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ABSTRACT

As the field of computational fiuid dynamics (CFD) continues to mature, algorithms are required to
exploit the most recent advances in approximation theory. numerical mathematics, computing
architectures, and hardware. Meeting this requirement is particularly challenging in incompressible
fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and
efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to
accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for
instantaneously enforcing conservation of mass and a force in the mechanical balance law for
conservation of momentum, Proving this assertion has motivated the development of a new,
primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM).
The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin
weak statement. equal-order interpolation for all state-variables, a 8-implicit time-integration scheme,
and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation
for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of
the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the
discretized continuity-constraint function, (c) development of auniformly H' Galerkin weak statement
for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and
numerically well-posed boundary conditions, and (e) investigation of sparse data structures and
iterative methods for solving the matrix algebra statements generated by the algorithm. In contrast
to the general family of “pressure-relaxation” incompressible CFD algorithms, the CCM does not use
the pressure as merely a mathematical device to constrain the velocity distribution to conserve mass.
Rather, the mathematically smooth and physically-motivated genuine pressure is an underlying
replacement for the non-smooth continuity-constraint function to control inherent dispersive-error
mechanisms. Dominated by this dispersive-error mode, the non-smoothness of the discrete continuity-
constraint function is proven to play a critical role in its ability to remove the divergence error in the
discrete velocity distribution. The genuine pressure is calculated by the diagnostic pressure Poisson
equation, cvaluated using the verified solenoidal velocity field. This new separation of tasks also
produces a genuinely clear view of the totally distinct boundary conditions required for the continuity-
constraint function and genuine pressure. A broad range of 3-dimensional verification, benchmark,
and validation test problems, as computed by the code CFDL.PHI3D, completes this dissertation,

xviti



1. INTRODUCTION

1.1 PURPOSE

As the field of computational fluid dynamics (CFD) continues to mature, new algorithms are
required that are capable of exploiting the most recent advances in numerical mathematics, computing
architectures, and hardware. This requirement is particularly true in the area of incompressible fluid
mechanics, where there has been a continual interest in primitive-variable CFD formulations that are
accurate, efficient, and robust inthrec dimensions. Since most incompressible fluid flows of practical
engineering interest are turbulent and possibly unsteady, the issues of turbulence closure and time-
accuracy must also be addressed. For turbulent tiows, the promises of direct numerical simulation
(DNS), where all of the relevant length scales are resolved with highly refined meshes, and large eddy
simulation (LES), where the smallest length scales are modeled, have yet to be realized (Moin, 1992).
therefore, some form of turbulence modeling based upon the Reynolds-averaged form of the
Navier-Stokes (RANS) equations is necessary to approximate the effects of tarbulence upon the mean
flow. For a time-accurate solution in three dimensions, an implicit time-integration technique with
its potential for high-order accuracy and larger usable time-steps is becoming the method of choice
for current CFD algorithms.

1.2 APPLICATIONS

In the preface to his classic text on fluid dynamics, Batchelor (1967) explains why he chose
to focus on incompressible fluids: 1 regard flow of an incompressible viscous fluid as being at the
centre of fluid dynamics by virtue of its fundamental nature and its practical importance.” Whereas
compressible fluids and irrotational flows tend to be the primary concern of acrodynamicists,
applications for incompressible Puids and isochoric flows cut across the boundaries of almost every
engineering discipline. The fields of industrial and environmental fluid mechanics are dominated by
fluids for which the incompressibility condition is a valid assumption (Hunt, 1991).

Industrial fluid mechanics (IFM) covers those aspects of the design, manufacture, and
operation of industrial products that are related to tluid-flow problems. Examples of 1M applications
involving incompressible fluids include flows of liquids in chemical processing plants, recirculating
cooling water in power plants, wacer flows in open channels, and air flows in the heating and
ventilation of rooms and cooling of electrical equipment. Envirormental fluid mechanics (EFM)
refers to fluid motions in the lower atmosphere, in the ground, and in rivers, lakes, and scas that relate
in some way to problems connected to the environment.

In a recent review paper, Hunt (1991) presents several examples of current industrial and
environmental fluid-flow problems. Incompressible CFD plays an integral role in the solution process
for many of these problems. For example, safety and accident analyses now rely on a combination
of scale model experiments and computational experiments as a part of the “fluid-dynamicist’s tool
kit". Turbulence, heat transfer, forced convection, buoyancy-driven source terms, and mass transport
of toxic and/or reacting (e.g., combustion reactions) materials are physical phenomena typically
included in computational maodels.




The investigation of the disastrous fire at the King’s Cross underground station is an important
case-study of how fluid-flow problems associated with accidents and safety-related issues are now
being studied and how the results of such EFM studies influence subsequent government decisions.
On November 18, 1987, near the end of the evening rush-hour, a fire began beneath and near the
entrance of a wooden upward-moving escalator located in a tunnel sloping up from the train platforms
to the large ticket hall of King's Cross station, one of London’s busiest underground and railway
terminals. The fire burned slowly for about 15 minutes and then spread rapidly upward and ignited
the escalator in the upper part of the tunnel. Intense fumes and smoke developed on the escalator and
in the ticket hall. The fire killed 31 people and seriously injured over 80. The follow-up investigation
focused on a number of key technical questions involving the growth and movement of the fire up
through the tunnel. Included in these studies were experimental scale models and a computational
model. The CFD analyses used the 3-dimensional incompressible finite volume code FLOW3D to
simulate the motion of the turbulent flame front that flowed up the tunnel. It was postulated that the
flame front was driven by the steady release of buoyant air at the original point of ignition of the fire
and by air movement induced by arriving trains. The CFD model produced quantitative and
qualitative data on the structure and speed of the resulting buoyant plume. These data assisted in the
design and interpretation of subsequent scale-model experiments. “This investigation is just one
example where fluid-dynamics computer codes have greatly helped in solving environmental and
safety problems where there are many processes and the geometry of the flow is quite complex™
(Hunt, 1991),

1.3 ORIGINAL CONTRIBUTIONS

Recognition of the dual role of the pressure inthe incompressible Navier-Stokes conservation
law system has motivated this investigation of a new time-accurate primitive variable CFD algorithm,
Upon imposition of the incompressibility condition, the pressure assumes the dual roles of both a
Lagrangian multiplier instantaneously enforcing an isochoric constraint on the flow ficld
(conservation of mass) and of a dynamical state-variable acting as a part of the mechanical force
balance law for the ilow (conservation of linear momentum) (cf. Gresho and Sani, 1987, and Pelletier
et al., 1989). The proposed algorithm accommodates both of these requirements by (1) applying a
continuity-constraint potential function to enforce a robust conservation of mass and (2) using the
derived Reynolds-averaged pressure Poisson equation with mathematically well-posed and
physically-motivated Neumann boundary conditions to obtain an accurate and discretely continuous
pressure solution,

A critical requirement for demonstrating the feasibility of this algorithm, as an accurate and
cost-effective CFD finite-element technique, is its successful extension to 3-dimensional flows, As
original contributions to the study of incompressible CFD, this dissertation presents:

(a) a derivation of an accurate expression for the unsteady evolution of the divergence error,
thus providing a firm and exact theoretical foundation for the continuity-constraint
algorithm,

(b) an investigation of the separate roles of the non-smooth continuity-constraint function, ¢,
and the smooth physically-motivated genuine pressure 7,



(c) an investigation of the Galerkin weak statement for the Reynolds-averaged pressure
Poisson equation, thus determining the required order of the Sobolev functional space
for the turbulent diffusion (eddy viscosity) source term,

(d) an investigation and resolution of physically and numerically well-posed boundary
conditions for the selected state-variable serving as the mass-conserving constraint
function,

(e) an implementation of the CCM using a finite element semi-discretization of a Galerkin
weak statement with an optional Taylor Weak Statement extension for Q in R’,

(f) an efficient solution strategy for work-station-based computing,

(g) an investigation of sparse iterative solvers and sparse data structures for solving the
terminal linear algebra problems required by the algorithm, and

(h) a verification and benchmarking for isothermal and nonisothermal test cases in R’,

1.4 SCOPE

A discussion of the mathematical formulations that constitute the conservation law system
for incompressible fluids is presented in Chapter 2. In Chapter 3, a review of the history of
computational methods for incompressible fluids and a summary of the current state-of-the-art for
incompressible CFD algorithms are presented. The present method. the Continuity Constraint Method
(CCM), is described in Chapter 4. Numerical linear algebra issues for the CCM are addressed in
Chapter 5, and the resulting implementation on a UNIX workstation is discussed in Chapter 6. In
Chapter 7, relevant 3-dimensional benchmarking studies used to validate the theory and implementa-
tion of the CCM are given, and, finally, conclusions and recommendations resulting from this
research are presented in Chapter 8.




2. CONSERVATION LAW SYSTEM

In the continuum description of fluids, the governing physical equations can be grouped into
four classes: (1) kinematic relations concerned only with the geometry of motion, (2) kinetics and
mechanical balance laws relating forces (stresses) to motion (strain-rates), (3) thermodynamic
principles producing equilibrium relations between heat, work, and system properties, and
(4) constitutive laws which relate kinematic variables to kinetic variables for specific material groups
(Reddy, 1986). The conservation law system for incompressible viscous fluids consists of a coupled
set of partial differential equations that draw from all four categories. These physical laws are the
conservation of mass, conservation of linear momentum, and conservation of energy. Even though
the theoretical treatments by Navier (1822) and Stokes (1845) were concerned only with the
mechanical balance laws (Lamb, 1932), the complete set of equations is now commonly referred to
as the Navier-Stokes equations for Newtonian fluids. The details of the derivation of these equations
can be found in any basic text on fluid or continuum mechanics, for example the books by Aris
(1962), Batchelor (1967), Spencer (1980), Shames (1962), or White (1974). This chapter will present
the equations in their general continuum forms and demonstrate how the incompressibility condition
produces the snecific equation set addressed by incompressible CFD algorithms.

2.1 INCOMPRESSIBILITY CONDITION

All fluids are compressible to a greater or lesser degree. By assuming the density is constant,
the incompressibility condition represents an idealization of the physical behavior of liquids and gases
for certain flow conditions and thermodynamic states. This idealization assumes that any density
perturbations due to cither pressure or temperature variations are sufficiently small to be negligible
(Tritton, 1988). Small variations in density (due to temperature and/or species-concentration
gradients) inducing buoyancy body forces can be accommodated under the incompressibility
condition by adding buoyancy source terms to the momentum equations. The incompressibility
condition requires that the kinetic equation of state for the fluid have a special barotropic form,
specifically,

F(p.p)=F(p)=p-p,=0 ()

where p is the thermodynamic (or thermostatic) pressure, and p, is the assumed constant density.

Rosenhead (1963) presents an extensive discussion of the conditions under which fluids may
be considered incompressible. For steady and unsteady liquid Hows, the absence of cavitation and
liquid-vapor phase changes are the primary requirements for neglecting temperature and pressure
eftects. In order to exclude the effects of high frequency acoustic waves, the term wl, /o must be
small, where o is the radian frequency of small pressure waves, L, is an appropriate length scale, and
a is the acoustic celerity (speed). In gas flows, the frequency o also refers to oscillations of any
nearby solid boundaries, Again 0/, /a must be small, implying a slowly varying flow. Three
additional conditions must be met for gas flows: (1) a low Mach number, U, /a<0.2, (2) small relative
temperature differences, (7,7 )/ T, near boundaries . and (3) a small reference length scale, gL, /e,
relative to atmospheric length scales  (for terrestrial gravitational effects) where g = |g | is the
magnitude of the gravitational acceleration vector.




2.2 CONSERVATION OF MASS

The principle of conservation of mass (or the continuity principle) states that, for a material
body in motion, the total mass of the body remains unchanged during the motion. d’Alembert first
developed the continuity equation in 1752 for the steady rotationally symmetric motion of a perfect
gas, and its generalized form was derived by Euler in 1757 (Malvern, 1969).

The general form of the continuity equation is

1 Dp dul.
gpr =1 2P, g )
P T

where ¢ is time, x, is the spatial coordinate, p is the density, u(x,, 1) is the velocity vector field, and
D(-)/Dt is the material derivative operator defincd as

D), A8 ,, ) 5
Dt ot / ox;

In Egs. (2)-(3) and throughout this dissertation, the Einstein index summation convention will be
followed; that is, repeated latin indices imply summation over the dimension of the domain. From
Eqg. (2), the assumption of constant density results in

Rpg) == b= 2V 0 @)

where the divergence of the velocity field, du, /x, is called the dilatation (expansion) rate. Therefore,
for an incompressible fluid to conserve mass, its velocity vector field must necessarily be solenoidal,
and its motion must be isochoric or volume preserving. One often sees references in the literature to
incompressible flows, Strictly speaking, this is incorrect. A fluid may be considered incompressible,
but the resulting flow is isochoric. Isochoric flows may also be produced by compressible fluids.

2.3 CONSERVATION OF MOMENTUM

Newton's second law of motion for a single mass particle can be extended to a system of mass
particles, assuming that Newton's third law holds for the action and reaction of internal forces, to
produce the momentum principle. In its continuum form, this principle is a basic postulate of
continuum mechanics (Malvern, 1969). The conservation of linear momentum can be stated in terms
of Cauchy’s first law of motion,

¢
gf(u‘,) =p ot Eo" ~ pb =0 )




where ph, is a body-force vector field and o, is the Cauchy stress tensor. Equation (5) is a mechanical
balance law in that the inertial force of a material body, associated with the product of its mass and
acceleration, is balanced by all external surface and body forces. If one assumes that the conservation
of the moment of momentum (for the nonpolar case) also holds, then the symmetry of o, can
be deduced. When distributed moments exist in the fluid, Eq. (5) is still valid; however, the stress
tensor is in general no longer symmetric.

A fundamental assumption in the formulation of Eq. (5) is that the continuum is viewed from
an inertial (or Galilean) frame of reference. An inertial reference frame is one which is not
accelerating. A rotating coordinate system is a special case of a non-inertial reference frame for which
corrections to the accelerations terms in Eq. (5) are available. These corrections take the form of
Coriolis ( 2wxu ) and centrifugal ( wx(wxr) ) accelerations that are added to the inertial terms in
Eq. (5), where © is the angular velocity of the reference frame, and r is a position vector for the
material particle under study. When Coriolis inertial forces represent dominant terms in the
conservation of momentum, then the resulting condition produces geostrophic flows (Tritton, 1988).

2.4 CONSERVATION OF ENERGY

The energy equation arises from the energy-balance postulate of the first law of
thermodynamics, wherein the time-rate of change of the total energy (kinetic plus internal energy)
is equal to the sum of the work done on the system by all external forces and the heat transfer rate into
the system from both external and distributed internal heat sources. First derived by Kirchhoff for a
perfect gas in 1869 and for the general case in 1894, the energy equation takes the form

D 9,
f(e) = p-[«;f»o'je,l-—p.w—é;—’ =0 (6)

where ¢ is the internal energy, s is the distributed heat generation, and ¢, is the heat transfer rate by
diffusion across the system boundaries. The stress power, o, €, , is the external power input per unit
volume not contributing to the change in Kinetic energy. The strain-rate tensor €, is defined by

. l[a“f ,aulJ (7

A more general energy equation can be developed by adding to Eq. (6) a relation for the
conservation of mechanical energy. The balance law for mechanical energy, independent of any
thermodynamic considerations, is also derivable from the conservation of momentum, Eq. (5), and
expresses the principle that the rate of change of kinetic and potential energy is equal to the rate at
which the translation forces do work on the system.

The second law of thermodynamics, as expressed mathematically by the Clausius-Duhem
inequality (Yih, 1969), plays an important role in imposing restrictions upon the constitutive relations
for the conservation law sy stem.




2.5 CONSTITUTIVE RELATIONS

Cauchy's cquation of motion, Eq. (5), holds for any continuum no matter how the stress
tensor o, 1s related to the strain rate. The relationship between the stress field and the corresponding
motion is defined by the constitutive equations selected for the particular material to be modeled. The
Navier-Stokes equations are derived for a class of fluids called Newtonian fluids, where a Newtonian
fluid is a linear Stokesian fluid. The fundamental behavior of a lincar Stokesian fuid is based upon
the following assumptions (Aris, 1962).

(1) The Cauchy stress tensor g, is a linear function only of the strain-rate tensor v, and the
local thermodynamic state.

(2) The fluid is homogeneous. The spatial distribution of the stress field is a function only of
the positional variation of the strain rate and does not explicitly depend on v,

(3) The fluid is jsotropic. There are no preferred directions, implying that the principal
directions of o, and &, are the same,

(4) When the fluid is at rest, €, = 0, and the state of stress is hydrostatic, o, = -pd, |, where 6,
is the Kronecker delta,

The Navier-Poisson law (also called the Stokes viscosity law) for o Newtonian fluid,
satisfying the above assumptions, is

a,=-pb, +Ae, b, +2uc, ()

where p and A are the first and second coeflicients of viscosity, respectively. Note that the trace of
the strain-rate tensor, £, , is just the dilatation rate Ou/dx,. The simplest case for [-dimensional shear
flow is due to Newton (1687). The 3-dimensional cases were obtained by Navier (1822) for
incompressible fluids using molecular models and by Poisson (1831) for the generalized form. The
continuum theory is due te St.-Venant (1843) and Stokes (1845), (Malvern, 1969).

For compressible fluids. the variable pin Eqg. (8) can be readily set equal to the
thermodynamic pressure as defined by a suitable kinetic equation of state. The definition of s more
problematic for incompressible fluids. As a result of the incompressibility condition, the hinetic
cquation of state does not include the pressure; therefore, the pressure can be defined in the
thermodynamic sense only as the limit point for a sequence of increasingly less compressible fuids,
One, therefore, must view the pressure p in Lig. (8) as a dynamical (kinetic) variable (Aris, 1962).
Some insight into the nature of p can be found by recasting Eq. (8) in terms of the stress and
strain-rate deviators, defined by
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Inserting Egs. (9) into Eq. (8), one obtains
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Noting that for an incompressible fluid, £,=0, and by definition the trace of the deviatoric stress and
deviatoric strain-rate tensors is zero, one finds upon contraction of Eq. (10) that
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For an incompressible fluid. the pressure is a kinetic state-variable, dependent upon the flow and
equal to the mean of the normal stresses at a point. Batchelor (1967) defines p as the modified
pressure p.equal to the absolute pressure minus the pressure variation due to gravity and position
trelative to some datum elevation). This modified pressure (also referred to as the motion pressure,
Gebhart ot al |, 1988) arises strictly from the effect of the motion of the fluid.

In Eg. (10), the grouping (A+ %ap) is called the hulk viscosity, k. For compressible fluids, it is
a common practice (with important exceptions) to adopt the Stokes assumption and assume k=0,
primarily because x is extremely difficult to determine (Yih, 1969). For incompressible fluids, the
question is moot. since €,=0, obviating the need to determine the second coefficient of viscosity, A.

Collecting ideas, the Navier-Poisson stress-strain law for an incompressible Newtonian fluid
can be stated as

(12)

Applying Fg (12) to the diffusion term in the momentum equation gives, assuming constant .
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I'he stress power term in the energy equation can also be transformed using Eq. (12).
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Replacing the strain rate in kq. (14) with its unique deviatoric decomposition, t.e.. the sum of a
spherical (1sotropic) tensor and the deviatoric strain-rate tensor.

1
cu = 3£kt61; ) ('U (IS)

produces
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In Equation (16), it has been recognized that €,, , as the dilatation rate, is zero for an incompressible
fluid. The term pu® is the dissipation function (Yih, 1969) and represents the irreversible rate of
transformation of mechanical energy into thermal energy due to viscous effects. A scaling analysis
(Schlichting, 1979) shows that for small values of the dimensionless grouping Ec/Re, where Ec is the
Eckert number ( = U,%c,AT,), Re is the Reynolds number (= U, L/ v), and subscript “r” denotes a
suitable reference or scale value, viscous dissipation may be neglected.

Focusing on the body force term, pb, , in Eq. (5), a commonly occurring body force is due to
small local variations of density, caused typically by temperature and/or species-concentration
gradients in a gravity field. Limiting consideration to temperature gradients, the density p(7) is
assumed to be a linear function of temperature 7, obtaining

p(N=p,[1-B(T-T,)] (17)

where subscript “r" denotes a suitable reference state, and P is the coefficient of isobaric volume
expansion, defined by

p:_i(gﬂ) (18)

For an ideal gas. p=pRT, and B=1/T. From Eq. (17), the body force pb, due to local density
perturbations becomes

pb=-(p,-plg =-p,B(T-T)g &, (19)

where g = |g,| is the magnitude of the gravity vector and g; is a unit vector in the direction of
gravitational acceleration. Equation (19) is due to Oberbeck (1879) and Boussinesq (1903) and is
typically referred to as the Boussinesq buoyancy approximation.

Using Eq. (17) to approximate the buoyancy body force appears to violate the
incompressibility condition of constant density. This violation is considered acceptable if the density
variations are sufficiently small to induce only buoyancy forces. Gebhart et al. (1988) present a
scaling analysis, based upon a Taylor series expansion of p(T,)—p(T ), that provides insight into the
conditions for which the Boussinesq approximation is valid. They identified two dimensionless
parameters that should be small relative to unity,

L
R, - &% dp R, = ap (20)
8 9pls P,

where g is a conversion constant. To ignore the modified-pressure effect on density, the parameter
R, must be small. As an extreme case, pressure effects cannot be neglected for liquids near the
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thermodynamic critical point of a vapor-liquid system. If the density variation is sufficiently linear
in T for the temperature region of interest and the parameter R, is small, then the Boussinesq
approximation is valid. An interesting example for which the Boussinesq approximation is not
appropriate is the case of a buoyancy-driven flow in cold water near 4°C, the point at which a density
extremum occurs. Slightly above 4°C, (3 is positive, and slightly below 4°C, B is negative. The density
variation near this temperature is significantly nonlinear, and the Boussinesq approximation should
not be applied. A more extensive analysis into the suitability of the Boussinesq approximation for
liquids and gases has been carried out by Gray and Giorgini (1976) in which they allowed all relevant
properties to be linear functions of temperature. They identified eleven dimensionless parameters
which must be small to validate the approximation.

The final term in the energy equation requiring a constitutive relation is the divergence of the
conduction heat flux, ¢, Fourier’s law of heat conduction (Yih, 1969) can be applied, introducing the
transport property &, the thermal conductivity. Fourier’s law states that

R @)

The divergence of the heat flux vector is, therefore,

9, 9 (9T (22)
ax} ax/ 6x/

Finally, the material derivative of the internal energy can be transformed into a term involving
the fluid temperature (Batchelor, 1967) by

De DT
______ o PI (23)
P Dt P Dt

where ¢, is the mass-specific heat capacity.

Applying the above constitutive relations and imposing the incompressibility condition, the
Navier-Stokes equations are, upon expansion of the material derivative operators,

du
D(py) = =1 =0 (24)
dx,
du d du p
=ty Y - vy m ' - = (25)
& (u,) 5 + uou = v «ox + p()" [B(T-T,)g|g =0
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X
]




11

where v is the kinematic viscosity and o is the thermal diffusivity. Equations (25)-(26) are in
divergence form where the incompressibility condition has been applied to allow the grouping of the
advection and diffusion terms.

2.6 REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS

Most flows of engineering interest are turbulent. Turbulent flows are inherently
3-dimensional, nonlinear, and unsteady, exactly the conditions for which the Navier-Stokes equations
have been derived. Equations (24)-(26) should in theory be able to predict the physics of turbulence
for incompressible fluids. The difficulty arises due to the fact that turbulent motion is characterized
by a large number of 3-dimensional vortex elements (eddies) varying in size and fluctuating over a
range of frequencies (Haroutunian, 1988). Turbulence, therefore, involves a wide spectrum of length
and time scales. This spectrum is so wide that it presents a computationally intractable problem. In
order to attain approximate solutions for turbulent flows using CFD algorithms based upon
Egs. (24)-(26), spatial and time discretizations would need to be fine enough to capture the
characteristics of the smallest dissipating eddies. For practical engineering analysis, the capacity of
today’s computers is unable to meet these requirements using adirect solution approach toturbulence.
Such a direct approach, called direct numerical simulation (DNS) (Moin, 1992), is classified as one
of the Grand Challenges of scientific computing, requiring the best available supercomputing
capability.

The response to this dilemma has been a statistical approach in which the instantaneous
state-variables are decomposed into mean and fluctuating parts. For the general state-variable g, this
Reynolds decomposition can be represented mathematically as

4=q4+q @n

where the overbar and superscript (' ) denote mean and fluctuating values, respectively. Two
statistical averaging procedures employed in incompressible turbulence theory are time-averaging and
ensemble averaging. Time-averaging is expressed by

- _[ 1, Af,
""A;!fxn 9(8)d¢ (28)

where 1, is a reference point in time and A, is a sampling interval. Ensemble averaging involves
calculating the arithmetic average of the results of a series of N experiments (realizations) obtained
under identical conditions. The ensemble average is

i

1 N
q-- Y a') (29)

k)

where ¢' (1, ) is the kth value of the state-variable obtained from a single realization ¢, seconds after
the beginning of the experiment. If the turbulence field is statistically stationary, then the ergodic
hypothesis states that the two averaging methods produce identical results (Hinze, 1975). For
nonstationary turbulence in which the time scales of the mean flow and the turbulent fluctuations are
sufficiently different, then time-averaging is still a valid technique. It the nonstationary time scales
overlap, then ensemble averaging must be used.
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When a Reynolds decomposition is executed for the state-variables in Eqs. (24)-(26),
specifically u,, p,, . and T, and when the appropriate averaging technique is carried out, the resulting
partial differential equations are the Reynolds-averaged Navier-Stokes conservation law system.

2(py) = o =0 (30)
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The two second-moment statistical correlations, u,’u,’ and 4T’ in Egs. (31) and (32), come
from the nonlinear advection terms in the momentum and energy equations. These two double

correlations are the turbulent Reynolds stresses ( - p u,u ) and the turbulent heat flux vector

(-pc, u,T’ ). The inability to calculate them directly is the nurbulence closure problem. Turbulence
modeling consists of developing techniques to calculate approximations for the Reynolds stresses,
thus providing an approximate closure for the Reynolds-averaged Navier-Stokes equations.

Excellent general reviews of turbulence modeling can be found in the books by Anderson ct
al. (1984) and Baker (1983), the monograph by Rodi (1980), and the review papers by Ferziger
(1987), Nallasamy (1985), and Speziale (1991). Various methods of turbulence model classification
have been used in the literature. One method depends upon the number of partial differential
equations that must be solved, and another method focuses attention on the “order” of closure,
referring to the order of the correlations that must be modeled through approximations and empirical

data.

Transport equations for the Reynolds stresses can be derived from the Navier-Stokes
equations (cf. Tennekes and Lumley, 1972; and Rodi, 1980) with the following result,

e OWu) | duyu ;T ) ou,'d

‘3-‘. A dx, c?r.dx.
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The Reynolds-stress transport equations, Eq. (33), are a highly nonlinear PDE system containing even
higher-order unknown correlations. The CFD group in Los Alamos (Daly and Harlow, 1970) and the
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Imperial College group in London (Launder et al., 1975) were among the carly researchers to develop
second-order ¢losure models based upon modeled forms of the transport equations for the Reyvnolds
stresses.

At present, the most common methods of approximate turbulence closure are based upon the
concept of a turbulent kinematic ededy viscosine, v/, due to Boussinesq (1877). The eddy viscosity
approach uses a modeled constitutive equation relating the Reynolds-stress tensor and the mean flow
strain-rate tensor. Accounting for invariance, the simplest (linearized) form, modeled afier the Navier-
Poisson constitutive relation, Eq. (12) ,is

where & is the turbulent kinetic energy, equal to one-halt of the trace of the Reynolds stress tensor.
Equation (34) is known as the Boussinesg approximation for turbulence closure.

Based upon Reynolds-analogy arguments, the eddy viscosity can also be employed to produce
closure for the Reynolds-averaged energy equation by introducing the turbulent Prandtl number, Pr'
(=1 for most turbulent flows). The modeled constitutive relation for the turbulent heat flux vector is

toar
ui,T. ) v d7 (35)
Pr' dx,

With Egs.(34) and (35), the momentum and energy equations become

f t?u' du
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For notational convenience, the overbars denoting mean-flow variables have been lett oft gy (16)
and (37). Unless stated otherwise, all state-variables in the sequel are for the mean ow

Boussinesg-based turbulence models view the eddy viscosity as the product otacharacteristic
turbulent velocits and length scale. The modeling problem then becomes one of selecting methods
for caleulating these two scaling parameters: One of the simplest turbulence models (the zero-equation
model) iy based upon Prandtl’s mixing-length theory (Prandtl, 1925), where the eddy viscosity s
caleulated by
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viaf? o, (38)
ch,

The length scale is /. Prandtl’s mixing-length, deseribed in the theory as the transverse distance over
which Nuid particles maintain their original momentum. Mixing-length models remain very popular,
especially in external acrodynamics applications. The text by Cebici and Smith (1974) presents a
detailed review of the method as it applies to compressible Navier-Stokes flows.

One-equation models continue to use the mixing-length as their length scale, but the velocity
scale is related to the square root of the turbulent kinetic energy . calculated by o transport equation
derived from the Navier-Stokes equations. The one-equation models have not gained wide acceptance
since their dependence on the mixing-length limits their application primarily to turbulent flows
already adequately modeled by the simpler zero-equation models (Anderson et al., 1984), The
additional effort in caleulating & ha. produced results, when compared to mixing-length models, that
have not proven to be computationally “cost-eflective.”

For internal Nows, the two-equation models are among the more popular methods for
turbulence closure. Among this class of methods, the k¢ (CPKE) model, originally derived by Harlow
and Nakayama (1967 and 1968), uses two transport equations to caleulate both & and the isotropic
dissipation rate €. The velocity scale is agnin related to the square root of the turbulent kinetic cnergy,
and the length scale is proportional o k' /¢ Once both k and ¢ distributions have been caleulated, the
vddy viscosity is determined by the Prandtl-Kolmogoroy relation,

vl k: (39

where € v an empirically denved constant

PRE systems can be categorized by the range of turbulence intensity thes have been designed
o model  The parameter charactenizing turbulence level (distribution) s the tarbulence Reynolds
number (ReY) defined by

Re'= V' (4t

v

Fora lanminar flow, V=0 by detimtion, theretore, Re isabso zero. Fora tully turbulent incompressible
boundary Tayer Tow, Re” will range smoothly from zero at a solid watl up to the order of 100-300 1
the fully turbulent region

High Revaolds number TRE models (Launder and Spalding, 1974) do not attempt to resolve
the los Re regions near wall boundaries To bridge the region contining the viscous sublayer, trom
the wall out to the fully turbulent boundary Tayer, high Reynolds number TRE models employ wall
frunctions based upon loganthmie faw-of-the-wall velocnty profiles (White, 1974
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Low Reynolds number TKE models have been developed by several rescarchers (cf. Jones
and Launder, 1972) to include the viscous sublayer in the computational domain through the use of
special wall-proximity functions. Patel et al. (1985) published a review of a number of low Reynolds
number TKE models. One of the more promising for nonisothermal flows is that of Lam and
Bremhorst (1981). The TKE system of equations is

k?
te € (41
M
g - ® kv YR e -0 (42)
ar x| ! 0, ] dy,
Lde ¢ ., de € e, €,
de) o' i ue ( v 0'] a, C,/,‘v ® (‘,/,‘z =0 (43)

The model parameters £, ./, , and £, are wall-proximity functions dependent upon the local distribution
of turbulence Reynolds number Re' and a wall-proximity Revnolds number Re’ with definitions

C -0

C, - 144

¢, 192

0, - 10

n - 13

f, - (1 exp( O0188Re ")’ (1:(08C, 7, [Re')
f, - 1008y

fy - 1 expC(Re'/C, [ 1)

Re' - v'/v
Re' - Jkv/v

(44)

where v iy the normal distance from the wall The positive-definite function @ is identical 1o the
Mnematic term in the molecular viscous dissipation function, g (16), and acts as @ production
(source) term for both & and &

2,7 NONDIMENSIONAL FORMS

The nondimensionalization of the conservation law system is important for both theoretical
and computational reasons. Nondimensional scaling provides one method of developing
nondimensional groups that can provide physical insight into the importance of various terms in the
PO system Computattonally, nondimensional forms have the added benefit of prosiding numerical
scaling of the discrete equations when producing the terminal Tinear algebra statement, thus providing
n physically-hnked technique tor improving the ill condittoning of the equation system. Typical
scaling rules for the Navier-Sokes equations are
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(48)

where & is the turbulent thermal conductivity and superscript *** denotes a nondimensional variable.
Applying the above scaling rules to Eqs. (24), (36), and (37), results in

ou’
d(py) = 7 -0 (46)

dx

, oa . M ow o' ‘
;..i‘(u,)~( IR ) ( 1+ Re ) cu,.'ca, CPS, AR -0 47
( N Re o oy
, a8’ d vae V[ 1 Re! ) a8 | /.
J(O') - ¢ u Q" R ' -0 (48)
CTR A Re{ Propre') o } Re

where the nondimensional moduli are the Revnolds number (Re), Prandtl number (Pr), Archimedes
number (Ar). Grashol number (Gr), Eckert number (F¢), and turbulent Reynolds number (Re'),
detined by

U :
Re o b pro’ Are O
v a Re’?

ar L) v}
. MRS L U Re's V'
v? e,AT, v

In the sequel, the superseript *¢* will be dropped, and all state-variables will be assumed
nondimensional

2.8 INITIAL AND BOUNDARY CONDITIONS

Equations (46)-(48) are a coupled set of mixed parabolic/hyperbolic nonlingar partial
dif¥erential equations defining an initial-/boundary-value problem. The problem is well-posed upon
definition of appropriate initial and boundary conditions, Assume that €2 18 an open set of R® with
houndary ¢losure 1, where £ s located locally on one side of o Lipschitzian | (Temam, (983 For
the velocity and pressure Neld, the boundary 1 s subdivided imto [ and 1y where [ =1, 1, and
P by =68 A similar partiioning of [ s required for the energy equation where 1, and 1, do not
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necessarily coincide with I',,and 'y . Mathematically, the problem isto find u(x,.0), P(x,.0), and 0(x,.1)
that satisfy Eqs. (47) and (48) in € and dw/dx,=0 in £ and on 1" (a kinematic constraint) subject to the
boundary conditions for ¢ = 0 of

ui(,t’,l) =W (X0 X € Ty

pof LR )flt‘,e )
P ( Re on Falx0

. 3
( 1+ Re! ) M Fols,t) | xely

Re an
(LR ) s g “9)
O(x.t)-0,(x.1) %, ¢ T
Rlé ‘:' ‘ :::] gz " Golh) 0 Tuw

where u, i the normal component of velocity (outward pointing #) and w,, and u,, are the two
tangential velocity component on 1y (Gresho, 1991). Given boundary data include w,  F, F L F,,,
@, . and (), For the special case of =I", and I~ no Dirichlet dota exist for the pressure. The
pressure is known only to within an arbitrary constant. Also, for this special case of =1, and '~ O,
n solvability condition requires the global conservation of mass, ie.

f'w‘n,dl‘ -0 forrs 0 (%0)

A more general definition for no-slip boundaries allows no relative tangential velocity between the
Nuid and the wall, e, 6, 0w, =~ 0 wsw = 0) (Tritton, 1988).
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The initial conditions are

9uy(x,0)

0 x€Q
ax,
d 0
mhz = X € r
dx,
u(x,0)n =wn, xel,
(81)
I +Re'| U
-P ‘( -“Ré*w] él: = F"(X‘.O) X, € I’R

8(x,0)-0,(x,00 xelp,

1 {1  Re')d® , .
iie(l;t ' Pr;]ef‘, Qo x,0) x € Ly

The above mathematical initial and boundary conditions must eventually be translated into
the various physical conditions addressed by CFD. Boundaries on which velocities may be fully
defined (1',) include no-slip walls and prescribed inflow planes. Partial specification of velocities
oceurs ot tangency, symmetry, and entrainment boundaries. Neumann houndaries can occur at outflow
planes.

