and Lawrence IAvermore
National l,aboratory for the Sparse Linear Algebra Package (SLAP) project, and the MA28 general
sparse direct solver fi'om Harwell were selected. The assembled library also includes a Gauss-Seidel
sparse solver developed by the author,

To solve the linear al_,ebra problem ,,Ix = h, CFDI,.PItI3D accesses the sparse solver library
by a single call to an interfiice subroutine called ,v_arsv. The call fonnat for sparse is:

L15



116

call sparse (norder, nnz, ienw, leniw, ltrmax, m, Isym, tol,
solve, Ildiag, inj, smat, xp, b, iwork, work)

Input:
holder = order of the matrix .4
nn._ = number ofnonzeros ill.4(dimension of,,vm.,t)
/enw = dimension ot"work
leniw = dimension of iwork
itrtnax = inaximum number of iterations allowed

m = number of vectors saved in GMRES(m) and ORTIIOMIN(m)
isvm = O, all nonzeros of,4 are stored in ,_'mat

= I, A is symmetric and only diagonal and strictly upper/Iox_,,er
triangle nonzeros are stored in ._'tnat

tol = convergence tolerance Ibr stopping test
.sore = keyword specifying the solver and preconditioner, see Table 3
Ildiag = integer list of pointers to diagonals in in`/and ._'m,t

in`j = integer of row numbers for nonzeros in ._.mat
.stoat = sparse representation ot'A using YSM column storage
h = vector holding right-hand-side data
iwork = integer workspace for solver
work = double precision workspace for solver

Output:
.V_ = vector holding the solution x

"l'hecall list for spar.se requires that the amount ot'integer and double precision work space (h,mw and
lenw) be input for the specitic solver designated by the keyword .wdve. A subroutine called w,rk.v_
is available in the solver library to calculate these dimerisions. The xoh,e keywords are given in
Table 3.

The sparse solver library uses the YSM column fonnat representation of the matrix ,4. in this
format the nonzeros are stored counting down columns (except for the diagonal entry, which must
appear first in each "column") and are stored in the double precision vector stoat. In other words, lbr
each column in the matrix one stores the diagonal entry in stoat. Then the other nonzero elements are
stored going down the column (except the diagonal) in order. The h!/integer vector holds the row
index for each nonzero. The/Idiag integer vector holds the offsets into the m/and ._ .till vectors tbr
the beginning of each column. That is, in/(lldiag(icol)) and .smat(Ihliag(icol)) point to the beginning
of the icoi-th column ir in`/and smut, and ff_(lidiag(icol+ i ). I ) and .smtat(lldiag(ic.l+ I )- I) point to the
end of the icol-th column in in/and stoat, The information nect_ssary to calculate th_ sparsit) structure
of the A matrix and generate the lh/iag and in,/vectors is available in the element connectivity table,
This table is constructed as a part of the finite-element mesh generation and consists of a list of node

numbers fi._reach element, As pointers to the global coordinate data base, the node numbers provide
the complete geometric definition of the element, By carrying out a symbolic assembly of the global
system matrix using the connectivity table, the sparsity structure of A can be detemlined, A Fortran
listing ot'a subroutine that executes this symbolic assembly is given in Fig, 6 The subro_,ltinellist was
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Table 3. Sparse Solver Library Keywords

Keyword Solver Preconditioner
, ,,, ,,,,,,,,, ,,, ,

gseidel Gauss-Seidel none

dsgmres GMRES diagonal scaling

lugmres GMRES incomplete LU factorization
, ,,=,,,

dsbcgrd biconjugate gradient diagonal scaling

lubcgrd biconjugate gradient incomplete LU factorization

dsbcgs conjugate gradient squared diagonal scaling
,, ,, , , ,,,

lubcgs conjugate gradient squared incomplete LU factorization

dsormin ORTHOMIN diagonal scaling
........ ,, ,,,,,,,,, ,,,

iuormin ORTHOMIN incomplete LU factorization
.....

dscgrad conjugate gradient diagonal scaling

iccgrad conjugate gradient incomplete _,?holeskyfactorization i
,,

direct MA28 none

designed for YSM row storage, but it is also applicable for YSM column storage since the sparsity
structure of A is symmetric, even though A itself may be nonsymmetric.

The global coefficient matrix A is never actually formed by CFDL.PHI3D. As a part of the
construction of the Newton residuals for each state variable, the sparse representation of A,
represented by the double precision vector smat, is assembled on an element-by-element basis in a
DO-loop over all of the elements in the mesh. The inlbrmation necessary to build the YSM formatted
vector stoat is contained in the integer vectors ildiag and inj.

6.2 FINITE-ELEMENT MESH GENERATION

The generation of the finite-element mesh is carried out as a preprocessing step using the
public-domain code INGRID (Stillman and Hallquist, 1985). Work on INGRID began in 1979 at the
University of'Fennessee with the acquisition of the Los Alamos program INGEN. A preprocessor was
added to INGEN along with a simple graphics program to produce INGRID. Subsequently, the work
on INGRID shifted to Lawrence Livermore National Laboratory (LLNL). Perhaps the most important
new capability added to the code is associated with the ease of application of boundary conditions,
loads, and material properties required by nonlinear mechanics programs. The current version of
INGRID is designed to produce complete input files for a suite of 3-dimensional finite-element solid

mechanics and heat transfer codes developed at LLNL. The author has written an interface program
that takes an input file generated by INGRID for the 3-dimensional heat conduction code TOPAZ3D

and produces the necessar3' input files for CFDL.PHI3D. INGRID is capable of producing general
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3-dimensional finite-element meshes using 8-node hexahedra. Various boundary conditions are

applied by paving the required surfaces with general 4-node quadrilateral elements. The ordering of
the nodes in the connectivity table for these 2-dimensional elements is used to specify the direction

of the outward-pointing normal unit vectors for each boundary surface. Multi-connected domains can
be generated with the INGRID delete commands, and mesh grading is available in any of the
coordinate directions.

6.3 MEMORY MANAGEMENT

In a workstation environment, the ability to control the allocation of internal memory during

job execution is of critical importance for the efficient use of computing resources. The Fortran 77
language (ANSI Standard X3.9-1978) makes no provision for dynamic memory allocation; however,
the C programming language supplies, as a part of its standard implementation (Kernighan and
Ritchie, 1988), the functions malloc and realloc which can be used in a Fortran-callable C function.
The C function malloc (defined as void *malloc (size);) sets aside a block of contiguous memory for

an object of size "size" in bytes and returns a pointer to the starting address of the block. If the
memory is unavailable, the pointer is set to NULL. The C function realloc (defined as void *realloc
(void *ptr, newsize);) resizes to "newsize" the contiguous memory block set aside by a previous call
to malloc(). The contents of the memory are not corrupted. If space is not available (when more is
needed) at the present location, then a new location is selected, the contents copied there, and a new

pointer returned. The variable ptr is a pointer to the original memory location allocated by the
previous call to malloc(). The void pointer for realloc( ) points to the starting address of the
reallocated contiguous memory block if the operation is successful. If unsuccessful, then the void

pointer is set to NULL. Listings of two Fortran-callable C functions that carry out these operations are
given in Fig. 7.

6.4 SOLUTION STRATEGIES

An initial study of memory requirements indicated the need for a sequential segregated
solution strategy in which the required sequence of linear algebra problems is limited to a single
degree-of-freedom per node. Segregated formulations are discussed by Benim and Zinser (1986) and
Shaw (1991). For the present work, two segregated quasi-Newton iterative solution strategies were
investigated. Both schemes employ quasi-Newton Jacobians completed for self-coupling only,
neglecting cross-coupling terms such as 8{FUI}/8{ UJ}, c_{FUl}/8{®}, and 8{F®}/t3{ UJ}.

The first solution strategy is presented in Table 4. This scheme uses a standard segregated

sequence of system matrix and residual FORM steps followed by state-variable SOLVE and
UPDATE steps. The sparse representation of each state-variable Jacobian matrix (denoted by the
vector stoat) is formed exactly for all self-coupling terms and boundary conditions in Steps I, 4, 7,
10, and 13. The residuals {FUI}, {F®}, and {R_} are also formed in these same sequential FORM

steps where they are able to use the most recently updated solutions for the other state-variables.
Timing studies showed that the most compute-intensive components of the iterative cycle for Strategy
No. I were the FORM steps and the SOLVE step for the _-Poisson equation, Step 14.
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C*********** ******** ********* ************ *****'*** * * ***** **re* **'4******** ***C

c*** subroutine llist ***c

c*** Determine YSM sparse data structure for global system mat,ix. ** c

c*** input : ***C
C*** n= order of system matrix ***c

c*** isym= logical symmetry flag ***c
c*** mel (8,nmel)= element connectivity table ***c

c*** workspace: (must be input) ***c
c*** ,work (27, n) ***C

C*** nnz (n) ***c

c*** output: *'*c

c*** lldiag(n+l)= list of pointers to diagonals in inj ***C

c*** inj (nz)= integer list of column pointers ***c
c*** nz= number of non-zeros in smat ***c

C************* ****** **************** ********* *** * **** ***** *** ***** ** ***** **C

subroutine llist (lldiag, inj,mel,nnz,iwork,n,nmel,nz,isym)

implicit double precision (a-h , o z)

logical isym

integer mel(8,nmel) ,lldiag(n+l) ,inj (27*n),iwork(27,n) ,nnz(n)
c******************* first executable line of llist ************************

c initialize work space
do i0 i_l,n

nnz (i) = 1

iwork(l, i) _ i

do i0 j=2,27

iwork(j,i) = 0
i0 continue

• ************************* begin loop over elements ************************

do 60 jel=l,nmel
do 50 1=1,8

c get row number

it,w= reel (i, jel)

do 40 j_l,8

c get column number

jcol= reel(j, jel)

c skip over diagonal position, it has already been counted

if (irow.eq.jcol) got, 40

c for symmetric matrices store only the upper triangular block

if(isym .and. jcol.lt.lrow) got, 40

c check to see if jcol has already been counted

do 20 ii=l,nnz(irow)

if (iwork(ii,irow) .eq.jcol) got, 40
20 continue

nnz(irow)_ nnz(irow) + 1

iwork(nnz(irow) ,*row)= jcol
40 cont inue

50 continue i
60 continue !

• ********************* end of element loop *********************,***********

c construct integer-lists and compute total number of non-zeros

lldiag(1) = 1
nz= 0

do 70 i=2,n+l
nz= nz + nnz(i-l)

lldiag(i)= lldiag(i-l) + nnz(i_l)
70 continue

do I00 irow=l,n
if= 0

do 100 j=lldiag(irow),lldiag(irowsl)-i
if= il + 1

inj (j) = iwork(il,irow)
100 continue

return

c************ last line of subroutine llist ********************************

end

Figure 6. Listing of Fortran subroutine to construct YSM data lists.
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Ninclude _uya/typea h_
#include _aya/tlmea_h,
Ninclude _time h,
#1nciude ..stdio _h_,
Ninclude _ntdlib h.
/D IIIIIIIIIIOIIOIIIIIIIIIIJIIIIIiOiIIOIIe@OIIOIiIIIIIIIAI" lJlJi

!0 "'' falloc 0.0 o!

/" ''' dFilamlcall Y a_locate cotitiquoull memoly !numb_lei_iile! ''0 0//O eilOiOO@,OOlie. Oilt OO..........l.I . O....e@@......'. O.(i@..OO@. I /

i. leo COO e/

/0 "'' input "00 "_
/' "'' Int 'numbel * the numbei o[ woidB to b. allocated ''' of

/' "'' Int 'lille , numbel of byte, per wold .0. ._
/. .0. ,fit 'ariay - iiOilltllltO allocllted atiay "'' "_
le is. .01 .i
/. *.o OUt_tJt_ .e. e l
/" "'' int .addI. ° • addlleilll Of allocated memc_Iy .00 0/
/' "'" Lnt "offaet _ offset of allocated memoIy ... •
/;. .. Ill.... ll... (i. ill @ ...4.'' (i @. i 6. O' tO. i ...i. • O O' ..O . i Q . 0 • Q. @'' 0 • •

void fallocllnt .numbei lrlt ".lle int "array illt "addt, int .offnet

II lnt illlitl! ioC I ! i el
liit ' iddFlP i
addrp . mil|locli.numbeli'iotiiell
if laddrp .. NULL i (

pilni.f( Memory il|locil_ l'_li unauccelittitl n")
ptlntl ( " IIt_i_cution abr, rtll _il0'l ,
exit(l)_

)
.oftl!t . lint) laddi_D tlr/ayl'ltlt#ollintli!'nil_i
'adch , (lilt)ltddrp_
l;)l_lntf ( " Memory allc)cat lori IltlCCIIiUIIil adttie#it* td it", ._icl_ll!

t
i. i .tlii.@.ii#i.lllllitt li(iiilii ill. ii Ill lit ltilili i'I i'ii i fill I I

/' "'' illOC ''' "
/' ''' reallocate contigunun memory (numher.tlli_l tL ._lddi .., •
I" # lliilil..liiltt.'.(ilili till(it iiii ltl iiiliiiii lilit''lilitlil i

I. (ill (itl I

l(i "'" input "'' "
t(i "(i' ilit .llkinlbel _ the nttmbei el we/ill t() b_ alloclited ... .,
I' ''(i Int ilile . liunlbel OI byte_ pel WOld i.. l
_. it. itit 'tllr_ty _ point.ill tO til|,)(oat;_,d iill_y (it. .i
!, Ill irll: (iiiddi . addli!itlt of f)itglnal lll+_:ltl l_)ll ''' 'i
ii ill (ii(i (i!

!" "(i' nUtpUt_ (i'(i (i/
/" ''' int .addi . liddrenti i)l teall_)citied r_,m<i|y ''' "I
/(i ''' int ,otl,et . ott_e_ of reilte_,'_l.<t _.._,_i7 "'" (i!
i i illii(iillllli ilii iil(iiliililii ill i /liliill it ill ii iS (ill i I ili''i" (it

void l'elocllilt .lllllllbet, irit .lllle, lnt 'ttltil7, tltl: (i¢lddl,int "Ofl_i_l}
(
I' int "ieiliioc(I ; 'I

illt "addrp_
addrp . tettiloc( .tlddI, (.numberi.((iltiie))_
it ( addrp ,- NULL ) (

pisntt( " Memoiy reallocltlon UiiliuccetttfUl It"t,
p_intf ( " Execution abot.ted. \if"},
exit _1) ;

t
.offset .. (inti(addrp_llllayl,eileof(int)/((iliiT.)_
'addi , (int)addlp,
print[( M.mory reliiiocatlon _ucce_#tul _iddi._._ Id n" .llddll,

}

Figure G. Li.iing of Forlrlin-c.lhible C function, for dynltmlc memory lllloclltlon,
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lillde 4, Nrllreli!nled Nolulhm Nlrmlel!S IN., I,

()ller, li,n I)¢._rrlplt,m
...... J...... , ..... •

I I ( 11(1%1oi-1 hlr.! l-)+_m,ll_+11qd_ h.umhlr_ i.mli!.m_+ +Iml_i0i_lrllit I l IMI

+ l il'l)A II +(-D |Ip,l+il+('i "++ h, ill+rillllll+ I _+I i-! ++'+ l..l r + l,+l.+il +,++

,I ItIXM+I+i iilrlll l+l+++.hll+.ppl_ Imuml+.,, L+tinilllh+ll+++i++nsllllll I11+II
+. :.+_:.; :.:+:_;;.::u_+:+'_+++:+<+-:- + +:::_ +'_+:_+? ? ++-+-+._-+:.... +?: +_ ..................................................................

'_ _111%+i+I+I ,+.lw'hit_l_l_+,++:+l,*+++t+!lll+t+ll Ill+II
................................ + . . .............. _

l, l ilq)All +1+I .l_hlh,' 1+I .... Iiii ili'/illliili 1+, ! I I + 1+I' , !++,ti l _+

7 ll++HM+r _+ lllflll /?+'+,i,+t, +ilipk l+,lUlldiit'<, L;i,ll+llli,_I+_,+il!li++lllill i#+l _I

ii NI)I VI.I? ,.dvv im +t? ++'+ :+i +_++4/++i/!l+/?i lll+++l

'_ l II'l)A II _t" ul_hll_' t "+.....+ ,+ h, lli'l+illllillI" i i"+++ l%+++' i+_/?I'

11| 11 II_P_|,I +*_I !iir!il l"i++m,u, +ipf_l>isis!li!di.> ++i!ll+liiiilll_+ +iilisllril_l I/I ++11

II NI)I Vl*t+; ',ulw' h. +1+_'+++:+ ! ,++'+1+II11+/'11 II+l*+i

I_ Illq)All +t+*l lil+diil_'I'| "'+_llll llPliililill I ,+ i 1+|++:+ /+l' , lh/+ll ,....

II l liltP_l+d_ hlrlll ili++m+i/, +II+I+I>|+iillililill+_ i+illiilllliillS, +llld +1111++11111+II/+,bl

i,I _(il VI +@ ',.lie h,t ill '+'+ :' I *_++ll++ilII'I'I ll_'il'l
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t_)heanincffc_:tiwpr_c(indition_r,l,orall._oluti(_nsreportedinther_maindcrofthischapter,the(.:'asc
1con_Furntionv.nsused.i_e_,themomentuma.d cncr_ solutio.swereobtainedu,'iththedia_o.ally-
_.alcd(;MRI_ sparse_(1i_,¢r.andtheq) andpress.reI'oisso.solutio.susedthecowljuFateFradient
_oh,er _,_ithincomplete('holesk_preconditioning,

7.2 El!ELY-DEVELOPED FLOW IN A SQUARE DUCT

Steady-slate.isothcrlttal,laminarllov_i. astraightducto|'squarecross.s¢ctiol)isa COll)mOlt
t_rst._erith;atio._;asetbrim:o.tpressihleNavier-_tokes(/F[)algorithms(ci',l)elletierel al,,198_);and
I Is. cl al. 19q2) I:orthet_._;oordi.ntedirectio,aligned_,_iththeductaxis.FiB.8,theaxial_,_eh!_:it_
t_lil)-de_,elopedprot_lcatair) t_-_t=ltioli, with . '_t/•. and h .; t, .: h, is

.,(,,,.,,,,,h). 16a'(dp){(.,,,.,,.a,b) ; %.u,_ 0
(3_q.q)

"_._'_[ cmh(n.x,12a) i c,.(n. ,,/2a){(1_,_,,a,b) _ (,I) _ I ...................: .............

X_ X_

Ftllur_tl. Fully-devHopedfh)_ ina rectanl[utarduct.
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The associatedaxial pressuregradientdp/dxtis a unifonn constant,and thecorrespondingvolumetric
flowrate Q throughthe duct is(White, 1974)

Q(a,b) . u,.v,(2ax2b)+=4ba+I dP )_(a,b)-3__ ,dx,
(356)

((a,b). I ....!92a
tanh(nltb/2a )

The nondimensional velocity profile, scaled by the average duct velocity ul.,,,_,is obtained by
dividing l:.q.(355) by F,q. (356), yielding

. ul 48 _(x2,x_,a,b)
UI m ....................................... _ ...................... (357)

3 _(a.b)U 1 .vii Tt

wheresuperscript"star" den.tes a nondimensionalvariable.At thecenterlin¢ofthe duct(r: = .r, = 0),
the ntaximum velocities are

ul'tr_ = 1.5 foratwo-dimenatomdduct, b-. ®
(358)

uI'=,, 2_ forasquareduct.a ob

which arc independent of the flowrate and pressure drop in the duct. rising Eq. (356), the constant
nondimensional axial pressure gradient is a function of the bulk.flow Reynolds number and the
geometr)' ot'the duct.

dP' 3(4b)' I°Re  ia' (3s9)

where

x!
Re ,_ ul'v!Dh , Dh • 4ab ; P' , ......P : :q" ° ......... (360)

DhV a * h Pill ,vl

where D, is the hwlr, ulw diameter oI"the channel (White, 1974). For a ,.-dimensional channel

((a.b). I and dP' 48 asb _ (361)
dx I' Re

and ti._ra squareduct

_(a,b) _ 0,42173 and dP" _ 2845 fora=b (362)
$

dx I Re

Steady-state laminar flow in a straight duct of' square cross-section was simulated using the
modestly nonunit'oml mesh shown in Fig. 9. Exploiting the symmetry ot'thc tlow field, only Imlf the
duct was included in the model domain. The mesh discretization is M=:24×20× !0 consisting ot"5775
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nodes and 4800 hexahedra elements, The boundaD' conditions for the six surfa¢es of the model arc

given in Table 7, As initial conditions, the velocity components and pressure were set to tero for all
interior points and on all boundaries where Neumann boundao' conditions were applied, For Re_ IOO,
the steady.state velocity solution is shown in Fig, iO where selected cutting planes hm,¢ been
extracted t'ronl the complete solution to enhance visualization. Figures II and 12 present quantitative

comparisons for the analytical and computed solutions, In Fig, II, span_,_iseveiocit_ profiles at the
middle of ttlechannel height (x:=O, O_t,_;0,5) are compared to the aualytical solution, i'_tl_(.t 57), li,_r
selected locations along the length ot'the channel at Re_ IO0 and Re_25. All the data are in essentiall)
exact agreement with the analytical solution, A check of the vertical span (x,_:% (I,5"__,,O,5! sho_s
the same level oi' agreement.