2.9 PRESSURE POISSON EQUATION

Even though the modified pressure does not appear in the Kinetic equation of state, a Poisson
equation for the pressure may be derived from the momentum equations. Assuming the necessary
smoothness, the divergence operator is applied to the momentum equations to produce

; d
[ & e | U ®
£(P) 63,(‘“ )
ou u |
;?,, i ) SRS (82)
dx | dt  Re dy,dy
@ Jop du 9 | Re'| w, d¥
S R B I oot b + A1 « 0
dx,{ch, ‘ox, ax| Re | dx, dx, s

Equation (52) can be further simplified, assuming the continuity constraint is satisfied to obtain

Re' [ du, du, )

ap  Owdu 3 IR
Re | dx,  dx

. ) U ae ' » O (53)
dx, dx, Ay, ax, dx, ox, !

d(P) = + Ar-

i i
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The fundamental assumptions implied by Eq. (53) are that both the velocity and the acceleration
vector fields are solenoidal.

Physically-motivated boundary conditions for the pressure Poisson equation can be derived
(Orszag et al., 1986 and Gresho and Sani, 1987) by projecting the momentum equations onto '), Two
basic options for this projection are available, the normal direction (outward-pointing) and two
tangential directions, Projection onto the normal direction produces a Neumann boundary condition
for Eq. (53):

oP a a“n a“u : X4
ot % ax, Areg,

{ I +Re' ) o,
dn (lt,

Re ox ,

The tangential projection with subsequent integration over the boundary surface results in a Dirichlet
pressure boundary. Gresho and Sani (1987) demonstrate that the Neumann boundary condition will
produce solutions for the pressure field that also satisfy the tangential boundary conditions. In
addition, the Neumann houndary condition applies for both £ = 0 and ¢ > 0 and maintains a solenoidal
neceleration.




3. REVIEW OF INCOMPRESSIBLE CFD ALGORITHMS

The robust enforcement of the conservation of mass is the primary challenge for
incompressible CFD algorithms. All admissible solutions to the momentum equations must satisfy
the solenoidal kinematic constraint, ou,/0x=0. This constraint is so critical that a taxonomy for
incompressible algorithms, presented in Table 1, can be developed based upon the method chosen for
conserving mass. The two broad classifications are exact enforcement and inexact (or approximate)
enforcement of the continuity constraint. This chapter presents a brief sketch of the incompressibility
problem and a summary of some of the more popular methods that have been developed over the last
thirty years,

3.1 INCOMPRESSIBILITY - THE PROBLEM

Enforcing the Kinematic constraint of a divergence-free (solenoidal) vector field poses special
problems for any discrete approximation method. The problem, called the div-stability condition
(Boland and Nicolaides, 1983), is independent of any nonlinearities in the Navier-Stokes equations;
for example, it manifests itself in the linear Stokes problem in fluid mechanics and the incompressible
elasticity problem in solid mechanics. If one attempts to produce approximate solutions (independent
of the method, e.g.. finite difference, finite volume, or finite element) for the incompressible
Navier-Stokes equations without satistying or in some way circumventing the div-stability condition,
the results can be unstable and/or nonphysical velocity vector fields and spurious pressure solutions,
Various approaches have been developed tounderstand and explain the nature of the problem, ranging
from detailed mathematical descriptions using the tools of functional analysis to physical intuition.

Gunzburger (1989a) presents a readable description of the div-stability problem as it relates
to the method of weighted residuals in its finite element Galerkin weak statement form for the
isothermal Navier-Stokes equations. Following Gunzburger, one begins with a few mathematical
preliminaries by defining some functional spaces.

For a domain €2 in R' with boundary closure 9Q=1", L*(€2) is the linear space of functions that
are square-integrable (in the Lebesgue sense) over €, defined by

Lz(n)wtq:fgq’dnw; (5%)

L7(€2) comes equipped with the usual inner product and norm,
P = [ ped@ i Igly s (4.9)"" (56)

The subspace L,/(€2) is constrained to include functions with zero mean over Q.

20
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Table 1. Taxonomy of Incompressible Navier-Stokes CFD Algorithms

CONTINUITY

ENFORCEMENT
. Tt e S T T ———— |

EXACT
WITH VORTICITY

METHOD

VORTICITY/
STREAMFUNCTION

ORIGINS

Fromm. 1963 (1'DM)
Baker, 1973 (FEM)

ISSUES/
DETRACTIONS

Practical for 211 onhy
Vorticity BC at walls

VORTICITY?
VECTOR POTENTIAL

Avziz and llellums, 1967

BOS tor vector potential
vorticity BC

VORTICITYVECTOR
SCALAR
POTENTIALS

Arcgbesola and Burles,
1977

6 DOFpede in D
vorivitt RO

VORTICITY/
VELOCITY

Fusel, 1976 (21
Dennis et al., 1979 (1N

6 DOFapode in 3D
voricity B

h

EXACT

INEXACT-
ALGERRAIC

u-I" Direct
(mixed finite elements)

PENALTY

Ladyshenskaya, 1969
Babuska, 1973

Breszzi 1974
W‘W!

Temam, 1968
Zienkiewics etal, 1978

HE-conditioped
numencal diffusion

M-canditioned
Reduced itegrations

INEXACT-
INITIAL VALUE

PSEUDO-
COMPRESSIBILITY

Chuorin, 1967

Steady -state onh
Numencal diftusion

INEXACT-
BOUNDARY
VALUE PROBLEM

MAC/SMAC

Harlow and Welch, 14658

Staggered mesh
Velooity 1)

PROJECTION

Chorin, 1968
Temam, 1969

Stapgered o pon.
stagpered meshes
BC implementation

SIMPLE, SIMPLER,
SIMPLEC. SIMPLEST

Patankar and Spalding,
1972

Staggered mesh, slow
comvergeney, HU
implementation

VELOCITY CORREC
TION

Schneider et al, 1978

Lyutleorder finite
clement, exphont with
Munped miss matns

PISO

fssi 1988 and 1986

Jestep predicton
correcton, staggered
mesh, RO pressure

OPERATOR
SPLITTING

Glowinski, 1988

decouples nonfincartiy
from incompressibibiny

PRESENT

Williams, Noronha, Buker.
1940

Imphen, equal-order,
time-aceurite, e
element Galerhin weak
statement




22

Ll(Q)=(qe Lz(ﬁ):fuq dQ =0} (57)
The Sobolev space H4(€) is defined as
HYQ)={qe L}Y(Q): D°qe L¥(Q)for s=1, k| (58)

where k is a non-negative integer and D' denotes all generalized derivatives up to and including order
s. The Sobolev norm is

k

1/2
PIFIRTT D) HD’qlé) (59)

s=1
The constrained subspace /,'(€)) requires g=0 on the boundary I', such that
HJ(Q)={qe H'(Q): =0 on T} (60)

where /1,7(€2) is equipped with the norm

if]h,

n a 213\112
Iqls + Znéfi] (61)

t=1 ilg

and the norm-equivalent energy semt-norm

Q)‘Q

n 27\
el

1=

lql, = [
\

The classic Galerkin weak statement for the isothermal Navier-Stokes equations is as follows.
One seeks the functions w(x, . 1)e #,'(Q) and P(x,, )e L, (€2) such that

[vew)da=-0 VvveH'(Q) (63)
Jag / ! ]

du \
f g L dQ=0 Vgqell(Q) (64)
a 61/

where f(u,) are the momentum equations in the canonical form as given by Eq.47. Equation (64)
requires that all admissible velocity solutions, u(x,. /)e H, (), must also reside in the constrained
(solenaidal) subspace Z. defined by

Z={ve H (Q): b(v.q)=0 ¥ qe L5(Q)] (65)

where b(v, . ¢) is a bilinear form describing the weak satisfaction of the solenoidal constraint on v,
defined by
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b(v.,q) = f qi‘l dQ  Yve H'(Q),qe L*(Q) (66)
i Q 8.\" i ’

Up to this point, all functional spaces have been infinite-dimensional, and the Galerkin weak
statement, Egs. (63) and (64), is expressed for the continuum Navier-Stokes equations. Assume that
by some method. e.g.. the finite-element method, approximate solutions (u,") to the discrete Galerkin
weak statement have been obtained, where u"e V,) and P" € S," satisfy

[y drwhda-0 vile v
h (67)
» O, A A
f ¢" — da =0 Vg'es,
4 ax
The superscript A" denotes a dependence on some measure of the mesh, the discrete approximation

to the domain €. The finite-dimensional spaces ¥, and S," are the subspaces from which admissible
approximating functions are selected for " and P".

The fundamental problem for the incompressible Navier-Stokes equations isthat V"< H,’ and
S.< L, alone are not sufficient conditions to produce stable approximate solutions. Define Z" to be
the subspace of discretely divergence-free functions. such that

zh=ve vt by gh -0 vghe st (68)

The dilemma arises from the fact that, in general, 2" ¢ Z, i.e., discretely solenoidal functions are not
necessarily solenoidal in the limit as h—0. Based upon the theoretical work of Ladyzhenskaya (1969),
Babuska (1973). Babuska and Aziz (1972), and Brezzi (1974), a stability condition has been
developed ensuring., as #—0, that discretely divergence-free functions tend to solenoidal functions
inZz.

The div-stability condition, also known as the [.BB or inf-sup condition, states that, for a
given pair of approximating functional spaces S,"and 1. if there exists a positive real number y > 0
such that
by} g*
inf sup -~~;~'~—q~?~ > ¥ (69)
O» q"e th O vlh& \’: |v‘ 'l thno

then the discrete solutions "¢ V" and P"e S, to Egs. (63) and (64) will be stable. The selection of
interpolation functions for the velocity and pressure approximations that satisfy the div-stability
condition is the basis for the mixed finite-elements methods (Stenberg, 1987). An analogous
div-stability condition also exists for finite-difference methods, of course, and the well-known
staggered-mesh technique is one method of producing a stable solution (Gunzburger, 1989a).

Zienkiewicz (1977) and Schneider and Raithby (1980) present the div-stability problem in
terms of an over-constraint condition caused by the lack of an independent equation for the pressure.
As an illustration, a Galerkin-type discretization of Egs. (67) for a steady, isothermal flow produces
a Newton lincar algebra statement as
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| JUUL,4,. [JUPL,,,, V6U|””}~A{lFUIMH} (70)
llJUU.]n-‘n’ [0],,,,, lbp'"'| ‘FU‘Ian

where [JUL/] and [JUP) are the Jacobian submatrices arising from the momentum equations. The
submatrix [J{/{*] is the contribution to the Jacobian produced by the continuity constraint. Before
the application of boundary conditions, there are the same number of equations as unknowns. For a
problem in R' and assuming an equal-order interpolation of the velocity and pressure, there are 3n
equations from the momentum equations and » equations from the continuity equation, where n is the
total number of nodes in the mesh. With equal-order interpolation, the velocity components and the
pressures are evaluated at the same locations for all nodes. Before any Dirichlet boundary conditions
are applied. the number of equations (4n) is, thercfore, equal to the number of unknowns, 3 velocity
components and the pressure per node.

Typically, one considers the equations produced by the momentum conservation law to be
associated with the velocity-component degrees-of-freedom. and the equations produced by the
continuity constraint to be associated with the pressure degree-of-freedom. One procedure for
invoking Dirichlet velocity or pressure data is to delete the corresponding degree-of-freedom  from
the Jacobian and to adjust the right-hand-side residual to reflect the specified values for the velocities
and pressures. Let m, be the number of fixed-velocity degrees-of-freedom, and m, be the number of
fixed-pressure degrees-of-freedom. The number of velocity equations to be solved isnow n, = 3n-m,,
and the number of pressure (continuity) equations to be solved is n,=n-m_. The resulting linear
algebra statement is

(JUul, .., [JUPI, ., :
PR W Ay [6Uln'-l . 'Fu}n.-l (71)
[JUU+) [0y, ., |[18Ph,.. (KU,

’
Hpvfll

To prevent the system, Eq. (71). from being overdetermined. the following conditions must
be met.

Lo (72)

Satisfaction of n,+n,2n, is of course trivial, however, satisfaction of the condition n, >n, is dependent
upon the degree of interpolation for the velocity and the pressure. Equal-order interpolation for the
coupled system of Eg. (71) will in general produce an overdetermined (singular) system of equations,
i.e., more equations than unknowns. The singularity can be removed by using an interpolation degree
for the pressure that is less than the velocity interpolation. Let r be the total number of
degrees-of-freedom for the pressure using a lower degree interpolation such that r<n; therefore, n, is
now r-m,, and the condition n,zn, can be met. Similar reasoning is used to explain the need for
reduced integration techniques in the penalty method (Zienkiewicz, 1977), to be discussed in the
sequel.

3.2 EXACT CONTINUITY ENFORCEMENT WITH VORTICITY

Vorticity, as a derived state-variable, plays a major role in many incompressible CFD
formulations. By taking the curl of the momentum equations and applying a vector identity, V- V=0,
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the pressure can be removed from the conservation law system, thus allowing the automatic
enforcement of the continuity constraint, The following sections describe the primary ways in which
vorticity has been used to obtain solutions for the incompressible Navier-Stokes equations in 2- and
3-dimensions.

3.2.1 Vorticity-Streamfunction

The vorticity-streamfunction  formulation was among the first unsteady, incompressible
Navier-Stokes CED algorithms, ‘The original finite-difference algorithm was developed at Los Alamos
(Fromm, 1963 and 1964), and the first finite-element implementation is due to Baker (1973) By
climinating the pressure as a state-variable and enforcing continuity with a vector potential, the
method automatically produces an exact mass-conserving velocity field. Arakawa (1966) employed
the vorticity-streamfunction method to carry out an early investigation into instabilities associated
with dispersive errors (which he termed “noodling™) arising from the advection terms. A thorough
review of boundary condition issues can be found in Roache (1972), Gupta and Manohar (1979),
Baker (1983). Quartapelle and Napolitano (1984), Gunzburger (1989a), and Giresho (1991). The
formulation is not limited to incompressible fluids as demonstrated by the compressible
implementation of Leonardi and Reizes (1981),

Fora 2-dimensional domain (three-dimensional extensions are presented in the next section),
assume the flow is isothermal, Re' 0, and pis constant. Taking the curl of Fg. 47 in RY, dropping the
buoyancy term, and applying the continuity constraint produces the Helmholtz vorticity transport
cquation in conservative form, as

[ ”'
Gew) 90 Yy P IW) (73)
Jt d.x, ! Re dx,

where o is the v-component of vorticity, defined in R by

) ,
dul du, Ju,

W V.u'k €0 (74)
! ax, dx, Jx,
where €, is the permutation tensor.
The pressure is eliminated from Eq. (73) due to the vector identity
) g np 1 ,
VLVP o, S I P 0 inR? (7%)
dx, ().xl dx, dx, dx, dx,
Continuity is automatically enforced by defining the vector potential, k. as
u<Vxyk
) ) )
“1 4/‘(‘.J ) (u’l(‘l, ’£l|\(‘p
dx, o, adx, (76)
) )
u L u, dy
dx, Jx,
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Both the veetor potential (streamfunction) and the vorticity are automatically solenoidal in
2-dimensions since the only non-zero scalar components lie perpendicular to the flow plane. With the
vector identity

Va(Voyk) V(Vpk)  Vigk
Vigk  forVeyk -0

(7

the curl of Eg. (76) produces the Kinematic compatibility equation tying the streamfunction y (and
thus the continuity constraint) to the vorticity.

d(y) = V¢ v w0 inR? (%)

Equation (73), with the velocity replaced by its vector potential, becomes

dw @ a¢ 1 dw

d{w) - * € w
ar ol M ax, Re dy,

=0 in R! (79

Closure has, therefore, been obtained with a Poisson equation, Eg. (78), coupled to a nonlinear
transport equation for the vorticity, Eq. (79) Completion of the initial-/boundary-value problem
requires the specification of well-posed initial and boundary conditions. The primary difficulties are
due to the required specification of the vorticity at no-slip walls (Baker, 1983) and of the
streamfunction at interior no-slip boundaries in multi-connected domams (Gunzburger, 1989a) In
hoth instances, the boundaries require Dirichlet data that are known only as the solution evolves,

Recently, investigators have had success in not specifving any vorticity boundary conditions
at all (Gresho, 1991). The idea is that the streamfunction alone carries all the necessary boundary
information and  that there are no  boundary  conditions  for the vorticity. An early paper
describing this method is by Campion-Renson and Crochet (19781 As an example, assume the
vorticity-streamfunction equations are to be solved as a coupled system for a domain £2 with boundary
closure I = ', /1"y where 17 is the union of all boundary segments on which both y and My/On are
known but m is not, ¢.g.. wall boundaries, and I, is the union of all boundary segments on which both
yoand o are hnown, ¢.g., inflow and outflow planes. Let A be the total number of nodes in the mesh
with p nodes on I, and ¢ nodes on Iy, The total number of degrees-of-freedom on the interior of the
domain is 2N-p-¢). and the total number on the boundary is p unknown vorticities on 1. The total
degrees-of-freedom s, therefore, 2N-p-2¢. Campion-Renson and Crochet cast Egs. (78) and (79) into
a finite element Galerkin weak statement formulation. When the Green-Gauss theorem is applied to
the Galerkin weak statement for Eq. (78), the natural boundary condition is related to the normal
derivative of w. This natural boundary condition, Oyw/on . is employed as a forcing function for the
cquations from Lq. (78) that are associated with the p nodes on 1, For the ¢ nodes on 1, the known
y data can be applied, leaving N-¢ independent equations from Eg. (78). Values for o and the normal
derivative of o are unknown on ', The Galerkin weak statement for Lg. (79) produces N-p-¢
independent equations with Dirichlet data for y being applied on the prg nodes on 1 and U, There
are, therefore, 2N-p-2¢ independent equations and 2N-p-2¢ unknowns; therefore, the problem is
closed. Campion-Renson and Crochet present solutions for flow ina lid-driven cavity up toa Re 400
and flow in a channel with a step.



I is possible to eliminate the sorticits from the tormulation by applving the Kinematic
compatibihity equation, bq (78) 10 Fq (79), producing

H 34 4
40w ”[ he ]* ‘ {!j ‘v e : Y 0 inR? ()

df oy oy [ ool oy daydg | Re dy oy gy,

Fquation (801 s anmitial-salue, Biharmomie equation tor the streamtunction Fhe difticulty posed by
a tourth-order partial differential equation tor fimite element algonithms s that conforming elements
must be C contintous at interelement bounduries, ¢ g, trngular clements asing mcomplete quintic
polynomial basis tunctions Chuann and Obson, 1978) and the approstumition subspace must be
Wy Ganzburger CLO89a) presents o resview of both conforming and noncontorming
algorithms for the hiharmomic streamiunction equation

3.2.2 Vorticity with » Vector Potential

Lhe natural extension of the vortbcty <steenmiunction method into dimensions s the
vorticity with o sector potential (Aztz and Hellums, 19673 The vector potential (stremmvecton, )
in defined as

u-v.v
oy, (L13]
u o€, o

i

I B, the soraciy s sector held detined by

w =\
u, (82)
(1] €
t irk ”"
Fhe vortcus transport equation i B theretore,
e e, o RS )
g (W) w, g uw, 0 LAY
oy U} dut Re Yy

where the new second term om L (88 represents tdimensional “vortes stretchimg™ Vaortes
stretehing serves as i redistribution: mechanism: between the three components ol sortiaty - Lahing
the curl ol Ly (RD)

("] V~u \“"‘\:’n')
0w, ) (84)

W i €

and emploving the vector adentity, VoV VOV RN wath 1 required 10 be solenoudal, the
Porsson equations relating the yector potential to the vortiaty are
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Fquations (K1) (RY) and (83) are the basis for the vorticity svector potential method

Aziz and Hellums (1967) used an alternating-directionamplicit (ADD method to solve the
vorticity transport equations and the successive overtelaxation (SOR) iterative method 1o solve the
Porsson equations Their validation case was 4 dimensional, fulls confined cav ity natural
consection problem

The method of falxe transient (Mallinson and de Vahl Davis 1973 and de Vahl Davis and
Mallinson, 1976) is a modification of the vormicits ss ector potential formulation where talse transient
terms are added 1o Egs (K$), resulting in a completely parabolic sy stem of equations that can be
solved by marching through o nonphysical transient Upon convergence, the transient terms become
negligible, and the true steads -state solution is obtained  The method s related to Chorin's
pretdocompressibtling formulation (to be discuvsed) in that it provides an iterative technigue tor
steady stiate sulutions

3.2.3 Vorticity with Vector and Sealar Potentinls

Difficulties m specitving boundars conditions for the vectonr potential led to the des elopment
of the sorticits with vector and sealar potentials tormulation (Aregbesola and Burley, 1977, and
Richardson and Cormsh, 19770 which s based upon the Helmholtz decomposition of the veloeity
veetor fiehd into potential and divergence:tree components Specifically,

- -Vo V.Y
oy, (N6)

U
'I

il ]
d,

*

*ul

where @ and ' are the velocity scalar and vector potentialy, respectively  Eaastence proots for both
the sealar and vector potentials are provided by Hirasakt and Hellums (1970) The vector potential
in again required to be solenoidal, and, by the vector identity V- V=0, the scalar potential s
rotational - Taking the divergence of g (86) for a solenoidal velocity tield and noting the vector
identity VAV =) -0 produces Laplace's equation tor Jd) The curl of the defining relation for the
vorticity again produces 2O The governng equations for the vorticity -vector and scalar potential
method are, theretore,

)
o) T g (N7
dhy dy,

l’h) l‘“
] w0 (NK)
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The continuits constraint is thus satisfied automatically by the scalar potential

Aregbesola and Butles (1977) assumed that the normal velocities atall boundaries are known
The boundary condition for @ g
o
T (99)

iy b *

where #ts the outward-pointing normal  The boundary conditions for the vector potential are chosen
sich that the tangential components of ' for a planat boundars are zero Since ' is required to be
sodenodal, the resulting boundary conditions are

, 4y e

Values for vorticity at boundaries are calculated during the iterative vyele using the current veloity
data and the defining relation for the voricity, Fg (82) Tangential velocities at the boundaties are
caleulated from the scalar and vector potentials by g (86)

The vorticity -vector am! scalar potential method contindes 1o be the subject of research Yang
and Camarero (1991) investigated the problem of boundary conditions for general curved dudt flow
aning @ bods - fited cursilinear coordinate system Their outflow boundans conditions were

o F .
"‘ ‘3, wQ 0 “;?¢
' S

0 (92)

L in on’

where v is the mean selocity at the outlet

3.2.4 Voarticlty with Velocity

The sorvciny=velocny formulation dispenses with all scalur and vector potential functions
Pasel (1976) Oest introduced the algorithm for 2-dimensional fows, and Dennis et al (1979) extended
it 1o three dimenstons Faking the curl of the defiing relation for the vorticity and imposing the
continuity constrinnt produces

Viw VeV - ViVu) Ve Vi

o | du,
dy{ My

‘ ‘ 9
dw, o ( du, i,‘:m c“l“, (4h

€ a4 €
] i’l b i‘i kma ';‘
i i L]

ty o o
oa e, dy

For three dimensions, therefore, the vorticity-velocity: method requires sin equations to be solved,
three transport equations for the varticity vector and three Poisson equations tor the velocity
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Boundars conditions are considerably smplified relative to sonticits potential methody The
sorticities at the boundaries are caleulated by the boundary velocity data uving the defining relation
ft the vorticity, w-Veu

Thete has beett a continuing interest in the vorticity -velocity method Using a non: staggered
mesh, Agarwal (19811 investipated & third-order accurate upwind scheme for the advection terms and
calenlated the Now ina Cdimensional Lid-driven cavity for Re<A400 F arouk and Fusep) (198%) studied
natural and forced convection heat transfer in a 2-dimensional annulus. Guj and Stella (198R)
emploved & stagyered mesh and an ADE iterative method o caloulate 2-dimensional flows for a
Hd-driven cavity and a step-wall diffuser Giatshi etal (19R2) develuped a novel tormulation inwhich
a Cauchy-Riemann-type system of Hirstorder partial differential equations is solved simultaneously
for the velovity Held Guesrement et al (1990) presented a finite-element implementation for 2. and
Vdimensional isochoric and near-isschoric (compressible subsonic) flow problems Napolitano and
Pascazio (1991) used a staggered mesh in their Nnite difference Tormulation in which the Poinaon
equations were parabolized 1o sccelerate convergence (o sleady -sate atthe sacnifice of Hime-accnracy

VLYEXACT CONTINUITY ENFORCEMENT = w-P DIRECT METHOD

The -1 Direet method requires the simultaneeus solution of the Nav ier-Sokes atd continuity
equations as o directly coupled system (Ciresho, 1991 Primanty used with a finie-element method
in the torm of a Galerhin weak statement, 1t will be demonstrated here with the steady Navier-Mohes
cquations with na body forces Mathomatically, the problem statement is bo find the discrete velocity
vector function 1 « 1.0 and the discrete Mnematic pressure scalar function 7** « A * such tha

\ iui
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where 1.0 M and 8% L. are the functional spaces defined at the beginming of this chapter Upon
discretization, Fgy (96) produce a system of coupled nonlinear algebriaie equations Gunsbarger
(19%00) describes a number of iterative techniques that can be apphied 1o nonlinear systems such as
Newton's method, the axed Jacoban tor chord) method, and guasi-Newton algorthms such as
Hroyden's update method  These solution techniques tor nonlingar systems are designed 1o produce
i sequence of hinear algebra problems that typically have the torm
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whete £ and G hold the nonhomogeneous data The coefficient matrix in Ly (97) s indefinite
nonsy mmettic with a large number of zeros on the diagonal corresponding to the pressute
degrees-offreedom

Due to ll-conditiommg. 1 is common practice to solve these linear algebra problems using
direet methods, ¢ g . Gaussian elimination Parial pivoting can generalls be avoided if the ordering
of the equations places the pressure unhnowns alter the velocities (Gunzburger, 1989a) This
il conditioning has tended o fimit the w2 ditect method 1o 2-dimensional applications The use of
direct solvers Tor dimensional problems can produce prohibitively high computational costs

Ax discussed at the beginning of this chapter, a critical requirement Tor the subspaces 1" amnd
A i that thes satisty the dis stability condition, thus placing the w7 method within the broader clins
of mined fintte-element metnds (Stenberg, 1984) Ganzburger (198Ya) presents a review of finite
clement pairs that satisty divstability, ¢ g, (1) using the same degree polypomials but overlaying
different grids for the velovits and pressure, () using restrictions on the pressure space (e g the
Fasbor Hlood hiquadratic velouity -bilinear pressure pair), and (1) using bubble elements in which the
velocits space is enlarged through the use of "bubhle” functions embedided in the basis sets for the
veliogats An analysis of Vdimenaonal counterparts o the Taslor-Hlood element pairs is presented by
Stenberp (1UKT)

Another approach is to use element pairs that do not satinty div stabiliny (e g, egual-order
Pibineat sedonity and bilinear pressare elements on the same ged), but circumsention of dis-stability
iv accomphished by making modifications o the continnits equation An example of such a
circumyention scheme s given by Hughes et al (19860) Tor the Stohes problem Another methisd of
crrcumsention ix the penalty method, 1o he discussed

VLAINEXACT CONTINUITY ENFORCEMENT =PENALTY METHOD

Phe penalty method has had wadespread application i sobid mechamios, speaitically
wempressible elasticits prablems (Zienhieswics, 19770 Apphicitioms 1o Stehes and Navier Stokes
Pows o ek as far as Femam (196K) The penaliy fomulation i solid mechamies correspomds o
dassical, metropie, compressible elasticity . theretore, Tor mvomprossible ety problems. an
vompresthle medmm approsimates a shghtly compressible vne Apphying the penalty. methesd 1o
Ntohes How, an incompressible und is approvimated by a shghtly compressible o resultiog i an
menact enforcement of the conservation of mas

Phere are o number of wass one can view the penalty method (o0 Hughes ot al, 1979, and
Haher, 1980 For o boear Stokes ow, i van by considered an apphication of o consiramed
o 2ation probiem i swhioe b the penalty term san approsimation il agrange mulipher Penalty
solitions are proven o vpnerge 1o the exact Stokes ow solubion Clemam, 1968) A physical
mterpretation i provided by Hughes etal (1979 The wvompressiility. condinon is dropped. and
thie contitutive reliation for the Cauchy stress tensor iy replaced by
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As A s, the solution 1o the momentum equations, “penalized” by the large penalty term. must
compensate by driving du /v 0.

One of the positive features of the penalty method is the computational decoupling of the
pressure from the velocity determination. Since the incompressibility constraint is also dropped, the
dis -stability condition ix apparently circumvented. hence can be ignored (Gunzburger, 1989a). If one
intends to use Lg (99) in a post-processing step to recover the pressure fleld, however, then the
div-stability condition must be satisfled, thus leading to the key requirement of “selective reduced
integration” of the penalty term in the penalized momentum equations and in the post-processing of
the pressure (Baker, 1981) Reduced integration places the penalty method in the class of mixed
finite-element methods. For certain combinations of velocity/pressure interpolation-function pairs,
the resulting pressure fleld approximation is piecewise discontinuous. This discontinuous pressure
fleld can exhibit a rank deficiency in the assembled pressure equations producing “checkerboard™
oscillations. However, least squares type pressure-smoothing techniques have been successfully
applied to remove such checkerboarding and other analogous pathologies (Hughes et al., 1979)

The major computational problem with the penalty method is that the dominating penalty term
introduces severe ll-conditioning into the terminal linear algebra statement. The already limited
diagonal dominance, produced by the momentum equations. is further weakened, and the asymmetry
due to the advection terms is reinforced by the asymmetry of the penalty term Such ill-conditioning
limits the algorithm designer's choices for linear algebra solvers  Typically, direct solvers with
ill-conditioning countermeasures such as partial pivoting are required. For -dimensional applications,
direct solvers introduce a very compute-intensive aspect (relative o iterative solvers) into the
algorithm  Recently, researchers have reported some progress on an iterated penaliy: method (cf.
Gunsburger, 1989, and Reddy et al, 1992) in which werative solvers can be used with iterative
cycling within a time step A smaller penalty parameter (equal to the square root of the direct penalty
term) is used to reduce the dl-conditioning normally associated with the direct penalty method. The
iterated penalty method is similar to the formulation proposed by Fortin and Fortin (1983) in which
Uszawa's algorithm for the Stokes problem is combined with u Newton-Raphson scheme to solve the
mcompressible Navier-Stohes equations.

3.8 INEXACT CONTINUITY ENFORCEMENT -
PSEUDOCOMPRESSIBILITY

The pseudocompressibility (or artificial compressibility) formulation (Chorin, 1967) was
originally designed and is primarily used as s method to produce an iterative procedure for converging
to u steady-state solution. The selution converges to a steady condition by progressing through a
non-physical transient. The continuity equation is modifled by adding a temporal term yielding



13
]
1ap ok 4 (100)
et al,.

where ¢ can be considered an artificial sound speed or, alternatively, 17¢7 is an artificial
compressibility. When Eq. (100) is solved in conjunction with the momentum equations, Eqs. 47, the
problem becomes hyperbolic in form. The hyperbolic nature of the method can be demonstrated by
taking the time derivative of Eq. (100), obtaining

| (?xP . t‘ [ 0“'} ("")
e ! dy\ dt

The right-hand side of Eq. (101) can be replaced by the divergence of the momentum: equations
resulting in
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Equation (102) is o generalized wave equation with wave speed ¢ The selection ol the parameter ¢
is critical to achieving optimal convergence and 1o maintaining stability. Chorin (1967) used a
nonsstaggered mesh with feap-frog time integration for his original implementation. Peyret and Taylor
(198 1) suggest that i staggered-mesh implementation gises more aceurate results.

Peyret and Taylor (1983) demonstrate that the iterative eyele produced by the
peudocompressibility. method is, i some sense. also an terative method for solving the pressure
Poisson equition. The velocity field is represented by o Taylor series expansion over time, such that

Yu
L u,"M‘ "o (HOT) (103

Using the momentum equations to replace the firstorder time derivative in Fg. (103) yields,
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A bachward expansion of the pressure produces
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Faking the divergence of Eg (104) and substitutmg the result into Fq. (105) gives, afler some
rearrangement of terms
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At convergence as 1o, PP " ou 10x-0, and Eq. (106) converges to the pressure Poisson
equation, Eq. (102).

Turkel (1987) suggested a modification to the pseudocompressibility method in which
artificial time derivatives are introduced in both the continuity equation and the momentum equations,
with the result
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Equations (107) are called the preconditioned Navier-Stokes equations, Fory= -1, the preconditioned
matrix method returns to the pure pseudocompressibility method. One attempts to choose the two
parameters v and ¢ to compensate for the difference in wave speeds experienced during the
nonphysical transient. The parameters act to scale the hyperbolic preconditioned system such that all
of its eigenvalues are approximately the same order of magnitude. Hsu et al. (1992) tested a method
for adaptive refinement of ¢ and found it led to inferior convergence. Constant values of -3<y<1 and
=1 gave them the best results for 3-dimensional simulations of fully developed flow in a straight duct
of square cross-section. Cabuk et al. (1992) employed the preconditioned matrix method with local
time-stepping and implicit residual smoothing for 3-dimensional fows in a 90-deg bend and a
backward-facing step. A four-stage explicit Runge-Kutta scheme was used to advance the system of
equations through pseudo-time.

Attempts have also been reported in the literature to apply the pseudocompressibility method
1o unsteady flows. Rogers and Kwak (1991) present solutions for steady-state flow through a
3-dimensional 90-deg bend and for unsteady 2-dimensional flow over a circular cylinder. Time
aceuracy is obtained (claimed) by subiterating the equations in pseudo-time during the physical
time-step.

Ramshaw and Mesina (1991) discuss a hybrid penalty-pseudocompressibility method for
performing time-accurate transient incompressible flow caleulations. They combine the two methods
by computing the pressure from

P 2% 0|9 (108)
ot 0, gt adx

The intent of the formulation is to introduce a diffusional character into the hyperbolic

pseudocompressibility equation system. The pseudocompressibility term (first term on the right-hand

side) in Eq. (108) introduces artificial pressure (acoustic) waves that are dissipated by the second
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penalty-related term. Ramshaw and Mesina (1991) caution that care should be taken in the
specification of both the initial velocity and pressure fields, since any errors in these initial solutions
may persist for some period of time after start-up. Solutions were reported for the 2-dimensional
driven-cavity problem and for flow past a rectangular obstacle.

Generalizations of the pseudocompressibility method for compressible Hows at low Mach
numbers have also been developed. Ramshaw and Mousseau (199 1) report on s technigue to increase
convergence of the compressible low equations to steady-state by adding to the conservation law
system an evolution equation of the form

) 2 >
% wli’(p’[ ! )(«rm—p”‘m “ (109
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In Eq. (109), {3 is a factor used to reduce the effective sound speed. tis a relaxation time, and p/) s
a damping term with the effect of an artificial bu'k viscosity. The pseudopressure ¢ replaces the
pressure 2 in the momentum equations only. The true thermodynamic pressure iy still used in the
energy cquation. At steady state, the time derivatives in Eqg. (109) go to zero; thus ¢ -p

3.6 INEXACT CONTINUITY ENFORCEMENT - PRESSURFE
RELAXATION

Pressure-relaxation methods represent the largest class of incompressible CED algorthims tor
solving the primitive-variable form of the Navier-Stokes equations All these methods produce an
inexact enforcement of the continuity constraint, but they share the adsantage of being extensible to
3-dimensional implementations.

3.6.1 MAC

The Marker and Cell (MAC) method s the oldest of the incompressible pressure relasation
methods (Harlow and Welch, 1965), having been developed (at Los Alamos Scientific Laboratory)
initially for free-surface flow simulations. The MAC method can also be used for general
incompressible Navier-Stokes problems. The “markers™ are massless Lagrangian particles that trach
the location of the tree-surtace. They do not participate in the caleulation for subsurface nodes. In the
original implementation, the velocity vector field is advanced by an explicit time integration (forward
Fuler). A moditied pressure Poisson equation is designed to insure an approximate entorcement of
continuity after the velocity update.

At the beginning of time step n+ 4, the velocity field is mitialized with an approximate
solution, typically the converged solution from the previous time-step n- The pressure field is then
estimated from the initial velocity data by the modified pressure Poisson equation.

ip n 12 " iy A
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where 1) is the discrete dilatation rate (“discrepancy term™, Weleh et al, 1966), Qu/ov. These
discrepaney terms are included in the pressure Poisson equation to control nonlinear numerical
instabilities which may develop over a series of time steps (Hirt and Harlow, 1967)
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A significant feature of the MAC method is the introduction of a staggered mesh in which the
pressures, the discrepancy terms. and the residuals for the right-hand side of Eq. (110) are computed
at cell centroids. and the velocities are computed at cell faces. Figure | presents the general layout
for a staggered mesh surrounding an interior node (i,)) in a 2-dimensional domain. and Fig. 2 shows
a typical boundary node. The finite difference discretization is based upon central differences for all
spatial derivatives. To compute the residuals for the pressure Poisson equation. velocities are required
at cell centers and cell comers. These velocities are calculated as simple arithmetic averages, e.g..

'i’ <112, * ll" 2.
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where the subscripts (i, /). (1+ % . )., etc. refer to positions in the mesh.

Afier the pressure field has been calculated, the velocities are advanced explicitly using a
central difference discretization of spatial derivatives in the momentum eauations. For example, the
u. .,  difference equation is

[ 2 3 ,
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where 87 1s the discrete time-step and &x and 8y are mesh intervals.

One of the difficulties with the staggered mesh involves the imposition of tangential velocity
koundary conditions at free-slip and no-slip walls. A typical wall boundary for a staggered mesh is
shown in Fig. 2. Note that whereas the normal velocity u, is explicitly defined on the mesh, the
tangential velocity at the wall, v [ is not. To deal with this problem. a “belt” of image nodes are
positioned along the boundary I'. just outside of the domain Q. The boundary condition is then
approximated as v, |, = v, ,.,= v fora free-slip wall. For a no-slip boundary. the tangential velocity
in the mmage node 1s set at v, . ==v, .. A linear interpolation of the velocity between the
boundary and image nodes produces a zero tangential velocity at the wall. This technique is called
the reflection method for free-slip and no-slip boundaries on a staggered mesh. The local truncation
error for the approximation of second derivatives at point (1, j='4) is shown by Peyret and Taylor
(1983) 10 be (X 1) when the reflection method is used. i.e., the difference equation at (1, j='%2) is not
consistent with the differential equation. Higher-order consistent methods for establishing velocity
boundary conditions are also discussed by Peyret and Taylor (1983).
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Figure 1. Layout of staggered mesh at interior cells.
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Figure 2. Layout of staggered mesh at boundary.
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For the pressure at a free-slip wall, the finite-difference equivalent of a homogeneous
Neumann boundary condition is applied (P, =P, ). At a no-slip wall, the pressure boundary
condition is a non-homogeneous Neumann condition produced by projecting the momentum
equations onto the outward normal unit vector at the boundary. The result is

R 2 (Mg, Up,)
P,,=P,, - R ~~»-m-~é}-~_~ (1t3)

It can be shown that the velocity solution produced by the MAC method is independent of the actual
normal pressure gradient at the boundary when the reflection method is applied. This result has led
various researchers to use the more easily implemented homogeneous boundary condition for the
normal pressure gradient at wall boundaries. One should not lose sight of the fact, however, that this
homogenous Neumann boundary condition is a numerical convenience only for applying velocity
boundary conditions on a staggered mesh, and it does not reflect the actual physics of the pressure

field.

The difficulty with applying nonhomogeneous Neumann boundary conditions, required by
the true pressure Poisson equation, is that a compatibility condition must be met by the discrete
equations in order to attain convergent solutions. This compatibility condition can be derived by
integrating the pressure Poisson equation and then applying the Green-Gauss theorem to the pressure
term to produce the following integral relation:

§ ar- | raa (114)
r on [o]

where F is the forcing function (right-hand side) for the Poisson equation and n is the outward
pointing normal on I". It can be shown that this compatibility condition is not automatically satisfied
on either staggered (Peyret and Taylor, 1983) or nonstaggered grids (Abdallah, 1987).

Abdallah (1987) has proposed a modified MAC method based on nonstaggered grids. To
satisfy the compatibility condition for the pressure Poisson equation, consistent finite-difference
approximations for the velocity derivatives in the forcing function /" in Eq. (114) were developed.
Abdallah also notes that, even though the viscous terms from the momentum equations do not appear
in F, they do appear in the nonhomogeneous boundary conditions for the pressure. The integral of the
viscous terms over the boundary I" should be consistent with the compatibility condition. Abdallah
achieved compatibility by writing the viscous terms as the curl of the vorticity vector.

3.6.2 SMAC

Difficulties with applying nonhomogeneous Neumann boundary conditions for the pressure
calculation led the CFD group at Los Alamos to develop a modified version of MAC called the
Simplified Marker and Cell (SMAC) method (Amsden and Harlow, 1970). In SMAC, the true
pressure field is never calculated. Since the vorticity transport equation does not contain the pressure,
any pressure field (or the gradient of a scalar function in the position of the pressure) inserted into the
Navier-Stokes equations will not prevent the subsequent time-advanced velocity solutions from
carrving the correct vorticity at interior points. It is important to note that vorticity production and
diffusion at a rigid wall will not be correct if the intermediate velocity field is not mass-conserving
at the wall. Assuming that the velocities from the previous time step are divergence-free, then
vorticity production at a wall will be correct only for an explicit time-integration scheme. If implicit
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time-integration is used. however, iterative cyeling within the time step is necessary. Continuing with
the development of SMAC, if the inserted pseudopressure is constructed such that the resulting
velocities are mass-conserving (or can be corrected to be mass-conserving), then the new velocities
will be the unique and correct velocity field. The advantage of using a scalar potential function rather
than the true pressure is that homogencous Neumann boundary conditions can be used with the
potential function.

The SMAC algorithm begins at the top of a time step by initializing the pseudopressure field,
P*. In the original implementation of SMAC (Amsden and Harlow, 1970), P* is sct to zero except
at free-surface boundaries where appropriate Dirichlet data are applicd. A staggered mesh, as in
MAC . is used. An intermediate velocity field «*"*' is then generated by an explicit advancement of
the discrete momentum equations from the previous time step solution, ", The finite difference
equation for the w*., , velocity component in R is
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SMAC also introduced the ZIP method of differencing the node-centered momentum advection terms
in order to remove the destabilizing truncation error term that occurred in the original MAC method.
An example of ZIP differencing s

)z _ (116)
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The discrepancy term D, | from the MAC method is calculated at node centers by the central
difference relation
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A mass-conserving potential function ¢ is next computed at node centers from the Poisson equation

Vi, , - D (118)
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The final step is to annihilate the divergence error by correcting the intermediate velocity ficld using
the potential function ¢.
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After the velocities have been corrected, the solution is advanced to the next time step. Some typical
boundary condition specifications in SMAC are presented in Table 2. The subscripts on the velocities
and pressures refer to locations on a staggered mesh near a left-boundary plane as shown in Fig. 2.
The reflection method is used to specify tangential velocities at free-slip and no-slip boundarics. The
continuative outflow condition is equivalent to applying a vanishing normal derivative on both
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velocity components. For the pseudo-pressure. a homogeneous Neumann boundary condition is
enforced for free-slip, no-slip, and prescribed inflow planes. The pseudo-pressure in the image cell
just outside the boundary is set to zero at a continuative outflow boundary,

Ikohagi and Shin (1991) have extended the SMAC method to generalized 2-dimensional
curvilinear coordinates where the momentum of the contravariant velocities are solved in transform
space. and the viscous (diffusion) terms in the momentum equations are recast as contravariant
vorticities. A 3-dimensional implementation of the generalized-coordinate SMAC method is proposed
by Ikohagi et al. (1992). Continuing with the staggered mesh, as in the original SMAC, the
contravariant velocities are defined at the centers of the computational cell faces: the contravariant
vorticities are located at centers of the cell edges: and the pressure is at the cell center. Their test case
was a 3-dimensional step-wall diffuser, to be discussed further in Chapter 7.

Table 2. Boundary Condition Specifications for SMAC

Boundary Type Normal Velocity Tangential Veloeity Pseudo-pressure
o A R R

IFree-slip u, =0 O LR r,oor,

No-slip u 0 T r,or,
Prescribed Inflow u, = Data V=, r,or
Continuative Outflow Wt DR L r, 0

TR
T e — o e e

3.6.3 Projection Methods

The projection (or fractional step) method was independently developed by Chorin (1968) and
Temam (1969). [n his original description of the method, Chorin used a nonstaggered mesh and an
implicit ADI time-integration of the modified momentum equations. For finite difference applications,
however, it has become more commonly implemented with an explicit time-integration and a
staggered mesh.

Chorin (1968) casts the momentum equations in the following operator form:

du
9P r(u b, Re) (120)
at dx,
where 7 is a differential operator (vector function) that depends on the velocity field. the body force
ficld, and fluid properties, but not on the pressure, /. The vector field .# can be decomposed into the
sum of a rotational (thus solenoidal) vector field and an irrotational vector field.
Fu)=VxA + Vd
‘ (121)
V(VxA)=0 VvV -0

This Helmholtz decomposition exists and is unique whenever the initial value problem for the
Navier-Stokes equations is well-posed. By the continuity constraint, the divergence of the acceleration
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(O /0n s zero, and the curl of the gradient of the scalar pressure field is identically zero (for a
sufficiently smooth pressure). One, therefore, can identify the rotational component of .7 (1) with the
acceleration and the irrotational component with the pressure. Egs. (120) and (121) can also be
interpreted in terms of the orthogonal projection operators ® and (), where ® projects a vector onto
the null space of the divergence operator and () projects a vector onto the null space of the curl
operator (Gresho, 1990). Therefore, one obtains

Au

e (u) P -0.7 (u)
at ¢ ' © ' (122)

P 0. Q' -Q . pQ-Qp-0

and the resulting acceleration is divergence-free as required by the continuity constraint.

Based on the above projections, Chorin proposed that the velocity field be advanced in two
steps. In the first step, an auxiliary velocity field is computed from a discrete approximation to .7 by

* n
WOE Lo (123)
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A distinguishing feature of Chorin's method is the absence of the pressure during the solution for the
auxiliary velocity. In the SMAC method the initial estimate for the pressure was set to zero as an
optional computational convenience: however, in the projection method the zero pressure field during
this step is a fundamental part of the development. In the second step. the auxiliary velocity field is
projected onto a nearby solenoidal manifold. The necessary Poisson equation is derived from
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The boundary condition for the Poisson equation is obtained by a normal projection of the first
relation in Egs. (124) onto the boundary I'.
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For a staggered mesh and an explicit time integration, it can be shown that the velocity solution is
independent of w*, since (1) w* is a function of 1, only in an explicit scheme, and (2) u*; appears in
both the right-hand side and in the Neumann boundary condition of the Poisson problem where it
identically cancels for a staggered mesh (Peyret and Taylor, 1983). 1fu* ;. is arbitrary, it can be chosen
to be 1", producing a homogeneous boundary condition for the Poisson problem in kg. (124). After
P has been calculated, the final step in the projection is to correct the auxiliary velocity field by
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Notice that for the above implementation, the projection method is identical to SMAC, although the
development of the two methods followed different lines of reasoning. 1t is, however, inportant to
note that the designers of SMAC did not associate the potential function (used to correct the auxiliary
veloeity field) with the true pressure. They recognized that the use of homogencous Neumann
boundary conditions was a computational convenience and did not reflect the physically correct
houndary conditions for the pressure

Donei et al (1982) have proposed a finite-clement implementation of the projection method.
By diagonalizing the mass matrix using the standard row-sum lumping technigue, they are able to use
a purely explicit ime-integration. The div-stability condition is satisfied with either the bilinear
velocity and element-constant pressure or the biquadratic velocity and bilinear pressure interpolation
functions. During the momentum advancement step, the complete velocity Dirichlet boundary
conditions wre applied. For the projection step, the Neumann velocity boundary conditions are
imposed, but only the normal component of the velocity Dirichlet boundary data is enforced. The
tangential velocity boundary conditions are satisfied only in the weak sense in order to be consistent
with the pressure boundary conditions, The fractional step method was tested on an unsteady driven
cavity, axisvmmetric flow through a sudden enlargement, flow around a stationary sphere, and natural
convection in a closed vertical evlinder,

Shimura and Kawahara (1988), using an equal-order fimte-element projection method,
investigated a procedure for applying a computed nonhomogencous Dirichlet outflow boundary
condition for the pressure equation. This Dirichlet pressure condition is caleulated by integrating a
boundary pressure Poisson equation along a layer of elements adjacent to the outflow plane. The
boundary pressure equation is constructed with veloeity data from either the previous time step or a
previous iterate. The resulting pressures computed on the outflow plane are applied as Dirichlet
pressure data during a subsequent global Poisson solve for the mass-conserving potential function.

Continuing with the development of both the projection and SMAC methods, researchers have
investigated various semi-implicit techniques in which the advection terms are advanced explicitly
and the diffusion terms implicitly. Gresho (1990) presents an extensive theoretical discussion of
boundary condition issues for a number of proposed semi-implicit projection methods. A finite
clement implementation of a semi-implicit technique is given by Gresho and Chan (1990),

3.6.4 Velocity Correction

Schneider and Raithby (1978) proposed a finite-element pressure relaxation technique based
primarily on the SMAC method. They were able to circumvent the div-stability condition while using
equal-order interpolation functions for the velocity and pressure by maintaining a “strict enforcement
of the continuity constraint at every stage of the iterative process.” The first step in their velocity
correction method involves an explicit time-advancement of the momentum equations using a
guessed solenoidal velocity field (from the previous time step) and a pressure field calculated from
the genuine pressure Poisson equation. The new velocity field does not satisfy the continuity
constraint, so a mass-conserving potential function (see Eq. (118)) is computed via a Poisson equation
and the discrete divergence error. The potential function is then used to correet the velocity field,
Schneider and Raithby note that the corrected velocity field will no longer satisfy the momentum
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cquations, so the final step of the iterative eyvele isto recalculate the pressure using the true pressure
Poisson equation. Time-marching with biquadratic finite elements was used to calcalate steads -state
solutions for the lid-driven and natural convection cavities. Kawahara and Ohmiva (1985) used the
veloeity correction method to caleulate density Bow ina tank with a sloping bottom  Indicative of its
roots in the SMAC method, Kawahara and Ohmiva also used Lagrangian marker particles for flow
visualization, and they dropped the pressure Poisson solve at the end of the time step

Rice and Schniphe (1986, see also Schniphe and Rice, 1987) discuss an equal-order velocity
correction: method very similar to the one proposed by Schoeider and Ruthby (1980) In fact the
distinctions are not obvious. The momentum equations are solved tor an imtermedinte velocity field
which is then corrected with o potential function computed from i Poisson equation. The forcing
terms for the Poisson equation are the discrete divergence error, and homogencous Neumann
houndary conditions are applied at wall and infloss boundaries. “Natural boundars conditions™ for the
potential function are applied at outflow planes; however, the nature of these boundars conditions i
not discussed. A streambine upwind method for controlling dispersion error is also presented (Rice
and Schnipke, 1985)

3.6.8 SIMPLE/SIMPLERSIMPLEC

Developed by the Imperial College CED group in the late 1960s (Patankar and Spalding,
1972), the Semi-fmplicit Method for Pressure-Linked Eguations (SIMPEE) s a widely used pressure
relaxation CEFD technique,  Employing a staggered grid, Fig. 3. SIMeLE uses the finite-volume
method for discretizing the incorpressible Navier-Stokes equations. A review of the finite-volume
method, as applied to heat transter and fluid Now problems, is given in the book by Patunkar (1980)
An carly SIMPLE-like algorithm using finite-differences is discussed by Roscoe (1976)

A generic finite-volume with typical SIMPLE notation is shown in Fig. 3. Velocities are
evaluated at the faces of the volume, and the pressure and any other scalar variable such as
temperature are assigned at the element center. As an example of SIMPLE algorithm notation, the
implicit advancement of the 1, "' velocity component (neglecting body torces) at the east face of
node P is caleulated as

au, = Y apu, (P PA, (127)

where the a's are coetlicients produced by the finite-volume integrations over the faces of the volume,
the subseript #b refers 1o the surrounding faces (neighbors) of node Poand A, s the surfice area ol
the east face. The a coetficients are functions of the velocity field, the mesh geometry, and the time-
step. In Eq. (127), the correct pressures at the volume centers are assumed known. Since at the
beginning of the iterative eyele o guessed pressure field must be used, the actual implicit velocity
advancement step is written as

a, “t" ‘ Z “nb uulh o Pl: Pi' )Ar “28’
where the superseript *** denotes the current estimate for the velocities and pressures.

SIMPLE involves a velocity correction step and a pressure correction step. The veloeity
correction equations are derived by first subtracting L. (128) from Eq. (127), giving




-

Figure 3. Generic finite-volume with SIMPLE notation.
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a,u, - X a,ty r, P A,

R Y A L

(119)

Equation (129) isthe fully implicit velocity correction equation. The semi-implicit velocity correction
cquation drops the undetlined term in Fg (129) 10 obtain

~d, ( Py Py)
u, v 4 [ “t""

d, < Ala,

An equation ¢an be derived for the pressure correction terms by using g (110) with the discrete
continuity equation. The resulting Poisson equation is

vip .- Vg (13
Al

In practice, the pressure corrections produced by Eg. (131) tend o overpredict the required adjustment
to the pressure, therefore, some level of underrelanation is required when the pressure correction is

applied, e g .
P-pap (13

10 is also common practice to underrelas the momentum update of the velocity field by

' + * L] + +
;’ WY a,un O PTA, “ﬂ” a, u™" (139

where mois an dteration indes Typical values for o, and « are OR and 0.5, respectively
(Patanhkar, 1980).
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The iterative sequence for SIMPLE 18

(1) guess a pressure field /'*

(2) solve the momentum equations, Fq (131, to obtain w* ™.

(V) solve the Poisson equation, Eg (131, 10 obtain the pressure corrections, ',

(4) apply the pressure correction with underrelasation, 1'% Pe* v g P,

(49 calculate the velocity correction, B (130) and correat the velocities to obtain
o

] ‘

(6) repeat steps -5 until convergence. then

Houndary condivions for SIMPLE are vers similar o those used 1 the SMAC method. No-
ship and free-ship wally use the reflection method for the velocits and o homogeneouy Neumann
condition for the pressure

There has been o continuing eflort to improve the convergence and stability of the SIMPLE
algonthm 1t was soon recognized that even though the pressure correction term did o good job of
correcting the velocities it did not produce very good estimates lor the corrected pressure field. The
slow convergence of the pressure correction was atinbuted to the dropping of the term underlined in
Lg (129) A modified algorithm catled SIMPLE Revised (SIMPETR) was developed by Patankar
CTOR0) o improve the convergence rate of the pressure field Tn SIMPELER, the pressure corrections
are applied to the selocities only The pressures are updated using o Porsson equation with an
improsed estimate tor the veloeny feld

The SIMPLER algonthm proceeds as follows
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(1) guess a velocity field w*

(2) caleulate a pseudovelogity field, u*®, using Eq. (133) with the pressures set to
7Cr0;

(3 use the pseudovelocities #** to form the right-hand side of the Poisson equation,
Eq. (131), and calculate a new estimate for the pressure field, I'* ;

(4) caleulate #* with the pressures /'* from step 3 using Eq. (133)

(3) solve the Poisson equation, Eq. (131), for the pressure correction terms, /', using
the 1* from step 4 to form the right-hand side;

(6) correct 1* with the £ caleulated in step 5. Do not correct the pressure, /%

(7) repeat steps 2-6. until convergence: then

Notice that step 2 is an implicit form of the fiest step in Chorin's projection method.

The SIMPLEC method (van Doormal and Raithby, 1984) was also developed to improve the
convergence rate for the pressure field. In SIMPLEC, the fully implicit velocity correction equation
is modified by subtracting the term Y, a,, w0, from both sides of Eq. (129).

(a, T apru =¥ ayCuy-u) + (Py-PpA, (134)

The underlined term in Eq. (134) is dropped, and the modified velocity correcaon equation is

u < d, ( Py Py)

A (13%)

[
[4
(a, - 2 an)

The iterative eyele for SIMPLEC proceeds exactly as in SIMPLE with the new definition for d, and
with = 1.0,

d

Connell and Stow (1986) compared convergence rates of the SIMPLE algorithm to the results
of two extended pressure correction equations. The extensions involved adding higher-order advection
terms to the right-hand-side of the pressure correction Poisson equation, With these extensions, they
found that underrelaxation of the momentum equations was not necessary; however, underrelaxation
of the pressure correction was still required, Based on tests with the driven cavity problem, the
extended pressure correction equations produced up to a 50% decrease in CPU time compared to
SIMPLE.
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A modified SIMPLEC method has been proposed for nonstaggered grids by Aksoy and Chen
(1992). The Momentum Weighted Interpolation Method (MWIM) caleulates velocities and pressures
at element centers. MWIM s very similar to another nonstaggered variant of SIMPLE called the
Pressure Weighted Interpolation Method (PWIM) due to Rhie and Chow (1983). To avoid spurious
pressure solutions, the divergence error (required as the right-hand-side for the pressure-correction
Poisson equation) is evaluated using velocities interpolated to element faces. Aksoy and Chen applied
the finite analvtic method (Chen, 1988) 1o discretize the momentum equations. A comparative
assessment of the performance of MWIM 1o SIMPLER, SIMPLEC, PWIM, and a nonstaggered grid
version of MAC by Abdallah (1987), was carried out by Aksoy and Chen using the lid-driven cavity
problem. They tound that the performance of all the algorithms deteriorated as the grid size was
refined. The nonstaggered version of MAC had excellent convergence and stability propertics as an
explicit method; however, conservation of mass was poor in isolated arcas of the mesh near flow
singularities. MWIM and PWIM produced more or less the same performance characteristics. They
were able to attain larger stable time-step sizes than either SIMPLER or SIMPLEC: however,
SIMPLER and SIMPLEC required fewer iterations for convergence than the implicit nonstaggered
prid algorithms.

3.6.6 P1SO

The Pressure-Implicit with Splitting of Operators (P1SO) method is a non-iterative predic-
tor/corrector algorithm developed by Issa (1985) (see also Issa ¢t al., 1986) for incompressible and
low Muach number compressible CFD applications. Time-integration is fully implicit (backward
Euler), and the spatial discretization is based on a finite-volume staggered mesh. Following Jang et
al. (1986), PISO can be presented using SIMPLE-like notation for casy comparison to the SIMPLE
family of algorithms. Note in the corrector step for the pressure, the genuine pressure Poisson
cquation is used to insure that the final pressure distribution is consistent with the momentum-
equation update of the velocity field distribution in the second corrector step for the velocities.,
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The two-stage version of PISO iy as follows:

(1) Predictor step for velogity = Advance the implicit discrete momentum equations with
the pressure field from the previous time-step:
a = X, n AP

(2) Predictor step for pressure - Solve a Poisson equation for p*:
Vip* = = 1/AL V' u*.

(3) Eirst corrector step for velocity = Use a SIMPLE-like velocity corrector:
N.r" - N,‘ + dr l (I’l" - [;"n )~ ( I’l‘ . ,’!" )l

(4) Corrector step for pressure = Solve the genuine pressue Poisson equation for p**:
Vip** =« Vu**Vur* - (1/Re)Viy**|

(5) Second corrector step for veloeity. = Use an explicit advancement of the momentum
cquations with ( p** = p* ),

UAEE A N (e, W, Y d P gt =t )

(6) Advance o the next time step = "' = . *** and p"*' = p**
¥

Homogencous Neumann houndary conditions are applied for the pressure Poisson equations.
Like SIMPLER, two Poisson solves are required. However, in PISO the second velogity corrector step
is nceepted as the converged solution for the velocity, and the algorithm advances to the next time
step. Issa (1985) performed a heuristic error analysis of the two-stage version of PISO and determined
that the errors in the solution of the linearized difference equations for the pressure and velocity are
of order At and Az, respectively.

Jang et al. (1986) carried out a comparative assessment of the performance of PISO),
SIMPLER, and SIMPLEC. They found that for isothermal laminar flows, where the momentum
equations are not strongly coupled to a scalar state-variable with its own transport equation, the
noniterative PISO algorithm outperformed the iterative SIMPLER and SIMPLEC methods in terms
of computational eftort. For problems with a strong coupling between the momentum and scalar
transport equations (¢.g., coupling with the energy equation through a Boussinesq buoyancy term, or
with a k-e turbulence model through the eddy viscosity v' ), PISO did not exhibit good convergence
rates relative to SIMPLER and SIMPLEC. PISO also required small time steps for the strongly
coupled cases in order to obtain aceeptable solutions.

Braaten and Shyy (1987) studied a multi-step pressure correction algorithm, similar to PISO,
with extensions that included nonorthogonal curvilinear coordinates and a multi-grid solver for the
Poisson equations. They found improved performance, relative to a single pressure correction step
algorithm, for lanunar flows and flows on nearly orthogonal meshes. However, convergence rates did
not improve for more complicated flows and geometries, e.g., turbulent and reacting flows, and highly
nonorthogonal meshes. Little performance gain was obtained by solving the pressure Poisson
equations to a tight tolerance at cach pressure correction step.
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3.6.7 Operator Splitting

Glowinski and Pironneau (1992) have recently presented a review of a class of finite element
methods for the incompressible Navier-Stokes problem based on opcrator splitting. These time-
integration schemes produce at cach time step two groups of subproblems, the advection-diffusion
problem and the linear incompressible Stokes problem. A generalized form is the 8-scheme, described
below for the unsteady Navier-Stokes equations with no body forces.

(1) First Stokes Problem = Solve for «™* and P°.