Equation (362) confirms that the constant axial pressure gradient is inverseb proportional to
the duct flow Reynolds number, Estimates for the pressure gradient were calculated at the mid-point
of the channel, x,=(I,O.O), for a ranl_e of Re with the pressure set to zero uniforml) across the outtlo_
plane, The computed gradients, Fig, 12, consistently underpredicted the analytical solution b)an
average of 6,8%, The pressure Dirichlet boundatT was sv_itched from the outflows,plato: to intlo,_
plane, and a case _as rerun for Re=75, No significant differences were observed in the solution, Fhe
grid was refined by increasing the number of cross.stream elements in tile t:. and t,-coordinate
directions to give a mesh of M=24,_30× 15, thus increasing the number oi' nodes to 12,400 Pressure
gradients were calculated with the refined-mesh solution tor Re_,!O, 25, 50, 75, and IOO, _,_,iththe
pressure fixed across the outflov, plane. The resulting nondimensional pressure gradients, calculated
at the center of the channel using a central difference formula, are no_ in close agreement
(approximately O.1% error) with the analytical values, Fig, 12. For Re _--_IOO,the pressure distribution
on cutting planes in the channel is presented in Fig. 13 as nine equall)-spaced contour levels _ith a
minimum contour of O.06 and a maximum of0.53. The analytical solution predicts a unitbml pressure
distribution tbr a constant xrplane. No significant span-v, ise pressure gradients _,ere obsen, ed in the
computed solution as indicated in Fig, 13. The distribution of the energ_ nora1 ot'the q)constraint

Table 7. Boundary C(|nditions h)r Fully-I)eveloped Channel Flow

Velocity _ Potential }:unction Pressure
i'? ._dE_. IJ/ I I III _ I1' .... I [ [Irl IIIIIIIIII IIIII II ..... I ---- _ ..... -__- --

3 walls no.slip t'_l_lOn=O nonhonlogeneous
(u_u:=u_=O) J Neumann

, -- I HIlL _]IJL....... I '' - 1 1 I 77 JU .. I1 I L HIll [ , i _S --: _,m,. |1 Jt , " Ill

fully-developed nonhonmgeneous
intlo_v profile using ('_l_!a,_=O

Eq. (357 ) Ncumann
_- ill _ iii i . .... I I 7 i L _ .......iiiim i ii J - .... m J. _ ..... _ _-

out tlo_,_' hornogeneou s cb=0 I' :_!'.Neumann
?_ Iljl[U I ...... I I tIll L. _ -- I[ ( I .............. _.-._T - ....... J

z_,=O r._lOn=O nonhonlogenet_us
symmetr) t)u]On=+t3u./On=0 Neumann

....... , imj ii Illll_ll I IIlll I Ill l II Illllllll I I I IFIq " Ill|llll I _ "
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X3

Figure 9. Fully-developed channel flow: mesh layout for M=24×20× 10.

Figure 10. Fully-developed channel flow: velocity vector field at Re=100.
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0.0
0.0 0.5 1.0 1.5 2.0

U1/U=v_

Figure II. Fully-developed channel flow: spanwise velocity profiles at x2=0.

__

- _ ' ' -- I t

•-.,,-.,..,-analytical: 28,45/Re
• initialmesh:M=24x20xlO

initialmesh: pressureset at inflowplanerefinedmesh: M=24x30x15

x

10°

[ ,ll I I i I ii i I i I i [

10' Reynoldsnumber (Re) 102

Figure 12. Fully-developed channel flow: pressure gradients v. Re.
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Level P

9 0,53
8 0.47
7 0.41
6 0.35
5 0,20
4 0.23
3 0.18

2 0,12
1 0,06

Figure 13. Fully-developed channel flo_: pressure contours at Re=IOIt.

Level enorm

9 1.7E-8

8 1,5E-8

7 1,3E-8

6 1.1E-8

5 9,5E-9

4 7,6E-9

3 5,7E-9

2 3,8E-9

1 1,9E-9

Figure 14. Fully-deveh,pcd channel flow: [[4,[I_.distribution at Re=10tt.
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functionisplottedinFig.14,wherethenineequally-spacedcontourshavea minimum levelof
1.9×10"anda maximum of 1.7×10a.The non.zero,hutverysmall,divergenceerrorexistsatthe
outflow' plane where the Dirichlet boundary condition is applied, as anticipated,

7.3 DEVELOPING FLOW IN A SQUARE DUCT

[]cvcloping flow in tireentnmce region of a straight rectangular cross-section ducl has been
the subjectofextensive study, Itan (196t))calculated analytical velocity profileshasedupon boundary
layer linearization approximations to the Navier-Stokes equations,For the duct axisaligned with the
x:coordinate axis and the coordinate systemorigin located at the centroid of the duct entranceplane.
Fig. 15. the analytical axial velocity profile is

"_-'I cos(mnx2/2a)cos(nn.qi2b)(-I) 2 ............................................................................._...............
. _, ..........u) __.___2,.,_.l,_,_ mnlm2)n2Y2)(2Oal_)_l (363)UI

re,n,1,3,S

where y=a/h is thc duct aspect ratio, and [_ is a parameter evaluated via numerical integration as a

function of.x'j. Entrance lengths, defined as the axial distance from the duct entrance plane to the point
at which the centerline velocity reaches 99% of the fully-developed value, are calculated by I lan tor

X2 X 2

Figure 15. Developing flow at the entrance of a rectangular duct.



rectangularchannel_of six aspectratios. For a given aspectrati,_,theanalysis._h,v,vsthat the entrance
let'lgtll,x_,. v,hen correlatedh_ the dimensionlessmoduh.zs_:_/(D,,, Re), i_ independentof Re. The
l,[cynolds number. Re, i_ evaluated u_in_ the area-v,'eightedaverage tlovv veh_cit,,, ut.,,_.,and the
hvdrmzlicdiameter,1)_,,of'the duct. Ihm calculatesa value of' rj_/(/},,. Re)0,()752 lbr a squareduct.

(i,_ldstcinamt K reid (1¢}67)presentexperimentaldatafordesel¢_pinglaminar tlov, in a square
duct obtained v,ith a laser-l)oppler anemometer.The) compared their datato Ihm's predictions and
t'_undclose agreement in the t'ull>=.devclopedregion. In the developing region, ihm's approximate
analysis tended to overpredict the centcrline velocities as compared to the measuredvelocities.
(ioldstein and Kreid measureda _,alueot'x_tl(Dh_.Re)of 0.090 for their squareduct, but they noted
that "'theslope of'thecu_'e is vc_' small v,hen the center-line velocity approadzesthe fully developed
value. Thus, v,'henusin_ the tbregoing definition ofx_, the difl_:rencebetweenthe measurementand
prediction is perhapsmagnified out of"the truc proportion,"

rising a space-marching integration technique, Brile.,, (Iq74) presents solutions to the
parabolizcd Navicr-Ntokes equations fbr flov, at the entrance to a rectangular straight duct fbr two
a_pcct ratios andat Re-:.1000and 1333,Comparison_betweenl]rih.,v's computed centcrline velocity
profiles and the experimental data of(ioldstein and Kreid (iq67) showed better agreementthan did
l lan's results; howuver, the growth or the wall boundary layer near the inlet plane continued to be
overpredicted,

Aregbesola and Hurley (1077) used the w_rticit), vector-scalar potential method to calculate
approximate solutions for the full Navier-Stokes equations for developing ilo,,v in a square duct at
Re,_1, 50, and 100.Their calculated values for x_/(l)_,>Re) arc approximately constant at 0.()8(_for
Re > .SO.('enterline velocit) profiles at Re=50 are comparedto the analytical results ot'lhm (I 060)
and the computational results of t]riley (1074), These solutions show better agreement with the
availahlc experimental data in the developing flow region than either of the two parab¢_lizedNavier-
Stokes solutions, All threesolutions converge to thefully-developed profile beyond theduct entrance
length region,

Mizukami and Tsuchiya (I 984) present solutions for entrance flow in a square duct at Re:_20
using a finite element implementation oi'Chorin's projection method (Chorin, 1968). Finally, Yang
and Camarero ( 1991) combine the vorticity and vector-scalar potential algorithm with a new rotated
upwind difference scheme to solve tile developing duct flow problem for Re=I00, 400, and 800.
Using an M::! 5x !5×31 grid, their solutions show' excellent agreement with the experimental data of
(ioldstein and Kreid (1967).

The laminar, isothermal flow near the entrance to a straight square duct of unit cross-sectional
area was simulated with a quarter-duct model, 15 units in length and a=b=0.5. As depicted in Fig. 18,
tile mesh discretization is 3,1=:100× 15x 15 with 25,856 nodes and 22,500 elements. The mesh is graded
slightly near the two solid-wall boundaries and the outflow plane. The boundary conditions are as
given in Table 7, except there are now two symmetry planes, and tile prescribed inflow velocity
profile =sslug tlow, i.e., it,=: !.03, u: --_u_= 0. The inlet u; velocities were set to 1.03 (except at the

no-slip walls) to give an effective u_.,,,_-= !.0 at the inlet. The velocity field was initialized with a
slug-flow profile throughout the length of tile duct.
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Flllure16.l)evel_)Idngflo,'in, channel: vehJcil_veel()rfieldnear enlrallCe.Re=lOll.

X2 Level enorm
9 7,6E-4

8 6,8E-4

Figure 17. Ileveh,plng flow in a square chauneh I1.11, -distrlbuth,n near entrance, Re=100,
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Hie sletlds-sl¢lte veh,_it) ,,cch,r mid I1,I,II,dislrit_ulions fi,r Re I_11)_lrL,preseulcd in I.i_s.
16amt 17 im selectedcutliug phmes ncm"the iullov.' phme_lhc computed ceutcrliuc '_,'el.¢it)_lt the
_uitlel is 2,()96, iudic.lirlg Ihecsl_ihlishmeilt otil thll).devch_pcd pr.tilc _,_ilhnegligible Ions_ffm.,,s
(. (I,()1%), Ille essetltitll sl¢tl|.is sImIlesoluli_n _,_,!ls,_btllitlcd itl'ler 250 lime steps llsilip II
n()mliniensionill ti111cslep of(),()l, I11cassociatedlllilXiillillll Ioc(II('(iilrilnl llillllber _,'llsilppr_xit11111_.'l)
(),7. 'l'hc distril_ulion of the e11_rB)'mwm _,I' the _:o||lilu|ity ¢_mStnlinllhu_ii_m (I) is nho,,,,_iu l'ig I7
for ¢)equilils.spilccd co11Ioursvdlh in ini11111111I,{,5.I(1' .ml 11111xi111u1117.6,. 111_'_l'he 11111xiiilU111
divergence error level is nov, h)cilled 11c.rIllc inllw.v phlnc, v.llich is stJrrolmded h)llonlogClleous
Ncu.1.1111boumlary condilions, lhe ¢onstnlitll i11goritlim is .Ite111plillg to ¢11fi_rce_Otlserv.IiOll _I'
mi_sshet,,,.'eenthe inllov, phlne m_dlhe firsl phu_eoI" inturi(.' nodes, hut the l)iriChlel dim_ liar ._, u,,
1111(1.,,acrosst11¢inlet phlne tl_._11oIprovide.,iltl_ solulioll-.djtlsl_llble degrees-ol'-frcedotll, Ilellce tIle
localized ¢ontinuit> error is 11111.xilnunl(llS expected).

The distrihuliou ot'Ihe uxiill ceuterline _,,_velocity is plotted in Fig, I0 (Isu Iuuction c,I _'/i{e_
Near tlw etllnmce phmc. the selected inflo,._,homld.rv c(mdilion (_,_,ilhdill. desiglmted tls the t,a.,w
case) appearstoretard lhe gro,._,'lhot'Ihe '._,'idlhoumlary hlycrsneur the inlcl phme{_'__0), m,comp.rcd
to the mmlytical restills o1"Ihm {196{))end the cxperimerllrl d_ittlot' (ioldslein _ind Kreid {1_}67L
Aregbesohl and Burley (1977) ulso underpredicted the experinlenttll duta in this region, mid they
conllnented tirol "'in experimental work it is difficult I_ reproduce Ihc sharply sii_gul,r inlet profiles
used in the theoretic_|lcalculations so tirol comparisons very close to tile inlet tire Iioi pt|rlicuh|rly
reliahle." Near x_/l_,e(),05, the solutions o1'Brilcy (107,1), Aregbesola amt I1urle), (1_Y77),am! the
present sllldy couverge Io the mmlylical solution o1' ihm (196()), _llich ,slightly _wcrpredicts the
experimenlal dati_U|ltil lhu fully-developed region is almi|led. For u secomtexperime111,the mesh _vfvs
retined in the axial direction by reducing the length of'the model from 15 units to I() units, _,vllih.,
keeping the saln¢ number ot'nodes.The results Ibr mesh2 showed no signilicanl dit'l'crencc compared
to the base case. Npanwise u_ velocity proliles tit three ._',stations are plotted in Fig, 20, aml the
locations of the first two x_ stations(x_*/Re_:(),()075and 0,02) tire re)tedin FiB. 16, I_xcepi ||cur the
entrance plane at x_*/Re_().0()75, the present hase case results shw,,,'good agreement with the
experimental data, The results tor tile refined nl_.,shsolution are not significanlly dit'lcrenl from the
base cuse.

These dma prompted design ot'a retined ('l:l)experiment to improve the simulation near tile
inlet phmc. The slug profile specilication acrossthe inlet phmerequiresall three velocity components
fixed as I)irichlet data, As wasthe casewith the fully-developed channel llow prohlem, lhe algorithm
will attenlpt to satis1_'the toni inu ity constraint;however, thesel)irich let I_oumlarydata do not provide
required solution-adjustable degrees-ot'freedom between the inlet phmeand the first phme of interior
m_dcs.The result is t| localized error in the divergence-t'ree requirement tbr tile velocity Ilov,' l'ield,
To assess a correction t'or this problem, tile inlet o1"tile channel was extended upstream 0.25 units,
with free-slip velocity boundary conditions applied on all walls and the symmetry planes. Then,
l)irichlet data acros,_ the inle! plane ol'lhe inviscid entrance region provides a strict slug-llow profile
(i.e., u_-=1.0, u:=u,:-:0), and Neumann boundarb' conditions for the pressure _vlctcontitluity constraint
function, _l_,remain appropriate.

........ H _ iii II ilml I
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lhe pr_blem _cificali_.i _n_ run tt_w__ith lerl, yds.:it) data at all ittteri_r rl_Jesa_the
iiliiialc_.diti_m,lhe rw.ll._G_rX_.._iI)O_iihlhi_itil,i._chlinh'trT/cn._tr.,late_i_I.i.Fi_ lq a.d

th_ e_rirllei_lal d_ta _i (i_fld_l_ilt a.;t Kreid (tqf_?l [he etttr_m;eletqlth__rted h) t1_ ( Iqt_Ot,
¢.fld_tel. andK_eid t l_f_?1.=t.dAr_BI_t..nd Ih.te)1i q? 71arec,_mp.redv,ith tile _e ca_e_'md
irl_i,_cidiI11elptr_.l_,_|Ili_illiableI! ihe di_ltihilli_,of"file¢llet_)m_n11;_f1!!©c_mlilluil)
_;_tl_itnitltiilm:li_ql_I_d_awd h__ miiliiiium_Ig._-!il_ai1da i11a_iml.iiil_Ig _-iO _ne_rthe.ew

i.l_!pl_It_

Ila. (lq_(l) 1)0_

(hdd_t_i.aad k_,d Ii_hT) O()qO

Ar_i_la ..d Ii;.i_) O iiNh
!l;)?_i

7.4 NA'rI!RAI, CONVECTION IN AN ENCLOSED CAVITY

lluo)altc)..dri_c,ilm_,,re_.ilitl_Ifn_l.mll.r.l¢;mvecli_mm all cltcl_*_cd_;a_il),rcpri_P,tl_
|t _Uilahl_ h¢.chmark l_r incm.pre_ihl_ {'FI) c_d_, lhi_ probl_ttt tlll_;t hlt_ IllalI)prtl_tt¢l!l
npplicatt,m_ ill_lllditl_ _l|i¢learr_a_;h,rin_tlhilt.n, e,_rg) _,_lt_l_..tttittll. telllllal.m ,ff rt,_Itt_. _olar
elteri!) ¢.ll¢¢ttolt. c,_¢dlltB,_t¢_1¢¢1r¢,.i_:¢,q.ipme.I, di_per_t¢,,of wasteheal i. e_tu_rle_,attd cD_tal

Itt¢,d_ of ;Ollte¢|lttll, _l,_cllicall) fl_)_s induced b). delimit) t_radie.l ,_ri_.led ellher normal _,r
paralld re)tin: I_o(t).h,r¢c _ech,r(()._ira¢ll, I_112), If thedentil) Fradlentis tl¢_rttlalIt, the t_d) thrt:e.
the Ihtv, _lart_ iitltttediatcl); h,,v_.:_,_r,il' the l_radic.t i_ aliglled with Ii_c|._d) G,_r¢c.their iIo II,_v.
_lart_ u.lil ii critica! vahle _,t+the d_ltSll)_gradie.t i_ _xceud_d(_:,g,,Hbltardcott_.eclio.), Ih_ lv._

h:tt|l++r.lur+gradients,spectes+c_mc_ltlraliolt_radi_lllS,.r a ¢+_mhiltatiOlt_t+both,

A .untt_r _fexperimenlal _tudieshavebt:e. c.rried ,_ulti_r.,I.ral ¢OltV_¢|JOltilt _ncl¢_ure_,
i'hc _trl) ii1_,e._tigatiotl_G,cu_ed_,. c_,il_cli,iI,t q|lantit.ti_,e heat Ir.n_t'w data with _.11)limited
qualttali_.v ¢,hwrvati(m_¢_fII_t_ lidd Iru_;tllrc, At) excdlent r_,.ie_ ,_l'theexperimental_,orkdoll_
in Ihi_ area tip tO I()_ i_ _i_,enb) t'lder (1¢)65), I'h_ heat Iratl_l_r data _'erc u_cd m ¢!cvcl(_p
c¢_rr_htlmtl_ti_r111_Ntl._._¢ll ilIlltlb_r, Nil, tl-_ it t'tlll_:lh_ll _fl't!lr (ir.shof tltllllber,(Jr, at!dll¢.1ditlle11_ioltal

paralttclcr_relal_:dto the e.ch_ur_.,gc=,m_lD,A.mtq4 theearliestot'._.¢h¢orrehtlt¢_tt_i_dtte i_._j.k_h
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!IgP!L h_.i up_m ht,_iI11111_i__llhL'_pi'rmlcm_1i_i_1111_l_Khfll_md Fle,ih_r(I_i111Mu_h _lth_

ilt1_1i_ _.ill_ ilttd _'_,l_lldtll_lh_ rilllK_,q_llh¢,_' tl_,ill Ilitll_t_,l _'_/tl'tIlti_II_

llnl}lin1_h..d_.l_¢rtm_tlhlld_lhi_lr_i_i_ihlhi_l_r _,_lid_ili_i!_l_-_mp_tl_'r_i_',,lh_'first
d_'hlii_'_t__'t_t1_ lllCil_ltlV_tll_llt__t li;tluritl _llvi_i._-tit_tiill _.tl_t_,_lJt_,'__,_t_,'t_p_rl_,'dh_,i lduFl I_lrv_t

i_!iii'il_llri,_k,h_'ili_l_tK_)l_'_hvluml_¢t_upl_Ill_,_ !ih_iI_ii)h_'i_lil.h_._idlhriilm_lhilllIh_f_II

_|_iFIi_Ii iitid i hill l I _t_ ! ilt__',,l!l_i!_d |_.dttltk'll_i_lldlhllttiliil/I|_i_,_ _II'iI_IUFk'_ill i! __rli_ill l_'lil!i_tllilf

rltlhi _1 '_ ih_.' tt_!¢i_h mm_l_.,t_i _l_lll_iliilil_i_ 11t'*I_ l_L,d Ul_,n t11_'_ii_.tl) h_lhl All _1' llw
_,_p_,tlt!i_.lihtl _il_,_,*_/_,,l_tl'l_,'dh) ( li_,_,,_q_ri_tlt_I tll _,ti__,_,_ld_.ii_,._1 1.dlIlil_li_t_flill _,!1_.'I_

_.,_'_pl_n _1 e_,,_,,_Uidt I_'tluwl,_,lttg'_ II!_,g'_ttlilli_ll'__,q,gt_ _lt_¢Fll_ll llltlilill!l) ,,_!lh lllCdt_:lilt_ h¢itl
l_ui,,i_ r_l_.,, A,,t,, _mdI I_lhml,, _r_ iii_, tirol h_ illlcmpI it lodllil_.,l!,_i_ll_ii,_llili_ll; _ltll_u_h, lh_,'

1t! 11.11, I1 t, ,,_ t_,'_ d_,'l_ui,,_1 lh¢ l-dlntill_t_qlill 1_,_ _i1_t1_1t11"_,' _uhl h_,'d_'l_,'rmlu_'dtt_:_ll

i

?,4,1 "l_o.I)Imen_t,nnl _alurn! ('on_'e_tton ('u_ll)itenchmark

" <'Ii , ,p_!_l_'m, I', lhlll _! ..odtlm.,ll,_l_ntlliI_,_ _!_w m¢_mpr_,,,,it_l_iluid _i Prlmdll number11?! in !11!upril_hl

_holmm, li_rIlll_Im_I_h,'m.iu_:ludmI__h_¢il)lindI_..llipUriliUr__!i_Ivil_Ull_n,,lindrlti_,._I'h_'lllIr_lll_i_r.

iiI'_pv'_,.,,_,.nI_.dI_ d_'V_hl I)_ _ I_rI<_I_i_h _umh_'v',,_I III_,Ill_,I!I_,_i_IIii_',I h_'
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hi_her Ra.,vlei_hvaiue_, finer me.,,he.,_up t_ ti1_1_i,,','ererequired. The results from severalme._he_
u,ere then appliedwith a Richard_m extrapolation_chemeto producethebenchmark ._olution.

A number¢_fdimenskmlessa¢curac._measure_are reportedb)de Vahl Davis to provide a
ntean_tbr quantitati_vec¢_mpari_¢m_het_,_eenc¢_mputer_¢_lutitm_()f the ¢_riFinalnine, the firs! two
mea_ure_im,,¢_l_v-dthe _treamthnctk_n,,_,hichis notc¢_mputedbyCFI)i_. PIi1=1i). 1he remainin_ .wren
are defined as f,.ql,,v,_:

k =:_T ?'+---:Z ...... _::_ ?......... _ 7:-- II II :: ....... i -7--- :tim + -_---t jlrl ---£:z: : ............... ;- rl + : ...... Illirm t .......

I_,,,,,, the maximum h_ri_mtal (dimen_k_nie_) _vek_cit>.c_m_pL_nentt_nthe vertical mid.
plane t_f'the ca_,_it)(h_getherwith it_ iocaticmt_nthe ,_:c_ordinate);

_:_,, the maximum _,'ertical(dimen_ionie_s)_,'elocit._component cmthe h,_rizontalmid.
plane ,)t' the cavil) (to_ether with it_ I¢)¢aticmon the_', c(_(vdinate);

Nu,,= the ateraBeNus_elt number throughoutthe ,;a,vit);

Nu_ the a_,era_eNu_selt number ¢_nthe ,,.enicalmid-plane (_f"the ca,.it);;

Nu,, the a_era_eNu_selt number ¢_nthe vertical hognda_ (t; _ 0) of the _;a_,'it,,;

Nu,,,, the nt¢_ximum_alue ¢_t'thek_calNu_wlt number on the _,enicalhound_r3.'(_'_ 0)
¢_t"the ca_vit_(t¢_Bether_ith its I¢_¢ati,_n_n the ,t: ¢¢_¢vdinate);

Nu,,,,, the minimum t_alue¢_t'theI¢_catNu_elt number ¢_nthe _enical houndar3.'(._'_....(l)
¢_1_the ca,,it) (h_ether t_ith its I,tcati¢_nt_nthe t: co¢_rdinate);

Ihe _,eh_:it_¢¢_ntpement_aren¢_ndimen_i_n_di_ed,_i==a ret'_rence_eh_cit__cale _,,hichis not
tmiquel_ a,,ailahle tbr this pmhlen_,_ince the dtmtain is full,,, cemlinud(i,e, n¢_inlets _r ¢_utlets),the
selecti_n _ta _uitahle _el_¢it_ _cale is sonlewtl_t prohlen!_tic, d_ Vahl [)_vi,__;hosethe Iherm_l
d![f_._i,_ vN,c_tv, _1,. a_a ret_rence_ek_cit._,_here _.t(_k/ix. r) is the thermal dil'l'usivit._.(}strach
( 1_82) rc_,ieu,__e_,eral,,ei¢_ctt._scalesthat ha_,eappearedin the literaturetbr naturalconvection 11¢_,,,,s
and _;_m_ment_on the implied t1¢_ and heattransfer _:_mditit_nsihr which thesevelocity scalesare
appropriate, rhe Ihermcdd!l'fi_._i_mtel,oily implies a balance hetv_een¢¢m_vectionand ccmductkmin
theenerB._equati¢_n,rhe vL_cnu._difli_._int_t,eh_c_8',v/I., implie,,,that the inertial and visct_ustenns in
the m_mtentumequ_ticm_aret_l"the same¢_rder¢_t"mal_nitude.A l_yhrid v¢,h_cltv._¢'_h,,(¢_v)"/l., has
also beenused; hov.e,,er,nn ph>sical implicatkms are clear, The velocit) scale, [$gAl' l'r'/_ ', implies
that buo)anc,, =u_d_ismus threesare ot'equal magnitude and is _tenerall_appropriate only E_rsmall
_tlue_ ¢_t'(irash¢_f((ir) _mdR_.,,leigh(Ra) numbers (i,e,, (ir __I and Ra < I), (.)strachdemonstrates
hov, in_pmper sel¢cti¢_n¢_fthe rel_rence velocity f_r problems in_,'¢_lvinL_natt=ral c¢_nvectionin
enclt_ur_s c_tnhe the c_use ot c_nsiderable numerical problems _nd errors, _uch problems c_mhe
avoided, he n_tes, b)pmperl), n_nnalizinB the _overning partial dilTerentialequations with the _al
_t' m_kin_ the _t_te-v_ri_tblesnot _nl._n_ndimensional but als_o|"_mil nnh,r nfm_ilud¢'.
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The presentstudy developeda velocity scalerelated to the intensityof the buoyant motion
as describedby the free-fall velocity of a then, al (Gray and (iiorgini, 1976). This velocity scale is
derived by assuming the kinetic energy ot'the buoyancy-induced How is balancedby the work done
by the buoyancy force (as representedby the Bousinnesq approximation) acting over the ref'erence
length scale,hence,

, t],,_ r,+Pl+_7",,It.,,_....... : olt .....................................

2_,. ° Fb'_ "L,./ g, (364)

The+free-i++//+,el+,+',+(+,is, therelbre, proportional to (j+[_,,_7+++,I+., )'+,as

U./ = C ( II _ L,+!/tT,,/) (365)

where ('is a problem-dependentconstantthat canbe adjustedto reducecomputationalconditioning,
e.g., round.otTproblems.One consequenceof Eq. (365) isthat the squareroot or the Grashof number
assumesthe role ot'the Reynoldsnumber in the scalint_of theNavier-Stokes equations(Jaluria, 1980,
and (]ebhart el al., 1988), i.e.,

_ +_+_[gpAT,. L,:!]'`_-
R_° _.+E_.+_+ _ (gp Ar,,_L+)',= ,_'-+ I __ ° _¢+r)''_ 0+,+,_

v C v C v + C

The Archimedes number, Ar, becomes

Ar + Or C 2 Or C 2 (36"/)
Re 2 Gr

thus giving some phy+ical tluidance I+orthe selectionof anappropriate value t'or ('. For the themml-
driven cavity solutions developed in the presentstudy and following numerical experimentation, {'= I
v+'asdctemlined tominimize computational ill.conditioning problemsover theRayleigh number range
for the benchmark. With the nondimensionalization of the conservation law system described in

Chapter 2, the selection of {'provides a measureof control over the scaling of the diffusion terms in
the momentum and energy equations(thus aft+cting computational stability) through the Reynolds
and Peelernumbers, For <:'_1,Ami, and the Reynolds (Re) and Peeler(Pc) numbers are

(Gr) ''2Re= ,._+ = {(Ra/pr)l/21c, |
(368)

(Gr) 1/2Pe_Re Pr_- -_- Pr ++ {(RaPr)l/2}c+|

In a post-processing operation, the nondimensional velocities computed by CFDI+.Ptll3D are
multiplied by (Ra Pr/Ar) '++tbr comparison to the benchmark solution of de Vahl Davis.
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The benchmark Nusselt number is defined as the x/- or horizontal component of the
dimensionless local heat flux vector (de Vahl Davis, 1983).

Nu{xi',x2'), uI 0 .-00 (3_)
aXl°

where

( T( xI .x=) - r,.,_ ) . uI( x I .x: ) . _=
O(xl,x :) • ; u= • ...................................; :_ " ..........; L,,! = L (Y'/O)

( r,,, -r,,ow) l.,,/ s L,,/

Except fi)r the verticalsidewalls,the local first derivativeof the putentialtemperaturewith respect
to xl* is approximatedin thepresentresultsbya three.pointst_cond.ordcrcentral.difl_rence fom_ula
(tlotTmann. i989).

ao i , O,.,+(_,=-i)O,-- _,=O,j , O(&x)2
ax,"I _'('t . I )(Ax,)(_h,h)

(371)

AX,. 1 . ,
y • ................; 4x, • (x_),-(x I ),,,t

Ax,

v_'herei is a node-column index. Dimensionless temperature gradients at the vertical sidewalls w.ere
calculated using a two-point first-order diffi:rence ratio. The live benchmark Nusselt numbers are
defined as

I

NUo i / Nu(O,x=')dx 2'
o

I

Nul/_ ,, / Nu(!12,x2")dx="
o

t i (3"/2)
/ / ' ° x ' °Nu,,,=• Nu(x, ,x= ) d = dx I
o o

°

NUm_ , max ( Nu(O, x= ) )
O_ _h't I

Nu_,, • rain ( Nu(O, .q'))
01.q't I

For the present study, the integrations required for evaluating Nu,, Nu.._,and Nu,,= arc calculated
numcrically using the trapezoidal rule.

Table 9 presentsa comparisonof the sevenbenchmark parametersas calculated by de Vahl
Davis (1983), [Jpson el al. (I080), Markatos and Pericleous (1984), and the presenl study, for
Ra= I0 _, I(P, I0 _,and I0h,Figure 21 gives a comparison ofthe solutions ibr Ibur accuracy measures
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in terms of their percent deviation from the benchmark solution by de Vahi Davis (1983). The
agreemen! among the solutions is generally good. The most significant disagreement occurs in the
values for Nu,,,, and Nu,,,,. Markatos and Pericleous found these accuracy measures to be very
sensitive to small differences in the temperature solution.

l.;pson el al. solved the benchmark problem using a finite-element penalty method code,
implemented with 9-node biquadratic elements for u, and ® and a bilinear discontinuous

approximali,,_l t'¢_rpressure l'. They chose thefree-fidl veloc:O,, _ [_AT_,./L_,.:)'_with C = 1, as their
reference velocity scale because "it results indimensionless velocities and pressures that are of order
unity, and secondly, it allows simulation at larger Ra since the penalty method is more accurate in this
ii_rm " (Upson et al., 1980). The nonuniform finite-element mesh consisted of 745 nodes and 168
isoparametric elements with refinement near the walls and in the four comers. The reported Nusselt
numbers were calculated using the "consistent flux method" which gives an integral relation for the
heat flux distributi(m at the boundaries. ]'he two Nusseit numbers that require interior heat flux data,

Nu,,, and Nu,,_, are not reported by Upson et al.

Markatos and Pericleous (1984) employ the finite-volume algorithm SIMPLEST (Patankar,
IC)80)with a nonunitbrm M=40x40 mesh. Three- and five-pcqnt finite-difference formulae are used
to rt:solve the temperature gradients required for the Nusselt number calculations. For Ra up to 10_,
solutions were obtained using "normalized variables, in such a way that dimensionless velocities were
of the order of unity, in order to improve the accuracy of the results." ]'he specific velocity scale is

not reported.

For the present results, an M=32x32 nonuniform mesh, shown in Fig. 22a, was used for
solutions al Ra = 10_, 104,and 105,and an M=80x80 mesh, in Fig. 22b, was used for Ra = 106.At each

Rayleigh number, the solution was run for approximately 1000 time steps. The benchmark variables
were then calculated, and the solution restarted and run an additional 500 time steps. If the benchmark
measures remained stationary to three significant figures, then the solution was accepted as
converged. This solution was then used as the initial condition for the next higher Rayleigh number
execution.

The results of de Vahl Davis (1983) and the present solutions are summarized as contour plots
of streamline, temperature, and the us and u_ velocity components in Figs. 23-30, respectively.
Qualitative agreement with the companion plots presented in the de Vahl Davis's benchmark solution

is good. The contour values fbr each plot are presented using a common format, i.e., cmin (interval)
cma_:, where cmin and cmax are the minimum and maximum contours and interval is the interval

between each ccmtour line. As noted by Upson et al. (1980), the flow fields are similar at Ra = 103and

104, with a primary vortex roll completely filling the domain. Significant vertical temperature
stratification in the central core has already developed, however, by Ra = i04. Secondary vortex rolls,
embedded in the primary roll, appear by Ra = 10_, and definite thermal boundary layers are evident
along the vertical walls. These secondary rolls do not result from an instability of the base flow but
are caused by the flow-induced distortion of the temperature field (Mallinson and de Vahi Davis,
1977). As the Rayleigh number increases to 106, the secondary rolls strengthen and become distorted

in shape, and their centers move closer to the vertical walls. There is also evidence of a weak tertiary
vortex roll, rotating in the same direction as the base flow, developing in the central core.
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Table 9. Benchmark Measures for 2D Natural Convection of Air in a Square Cavity
i
i..... ,,, ,,,

Ra=103 Ra=104
,,, .......

(1)* (2) (3) (4) (1) (2) (3) (4)
,' _ ',,,, ,..... , , ' , ,, ,,, ,, , ......... _,; , ,,_,; , _ ........ ,,,'

uj.,,,,,_ 3.649 3.656 3.544 3.668 16.18 16.19 16.18 16.26

at x 2 0.813 0.812 0.832 0.811 0.823 0.822 0.832 0.841
,.,, ,

u2.,,,,_ 3.697 3.704 3.593 3.709 19.62 19.68 19.44 20.22
at xj 0.178 0.166 0.168 0.189 0.119 0.119 0.113 0.107

, ,,,,,, , , ,,.,

NU,vg 1.118 - 1.108 I.I11 2.243 - 2.201 2.212........ ,,, , ,,

Nu,h 1.118 - - 1.124 2.243 - - 2.205
, ...... , ,, ,.. ,. , , ,

Nu o 1.117 1.118 - 1.117 2.238 2.245 - 2.221
[ , | ,. ,,

N u,,,x 1.505 1.506 1.496 1.507 3.528 3.535 3.482 3.460
at xe 0.092 0.075 0.082 0.107 0.143 0.132 0.142 0.159

,,,., ,.,,

Nu,,_, 0.692 0.691 0.720 0.685 0.586 0.585 0.643 0.511
at x: 1 1 0.992 0.954 1 1 0.992 0.971........

Ra=105 Ra=106
!

,,, ,.. .,,

(I) (2) (3) ] (4) (1) (2) (3) (5)
......... ;, , _ S ,,, S_. _ ...... "

u/.m,_ 34.73 34.62 35.73 31.72 64.63 64.59 68.81 61.84
at x: 0.855 0.856 0.857 0.868 0.850 0.850 0.872 0.841

......... ,

u:.,,,, 68.59 68.90 69.08 70.82 219.4 220.6 221.8 225.7

at x_ 0.066 0.066 0.067 0.064 0.037 0.032 0.038 0.040
...... ,

Nu_v_ 4.519 - 4.430 4.454 8.800 - 8.754 8.802, ,, , ........

Nu,_ 4.519 - - 4.496 8.799 - - 8.750
,,. , • .... . ,.,,, .,,,

Nuo 4.509 4.521 - 4.482 8.817 8.817 - 8.863
, ,,. m_ .......... ,,,

Num,x 7.717 7.731 7.626 7.510 17.92 17.29 17.87 17.08
at x2 0.081 0.075 0.082 0.107 0.038 0.045 0.038 0.052

........

_qUmi n 0.729 0.';28 0.824 0.279 0.989 0.980 1.232 0.115
at x2 1 1 0.992 0.954 1 1 0.992 0.966.......

*S'qflui_bn Source Key
(1) de Vahl Davis (1983)
(2) Upson et al. (1980)
(3) Markatos and Pericleous (1984)
(4) Present results M=-32x32
(5) Present results M=80×80
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(a)%m,= I Upsonetal. (Io)u2.,,,uI Upsonetal.
I Markatosand Pedcleous I Markatosand Perlcleous

io, [_*.-i]present results 4: _ present results

2 i 15
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RaylelghNumber RaylelghNumber

(c)Numax I Upson etal. (d)Nu,_, I Upsonetal.
I Markatosand Perlcleous

._ e ._so I Markatosand Pericleous
5 _ present results _ 4o! _ presentresults

a i

_. -8i i0s . i.04 ...... iO 5...... 108 a..eol .... ib:3 ...... i'04 ....... i() s..... i'06.....
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Figure 21. Comparisons to deVahl Davis (1983) benchmark for four accuracy measures.
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(a) M=32x32

M=32x32

adiabatic

.... ] .....

I

t-
2 d ....

adiabatic

(b) M=80x80

..... -'--- ;.. : II I
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Figure 22. Natural convection in a cavity.
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<a)Ra.,10_ io) Ra.10'

Ic) Ra.10" "-'---"-" I0) Ra., 10"- .....

Figure 23, Contour maps of streamfunction, de Vahl Davis
(1983).

(a)Ra=10_ (b)Ra=104

!

ic) Ra=10 5 (d) Ra=10 6

Figure 24. Streamlines computed by TECPLOT, present
data.
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_alRa. 10"

c)Ra.10' fd) Ra-10°

Figure 25. Temperature contours at 0(0.1)1, de Vahl Davis
(1983).

(a) Ra=10 3 (b) Ra=10'

!
(C) Ra-10 _ (d) Ra=lO _

Figure26. Temperaturecontoursat 0(0,1)1, presentdata,
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(al Ra.lO _ -3 637(0.7274)3 637 031RII=10" .1613,2116

,¢i la,lO' .43 59(8.71914359 ,ell Ra-10 ° .125.5(25.11125.5

Figure 2'7. Contour horizontal u_ velocity component, de
Vahl Davis (1983).

(a)Ra=10_.3,637(0.7274)3,637 (b)Ra=10'.16(3,2)16

................ ,,_,, - __- .............

(c) Ra=105 -43.59(8.719)43,59 (d) Ra=10" -125.5(25,1)125,5

Figure 28. Contours of horizontal ut velocity component,
present data.
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\ ,

',a)RII-tO".3 663(07327_3663 0)Ra-IO" ,1939(3B77_1939

._Ra.lo'.e?9e_t359167_6 ,alRa._o'.2076_4_s2_76
Figure29.Contourofverticalu_velocity,de VahlDavis

(1983),

i

(a) Ra=10_.3.663(0.7327)3 663 (b) Ra=10* -19.39(3877)19.39

(c) Ra=10s -6796(13.59)67.96 (d) Ra,106 -207.6(4152)207 6

Figure 30. Contours of vertical u_ velocity component,
present data.



153
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Figure 38, Vte_ of verlteal told-plane Ra-IO _ I'_0,i:

temperature OlO, 111.

view fromcoldwall

,,_ _ 'r II liii_ _-i'-:---_ I
;;_tli 11 ! tl tti l_:::: l

:"_ilIIt !11 lltlill_::l
 I!11 r ii!ll!/

Figure 39. Vies of vertical mid-plane Ra=,lO ' Pr=lllO:

temperature 0(0.1)1.
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Fillure 41. Ilorlzontal mid-plane la=llP Pr=--I(lO:pressure
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view from cold wall

Figure 42. Vertical mid-plane Ra=104 Pr=0.1: pressure -7.1 x 10
7(I.42 X 107)7.1 X 10 "7.

view from cold wall

; i _ _ , ; " " • i7 ! ......... , , .... _ _...............
' ' t I I I } I . _ i

! - 1
i # _ , i • t

•,i [ '1 "

'_,

Figure 43. Vertical mid-plane Ra=104 Pr=100: pressure
-2.4 x I(l"(4.8 x 104)2.4 x 107.
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Figure 44. Particle tracks for Ra=l.5xl0 ' Pr=0.71: forward flow.

Figure 45. Particle track_ for Ra=l.5× 10' I'r==0.71: reverse flow.
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_ view,,fromabove
- ,- = =:i _ -_
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Figure 46. Horizontal mid-plane Ra-l.Sx I0 "_Pr-=0.71:
temperature 0(0.1)!.

', \ \ X _, X _ _ I / I / Z / / / " '

_ I [ t I l I I'P'I I I I I I _ '

Figure 47. Vertical mid-plane Ra=l,Sx 10"_Pr=0.71:
temperature 0(0.1)1,
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viewfromabove
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Figure 48. Horizontal mid-plane Ra=l.5x 10"_Pr=0,71: press.
-I.72× 10"6(4.52X 10"7)2.80XIO 6.

viewfromcoldwall
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Figure 49. Vertical mid-plane Ra=I.Sx Ill_ Pr=0.71: press.
-I.72 x IIP(4.52 x 10"_)2.80× IO_.
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The inertial end effect has been studied by Pao (1970) (as cited by Mallinson and de Vahl
Davis, 1977) using a rotating cylinder with a stationary' end-wall, For the case of a low Rayleigh

number single vortex roll, the rotating cylinder approximation is [hirly representative of the end effect.
Based on the results of Pao's analysis, Mallinson and de Vahl Davis postulated thai tile intensity of
the axial flow would be inversely proportional to the Prandtl number.