LEX B
uo_tu °a Vigtt s Ypnd £V2ul “(u™Vu"
A1« Re Re (136)

Vou® -0

nel-8

(2) Advection-Ditfusion Problem - Solve for u

ut! Zﬁéw“_if - ,ﬁ&vzu..n 8, (w0 gyt
- l .
(1 Atl) e (137)
a VZuIHO B v nef
Re
(3) Second Stokes Problem - Solve for o " and P
w! wtt? e gignt cgprt o Bogryete o yntegynite
0Ar Re Re (138)
Vourtl -0

The continuity constraint is enforced in the lincar Stokes problems, Steps 1 and 3. In Step 2,
the advection-diffusion problem has been linearized by lagging the coefficient of the nonlinear
advection term. The sphtting parameters, a and J3, can be chosen such that

-2
o - (1229 g 8 (139)

Glowinski and Pironneau suggest an optimal value for 0 is 1 - 1A//2,

The operator splitting scheme succeeds in decoupling the nonlinearity in the Navier-Stokes
equations from the incompressibility constraint. The algorithm designer is still faced, however, with
the nontrivial tasks of solving the incompressible Stokes problem and the advection-diffusion
problem. Taking advantage of the symmetric positive-definite terminal matrix statement produced
for the Stokes equations, a preconditioned conjugate gradient algorithm can be used (Cahouet and
Chabard, 1988). A number of methods have been developed to control the dispersive errors associated
with advection-diffusion equations, e.g.. Taylor-Galerkin methods (cf. Baker and Kim, 1987, and
Donea, 1984). Petrov-Galerkin methods (cf. Hughes et al., 1986a and b), and Lagrangian/Eulerian
schemes based on the method of characteristics (Glowinski and Pironneau, 1992).
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Shen and Temam (1989) have proposed an interesting variant of the projection method in
terms of an operator splitting scheme. This algorithm was designed to produce an approximation of
anonhomogencous Neumann boundary condition for the pressure while retaining the computationally
attractive properties of homogeneous Neumann boundary conditions for the intermediate
pseudopressure ¢. The scheme proceeds in two steps as follows:

(1) Stokes Problem - Solve for #"*” and ¢"*".
n+l/2

u -u" I o2 a2 ne 12
ke S B v Y R T + Vgqm'W 20
(A2) Re (140)

Va0

(2) Advection-Diffusion Problem - Solve for u""’

o] ‘
lf.”ﬁ._u__.!‘_:,_.lf - .Vl..vzu nel oy 2u "'l’z-Vu rel o -Vq nelf2 (‘4‘)

( At]2) Re

Shen and Temam postulate that

pn - l(qnvl/2+qn'|/2) (142)

is a good approximation for P(1,) based on the observation that, upon summing Eqs. (140) and (141)
at time step »n -1 and then projecting the result onto the outward normal at the boundary, one obtains

_6_1”': ___1__v7-(u"’”2~u")—u"”2'Vu" ‘n (143)
on 2Re

which corresponds to a discrete approximation of the nonhomogeneous Neumann boundary condition
for the pressure Poisson equation. Their stability and convergence study found that the new scheme
is unconditionally stable and convergent. An error analysis, in which numerical results produced by
the new scheme and by Chorin’s projection method were compared to an analytical (exact) solution,
showed the new scheme to be more accurate. They also discovered that the precision of the pressure
approximation produced by the new scheme slightly improved as the Reynolds number was increased.

3.7 SUMMARY

The algorithms discussed in this chapter demonstrate the range of formulations that have been
developed to enforce the continuity constraint. The pressure gradient in the momentum equations
provides a mathematical linkage to the continuity equation; however, the absence of the pressure in
the barotropic equation of state for an incompressible fluid presents severe computational difficulties.

Exact enforcement of continuity typically involves eliminating the pressure by recasting the
problem in terms of a derived state-variable, the vorticity. Conservation of mass can then be satisfied
automatically by coupling the resulting Helmholtz vorticity transport equation to a streamfunction in
R? or vector and/or scalar potential functions in R'. These potential functions can be bypassed with
formulations linking the vorticity directly to the velocities. With all of these methods, the elliptic




nature of the incompressible continuity principle is manifest by the presence of one or more Poisson
equations. The u-P direct formulation, as a mixed-finite element method, has found some application
to 2-dimensional problems; however, the ill-conditioning of the final matrix statement presents
obstacles to extending it to 3-dimensions.

Formulations designed to produce inexact or approximate enforcement of the continuity
constraint require a modification to the conservation law system. The conservation of mass can be
transformed into cither an algebraic relation (e.g., penalty methods), a hyperbolic initial-value PDE
(e.g., pseudo-compressibility methods), or a boundary-value PDE (e.g., pressure relaxation methods).
However, all of these formulations must eventually be implemented within a semi-discrete
approximation statement, and, as a consequence, resolvability on the spatial discretization " is a key
issue. The computational impact is truly significant, since every inexact theory centrally involves
“measuring” the error in V"-u" | and then correcting it (Baker et al., 1992¢). Any code
implementation can accomplish this operation only modulo the discrete approximation V" to the
gradient and divergence operators, V and V-, respectively. As an example of the difficulties arising
from the use of an inappropriate V", consider the discrete velocity solution shown in Fig. 4. The
velocities are located at cell centers, and the solution is clearly nonphysical. However, if central
differences are used to evaluate V" 4", the discrete divergence error at node P will be zero. Such
difficulties led the developers of MAC to the staggered mesh.

The dominant approximation error mode for V" is dispersive, and, as a result, V" 4" is not
only non-smooth but usually piecewise discontinuous on €. Therefore, for any of the inexact
formulations, the created discrete approximations to the theoretical pressure estimate may contain
short wavelength oscillations which can become very pronounced. In fact, such oscillations appear
to be critical to the numerical enforcement of approximate continuity, to be discussed. but this
constraint potential function bears little relation to the genuine (smooth) pressure distribution.

The theoretical framework for the new method to be presented in Chapter 4 assumes that the
continuity constraint fields ¢”, as computed modulo V", are no more than just that, i.c., they are not
accurate approximations to the genuine pressure /. Assuming that one can achieve V" u"* < ¢, then
a genuine pressure field can be approximated by the solution to the pressure Poisson equation with
physically motivated and numerically well-posed boundary conditions.
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Figure 4. Example of a spurious velocity solution with V*- 4,=0 using central
differences.



4. CONTINUITY CONSTRAINT METHOD

A new primitive-variable finite-element CFD algorithm, the Continuity Constraint Method
(CCM), has been developed to produce approximate solutions for the unsteady Navier-Stokes
equations in three dimensions. Falling in the general class of pressure relaxation algorithms, the new
method has its origins in the finite-difference SMAC method (Amsden and Harlow, 1970), the finite-
element velocity-correction method of Schneider and Raithby (1978), and early developments in
rescarch on incompressible algorithms at the University of Tennessee’s CFD Laboratory (cf.
Noronha, 1989; and Noronha et al., 1990).

Recognition of the dual role of the pressure, as both an enforcer of the continuity constraint
and as a force in the mechanical balance law for the conservation of linear momentum (Gresho and
Sani, 1987), has been a guiding principle in the algorithm’s development. An implicit time integration
with iterative cycling within the time step allows the two roles for the pressure to be completely
separated. Specifically, a mass-conserving potential function is used to enforce continuity while the
genuine pressure, as induced by a solenoidal velocity field, is calculated with well-posed and
physically-motivated boundary conditions by the pressure Poisson equation. This separation of tasks
produces a clear view of the individual and totally distinct boundary conditions required for the
continuity constraint function and the pressure.

Additionally, the CCM employs a 0-implicit time-integration scheme, a consistent mass
matrix, an optional Taylor Weak Statement (TWS) formulation for dispersion error control, and
equal-order interpolation of all state-variables. Implicit time-integration allows larger stable
time-steps compared to explicit schemes. A consistent full mass matrix, as opposed to the “lumped”
mass matrix commonly used in explicit methods, exploits the cross-coupling in the inertial terms of
the momentum and energy equations produced by the finite-element semi-discretization. The TWS
theory has been employed by Baker and Kim (1987) to identify a multi-dimensional tensorial
mechanism for hyperbolic conservation law systems. The derived stability formulation was later
verified for incompressible systems as highly effective in control of third-order dispersive error
mechanisms (Noronha and Baker, 1989). Equal-order interpolation of the velocity, pressure, and
temperature state-variables with trilinear and bilinear (for boundary condition surface integrals) basis
functions produces a continuous and more accurate pressure solution.

4.1 CONTINUITY ERROR DISTRIBUTION

Gresho (1990) presents an investigation of the continuity error distribution for semi-implicit
projection methods. Expressing the solenoidal velocity solution at time-step #+/ in terms of a Taylor
series expansion about the solution at time-step » results in
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Assuming any approximation to the velocity field, u,*, can be made with any guessed pressure field,
P* = P" the Taylor series companion to Eq. (144) is

ou 2 9%y
W'oout e A AT o) (145)
ori,, P TR o
At =t ,
W L W owl o ou oy 9t op (146)
i 1
ar |, at|, "dx, Re 3112 ax,

and Gresho specifies that the second derivatives of w," and u,"" with respect to time are

2 2
Fwl a0 _ 1 9u op (147)
at? at| ’ox, Re ax? 90X
n
9? 0 32y,
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where, apparently, for the guessed pressure field P*/0r=0. Although the rationale for setting
OP*/0r=0 is not given by Gresho, one explanation may be that the genuine pressure field, ", is
assumed to be evolving in time with the solution, and the guessed pressure field is not. Subtracting
Eq. (144) from Lig. (145) , onc obtains the following expression for the crror in the velocity field,

ot or?

vl . Alz{azui ()2“1‘

, 2 -~ 4 O(A(]) _.A.!j f)__(aﬂp) + O(At” (149)

2 Hxl ot

The curl of Eq. (149) is identically zero, hence the divergence error for explicit time integration can
be expressed as the gradient of a scalar field, i.c.,

e = 99 (150)

This divergence-crror distribution, Liq. (149), is used to develop “optimal” semi-implicit projection
schemes that require the estimation of (OP/0t)". These schemes are semi-implicit in the sense that the
diffusion terms are advanced in time implicitly, and the advection terms are advanced explicitly.

A O-implicit time integration scheme can be derived with the aid of two Taylor series
expansions for u," ' " about u," and u," ", thus obtaining
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Subtracting Eq. (152) from Eq. (151) and rearranging terms, the 8-implicit integration scheme is
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d du
w'''-u - At o o + (1-0)—
ot at |,

nel

Using the momentum equations to replace the time derivatives in Eq. (153) results in
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Integrating the momentum equations with a guessed pressure field, P* . results in a velocity field,
u,* , that does not in general satisfy the continuity constraint. Equation (154) becomes

. Lo 3 [ 1+Re'( 94" du' oP"* .
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Note that the advection term for u," in Eq. (155) is not in divergence form since
. a .‘ a .' -0
Ma._‘.‘;l._ + 0 “I" i # _,EE!..}:'__Z
ax, axj ax,

Subtracting Eq. (155) from Eq. (154), the relation for the 6-implicit divergence error is
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There are four modes in Eq. (156) producing errors in the velocity field, i.e., error modes due
to advection, diffusion, pressure, and a nonconservative (rotational) body force. Taking the curl of
Eq. (156) shows that in general the O-implicit error is not irrotational. Only the error induced by the
incorrect pressure field can be represented by the gradient of a scalar potential function. The
remaining errors in Eq. (156) must be reduced by insuring that #,"=>u,"" ' through iterative cycling with
the momentum equations and, in the case of nonisothermal flow, the energy equation.

An iteration strategy can be devised to drive the divergence error to below some specified
level. The first step is to assume that the divergence error at iteration p+1 can be approximated by the
gradient of a potential function; hence,
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The advection term in Eq. (156) can be approximated by
. p . 14 |
. ) -Uu. 2 P |
[ ul'f?_“;, - ?ﬁl,) - [u,‘ fa,f,_‘_‘_!m‘ﬁl} . “I",E?”,St’.,, (158)
ax, ax, - ox; . dx, dx, el
and the diffusion term, for Re ‘=0, by
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Equation (156) is, therefore, approximated by
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Continuing with simplifying Eq. (160), the advection, diffusion, and body force terms are neglected
to obtain

ped . 14
" oAy ‘?,(.,Pj;,,’,’,)
v,

ax

(161)
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Integrating Eq. (161) and setting the constant of integration to zero result in a pseudo-pressure
correction equation of the form

Pla = P10, ’6‘%{;‘3’ i (162)

The difficulty posed by Eq. (162) is that it requires u correction for the pressure at iteration p using
the unknown ¢ solution at iteration p+1. A computable strategy, therefore, must rely on the
accumulation of ¢ solutions, i.e.,

K ' ;
PIRw = Pla gy 2 9o (163)

where, as the iterations converge, ||, —0 and $—0.

With the above strategy, the error in the velocity field at iteration p is defined as the gradient
of a scalar potential function at iteration pt1, giving

(w"=u")" 097 (164)

Taking the divergence of Eq. (164), the resultant Poisson equation for ¢ is

d(d)= Aty %, 0 (16%)
dx,ox;  Ox,

The Neumann boundary condition for Eq. (165) is obtained by projecting Eq. (164) onto the
outward-pointing normal direction at the boundary I, i.e.,

a¢

- a}‘ n = (u,

Kol

-u')n,  onT (166)

For that portion of the boundary where all the efflux velocity components are fixed with Dirichlet
data, u,(x, 1)=w,(x, 1) forx € I',, Eq. (166) becomes a homogeneous Neumann boundary condition.
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Using Eq. (164) as a mechanism for o velocity correction equation of the form

“‘oo - u [} if?d’ ('“-’,
dx,

where 1, ** is the “corrected” velocity, produces spurious errors near the boundary. The homogencous
Neumann boundary condition, Eq. (166), allows the normal component of w** to satisty the Dirichlet
data, ie. w** n - ow, for v e 1 however, in general

LR ‘ : 1 Al
u''t, - [u, ;? )t. cw, onl,in R? (168)
o

where w, is the tangential component of the Dirichlet velocity vector at the boundary. The velocity
correction (or projection) step, therefore, generates o spurious slip velocity that violates the noslip
boundary condition (Gresho, 1990). 1f 1,*® ¢, is set equal to w after the velocity correction, a vortex
sheet is produced at ;. thus discontinuously injecting additional vorticity into £2. Again, iteration
within the time step is required to minimize the amount of spurious vorticity produced on I,

4.2 POISSON EQUATION FOR ¢

The following discussion presents a formal development of the Poisson equation for the
continuity constraint potential function, ¢, and its natural boundary conditions arising from a Galerkin
weak statement.

Recall that the defining relation for ¢ is
(u, - w") (169)
where , is the solenoidal velocity field, and #,* is the computed velocity field not satistying the

continuity condition. The Poisson equation for ¢ results from applying the divergence operitor on
tq. (169).

d (dd) 9 (“ u ') o du, ) du,’ ) du,’
ax | ax, | ox ' dx,  dx ax,
0? ou,’
R el (170)
dx, dx, ax,
, atgp  ou’
G(P) - e b 0

t)x‘ dr, (?I,
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A weak statement for ¢ is

: du.
[vadran [ T 0 [y ™ da -0
u o oxdx ‘v dx, (1M

VerLiQ)andde M), u'c H'(G)

Applying the Green-Gauss theorem to the diffusion term in Eg. (171) gives

t)zw ) ('}w ﬂ¢ dd’ 4
j“lw - da f X a6 fmw gi[' "‘dl “72)

dx, dx, adx, ag

where n, is the outward-pointing normal unit vector on the boundary.  Inserting kg, (172) into
L. (171). the resulting Galerkin weak statement is

. "u .
[ wadrda - f’W’ UL 2P f vl f ¢ ¢ ndl' 0
0 U f)l' ax, Q 8'1 " a"n (173)

Ve HoQrand de H'(Q ) u'c H'(Q)

The natural boundary condition for ¢ is the projection of the gradient of ¢ onto the
outward-pointing normal of the boundary. By Lq. (169), this projection is related to the error in the
velocity field at the boundary

t?¢ . . L
ol ) 74

The six types of boundaries to be investigated are inflow, outflow, entrainment, symmetry,
no-slip, and free-slip (tangeney condition) houndaries.

4.2.1 Inflow Boundaries

Assume at an inflow boundary that the normal velocities are preseribed by problem data, and,
therefore,

My (u,u)n, 0 (178)

) i
03,

thus producing a homogeneous Neumann boundary condition for the surface integral in Eqg. (173),
Using a homogeneous Neumann boundary condition, therefore, establishes a solvability constraint
for the data supplied to the ¢ Poisson equation; that is, the Dirichlet velocity data must be divergence
free.
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4.2.2 Outflow Boundaries

For outflow boundarices, a traction force-balance (Neumann) boundary condition is typically
applied for the momentum equations. Therefore, the divergence error is generally not zero ot the
beginning of the iterations, that is,

G l '
: d}: no=(u-u')n 2 0 (176)

For a local normal-tangential coordinate system, the gradient of ¢ is

) g‘: = 0y “".)
(MM
- (Z.‘Q b - )
s ()

Assuming that the outflow boundary is positioned such that the predominant flow across the boundary
is in the normal direction, one may expect, therefore, that throughout the iterative cycle, the tangential
divergence error remains small, such that

.;vu") € - 64’ € ¢ <xc |
as

¢ = constant along &

The value for ¢ at outflow boundaries is usually set to 2ero.
4.2.3 Fntrainment Boundaries

Based on the above ohservations for outflow boundaries, a similar argument can be made for
entrainment boundaries, specifically, that the tangential divergence error is small throughout the

iterative cycle, and a good approximation for ¢ is to set it to zero. The divergence error can be made
identically zero by fixing the tangential velocity at an entrainment boundary.

4.2.4 Symmetry Boundaries
For symmetry boundaries, the normal velocity components are set to zero, and, by Eq. (174),

the normal component of the divergence error at these boundaries is identically zero. Therefore, the
boundary condition for ¢ is homogeneous Neumann.

4.2.5 No-Slip Boundaries

For no-slip boundaries, all velocities are set to zero, and the divergence error at these
boundaries is identically zero. Again, the boundary condition for ¢ is homogeneous Neumann,
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4.2.6 Free-Slip (Tangency Condition) Boundaries

The tangency boundary condition is
un =0 (179)

[}

For a free-slip wall, Eg. (174) can, therefore, be rewritten as

g? o= (ug-uS)n = wngouSn s cun
! (180)

resulting in a nonhomogencous Neumann boundary condition at free-slip boundaries. The resulting
surface integral should be computed if w, is not specified. Equation (180) provides an effective means
of enforcing a tangency condition along an arbitrarily oriented surface without explicitly having to
specity 1,=0. With the tangeney boundary condition, the Galerkin weak statement for ¢ is

Iy o0 du,’
soydn - [T¥ 9%yq “odn
f;'ﬂi ) Lc’ix, dx, ' j‘;‘i’ ax,
. f w“i'n'dl‘ = ) (IBI)
0 - tangency
Ve H (Q)ando e Hy (), u' e H(Q)

Evaluating the surface integral in kq. (181) will enforce an approximation to the tangency condition
as the solution converges.

4.3 PRESSURE POISSON EQUATION

One difficulty insolving the pressure Poisson equation for turbulent flows is that the turbulent
Reynolds number, i.e., the eddy viscosity v', is not constant but varies significantly over the flow field.
The pressure Poisson equation, therefore, has the general form




63
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dx, '
ou. y?
a o 1 oH (182)
r?x, dt Re ax,ax,

a (B{’W ou; 6( Re'{ au,’au’” v ATO g'] =0

dx, éki ’5}, ox, dx, dx,

where, due to the presence of the Re' term, third order spatial derivatives exist for the velocity field.
The following analysis demonstrates how the Galerkin weak statement, after selective applications
of Grreen's theorem, reveals the appropriateness of the classic /7' (€2) Soboley space for the velocity,
thus producing an easily computed right-hand side for the pressure Poisson equation. The analysis
also reveals the natural boundary conditions associated with the Galerkin weak statement for the
pressure in laminar and turbulent flows,

Equation (182) can be further simplified by imposing the continuity constraint on the flow
field. Assuming the necessary smoothness in the flow field’s dependence on time allows the
commutation of the temporal derivative with the divergence operator, thus implying that the
acceleration is solenoidal for all time, hence

‘3“(()“"]«s d [a“'].o (183)

ax\ or | or|ax

Next, sufficient smoothness for the spatial derivatives is assumed to allow them to commute. The
reference Reynolds number, Re, by definition does not vary over the flow field, therefore,

, 2
B LS I S T (184)
dx,| Re Bxlz Re ax,’ dr,

Applying Lgs. (183) and (184) to Eq. (182) yields the pressure Poisson equation for divergence-free
flow fields as

L(P) = O (20(w) -

X

o | ap ou, 9 | Re'| o4, OJu k
e e i I i Ar® =0
ax, | ax, * " ax, 6xl[ Re ( dx, “ox )] .

(18%)
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Note that £°( u, ) is defined as

Q'(u,)s?ﬁ i_lﬁ -i B_e_(. Efl+_arul +Areg'
! ox, / ox, Ox;| Re| dx, dx,
(186)
@ () du; d 1 94,
= U R —— S —— ———
! gt 9x{ Re 0x

In Eq. (185), the continuity constraint has eliminated the diffusion term associated with the mean flow
Reynolds number; however, the spatial dependence of the Re' diffusion term has forced a third-order

derivative on the velocity to remain in the formulation.

A Galerkin weak statement for the pressure is now

d
yL(P)AAQ = ww(ﬁ'(u,))dﬂ =0
) Js ox, (187)
Vyell(Q) andue HJ(Q), PeHI(Q)
specifically, u, lies in H,(Q). Employing Green’s theorem with Eq. (187) results in
3 . . [ 9Y . . . -
[o¥ 5o (2 w)dn = - [ 2% " (u)d0 f v () n dr =0
i (188)
VyeH(Q)andu € H(Q), PeH(Q)
From the momentum equations observe that
a 1 Ou. du,
g‘(‘)z_a_6+ O _ 8 | Relf o4 c4 + Ar@ g
dx, 'dx; ox;| Re 9x; ox
' (189)
Oy, 1 0%y,
Tt Re }:}7

Therefore, Eq. (188) becomes
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fo""g;i( < (ui))dﬂ =

t| du, Jdu,
&E[qu..i]] + Areéi]dﬂ
Re ax, ox, ‘ (190)

aP u; 9
—_—t u - —_—

ax, J 5—,\; ax,.

du, dar °u, dr -
) aq“'ﬁ"' f YRe o2 W4 °

Ve HO'(Q) and u; € Hg(())
In Eq. (190), both the turbulent diffusion term and the final surface integral act to constrain the
velocity to reside in H?(€2). The following analysis verifies that the Sobolev space for velocity can
be expanded to H'(€2).
4.3.1 Treatment of the Re' Term in Eq. (190)

Focusing attention on the term in Eq. (190) involving the turbulent Reynolds number Re' , the
pressure Poisson equation, Eq. (185), can be expressed as

9(P) - —éa—( 9 (u)) = 56’< @ (u) + 43 (w,) a91)
where
. P Ou .
Li(u,) = E;, + ujgx-; + Ar@g (192)

a_“zf’_’ﬁ)) (193)

From Eq. (187), the weak statement for the pressure is

[wscPan = w2 () « 25(x))da
: (194)

3 [ 3 (e
- folll-g;i(&?,(u,))dn + fgq.é-;‘( @5 (u,))dQ = 0

The weak statement for &, upon expanding terms, becomes
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Green’s theorem is applied to the final form of Eq. (195), with the result

3(Re'/Re) 94

dx, axj

dQ =

0
-2 fva
! (196)

fg 3y 3(Re'/Re) du, a0 - § v d(Re'/Re) 94, ndl‘]

ax ox, a x, ox, X,

d .
oy 3 [ atw)ea -
197)

\ 3 ! du,
v Re'Re) Py ¢y AREURE) Ty g

a dx ax, ax, ox, ox,

2

Returning to &,, Green’s theorem gives

fg‘l’g;‘( 9} (u))da = - fn%‘f: @(u) dQ + § wLi(u)n,dl (198)
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Note that
. aP du
@y (w) = Fn + ujé—:é + Ar@ g,
(199)
ou, 1 9%, 9 Re! du,
- e R
ot Re ax)? ij Re ax ox,
[ 9% g : [ ow|ap, %M
fn ox, £1(w) dad + fanwg’(u‘)n‘dr fﬂ axi( ax, " axj r Ar6g |d0
(200)
du, 0%u, t{ Ou, Ou,
,f w__._'nid[‘+._1_ q;______z'n‘_d \l!——- &[_‘.‘_‘-v_.l n,dr
on ot Re 70 = gy, ox;| Re { dx; 9
The weak statement for the pressure is now, after multiplying through by -1,
[wapaa = [ 24 2. 5% are g, |d
Q a dx, ax]
-t dD - —n dI' -
f 41 n Re \l! n
l
(201)
t | du, du,
f " 9 | Rel| o ot n,dT"
80 axj Re | dx; 9x,
t du 1 du
'2f ay J(Re’/Re) ldn wa(Re [Re) T4 dr = 0
o Jx, ax, axl ox, ox;
VyeH (Q)adu e H(Q), Pe H(Q)
The surface integrals in Eq. (201) involving Re' can be further simplified by
du. 0 t 9
v 3 | Re'| 94 Y ]]n‘dl‘ y? 9(Re'/Re) 94 ndl -
ox, Re dx; dx ox, ax, 202)
t ] du, t 3%u t d
f wa(Rc,./.B_Q —:‘_‘o_u_/ nid[‘»f \l’ Bf.__..,._ln‘dr‘+2f q;ma(Rnc /R,_e)....l_‘_’.n,d]‘
an ox, dx, 9x, " Re 8x,2 aa ax, ax, '

The second term on the right-hand side of Eq. (202) can also benefit from an application of Green's
theorem:
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t ou. d t g
f wa(Re /Re)—'n,dl‘+f ay u'n,dl‘ ‘IJRC ukd
an axj ax, aq Re ax ax o0, Re dx,

In Eq. (203). the dyadic n, n, for an orthogonal coordinate system is equal to the Kronecker delta, §,,
and, therefore, the continuity constraint will remove the final integral. Equation (202), with the use
of Eq. (203), becomes

ad
“fa¥ 5

d(Re'/Re)
axj

du, du, d
o, oY mdl + 24 a(Re Re) %4 r -
ox, dx, ax; dx; "

o, o4 ndr +f ‘pwa(Ret/Re)if‘ln‘dp (204)
dx, odx 90 ox, ox, !
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Re' dy i dl 2}( d(Re" [Re) u/n dT
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or

Re!

d
_ fan " _(‘:);5 e

Re

du, a d

ou, ndI‘+2f wa(Re /Re) unde:

ax ax,. ax; ox, (205)

t d t du.

o f Re 0Ty, gp o g AReIR) Ty gp
30 Re dx, dx, 90 ox, ax,

The pressure weak statement with the above considerations is

[ 9w 3P, O
[oudprda - [ 22 [ax.+uj~a—;+Ar9gi da

¢ /

e - ] LT
f o ¥ o Re Jon v 5;5 & (206)

1 du YRe) Ou, t 5]
+§ Re' o% Ty ar -2 9% 9(Re/Re) Thiyn . § yO(Re/Re) 7% 4r -0
3 Re ox; dx, Q dx, ax, dx; 9a dx, ax, !

Vg eH(Q)and u € H'(Q)

To complete the analysis, two cases will be examined for the surface integral involving the second
derivative of u,,.
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4.3.2 Case 1: Inflow Boundaries

A second application of Green's theorem for the final surface integral in Eq. (190) results in

1

S E O ap- L g v % 1
o ax.2 i
]

du
. A . —fnn 7
n,dr Re fan»mw dx, nn;dl @0

Re /@ Re Joa ax}. 6xj

As noted previously, for orthogonal coordinate systems the dyadic or second order tensor arising from
the outer product of two unit vectors, », n, , is equal to the Kronecker delta, 8, . Therefore, the final
I-dimensional integral in Eq. (207) is

] au,‘ _ 1 aui _ J auj ) 208
Re fﬁﬂ"ww 13;; ;L = Re fao-wlp jél,de‘ " Re fan-,,,"’ 5% dr =0 (208)

Therefore, with Eqs. (207) and (208), the weak statement, for Case 1, is

o, %,

Are dQ
ax, / ox, &

. [ 2v
[ypemaa - [ 22

d d
+ win,dl‘+-—l—~ gﬂindr
90~ Jt

Re /oa dx, dx, (209
! du, [ du t du
+ f Re’ oy %4 ndl - 2 Oy J(Re/Re) Wi 0 | i J(Re [Re) 94 ndl = 0
99 Re dx; dx Q dx, ox; dx, an dx, ox,

VyeH(Q)andu e H(Q), Pe H'(Q)

4.3.3 Case 2: No-slip and Free-slip Boundaries

For no-slip and free-slip walls, an alternate formulation of the surface integral of the viscous
flux vector can be cxamined. For convenience, the analysis is set in R’.

At the surface of a wall one can construct a local normal/tangential or n-s coordinate system.,
The proper boundary conditions for the velocity field at an impenetrable no-slip wall are, in the n-s
coordinate system,

un =0
(210)
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Note that the continuity equation in the n-s coordinate system is

M, Wy @i

as an

. 0* 0* o L
and the Laplacian operator has the form Py = 5 + 57 Transforming the surface integral
X : a)

/
from the global to the local n-s coordinate system gives

2 2 2
S 1 O tngp - - L [f}__i‘:-, NN P @12)
Re Jaa ax/‘2 Re Ja0 ds ? FIE

At a no-slip wall, the derivative of the normal component of the velocity field with respect to the wall
tangential direction is zero, since u, is 0 along s, thus

u, 3 (aun] o an)

9s?  ds| o5

By the continuity equation, the second derivative of u, with respect to the normal coordinate becomes

d’u, _ d [, =_.<L(9_‘is.] 14)
dn? dni{ dn dni Os

Therefore, the surface integral along the no-slip wall is

2 2
Loy T g ¢[~i(iui) ar @15)
Re Jo0 dst  an? Re Jan ds\ dn

Applying Green’s theorem results in

b w(m_a__(yj])drz-i i‘k(f’i‘g) dr « q,ffff.s (216)
Re Jaa ds\ dn Re Joa ds \ dn J,,, dn

As was true in the previous Case |, the final term in Eq. (216) is zero since it represents the projection
of a vector in the n direction onto the s direction. Since # and s are orthogonal, their inner product
must be zero. Note that the derivative du /dn represents the shear strain rate (and also the vorticity)
at the wall. Coupled with the viscosity in the Reynolds number pre-multiplying the surface integral,
the term also represents a nondimensional shear stress at the wall.

4.3.4 Inflow Boundaries: Treatment of Advection Term

The term in the pressure residual arising from the kinematic flux vector in the momentum
equations can provide natural boundary conditions for inflow planes. Applying Green's theuiem,
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The surface integral in Eq. (217) must be computed at inflow boundaries.

4.4 CCM OVERVIEW

In a preceding section it was demonstrated that an iterative cycle within the time-step is
required for an implicit integration. During these outer iterations, the CCM replaces the genuine

pressure with a continuity constraint state-variable, C' /', , where the superscript p is an iteration index.
The 8-implicit semi-discrete momentum equations, therefore, have the form

N 14
o(uu)’ t{ du, du :
u' 1" = u, |, - OAL o) 9 | 1+Re!} 04 04 +9€  arey,
ax, ox,{ Re {dx; ox ox,
inel (218)
auu t| du, OJu
-(1-0)At] - () g [ 1+Re'( o4 Oy +£}£+Ar9gl
ij ax,, Re c')xj ox, ax, ,

When the genuine pressure, P, is required, it is assumed computable, as discussed in the previous
section, from the pressure Poisson equation, i.e.,

2 . 2
Q(P) = o’ ?,“g iu‘ .9

+ Ar —— =) (219)
dx,dx,  Ox, dx,  dx,0x, J

Re

for any u, |,., , a converged, solenoidal velocity vector field. The genuine nonhomogeneous
Neumann boundary condition for Eq. (219) is

[1+Re ]a“

0 0
- -_li’.' - “v.,gf - Arog on I (220)
X,

where [, is the union of all boundary segments where the velocities are fixed by Dirichlet data, e.g.,
walls and inflow planes.

The iterative cycle in the CCM requires the solution of a Poisson equation for a continuity
constraint potential function ®. This Poisson equation has the form

szb pel :;v,uop (22])

The boundary conditions for ® on I';, are homogeneous Neumann,

3 r*!

=0 onTl, (222)
on
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The CCM iterative solution strategy is:

® TIME STEP n +1
(1) initialize the constraint state-variable by either C',,, =/ or C',,, = P";
(2) solve the momentum and energy equations implicitly for #'" and ®°";
(3) solve Poisson equation for @7 ;
(4) update approximation for C,,, by

pl 1 1 £ k
Cu«l = Cn*l * ( W]Ew

(5) repeat steps (2)-(4) until
I® %), <e ,convergence tolerance

(6) advance time step ; solve genuine pressure Poisson equation for 2"/,

Since equal-order interpolation of all state-variables is employed, which is the finite-clement
equivalent of using a nonstaggered mesh, the div-stability condition is not satisfied by the CCM. As
a result, there is a dominant dispersive error mode, modulo V" | associated with ®. One significant
computational attribute of the genuine pressure Poisson solve in Step 6 is that it prevents the
dispersive error from polluting the velocity and temperature solutions. Step 6 also provides the means
for establishing a basis (i.e., a continuous '/, , based on the genuine pressure 2" ) for an
approximation of P"'/ during the iterative cycle. Experience with the CCM has shown that the
pressure Poisson solve can be subcycled (e.g., solved every third, fourth, or fortieth time-step) to
improve computational efficiency.

Step 5 defines the sfopping test for the outer iteration cycle in terms of the energy semi-norm
of ®, defined as

P
1 99 399 4q
1ory, - 270 dx axj (223)
; Volume of Q" |, |

where the | @], has been normalized by the volume of the mesh. By the definition of &, Eq. (164),
the normalized energy norm can be seen to be a measure of the kinetic energy per unit volume of the
error in the current approximation for u, | ,,, .

4.5 GALERKIN WEAK STATEMENT

The conservation law system described in Chapter 2 constitutes a nonlinear coupled set of
initial-value partial differential equations (PDE) whose solutions are constrained by the
incompressibility condition. These PDEs can be expressed in the general form

0 onQcR" 12y (224)
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where £L(g) is a differential equation system written on the state-variable g(x,./). The function f is
called the kinematic flux vector, and f* is the viscous flux vector. For the Reynolds-averaged
Navier-Stokes equations in R’ with Boussinesq buoyancy body forces and negligible viscous
dissipation, ¢, f, and £ have the following definitions:

[ 1 +Re! ) u,
Re dx;
u wu, + PY, [,1,_;59: ) duy - Arey,
N jthy + sz/ v Re dx, N B Ar@g, (225)
LR P R P Ly e oRe') O [0 | Ak
2] uo "Re -5’; Se
11, Re')o6
Re{ Pr pr')ox
The algorithm auxiliary quasi-linear Poisson PDEs have the general form
2(q,) =V?q, -5,(9)=0 onQcR" 121 (226)
where
V' L]
an[d}} s E ’ (227)
P -V(L(u)-VP)

Proceeding to the discrete form of Eq. (224), the state-variables ¢ and ¢, are replaced by a
continuous approximation that assumes the separability of space and time, thus

N
q(x,1) = qM(x,0) = Y F(x) Q1) (228
i=1

where the function set ‘¥ (x,), called the approximation “trial space,” is user-selectable. The
superscript N in Eq. (228) denotes any approximate solution produced via the inner product of the
known trial function ‘¥(x,) and the set of unknown coefficients Q,(?).

The weak statement is a continuum form of the method of weighted residuals for constraining
the error in ¢*. Using the functional spaces defined in Chapter 3, one seeks the vector function u,""(x,,l)
e V, and the scalar functions ®@¥(x,1) € V,, ¢"(x.1) € S, and PY(x,.1) € S, such that

[wane@hdr=0 |, Vwey, (229)

where the velocity vector function »," is also constrained to sit in Z, the space of weakly
divergence-free functions. The requirement that Eq. (229) must hold for any test function w(x.f) € ¥,
is enforced by making the integral stationary with respect to any set of W), where the interpolation
of w(x,.1) is carried out by
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M
whix,ty=Y ®(x) W) (230)

i=|
This extremum is termed a “weak statement™ with the form
WM e S fowhogn qtde L v
: (231)
[ @) daMdr =0 ot i M
The optimal choice for the test function set & (x,) is that it be identical to the trial space ‘P (x)) (Baker,
1983). This decision yields a Galerkin weak statement

GwsY = f“ P,(x) & (gM)de -0, for 1 uis N (232)

Mathematically, the GWSY is optimal since the approximation error in ¢%(x, 1) is required to be
orthogonal to the space of functions supporting ¢* for any choice of trial space (cf. Baker et al.,
1992b).

For any approximate solution, the GWS" form for Eq. (224) is

a N a V'N
ow.s“:fnw,(%” +5}_(fl-f’ | .s~]dt
' (233)
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where Green's theorem has been applied to project the divergence operator from the flux vectors, f,
and £ ', to the approximation trial space, ¥, and to produce a surface integral in Eq. (233) that is the
mathematical placeholder for all natural boundary conditions in the GWS®.

The finite-element method uses a spatial semi-discretization (or partitioning) Q", of the
continuum domain Q, made up of the union of a set of non-overlapping subdomains €, or finite
elements, such that

Q-at= 0, (234)

The approximation ¢" is then formed as ¢ ”, the union of finite-clement approximations ¢, on Q.. i.e.,

a(x,,0) = q"(x,0 = g*x,0 = Ugq,(x.0) (235)
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On any finite-clement domain €, the generic form for g is

q,(x,.) = (N IT QD T, (236)

where each element in the row vector {N,}’ (called the finite-element basis set) is a kth degree
polynomial. There are as many of these polynomials as there are nodal degrees-of-freedom in 2.

The indicated integrals in Eq. (233) are evaluated at the element level, and the resulting
clement-rank expressions are then summed (assembled) into o global matrix statement of the form

aws* - [ M141Q1 L 1Ry - fo) @)

In Eq. (237). [M] and {R} are a global rank square matrix and column vector, respectively, and
{U={Q(n} isthe array of the state-variable approximation coefficients at the geometric nodes of Q"
The residual {R} isa nonlinear function of {2}, and contains contributions from all terms in Eq, (233)
except the time term, i.e., convection, diffusion, source, and boundary conditions.

For the present CCM implementation, the discretization of the time derivative employs the
O-implicit, one-step algorithm family (Euler/trapezoidal) derived in the previous section. The terminal
algebraic statement for Eq. (237) is of the form

(FQ) = [M]{Q,, - Q,) + Af(8(RI,., + (1-0)|R],) = 0] (238)

where 1,,, = (,+At and 0.550<1.0. A GWS" is also developed for any Poisson equation in the CCM,
directly producing the algebraic system as

(FQ,1 =[D11Q,)-15,(Q()) (239)

The GWS" finite-element methodology has, therefore, produced a coupled, nonlinear system
of algebraic equations that must be solved iteratively. The classic Newton method constitutes the
tollowing iterative cycle,

Q%= 1Q1, : (FQ’. = (FQ),

forp= 0,1,2, .. until convergence

d{R) |7 (240)

[M~ gar’ (8015} = = (FQJL.,

a(Q)

nel

(QI": 1= Q).+ (8015

Quasi-Newton approximations amount to the use of simplified forms of the Jacobian
[MHOAIB{RYID1 Q) ).
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The quasi-linear algebraic system Eq. (239) has the matrix statement

(DI(Q, ) = (S,(Q()} (241)

4.6 FINITE-ELEMENT BASIS OPERATIONS

The CCM Galerkin weak statement algorithm is cast into computable form via a finite-
clement semi-discretization of the domain of integration of the GIWS®, with a 0-implicit time
integration procedure. The element geometry considered mostappropriate for verification of the CCM
is the trilincar, planar-faced hexahedron, Fig. 5. This 3-dimensional finite element can he distorted
casily to fit most applicable geometries, In transform (1) space, it appears as a Cartesian unit cube,
The trilincar basis functions spanning the 8-node hexahedron, in the nodal order given in Fig. 5. are
(I -n)A -nl-ny)
(1 *ng)(l '\2)“ "ﬂ))
(I+n)( "12)(‘ - 1)
‘N(ﬂ.)} = J
8 “ "’h)(] ‘ﬂ;)(l *'ﬂ;)
(Ien)d-n))eny)
(Len(1+ny) A +ny)
(I-n) 0 eny)

(242

A fundamental aspect of the finite-element method is the use of a niaster element where all
element-data inner products and integrations are performed in generalized coordinates. The coordinate
transformation (or mapping) that bridges the computational (transform) n-space and Luclidean space
R'is

Tin - x = x(n) (243)

The mapping t° is one-to-one and onto its range provided the transformation Jacobian J is
nonsingular, where

a\,
dn
\ 11 Iy Iy dis
ox g 44
1+ ﬁn/, ) ‘5712 “ﬂ,xz,x]} TR RS (244)
(K1%)] 3 Jll ‘In J”
dn,

The inverse of Eq. (244) is required to evaluate the flux vector divergence term in the GWS™. The
closed form solution is




77

Figure S. Trilinear hexahedron with one-to-one mapping onto R,
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(Jzzjsa‘ Jsz"zs)’ ("13"32‘ J12"33)’ (Ju"za‘ ‘113]22)

on.
[J]'1 = —Jl = L (J31J23— le"n)' (Jn'laa" Jn"an)’ ('121'113‘ Jza-’n) (245)
ox, det[J]
(Jzn"az’ ‘131"22)’ (‘712"31' Jsz‘]n)’ (Jn"zz‘ JypJ0)
where
det[J] = Jn("zz Jaz" Jsz']zz) - le('lzl'lss“ JCH"ZB) + Jn('lzl"az' JalJzz)
ox,(ox, ar, Ox, Ox, ox,| ox, ox; Ox, Ox,
[y R e Rt SRR S p—— I
on,\(on, on, On,0n,| on,|on,m, on,an, (246)

ox,|ox, ox, Ox, Ox,
on,\on, on, oOn, anz

The metric tensor dn,/0x, is required only on the master element Q, ; therefore, the specific

local form for Eq. (243) uses the interpolation Eq. (242) yielding
xf = xf(n) = (NI (XJ), (247)

where the entries in {XJ}, are the (x,, x,, x; ) coordinates of the eight nodes of Q, . (The notational
convention from here on is that capital letters denote discrete data at the nodes of Q*, while lower case
defines the continuum forms.) Since the element transformation generates piecewise smooth data, on
quality discretizations it is appropriate to evaluate the metric data on/Ox, at the centroid of Q,,
yielding a significant DO-loop economy in the code. Using a subscript to denote node numbers on
Q, , one obtains, for example,

ox

- -;-(- X1+ Xl,+ X1,- X1,-XIg+ X1+ X1,- XI,)
My

ax, 1

S0 = g (- K2y X2 X2y- X2,- X200 X2 X2,m X2y)
m

ox, 1 (248)

S = g (- X X3y X3, X3- X3p+ X3 X3,- X3,)
™

dx; 1

S = g (- Xhm X5,m X3, X3e X350 X3 X3+ X3y)
M3

The final steps for the finite-element implementation are to form the basis 1-derivatives, needed for
the flux vector terms, and to complete all integrals. The derivative operation on Eq. (242) is trivial

and produces
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-(1-1,)(1-n,) -(1-1,)(1-n,) -(1-n,)(1-n,)

(1-n,)(1-n,) -(1+n)(1-n,) -(1+n)(1-n,)

(1+n,)(1-n,) (1+n,)(1-n,) -(1+n)(1+n,)
{_Q_A.’_}= 1) -(1+n,)(1-n,) . {E’X}zi (1-n,)(1-n3) ;{_aﬁ}=L -(l—n,)(1+n21:?49)
on,[ 8|-(1-ny)A+ny)| |9ny| 8|-(1-n)1+ny)| |9n,;] 8| (1-n)(1-n,)

(1-1,)(1+n,) ~(1+n)(1+ny) (I+n,)(1-n,)

(1+n,)(1+n5) (1+n)(1+n,) (1+n,)(1+n,)

| ~(1+n,)(1+n5) (1-n,)1+n,) (I-n)(1+n,)

Products of {N(n,)} with itself, and/or 6{N}/dn, are required to be integrated over €, to form the
master matrix library for the selected basis. A compact notation, (cf. Baker and Pepper, 1991, Ch. 5),

for any 1-, 2-, or 3-dimensional matrix is [Mabcd], where

M prefix denoting the dimensionality of the element master matrix,
M= A for 1D, B for 2D, and C for 3D

a: an integer indicating how many bases occur in the integral

b,c.d: integers 1,2, or 3, denoting the n -direction of the derivatives in the matrix,
or 0 for no derivative

The master element matrices appearing in Eq. (238) are of the form [B2bc] for boundary condition
2-dimensional surface elements, [C200] for the mass matrix and source terms, and [C2bc] or [C3bcd]
for the kinematic and viscous flux vector terms. Since the summation convention operates therein,
(b,c.d) can also become (/,J,K) in compact notation for inner products on EJK, where “EJK,,” is the

name in compact notation for (on, /0x; ),.

As an example, the kinematic flux vector term is nonlinear and, with P extracted via the CCM
continuity theory, yields the finite-element matrix equivalent as

E
[ BIN) 0Nk ey - [ M T (qu), det[J] dQ

Q on, ox "’ Q, an, o,

% k (250)

(o, r o AN T
..[_a_)eDETefnr{UJ}e{N} on {N}'{Ql},dn

_ (9, T OtN} (AT

= (}?j)CDETJw}‘[Io,W'Bﬁ:{N} dn |{Q},
= EIK, DET, (U}, [C30K0] (Q),

The three master hypermatrices [C30K0], K=1,2,3 , each consist of nine 8x1 column arrays of
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integers norma!’. . d by an integer, since | < (J,K) < »n =3 is a summation index. The formulation of
its contribution into {R}, of the Newton statement, Eq. (240), involves a DO-loop to multiply the
various element-dependent data (with subscript ¢) as inner products.

The actual construction of any [C30K0] employs a Gaussian quadrature rule, e.g.,

| S
[c30101= [ [ [ f(n,,my,n,)dn, dn,dn,
TR (251)

n n n
= ZZ Z wiw,w, f(m,-,nzj,ﬂ;k)

where the function in the integrand is

I{N(M ;,My,M5,)]
an,

SMyinpMa,) = AN M,5M5,)) CTIR PPN TR (252)

4.7 FINITE-ELEMENT RESIDUAL STATEMENTS

The construction of finite-element residuals {FQ} (as specified by Eq. (238)) for the velocity
components is representative of data base operations for the CCM. The lead term in Eq. (238), from
the time derivative in Eq. (224), becomes

[ INY(N)T det [J] dQ ({U1)"" - (UI}") = DET, [C200)({U1)™! - (UI}"),  (253)

since no derivatives are involved, and DET, is evaluated at the centroid of Q,. The kinematic flux
vector term yields, after application of Green’s theorem (Baker, 1983),

- ar ([ {N}%I'x-"%;—:]vl{deet[J] aQ (U} = .
‘ j k (254)

- At DET, EJK, {UJ)] [C30KO0] {UT),

The viscous flux vector term, with effective diffusion coefficient 1/Ref = (1+Re' )/Re evaluated at the
centroid, yields

det[J] dQ {UI} =

0 ) T
Atfﬂ 1 oM, 9{N} °NMm 9{N}

.ReE axj dn, dx; on,

(255)
1
ReEB

At DET, EJK, EIM, [C2KM] (U],
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The Boussinesq body-force term is

AtAr[ (N} (N)g det[J1dQ (6], = (256)

At DET, Ar GI [C200] (®},

where Gl is a unit vector in the direction of gravity. Finally, the continuity constraint function is
applied via the directional derivative

Mg SN 5 _
At [ —* (N} 2 det[J]1dQ {CNPI}, = At DET, EIJ, [C20]] {CNPI}, =
Q, dx, on, (257)
At DET,(E11[C201] + E12[C202] + EI3 [C203]) {CNPI},
p+l ¢ k

where {CNPI} contains the current evaluation of C,,, + Z —_—
=YY,

The residual statement for all other members of the initial-valued state variable is similarly
formed. For example, the residual for the energy equation in compact form is

{F® ) = DET,[C200] ({6 )""'- [@]}"),

- At DET, EJK, {UJ)] [C30KO0] (8 },
(258)

1{1 Re!
Rel{ Pr prt

A —| =+ 2 ]DET, EJK, EIM, [C2KM] {8 },

- At DET, [C200] {S©}

Two Poisson discrete weak statements for the auxiliary variables close the CCM algorithm.
For the continuity constraint, the GWS " yields the residual

(F® ) = DET, EJK, EIM, [C2KM] (@ ),
+ DET, EJK, [C20K]{UT});"" (259)
+ DET2,[B200] NJ, {UT}""" = (0)
The last term in EqQ.(259) is the Neumann boundary condition resulting from the application of
Green’s theorem to the residual for @. Since this boundary condition is imposed on a 2-dimensional

boundary segment 8€,, it produces a (B ... ] master matrix and the corresponding determinant DET2,
as indicated.




82

The discretized residual for the pressure is, using Eq. (209) as a guide,

- [ OINY| BUNITLPY) | (AT s(NiTury), r
(FP} = [ ax,.{ - (MU =20 Ar(N)T(©)g,|dD

f 6({RETURB)TlN}) OIN} (N} (UI}) 4

ax ax].

1 ¢ 9{N} a(N})"(UI}) n. dr (260)
Re /o0 9y, ox, {

+ fan {N) {N)T {DUIDt} n, dI' +

AN AUNITLUI) , yp

axj ax, !

+ T
fan(RETURB) {N}

. § QURETURBITIND) () JUNITIUIN) \ 4r - o)
a0 axj ox;

In compact notation, the 3-dimensional residual for the pressure is
{FP}, = DET, EJK, EJM, [C2KM] (P},

+ DET, EIK, EIM, {UJ}] [C30KM] (U1},
+ DET, GI Ar, EIK, [C2KO0] {© ),

- 2 DET, EIM, EJK, EJL, {RETURB)] [C3IMKL] (U1},

+ DET2, [B200] {DUID¢}, NI (261)

+ DET2, §1~ EIK, EIM, [B2KM] (U1}, NI
(]

+ DET2, EJK, EJM, {RETURB) [B30KM] { U1}, NI

+ DET2, EJX, EIM, {RETURB}T[B3KOM] {UJ},M = {0}

4.8 A QUASI-NEWTON ITERATION PROCEDURE

Any linear algebra matrix iteration approximation starts with the formation of the Newton
Jacobian. For Eq. (240), the developed finite-element residual statements are readily differentiated
to produce the necessary master matrix expressions. The element contribution to the Newton Jacobian

from the residual time term for {FUI}, is
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o(FUI)

: 262
Sun - DET. [€200] (262)

Similarly,

SIFUL} _ _te DET, [ (U1} ETK, [C30K0]
3 UT) (263)

+ {UI}](E11, [C3010] + EI2, [C3020] + EI3, [C3030]) ]

is the velocity self-coupling contribution from ©Atf{R}. The non-self-coupling momentum
contributions, from Eq. (254), are

3(FUL) _
o{ulj (264)

- At6 DET, (UI}] (EJ1, [C3010] + EJ2, [C3020] + EJ3, [C3030])

for the restriction JzI. The dissipative flux vector term in 8A¢{R} yields

FULL _ Ay pET, L (1+ Re')EJK, EIM, [C2KM] (265)
o{uly} Re ¢
and the temperature coupling term is
%}ﬂ - A0 DET, Ar[C200] GI (266)

Expressions similar to Egs. (262)-(266) are readily derived for all other state variable
contributions to the Newton Jacobian. The segregated Jacobians for the two Poisson equation discrete
statements are identical and of the form

O{F® }

= DET. EJK, EJM_ [C2KM (267)
a{ ¢ } [4 e (4 [ ]

4.9 BOUNDARY CONDITIONS

Four common boundary types that must be addressed by any incompressible Navier-Stokes
CFD algorithm are: (1) no-slip impenetrable boundaries, (2) free-slip and drag-slip tangential
boundaries, (3) inflow boundaries, and (4) outflow boundaries. The following discussion details the
treatment of these boundaries by the CCM.

No-slip impenetrable boundaries require that the flow velocity at the boundary equal the
velocity of the boundary; therefore, all velocity components are fixed at the no-slip boundary velocity,
wi(x,t). For a fully-contained flow, ['y=(J, a solvability condition exists for the Dirichlet data, such
that




§ windr =0 (268;

which is a requirement for global conservation of mass.

Free-slip boundaries require the satisfaction of a tangency condition, i.e., u, n, = w,. Ifthe wall
is parallel to a coordinate axis, then the tangency condition can be easily enforced by setting u, n, = w,.
For stationary boundaries at arbitrary angles with respect to the coordinate system, an approximate
tangency condition may be applied using a nonhomogeneous Neumann boundary condition with
Poisson equation for the continuity constraint potential function.

A tangential traction or drag is imposed on the flow-field through the evaluation of the natural
boundary condition produced by applying Green’s theorem to the viscous flux vector for the
momentum equations. For example, for laminar flow,

1 9%y, 1 3y Oy 1
— dQ = — -—~-—‘dn—-— ~——‘dl‘ (269)
f v ox, 0x; Re /@ 0x; ax, Re llJ

Focusing on the surface integral in Eq. (269), the integrand can be related to the shear stress at a slip
wall by

pU du,
- 1 ref ( gc ref }f Y — - dl' = "i“ Y T,’»walldr‘ (270)
R g, Lrtf vl Uref an ReE ‘o0

where 1, is the dimensionless traction at the wall in the ith direction. The dimensional traction, t,*
has been scaled by ( g, L,/ p U, ) such that

Ju,
’a"l:l" = " Viewall @)

The traction at the wall can be expressed by a general function, e.g.,

c ~wall l a+b U (UFS— Ub—s)d | (272)
where U, is the tangential velocity of the fluid near the wall, and U, is the velocity of the wall
boundary itself. By Eq. (272), the boundary condition in R’ is applied to the residuals for each

momentum equation by

+A19 - [B200] | TAUIW |, DET, 273)
e

For the energy equation at wall boundaries, the temperature or the heat flux may be fixed. The
heat flux may be applied as a constant or as a linear or nonlinear function of boundary and near-wall
fluid temperatures. The heat flux boundary condition arises from the diffusion term in the weak
statement for the energy equation. Applying Green’s theorem results in
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I [ 9y 98 1 30
oY 96 4o - 1 98, ar 274
RePrfﬂ dx; Jx RePrfl‘ v ox, " (274)

The surface integral in Eq. (274) can be related to the dimensional heat flux at the boundary by
Fourier’s Law of Conduction

oT
Qwan = —k-‘é}; (275)
Eq. (275) can be non-dimensionalized such that
008 'chf
95 . . = QFLUX (276)
an ( Y

In Eq. (276), QFLUX is the non-dimensional heat flux at the boundary where a positive value
indicates that heat is being removed from the flow. The residual for the energy equation is now, using
compact notation for the 3-dimensional case,

(F@} = (otherterms| + DET2, E:—];r [B200] { QFLUX], @77)

The contribution to the Jacobian for the energy equation is

9| FO ) DET2, "3QFLUX
i IS Y . W B200 (278)
a{9) A Re Pr 90 [8200]

The overbar in Eq. (278) indicates that any explicit appearance of ® in the derivative term will be
replaced by an average value for the 2-dimensional boundary element.

A general function describing three possible methods of imposing a heat flux at a boundary

G =@+ bT + c(T-T,)¢ (279)

The constants a, b, ¢, d, and T, are data. Note that Eq. (279) is a dimensional equation, and a, b ,
¢ ,and T, must, therefore, have dimensions consistent with any other dimensional data in the problem.
The temperature T, is a prescribed boundary temperature located outside of the computational
domain. The three positionally dependent boundary conditions that can be applied using Eq. (279)
are a prescribed heat flux, forced convection, and natural convection,

4.9.1 Case 1 - Prescribed Heat Flux

The heat flux g, is imposed by some external means and is independent of any solution
variables, This boundary condition is applied by setting




4.9.2 Case 2 - Forced Convection

For a forced convection boundary condition, Newton’s Law of Cooling has the form
Quan = R(T-T,) (280)
where A is a user-prescribed heat transfer coefficient (film coefficient). Eq. (279) requires that
a=-hT, ; b=h ; c=d=20

In terms of @, b , and O, the result is
G, = b[OAT, + T]] +a

ref re

4.9.3 Case 3 - Natural Convection

In the case of natural convection from a surface, there are a number of empirical correlations
expressing the film coefficient for natural convection as a nonlinear function of the difference
between the fluid temperature, T, and the surface temperature, T, . (Recall that T, is located outside
of the computational domain.) These correlations typically can be cast in the dimensional form

h=C(T-T)% . (281)
The relation for the boundary heat flux is now

Gy = H(T-T,) = C(T-T,)" (282)

In terms of the general function,
a=b=0; c=C ; d=1+C, ; specify T,

The complete nondimensional form for Eq. (279) is

L
S ECARY L A

AT  k k AT
ref ref (283)
clL
ef d
[ AT ,k] (8 AT+ Ty~ Ty
re
and the required derivative for the Jacobian is
31OFLUX bL cdl
a{gfél;]x) = [ k"fJ + (—Mk "f] (em ATnf * Tnf - Tb)d.l @54

The explicit appearance of @ in Eq. (284) has been replaced by the arithmetic average ©,, of the
temperatures of the four points defining the surface element over which the integration is taking place.
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An altemative would be to irterpolate the ® and change the [B200] to a [B3000] for the Jacobian
only.

Outflow boundaries present a unique problem for CFD algorithms. Their location is typically
arbitrary and somewhat artificial, arising from the need to truncate the domain at some point in order
to establish a finite domain, thus a tractable problem. The physics of the flow field generally offers
little guidance, Application of Green's theorem to the kinematic and viscous flux vectors, however,
does produce mathematically well-posed natural boundary conditions for outflow planes. The
advection term in divergence form in the GWS" for the momentum equations is

Outy) 1 oy
fnq,-\b.;_dﬂ = - fn Egu‘ujdﬂ + frwu,u}.nldf‘ . (285)

The volume integral on the right-hand side of Eq. (285) has been discussed in a previous section, and
its formulation in compact notation for the residual {FUI} is

- At DET, (UJ)] EIK, [C30KO] (UL}, (286)

The contribution of the surface integral to the residual {FUL} is

+ At DET2, {UN }][B3000] (U1), (287)

where {UN} is the projection of u, onto the outward-pointing normal at each node in the surface
element. The surface integral represented by Eq. (287) is evaluated at an outflow boundary using the
latest estimate for the velocity solution. A similar boundary condition for the energy equation can be
developed.

The viscous flux vector or diffusion term in the momentum equations produces the following
volume integral for {FUI}

3 d !

+ At DET, RL EIK, EIM, [C2KM] | UI),
(]

and the corresponding surface integral is

L f V) nka‘N'dt[J]de‘{Ul} nj -
Re on,
(289)

- At DET2, Rl" EJK, [B20K] | U1}, nJ
€

The surface integral in Eqg. (289) requires the evaluation of the normal gradient of the velocity at the
outflow plane. This gradient is in general unknown in the absence of specific data on downstream
conditions. A common approach isto assume a vanishing normal derivative (a “continuative™ outflow
boundary). A more accurate technique is the one proposed by Freels (1992) in which it is assumed




88

that the gradient at the element adjacent to the boundary is equal to the gradient at the boundary.
Implementation of this boundary condition involves setting to zero the row of the diffusion matrix
associated with the boundary node during assembly of the global system matrix. This approximation
improves in accuracy as the mesh is refined near the outflow plane. The continuative assumption
cannot be improved through mesh refinement.

4.10 DISPERSION ERROR CONTROL

In the development of any CFD algorithm, a key theoretical issue is stability in convection
-dominated flows. With increasing Reynolds and Peclet numbers, the natural dissipation mechanisms,
associated with the physical diffusion terms in the momentum and energy conservation laws, begin
to lose their ability to moderate a dominant dispersive error mode. The spatial discretization of the
hyperbolic advection terms is the source of this numerical dispersive error which manifests itself as
characteristic “2-Av waves' in the velocity and temperature distributions (Baker, 1983). To address
the issue of dispersion error control, a Tavlor Weak Statement is employed wherein a temporal
Taylor-series-derived modification to the conservation law statement is added to the momentum and
energy equations.

In finite-difference/finite-volume CFD applications, various upwind differencing schemes are
employed for dispersion error control, ranging from donor-cell upwinding (Gentry et al., 1966) to
high-order upwind operators such as QUICK/QUICKEST schemes (Leonard, 1979). Upwind
differencing involves approximating convective derivatives with upstream and cell-centered solution
values. As discussed by Roache (1972). upwinding methods inherently introduce some level of
artificial diffusion into the flow field. A particularly troublesome manifestation of this error
mechanism is “cross-wind™ diffusion in which velocity fields experience a dissipation error normal
to the flow direction.

Finite-element upwinded convective terms can be developed in several ways, including
modified weighting functions (Christie et al., 1976), modified quadrature rules (Hughes, 1978),
stream-line-upwind Petrov-Galerkin (SUPG) methods (Brooks and Hughes, 1982), multi-dimensional
“tensor viscosity" schemes (Dukowicz and Ramshaw, 1979), “balancing tensor diffusivity” (BTD)
methods (Gresho et al., 1984), and Taylor-Galerkin methods (Donea, 1984; and Baker and Kim,
1987).

The theoretical treatment of dispersive error instability has relied typically upon the linear,
I-dimensional, scalar advection equation as a hyperbolic model problem,

99 . .99 290
ot “ax (%)

where ¢ is a scalar constant. Equation (290) describes an evolutionary process for which existence
of the Taylor series

, Ar' a’q
6 o'

. Ar?d%

. dq
g l=q"+ At
n 2 ot ?

Jt

(291)

n n
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is guaranteed. Baker and Kim (1987) present a generalization of the Taylor Weak Statement algorithm
for Eq. (290) which permits selective control of both time accuracy and stability. As noted by
Noronha and Baker (1989), “the Taylor Weak Statement (TWS) procedure provides the broader
generalized perspective for nonlinear stability mechanisms for hyperbolic and/or partially parabolic
conservation law systems.”

The TWS formulation for the incompressible Navier-Stokes equations was derived and
verified by Noronha and Baker (1989). In the limit of large Re (and neglecting source terms), the
multidimensional form of the conservation laws can be restated as

dqg , 9 _ aq dq
Sf D ot A et = D 4 A — = 292
(9) or  9x ot ’ ax @2)

where 4, is the Jacobian of the kinematic flux vector (¢f /0g). Following Baker and Kim (1987), the
higher order time derivatives in Eq. (291) arc replaced with spatial derivatives obtained from
Eq. (292). For example, it can be shown that the second derivative of g with respect to time is

2 o
9°q _ 0 [ 44, B‘A.Akgi (293)
or?  dx 7 ot 7% ox,
subject to the convexity constraint a*— 8* = 1. Similar manipulations can produce an expression for

the third-order temporal derivative in Eq. (291) in terms of spatial derivatives. Substitution of the
revised Taylor series into Eq. (290) results in the Taylor-modified conservation law statement,

a2493+y‘515L(AA aq”

_ aq 3g At d
S i i sl I P 3 axr \ 7 ar

ot fag 2 ox

WAAaq+wéla(AAAaq

7% ax, 3 ax | /T oy,

(294)
=0

_ At
2 axj

where 0q/0t*~>0q/0t as At—0. A Galerkin weak statement can be formed with Eq. (294) that, based
upon the specification of the parameter set a*, B*, y*, and u*, contains over a dozen independently
derived dissipative CFD algorithms (Baker and Kim, 1987).

For the current application, dispersion error control is based upon the use of the 3*-term in
Eg. (294). Noronha and Baker (1989) show that the required TWS form for the momentum
conservation law involves adding

AZ’ d i O (295)
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to the momentum equations. The B*-modified energy equation includes the term

+ At 0 08
_ 9 (,, 98 (296)
Po 2 9x, [u’u" axk)

As a computational convenience, (295) can be approximated by neglecting u,u, .

This approximation produces a ~term similar in form to (296), i.e.,

At 8 ou,
- Ato w1 297
B’ 2 ax(“f""axk] @7

Equation (297) is identical in form to a “balancing tensor diffusivity”or BTD term (cf. Gresho et
al.,1984; and Dukowicz and Ramshaw, 1979). Following Raymond and Garder (1976), an
approximate element-level Courant number replaces the time-step At in (296) and (297), thus,

1 lln
At Bhe " ) + At - Be (298)

pr sl -
2 lul, 2 Jul,

where 3 and (3, are user-selectable parameters (=0), » is the problem dimension, 4, is an appropriate
local mesh measure (with the dimensions of area for n=2 and volume for #=3), and |u|, is an
element-based reference speed.

The Taylor weak statement for the momentum equations is, therefore,

ﬁ .

WS = [ wd,w)de = [ we@)da - fw ( ;uka ]dﬂ = 0299)
VyeLi(Q) , ue HX(Q)

Applying Green’s theorem to the B-term in Eq. (299) gives
TWS = [ 92,40 = [ ¥L(u)d0

B h”" du,
, PR fa"’uk Mg - P oW = wndl =0 (300)
lu|, J0 0x; 7 " ox, lu], X,

VyeH(Q) , u,e H'(Q)
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The discrete form of the B-terms in Eq. (300) is, therefore,

9
B X f{UJ}T{N} (UK)T(N) n,auv} m INI T 11 et 141, dn
on, OJx, 9dn, 301)
" T
- B|u[ § _(UK)T(N) (N) 1;" aé:} (UI} {N)}T{UN) det[J],,dn,

where {UN} are the boundary velocities projected onto the outward-pointing normal. In compact
form, one obtains the TWS contribution to the {FUI}, residual

ph1/3
e

o EJL, EKM, DET, {(UJ}( (UK}, [C400LM] (U1}, )
u

‘ (302)
1/2

EXM, DET2, (UN)]({ UK}, [ B4000M] { UT},)

lul,

The assembly of the [C400LM] and [B4000M] hypermatrices into the global residuals and Newton
Jacobian matrix is a prohibitively compute-intensive operation for large problems. As an
approximation, the order of these terms can be reduced through the formation of elenient-averaged
velocity components, hence,

' S
ﬁluel EJL, EKM, DET, UJ, {UK},T [C30LM] ( UT},
‘ (303)
1/2
" T EKM, DET2, UN,{ UK} [ B300M] { U1},
u e
Similar terms can be developed for the energy equation residual {F®} with the result
Be b, S
T I‘ EJL, EKM, DET, UJ, {UK},T [C30LM] {©},
u
’ (304)

B hl/2
8

ul,

EKM, DET2, UN, {UK) [ B300M] (8},
The surface integrals in (303) and (304) should be evaluated for those boundaries at which the normal
velocities are not fixed by Dirichlet data, e.g., outflow boundaries.