The thermal end el1_:ct,manifested by small axial temperature gradients near the end-walls,

is due to reduced convective heat lransport in the vicinity of the end walls. The reduction in
convection in this region is the result of the additional viscous drag on the fluid by the proximity of
the noslip boundary condition at the end-wall. Mallinson and de Vahl Davis assert that, at least for
0.2 _:Pr _ i 00, the thermal effect is independent of Pr. Since the axial flow due to the inertial effect

decreases with increasing Pr, they argue that at Pr= 100 any 3-dimensional flow structure is due to the
thermal effect alone. "The total longitudinal motion at any Pr is thus the sum of a constant thermal

effect and a Pr-dependent inertial effect. The magnitude of the constant thermal effect can be deduced
from a high Prandtl number solution, tbr which the inertial effect should be negligible."

At Rayleigh numbers less than 6x104, the axial flow proceeds from the center of both
end-wails in a spiraling motion towards the central symmetry plane, Figs. 34-35. The return path for
the reverse flow is along the vertical and horizontal sidewalls. As was the case with the 2-dimensional
double gl_ing problem, the flow structure becomes more complicated at RayIeigh numbers above
104due the presence of secondary motion. For Ra-1.5×10 _and Pv=0.71, Mallinson and de Vahl Davis
observed two secondary vortex rolls in the cross-sectional flow far from the end-walls. Strong axial
flows occurred near the end-walls, with each secondary roll tbrming its own spiral center for the

inward ,,loving !'low. At these higher Rayleigh numbers, the axial flows are confined to the vicinity
of the L,JJd-walls, |:igs. 44-49.

7.5 STEP-WALL DIFFUSER

Flow separation, a subject o1"fundamental importance in fluid mechanics, has becl_ the tocus
of intensive study for many years. To aid in experimental and computational investigations of this

phenomenon, a set of simple geometric configurations has been developed as representative test beds
including (a) flow in a pipe with a sudden expansion, (b) flow in a pipe with an obstruction such as
an orifice, (c) flow over an obstruction (either a step or a thin fence) in a channel, and (d) flow in a
channel with a sudden expansion (step-wall diffuser or backward facing step), as depicted in Fig. 50.
Within eacll base configuration, variations in boundary conditions and the addition of heal and/or
mass transfer se_,e to thrther broaden the problem class. Among these four basic configurations, the
step-wall diffuser, I:ig. St)d,has become a very popular benchmarking and validation test problem tbr
CFD codes due to its simple geometry and the availability of quality experimental data.
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(a) sudden expansionin a pipe
-_, _-_..........-i__.............I_:;......

t(0)
(b) obstruction in a pipe

(c) obstruction in a channel
-- -- ii ilrr I I 1111 II1, L

--i !

(d) sudden expansion in a channel

"llli,l __

Fil_ure 50. Test bed configurations for flow separation.

Flow separation can be defined as a region ofrecirculating flow adjacent to a solid boundary.
The positions for detachment and reattachment of the "separation bubble" are delimited by sign
changes in the vorticity of the flow field at the boundary. Within the separation bubble, the flow is
characterized by recirculating vortices and flow reversals. A necessary but not sufficient condition
tbr the onsev of flow separation in both boundary layer and fully-viscous flows is the presence of an
adverse pressure gradient in the flow field near the outer boundary of the separation bubble (Tritton,
1988), where "adverse" refers to an increasing pressure in the direction of the main llow stream.

Much cf tile early experimental data on flow separation was developed for boundar} layer
flows in studies of the "stall" phenomenon of external aerodynamics. A common test geometr3' lbr

these studies is depicted in Figs. 50c and d in which the upper boundary is a free surface. The
separation-reattachment process in boundary layer flows is a complex interaction between tile
separated shear-layer and the adjacent flow. Test conditions can be grouped into three distinct regimes
reflecting tile character of tile flow at the point of detachment and reattach|uent: ( 1) lain inar-lam inar,
(2) laminar-turbulent, and _3) turbulent-turbuletlt.

Abbott and Kline (1962) studied ttirbulent-turbulent flows over double aoJ single backward

facing steps using an open-surface water table. Three-dimensional fimv structure:, were observed in
the tbnn otone or more vortices rotating about an axis normal to the vertical step and parallel to tile
floor o1"the test section. This 3-dimensionality is confined ill space to the region immediately
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downstream of the step; however, the vortices changed in size over time. Adjacent vortices were
counter-rotating and wlried ill number depending on the step geometry and water depth. With the
advent of laser-Doppler tmemometry, experinnental studies of turbulent boundary layer separation
have continued to produce data of increasing quality (cf. Etheridge and Kemp, !978: Kim et al., 1980;
Eaton and Johnston, 1981; and Isomoto and l-tonami, 1989). Studies of laminar-laminar boundary

layer separation (e,g., Goldstein et al,, 1970) indicate that the characteristics ofthe separation regimes
are dependent on both geometry and Reynolds number; however, for turbulent-turbulent regimes, the
flow structures are dependent primarily on the step geometry and are relatively insensitive to

Reynolds number.

As noted by Tritton (1088), the phenomenon of separation is not confined to boundary layer
flows. When the upper boundary in Figs. 50c and d is an impermeable wall, these two configurations
.join Figs. 50a and b in a cla_s of flows fbr which an inviscid flow regime or distinct shear layer does
not exist, in this class of computational problems, the fidl Navier-Stokes conservation law must be
simulated throughout the complete flow domain. Axisymmetric flow with a sudden enlargement,
Fig. 50a, has been the subject of computational studies by Donea et al. (1982), Zienkiewicz et al.
(1990), and Fang and Paraschivoiu (1991). Laminar experimental data for this configuration were
obtained by lribarne et al. (1972). Leone and Gresho (1981) and Carvalho et al. (1987) present
benchmark quality solutions tbr channel flow over a step, Fig. 50c, and turbulent and laminar
stratified channel flow with a backward-facing step has been studied computationally by Oliver
(1980), Leone (1990), Gartling (1990), and Papanastasiou el al. (1992).

The present study has concentrated on isothermal 3-dimensional flows in a channel with a
sudden expansion, Fig. 51, also known as a step-wall diffuser or a backward-facing step. Because of
the quality of the experimental data available and the simplicity of the geometry, this configuration
has become a standard test problem for validation studies of incompressible Navier-Stokes CFI)

algorithms. Two experimental investigations have been used extensively in the validation efforts
quoted in the literature, specifically the laminar data of Denham and Patrick (1q74) and the laminar
and turbulent data of Armaly el al, (1983).

7.5.1 l)enham and Patrick (1974) Experiments

Denham and Patrick (1974) present experimental data R)r 2-dimensional, laminar,

recirculating flow in a channel with a backward facing step. A directionally-sensitive laser-Doppler
anemometer and dye-tracer injection were used in their experiments. The test setup consisted of water

flowing from a constant-head tank into a diffuser, through a settling chamber packed with
flow-straightening honeycomb material, and into a 2-dimensional contraction preceding the test
section. From the test section, the flow passed through a bank of flow meters and then it,to a lower
constant-head tank. The backward-facing step was formed by inserting a block of Perspex into the
main channel of the test section. The leading edge of the block was beveled to avoid separation

upstream c_fthe step. The ratio of step height to upstream charmel height (S/h in Fig. 51) was 0.5 and
the spanwis,-' channel width lo step height ratio (W/S) was 20. The expansion ratio for the step, defined
as the ratio of the downstream to upstream channel heights (11/tl), was i,5. Laminar ilow velocity

profiles were measured at several stations upstream and downstream of the step, at four different
Reynolds numbers (Re = 2c,_2,500,764, and 916, where the Reynolds number is evaluated using twice
the upstream channel height as a reti_rence length and the upstream average flow speed as a reference
velocity). For the Reynolds numbers investigated, Denham and Patrick maintained that the "flow in
the nminstream appeared to be truly two-dimensional over at least the central two-thirds of the width
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Figure 51. Step-wall diffuser geometry.

of the channel." However, 3-dimensional effects were observed in the region immediately
downstrealn of'the step. Dye-tracer observations indicated the presence of secondary 3-dimensional
flow in the form of counter-rotating vortices in the recirculation region. The vortex axes were parallel
to the vertical face of the step and normal to the floor. Denham and Patrick note that this secondary !

flow "caused the dye trace to spiral out from the centre of the duct" rather than inward as reported by
(ioidstein et al, (1970) in their free-surface laminar experiments, At the highest Reynolds number
(Re=916), the initiation of transition to turbulence was observed as small periodic fluctuations in the
velocities near the reattachment point, No secondary separation on the upper wall of the test section
was observed.

Computational simulations of the step geometry used by Denham and Patrick have
consistently predicted longer reattachment lengths for the primary separation bubble than were
obtained experimentally (Hackman et al,, 1984 and Ghia et ai., 1989). This discrepancy has been
attributed to the construction of the test section which included an asymmetric tlared device along the

lower wall ofthe channel upstream of the step, Ghia et al. (1989_ observe that, since the resulting inlet

section was relatively short, the velocity profiles obtained by L_enham and Patrick.just betbre the step
indicate an asymmetric distortion from the parabolic profiles typically assumed in computational
studies, The ,;everity of this distortion increases with increasing Reynolds number.

....... i i1[1111 IIIIIII[
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7.5.2 Armaly et al. (19831' Experiments

An open-luop air-driven llo`.v channel x_as used by Armaly el ill (It,_83)to nlrasure velocity
distributions and reattacimient lengthsdowilstrearn of a backward-facing step, Resultsare presented
for laminar, transitional, and turbulent flow ol'air wittl a Reynolds number range of 70 ,: Re +::8000,
The channel height upstreamof the step ,_`.'as5.2 ram, and the downstream channel height ,+vas10.1
rnm, giving anexpansion ratio ll/h= 1.9423anda stepheight Sot'4._ ram, The channel width was I8()
ram, and it'Z_'=36.735.The channel floor, root_and step face ,,,,,'erebuilt of'aluminum, machined to
close tolerances regarding wall orientation and surface roughness. The two sidewalls were made ot'
glass, Ifi mm thick, sutTiciently rigid to support the test section and to facilitate laser+l)oppler
measurements using forward-scattered light. Air tlow with 2 ,tunmean dime ,,.,tersilicone oil scattering
particles was tirst fed frum a large settling chamber througtl five 6 mm diameter bored tubes into the
first stageot'the tlow clmnnel, consistingof an expansion section packedwith steel wuol to smoothen
the flow and to prevent input disturbances t'romafli:cting the measurements.Passingthrough a series
of flow straighteners, the flow entereda smooth contracting nozzle whose outlet wasconnectedtothe
entrance of the test section, The test section provided a 200 mm straight channel approach to the
backward-facing step and a 500 mm long channel downstream of the step, ()perating in a
t'o_vard-scattering mode, the laser-Doppler anemometer was set up to measure only the streamwise
velocity component. The optical system was fixed in space, and the test section was moved in steps
using a 3-dimensional traversing table.

The reattachment lengths of the separation regions were measured by scanning the lower and
upper walls in the streamwise direction at constant and known elevations. 'i'o determine the
reattacllment length, the position ot"the zero-mean-velocity line was measured. The points ot"
detachment and reattaclmlenl were taken as the extrapolated zero-velociLv line down the wall.

Measurements oi'the reatlachment length tor the primary separation bubble, x; in Fig. 52, just
downstream of the step on the lower wall allowed the identification ot" the laminar (Re < 12(1(1),
transitional ( 1200 -.:Re _:6600 ), and turbulent ( Re > 6600 ) regimes of the flow, Fig. 53 (Armaly
et al,, io83 ). The Reynolds number is evahmted with a reference velocity equal to two-thirds of the
maximum velocity measured I0 mm upstream of the step and a reference length equal to twice the
upstream channel height (i.e,, the hydraulic diameter of the upstream channel), l:or the laminar region,
the separation length increases nonlinearly with the Reynolds number. The transitional flow regime
is characterized by a sharp initial decrease in the reattachment length, followed by a continued
gradual, but irregular, decrease to a minimum at a Reynolds number of approximately 5500. Beyond
Re=5500, the reattachmenl length ceases to be at'unction of Reynolds number. An additional
separation bubble was measured along the tloor of the channel downstream ,._f'theprimary separation,

.v_and x, in Fig. 52. This secondaD, floor bubble disappears above a Reynolds number of 2300. A
secondary separation region was also obse_,cd along the upper wall downstream of the step, ._-_and
x, in Fig. 52. It develops in the lamirmr region ( tbr Re > 400 ) and remains thrcmglmut the transition

regime. ]'he length of this upper separation bubble initially increases with increasing Reynolds
number and then gradually decreases until it disappears above a Reynolds number of approximately
66OO.

1o determine the 2-dimensiona!ity ot'the flow, spanwise velocity profiles at variuus constant
elevations were measured at selected Reynolds numbers. At Reynolds nurnbers slnaller tlmn 400, the
tlow was t_redorninantly 2-dimensional. Within the Reynolds number range of 40() _ Re ,: 6600, the



Figure 52. Separati(m regions identified by Armaly et al, (1983),

xj --_-T-*"

I

IS I 2 i \ i / . I_ pr, senl_iati

, I¢ \ A "\, ""'
g

IO

O.-,,m

5

Figure 53. Location of detachment and reattachnlent points v. Re, Armaly et al. (1983).
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fltv,v downstremn, and in the immedhlte vicinity of"the step, was found to be .t-dimensicmal. l'hc
experimental data _t' Armaly ctal, (1_)83) and l)enham and Patrick (1_74), in terms of the
rcattachmeni length of the primary separation region v. Reynolds number, are plottedin F'i_s,54 and
SS tbr two length scale deiitlitions, the step lleight S and the hydraulic diameter ot"the upstream
chanrlel I)h,respectively, l'he t_vodatasetswere obtainedusing test sectionswith different expansion
ratios, tl/h ....I._,423 tbr Armaly el al. and lt/h =1.5 for l)enham and Patrick, As m_imtby Armldy el
al. (I t}83), tile tv,_odata setsappearto correlate well with the Reynolds number evaluation in Fig. 54,
incorrectly sug_estin_Ihat thereattaChllietltlength is a Ihnction ot' Re alone. The lack ol'correlation
betweenthe datasets,evident in I:ig. 55,demonstratesthatthe reattachnlentlevlgthmay bea ftlnctioll
(_l'severalvariables including Reynolds llumber, stepgeometD',anclvelocity profile at the stepplane,
Accordingly, it is ver)>important thatvalidation studiescorrectly simulatethe geomet_,andupstream
flow corlditions as well as the Reynolds nurnbm'ot'the experiment,

7.5.3 Computational Experiments

Tv,,o-arid 3-dimensional models simulating the step-wall diffuser experiments carried out by
Armaly el al, (1083) were developed tbr CFI)I_.Plll3D. The 2-dimensional model, l:ig. 56, used an
M==4×I1×1 discretization upstream ot'the step and k_87x20xl downstream of the mesh, where all

velocities in ,'-coordinate direction are set to zero. Exploiting the experimentally vet(tied symmetry
ot'the Ilo_v field, the 3-dimensional model, Fig. 57, employed a central vertical symmetry plane v, ith
a mesh discretization ol'M_4× I 1×24 upstream and M=87x20x24 downstream of'the step plane, The
upstream and downstream channels are approximately I and 3(1step-heights long, respectively.

The final meshes li)r the 2- and 3- dimensional models resulted l'mm a mesh retinement stud),
that invesiigtlted the sensitivity of the solutiolls to: (a) channel lengths upstream and downstream ol"
the step and (b)tile mesh retinement and grading at:at all walls, the step plane, regions ot'separation,
and the approach to the outflow plane. Seven stages of mesh retinement were investigated tot the
3.dirnensional model, starting with approximately 20,000 nodes and progressing to tile final mesh of
47,300 nodes. Using an approach length often step-heights, the initial 2-dimensitmal results indicated
that a fully-developed velocity protile was well-established within one step-llcight thmi the inlet

plane, allowing tile shortening of the approach clmnne!. The 2- and 3-dimensional studies als_ shc,v,'ed
that adequate mesh grading was necessaO _both upstream and downstream of the step-plane. Grading
along the upper wall was critical in the 3-dimensional model ibr resolving the thin secondary
separation region, and tile solution became unstable it"the mesll was inadequately graded near the
outllow plane,

The velocity boundary conditions lbr both models included no-slip conditions at all
imperrneable walls, prescribed fillly-developed lain inar veIocity proti Ic at the in flow phille, and a zero
traction Neumanrl condition as described in Chapter 4 tbr the outflow plane. The pressiire and
coiltintiity constraint lilac(ion 4) were both set to zero across the outtlov, plane, Except Ibr the
symlnetry plane, the boundary conditiol_ tbr the constraint fimction was homogeneous Neurnann. To
nlaintaill a ti'ee-slip tangency condition for the synlnletry plane, li llonhomogeneous Neumann
botindar3' conditioll tbr (I3is calculated as the solution ew_ives. The pressure boundary condition was

homogeneous Neumann across the symnletry plane and nonhonmgeneous Neunlann tot the inflow
and iao-slip botlndaries. For Re::::100, the initial conditions for the velocity tield _sere a thlly developed
profile filling the upstream and downstream channels, where the downstream channel profile was
scaled t'rtml the upstream profile by tile cross-sectional area ratio (upstream to downstream) to provide
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a nonlinalconservationofmass att=O.O,The initialpressurefieldwas calculatedby thepressure

Poisson equation rising the initial velocity data, For subsequent hi_ller I,te, Reynolds number
continuation was used to obtain initial conditions. For both the 2. and 3-dimensiotml simulations,

latninarsteady-statesolutionswereobtainedfbrI00_;.Re "-_800.

Prelimina_resultslbrtM 3-dimensionalmodel indicatedan i,stabilityinthecomputed
velocity distribution at the step plane that did not respond to remeshing, It was p_stulated that the
sozlrcc ()f the instability was due to roundoff error, produced by the significant ditTerence in
magnitude ot'the three velocity components, The problem _,_,,aseliminated by rotating the
computationalcoordinatesystem,relativetothe"laboratory"rcl'crenccl'rame,throught_.vosuccessive
Euler an.pies.The iir,_ttranslonnation was a +45° rotation about the z-coordinate axis, producing a
(x ', Y ', ,.") c_mrdinatc triad, and the second transformation involved a +45_'rotation ablaut tile
r'-co_rdinateaxistoproduce(x",y",..'")v,'hcreallcomputationswere performed,Inthenew
ret'crmlcefi'm_le,all three velocity conlpollents were Of the sallle orderof magnitudeas measuredhy
their respectivee.ersy semi-norms, defined by'

_ l ( Oq _qd.) (373)

v,here q represents any state-variable and ('is a mmnalizing constant,

A number of researchers have used the experimental data of Armal) el al, (19X!) t't_r
_:omputational validatitm studies. A representative samplinta from the literature is presented in
lahie I0. I'he CFI) fhrmulations include a range of aigorithms, such as the iinitc-ditTerence MAC,
tinite-volume SIMPLE, finite-element penalty, and pseudo-spectral f'ornlulations, The Re)m_lds
tlumbers cited in the far right coluinn are calculated using a consistent rctcrencevelocity and length
scale,As described by Arnlal> et al, the referencevelocity is theaveragehulk velocit_ in theupstream
channel(definedast,:,utllirdsoi'themaximum axialvelocitymeasuredI()mm beforethestepplane),
and tile retcrencc length is the hydraulic diameter ot'thc upstream channel (detincd as the t_:ice the
upstreamchalmcl height),

I)rescntresults from the 2.dimensional simulations in the rc_ionnearthe steparcsummari_ed
in Fig. 58 t_arRe :_389, 648, and t,100.The Re = 38c)solution inclose to the experimentally determined

upper bmmd for approximate 2-dimensional velocity profiles at the central symmet D, plane, Beyond
R,c_ 400, evidence oi"3-dimensional flow structures are reported by Annaly et al. in the tbrm o1'a
variable line of reattachment for tt_e primar3,.'separation bubble across tile floor o1'tile dov,nstrcam
channcl. Above approximately 400, it has been postulated that the reason tile 2-dimetlsional sulutitms
_:ease to agree _ith the experimental reattachment data is dtle to the 3-dimensiol|ality _f the llm,,
((ihia el al., !9flea),l'tlu _msetof the secondar2, separatitm along the upper _ ,li of the dt)_vnstream duct
also _ccurs near Re=40(I. The short vertical am_wsdemotethedetaclm_cntaml realtachment points
reported h) Armaly et al,. ,rod the c_m_putalionallocali,._s arc marked with longer vertical arrmvs,
These computatiom,I locations weredetermined t'r_.n the intersection ol'zero _t_rticit,,contours ',vitt_
the wall boundaries. The c_)tltoursof negative streamwise _,eiocit.v in Fig, 5g provide a visualization
_d'tl_e back-tlo,,v in the separation regions,
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Figure 56. Mesh for 2-dimensional model, M=4 x 11 x I and 87 x 20 × 1.