The B-terms can be differentiated to obtain their contributions to the element-level Newton
Jacobians. For the momentum equations, the self-coupling term is
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h1/3 -
otFuy _ Pk EJL, EKM, DET, UJ, (UK} [C30LM]
o{ Ul} lul,
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h 12/2
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and the cross-coupling term is
a(Fu1y _ B

EJL_ EKM, DET, UJ, {UI}] [C3MLO]
O{UK}  |ul,

hl/3
. B EJL, EIM, DET, UK, {UI}] [C3MLO] 1+x (06
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e

hyl? —
- ’, EKM, DET2, UN, { U1}, [ B3MO0O]
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e

For the energy equation, the self-coupling term in the Jacobian is

p 13 o
d(Fe } _ Beh. EJL, EKM, DET, UT, {UK}] [C30LM]
(8 ) ul, (307)

ﬁehzlelz — T
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u e
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and the cross-coupling term is

hl/3 -
o1F8} _ Pok EIL, EIM, DET, UT, ()] [C3MLO]

o{ur} |ul,
h1/3
+ p’“ l EIL, EKM, DET, UK, (©}] [C3IMLO] (308)
u €
B hl/2
- r lz‘ EIM, DET2, UN, (@), [ B3M00]
]

e

It remains to select an appropriate measure for the mesh A,. For rectangular hexahedra, the
determinant of the transformation Jacobian, det [J,] , is equal to one-eighth of the volume of the
element; therefore, one choice for A, is to set it equal to 8xdet [J,] . The cube root of h, will, therefore,
be dimensionally correct. The boundary conditions are evaluated with bilinear quadrilateral elements.
For rectangular quadrilaterals, det [J,] is equal to one-fourth of the element area; therefore, an
appropriate choice for A,, is 4xdet [J,,].




S. NUMERICAL LINEAR ALGEBRA

In the translation from algorithmic theory to practical computer code, the CFD practitioner
is ultimately presented with the task of solving a sequence of linear algebra problems of the form

Ax = b (309)

where the square matrix A and the vector b are known, and x is the vector of unknowns, For many
incompressible formulations, tke ellipticity associated with the continuity constraint produces one or
more Poisson equations. The resulting terminal matrix statements have 4 matrices that are symmetric
positive semi-definite (SPSD), an important property in the design of numerical linear algebra
procedures. When implicit time-integration techniques are used for the momentum and energy
equations, the 4 matrices are nonsymmetric, indefinite, and ill-conditioned. In both instances,
however, A is characteristically large and sparse. Golub and Van Loan (1989) note that two important
measures of efficiency for linear algebra algorithms are exploitation of matrix data structures and
economy of computational effort. This chapter presents a review of some of the latest methods in data
management and linear algebra solution techniques, hence identification of those feasible for CFD
implementation in a workstation computing environment.

The matrix shown in Eq. (310) is an example of the type of matrices produced by the
Laplacian operator for the ® and pressure Poisson equations. The model problem consists of a
unitcube with a M= 2x2x2 discretization. No boundary conditions have been applied. The matrix 4
is symmetric with positive diagonal elements and nonpositive off-diagonals. Since 4 is symmetric,
its spectrum (set of eigenvalues) are real, as shown in Eq. (311). The presence of the zero eigenvalue
indicates that the matrix is singular, i.e., det (4) =0, and 4" does not exist. However, since the
remaining eigenvalues are positive, 4 is classified as symmetric positive semi-definite. The singularity
can be removed by applying a Dirichlet boundary condition on one node. One method of imposing
Dirichlet boundary data is (on the row of the corresponding Dirichlet node) to replace the diagonal
element with a large number. For example, when the element in the (1,1) position in 4 is replaced
by 10° the resulting set of eigenvalues are shown in Eq. (312). Examination of the matrix spectrum
in Eq. (312) shows that all the eigenvalues are now positive. The modified 4 is an example of a
class-M matrix, where the diagonals are all positive, the off-diagonals are nonpositive, and 4 is
irreducibly diagonally dominant (Ortega, 1972). The definition of irreducible diagonal dominance
is given in a subsequent section. A symmetric M-matrix is called a Stieltjes matrix, and it can be
shown (cf. Ortega, 1972; and Horn and Johnson, 1985) that a Stieltjes matrix is symmetric positive
definite (SPD). A more formal definition of positive definiteness is (Wachspress, 1966):

Given the square matrix A4, if the quadratic form x "Ax > 0 for all x # 0, then 4 is
positive definite. 1f x 'Ax 2 0 for all x # 0, then 4 is positive semi-definite.

One property of a SPD matrix is that its spectrum consists of all positive eigenvalues.
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10¢
1.411
0.006
0.675
0.429
0.159
0.153
0.864
0.680
0.864
0.680
0.153
0.386
0.386
0.153
0.417
0.417
0.250
0.250
0.417
0.250
0.167
0.333
0.167
0.333
0.167
0 0.333

(312)
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5.1 MATRIX DATA STRUCTURES

Svmmetry, bandedness, and sparsity are among the matrix structural properties that have a
potential for exploitation in the design of linear algebra solvers (Golub and Van Loan, 1989). The
obvious advantage of symmetry is that only the upper (or lower) triangular part and the main diagonal
of the matrix need be stored. The term bandedness includes the properties of bandwidth, profile, and
root-mean-square (rms) wavefront, all of which depend solely on the ordering of the unknowns in
Eq. (309). Sparsity is the property of a matrix that is sparsely populated with nonzero elements.

To produce “optimal™ orderings, various heuristic resequencing strategies have been
developed to minimize bandwidth, profile, or rms wavefront (Everstine, 1979). For a symmetric
square matrix A of order n, the bandwidth w, for row i is defined as the number of columns from the
first to the last nonzero in the row, The matrix bandwidth BW and profile PR are defined as

BW = max w,
313)
n 1
PR Z ( w‘2+ ?
t=1

The wavefront £ is the number of active columns in row i, where a column j is active in row i if j2i
and there is a nonzero in that column in any row with index k<i. The matrix rms wavefront WF is
defined as

WF = (1
o

N L2 (314)
L)

=

Everstine (1979) presents a comparative study of three popular resequencing algorithms, testing the
performance of the Cuthill-McKee, Gibbs-Poole-Stockmeyer, and Levy methods. For the test
problems that Everstine examined, the Gibbs-Poole-Stockmeyer method was found to be the fastest
and best able to reduce profile and rms wavefront. Schwarz (1988) gives a description of the Rosen,
Cuthill-Mckee, and reverse Cuthill-Mckee methods in terms of graph theory. The Cuthill-Mckee
algorithm has the advantage of reducing both the bandwidth and the profile, simultaneously.

Assuming an approximate “optimal” ordering has been accomplished, a number of compact
storage techniques are available. The band storage method in the general linear algebra package
LINPACK (Coleman and Van Loan, 1988) is an example of how the banded structure of a matrix can
be exploited. The Jower bandwidth is defined as that positive integer p such that ¢, =0 whenever 72j+p,
and the upper bandwidth ¢ implies that a,=0 whenever i<j-g. As before, the matrix bandwidth is
BW=p+q+1. In LINPACK's band storage technique, a square n Xn matrix is mapped to a (2p+g+1)xn
matrix, e.8.,



A(LJ) = A li-j+q+1,j)
a, 6, ay, 0 0
0 0 a) ay ay
@y Gy Gy Gy O (315)

2o 0 a, ay, ay a,
A= Gy Gy Gy Gy - Ay ¢
Q) Gy Gy Gy dgg

For the above storage scheme to be effective, it is necessary that p.g << n,

The NSPCG linear algebra package (Oppe et al., 1988) uses a primary storage technique for
unstructured matrices. The method is efficient for matrices that have a relatively constant number of
nonzeros on each row. The nXxXn matrix A is represented by two 7 X maxnz matrices, a real-valued
matrix COEF and an integer matrix JCOEF, where each row in COEF holds the nonzeros of the
corresponding row in the full matrix A, and JCOEF contains the respective column numbers. The
positive integer maxnz is the maximum number of nonzeros per row over all the rows of A. An

example of primary storage is

a, 0 0 a,a; [y ay ay 145
0 a, 0 0 0 a, 0 0 200
A-|0 0a, 0 0 = COEF -|ay, 0 0 | ; JCOEF -{3 00 (316)
a, 0 0 a, a, Qu Gy Gy 415
a5y 0 0 ay ay Qg dgy Qg 514

For the above example, n=5 and maxnz=3. If a row in A has fewer than maxnz nonzeros, then the
corresponding row in COEF is padded with zeros.

The diagonal storage technique is effective for matrices with a block or diagonal structure.
The diagonals of 4 are stored in the columas of the compressed matrix COEF, and the offsets from
the main diagonal are stored in the integer vector JCOEF. An example of diagonal storage is

a, a, 0 a, 0 a, a, a, 0
ay Gy Gy 0 ay Uy Gy Gy 4y 0
A=| 0 ayay a 0 -~ COEF = | 4y ay 0 ay, | ; JCOEF - ; (317)
0 0 a, a, a Ay 4y 0 a, a1
0 0 0 ay ag a, 0 0 ag

The superdiagonals in 4 are top-justified, i.c., short superdiagonals are padded with zeros from below,
and subdiagonals are bottom-justified. Positive integers in JCOEF indicate a superdiagonal, and
subdiagonals have negative offsets.
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For more general unstructured sparse matrices, diagonal storage can result in a large number
of zeros being stored and computed on. Coordinate storage (also known as triad storage) is effective
for general sparsity structures at the cost of additional integer overhead. In coordinate storage, only
the nnz nonzeros of A are stored in the vector COEF. Two nnz length integer vectors or one nnzx2
integer matrix hold the row and column indices of the corresponding elements in COEF . For the
following example, nnz=17.

0
—
F
— e -

a, a, 0 a, 0 Gas
@y Gy ay 0 ay a4y
A=|0 Gy, Gy Gy 0 - COEF = | 643 | y JCOEF =

a, 0 a, a, a, 34

(318)

B AN LA W= B W NN W W N AN

W v BB R R WWWNND RN

In Eq. (318), the nonzeros of A are stored by row, but they can also be stored by column.

The Yale Sparse Matrix Package (Eisenstat et al., 1977b) has an even more compact storage
format in which only the nonzeros of 4 are stored in the vector COEF, either by column or row, and
two integer vectors, /4 of length n+1 and J4 of length nnz, hold the structural data. The integer vector
JA stores the row (or column) indices of the corresponding elements in COEF, and /A4 contains
pointers to positions in J4 and COEF where each new column (or row) begins. The following
example uses Yale Sparse Matrix (YSM) column storage with the main diagonal positioned at the
beginning of each new column.
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a, a, 0 ¢, 0 s

Gy Gy Gy

8
A=|0 ayaya, 0 = COEF =| ay | ; JA = 319

ay 0 a, a, a, a,

WM 13 U W W = BB WU W e NSRS N e
H

An advantage of the both the coordinate and YSM techniques is that the storage requirements
are independent of the bandedness of the matrix, since only the nonzeros of 4 are included in its
sparse representation. The disadvantage is that some integer overhead is incurred to decode the
sparsity structure.

5.2 SPARSE SOLUTION TECHNIQUES

Linear algebra solution techniques for Eq. (309) can be classified into two main groups, direct
methods and iterative methods. Direct methods involve a factorization of 4 into triangular (and easily
solvable) systems. Iterative methods are designed to generate a convergent sequence of vectors x”
where 4 ' b is the limit point of the sequence. The data management techniques discussed in the
previous section can be incorporated into many direct and iterative linear algebra algorithms. The
following discussion gives a brief overview of some of the more popular sparse linear algebra
algorithms currently employed in finite-element applications.

§.2.1 Dire:t Methods
For any nonsingular square matrix 4, a basic theorem of linear algebra (Horn and Johnson,
1985) states that a permutation matrix P exists such that the factorization
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PA = LU (320)

exists, where L is a unit lower triangular matrix (ones on the diagonal) and U is upper triangular. The
matrix /’ acts to reorder the rows of A before factorization. The vector of unknowns x is obtained by
the solution of two triangular systems,
Ly = Pb
y (321)
Ux =y

The factorization described by Eq. (320) is called gaussian elimination with partial pivoting.
Complete pivoting requires a second permutation matrix (), such that

PAQ = LU = (PAQ)(QTx) = Pb

Ly = Pb (o2

UQTx) =y

The factorization in Eq. (322) takes advantage of the fact that permutation matrices are orthogonal,
thus

07=0" = QQT=Q7Q =1 (323)
where [ is the identity matrix,

If 4 is symmetric, then the permutation matrices in Eq. (322) are related by Q=P resulting
in the factorization, i.e,,

PAPT = LLT = (PAPT)(Px) = Pb

Ly = Pb (324)

LT(Px) =y

If A is SPD, then P=/, and no pivoting is required, resulting in the well-known Cholesky factorization.
The solve steps (called forward and back substitution) for the triangular systems in Egs. (321), (322),
and (324) require a small computational effort relative to the factorization steps. For banded matrices,
direct methods have the advantage of preserving the bandwidth during the factorization; however, the
original sparsity structure within the bandwidth is lost due to a process called “fill-in." Banded direct
solvers are, therefore, most efficient when the matrix is dense within the bandwidth and the ordering
of the unknowns is “optimal,” i.e., the bandwidth is as small as possible relative to the order of the
matrix. If the matrix is sparse within the bandwidth, then special sparse direct methods may be
required.

Dongarra et al. (1991) group sparse direct methods into three main categories: {rontal
methods, multifrontal methods, and general sparse techniques. Frontal schemes were originally
designed for symmetric positive definite matrices produced by finite-element structural analysis
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codes; however, they can also be applied to nonsymmetric matrices. Performing well on systems
whose bandwidth or profile is small, frontal methods can be interpreted as extensions of band or
variable-band schemes. For symmetric systems, the frontal method consists of setting up a subset of
the equation system while simultaneously carrying out a Cholesky factorization and forward
substitution. The method exploits the fact that, for a banded matrix of bandwidth BW, it is necessary
to store only BW+1 successive rows of the matrix in core memory (Schwarz, 1988). This submatrix,
called the “frontal” matrix, is used as a “window” that runs down the band as the elimination
progresses (Dongarra et al., 1991). The results of each elimination step are stored in “out-of-core”
memory (also called “backing” or auxiliary storage). After a complete sweep of the band, the
unknowns can be obtained by back substitution. A small bandwidth/profile is critical, since, for large
bandwidth matrices, frontal methods can require more storage and many more floating point
operations than general methods. Multifrontal methods are an attempt to improve computational
efficiency while maintaining some of the benefits of frontal methods. The details of both frontal and
multifrontal methods are discussed in the book by Duff et al. (1986).

An example of a general sparse direct solver is Harwell's MA28 code (Duff, 1980). MA28
is composed of a suite of Fortran subroutines for the solution of sparse nonsymmetric linear algebra
systems using a variant of Gaussian elimination and employing sparsity pivoting to minimize fill-in
as well as complete numerical pivoting for round-off error control. The rows and columns of 4 are
first reordered so that the coefficient matrix is block triangular, i.e.,

4, [0] - - [0]
Ay Ay 0]
PAQ = | A;, Ay, Ay [0] (325)
Eo (0]
Ay o Ay

where P and () are permutation matrices. The diagonal blocks, A4,, are square matrices, and the
off-diagonal blocks, 4, (j<i), are rectangular. The block triangular system is then solved by block
forward substitution, where each block is solved with its own LU factorization with complete
numerical pivoting. Information gained during the initial permutation and factorization of 4 can be
saved in order to reduce the computational effort for subsequent factorizations of new matrices that
have the same sparsity structure as 4. MA28 uses the coordinate scheme for top-level (input) storage
of 4; however, several linked lists are employed as dynamic storage for the internal representation
of the permuted and factored blocks.

Finally, Gunzburger (1989) notes that “although for two-dimensional problems direct solution
techniques have proven to be popular and successful, it seems that they cannot be used for solving
realistic three-dimensional problems on today’s super-computers.” For 3-dimensional problems in
CFD, therefore, the current methods of choice fall in the broad class of iterative algorithms.

5.2.2 Iterative Methods

Iterative methods have two main advantages over direct schemes for large sparse linear
algebra problems; they preserve the original sparsity structure of the matrix, and the accuracy of the
iterated solution can be estimated and, thereby, controlled. Since sparsity is preserved, memory and
storage requirements for iterative methods are significantly less than direct methods. For many
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applications, a machine-precision direct solution is not necessary; therefore, the ability to apply a
stopping-test during the iteration cycle can result in significant reductions in computational cost.

In general, iterative methods may be broadly categorized as either stationary or accelerated
(nonstationary) procedures (cf. Hageman and Young, 1981; and Wachspress, 1966). Within these
classes, the diagonal or non-diagonal structure of the iterative matrices is also a delimiting
characteristic. The basic stationary methods such as Jacobi, Gauss-Seidel, and successive
overrelaxation (SOR) can be formulated both as point-iterative (diagonal structures) schemes or as
line-iterative (non-diagonal block structures) schemes. The stationary Alternating Direction Implicit
(ADI) and approximate factorization (AF) methods use non-diagonal matrices exclusively.
Accelerated methods involve applying techniques such as Chebyshev or conjugate gradient
acceleration to the basic iterative methods.

Hageman and Young (1981) define linear stationary iterative methods of the first degree as
having the general form

xP'=GxP +k, p=0,1,2, . (326)

where G is called the iteration matrix. The specific iterative procedure is uniquely defined by the form
of its splitting matrix Q, where

G=1-Q'A ; k=Q'b (327)

The known matrix A4 and vector b are the original system coefficient matrix and right-hand-side
“load” vector as given in Eq. (309). If the sequence x’, x', x?, ... converges to 4 "' b for an arbitrary
x’, then the iterative method is defined to be convergent (Young and Gregory, 1972). It is a
fundamental theorem of linear algebra (Ortega, 1972) that a necessary and sufficient condition for
Eq. (326) to be convergent is

S(G) < 1 (328)

where S(G) is the spectral radius of the matrix G. The spectral radius is the maximum in modulus of
the eigenvalues of a matrix. S(G) is also a measure of the efficiency of an iterative procedure since
the asymptotic rate of convergence is defined as

R_(G) = -1logS(G) (329)

The convergence rate, therefore, increases as S(G) decreases.

Five stationary procedures are designated by Hageman and Young (1981) as basic iterative
methods: the Richardson (RF), Jacobi, Gauss-Seidel, successive overrelaxation (SOR), and symmetric
SOR (SSOR) methods. These basic methods can be described in matrix form with the following
decomposition:

A=D-L-U (330)

where D holds the diagonals of 4, and L and U are strictly lower and upper triangular, respectively.
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RF iteration is a variant of Richardson’s method where Q=/, and

xPV = (1-A)x? + b (331)

Conjugate gradient methods can be categorized as acceleration techniques applied to the RF method.
Without acceleration, the RF method has little utility since line-iterative forms cannot be
accommodated (Hageman and Young, 1981).

The Jacobi method has the splitting matrix Q=D "' such that

xP'l = BxP 4k
(332)

where B is the Jacobi iteration matrix. In its point-iterative form, Jacobi iteration solves for each
unknown on the diagonal of 4 in terms of the corresponding off-diagonals using values obtained from
the previous iteration, i.e.,

" L b - Y a, k), i-1,n (333)

ij %j
a;; jvi

Gauss-Seidel improves upon the convergence rate of the Jacobi method by using current
values for the lower off-diagonal terms as they are updated. The splitting matrix for Gauss-Seidel is
¢g=D-L,and

prl PP k
g e (334)
g=(I-D'LY'D'U  k=(I-D'L)'D'b

where & is the Gauss-Seidel iteration matrix.

A fundamental property of A that ensures convergence of both the Jacobi and Gauss-Seidel
iterations is given by the Diagonal Dominance Theorem (Ortega, 1972).

If A is either strictly diagonally dominant or irreducibly diagonally
dominant, then S(B) < 1 and S(¥) < 1, and both the Jacobi iterates,

Eq. (332), and the Gauss-Seidel iterates, Eq. (334), converge to4 ' b for
any x".

Diagonal dominance requires that the absolute values of the diagonal terms in a matrix be greater than
or equal to the sum of the absolute values of their respective off-diagonals, i.e.,

la,| > Y la,|, i=1,.,n (33%)

eX
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If strict inequality holds in Eq. (335) for all the rows of 4, then the matrix is strictly diagonally
dominant. Irreducible diagonal dominance requires the matrix to be irreducible and diagonally
dominant, and strict inequality must hold for at least one row. Definitions of irreducibility in terms
of either directed-graph structure or canonical forms can be found in the books by Ortega (1972) and
Horm and Johnson (1985). Note that the Diagonal Dominance Theorem does not require that A be
symmetric; therefore, Jacobi and Gauss-Seidel iterative schemes have a potential application for
nonsymmetric problems.

The SOR method is a modification of the Gauss-Seidel method: however, unlike
Gauss-Seidel, its primary convergence theorem assumes that 4 is symmetric positive definite (SPD).
SOR overrelaxes the Gauss-Seidel iterate and, as a point-iterative scheme, can be expressed as

pel_ ”+m(x,"'"-x,") (336)

= X,

X i

where x,'7*! is the Gauss-Seidel iterate. In matrix form, the SOR method is
xPth=@ xP sk
(337)
o= (D-0wl)'[(1-w)D + 0V} ; k,s w(D-wl)'b

The Ostrowski-Reich theorem is a fundamental convergence theorem for SOR.

If A is SPD and 0<w<2, then S(&,) < |, and the SOR iterates, Eq. (337),
converge to 4 ' b for any x°.

The splitting matrix for SOR is (w "'D - L), where for w=1 the Gauss-Seidel method is recovered. In
order to fully exploit the high convergence rates of SOR, an “optimal” value for the iteration
parameter @ should be used. Wachspress (1966) and Hageman and Young (1981) describe adaptive
techniques for estimating an optimal o by monitoring the convergence history of the iterative cycle.
An SSOR iteration is a two-step procedure consisting of a forward SOR and a backward SOR sweep.

Increased convergence rates are possible as a result of applying acceleration schemes for
those basic iterative methods that can be classified as symmerrizable (Hageman and Young, 1981).
An iteration method is symmetrizable if, for some nonsingular matrix W, the matrix W(Q 'A)W is
SPD. Forexample, if both 4 and () are SPD, then the method is symmetrizable. The Jacobi and SSOR
methods are symmetrizable and suitable candidates for acceleration if 4 is SPD.

Polynomial acceleration is a semi-iterative procedure involving a new vector sequence v’
produced by a linear combination of the basic iterates, x”. One chooses the coefficients a4, «, . .
a,, such that

p
Y a1, p =022, (338)

k-0
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and determines the accelerated iterates v, v', by

®

P
vr= ¥ a,, t* (339)

With suitable choices of . itis theoretically possible to substantially improve the convergence rate
of the basic method. A popular technique for accelerating Jacobi iteration is based on the use of
Chebyshev polynomials of the first kind (Young and Gregory, 1972). In Chebyshev acceleration, the
iterates v', v, are calculated by the three-term recurrence relation

vrel . i:»f:uﬁ-‘}m[(zaw(ﬁ*u)lyv"‘2k) C(ep vty pe0,1,2, (340)
where
p“pzz?i_f g 2B g,
pa
Pp (‘ ;‘*i'*m]‘ P23, P ifo-p

The matrix A is the iteration matrix for Jacobi iteration, Eq. (332), the vector kis D) ' b and the
parameters « and 3 are the upper and lower bounds of the eigenvalues of . As Hageman and Young
(1981) note, in order for Chebyshey aceeleration to be effective on slowly convergent problems, it
is important that nearly optimum iteration parameters be used, specifically the typically unknown
minimum and maximum eigenvalues of . Assuming a SPD coeflicient matrix 4, adaptive procedures
have been developed to provide estimates for a and 3 during the iterative cycle,

A difficulty with iterative procedures like SOR and Chebyshev acceleration is that, in order
to obtain optimal convergence rates, the user is required to choose or in some way caleulate good
estimates for various iteration parameters. In general, these parameters are unknown and in many
cases may be difficult to determine (Golub and Van Loan, 1989). A family of iterative procedures
having competitive convergence rates and no user-specitied iteration parameters have gained much
popularity in recent vears. Included in this family are the preconditioned conjugate gradient,
hiconjugate gradient, conjugate gradient squared, and generalized minimal residual (GMRES)
methods,

The conjugate gradient method falls in a class of algorithins that are sometimes called
Krviov-subspace or projection methods (Dongarra et al, 1991). One can recast Bq. (326) in terms of
the splitting matrix Q). thus

AP e Q b AT, pe0,1,2, (M)

Defining the initial residual vector #% = b-dAx”, it can be proven by mathematical induction that the
iterate v is determined by a inear combination of vectors of the form
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xPex® g e Ar® v a, AP0 v a AP D0 (342)

where a superscript in parentheses denotes a matris raised toa power. The iterate v/ is, therefore, seen
to be equal to v " plus a vector taken from the subspace defined by the spanning set

Splnlfn‘l"ﬂ.A‘:"o. ,A“’ I)rﬂ‘ (3‘3)

This vector space is called a p-dimensional Krvlov subspace, A (A r" ). The basic iterative methods
involve selecting special elements from this subspace: however, projection methods are devised to
search for more optimal elements. Upon construction of a suitable basis for K (4: " ), one solves the
svitem Axv=h projected onto this Krylov subspace. Projection methods can also be formulated as
acceleration technigues for the basic iterative algorithms (Young and Mai, 1987),

Following Golub and Van Loan (1989), the conjugate gradient method is viewed as o
minimization techmque. Specifically, given the SPD matrix 4. find the value of « such that the
quadratic form

dlr) - ;xu; «Th (344)

is o minimum. Differentiating ¢(v) with respect to v and setting the result to zero, one finds that the
functional ¢(v) is stationary at v=A4 ' A Since A is SPD, this stationary point is an absolute minimum,
therefore, the original linear algebra problem, Eg (309), is equivalent to the minimization problem
Eq. (344) The method of steepest deseent (also known as Richardson’s method) is a simple approach
to minmmizing &(x) based on the recurrence relation

R N WA (M8)
where #f= b A v'is the residunl vector The iterate v* is equal 1o the vector sum of the presious
iterate and a search direction vector  The direction vectors in bqg (348) are just Vo, and the

parameters «, are determined such that gy’ '+ ar' ') is minimized, vin

[ ) [
a, - (r> r’ ) (346)
(' A l‘ A ’ [ ] )

where (v, v) denotes the imner product v/ v The method of steepest descent generally converges very
slowly when the condition number of A4 is very large

Other direction vectors may be selected that do not experience the convergence problems of
the gradient direcions,  N'd The compugate gradient method, CG, s an efficient way ol generating
w set of direction vectors g such that

(p' AP’y -0, ey (M47)

Phe eriterin i L (7)) state that the p* vectors must be mutually A-conjugate, 1 ¢, they are
orthogonal with respect to the inner product (v, Ay as detined by 4
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The basic C'G algorithm is

CONJUGATE GRADIENT ALGORITHM
Choose v, set p"=r"=h_4v", calculate (¢", r")
For k=0, 1,

w, = (' eVt o daph

Pl gt q, pt

¥
et o, dpt
irch e d, el ) 2 e continue

[“ . (r“!‘ rh{)j‘rl' 'i,

pltl=et e pt

The coefficients [}, ensure that p*' " is 4-conjugate top ', and the stopping test is based on the 2-norm
of the current residual. The conjugate gradient algorithm was originally presented as a direct method
in a paper by Hestenes and StiefTel (1082). In theory. the direct solution should be obtained in exact
arithmetic in, at most, n steps, where a1 is the order of 4 (Ortega and Poole, 1981) However, the
conjugate gradient method Is not practicable as a direct method, since, for large systems, # steps of
the procedure incurs an unacceptably large computational cost In addition, rounding errors lead o
u loss of orthogonality among the residuals resulting in o breakdown of the procedure (Hageman and
Young. 19K1) However, its convergence properties indicate that the €'Gomethod can be o very
effective iteration procedure if A in close o a rank # correction to the identity matris The following
convergence theorem is presented and proven in Golub and Van Loan (1989)

I A= B s oan nen SPD matris and the rank of # s equal to r,
then the conjugate gradient method will converge to the direct

solution in at most r steps

The above theorem points 1o the potential of a preconditioned conjugate gradiemt, 1'CG
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Preconditioning is carried out by a congruence transformation of the form

At SAST (348)

where & is a nonsingular matrix chosen so that the condition number of A° i less than A. The (G
method, in theory, is applied to the preconditioned system

(SAS (S Te)y - §b
{ (349)

A'x' = b

Since the congruence transformation destroys the sparsity structure of A, PCG i designed to work
with 4 and a preconditioner matrin A= (87 8) ' rather than explicitly constructing A4°. 1t ix desired to
choose A such that the condition number of A° is as small as possible. The relationship between the
spectral condition number of A° and the preconditioner M i

A (M A
condy (A ) - Lol

P (380)
Aa(M 14

where A, and A, are the maximuns and minimum eigenvalues of A ' A (Onega, 1987) The idea)
(but impractical) preconditioner is A=A, since M ' A=1, and cond, (4" )= 1. Preconditioning procedures,
therefore, have the goal of producing an A matrix thist is as close to A4 as is computationally feasible

The derivation of the following PCG procedure s given by Ortega (1987)

PRECONDITIONED CONJUGATE GRADIENT ALGORITHM
Choose €7 set £ A Av”, solve Mw"-r " set p=w"
For k=0, 1,
Wy = (wh Pt ApY)
et e p!

et o, Ap!

r
test for convergence
solve for w' o At et

U T AR A ¥ TR

ptoewt et
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One can see that another requirement for A is that the preconditioning step Afw-=r be casily
computable

A number of schemes have been developed that attempt to satisty, in varving degrees. the
generally conflicting eriteria for o good preconditioner. Perhaps the simplest preconditioner i
ciagonal scaling where A diag(. 1), however, the improvement i conyergence rate is fairly minimal
Trimcated series preconditioning imvolves a preset number of passes by o basic iterative method
operating on the system A to produce the ausiliary vector wo The basic method must have o SPD
iteration matris which excludes Gauss:Seidel and SOR.Examples of this approach include the m-step
Jucobt and mestep SSOR preconditioners Dingonal sealing can, theretore, be considered o 1-step
Jacobi preconditioner. Ortega (1987) alse discusses o torm of podvnomial preconditioning

Perhaps the most important and efTective preconditioning technigue is based on the notion
ol imcomplete factorization of A4 Choleshy factorization can be viewed as

A LT HH'. R (I81)

where s assumed SPD, and 27 as Tower trangular The SPD matris 7017 has the same sparsity
structure as 4L and the mates K contains all of the “Hillin® produced by the factorization In
mcomplete tactorization, K s gnored, and 2011 the preconditioning mateis AP Various stratepies,
citlled wo-fill schemes, have been developed o avond the computation of any clements of K The
- Ll prineiple van be relased. however, tomake 2017 4 better approsimation of o, if necessars The
incomplete Choleshs conpugate gradient (1CCG) procedure his become one of the more widely used
terative methods Tor large sparse SPD problems

The compugate gradient method requores both A4 and the preconditioner A 1o be SPED in order
o achiese mutually orthogonal residual vectors 74 using a simple three-term recurrence relation In
peneral, therelore, 700 cannot be applied o nopsymmetrie idefinite matrices Keylos - subapace
methods hive been developed, howeser, for the more general problem Tncluded i ths class of
mvthods are hconpgare gradients (BCODY, comugate gradient squared (CGS), and peneralized
minimdl restihual TGMRES)

In the BCGomethod, o sequences of mutually orthogonal residuals, rand £ *,are generated
usiig simple relations simdar 0 CGoschemes Also, two sets of direction sectors, pand p*, ure chosen
o be mutually conpugate As i CGa number of preconditonimg technigues are avatlable 1o
mpros e convergenve  The tlollosong BOG method s due o Fletcher (1976)
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PRECONDITIONED BICONJUGATE GRADIENT
Choose x";set #” = b-Ax " solve Mw" ="
Choose r*" =r"orr*" = w" ; set f},= 0
Fork=0,1,2, ..

pre=w'+ppt!
pehk=rttrfpt!

w, = (retowt Yt Apt)
ri et Ap!

solve for y =5 My = p*!
AL L LY 1

solve for wt'' = At = ptt!
Wyt v p!

test for convergence

B, =ttt o st wt)

Note that the auniliary vectors #* and p* are used only in the caleulation of a, and f3,. The
preconditioning matrix M can be generated, for example, by diagonal scaling or incomplete LU
factorization.

Ihe conjugate gradient squared, CGS, method iv a maodification of BCG. Dongarra et al.
(1991) observe that the residuals #* and #** in the BCG method satisty the relations #*=*(4)r " and
FEPAA T where 1UCAD in o kth degree polynomial in A The idea behind the conjugate gradient
sipuaared (CGS) method is that applying the operntor 7' '(4) a second time, such that #*=/ (0  r " will
result in the residual " being doubly reduced A preconditioned form for CGS is the following:

PRECONDITIONED CONJUGATE GRADIENT SQUARED
Choose v setr” = b Av” 1o =",
"u = { r*" ’.!“ ), q L ,, )
Fork=0,1,2,
=t gt
preut v gt gt
solve fory =» Ay = p!
w, = (et Vet Ay )
gt ay Ay _
solve for u® > Au® = u' v g’
st v, we
test for convergence
Pt ety du®
s, et ) = 0 then the method tails
U VA AN AR A

In the above description of CGS, M isa suituble preconditioner such as diagonal scaling or incomplete
LU factorization The CGS algonthm typically converges twice as fast oy BCG.
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When A is SPD, the projection of Ax=h onto the Krylov subspace K (4: r") results in an easily
solvable tridiagonal matrix formed by asimple three-term recurrence relation (Dongarra et al., 1991).
For nonsymmetric indefinite systems, the projected system is an upper Hessenberg matrix. A family
of algorithms including ORTHOMIN, ORTHODIR, ORTHORES, and GCR (Generalized Conjugate
Residual) have been developed to construct this Hessenberg system (cf. Hageman and Young, 1981;
and Chandra et al., 1977). The Generalized Minimal Residual (GMRES), due to Saad and Schultz
(1986), is one of the more popular algorithms in this group. GMRES(m) as presented by Saad and
Schultz (1986) is:

GENERALIZED MINIMAL RESIDUAL - GMRES(m)
Choose v s setr” = b - Ax" v’ =r"|r"|
For/=12, .m
compute the / ~orthonormal basis v/
b, o=/ ov )i~ 120,
e LI S R
construct elements of upper Hessenberg matrix 7/
Mo, e
N A/
Form the approximate solution:
F™ matrix consists of the Amoldi vectors v/

L

e ™™ where " minimizes || e, - M, v
Restan:
setr® s h - Ax”

test for convergence

reset v"« x™ vl s ™| e
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The construction of the upper Hessenberg system typically involves techniques developed for
the algebraic cigenvalue problem such as Householder transformations or a modified Gram-Schmidt
orthogonalization. A practical implementation of the method is GMRES(m) in which the iterations
are restarted every m steps, thus avoiding the disadvantage of having to store all of the residual
vectors up to convergence,

A comparative study of a number of Krylov subspace methods, specifically BCG, CGS, and
CGR. and a direct nonsymmetric frontal solver is presented by Howard et al. (1990) for 2- and
3-dimensional FEM semi-discretizations of the Navier-Stokes equations. The model problem is
natural convection in a unit-square box solved with the mixed finite-element u-P direct method. Both
unpreconditioned and LU preconditioned forms of the iterative methods were tested on a Cray
XMP/48 and a Cray 2. The results of the study indicate that the unpreconditioned BCG method is
robust for moderately nonlinear problems, and the [LU-BCG method is very robust and more
economic than a nonsymmetric frontal solver on a Cray 2. The direct method had advantages over
the iterative methods in the ability to vectorize significant CPU-intensive portions of the coding,
Optimal implementations of the iterative methods on vector supercomputers were more ditficult to
attain since performance (i.e., convergence rate) is dependent upon the spectral (eigenvalue)
propertics of the specific matrix being solved, and there is no single portion of the code that dominates
the CPU usage.




6. IMPLEMENTATION ON A UNIX WORKSTATION

The Continuity Constraint Method (CCM), described in Chapter 4, has been implemented in
the Fortran 77 computer code CFDL.PHI3D. The target computer for CFDL.PHI3D was an
engineering workstation running under the UNIX operating system, specifically an IBM Risc/6000-
UNIX(AIX) Model 320 with a 20 mHz clock speed and 32 mbytes of random-uccess-memory
(RAM). This machine is typical of the “UNIX-X Windows” systems that are emerging as the
dominant platforms for modern CFD and general scientific computing. A summary of the methods,
approximations, and decisions required to implement the CCM for this computing environment is
presented in this chapter.

6.1 LINEAR ALGEBRA PROCEDURES

As discussed in Chapter §, iterative methods appear to hold the greatest promise as efficient
solution techniques for 3-dimensional CFD implementations. In a workstation environment, where
internal memory capacity represents a significant capital investment, the efficient management of
sparse linear algebra data structures is of critical importance.

After a survey of the literature, a library of sparse solver routines was assembled. The main
source for the library was public-domain software, available through the netlib service based at the
Oak Ridge National Laboratory (Dongarra et al., 1991). A number of Krylov-subspace solvers for
SPD and general nonsymmetric problems developed at the Courant lustitute and Lawrence Livermore
National Laboratory for the Sparse Lincar Algebra Package (SLAP) project, and the MA28 general
sparse direct solver from Harwell were selected. The assembled library also includes a Gauss-Seidel
sparse solver developed by the author.

To solve the linear algebra problem Ax = b, CFDL.PHI3D accesses the sparse solver library
by a single call to an interface subroutine called sparse. The call format for sparse is:

115
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call sparse (norder, nnz, lenw, leniw, itrmax, m, isym, tol,

solve, lidiag, inj, smat, xp, b, iwork, work)
Input:
norder = order of the matrix A
nnz = number of nonzeros in A (dimension of smar)
lenw = dimension of work
leniw = dimension of iwork
itrmax = maximum number of iterations allowed
m = number of vectors saved in GMRES(m) and ORTHOMIN(m)
isym = 0, all nonzeros of 4 are stored in smat

= I, 4 is symmetric and only diagonal and strictly upper/fower
triangle nonzeros are stored in smar

tol = convergence tolerance for stopping test
solve = kevword specifying the solver and preconditioner, see Table 1
Hdiag = integer list of pointers to diagonals in inj and smat
inj = integer of row numbers for nonzeros in smar
smat = sparse representation of 4 using YSM column storage
b = vector holding right-hand-side data
iwork = integer workspace for solver
work = double precision workspace for solver
Output:
xp = vector holding the solution x

The call list for sparse requires that the amount of integer and double precision work space (lemiw and
lenw) be input for the specific solver designated by the keyword solve. A subroutine called worksp
is available in the solver library to calculate these dimensions. The sofve Keywords are given in
Table 3.

The sparse solver library uses the YSM column format representation of the matrix 4. In this
format the nonzeros are stored counting down columns (except for the diagonal entry, which must
appear first in each “column”) and are stored in the double precision veetor smat. In otner words, for
each column in the matrix one stores the diagonal entry in smat. Then the other nonzero elements are
stored going down the column (except the diagonal) in order. The inj integer vector holds the row
index for each nonzero. The /Mdiug integer vector holds the offsets into the inj and i1t vectors for
the beginning of each column. That is, inj(lldiag(icol)) and smat(lldiag(icol)) point to the beginning
of the icol-th column ir inj and smat, and inj(lldiag(icolt+1)-1) and smat(lldiagticol+1)-1) point to the
end of the icol-th column in inj and smat. The information necessary to calculate the sparsity structure
of the A matrix and generate the [ldiag and inj vectors is available in the element connectivity table.
This table is constructed as a part of the finite-element mesh generation and consists ot a list of node
numbers for each element. As pointers to the global coordinate data base, the node numbers provide
the complete geometric definition »f the element. By carrying out a symbolic assembly of the global
system matrix using the connectivity table, the sparsity structure of 4 can be determined. A Fortran
listing of a subroutine that executes this symbolic assembly is given in Fig. 6 The subroutine //isr was
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Table 3. Sparse Solver Library Keywords

Keyword Solver Preconditioner
gseidel Gauss-Seidel none
dsgmres GMRES diagonal scaling
lugmres GMRES incomplete LU factorization
dsbegrd biconjugate gradient diagonal scaling
lubegrd biconjugate gradient incomplete LU factorization
dsbegs conjugate gradient squared diagonal scaling
lubcgs conjugate gradient squared incomplete LU factorization
dsormin ORTHOMIN diagonal scaling
luormin ORTHOMIN incomplete LU factorization
dscgrad conjugate gradient diagonal scaling
iccgrad conjugate gradient incomplete "holesky factorization
direct MA28 none

designed for YSM row storage, but it is also applicable for YSM column storage since the sparsity
structure of 4 is symmetric, even though A4 itself may be nonsymmetric.

The global coefficient matrix 4 is never actually formed by CFDL.PHI3D. As a part of the
construction of the Newton residuals for each state variable, the sparse representation of A4,
represented by the double precision vector smat, is assembled on an element-by-element basis in a
DO-loop over all of the elements in the mesh. The inrormation necessary to build the YSM formatted
vector smat is contained in the integer vectors //diag and inj.

6.2 FINITE-ELEMENT MESH GENERATION

The generation of the finite-element mesh is carried out as a preprocessing step using the
public-domain code INGRID (Stillman and Hallquist, 1985). Work on INGRID began in 1979 at the
University of Tennessee with the acquisition of the Los Alamos program INGEN. A preprocessor was
added to INGEN along with a simple graphics program to produce INGRID. Subsequently, the work
on INGRID shifted to Lawrence Livermore National Laboratory (LLNL). Perhaps the most important
new capability added to the code is associated with the ease of application of boundary conditions,
loads, and material properties required by nonlinear mechanics programs. The current version of
INGRID is designed to produce complete input files for a suite of 3-dimensional finite-element solid
mechanics and heat transfer codes developed at LLNL. The author has written an interface program
that takes an input file generated by INGRID for the 3-dimensional heat conduction code TOPAZ3D
and produces the necessary input files for CFDL.PHI3D. INGRID is capable of producing general
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3-dimensional finite-element meshes using 8-node hexahedra. Varicus boundary conditions are
applied by paving the required surfaces with general 4-node quadrilateral elements. The ordering of
the nodes in the connectivity table for these 2-dimensional elements is used to specify the direction
of the outward-pointing normal unit vectors for each boundary surface. Multi-connected domains can
be generated with the INGRID delete commands, and mesh grading is available in any of the
coordinate directions.

6.3 MEMORY MANAGEMENT

In a workstation environment, the ability to control the allocation of internal memory during
job execution is of critical importance for the efficient use of computing resources. The Fortran 77
language (ANSI Standard X3.9-1978) makes no provision for dynamic memory allocation; however,
the C programming language supplies, as a part of its standard implementation (Kernighan and
Ritchie, 1988), the functions malloc and realloc which can be used in a Fortran-callable C function.
The C function malloc (defined as void *malloc (size);) sets aside a block of contiguous memory for
an object of size “size” in bytes and returns a pointer to the starting address of the block. If the
memory is unavailable, the pointer is set to NULL. The C function realloc (defined as void *realloc
(void *ptr, newsize),) resizes to “newsize” the contiguous memory block set aside by a previous call
to malloc( ). The contents of the memory are not corrupted. If space is not available (when more is
needed) at the present location, then a new location is selected, the contents copied there, and a new
pointer returned. The variable ptr is a pointer to the original memory location allocated by the
previous call to malloc( ). The void pointer for realloc( ) points to the starting address of the
reallocated contiguous memory block if the operation is successful. If unsuccessful, then the void
pointer is set to NULL. Listings of two Fortran-callable C functions that carry out these operations are
given in Fig. 7.

6.4 SOLUTION STRATEGIES

An initial study of memory requirements indicated the need for a sequential segregated
solution strategy in which the required sequence of linear algebra problems is limited to a single
degree-of-freedom per node. Segregated formulations are discussed by Benim and Zinser (1986) and
Shaw (1991). For the present work, two segregated quasi-Newton iterative solution strategies were
investigated. Both schemes employ quasi-Newton Jacobians completed for self-coupling only,
neglecting cross-coupling terms such as 0{FUI}/0{ U}, O{FUI}/0{®}, and O{FO}/0{Ul}.

The first solution strategy is presented in Table 4. This scheme uses a standard segregated
sequence of system matrix and residual FORM steps followed by state-variable SOLVE and
UPDATE steps. The sparse representation of each state-variable Jacobian matrix (denoted by the
vector smat) is formed exactly for all self-coupling terms and boundary conditions in Steps 1, 4, 7,
10, and 13. The residuals {FUl}, {F®}, and {R®D} are also formed in these same sequential FORM
steps where they are able to use the most recently updated solutions for the other state-variables.
Timing studies showed that the most compute-intensive components of the iterative cycle for Strategy
No. | were the FORM steps and the SOLVE step for the ®-Poisson equation, Step 14.
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CO..ﬁ'ﬁt"ﬁ'iﬁ"‘it""‘."‘i.l'ﬁﬁ‘..i'!."‘.ﬁ.t.tQ'.I.Q'QQ'Q“‘.GO"’Q..“C

(AR subroutine 1llist LR AT
Ci#ﬁtﬁﬁ.t.i&'n".ﬁ.iOQQQOQQQQQ'Qi.'OO'QQQtﬁ'bi.&'.t.t""li"k‘.‘bb"'.'Dvic
cHre Determine YSM spargse data structure for global system matrix. AL
A AA input: shee
cwwr n= order of system matrix saeg
cwwe isym= logical symmetry flag seep
oL A mel (8,nmel)= element connectivity table oo
cHre workspace: (must be input) seec
cHre iwork (27,n) tene
Cwe nnz(n) toer
(Rl output: LT
craw lldiag(n+1) = list of pointers to diagonals in inj seee
cHre inj(nz)= integer list of column pointers oo
cHee nz= number of non-zeros in smat seep

Cﬁ""ttt'l"ﬁ‘ﬂ.ﬁ&tﬁi.t..'t‘it!.‘"'Qldﬁ"’..‘fi.".'.i.iIOQQ.Q.ﬁ'C"QQ".C

subroutine llist (lldiag,inj,mel,nnz,iwork,n,nmel, nz, isym)
implicit double precision (a-h , o-z)
logical iaym
integer mel (8,nmel),lldiag(n+1),inj(27*n),iwork{27,n),nnz(n)
Critrrrdrnrrasatesew firgp executable line of 1ligt s*eeeeranervonatsrnitans
c initialize work space
do 10 i=1,n
nnz(i)= 1
iwork(1,i)= i
do 10 j=2,27
iwork{(j,i)= 0
10 continue
Ct'tiwﬁ*".thﬁﬁtti'tilﬁtt& bagin loOp aver elementg (2R E R R R R A N R R A R R R RN}
do 60 jel=1,nmel
do 50 1=1,8
c get row number
irow= mel (i, jel)
do 40 j=1,8

c get column number
jcol= mel(j,jel)

c skip over diagonal position. it has already been counted.
if (irow.eq.jcol) goto 40

c for symmetric matrices store only the upper triangular block
if(isym .and. jcol.lt.irow) goto 40

c check to see if jcol has already been counted

do 20 ii=1,nnz(irow)
if (iwork(ii,irow).eq.jcol) goto 40
20 continue
nnz(irow)= nnz(irow) + 1
iwork (nnz {irow), irow)= jcol

40 continue
50 continue
60 continue
cit"ﬁ"'!ht‘t'ititit' end of element loop I AR S A R R R A R A R R R R A R R A A E R R R R R E AR R
c construct integer-lists and compute total number of non-zeros
lldiag(l)= 1
nz= 0

do 70 i=2,n+1
nz= nz + nnz(i-1)
lldiag(i)= lldiag(i-1) + nnz(i-1)
70 continue
do 100 irow=l,n
il= 0
do 100 j=lldiag(irow),lldiag(irow+1)-1
il= i1 + 1
inj(3)= iwork(il,irow)
100 continue
return
cewverrwnsnnsy Jagt line of subroutine lligt #essvvrcantsrassrrstrntrnersteny
end

Figure 6. Listing of Fortran subroutine to construct YSM data lists,
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#include «ays/types h->
#include «gys/times hs
#include <time hs
#include catdio hs
Winclude «atdlib hs

e

R R IR A X E R R RN R N N R RN R RN R R N RN R N R R R R R R R N R R RN R RN E RS I
ie eee falloe tees &
/e ser  dynamically allocate contiguous memory (numberesige) *ee ¢/
je XX R X X I R R R R N R R R R N R R R NN R A R S E R R R RN R N A NN RN ]
v asye tas
ﬁ. *e e xnput sse o
AR AL int *number s the number of words to be allocated ees o/
[0 ate int *ajze « number of bytes per word e oy
je see int *array » pointer to allocated artay ses 0y
i e LR X
/e %% output. LR
fe wes int taddr » addrens of allocated memory tos o
AL int toffset » oftaet of allocated memory ser 0
A HE PSSR NPEINR ORI ORI CERENOEERENRONRRVNEEIOIRIOEPINIGERIIREIEEITIOIRIERIY
void falloctint snumber,int *atte, int *array,int saddi,int coffaet)

/¢ int *mallecly, ¢/
int *addrp;
addrp = mallocii*numberi¢{*aite) ),
1f laddrp es NULL 1} 1
printf( * Memory allocati=n unsuccesstul "n"i,
printf{ " Execution aborted in®),
exitil);

solfmet « (int) (addrp arrayisstzectiint)/(*pize),
saddr = (int)addrep,

printf{ " Memory allocation succeasful addresa. Vd 0", caddr)
}l X R R R R R R RN N R N N R R R I N R AR R A R N AN E R R A R A R NN ]
AR AN telov LA
/v eve regllocate contigquous mamory (number*size! at *addy ses e
Al SES RSP ONINCE R RS RNPNNNGE ISR N NIRRT PORETNINIIEIPRPIROIIRERIERIIRTS &
/e ves csr 0
e wee ;npu(" LR 2 B W
AR AL int *number « the number of words to be allocated eee o,
AR AL int *aite » number of byten per word ter o
je e int tarray « pointer to allncated array tee 0,
AR AL int vaddy « address of original allocation ser vy
je vae s e,
/e vee output: e 9
Je v int *addr « address of reallocated memory sae oy
[ see int *toffaet = olfaet of rsallocated memary see o)
[Q ISR N IOV NP ENIBRNEDONNOIE RO RSN OR PR OO NP REE BN ORI REOOEPOIEIBIIROISEIS o/

void reloc(int *number,int *size,int *array,int *addr, int *offeet)

/* int *realloc(i; ¢/
int *addrp;
addrp = realloc( *addr, (*number)*(*aize)),
it ( addrp «« NULL } |
printf( " Memory reallocation unauccesatul n"),
printf( " Execution aborted. ‘n“),
exit (1),

soffget =« (int) (addrp-array)*sizeof (int)/(*ai2n),
vaddr = (int)addrp;
printf( " Memory reallocation succesaful addiesss Vi 07, raddr),;

Figure 7. Listing of Fortran-callable C functions for dynamic memory allocation,
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For the momentum equations, the self-coupling quasi-Newton Jacobian (excluding boundary
conditions) in Strategy No. | s, in compact notation,

t‘”*l“” : A0
h n«-r (2
RIRUT KT.1 ’

A 10 DET, EIK, (U1]] {€C30KO|
(382)

AtODET, | UN)] (11, [€3010) + E12, € 3020) + E13,[€3030)

A 0DET, (1 Re") BIK, EIM, | CIKM)

‘ Re

where the repeated “1 index is not summed. The corresponding Jacobian For the energy equation s

MNFe) )
ajwy ~ PETIC20]
- A10 DET, EJK, | U3)}1€30K0) (38

. A1ODET, l:e( . ::" ] EIK, EIM, |CIKM)

A revised solution strategy was developed to reduce the computational cost of the FORM
stepy Strategy Noo 2 is presented in Table S 1t was noted that by modifying the convection term
contributions to st in the momentum equations, a bise tes el approsimation for st (ot including
boundary conditions) could be assembled that would be wdentical for all three momentum equations
and the energy equation  This approximate smat s formed only once for cach outer iteration The
FORM steps for the energy and momentum equations consist of adding the required boundan
conditions o amar, resulting in a significant computational savings since the application of boundary
conditions does not typically require a complete loop over all mesh elements. Aler the each SOLVE
step, the boundary conditions are REMOVEd from amat in preparation for the next equation sy stem
Since the residuals for each state-variable continue to be formed exactly, the modified guasi-Newton
Jacobians aftect only solution convergence rates and not solution accuraey.

I the third term on the right-hand side of Fq. (352) s neglected, then the resulting
approximation to the quasi-Newton Jacobian for the momentum equations will be similar in form to
Fq. (353)

WFO . pgr, jc200
dl Ul " '

A 10 DET, EIK, {U/]]]{C30KO0) (84)

« Atl DET, R‘@( I +Re') EIK, EIM, [C2KM|
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Fquation (V80 s the template Tor the base level smiar in Step 1ol Strateps No 0 Two approvimations
are bethyg made Tor the base level vmat (11 the convection tem comtribution to the global s stem
Newton Jacoban Tor the momentum equations is compromised and (21 the mhluence of the Prandil
umber on the diffusion ferm i the energs squation i neglected As noted abwve, these modifications
are apphied only tothe formation of the hase Jevel omat The caleulation of the state s anable residuals
are ot compromised, i e solution convergenve is aflected onhy . not sidufion gty

An additional impact on the convergence rate for Strategs Ne 2 artees from the Tact that the
state-vanable residuals 1111 amd (18] are ealeulated ondy i Step 1 thetefore, the indiv idual
CPDATE «tepe (Steps 5.9 1 and 17 do not influence the residual calenlations until a Tull pase
through the derative ovile has been completed  The boumdars condition updates Tor omat (Neps b,
HE amd 1A do vse the latest updated solutions T Srategy Noo 1 howeser, the effect of the UPDATE
stepein immediateln felt by all subsequent tesidual and ghobal v caloulations

Faen with the abone disadvantages, howeser, preliminar testing has indicated that Mrategs
No Diveffective i reducing the overall CPU costa g terms of compite o cles per iime step) relativ e
e Strategs Nov 1 The minimal reduction in convergence rates was mote than offset by the sas ings
realized i reduced Noating point operations Theretore, all of the sodutions fo by presented it hapter

T were abtained with Strategy No 2

6.8 PROGRAM OPERATION

Eyven though the NN vperating svatem does not bormally inclide a late b operating mde
as ot tashimg sy atenm it does support Ao dgrogmd processing, which allows the wser b initiate a
tash and then procevd b other activities while the ssstem continnes o wark on the original
Bachground tash tCroft and Womberg, T9RR The CHEL PHEYD program i therelore, mopmally
executed as o hachgroumd process through the medig Cne bangap y utibity - The sl atilits allows
the wser te dog ol of the computer without Mling the background prsess

Fhrew-dimensional C 1D problems can reguire execution iimes on the onder of several hundred
Boors ar piore o produce a steady state solution norder boosiataim such bong residence times on the
vomputer, any laege applivation program should hase an mternal cas hpaomting capababitn i1 it i
prron ided by the operating system CEDE PHIEVE has sta o sxatem of chechpointing by temporarily
siaperiding computations at preselected intenvals. called chechpomts, and woting a binary #estort file
b out-ob-vore memors (¢ g, a hard dish) These chechpoits provide @ micans of protecting
fong - runing johs from syatem Tatlures or itentional shutdoswns 1 the computer should be shutdown
for some e, CEDE FHETD execution can be subsequentiy restaned trom the most recent rovturt
tile

Phe syatem matnices for the B and pressure: Poisson equations are functiony of the imesh
peometrs only and do not change during esecution 1t i, theretore, more computationally effioient
tcatoutate these matrices onee and then store them for subsequent retnies al i the FORM steps (Mep
PR and 20 for Groand the pressure [Eincomplete tactonization is used as a preconditioner tor any of
the Ky lov-subspace terative solvers hsted an Table 1 the precondiioning factors need only e
vomputed once and then stored for tuture SOLVE steps CEDE PHIEVD makes use of binars swap files
to vy out these store and retnesal operations. A swap file i a temporars file (v pically reading on
amediom such as i hard doshy that iy aceessed by an untormatted binary read” where the reguired
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data are onapyped into and ont of a shared block of intermal memory Swap Files are, i ellect, a
wser vonttollable form of vidual memon

Sedutiets Strategs Neo Jindicates that the pressure solution i reguired in Steps 2820 ot the
el b each time step 1 was detennined. however. that these steps vould be sulwoseled without a
sigiificant fosson stabilits o solution accutacy Suboveling the pressure solution invelsgs exevuting
Steps 2024 at selected time stations (e g evers Foth e station)

The progress of program execution s monitored by tracking the iteration histors of the
evulution of each of the state variables in the svatem as measired by appropriate energy homis AL
the end of vach outer etatin i the esele (Step 22 in Table $3 the global energs nesmes for the three
selisits vennipetients, the lemperatiee, and the potential Tungtion @ are compated amd written toa file
Phis file can be avevssed ab any time by the sset fo generate tetation: histors plots which can be ueed
s dhagiostin toud B determining the statis of the caloulations | arge exvursions by ans ol the
enetgy ot ate indicating of o petding breahdown in the selution process Atlainment of an
approsimate steady sate sobition van be determimed by a comparison o the relative rates of change
of the eiierpy Borts

6.6 POST-PROCENSING

Fhe visualization of Vdimensional data 1s becomimg an important subbichd of msdern
scienhifle cempuiting A with ans CHD aade CEDE PHIEYD produces o large amvunt of inturmation,
ated the abilite b present this mfommation man effeative and clear graphical Tormat 1 a vntical
requiteiment hor g sinvesstul imiplesientation

Ana it of i e hpointing fumction, CEDE PHETD generates ab sedecied iteryals, g binars
phot tile vontwmming & mmber of sodubion sarables Tacluded i ths Gl are the mesh defimition, the
veduo ity venton held distribution, scalar Tiehd distobutions Tor the temperature amd pressire, o
ol hased distebution of the divergence etror as imvasured by the coergy nors ol the b pedential
B tionn amd & vorticity vector Deld distotbution A post processing program swas spua thivally
deneloped b ransdate the data i the pht ke inteean input e for the vommercist graphics program
FECPEOT™ an imteractive vonde for sisunbizmg engineering and seientilic data CHECPLOT Version
U x Coide, OO0 FEOREO] ategrates NY plothing with 2 and Vdimensional sutface
comtenting, soatter fiehd phots, vector plottimg, streambinimg, and surfave visualization e g single
progrant Chne can wse the program W display, manipulate, and exanine data, amd then create
igh qualiny codor or gres scale handoopy plote on sartons ostpit desices mvlinding laser primters, tibm
recotders, i paen plotiees




7. RESULTS AND DISCUSSION

Lest cases, designed teinvestigate the accuraes and limitations of algorithm implementations.
can be grouped into three classes of problems verdfication. benchmarking, and validation (W ilhams
et al . 1YRY) Verification involves the compatison of computational to analytical results for problems
in which a “closed-form” solution exists Benchmarking is the comparnison of results to those
produced by an independent computational model e vodestoscode” comparisons. Code validation
requires the comparison of computer imulations o experimental data The results of test cases,
selevted from all theee categoties, are presented in this chapter with the intent of exploring the
aceuracy, comvergence. and stabiling ol the COM as implemented an CEDE PHID Preliminary
testing of CLDE PHDD focused on 2-dimensional Dows generated via vanishing notmal derivative
boundars conditions o a tweeglement wide mesh in the third direction (W illiams et al L 1992y The
test vases discussed herein complete the verification, benchmarking, and validation studies by
esploning Ldimensional Bows icluding Tully developed Now ina square duct, deseloping Now near
the entranve of & square duct, natural convection ina thermal-driven cas ity isothermal separated Now
i a2 and Ldimensional step-wall dittuser. vombined forced- and natural-convection in the
Crmiversits of Hlinois test factlity for full-scale room ventilation esperiments, and natural vonvection
i a partitioned theemal cavity hased on scale model expetiments carmed out gt Colorado State
Uiniverity

7.0 PRELIMINARY STUDIES

A a hey element in the deselopment and implementation of the COML studies were
performed oo mvestigate (1) the tulbydiscrete petformance of the algonthm’s pseudo-pressure
distribution duting terative ovehing and (21 the computational perlomiance ol the sparse solvers
available i the inear alpebra library discussed i Chapter 6

7.1.1 Smoothing of Preudo-Pressure

P to equal-onder anterpolation in the CON ot all state vanables including the vontinuit
conattaint function, 8 there v a dorunant dispersiveertor inde present i the pseudo-presaure
disttibution aveumulated during terative vvching withn the time atep and over ime steps Several
reavarchers have investigated the application of recursive amd non-recirsive digital Gilters W remove
these gh - fregueney 70\ signals (ob Pepper ot al 1979, Leeetal 1979, Hughes etal, 1979, and
Gresho et al . 1980 from pressure amd velocity disteibutions Tests were cartied out o determine the
ettent of smvothing the preudo-pressure distribution durimng oy ling with the genuine pressure solution
an 10 meditied by the continuity constiraimt function

The test problem was fully-developed Now through a channel, Re- 100, 1 e discussed i
deta) i the foblosing section A simple 3o nonrecursive, fowpass Bler cHamoing, 197 1) was
apphied 1o the paeudopressure distrbition greferred toas O m Chapler 6) alter eiach update i the
vuter Heration of the solution strategd ee Step 200 Fable S, Chapter 6) A visaal inspection of the
paemdo prossure before and after the Blermg operation showed a definite smoothing of the solution,
however, vomparisons with control tests abvo showed s decrease imvonsergence upon smoothing with
an eventual divergence atter approximately 10 me steps The conclimony dramn from these sty
were 1) filterimyg out thie dospersive ermor maode i the continuty comtromt distabution oot efleviive
i mpros g convergence ates, and () the dispersive error made detimtely plass an amportam role
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i the ability of the continuity constraint function o remove the divergence error in the diserete
veloeity distribution These results continhed the decision to use the genuine pressure, caleulated
from a smooth solenoidal velocity distribution, as a replacement for the pseudo-pressure €77 1o
prevent the contamination of the velocity and temperature fields by the inherent dispersive error mode
present in 7

7.1.2 Sparse-Solver Lincar Algebra Study

Fest cases were run on a V-dimensional natural convection cavity, AP 17 1710, 10 measure
the pertormance of different combinations of solvers available in the Sparse terative Solver Library,
developed as o part of this research The results of 8 cases are reported in Lable 6 The thermal-driven
cavity problem is discussed i detail in a later section. For these tests at Ra- 10 Pr-0 7, the initial
conditions were the steady -state solution at Ra - 10" The energy nonn traces for all state-variables
were examined and tound to be essentially the same for each test case, theretore, the number of outer
iterations exeeuted over the 10 time steps uved i the test were the same, and the solutiony produced
by each solver were equivalent  The solver designations are the keywords detined in Table Vol
Chapter 6 Alse reported in Lable 6, memory s the workspace memons required by the solver, time
in the CPU execution time for the specified solve step for 1O time stations, and total time s the otal
CPU execution time for all operations The most effective combinations appear to be Cases 6, 1, and
A, i that order  The Binal memors regquirements for Cases | and 4 are the same Since workspace s
shared by the solvers, it is the maximum memory among the solve steps, rather than the sum, that
determines the workspace requirements Tor an execution. The configuration in Case 6 was later
climinated alter subsequent testing on more il-conditoned problems, because diagonal sealing proved

Table 6, Memory and CPU Timiog Data for 3-dimensional Test Problem

1 v = Solutions W and Pressiire Solutions otal ;
wiver e time wiver | Memon e fime |
; . Ahytes . s Abytes .

| | § daginres A7 R 1008 wegrind 641 N IR 7 06

N : daormin 0411 1104 wegrad | 641K 194 4 TIEN

| dzboprd 264 412 I icegrad | 641 R 1846 1n?

§ 4 i shogs 2017 1166 * woprad | 64V R INK N un?
B e 122

o i Wbegs | 2007 | 1208 | "“;"““ 264 K 04

|

| 7 | Tubugs 2o 2242 ; neprad (YRR 16X 0 7

i K ; tn;\ 2060 223 ] imd AL mm 7




to be an ineflective preconditioner. For all solutions reported in the remainder of this chapter, the Case
I configuration was used. i.e.. the momentum and energy solutions were obtained with the diagonally-
scaled GMRES sparse solver, and the @ and pressure Poisson solutions used the conjugate gradient
solver with incomplete Cholesky preconditioning.

7.2 FULLY-DEVELOPED FLOW IN A SQUARE DUCT

Steady -state, isothermal, laminar flow ina straight duct of square cross-section is a common
first-verification vase for incompressible Navier-Stokes CFD algorithms (¢f. Pelletier et al., 1989 and
Hisu et al., 1992). Forthe v -coordinate direction aligned with the duct axis, Fig. 8, the axial velocity
fully-developed profile at any v -station, with - @« v, < aand - h < v < b is

16a?( dp e .
“,{Iz*‘i'ao”) * “n‘( dj‘ }‘(“2!“’!"0") + “: H, n (3‘“)
- LS cosh(nnx,/2a) | cos(nnx,/2a) B
Ly, Ky ,h - (] 3 y‘ :
Ly tya ) ...XZU! ) ; cosh{nnh/a) n'
X, X2
/ |
2a
& Xy X
I Y W—

Figure 8. Fully-developed flow in » rectangular duct.
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The associated axial pressure gradient dp/dx, is a uniform constant, and the corresponding volumetric
flowrate () through the duct is (White, 1974)

Q(a,b) = u, . (2ax 2b) - 593:{**‘!—3)((:1.!»)