Figure 57. Mesh for 3-dimensional model, M=4xlIx24 and M=87x20x24.
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Primary reattachment lengths, normalized by the step height S', are plotted as a function of the

Reynolds number in Fig. 59. The 2-dimensional computational data reported by various researchers
show good agreement with the experimental values up to Re ,_ 400. Above 400, the computational
results diverge, as expected, from the experiments.

Dispersion error control proved to be vitally important for maintaining solution stability above
Re _ 400 in both the 2- and 3-dimensional simulations. Interestingly, the influence of dispersion error
manifested itself most significantly in the pressure solution. Comparative pressure solutions are

presented in Figs. 60a and 60b for Re=648. In Fig. 60a, the 2-dimensionai simulation has been run
500 time steps with the steady state solution at Re=389 as the initial condition and the TWS
dissipation parameter 13=0.For the same initial condition but 13=0.1,the pressure solution in Fig. 60b
was obtained, also after 500 time steps. The presence of a dominant 2-Ax dispersive error mode can

be clearly seen in Fig. 60a. A visual inspection of the corresponding velocity solutions showed no
readily discernible differences; however, attempting to continue to a higher Reynolds number using
the solution in Fig. 60a as the initial condition resulted in a divergence. A converged steady-state
solution at Re=800 was obtained using the solution of Fig. 60b as the initial condition continuing with

13=0.1.The pressure solution, therefore, represents a sensitive diagnostic measure of the presence of
a very subtle, low-level, and potentially destabilizing dispersive-mode error in the velocity solution.

This sensitivity is due to the complex nature of the right-hand-side residual for the pressure
Poisson solution. As discussed in Chapter 4, the residual for the pressure Poisson equation involves

products of the velocity components and their spatial derivatives of the form

BETe EIKe EJM {UJIr[C3OKM]IUII (374)

A number of areas were investigated to remove the dispersive error shown in Fig. 60a, including

remeshing, using different iterative and direct linear algebra solvers, and modifying Eq. (374) to a
simpler form

DETe EIK EJM e UJ [C2KM] {UI} (375)

None of these attempts were successful. Only the annihilation of the dispersive error in the velocity
distribution through the TWS formulation provided the necessary smoothness in the pressure residual.

Velocity vector distributions on the symmetry plane of the 3-dimensional solution are shown
in Fig. 61 for (a) Re=389, (b) Re=648, and (c) Re=800. In Fig. 62, the reattachment lengths of the

primary separation region for this same symmetry plane are compared to the experimental data of
Armaly et al. (1983) and the 3-dimensional computational results of Ku et al. (1989). The present
3-dimensional results show good agreement with the primary reattachment data of Armaly et al.
above the Reynolds number at which the 2-dimensional solutions began to diverge. The resolution
of the very thin secondary separation region on the upper wall of the channel is in general
qualitatively good; however, the present mesh may not be sufficiently refined to recover the same
level of detail obtained for the primary region.
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Table 10. Computational Studies of Step-Wall Diffuser.

Researchers Sou rce Method/Code Mesh Reynolds
No.

...... "' "'" _, , T

Armaly et al., .1, Fluid Mech. SIMPLE/TEACH 45x45(2D) <1250
1983

........... ,,m,,,, , ,, ,,, -

Kim and Moin, Chorin's
J. Comp. Physics 101x I01(2D) 100-800

1985 projection method
,,,, ,,,,, • ,,,,, ,,,,,,, ,,,,,,,

Guj and Stella, Int. J. Numer. vorticity- velocity 101x40(2D) 80-8001988 Meth. Fluids
,,

Int. J. Numer.
Sohn, 1988 Meth. Fluids penalty/FIDAP 61x33(2D) 100-800

,,,, ,, , ,

pseudospectral 297x33(2D)
Ku et al., 1989 J. Comp. Physics matrix element 42x36x48(3D) 75-450

(PSME)
,, ,,

Int. J. Numer. vorticity- 195x33(2D) 300-1200
Ghia et al., 1989 Meth. Fluids streamfunction

,,,

Thangam and Comp. Fluids SIMPLE 120x61(2D) 33.3-600
Knight, 1990

,,,,, ...... ,,,,

Int. J. Numer. penalty/NACHOS 800x40(2D) 800Gartling, 1990 Meth. Fluids II & FIDAP
,,. ,,,

Ikohagi and
Shin, Comp. Fluids SMAC 70x21 (2D) 100-800
1991

75x35x31
Ikohagi et al., Comp. Fluids SMAC 1000

1992 (3D)
,,,,,.... ,,,,, ,m .., ,,,,

preconditioned
Cabuk et al., AIAA J. pseudo- 121x21(2D) 100-600

1992 compressibility
,,_ ,,,, _
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Figure 58. Present results for 2-dimensional simulations.
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Figure59. Primaryreattachmentlength v. Re, 2-dimensionalsolutions.
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(a) _=0
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(b) _=0.1
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Figure 60. Two-dimensional pressure solutions at Re=648: (a)/_=0, (b) 8=0.1.
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Figure 61, Present results of 3-dimensional model at symmetry plane.
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As a demonstration of the 2- and 3-dimensional character of the flow below and above

Re=400, respectively, Armaly et al. reported spanwise velocity profiles for Re=397 and Re=648. For
Re=397, the spanwise scans were taken at an elevation 7.5 mm above the floor of the downstream
channel, Fig. 63. The data from three x-stations, Figs. 64a-c, confirm that the flow is essentially
2-dimensional.

At x/S=6.22, whicll is upstream of the measured primary reattachment point, the
2-dimensional character of the flow field is captured by the present results; however, the magnitude

of tile computed axial velocity exceeds the experimental value by approximately a factor of 5. The
low level of the experimental velocity is predicted to occur 2 mm above the 7.5 mm as graphed in in
Fig. 64a. These experimental data

appear to be inconsistent with the magnitude of the axial velocities measured downstream of the
primary reattachment point. By the conservation of mass, one would expect at least the average axial
velocities at x/S=6.2 to be higher than those at x/S=14.3 and 18.9, due to the reduced axial-flow cross
sectional area available where the primary recirculation region exists.

The computational results are in good agreement with the experimental axial profile at
S' downstream reattachinent separation, downstream x/S= 18.8,.,cA= 14.3, of the of the primary Further at

the experin;ental profile shows a significant increase in average velocity, and the computational
profile indicates a slight decrease, if the flow has re-established an approximate fully-developed
profile at x/S=14.3, as suggested by the agreement shown in Fig. 64b, then there appears to be a
substantial error in the experimental results. The conservation of mass does not allow an increase in

velocity unless additional (and undetected in both experiment and CFD simulations) separation
regions were encountered in the channel. At all x-stations plotted, the 3-dimensional nature of the
flow near the sidewall can be seen in the present results, which is apparently beyond the detection
range of the experiment. As will be shown, the 3-dimensional structures near the sidewall are CFD-

predicted to have a significant influence on the central flow field at higher Reynolds numbers.

For Re=648, experimental spanwise scans were taken at fourx-stations and for two elevations,
Fig. 65. The data of these scans are graphed and interpolated in Fig. 66, tbr y = 7.5 mm, and Fig. 67
lbr y = 2.35 ram. Armaly et al. report that, at this Reynolds number, the flow is 3-dimensional as
confirmed by the variation in velocity across the lateral span of the flow field. In general, good

agreement between CFD simulation and the experimental data at all x-stations and at both elevations
is verified. However, calculated profiles present a much richer indication of the complex
3-dimensionality than is evident experimentally. The spanwise CFD mesh resolution provides a clear

picture of smooth wave-like undulations in the axial velocity profile, only hinted at in the
experimental data. In fact, the persistent flow reversals near the sidewall, missed in the experiments
due to their limited range, are an indication of significant flow separation all along the duct sidewall.

Contours of negatively-directed axial velocity are presented in Figs. 68-71 to aid in visual

interpretation of the primary and secondary separation regional extents on the lower "floor", upper
"root", and sidewall regions of the channel. The floor, roof, and sidewall data are those on the first
interior plane of nodes, adjacent to the corresponding no-slip boundaries, in these figures, the roof
has been rotated about the duct centroidal x-axis. At Re=389, Fig. 68, the flow is confirmed nominally

2-dimensional only over approximately the central two-thirds of the channel span. No secondary
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Fig. 66. (continued) Spanwise velocity profiles, Re=648 y = 7.5 mm.
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region has yet developed on the roof near the symmetry plane; however, a significant 3-dimensional
separation region exists along the sidewall axial corners, extending well downstream of the
reattachment line for the primary separation region. The secondary region on the roof has appeared
by Re=500, Fig. 69, but, this case was not run to a steady-state condition. During transients under Re
continuation, the upper separation bubble selectively extends across the full span of the channel.
However, at all steady-state solutions achieved, tile upper separation region did not communicate
across to the sidewall. At Re=648 and 800, Figs. 70 and 71, the primary separation bubble continues

to grow, as does the penetration of the sidewall corner separation regions out into the main flow field.
The separation bubble on the roof near the symmetry plane is very thin, approximately I ram, and
does not connect with the sidewall separation region tbr Re _<800.

As was the case with the 2-dimensional simulations, CFD dispersion error control was

essential for obtaining stable solutions above Re_.400. Two comparative pressure solutions are

presented in Fig. 72 for Re=648 to illustrate this key issue. In Fig. 72a, the dissipation parameter 13
was set to 0, resulting in significant 2-Ax waves in the pressure solution occurring for a fully steady-

state velocity prediction visually devoid of a dispersive error mode. Setting [3=0.1 produced the
smooth pressure distribution given, for the nominally (visually) identical velocity field, in Fig. 72b.
Polluted pressure solutions from Fig. 72a are continued to prevent the attainment of stable steady-
state solutions at Reynolds numbers above 400.

Another enhancement to improved visualization the flow field is via computation of
"oil-flow" streaklines, as calculated from the projection of the velocity field onto horizontal planes
near the floor and the root_ For Re=800, the solid lines with arrows, Fig. 73, are such streaklines

demonstrating the significant 3-dimensional flow character around and within the primary and
secondary separation regions. The solid lines without arrows are contours of negative streamwise
velocity, corresponding to the contours presented in Fig. 71. The pronounced vertical-_Lxis vortex in
the flow near the roof, Fig. 73a, is very shallow (as will be examined further using a Lagrangian
particle track in this region).

Flow field enlargements near the sidewall at Re=800 are projected in Fig. 74 onto transverse
planes, located at x/S=7.72 and 18.37 step-heights from the step. These transverse projections clearly
show the strong 3-dimensionality of the flow involving a wall jet at the step and complex vortex
structures that extend well beyond the region of reverse flow, in the upper and lower corners of the
channel, and into the central flow field. (The perspective graphs are included to enhance the location
sense,)

l.agrangian particle tracks were calculated from steady-state velocity vector solutions using
a modified Euler integration scheme suggested by Mallinson and de Vahl Davis (1973). For a particle

release point of (5,5.1,89), the tracks for Re=389, 648, and 800 are shown in Figs. 75, 76, and 77,
respectively. The diameter of the particle symbol (the"bubble") is a function of elevation above the
channel floor, and the distance between each bubble represents a constant elapsed-time interval. In

Fig. 78, the particle release point is near the vertical-axis vortex ,;hown in Fig. 73b. Note that the
bubble diameter is generally unitbrm, continuing the shallowness of the vortex structure at this
location.
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Figure 68. Separation region "footprints", Re=389.

primary separation bubble secondary separation

Figure 69. Separation region "footprints", Re=500.
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primaryseparationbubble secondaryseparation

Figure 70. Separation region "footprints", Re=648.

primaryseparationbubble secondaryseparation

Figure 71. Separation region "footprints", Re=800.
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(a) _ = 0

(b) _ = 0.1

Figure 72. Pressure contours for Re'-64_,
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(a) flow near the floor

Figure73. Oil.flow streaklines at Re=800on horizontal planes.
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Figure 74. Flow field near the sidewall projected onto transverse planes, Re=800.
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Ghia et al. (1989) have suggested two possible mechanisms for what they termed an "abrupt
change" in flow structure from 2- to 3-dimensional flow when the secondary separation bubble first
appears on the utper wall at Re_400. They note that 2-dimensional boundary layer flows, subject to
a locally destabilizing concave curvature of the boundary, are susceptible to a Taylor-G6rtler vortex
instability. Spanwise-periodic counter-rotating pairs of vortices with axes aligned with the main flow
direction are formed as a result of this instability. It has been suggested that such a vortex instability
could be a common phenomenon near 2-dimensional separation points. Ghia et al. postulate that the

appearance of the secondary separation bubble on the upper wall provides the necessary conditions
for the formation of Taylor-G6rtler vortices, and they propose "that the additional mixing which

would accompany a developing Taylor-G6rtler instability would tend to delay the upper wall
separation; thus causing the secondary separation point, x4, to occur farther downstream than would
be predicted on the basis of a strictly two-dimensional analysis." The delay of the detachment of the
secondary separation decreases its blocking effect and allows the development of a longer
reattachment length for the primary separation bubble than would be predicted in the absence of this
3-dimensional disturbance.

The alternative mechanism suggested by Ghia et al. involves the growth and interaction of
the boundary layers on the sidewalls of the test section. They rejected this mechanism based upon

their assumption that the effect would tend to decrease with increasing Reynolds number due to a
thinning of the sidewall boundary layers.

The present results support the contention that the formation and structure of the upper
separation region is a critical element in explaining the divergence of 2-dimensional simulations from
the experimentally observed primary reattachment lengths. Comparison of the 2-and 3-dimensional
results in Figs. 58 and 61, respectively, shows that a much thicker separation bubble is formed in the
2-dimensional simulation which, once established, produces a relatively stationary blockage of the

channel. This blocking effect serves to prevent the growth of the primary reattachment length with
increasing Reynolds number.

Armaly et al. present the spanwise velocity profiles shown in Figs. 64, 66, and 67 as evidence
tbr their contention that the flow is 2-dimensional for Re < 400 and 3-dimensional for Re > 400.

There is generally good agreement between the present results and their experiments for Re = 397 and
excellent agreement tbr Re = 648. The present computational results, however, reveal details of'!le
flow structure, unavailable to Armaly et al., which suggest a third mechanism for the development

of strongly 3-dimensional flow with increasing Reynolds number.

A wall jet, attached to the sidewall as shown in Fig. 74, forms at the step plane and grows in
strength with increasing Reynolds number. Observed at the lowest Reynolds number simulated
(Re=lO0), this wall jet, interacting with separation regions along the upper and lower corners of the
sidewall, is the source of 3-dimensional vortices in the vicinity of the sidewall which penetrate the
central flow stream within the primary separation region. The particle tracks in Figs. 75-77 reveal a

fascinating picture of very complex 3-dimensional flow structures. Even at Re = 389, the tracking
panicle, released at the source of the wall jet in Fig. 78, shows a spiralling 3-dimensional path from
the sidewall to the central symmetry plane. Nearing the symmetry plane, the particle ,joins the
essentially 2-dimensional primar3' separation region. As the Reynolds number increases, the wall jet
strengthens, and the point at which the tracking particle is caught up by the central separation region
moves closer to the symmetr3' plane, Figs. 76 and 77. Rather than thinning, the separation region
along the sidewall continues to develop with increasing Reynolds number. Complex 3-dimensional
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vortices can be observed along the sidewall, Fig. 73, and roof, Fig. 78. In summary, the present results show
that the transition from 2- to 3-dimensional flow is not an "abrupt change" but rather a continuous
penetration of 3-dimensional flow, fed by a wall jet, from the sidewall to the central symmetry plane.

7.6 FULL-SCALE ROOM AIR EXPERIMENT

In the Ph.D. dissertation of Spitler (1990), see also Spitler et al. (1991) and Cantillo (1990), flow
field and temperature data were taken for several settings of the University of Illinois Dept. of Mechanical
Engineering full-scale room ventilation test facility. Figure 79 illustrates the basic supply/exhaust
configuration for the test facility which is 15 fl long, 9 ft high, and 9 ft wide. The walls have individually
controllable heating panels, and the ceiling and floor of the room are insulated. Two supply discharge
locations are available, in the east side-wall, flush with the north wall, and in tt',e center of the ceiling. In
the selected experiment, only the east side-wall supply and west side-wall exhaust are active.

A ventilation system is available to supply cool air to the room through one of the supply discharges
at flow rates ranging between 2 and 100 air changes per hour (ACH). Additional details on the room
experimental facility and the available control systems can be found in the cited references.

CEILING SUPPLY

_.-m 9'

9'

L
EXHAUST EAImNI ST SIDE

_A

LL SUPPLY

Figure 79. Schematic of U. Illinois room ventilation test facility.
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Two data sets were selected from Spitler (1090) for comparison to the developed CFD simulation.
These are: (a) buoyancy-dominated flow rate of 15 ACH and Archimedes number (Ar) ---4.3and (b) a flow
rate of 30 ACH and At=0.82. Other data at selectively larger ACH are also reported, but these specifications
are well beyond nominal HVAC comfort performance specifications. The data presentations are mainly grey-
scale graphs of measured room air speed on select planes, Fig. 80, and as room-averaged thermal
stratification maps at select locations, Fig. 8I. Somewhat more detailed velocity (speed) and temperature data
are presented in Cantillo (1990), Fig. 82 and Fig. 83, but the air flow rate of 50 ACH well exceeds the
nominal comfort range for ltVAC systems. Cantillo (1990) did not report Archimedes numbers.

For the test conditions studied, the supply outlet was an unobstructed opening (no vanes). The mass-
average inflow speed for 15ACH was ~80 fpm at 69°F, while, for the 30 ACH test, the supply flow average
speed was ~160 fpm, also at 69°F. The experiment Reynolds numbers, based on the molecular viscosity of
air and the supply duct hydraulic diameter and bulk velocity, are Re_s=15,000and Re3o=30,000,respectively,
where the subscript denotes ACH. The reported Archimedes numbers (Spitler, 1990) are Ar_s=4.3 and
Argo=0.82,based on bulk velocity in the supply duct, as the velocity scale, and the longest possible "throw"
of the supply jet (15 ft) as a reference length scale. Finally, the AT,,,rused in the Ar definition is the
difference between the supply and exhaust air temperatures.

The selection of an appropriate and consistent set of U,_nL,e/,and AT,esto compute the Ar and Re
is somewhat arbitrary. Spitler (1990) discusses various combinations used by different researchers to
correlate room ventilation experimental data. The primary application for the Archimedes number is in the
development of empirical correlations for predicting the trajectory of the supply jet. Such correlations are
typically independent of viscous effects, i.e., they do not include the Reynolds number. To the
experimentalist, it is, therefore, not necessary that both the Ar and the Re be defined in terms of the same
characteristic length and velocity scales.

For CFD applications, however, the Ar and Re both appear as scaling parameters in the momentum
equations, so they must be defined consistently. For these CFD experiments, the length scale was taken to
be the height of the room, 9 fl, and the velocity scale was the bulk velocity in the supply duct. The AT,,t
is detined as the difference between the prescribed wall boundary temperature and the supply temperature,
~I3°F tbr 15 ACH and --10°F for 30 ACtt. This definition tbr AT',,f was selected since both temperatures
are known a priori the CFD experiment, while the exhaust air temperature is to be computed.

7.6.1 CFD Experiments

A series of CFD experiments have been conducted to simulate two test conditions for the
University of Illinois ME full scale experimental facility. The INGRID mesh generator (Stillman
and Haliquist, 1985) was used to build the computational mesh depicted in Fig. 84. This non-
unitbrm 3-dimensional distribution contains 19,926 nodes for 17,712 trilinear hexahedra (8-node)

finite elements. One-foot-long extensions into the supply and exhaust ducts were necessary to
facilitate boundary condition specifications that did not compromise local flow field accuracy.
(Note: The typical CFD experimental procedure reported in the ASHRAE literature does not

explore such ex_,:nsions, such that local first-order accurate (upwind) discretizations are necessar7
tbr stability.)

................ ii ii IIIII I IIIlII II ......



202

-" '-- '- ' ' ...... _ ] a)2

' I   iUili"'iii'iiii iit,l!i linliiii!!'::,, o'"°,ooii])]iiiiiiiO , :_'_.:>.:_,:_:__ If fl fl If l? __ (30
o t ! s 4 Y

b)

3

!
II lso

I, II IN
n tvo
ix)1oo
o to

o c)o
¥

o ! | :s 4
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Both the supply and exhaust ducts are 3 t_ tail by 1.3 ft wide, and one side wall of each
duct is flush with its corresponding room wall. The full scale room enclosure is q ft tall, 9 ft wide,
and 15 ft long. The "young graduate student" in Fig. K4c gives an approximate sense of scale.

The supply duct velocity condition is assumed a slug flow profile at unifi)nn temperature,
A conlinuative Neumann houndao' condition is specified at the outflow duct exhaust plane fi_r
velocity and temperature. Alon_ all room surfaces, a drag boundary condition is used to simulate
a turbulent bol_ndaD,' layer coupled with flow tangency. The assumed functional t'onn for shear

stress, t,_,r, at the slip plane near the wall is

where a,6,c, and d arc dimensional constants, U I is the CFD-computed ian_enlial velocil), arld

/,;Ip is a prescribed ,,vail tangential velocity, The mesh is assumed to he ofl_el some small distance
A (on the order of an inch) from the solid wall; theretbre, to calculate u shear stress at y*_-A one
differentiates 1/I with respect to y*, evaluating the derivative at y*o_A,

I.:ollo¢,ing Murakami ¢t al_(IqKIt), the I/7th pow.er.lav,,profile fbr turbulent Ilo_ _ver a flat plate
,,_asselected, hence

._. , _ (,3"Ptt)

_,_her¢_'* is a n_wmaldistance from the wall, and _ is a length scale representativeof a typical
turbulent boundar__ la,.¢r thick tess. ('arryinll out the dif1¢rentiation of I._q.(]71t), one obtains

As stated, throughflov, bt_undar)condition_ fi_r the energy equali_n are a uniii_mt

temperature at the suppl_ duct and _anishing nomzal derivative at the exhaust plane, itoth the
cellini1 and iloor are assumed adiabatic, A heat flux is prescribed using Nero,Ion's ta_,,,_o1'coolinF
lbr all ,,¢rlical walh Ihis genera! flux houndar3 condilhm has the lhnclional ihm_
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"- a +b r +c(T- 7'..,, (3Si)

where ca.h.c,and d are dimensionalconstants,and T,,,, is a wall fixed temperature.Newton's law
of coolingisthespecification

". h(T- r..,,) (382)

I

with ts the heattransfercoefficient for forcedconvection.Basedupon Spitler's (1990) heattransfer
data. the average value he,'5 Btu/h-fl2-°F was selected for the CFD simulations, Comparing
Eqs. (381) and(382), c,_O,bah, u= _hT,,,, and d =1 yields the desiredenforcement.

For the continuity constraintPoissonequation,the boundary condition¢b,_Ois required on
the exhaustplane,All otherboundariesrequirea homogeneousNeumann constraint. The pressure
Poissonequationboundaryc( nd=t=onsincludea prescribeduniform pressureon the exhaustplane,

,b _' Oand non.homo_eneousturbulentReynoldsnumberdependentNeumann boundarycondlti nson all
walls and the supply plane.

The supply flow is modestly turbulent, and the mum flow would be low turbulent. A
C +sil_nificantunknownin these FD experimentsis the turbulenceintensity of'the supply air. tlence,

as an approximation, the turbulent Reynolds number Ret was set uniformly at 14 and 29,
respectively, for the initial tests at R¢|,+I LO00 and Re+o_.tO,O00,The sensitivity of this decision
s_,astested by runninga parantetricstudy varying Ret .

Two test caseswere selectedfrom Spiller (1990), both using the east-side,mid.wall supply
c¢nl=i=uratmn These casesdiffered primarily in their air ilow rate and side.wall temperature.

7.6,1,1 Problem I: 15 ACH and T+t" N3OF
I.or Prohlem I, the total air flow to the room is IS air chanl_esper hour (ACII) with an

inflow air temperature of 69.8°F. The tern+"air changesper hour" are the units of volumetric flow
rate, where, t'or the experimental room, a complete air chantle involves a volume ot'9×qxlSfl or
1215 ftt Through the rt_+m's heaterc¢++ntrolsystem, the side walls are maintained at 830F. The
hulk velocity of the air in the inlet duct (I.3 tl/s) v,+=selectedas the ret+rencevel,mity, l],,i ' The
Ar number reported hy Spiller (1990) Forthis case is 4.3. The local Re in the inlet duct can he
computed uSinl_the hydraulic diameter of a 1,3 ft, 3 1t rectangularcrosssectionamthe reference
length+This Re is approximately ! LO00, The level of turbulencein the air flow enterin_the mum
can he estimated by prescribinga value for Re', definedamthe ratio of the eddy viscosity v_to the
molecular kinematic viscosity v, The basecameE_rthis problem assumedan Ret of 14, producinl_
an all,clive diffusion coefficient Re= of I000, where Re==Re/(I+Re_)+i+oexplore the sensitivity
of the steady.slate solution to this critical assumption, two additional caseswere run with Ret
values ol' 2*) (Re_-S00) and 149 (Re=-I00).

I+'=_ures85_q2 present different views of the steady-state solutions lbr Problem I at the
three values for Re_,The east-sidewall supplydiffuser abuts the north wall, In Fit_.85, the velocity
vectors plaited are for the first planeofnodes off the north wall, the east and west walls, and th©
floor and ceilinl_.Notice in Fig. lisa that the low level of turbulence(hence low turbulent mixinlO
coupled v_,iththe larl_ebuoyancy lbrces cause the _ignificanl jet of cold air towards the
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(a) Ret= 14

............-.1ft/s

(b) Ret= 29

(c) Ret= 149

Figure 87. Transverse plane for 15 ACH.
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floor, This region wherethe cold air jet hits the floor is appropriately temled a "splat"_ Increasin_
the level ot'turhulent transportandmixing hy increasingRe_,the intensity,_t"this "splat" decreases.

Figures 85-87 also demonstrate thal the velocity distributions within thi_ simple room
gcornetD'are a quite complex 3-dimensional 11o_,field, The cold air sweeping along the floor leeds
buoyancy-induced 3.dimensional vortex rolls along each oi" the walls, including the suppl) plane
wall for smallest Ret. In Fig, g2, isotllerms arc plotted for the three values oi' Rc_,In l"iF, q2a. al
the lowest level of'turbulent mixing, large temperature straliricaiion near lhc floor can beobsel'ved
as well asthe temperaturegradients associatedwith the failing inflow jet and floor "splaf', As lh¢
Ret is increased in Figs. 92b and 92¢, the higher turbulent mixing progressiv¢l)' smoolhens oul the
temperature gradients. Figures 88 and 89 show contours for th_ static and total prcssu_,
respectively, in the stagnation region associatedwith the "splat" on the floor, a hi_lhslalic pressure
region is produced, lessening as the effect of the "splat" as Re_ increases.Conh,urs ot' consltlnl
speed (isovels) in the units of ftJsare shown in Fig, 90, The distribution of the divergence ern_r
in the solution as measured by the energy nonn of the continuity constraint f'unction _I_carl he
depicted by plotting contours of constant II• II,.Nod,,l lhr IIq, II, are calculated b)_lakinB
the average of" the associated element-based II II, nom_alized by the element volume and
projecting each element contribution onto the node. The resulting distribution is a measure oI' the
kinetic energy per unit volume oi' the divergence error in the velocity solulion,

The variation in the distribution and magnitude of the divergence error Ibr the three Ret

levels, depicted by the I1¢,11,contour plots in Figs. 91a.¢, gives an excellent quantilati'_¢
description of the influence of dispersion error (in the absence of any dispersion error control, t_,_())
on solution quality. At the lowest Ret (=14, FiB. 9In), numerical dissipation is nlinimal, and tile
divergence error is significant ( IIq,I1," and broadly distributed. Increasing Ret, impl),ing more
turbulent mixing, increases physical diffusion, and the divergence error is signilicant b Ios_vred

(11• becoming localized near geometric singularities such as tile sharp comers L_I'the
supply and exhaust ducts.

"I.6.1.2 Problem 2:30 ACH and T,.,t,= 80°F
in the second problem, the flow rate is increased In 30 ACII, and the set point l'_r the x_all

temperature is decreased to 80 °F. This produces a reference velocity of 2.6 lt/s and a A7:,, of I()
°F. 'l'he local I,i,ein the supply duct is approximately 30,000, and the reporled Ar t'_r tile n_om is
0.83. For this Archimedes number, the convective threes are relatively more dominant than

buoyancy threes, the reverse of the condition in problem I. Figures 93.95 present views of"stead).
state velocity solutions br three values of Re'. As evidenced by Fig, 93, the supply jet lbllov, s a
much straighter path (due to ttle reduced importance ot' the buoyancy body force) into the room.
Ilowever, the tlo_v is still strongly 3-dimensional as in problem I. The isotherms shown in Fig. %
present the variation in temperature stratitication as influenced by the differing levels ot' turbulent

mixing, yielding Re_'= 1000, 500, and 100 for Re'= 29, 59, and 2c}_),respectiveb. Contours of
constant static and total pressure are given in Figs. 97 and 98, and contours of constant speed and
IIq,II,, i,, Figs. 9t) and 100. Compared to problem 1, good controlof tile divergenceerror,as shown
in I-ig. 100, did not vat)' significar,,ly over the range of Re_ tested.

In problem I, the 3.dimensional character ot" the flow is dominated by the descending
suppl) jet and the "sweep" of cold air along the floor. The resulting huo.vanc._-driven vortex rolls
arc thereby evident along each ot"the room walls. Conversely, in problcm 2, the center o!' the room

........... ,,, II_l IIlll --
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(a) Ret= 14

(b) Ret= 29

(c) Ret= 149

Figure 88. Isobars for 15 ACH.
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_ t) Ret = 14

(}) Ret = 29

(C) Re t = 149

Figure 89. Total pressure for 15 ACH.
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(a) Ret= 14

(b) Ret= 29

(C) Ret-- 149

Figure 90, Isovels for 15 ACH.
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(a) Ret = 14

(c) Ret= 149

Ftgure 92, Isolherms for 15 ACH,
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Contains the m(_t interestitlg t'ullv .t_dimq:usi(mtd lh)v,' ¢luira¢teristles. Vieu, ini,t Fii:s _4 nnd ')_. tile

as_tlnlption i'L_rRet t,,, a_ilin c_mfirftled to be eriti¢[ll i11deterttlitlinl_ the rohtl.,itnu.,.i.,i111"the I.
diuleusi_111111_:har_1¢ler_,f_flu: fhw_ _p_:_:ifi,:L111>.flu: di_li111tiv_: .'_'sllnpe pn,diowd h> the im,,¢l

¢_qltOllr.s in l.i_ 99(_1) is lw_t ii_ flu: Sitllulatilm t11rllulet11_le,,el. Ret, i111re_1_e_,l:ilZ l)_(c)

7.5,2 ('omp.rtmm Ilet_,¢en ('FI) .nd I'hy_tc.I Experiment_

111his di_,_:rhlti_,u. _pith:r (l_q0) r_:p¢irls nlea_ured r_111 air ,,pc..uddi_trihuliem_ ¢qi the
,,erlieal phlne, pilralh:l h, tie: r_uml n_lrth ,,,,tIll aud _II1_¢:1tllur_llreq11b_ 0 127nl. ,,_,lli_.'h_,'_in¢i¢hls
_.,.ilh the _:¢llltlrPhllle of IIl_: air suppl_ t,lU¢t I_,r the l_,.¢__eleclud room II_,_rtlh.,_. I_ iln¢l t11 llir
,:llallgeS per hour (A('II). tl1¢m:dilta _,:re ¢(111e_:t,:d11sin/: 16 I._I 8,17(1_q1111idir_:cliemllllur _.eh_uit)
lrllnsdlieers Illiitillled o1111lrolle), vdiieh c_ulld he 111o,,i:dlllrou[_lli1111lhe h_¢1111l llis 111_Ir11111_iii111i¢_11
111e_lsllr_ldthw_ _p_:_d_qll_ (llol ¢oltlpon_,11ts_it the v_:lo_:it) v_hlr), ilild tie: r_:p_,r_e(IIlletlsUrellll_11l
a¢_:11r[l¢_V,il,S ,12/._1% (* I()/.I,I tp111). In ¢idditieql. teillpuriltllr_: n1_11_urettlenl__r_: tt1_Ide iu
11,wi/o111111ph111ususing I0 t_*pi: I tllern1_¢oilple_, 111_llnh:d¢qi 1111si1111etr_flh:',, l.a_h teulperulllre

d(lhl p,_inl, i_._repr_d11_:edin Fig 81. "repre_enl,_ the _1_,Leral,lC _ffl12 Ic,11pcrllture 111c11_urenlelH_in
1111_iri,,_1111alphlnu.'" which pre_lilnilhl_-i:xlcllded thr¢)ugh¢_ulthe eUllre r_q11

l:i_ur,:s 8(hI i111dI()I prem:nl (_q111ppr_ixi111ul_b,111_:_(i111_:,_(iI¢) llu: _.,xperiuleulill 1i11_I('L I)
¢olllptlted distriblllton_ of r¢_)rll 11jr_pe_:(Ifbr the I_ A('II. Ar ,t _ _a.,,_:._1111the hitter I'_r the ttlru_
_ul_¢led tllrbulitllI R,.'_11_ldsillllllb_r (R_') M:lllll_S A ver_ I:¢._d qUillililli_,L' _:¢_lllptlrl_,iil _11111rsI'_lr
ltu: smaih:sl Re' K,_el, ll;r t_11i¢11t11_:suppl)p:l is pn:dicled I,, Iilcnlll) "_:ra_ll" ¢ht_,.nw=lrds,du_: I_
hllll_ |1111)rll_'_:t'_, ) ielding _I pr_qlli_lieed th)_,r .p:l I tii,, ('FI) prL,dictiou _ tehls |111eMretllU111,,pe_:d
(I.11 Ip1111that ilgrees ,_,:r>*wull v,ilh tlte (ilpp(Ireul) I_()Ipnl 111easured111a_inllU11.Ih¢ 111_re
dillusi_,e (R_:' 2¢)and RL:' 14¢)) ('1:I) s_lllti_11sd(_lu_l predi¢l tIe: _il_nifi_:tult IlluilNured tlo_r Jet. lind
1111:llss_)¢hlled pn:di_.'t_:duxtren111111speed is redll_:_:dt_ t11_:_wd_.,r100 tplu _r h,_L,r ('luarl), ttl_:n.

II1_.'_l'liIlur d_lt(l _lppears ht _:orr_sl)_)udh_11h)_, lurbul_llee level r,.ml izir _xpurilll_nl, thr Vdllch lllu
snlllllcnt I,h.'_ ('FI) exp_ri111ellt111speed pr_di¢li_ql in qulllil(lli_,ul) a11d q|Zalltil(11ivel.'_ ill g_)¢_d

11greenlent.

lu di_ti11_:ti¢111,thi_ c_tuIparis_m tl_.,t_,ueutIle ('1;I) _:xp_:riu1_:lltsatld ¢h11(1.lbr the ](1 A('II,
Ar 0.82 ease. indk:ah:s II_itller qualitative 11_rqu|lntitlitlw: lttl,rcunlulll, I;i_, 8()b tind 102 ._pitler
I11_:asun:dhlrg_: n:l_i_qls _,iih air speeds _d' lie: ord_:r 200 2._(1 tpnl, _,_,llih: tIe: ('1:1) pn:di_:t_d
e.'_trelnt1111is IO_ Ip111.l/u: ('FI) .si111uhlticmprudi_:t.,,IIluse phluar thl_ fluid sp,:_:d dislriblltionn tlS
r11111_:rill.Wllsili_ h, I(_:'. a.sar_: I!u: underlyillt/, _:h)¢iI) di.slribuli_,11.s,Fig. 91. (R_:cal! Ii_w_ever, IhuI
tIle ('1:1) v('l,('llr distributi()n', are _*_:r__m:nsili_,_:h) Re' els_:,._,*llureiu tIle ro_q11. Fig, 9,1.) Ihlsed _tll

tIle go_d c_1111ptlris¢l11ltctliuvud for tll_: Is A('II It:st, (111eI11igtll c_ql¢llldc IIIlll 11si_llili_illi! s¢lllhIB
urn)r lllll) I.'._lSlhl 111¢]() A('II lest sp¢:_:ilicalicql, 1,I._n:p,)rt_d.

(',UlniSlUlll _ittl _:xp¢:rinlenl111pnl_:_.'dure,rup¢lrt_:dhs ,_pill_r (IqU)(I) tier phular-ilvur_lg,:d
t_:inpuralilr_ stralilieati_)11, tll_: ('FI) datll sulnnlal?, sllo,_vu lhr Figs. 101 and l(bl ilvun11_:s the
caleuhil_.,d l_:nlp_:ralun:s _n,_.,r_.,ver_11_wi/oulal phu1_:in I11v¢¢mlp111111iOllal111_:s11l.¢ir 1111:I_ A('II

cas_.', l:il:. 101 _o1!Iin11,,111111.11hstmuB¢:r n)_ml-avun1Bed leulperatun: stralili¢aiion _:xisls in lh¢
_:xp,:riln_.,ulal (hiIil Illan l'_)rilu: CFI) resLllIs, l'll_: exwpli_ql lies in I11_firsl ()._lU ah_w_: I11_:lh_(_r,
li)r flu: h_:sl lurbul_.'nc_:h..v_:l(l,h:' 14)l,:sl, _llich show_ qlli1_: g_1(_dh:vul aud ,_l_ip_:(ll4n:_'u1_:ul
v_ith Iil_.'uxp_:rim_.'nl. Ibis Ih)_,._n:gi,n is d,mlina1_:d h_, I11_:_:,ld tl,,_r.j_:1, _hich 11pparently tlas I_elt

quii_: ac_:ural_:l) prudi_.'l_:d(in tll_:S_:nor111s).At all Izil_llur _:levaliOllS ill I111ro_i11, fizz: ('l.'l) results
predict a Ulueh ,111)r_:isoth_.,rnlal stllt¢ than v_,ilS,_1_:(!m_r_d_xp_:rin1_:11tallyon t11_.'11veri1Bu.
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Figure 101. Air speed contours for 15 ACH, At=4.3.
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Figure 102. Air speed contours for 30 ACH, Ar=0.82.



228

2.5

2.0

E
_" 1.5

"t-

1.0
P 0 R.-.

./ _ R..lfl

_ Eliporimenlal Dilil (Stiillei,t i@O)

05

O0
22 24 26 28

Air Temperature (°C)

Figure 104. Temperature stratification for 30ACH, At=0,82.

0,0
24 26 28 30

Air Temperature (°C)

Figure 103. Temperature stratification for 15ACH, Ar=4.3.



229

At the 30 ACH flowrate, the temperature stratificationfor the lowest two turbulence level
simulations, as measured by vertical gradient, shows quite good agreement with the experimental
data, Fig. 104. The fact that the CFD data produce a much colder overall room air temperature
level confirms the expressed suspicion regardinga scaling errorin this experiment definition.

7.7 NATURAL CONVECTION IN A TWO-CELL ENCLOSURE WITH
A "DOOR"

Engineering interest in natural convection in complex enclosures with restricted
communication has been stimulated by applications involving energy-efficient passive-solar
buildings, cryogenic storage equipment, natural convection cooling of electronic equipment, solar
energy collectors, and room heating and ventilation. A basic configuration for the study of room
ventilation involves the "association of two enclosures which communicate laterally through an
opening in the same manner as two rooms connected through a doorway, window, corridor, Mrover
an incomplete dividing wall" (Lin and Bejan, 1983). The experimental program carried out by
researchers at Colorado State University (of. Neymark, 1988;Neymark et al., 1989; and Boardman
et al., 1989) has provided heat transfer and flow visualiz_ationdata, obtained from partially-divided
air- and water-filled enclosures, Fig. 105, that can be used for CFD validation studies.

z x

Fig. 105. Geometry for a partially-divided enclosure.



23O

Early work ()n natural convection in partitioned enclosures by Brown and Soivason (1062)
examined convective heat transfer through an aperture resulting from a zone-to-zone bulk density
difference acrossthe aperture. Nansteci and Greif (1981) investigated the eflbct of 2-dimensional
conducting and nonconducting centrally-located partitions of various lengths extending vertically
downward from the ceiling ofa water-filled rectangular enclosure. Flow visualization and vertical

temperature profiles were reported along with correlations thr the overall cross-cavity heat transfer.
Bajorek and I.Ioyd (It,_82) described a series of experiment_ with air and (,()., in a square enclosure
with two partial dividers, one attached to the top wall and the other to the bottom, amounting to
t_o chambers communicating through a mid-height window. ('omparing heat translbr data taken

in the partitioned enclosure with the corresponding measurements in the unpartitioned single
enclosure, they tbund that the partitions reduce the heat transti:r rate appreciably.

Other investigators (ct'. Lin and Bejan, Iq83. and Nansteel and (ireit: 1,984) have used
small-scale water-filled enclosures to correlate cross-cavity heat translcr with the enclosure wall

temperatures. Nusselt-Rayleigh number data for a water-filled partially-divided cnclo,;urc were
correlated by l.in and I]ejan (1`983) tbr Rayleigh numbers betwecn I()" and 10)'', where the
Rayleigh number was evaluated using the enclosure height as the relbrence length and the
hot-to-cold wall temperature difference, lligh Rayleigh number natural convection heat translbr
measurements were reported by Nansteel and Greif {1984) tbr water-filled enclosures with both
2- and 3-dimensional vertical partitions and 10"< Ra < 10a). In both of these studies, the flow field
was found to be laminar along the heated and cooled walls.

Numerical investigations of partially- and fully-partitioned enclosures have almost
cxclusivcl) been 2-dimensional (of. Kclkhar and Patankar, !q86; Winters, 1988; Nishimura et al.,
It,_88; Fu ct al., 1`989; Ciofalo and Karayiannis, 1991; (ihosh et al., 1q92; and Karayiannis ctal.,

lt,_02). Using the SIMPI.,ER algorithm with an M=26×52 mesh, Kelkar and Patankar (1986)
reported results for laminar flow in a square enclosure tbr two partition geometries, a single
partition located vertically at the center of the enclo:iurc and two identical partitions located at the
top and bottom walls. Calculations were made for a rangc of Raylcigh numbers, partition heights,
and partition conductivities. Nishimura et a!. (1988) performed both an experimental and numerical
investigation with water-filled enclosures having multiple vertical partitions tbr I(Y'-: Ra < 10'_,The

problem of transient healing in an enclosure with an off-.centered partition was studied numerically
by Fu et al. (198q). Ciaihlo and Karayiannis (I`991) and Karayiannis et al. (19`92) applied the
SIMPI.EC algorithm to study fully-and partially-partitioned 2-dimensional enclosures, They found
that the characterization of the thermal boundary conditions at the upper and lower end walls can
have significant effects on local and mean heat transfer rates across the enclosure. Adiabatic and
linear temperature profiles (LTP) were investigated, and the H'P boundary condition providcd a
better comparison with experimental data. Ghosh et al. (1992) studied the effect of shifting the
position ot'a full partition on flow structure and heat transfer.

The author has tbund only one 3-dimensional computational study of natural convection
in a partially-partitioned enclosure. Fusegi et al. (1992) present the results of a 3-dimensional
simulation ot" air in a cubical enclosure with a solid partition, as shown in Fig. 105 with

ti = L = W. The centrally located rectangular opening in the partition is of height h and width w,
and the thickness of the partition wall is much smaller than the size of the enclosure (b/L = 0.03).
Two partition geometries were examined; Case A used w/W = 0.4 with Ra = 107,and Case B used

w/W _: 1.0 with Ra = 5× I0 '_.The area aspect ratio Az,,defined as Az,-(hzw)/(ll×W), tbr the partition
was 0.2 for Case A and 0.5 for Case B.



231

In Case A, the SIMPI,I; algorithm with the QIJICK schenle for dispersion error control was
used to calculate laminar tlow tleld and temperature distributions on an M=82x62×62 nonuniibrm

mesh. Afree-Jail reference velocity resulted in an Archimedes number ot" 1,0, Boundary conditiorls
included fixed hot and cold wail temperatures, and all side, floor, and ceiling walls were assumed
adiabatic. Conductiotl heat transfi:r was allowed through the solid partition (soffit), and

all solid boundaries were treated as no.slip for the momentum equatinns. Perspective views of
isotheml and isovorticity surthces revealed prominent 3-dimensional flow structures.

Near the hot sidewall as the heated fluid move_iupward, tile tlow is blocked by the partition

in the upper portion of the hot chamber, resulting in a near-stagnant region in tile upper-level
compartment between the partition and the heated sidewall. Away from the boundary, layers,
developing near the sidewalls and partition, the vertical temperature stratilication can be
characterized by a two-zone structure. 'l'he strongly buoyant flow generated near the heated vertical
sidewall descends the hot-zone side of the internal partition and is discharged into the cold zone

by turning sharply under the top of the doorway. At this point near and including tile vertical
symmetr)/' plane passing the through the center of the doorway, the tlow behaves like a free jet !
directed tov, ard the upper comer of the cold zone.

For Case 1', with Ra=5×10 ' and an M-:112x!02×62 mesh, tile flow exhibited steady

periodic oscillations ' hich were assumed to be indicative of a transition to turbulent flow. The
entire flow' field is thermally stratified, and very thin thermal and hydrodynamic boundary layers
were seen to develop near the heated and cooled walls. The boundary layer on tile heated sidewall
penetrates up to only tile mid-height of the enclosure, above which the flow was in a stratified and
stagnant state. At this level, tile boundary layer separates from the heated surface and moves
horizontally toward the door. Reaching the doorway, the flow turns under the top of the door and
moves up the cold-zone side of the partition. The flow path tbllows the inner vertical and
horizontal walls. No jet-like flow was observed in the cold zone.

7.7.1 Colorado State Water-Filled Enclosure Experiments

Researchers at Colorado State University have investigated natural convection in

partially-divided enclosures using a full-scale air test cell, built at Colorado State, and a small-scale
water cell at the Solar Energy Research Institute (SERI). The objectives of the research were to
determine under what conditions an enclosure will develop large zone-to-zone temperature

differences (and the resulting effect on cross-cavity Nusselt numbers) and to compare the behavior
of small-scale water models with full-scale air enclosures (Neymark et al., 1989). The small-scale
water model has been selected for CFD simulation because the flow was experimentally determined
to be laminar within the boundary layers along the walls.

The water test cell, Fig. 106, was equipped with a constant heat flux hot wall, a constant

temperature cold wall, and an insulating partition with an aperture (doorway) of constant height
(h : 11/2) and var'yin_ width w. The details relating to the original construction of the water cell
are reported by Scott et al. (1988), and the modifications made for the Colorado State experiments
are given by Neymark (1988). Flow visualization experiments using dye injection were peribrmed
for two aperture widths, w/W=O,OI and w/W=0.2, at a flux Rayleigh number of2xl0 j:. The flux
Rayleigh number is defined as
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Ra', g-_-H-_-.q (3s3)
(kva)

whereq istheuniformheatfluxatthehotwall,g istheaccelerationofgravity,and [_,k, v, and
c_arethecoefficientofvolumeexpansion,thermalconductivity,kinematicviscosity,and thenual
diffusivity of water, respectively, The thermal properties of water were evaluated at the average
of the cold wall temperature 7",.and the midpoint temperature of the 11otwall 7_r,

Y
symmetry plane

H--58.4 cm _:
I 't:.i hm29.2cm

w,_11.44cm
TH s b_ 2.54cm

Qflux i

W/2=28. 6cm b "-

L--56.5cm
z

X

Figure 106. Geometry of small-scale water model.

The primary flow loop at the symmetry plane of the test cell for w/W=O,Ol is shown in
Fig, 107. The laminar upward boundary-layer flow along the hot wall separated from the wail at
ft/4 < y < H/2. The detached flow moved horizontally toward the top of the door, accelerating as
it passes through the doorway, and exiting into the cold zone as a turbulent jet directed toward the
cold wall at approximately a 45° angle. The turbulent fluctuations of the jet were visible without
the assistance of the injected dye and were measured by a thermocouple traverse. Along the cold
wall, the downward flow was wavy laminar with small vortices along the edge of the boundary
layer.

For w/W=0.2, the flow up the hot wall was characterized by a wavy laminar boundary
layer, Fig. 108. Separation occurred at (3/8)H < y < (5/8)H with a resulting horizontal flow moving
toward the top of the door. Entering the cold chamber, the flow rose as a laminar plume upward
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Figure I0"I. Flow visualization tn the wnter ceil, w/W-O.OI (Neymark, igllS).
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Figure 108. Flow visualization in the water cell, w/W=0.2 (Neymark, 1988).
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ahm_ the partiti_mwith a _mall¢_mlp_ment_f entrainedtl.id nl_.,inB h_risLmt,ll) hw,,ard the c_lld
,b,.all,Tile plm.e r_c t¢_the t,_pof the¢¢_1dchamberwhere it t.med andthickeneda_ it approached
the _,_n_tanttemperat.rc cold t,,ali, I)e_cendingthe c.ld v,*atl,rite b,_undar) layer _tarled(_ul as
,,,,av) laminar near t It and _re_,_111¢)ret.rb.lent as it appn)achedt' _ 11i2. lieh_v, tl2, the c,dd
u,nll bounda_' la)'er t.rbulence sub_idedilltt_way) laminar 11_,,_,

"7,7,i, 1 CI:I) lixperime.t_
The small._caiewaterexperimentwith .,/W _ (),2( ,_p,= (). I ) wa, ._eiecledt'_rsintulaticqlh)

('l:l)l.,i)t II]1), Since the exp_:rimenlalfh)w ,_isuali,,_.iL)ndata_howedthet],)'._,.,_tl__yntltlelri¢abt)tll
. vertical I.n_itudi.al plane pas_in_thr.ugh the middle ¢_i'the doz_r,n half-m(_del,_,.a.¢¢.t_tr.ctt:d
with an ,t/_ 52..42.26 mesh, Fig, 10%¢,mtaivli._ _T,()00 n,_de_,I'he nle_h _llctwnin Fig I0_ i_th_
Iinal result ol' a nte_llinFstud)' _,,hichbeBanwith a relatively unifi_mt 24,00() n(_dediscretilation,
Mesh rel]nement and adaptatit_n,basedupcmvisual inspection¢_l"_tduti¢)n_at Ra=l()", proceeded
thn_utzha _equence(_t'discreti_gticm_that ft_cusedmainly (m attainment ,_l"_r)lution_tability i. the
reBicm(_f tile (Io¢_rt_ayand tile h_q/,me with its domiltant vertical btmyant plunt_. Previo.s
benchmarkexperienceverified therequirementE_ractivedispersionern,r ctmtml,Jl O,he.ca |_tL i.
(l.2 was usedin this meshing study,

ll¢_undar),co.diti¢)ns fi_rthe momentum equationswere no-_lipcmall _urface.,_ofthe dividinB
part|titreand doorway and a tangeneyconditkm with an applieddrag on all (_therboundariesexcept
fi)r the symmetr3_plane, The decision to apply a no.slip bt)undarycondition on surfaces near the
d{)t)nvay and internalpartition was baseduponcomputati()nalexperienceand the expectatio, thai
solution stability, henceaccuracy,would hecriticall_ dependentup¢_ntheresolution t_f'themomentum
and then.al bt_undan,layers in this critical reBion, [)rag and tangencyboundary c(.iditions can
certainly be applied ¢_nsurtitcesfarther away from the d¢_,_r,resultin_ in a siBniticant savings in
ccm_putaticm.Icost_,The f.r _all dragboundar)*ccmditicm v . ' '_,as calculatedby intetzratingIllas=uss
solution I_r =tdeveh_pi._ h(_undaD*I=zyerover a flat plate ¢_flength//(White, 1()74),yieldinB

( 471
:. _,0.008487 U _/: [dynes/era 2 I

The final integratedshearstressat thew_tll,x. i. l;q. (384), wasevaluatedin c_s units usingthewater
property dizta in T=thle !1. l]oundar)' conditions fi_r the energy equatiem included a fixed unifon.
tempen_ture.7_, l;,_rthu tepidwall a.d ==cemstantheat flux, q, applied unifi_m_lyacros_the hot wall,
All other surthces,including the tlo¢_r,ceiling, symmetry plane,and internal p=trtiti_._,t_*ereadiah.tic,
The experiment was ru. at a flux R=_yleighnumber(Ra*) _)t'2×10_",corrt, .mding t_ a unifi_m_helot
flux acrossthe ht_twall ot" 0,0641 W/cm", Ct_rrelatinBthe water-filled heat trm_sfi:rdata f'or this
L.eometr3',Neymark (1_)88) presentsthe Nusseltnumber (Nu)as a I'.nctit)n of R,*, .s,

Nu - 0,297( Ra" )0=,,_ (38.4;)
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For Ar _ i0,000, the _FeRnce_ek_cil,, i_()0(_¢ml_, andlhe reym_l(h a.d Peclel .um_r_ a_

i,,,I°
Table II, Water P_rttu it 22"( " , Ne),mirk (IqHR).

. I .................]L i I " _i-'-_llr _ . ...._L_ ---° ..................... ._".......

dentil)', p 1,0 p/era'
.... :_.-_L--. " _ :_L_ II IIII IIIII _ _ nrlL II II -- ml ........ -- ...... ...... "-T--'_-T ............

kinema!!i; vllco_it)_,v (),OOli_4cm%i_:-_; "_';LJ_Lr, ...... II ............. ] lull ] . - NIl ...... I _ _ -_"-= L]] -]7"'Fl/Nrlf " - ......

thermal d,iffit<,tivily_(1 ._ 00014] cml/_I_I ]:: : ._ __ ................. [[I 7 _.±ull II ......

ei_ffl of volume expan.io., |t 0.000224 K'._ " 1_i _7-=" __ .... II 77__ I1 II !..... III - i ];_Z= -- ....... ?;T'= _1 ....

thermal imnducliVily, k 0,0116Wlcm.K
.--ZT __ Z[}I[II I II F I" ...... IIllg ]1_ -- i ................ # i .... _II_ L _i "T : ': _ ........

Pnmdtl num_r, Pr 6,7
II 7.........I IIIIIII Ill II IJl 71! .... ........ ll]_ .................

Rayleiph numberconlimialiLmv.is u_edto work up ti_ thetart!el le,_t¢olldilktnl beFinnhlt!at
Ra +_IO'L Tli_ iriilial vehli:ity di,,lllibulioll wa_lui_umed/art), ..d tlii initial horilontal temrternlilti
di_lrihuli=mv.._,_i.lerp,italed lirieiirly betweenthe ll,_tand _old wall.,,,The approximate _teady.!itale
inflate,in al each intemlediate Riiyleillh number wa.,iu_eda_ithe illitilil i;iindilio, for the ilext hit!her
Rayleillh n.mher, incrementinBRe by anorder of nla_nitude tbr each_tep,

The s_ihltionatRa _ IO"repre_enl_a geometriciilly.imp¢_rla.lcasetbr t'Utilrehenchmilrkin_
con,iideratio.,i The thermal houlldar) conditions were siiilplil_ed b)tilili t a con_ttini uriifl)rin
lemper.tlire ihr the hot wall riither lhtln a linillirin tieill Ilux. l'he ._er.selecled velocii) _caledir©clly
impa¢l_ _oluiioli _iilbiliiy lhrouth ihe _t:alinl _)1'Ihe bily.lbrce (Ar), dillu,,iion (Re o!ld Pc), and
adw¢iioii ieniis in lli_ mtimelilum iilid ellerl), _qiliilio,_ Thi_ llexihiliiy, reluliili I t'r_lmlli_ _¢,liril
rille_ ehii!ell tbr iiilndilne.tio.ii!i/ltii!n, i._e_pe_htllycritical ibr .aiiir.l ¢illiV=clioil ill w.ter, where
li_5 _ili¢_ I)e<.RePr,. ve!o_:it) steele,,,lelectedii! prilduce a stablevalue tbr Re, ntu)' _till re._ultin
.i1 ildver._el) hilh Pellet number, tiros expiminI the =iierty _olutii)il to, potenti,lly df;,iiabili#Jnl
di_per,km err.r hi.de For I, _ IO', Ar _ IO0, and Pr,= 6, the Re)'nilldt iiitl!iher Wli_ 412 arid
Pe 0,_242,_ Tht_w Io_ Reynold_ and Pe¢lil ilUilibert prtivided _ulti¢ii_ill .atural dilTusion in die
problem i. easil) e_labli.,ih, henctmlark._lindidateea_eibr l'unher tayll;iltl number c.niinuaii.n

The _oniputed vehicily and Imnperaliir©distril_utiori,i(in the _),mm=tr_plarie at ta ,. lip are
liven ill FiE 110,The ienlperiiture boundarTcondition.,i.re a uniforlii cold wall tenIperiituri;of 17°C
alld a unitornl liar wall lelliperiilur¢ of ._G°{' Al thi_ilow layleilh llillnber, thi_buoyant plume risirit
tip tlie cold zonepartition abovethediior is well esiabli_lied,I lowever, thl: bOulldary layersep.riition
in the hot/i.le, observedinthe dye inji;ction experiments=itRa_3,2× i()m,doestnot tbrnl I.ateral and
sp.llwi.,ie tenlpcr.ture di_tribiitiolls cmcuttiriBplanesin themiddleol'the cold andhal zonequadrants,
Flit, I II, illdicate the extent of thermal boiilidary hiyer_alonBthe healedand ccmledwillis,
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(a) ve!.eity distributionp_jt_ted ontothe symmetry
plane

SymmetryPlane

I

- |

(b) temperature distribution on symmetry plane

SymmetryPlane

[---_ _ _/........ ......... ._., ,.rap
,- A 28

0 25
8 24

S 22

S 2t

, .,. ,. 4 20

2 19

Figure I10. Symmetry plane velocity and temperature distributions at Ha ,= I0_.
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(a) temperature distribution on lateral cutting planes

(h) temperature distributions on spanwtse cutting planes

hot wall-
I _ Level letup
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Figure ii I, Temperature distributions on lateral and spanwise cutting planes,
Ra= I0_.
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I.agrangian panicle tracks fbr threereleasepoints in tile doorwayare shown in Fi_s. I 12.I i4,
presented from view points in the hot andcold rooms, respectively. The releasepoint (21_.25,21L().5)
for the first panicle, Fig. 112, is near the top ot'the door jam and oflket 0.5 cm from the:symmetr',,
plane. ('aught in the,hlJoyalll plume, thepanicle rises to theceiling of'thecold tone and thendescends
to tile tloor through a winding path. ()nee entrained bv the main lh_v_'along the tloor and near tile
syrnrnet_' plane, the panicle rapidly moves into the hot zonewhere it closel.s fidlov,s tile b,iiundaO
layers along the walls. The direction oFmotion is indicated along tile track, and lh¢ lime inten,al
het_s.eenpani_:lesymhols ("bubbles") is again a unilbnn constant. Therefbre, local relative parti_:l¢
speed is discernible h__huhhle separationdistances.

The se_.:ondpanicle, Fig. 113, is released slightl._ helov, the mid.height ot" tile doors,,as,
halfv,*a>_helween the syrnmelO*plane and the door jam, at (21,1,25,1(),2,5),Initially moving into the
hot tone. the panicle is engagedby the complex 3-dimensional Ilov, within the_:entral¢_re of'the hot
zone. It eventually pr_ceeds horizontally toward tile top of' the door, reenters the cold zone,and i.,,
_ntrained hy the dominant buoyant plume, l)es_:endingto its releasepoint, the particle enter.',,the hot
/.onea second time.

Released2 cm above the tioor nearthedoor jam, the thirdpanicle, Fig. 114,lbllows an initial
path that is somewhat similar to the secondpanicle, briefly entering the hot ;,me and then moving
horitontaliy to_ard the doorand the cold zone.The buoyant plume again _:apturesthe panicle v,here
it follov, s a path in the cold zoneeventually passingback into the hot zone near its original release
point. Note that panicles 2 and 3 manifest a horizontal flow acrossthe midplane of'the hot ;otle that
is not, ho,,_ever,ass_ciatedwith a boundary,la_,erseparationas described in theexperiments.

The steady-statesolution obtained tbr Ra_::I0" was usedasthe initial condition tbr the ,,_,ater.
-_3.,:,1 (Ra*:=2_:l()':). To better simulate the experiment, the Ilot _,allcell experiment case ot'Ra " ()_"

boundarycondition waschanged l'roma constantunii'onn temperatureto a constant unii'onn heat flux
of"0,0641 W/cm:. l.'igures I 15-124 present theresults of the solution after 3000 time-steps (- _,)0()()
outer iterations), where the time-step was -..0.016 see,,giving an elapsed time of- ,l_l,0 sec. This
solution is not at a steady-statecondition; however, it has progressed lar enough from the I(a_ i()''
solution to {_hser_,edislinct dii'G:renccs. Figures 115 and 116 indicate the development ot' strung
houndar3._layer tlov,s, and the buoyant plume.just abovedoonvay along the interior wall continues !
to dominate the ilov, field. 'l'he horizontal streamlinesshown in Fig. II 7 demonstrate tl1_:definite
3.dimensionality ot"the tlow,. An oblique shear layer, intersecting the doonvay at mid.height, is a
distinctive featureot'the flov, through the aperture.The structure of thethemlal hounda_, In._¢rs_:an
he seen in Figs. 118-120.

I.agrangian panicle tracks for various release pointsare presented in Figs. 121-124. The
elapsed lime tbr each track in these figures is 60() sec. In Fig. 12 l, the release point is near the top of'
tile doorway v,here the panicle immediately ibllows the buoyant plume up to the top of'the cold tone.
Moving slowly back tothe partition, it descendsbriefly until caught by a rising current and transfi:rred
over to tile cold wall boundary layer, Rapidly descending the cold wall, the panicle rises to_,_ards tile

doo_*ay where it is captured by the lower stream of the shear layer and swept into tht: h_t zone.
Releasedat approximately the mid-height of'the door, thepanicle in Fig. 122 is alsocaptured by tile
lower slream ot' the shear layer and, thereby, drawn into the hot _.one.Moving along the floor of the
hot zone, it thllows two loops that are a part ot'a large vortex roll driven by the hounda_, layer tlow
along the hot wall. i,_venlually the particle is caught up by tt_e upper stream ot"the doorway shear
layer, where it proceedsthrough tile door andentersthe buoyant plume. The third particle, shown in

,................. ,,, ,, , I _ I1_111....
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(b) side view of hot and cold zones

Figure 112. Lagrangian particle track, Ra--106, release point=(28.25, 28,0"5)"
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(a) view of cold zone

(b) side view of hot and cold zones
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Figure 113. Lagrangian particle track, Ra=106, release point=(28.25,10,2.5).





243

(a) symmetry pla

;::2' ;
It ., • .I,,l '::

.- ' I ii: : :t: , .......

ll - j , . t / ,s/,,*1,,,j_.ml I IIIPl_,'," ° " " _ _ _ _' " '

= I Ill, *" "

t1,"' ,,C_", ......
,.2222 ....... - #

-- 1 cm/s

(b)quarterplanes
I;................I i...............:.. :T
!ti...............,Ik,........::::::::-,

........ 'HII '.... °' _, JItI........ ,,,,II:=........:.....It I ; ........ ' '1 I-" ...............
............ ""'1 t............. ', ,; ,, I I , 'l'* ,1|| ..............

,"iilii' l]l"'"'iiit[ ifiiO tttf
I]! ' , o ' i IIIII i, _:............ IF::,,,........"
II_........... :'"'/1""...........
ll',:::::: "'::!!ii/t-":::lll::::::::::

(c)frontwalls

,,..':::::......'" I:.,,,,,,,,,,t_ttlttlll
t>;:. '"= r_.......,,=_r_t'_'_rv

: : ,_:i tL:i:!:ii!!!i!!!i_,_ltt[

,,,,ll,l  iiiiiiiii; iiil-::........."'ln_, ' ........ 1if i
I_ ....... tll I
_, ..... ' ...... i i _ I

_"_"',,,,,,,....::!_:---"::_ l

Figure 115. Velocity distribution at
selected vertical planes, Ra=3.2 X 10j".
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I

(a) symmetry plane

- 1 crn/s

(b) quarter planes

'!iii_

(c) front walls

Figure 116. Streamlines projected
onto vertical planes - Ra=3.2× 10 t°.
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(a) symmetry plane Le,e,,emp
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Figure 118. Isotherms on selected vertical planesRa=3.2× 10 t°.
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(b) temperature distributions on spanwise cutting planes

Ra=32x 10''} , Ar,-10,000

Re=692 8; Pe=4,641 8
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Figure 120. Isotherms on lateral and spanwise cuttinl_ I)lanes, Ra=3.2x II)'".
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(n) vie_, of cold lone
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Figure 121. l,agrangian particle track, Ra=3.2x I0 "t, release point=(28.25,28,0.5).
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(a) view of coldzone

elapsedtime=600 sec

(b) _ldeview of hot andcoldzone_

Figure 122. Lagranglan particle track, Ra=3.2x 10"j, release polnt=(28.25,10,2.5).
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(a)viewofcoldzone

(h)sideviewofhotandcoldzones

elapsedtlme=600see _
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e
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Figure123.i,agranglanparticletrack,Ra=3.2xi(}t",releasepoint=(28.25,2,5),
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(a) release point-(3.2,22.8,20)

(b)release point=(22.2,49,20)

elapsedtime=600sec_

Figure 124. Lagrangian particle tracks in hot zone, Ra=3.2x 10_°.
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FiL_,123, is relettsednearthe comer ot'thedoor,,justabovethe floor. M_ving hrielly into the hotzone,
the p_lrti_:h:t'_llt_wsthe upperstreamof'the shearlayer into the ¢oldzone_,,h_reit tr_tcksone I_t_pt_t'
tl I_lr_,c,sh_,,vw_rtex r_ll in the middle ot' the zone betbre heinL_captured h>_the hut_>,antplume and
driven t_ the ceiling, i:_llowing the houndao' layer t'lc_valong the c_ld ,,v_fll,tile p_lrticlem_ves back
inl_ the hot z_me."I,,,,_releasepoints, I_._catedin the interior of the hot _._ne,_re sh_s,,nin I:i_,. 124.
These pa_li¢lc tracks dcm_nstr_tc s_n_eof the structure_t"tlie slowly mt_vinL_vortex rolls lh[',t
dtm_inatethe II_ tield _utside t_fthe str_mghoundaD' layer flo_.s airing the ,,_lls. 1"hest,luti_n Ires
not progressed fitr en_t_zhtoward its ste_dy-state¢_ndititm to show the experi|nentall', ohserved
sep_r_tio_ ot" the I_t wt_ll boundary !_Lver_h_wever, even _i_er 4f,1sec. int_ the transient, there is
signitic_|nt h_rizontt_l tlo_, near the top of the door in the hot zone. When sep_ration occurs, the
stttgt_t|ntreg,i_m in the upper portion of the hot z_meshould increasein tempert_ture.The hounders
layer flows are well-est_blist_ed and should continue to stre||L_then,i'uture _v_rk will devel_p the
s_lt|tion _mt_t_.,_te_|dy-st_|tecondition where t_direct comparison ¢t_nbe n_de with the experirnent_l
data.

llilll Iil _-- IIII .................. -_ --



8. CONCLUSIONS AND RECOMMENDATIONS

A new primitive-variable finite-element CFD algorithm, the Continuity Constraint Method
(CCM), has been developed to produce approximate time-accurate and/or steady-state solutions for
the unsteady, incompressible Navier-Stokes conservation law system in three dimensions.

Recognition of the dual role of pressure, as a consequence of the constraint of continuity and as a
three in the mechanical balance law for conservation of momentum, has been the fundamental

principle guiding the CCM development.

An implicit time integration scheme, with quasi-Newton iterative cycling within the time step,
allows the two roles for pressure to be completely separated computationally. Specifically, a
mass-conserving potential function is used to enforce the continuity constraint, and the resulting
dominant "2 A.x" dispersive error mode is prevented from polluting the velocity vector distribution

by replacing the accumulated "pseudo-pressure" with the genuine pressure computation at the end
of the time step, as required. Induced by a solenoidal velocity vector field, the genuine pressure is
calculated with well-posed boundary conditions by the pressure Poisson equation. This separation of

tasks produces a theoretically appealing and computationally clear view of the individual and totally
distinct boundary conditions required for the continuity constraint function and the genuine pressure.

As implemented in the computer program CFDL.PHI3D, the CCM employs a 0-implicit
time-integration scheme, a consistent mass matrix, an optional (as required) Taylor Weak Statement
('FWS) formulation for dispersion error control, and equal-order interpolation of all state-variables.

Isoparametric 8-node hexahedra with trilinear basis functions are used to support the semi-discrete
approximation on the computational domain. The CFDL.PHI3D code was developed for a UNIX
platform, taking advantage of the recent expansion of computing capacity with the emergence of
engineering workstations as the primary compute engines for modem computational analysis.

As original contributions to the field of incompressible CFD, this dissertation has presented:
(a) a derivation of an accurate expression tor the unsteady evolution of the divergence error, thus

providing a firm and exact theore,ical foundation for the CCM,
(b) an investigation of the separate roles of the non-smooth continuity-constraint function _h,

dominated by a "2 A_r"dispersion error, and the smooth physically-motivated genuine

pressure ph
(c) an investigation of the Galerkin weak statement for the Reynolds-averaged pressure Poisson

equation, thus minimizing the required order of the Sobolev functional space required for a
turbulent flow simulation,

(d) an investigation and resolution of physically and numerically well-posed boundary conditions for
all state-variables including the mass-conserving potential function,

(e) an implementation of the CCM using a finite element semi-discretization of a Galerkin weak
statement with an optional Taylor Weak Statement extension for [2 in 1_3,

(f) an efficient solution strategy for work-station-based computing,

(g) an investigation of sparse iterative solvers and sparse data structures for solving the terminal
matrix linear algebra statements required by the CCM, and

(h) a verification, benchmarking, and validation study of the CCM tbr isothermal and nonisothermal
flow.s in challenging 3-dimensional flo_ geometries.

2,54
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It has become clear, during the present research, that a paucity of quality detailed
3-dimensional test cases exist in the literature for support of verification, benchmarking, and

validation of incompressible CFD algorithms. The cases presented in this dissertation provide a
starting point for future development of benchmark-quality solutions and validation-quality

experimental data for 3-dimensional flows. The present investigation of the step-wall diffuser is the
l'irst published study to quantitatively explore the rich detail of 3-dimensional flow structures
produced by this basic geometry. Additionally, buoyancy-driven flows in nonpartitioned and
partitioned enclosures provide suitable 3-dimensional test configurations, incorporating a range of
simple geometries and easily applied boundary conditions. The development of 3-dimensional
turbulent test cases is another area for future research.

Additional research into the CCM should include a study of adaptive time-step control, an
extended examination of the Taylor Weak Statement incorporating the influence of all of the terms

identified by Baker and Kim (1987), a continued investigatio;_ into advanced numerical linear algebra
techniques, the implementation of suitable turbulence models to explore the implications of the

pressure Poisson equation for Reynolds-averaged state variables derived in the present study, and an
exploration of parallel implementations for this (and other) segregated forms of the CCM.

Finally, the long-term viability of 3-dimensional CFD is in part dependent upon the
development of effective methods of presenting the large amounts of data produced by simulations
of steady and transient flows. The present study has investigated a nurnber of available methods for
solution display and flow visualization, including 2- and 3-dimensional contour plots of relevant
state-variables, vector and contour plots on selected cutting planes, and Lagrangian panicle tracking

displayed on 3-dimensional perspective views of the flow domain. Methods of visualization of
3-dimensional data represent a new and productive field of research for all areas of computational
mechanics.

, I Illnl I --
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APPENDIX A

COMPACT NOTATION

A t_rltl ot*cmtl/_tacttlo/tath_tl i_ u_edtJlr_._u_houttjti_di_._erl=ltionlt_de_:ribe |llatt'i_.tcch_r
operationsthat l'_ml element-basedcontributiem_to theBl_,ballinearalgebra matrix statemen! lhi_
notationwas firstpresentedb.. itaker ( Iq83 ) (oK ltakerandPepper. Iq(_l }andha_pr_,.edt_ be. _,¢r_
el't_ctive and accurateto¢_lt't_rthe tral|slati¢_not' _cneral statement_of algorithmic theftO i|l[o _1
,:omputer programming lanBua_esuchas I,ortran,The fitllov,ing di'_cu_ioll de_cribe_the n,_tati_t||
with theaid of detailedexamples taken from the text,

A.I BASIS FUNCTIONS AND METRIC DATA

The inertial tern1intheresidual t'_rthemomentumequation_require_the I'_dh_in_ eh:mento
level integraland subsequentmatrix-vector innerproductto beevaluated,

fulNI INt _det[J] dfl (IUII ''_ _.lUll"), (All

where the column.vectors{ (q }, containthediscreteapproximationsfor theu, vek_cit,,c¢_mponent,_
at the eight nodesof the element;discretetime stationsaredenotedb3 the superscripts"_f' and "_ .-
I"; superscript"T' denotesthe transposeoperator;and {N} is a column.vector holditt_thetrillnear
basis functions that span the 8.node hexahedron, defined b)

(1 • _)(1 • _1=)(1_ri_)

(l o_rlt )(I ,. q=)(! rl_) (AZ)1

{N(rlt)}= _ (l-_=)(l_q=)(i.rl_)

(1 *q=)(l _rt=)(l "rl_)

(1 . rl_)(l ._1;)(1 '_1_)

(I-_)(I .rl2)(1 *rl,_)

As shown in Fig, 5 in Chapter4. the _3,arc _eneralizedcoordinatesin transt'_rmspace( ....I :_q, _ ,I
for/= 1.2,3 ), The outerproduct IN} {,V}_ producesan g_.:8matrix ot'polynomial l_mction_ol'q,,

The Jacobian.! of the coordinate transt'ormationor mapping t'rom transfi_m__pace( q, ) to
Euclidean space (x,) is defined b)_
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• _ ,, _ _ _H_ tHttl_ tit II III IIIIIIII
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'lhe lerm "d--_[J]" is the determinant of the transformation Jacobian with the closed-form solution

detiYl- Jjl(J_Jj3- J3aJ2_) " Jt2(J2t J33- /n J23) + Jt3(Y2t J32- J31J2z)

. ax,iax_ ax_ ax_ax31- ax2iax, ax3 ax, ax3)+atlt 8112atl_ arl3 arl2 a_ t arl2 arl3 arl3 all 2 (A4)

ax,[ax,az2 ax, 8x2)811t 81"12arl 3 arl 3 8112

For general hexahedra,dot [J] dependson itsposition within the element.

l'he actualevaluationofEq. (AI) in CFDL.PHI3D involvesa simplifying approximation that
producesan element.independentmaster matrix, so that

f_lNI IN} r dot[J] dfi ({UII"'I-IUI} ") =¢

(AS)

DET, (fo.INilNirdfi)i (IUli"'t-lUI}"),

wherethe notation DET¢ signifies that dot [J] has been approximated by its value at the centroid of
the element, rl, = (0.0.0). thus allowing the only element-dependent term in the integrand to be

brought outside the integral.

Spatial derivatives occur in terms like the expression for the viscous flux vector,

Atfl l+Retl orlk dIN} arl. a{N}rdet[J] dfl {UI} (A6)
JQI,, Re ) axs ank axj an,.

where repeated latin indices imply summation over the dimension of the domain _e. The metric data

,. _k%"are elements of the inverse of the transformation Jacobian [ J,j ]-i,
0It,
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(J22J33 - J32J23 ), (J13J32 - J12J33 ), (f12J23 - J13J22 )

-1 = [ _j ] = 1 (j31J23_ J21J33), (jllJ33_ ,]13.]3,), (J21J13_ .]23Jll) (A7)['/lj]
-Ox; J det[J] (J21J32 - J31J22 ), (Jl2J3l - J32Jlt), (JllJ22 - J12J21 )

[

and, as with det [J], the metric data are functions of position within the element. As a simplifying

approximation, the metric data can be evaluated at the centroid of the element, designated by

drlk
EJK e = _ (A8)

Ox/ n, --(o,o,o)

The contribution of the viscous flux vector term to the residual for u_can, therefore, be approximated

by

Atfn(l+Ret } 0_j, a{N} a11,,, a{Nlrdet[J] d_ {UI} =
, Re dxj a_qt dx/ arlm (A9)

Re E , Or1, drlm

where the "effective Reynolds number", ReE, is

1 l+Re t
= (A10)

Re E Re tit =(0,0,0)

A.2 MASTER MATRICES

In the above examples, the simplifying approximations have resulted in an
element-independent integral that can be evaluated once and for all, producing a master matrix that
is dependent only upon the choice of basis functions. A special notation is used to describe these
master matrices with the general form [Mabcd], where

M: prefix denoting the dimensionality of the element master matrix,
M = A for 1D, B for 2D, and C for 3D

a: an integer indicating how many bases occur in the integral

b,c,d: integers 1,2, or 3, denoting the rlrdirection of the derivatives in the matrix,
or 0 for no derivative
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In the first example, the element master matrix is

.1 +1 +1

fo f f f (All)[C200] -= {N] [N} rdO = [N} {N} rdBldB2d_13
• -! -1 -1

where C signifies that 3-dimensional basis functions are being used, and two bases occur in the
integrand with no derivative operations. The master matrix associated with the viscous flux vector is

.1 .1 .1

tC2KMJ-f_ OINJOINl_dO: f f f OtNtOINJ_ (AI2)
• c3rl_ Orlm -1 -l -1 C3*lk O_m drlldrl2drl3

In Eq. (AI2), the 3-dimensional master matrix has two bases and each is differentiated. When
combined with the metric data, the summation convention is applied to give the expanded expression

EJK EJM(f_ a{N, a{N}r ). OTIk OTIm dfl = EJK EJM [C2KM] =

[C211](EllEII +E21E21+E31E31) +

[C222](E12E12 +E22E22 + E32E32) +

[C2331(E13E13 +E23E23 +E33E33) +

[C212] (Ell El2 +E21 E22 + E31 E32) + (A13)

[C221](EllE12 +E21 E22 + E31 E32) +

[C2131 (Ell El3 +E21 E23 + E31 E33) +

[C231] ( Ell E13 + E21 E23 + E31 E33 ) +

[C223] (E12E13 +E22E23 + E32E33) +

[C232] (E12E13 +E22E23 + E32E33)
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All of the required master matrices can be calculated and stored as a pre-processing step. The
following examples were computed using a 5th-order gaussian quadrature rule.

84244212 -442 -2 -221 -I

4 84 224 -442 -2-22 1
24 84 2 4 2 -224 -4 -11 2 -2

1 4 2 4 8 2 1 2 4 . -2 2 4 -4 -I l 2 -2 (A14)
[C200] = _7 4 2 I 2 8 4 2 4 ; [C201] = _ -2 2 I -I -4 4 2 -2

2 4 2 I 4 8 4 2 -2 2 I -I -4 4 2 -2

l 2 4 2 2 4 8 4 -I I 2 -2 -2 2 4 -4

2 I 2 4 4 2 4 8 -I l 2 -2 -2 2 4 -4

-4 -2 2 4 -2 -I 1 2 -4 -2 -I -2 4 2 1 2

-2 -4 4 2 -I -2 2 1 -2 -4 -2 -I 2 4 2 1

-2-442-I-221 -I-2-4-21242

. -4 -2 2 4 -2 -I 1 2 . -2 -I -2 -42 1 2 4 (AI5)
[c202] _ ; [c203]=-2-112-4-224 -4-2-1-24212

-1-221-2-442 -2-4-2-12421

-1-221-2-442 -1-2-4-21242

-2-112-4-224 -2-1-2-42124

4 -4 -2 2 2 -2 -1 1 2 2 -2 -2 1 1 -1 -1

-4 4 2 -2 -2 2 1 -1 -2 -2 2 2 -1 -1 1 1

-2 2 4 -4 -1 1 2 -2 -2 -2 2 2 -1 -1 1 1

. 2-2-4 4 1-1-22 . 22-2-2 1 1-1-1 (A16)
[C211] = _8 ', [C212] =2-2-I 1 4-4-2 2 I 1-1-1 2 2-2-2

-2 2 1 -1 -4 4 2 -2 -1 -1 I 1 -2 -2 2 2

-1 1 2 -2 -2 2 4 -4 -1 -1 1 1 -2 -2 2 2

1 -1 -2 2 2 -2 -4 4 1 1 -1 -1 2 2 -2 -2

2 2 1 1 -2 -2 -1 -1 2 1 1 2 -2 -1 -1 -2

-2 -2 -1 -1 2 2 1 1 1 2 2 1 -1 -2 -2 -1

-I -I -2 -2 1 1 2 2 -1 -2 -2 -1 1 2 2 1

. I I 2 2-I-I-2-2 .-2-I-I-2 2 I 12 (AI7)
[C213] = "_2 2 2 I I-2-2-I-I ; [C223] = -_2 2 1 I 2-2-I-I-2

-2-2-I-l 2 2 I I 1 2 2 I-I-2-2-l

-I -I -2 -2 I I 2 2 -I -2 -2 -l I 2 2 I

1 l 2 2 -l -l -2 -2 -2 -I -I -2 2 I l 2
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The premultiplication of [C30K0] is executed by forming the inner products of {UJ}7,with each of
the column-vector elements in the hypermatrix, resulting in a 8x8 scalar matrix,

A.3 SUMMARY

The following is a summary of the compact notation used in this dissertation.

Metric Data

DETe =- the determinant of the transformation Jacobian evaluated at the centroid of
the element

EIJe _ the (i,j)element of the inverse of the transformation Jacobian [ -_ ]evaluated
[ dx_ J

at the centroid of the element

Mass Matrix

*1 *l *1

tc2oo], f f f fNJIN)_dn,dn_dn_
-1 -I -I

Gradient Matrices

*1 *1 *1

tc2o_]=tc2_o]_-= f f f IN_ olg}Tdnldl]2dn3r3.

• 1 *1 *1

[C202] = [C22C,]r . f f f INi°lN_'an,an_an__.-I -t -1 ",2

*1 .1 .1

[C203] = [C230] r . f f f IN} a{N}rdrl'drl2dn3.3.
-I -1 -I -"3

.... , _,_mlHIIII II I I II IIII H I
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Diffusion Matrices

+l ,,t ,,raiN} dIN}r

f f ft " drlldrl2drl3[C211] E Orl_ Orl-I -1 - 1

•1 .,t +raiN} dIN}r
[C222] _ f f f d_ldrl2drl3-t -t - Or12 Orl2

",1 +1 .1

f f f olin OINl'dn,dnedn'[C2331 -" Or13 Orl-1 -1 -1 3

/lflflalN} a[N]rdrlld_2drl3[C212] = [C221] r ® -----
-t -i -I Orlt 0112

•t .l .raiN} OIN}r
[C2131 =[C2311 r" f f f drltd_2d_3

-I -I ..t Orlt c3_3

f'/_f'olm alN}rdrltdrl2drl3[C2231 = [C232] r "
-! -l -1 Orl2 011:3

Convection Matrices
*1 *1 *I

tC301o] " f f f {N}0IN----[anIN}r drltdrl2d113
-t -t -t --,l

*1 +1 ,',1

[C3020] • f f f IN}dIN---[}an{NI' drltdrl2drl3-t -t -I -"_

*1 *1 *1

diN} drl drl• y : : I"l .-! -I -I

.............. ...... ,, i ii illl Iffr I II I IIIIIIIII I II II • I I [[[
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