" I | dx
(356)
‘ -
Cla.by =1 - 929 tanh(Anb/2a)
n¥bh a.1as nt

The nondimensional velocity profile, scaled by the average duct velocity u, . is obtained by
dividing Eq. (355) by Eq. (356), yielding

urw M8 fnab) (387)
u 1 avg n ) C( a, b)

where superscript “star” denotes a nondimensional variable. At the centerline of the duct (x, = x, = 0),
the maximum velocities are

U} gus * 1.8 foratwo-dimensional duct , b « =
(358)

) e - 2096 for asquare duct , a = b

which are independent of the flowrate and pressure drop in the duct. Using Eq. (356), the constant
nondimensional axial pressure gradient is a function of the bulk-flow Reynolds number and the
geometry of the duct.

dp* 3( 4b \? 1
dx, Re(mb) {(a,b) (359
where
D . X ,
Res “Ivd . podab pey Pl (360)
v a+h pu’ D,
I avg

where D, is the hvdraulic diameter of the channel (White, 1974). For a 2-dimensional channel

{(a.b) =1 and AP B w (361)
dx, Re
and for a square duct
Ca,b) - 042173 and -4P° . 2845 o th (362)
dx| Re

Steady-state laminar flow in a straight duct of square cross-section was simulated using the
modestly nonuniform mesh shown in Fig. 9. Exploiting the symmetry of the flow field, only half the
duct was included in the model domain. The mesh discretization is Af=24x20x10 consisting of 5775
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nodes and 4800 hexahedra elements. The boundary conditions for the six surfaces of the model are
given in Table 7. As initial conditions, the velocity components and pressure were set to zero for all
interior points and on all boundaries where Neumann boundary conditions were applied. For Re=100,
the steady-state velocity solution is shown in Fig. 10 where selected cutting planes have been
extracted from the complete solution to enhance visualization. Figures |1 and 12 present quantitative
comparisons for the analytical and computed solutions. In Fig. ['1, spanwise velocity profiles at the
middle of the channel height (x,=0, 0=x,50.5) are compared to the analyvtical solution, Eg. (357), for
selected locations along the length of the channel at Re=100 and Re=25. All the data are in essentially
exact agreement with the analytical solution. A check of the vertical span (v,=0, -0.5:.x,-:0.5) shows
the same level of agreement.

Equation (362) confirms that the constant axial pressure gradient is inversely proportional to
the duct flow Reynolds number. Estimates for the pressure gradient were calculated at the mid-point
of the channel, x=(1,0,0), for a range of Re with the pressure set to zero uniformly across the outtlow
plane. The computed gradients, Fig. 12, consistently underpredicted the analytical solution by an
average of 6.8%. The pressure Dirichlet boundary was switched from the outflow plane to inflow
plane, and a case was rerun for Re=75. No significant differences were observed in the solution. The
grid was refined by increasing the number of cross-stream elements in the .- and v-coordinate
directions to give a mesh of M=24x30x18§, thus increasing the number of nodes 1o 12,400, Pressure
gradients were calculated with the refined-mesh solution for Re=10, 25, S0, 75, and 100, with the
pressure fixed across the outflow plane. The resulting nondimensional pressure gradients, caleulated
at the center of the channel using a central difference formula, are now in close agreement
(approximately 0.1% error) with the analytical values, Fig. 12. For Re=100, the pressure distribution
on cutting planes in the channel is presented in Fig. 13 as nine equally-spaced contour levels with a
minimum contour of 0.06 and a maximum of 0.53. The analytical solution predicts a uniform pressure
distribution for a constant x,-plane. No significant span-wise pressure gradients were observed in the
computed solution as indicated in Fig. 13. The distribution of the energy norm of the & constraint

Table 7. Boundary Conditions for Fully-Developed Channel Flow

Velocity & Potential Function Pressure

3 walls ?wshp oP/On=()
(u,=u,=u,=())

nonhomogeneous
Neumann

fully-developed
: P nonhomogeneous

A, 10n=0u,/n=0

inflow ofile usi oD/ n=0
B o B Neumann
Eq. (357)
homogeneous

outflow omog h=() P=p,

Neumann

u,=0 onhomogeneous

Sy“"“ctry ' oD/ On=0 n omogenec

Neumann

e A R R S N A R St
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Figure 9. Fully-developed channel flow: mesh layout for M=24x20x10.
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Figure 10. Fully-developed channel flow: velocity vector field at Re=100.
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function is plotted in Fig. 14, where the nine equally-spaced contours have a minimum level of
1.9%10 ¥ and a maximum of 1.7x10 * The non-zero, but very small, divergence error exists at the
outflow plane where the Dirichlet boundary condition is applied, as anticipated.

7.3 DEVELOPING FLOW IN A SQUARE DUCT

Developing flow in the entrance region of a straight rectangular cross-section duct has been
the subject of extensive study. Han (1960) calculated analytical velocity profiles based upon boundary
layer lincarization approximations to the Navier-Stokes equations. For the duct axis aligned with the
x,-coordinate axis and the coordinate system origin located at the centroid of the duct entrance plane,
Fig. 15, the analytical axial velocity profile is

- ( 1)1';"3  cos(mnx,/2a)cos(nnx,/2b)
ue R mn{m?iniy?+(2pajn)?] (363)
| E e S e
u 4 -
b Y [min{mPenty?+(2pa/n)?))
mn-=13,8

where y=a/b is the duct aspect ratio, and 3 is a parameter evaluated via numerical integration as a
function of x,. Entrance lengths, defined as the axial distance from the duct entrance plane to the point
at which the centerline velocity reaches 99% of the fully-developed value, are calculated by Han for

Xz X,
R
3 % 2a
1
. 2b -

Figure 15. Developing flow at the entrance of a rectangular duct.
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rectangular channels of six aspect ratios. For a given aspect ratio. the unalysis shows that the entrance
fength, x,, . when correlated by the dimensionless modulus x,,/(D,<Re), is independent of Re. The
Reynolds number, Re, is evaluated using the arca-weighted average flow velocity, u, ... and the
hydraulic diameter, D, of the duct. Han caleulates a value of v, /(D,+Re) - 0.0752 for a square duct,

Goldstein and Kreid (1967) present experimental data for developing laminar flow in a square
duct obtained with a laser-Doppler anemometer. They compared their data to Han's predictions and
found close agreement in the fully-developed region. In the developing region, Han's approximate
analysis tended to overpredict the centerline velocities as compared to the measured velocitics.
Goldstein and Kreid measured a value of x,, /(D,=xRe) of 0.090 for their square duct, but they noted
that “the slope of the curve is very small when the center-line velocity approaches the fully developed
value. Thus, when using the foregoing definition of x,,, the difference between the measurement and
prediction is perhaps magnified out of the true proportion,”

Using a space-marching integration technique, Briley (1974) presents solutions to the
parabolized Navier-Stokes equations for flow at the entrance to a rectangular straight duct for two
aspect ratios and at Re=1000 and 1333, Comparisons between Briley's computed centerline velocity
profiles and the experimental data of Goldstein and Kreid (1967) showed better agreement than did
Han's results: however, the growth of the wall boundary layer near the inlet plane continued to be
overpredicted.

Aregbesola and Burley (1977) used the vorticity, vector-scalar potential method to caleulate
approximate solutions for the full Navier-Stokes equations for developing flow in a square duct at
Re=1, 50, and 100. Their caleulated values for x,, /(> Re) are approximately constant at 0.086 for
Re > 50. Centerline velocity profiles at Re=50 are compared to the analytical results of Han (1960)
and the computational results of Briley (1974). These solutions show better agreement with the
available experimental data in the developing flow region than cither of the two parabolized Navier-
Stokes solutions. All three solutions converge to the fully-developed profile beyond the duct entrance
length region.

Mizukami and Tsuchiya (1984) present solutions for entrance flow in a square duct at Re=20
using a finite element implementation of Chorin’s projection method (Chorin, 1968). Finally, Yang
and Camarero (1991) combine the vorticity and vector-scalar potential algorithm with a new rotated
upwind difference scheme to solve the developing duct flow problem for Re=100, 400, and 800.
Using an M=15x15x31 grid, their solutions show excellent agreement with the experimental data of
Goldstein and Kreid (1967).

The laminar, isothermal flow near the entrance to a straight square duct of unit cross-sectional
arca was simulated with a quarter-duct model, 15 units in length and a=5b=0.5. As depicted in Fig. 18,
the mesh discretization is A=100x15x15 with 25,856 nodes and 22,500 clements. The mesh is graded
slightly near the two solid-wall boundaries and the outflow plane. The boundary conditions are as
given in Table 7, except there are now two symmetry planes, and the prescribed inflow velocity
profile 1s slug flow, i.e., u, = 1.03, u;, = u, = 0. The inlet u, velocities were set to 1.03 (except at the
no-slip walls) to give an effective u, ,, = 1.0 at the inlet. The velocity field was initialized with a
slug-flow profile throughout the length of the duct.
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The steady-state velocity vector and |||, distributions for Re 100 are presented in Figs.
1o and 17 on selected cutting planes near the inflow plane. The computed centerline velocity at the
outlet is 2,006, indicating the establishment of a fully-developed profile with negligible loss of miss
(- 0.01%), The essential steady - state solution was obtained after 250 time steps using o
nondimensional time step of 0.01. The associated maximum local Courant number was approximatels
0.7. The distribution of the energy norm of the continuity constraint function  is shown in Fig 17
for 9 equally-spaced contours with minimum 8.5<10 % and maximum 7.6-10 . The maximum
divergence error level is now located near the inflow plane, which is surrounded by homogeneous
Neumann boundary conditions. The constraint algorithm is attempting to enforce conservation of
mass between the inflow plane and the first plane of interior nodes, but the Dirichlet data for w,, u.,
and u, across the inlet plane do not provide any solution-adjustable degrees-of-freedom, henee the
localized continuity error is a maximum (as expected).

The distribution of the axial centerline w, velocity is plotted in Fig, 19 as a function of x,/Re.
Near the entrance plane, the selected inflow boundary condition (with data designated as the hase
case) appears to retard the growth o' the wall boundary layers near the inlet plane (v, 0), as compared
to the analytical results of Han (1960) and the experimental data of Goldstein and Kreid (1967),
Aregbesola and Burley (1977) also underpredicted the experimental data in this region, and they
commented that “in experimental work it is difficult to reproduce the sharply singular inlet profiles
used in the theoretical caleulations so that comparisons very close to the inlet are not particularly
reliable.™ Near x,/Re-0.05, the solutions of Briley (1974), Aregbesola and Burley (1977), and the
present study converge to the analytical solution of Han (1960), which slightly overpredicts the
experimental data until the fully-developed region is attained. For asecond experiment, the mesh was
refined in the axial direction by reducing the length of the model from 15 units to 10 units, while
keeping the same number of nodes. The results for mesh 2 showed nosignificant difference compared
to the base case. Spanwise w, velocity profiles at three x, stations are plotted in Fig. 20, and the
locations of the first two x, stations (x,*/Re=0.0075 and 0.02) are noted in Fig. 16. Except near the
entrance plane at x,*/Re=0.0075, the present base case results show good agreement with the
experimental data. The results for the refined mesh solution are not significantly different from the
base case.

These data prompted design of a refined CFD experiment to improve the simulation near the
inlet planc. The slug profile specification across the inlet plane requires all three velocity components
fixed as Dirichlet data. As was the case with the fully-developed channel flow problem, the algorithm
will attempt to satisfy the continuity constraint; however, these Dirichlet boundary data do not provide
required solution-adjustable degrees-of-freedom between the inlet plane and the first plane of interior
nodes. The result is a localized error in the divergence-free requirement for the velocity flow field.
To assess a correction for this problem, the inlet of the channel was extended upstream 0.25 units,
with free-slip velocity boundary conditions applied on all walls and the symmetry planes. Then,
Dirichlet data across the inlet plane of the inviscid entrance region provides a strict slug-flow profile
(i.c., 4,=1.0, w,=u,=0), and Neumann boundary conditions for the pressure and continuity constraint
function, tb, remain appropriate.
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The problem specification was run now with zero velocity data at all interior nodes as the
initial condition. The results for Re=100 with this mviscid inlet extension are given in Figs 19 and
20 The modified infet boundary condition resulted in significant improverment in the agreement with
the experimental data of Goldstein and Kreid (1967) The entrance lengths reported by Han (1960),
Goldstein and Keeid (1967), and Aregbesola and Burley (1977) are compared with the base case and
inviscid inlet present results in lable 8 The distribution of the energy norm of the continuity
constraint function @ decreased to a minimum of 9 2+ 10 " and o maximum of 9 2510 * near the new
inlet plane

Table 8. Entrance Lengths for Developing Flow in 4 Square Duct

Soutee

| 1an (1960) 0,073
Cioldstein and Kreid (1967)

L Aregbesola and Burley 0 ON6
| (1977

0 080

| present results bane case 0o
0078

| present results anvisaid inlet

7.4 NATURAL CONVECTION IN AN ENCLOSED CAVITY

Huoyancy -driven Now, resulting from natural convection in an enclosed cavity, represents
u suitable benchmark for incompressible CED codes. This problem also has many practical
applications including nuclear reactor insulation, energy convervation, ventilation of rooms, solar
energy collection, cooling of electronic equipment, dispersion of waste heat in estuanies, and crystal
growth in liquids.

For many years, research on natural convection in enclosures has concentrated on two basic
modes of convection, specitically flows induced by o density gradient oriented either normal or
paratlel to the bady-torce vector (Ostrach, 1982). 18 the density gradient 18 normal to the body foree,
the ow starts immediately, however, if the gradient is aligned with the body force, then no ow
sturts until i critical value of the density gradient is exceeded (¢80, Bénard convection). The two
modes can occur simultancously as in the case of tilted enclosures. Density gradients can result from
temperature gradients, species-concentration gradients, or a combination of both.

A number of experimental studies have been carried out tor natural conveetion in enclosures,
Phe early mvestigations focused on collecting quantitative heat transfer data with only limited
qualitutive observations of low field structures, An excellent review of the experimental work done
in this arcs up 1o 1965 is given by Flder (1965). The heat transfer duta were used to develop
correlutions for the Nusselt number, Nu, as a function of the Grashot number, Gr, and nondimensional
parameters related to the enclosure geometry . Among the earliest of such correlations is due to Jukob
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1949y, based upon his analyvsis of the experimental data of Mull and Rether (1910) Much of the
experimental work since then (e g, Bekert and Carlson, 1961) has been concerned primarily with
improving and extending the range of these heat tansfer correlations

Only Jimited experimental data are avalable Tor validation of computer codes  The firs
detarled velooty measurements of natural convection i enclosures were reported by | lder (196%)
who used medicimal paratfin and siicone ol as the working faids Streak-hine photographs were used
to measure selocities for Ras leigh numbers up to 10 wath cavity hesghtao-width ratios trom 1 1o 60
and Prandt] numbers from 100 0 2600 Vertical selocity profiles, obtained i the centeal core of the
cavibies, were not ssemetrical about the center lime Higher selovities and smaller wall-fuser
tHhichpesses were observed i the flow Gield near the hot wall The theoretical study by Gill (19660)
coneurted with Flder's results that for given Raslegh and Prandth numbers the core streansfunction
and temperature depended onls on the vertical coordinate. Using laser-Doppler anemometry,
Mortison and Pran (1978 investigated dimensional Taminar Nos structures ina vertical rectangular
v ity with o heightto-wadth rntio of & Veloaty profifes were measured at a Rayleigh number of
SoL0' and the eftect of end-wall conduction on the los structure was studied by varying the degree
of insulation applied to the unheated walls. Morrison and Tran show that heat Toss through the vertical
end-wall v a major factor in the breakdown of 2-dimensional Dow Cheesewright ¢t al (1986)
present esperitental turbudent selocirs data for natural convection ma vty with a height-to-swidth
ratio of & The Roslengh number of approsimatels 10" 1y based apon the cavits height Al of the
experimental vses reported by Cheeseswright et al show evidence ot dimensional effects
Accordimgh, they present i correchion method to make the datia suitable tor validation of 2-
dimensional computer vodes

Faelhy computational studhes of natural convection in cavities include the work of Wilkes and
Churchilh crontg, | ider (1966), Aziz and Hellums (1967), and Newell and Schimidt (1970) Wath the
exception of Aziz and Hellums, these imvestigations were concerned prmandy wath predicting heat
transter rates Aziz and Hellums were the first to attempr o dimensional solution, although, the
Fated computimg capacity avatfable i 1967 restricted simulations to very coarse meshes
(M P D o tew detinds of the Ldimensional Bow structuore could be determimed. Recent
natable numerical studies of turbulent Nows i 2-dimensional cavities are reported by Frinkin et al
CLORD ) Markutos and Pencleous (T984), and Thompson et al (1987)

7.4.1 Two-Dimensional Natural Convection Cavity Benchmark

Sinee qualiny Taminar experimental data for the vaidation of computer codes has set to be
obtaimed, benchmarking (e code-to-code comparisons) is at present the most widely used method
for testing computer codes tor notural convection Nows i enclosures. A 2-dimensional benchimark
problem for this purpose was suggested by Jones (1979), and the commaonly aceepted benchmark
solution was published by de Vahl Davis (19832 The problem, referred to as the “double-glazing”
problen, s that of 2-dimensional flow ot an incompressible Quid of Prandth number 071 inan apright
square cavity of side £ The buoyaney body foree s modeled by the Boussinesg approsimation The
apper and lower horzontal walls are adiabatic, and the vertical sidewalls are set at the constant
untorm temperatures 7, oand 7, The velocty boundary condition is nosship on the tour walls
Selutions for this problem, includimg velocity and temperature distributions and rates of heat transier,
are presented by de Vahl Davas tor Rayleigh numbers of 1075, 10°, 107, and 10° The
vortic ity stremtunction formulation was used with i finite-difference implementation 1o obtain
solutions on undform meshes from A LT o0 tor Raylergh numbers of 10" and 10%; at the
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higher Rayleigh values, finer meshes up to 81x81 were required. The results from several meshes
were then applied with a Richardson extrapolation scheme to produce the benchmark solution.

A number of dimensionless accuracy measures are reported by de Vahl Davis to provide a
means for quantitative comparisons between computer solutions. Of the original nine, the first two
measures involved the streamfunction which is not computed by CFDL.PHI3D. The remaining seven
are defined as follows:

W, my the maximum horizontal (dimensionless) velocity component on the vertical mid-
plane of the cavity (together with its location on the x, coordinate),

N m, the maximum vertical (dimensionless) velocity component on the horizontal mid-
plane of the cavity (together with its location on the x, coordinate),

Nu,,, the average Nusselt number throughout the cavity,

Nu,  the average Nusselt number on the vertical mid-plane of the cavity;

Nu,  the average Nusselt number on the vertical boundary (v, = 0) of the cavity,

Nu,,, the maximum value of the local Nusselt number on the vertical boundary (v, = 0)
of the cavity (together with its location on the x, coordinate).
Nu,,, the minimum value of the local Nusselt number on the vertical boundary (x, = )

of the cavity (together with its location on the x, coordinate),

The velocity components are nondimensionalized via a reference velogity scale which is not
uniguely available for this problem. Since the domain is fully contined (i.e. no inlets or outlets), the
selection of a suitable velocity scale is somewhat problematic. de Vahl Davis chose the thermal
diffusion velocuy, w’l, as a reference velocity, where o (sk/pe,) is the thermal diftusivity. Ostrach
(1982) reviews several velocity scales that have appeared in the literature for natural convection flows
and comments on the implied flow and heat transfer conditions for which these velocity scales are
appropriate. The thermal diffusion velocity implies a balance between convection and conduction in
the energy equation. The viscous diffusion velocity, v/L, implies that the inertial and viscous terms in
the momentum equations are of the same order of magnitude. A hvbrid velocity seale, (av)?/L, has
also been used: however, no physical implications are clear. The velocity scale, PgAT LY/v, implies
that buoyancy and viscous forces are of equal magnitude and is generally appropriate only for small
values of Grashof (CGr) and Rayleigh (Ra) numbers (i.e.. Gr < | and Ra < 1), Ostrach demonstrates
how improper selection of the reference velocity for problems involving natural convection in
enclosures can be the cause of considerable numerical problems and errors. Such problems can be
avoided, he notes, by properly normalizing the governing partial differential equations with the goal
of making the state-varinbles not only nondimensional but also of unit order of magnitude.
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The present study developed a velocity scale related to the intensity of the buoyant motion
as described by the free-fall velocity of a thermal (Gray and Giorgini, 1976). This velocity scale is
derived by assuming the kinetic energy of the buoyancy-induced flow is balanced by the work done
by the buoyancy force (as represented by the Bousinnesq approximation) acting over the reference
length scale, hence,

Py g g . P8PAT, L, (364)
28 buoy ref g

The firee-fall velocity is, therefore, proportional to (g 3 AT, L,,, )", as

1
U = (8P LyA Ty)'"? (365)

where (' is a problem-dependent constant that can be adjusted to reduce computational conditioning,
¢.g.. round-off problems. One consequence of Eq. (365) is that the square root of the Grashof number
assumes the role of the Reynolds number in the scaling of the Navier-Stokes equations (Jaluria, 1980,
and Gebhart et al., 1988), i.c.,

1/2
v, L, | L, 1[spar,t, Gr)'/?
Loy Ly L vy Doy VN BP D ey St L (@r) 77 (366)
Re v c (8 p ATN[ Ln/) N C , v; C

The Archimedes number, Ar, becomes

Gr Gr
Ar T .2 . ¢? 367
) Re? Gr e

thus giving some physical guidance for the selection of an appropriate value for (. For the thermal-
driven cavity solutions developed in the present study and following numerical experimentation, ('=1
was determined to minimize computational ill-conditioning problems over the Rayleigh number range
for the benchmark. With the nondimensionalization of the conservation law system described in
Chapter 2, the selection of (' provides a measure of control over the scaling of the diffusion terms in
the momentum and energy equations (thus affecting computational stability) through the Reynolds
and Peclet numbers. For (=1, Ar=1, and the Reynolds (Re) and Peclet (Pe) numbers are

112
Rcw(%r) = {(Ra/Pr)''?) .,
(368)

11
Pe = Re Pra(%l:) Pr = {(RaPr)'/?}.

In a post-processing operation, the nondiinensional velocities computed by CFDL.PHI3D are
multiplied by (Ra Pr/ Ar)* for comparison to the benchmark solution of de Vahl Davis.




The benchmark Nusselt number is defined as the x,- or horizontal component of the
dimensionless local heat flux vector (de Vahl Davis, 1983).

Nu(xl..xz.) ® “,‘9 - “ae; (360)
ox,
where
T YR - T . * .
( Thm - Tmld) Lnf Ln]

Except for the vertical sidewalls, the local first derivative of the potential temperature with respect
to x,* is approximated in the present results by a three-point second-order central-difference formula
(Hoffmann, 1989),

98 L8, +(y' -8, -yi8,

: y(y+1)(Ax)
(8,8)

+ O(Ax)?

ox,

(371)

A"“‘ , . .
ye® VA‘xJ H AX, = (X )‘ '(I| )l'l

where @ is a node-column index. Dimensionless temperature gradients at the vertical sidewalls were
calculated using a two-point first-order difference ratio. The five benchmark Nusselt numbers are
defined as

1
Nu, = fNu(O.x;')dx;'

<

!
Nu,, o [ Nu(1/2,0)dx
0

b (372)

Nu = fNu(x,’.x,')dx,' dx)'
0

avg

o

Nu. = max (Nu(0,zx,))

max
0% 1 s |

Nu_, & min (Nu(0, x,’))
0s 54 |

For the present study, the integrations required for evaluating Nu,, Nu,, and Nu,,, arc calculated
numerically using the trapezoidal rule.

Table 9 presents a comparison of the seven henchmark parameters as calculated by de Vahl
Davis (1983), Upson et al. (1980), Markatos and Pericleous (1984), and the present study, for
Ra = 10", 10% 10%, and 10", Figure 21 gives a comparison of the solutions for four accuracy measures
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in terms of their percent deviation from the benchmark solution by de Vahl Davis (1983). The
agreement among the solutions is generally good. The most significant disagreement occurs in the
values for Nu,. and Nu,,.. Markatos and Pericleous found these accuracy measures to be very
sensitive to small differences in the temperature solution.

Upson et al. solved the benchmark problem using a finite-element penalty method code,
implemented with 9-node biquadratic elements for #, and ® and a bilinear discontinuous
approximation for pressure /. They chose the free-fall velocity, (g B AT, L, )" with C = 1, as their
reference velocity scale because “it results in dimensionless velocities and pressures that are of order
unity, and secondly, it allows simulation at larger Ra since the penalty method is more accurate in this
form . " (Upson et al., 1980). The nonuniform finite-element mesh consisted of 745 nodes and 168
isoparametric elements with refinement near the walls and in the four corners. The reported Nusselt
numbers were calculated using the “consistent flux method” which gives an integral relation for the
heat flux distribution at the boundaries. The two Nusselt numbers that require interior heat flux data,
Nu,, and Nu,,. are not reported by Upson et al.

Markatos and Pericleous (1984) employ the finite-volume algorithm SIMPLEST (Patankar,
1980) with a nonuniform M=40x40 mesh. Three- and five-point finite-difference formulae are used
to resolve the temperature gradients required for the Nusselt number calculations. For Ra up to 10°,
solutions were obtained using “normalized variables, in such a way that dimensionless velocities were
of the order of unity, in order to improve the accuracy of the results.” The specific velocity scale is
not reported.

For the present results, an M=32x32 nonuniform mesh, shown in Fig. 22a, was used for
solutions at Ra = 10%, 10%, and 10°, and an M=80x80 mesh, in Fig. 22b, was used for Ra = 10°. At each
Rayleigh number, the solution was run for approximately 1000 time steps. The benchmark variables
were then calculated, and the solution restarted and run an additional 500 time steps. If the benchmark
measures remained stationary to three significant figures, then the solution was accepted as
converged. This solution was then used as the initial condition for the next higher Rayleigh number

execution.

The results of de Vahl Davis (1983) and the present solutions are summarized as contour plots
of streamline, temperature, and the u, and u, velocity components in Figs. 23-30, respectively.
Qualitative agreement with the companion plots presented in the de Vah! Davis’s benchmark solution
is good. The contour values for each plot are presented using a common format, i.e., cmin (interval)
cmax, where ¢min and ¢cmax are the minimum and maximum contours and interval is the interval
between each contour line. As noted by Upson et al. (1980), the flow fields are similar at Ra = 10* and
10, with a primary vortex roll completely filling the domain. Significant vertical temperature
stratification in the central core has already developed, however, by Ra = 10*. Secondary vortex rolls,
embedded in the primary roll, appear by Ra = 10°, and definite thermal boundary layers are evident
along the vertical walls. These secondary rolls do not result from an instability of the base flow but
are caused by the flow-induced distortion of the temperature field (Mallinson and de Vahl Davis,
1977). As the Rayleigh number increases to 10°, the secondary rolls strengthen and become distorted
in shape, and their centers move closer to the vertical walls. There is also evidence of a weak tertiary
vortex roll, rotating in the same direction as the base flow, developing in the central core.
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Table 9. Benchmark Measures for 2D Natural Convection of Air in a Square Cavity

Ra=10’ Ra=10*
(n* (2) 3 4) 0} (2) 3 4)
U s 3.649 3.656 3.544 3.668 16.18 16.19 16.18 16.26
at x, 0.813 0.812 0.832 0.811 0.823 0.822 0.832 0.841
Uy max 3.697 3.704 3.593 3,709 19.62 19.68 19.44 20.22
at x, 0.178 0.166 0.168 0.189 0.119 0.119 0.113 0.107
Num 1.118 - 1.108 [.111 2.243 - 2.201 2.212
Nu,, 1.118 - - 1.124 2.243 - - 2.205
Nu, 1.117 1.118 - 1.117 2,238 2.245 - 2.221
Nu,, 1.505 1.506 1.496 1.507 3.528 3.535 3.482 3.460
at x, 0.092 0.075 0.082 0.107 0.143 0.132 0.142 0.159
Nu,i, 0.692 0.691 0.720 0.685 0.586 0.585 0.643 0.511
at x, 1 ] 0.992 0.954 | | 0.992 0.971
Ra.::lo5 Ra=106
0} 2) 3 4) 1) (2) 3) (5)
U/ 34.73 34.62 35.73 31.72 64.63 64.59 68.81 61.84
at x, 0.855 0.856 0.857 0.868 0.850 0.850 0.872 0.841
Us e 68.59 68.90 69.08 70.82 219.4 220.6 221.8 225.7
at x, 0.066 0.066 0.067 0.064 0.037 0.032 0.038 0.040
Num,g 4,519 - 4.430 4.454 8.800 - 8.754 8.802
Nu,, 4519 - - 4.496 8.799 - - 8.750
Nu, 4.509 4.521 - 4,482 8.817 8.817 - 8.863
Nu,.. 7.717 7.731 7.626 7.510 17.92 17.29 17.87 17.08
at x, 0.081 0.075 0.082 0.107 0.038 0.045 0.038 0.052
Nu,,, 0.729 0.728 0.824 0.279 0.989 0.980 1.232 0.115
at x, 1 | 0.992 0.954 | 1 0.992 0.966

*Solution Source Key

(1) de Vahl Davis (1983)

(2) Upson et al. (1980)

(3) Markatos and Pericleous (1984)
(4) Present results M=32x32

(5) Present results M=80x80
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Figure 21. Comparisons to deVahl Davis (1983) benchmark for four accuracy measures.
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Figure 22. Natural convection in a cavity,
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Figure 24. Streamlines computed by TECPLOT, present
data,
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c)Raw10’ 'd) Ra=10"
Figure 25. Temperature contours at 0(0.1)1, de Vahl Davis

(1983).
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Figure 26. Temperature contours at 0(0.1)1, present data.



151

.c)Ra=10’ -43 59(8.719)43.59 .d) Raw10° !255(251“255
Figure 27. Contour horizontal u, velocity component, de

Vahl Davis (1983).
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Figure 28. Contours of horizontal u, velocity component,
present data.
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Figure 29. Contour of vertical u, velocity, de Vahl Davis
(1983).
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Figure 30. Contours of vertical u, velocity component,
present data.
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7.4.2 Three-Dimensional Natural Convection Cavity

Ihe 3-dimensional extension of the “double-glazing™ problem is natural convection in a
rectangular box. Fig. 31, called the “window cavity™ problem by Mallinson and de Vahl Davis (1977)
Iwo opposing vertical walls are set at ditferent temperatures, and all other walls are adiabatic For
the momentum equations, all walls have the no-slip boundary condition Untortunately. no
verification, vahidation, or benchmark quality solutions have yet been published inthe literature. Some
limited qualitative data are available (¢f. Aziz and Hellums, 19670 Reddy. 1982 Pepper and
Watterberg, 1986; and Reddy et al., 1992) however, the typical imtent of these papers is (o
demonstrate cither anew CED formulation ora new technigue for flow sisualization of V-dimensional
solutions Essentially no quantitative data have been found.
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Figure 31, “Window cavity” problem,
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One of the more informative studies of 3-dimensional flow structures in the “window cavity”
problem is reported by Mallinson and de Vahl Davis (1977). They emploved a vorticity/vector
potential formulation to obtain steady-state solutions using the method of false transient (Mallinson
and de Vahl Davis (19730 for 0« Ra < 10, 0.0 < Pr- 100, and box aspect ratios from | to & The
majority of their solutions were obtained with a mesh of A= 1518+ 1S using either a PDP-10 or an
IBM 360750 computer. This mesh was considered to represent a reasonable compromise between
accuraey and computing cost, considering the limitations of computing capacits in 1977 and the
exploratory nature of the study. Qualitative characterization of the essentinl flow structures were
desired rather than establishment of benchmark guality data

The absence of heat losses from the end-walls, floor, and ceiling of the box, combined with
the no-slip boundary condition on all walls causes the three-dimensional axial flow character in the
“window cavity” problem Mallinson and de Vahl Davis (1977) deseribe two mechanisms associated
with the end-wall that appear to cause such axial lows, The fiest mode, called the inertial end effect,
is duc to the hinematic interaction of the rotating Nuid with the stationary end-wall. The second mode,
the thermal end effect, results from axial temperature gradients near the ends of the box generated by
variations in the Now field.

The geometry for the “window cavity™ problem is shown in Fig, 32 where the end-walls,
Noor, and ceiling are adinbatic and the long opposing sidewalls are fixed at different temperatures.
The cavity is twice as long as it is tall and wide. Due to symmetry of the geometry and boundary
conditions, only half of the cavity is modeled with the A#=30=30< 18 mesh depicted in Fig 33 The
global coordinate system origin is located at the lower corner of the symmetry plane, contiguous with
the hot vertical sidewall. Solutions for three cases, as reported by Mallinson and de Vahl Davis
(1977), were obtained using CFDL.PHIID: (1) Ra- 10" Pe-0.1, (2) Ra- 10" Pro100, and
(1) Ra 1510 Pr-0.71,

Lagrangian particle trachs were caleulated from the solutions of Cases T and 2 using a
modified Euler integration scheme for visualization, as suggested by Matlinson and de Vahl Davis
(1073). The trachs presented in Figs. 34 and 35 have origins at (0.6,0.6,0.9) and (0.6,0.6,-09),
respectively. The tracks are reflected into the mirror quadrant for full problem characterization. The
spiraling motion of the particles from the end-walls towards the central mid-plane is clearly evident,
Temperature contours and veloeity veetors on select horizontal and vertical cutting mid-planes are
presented in Figs. 36-39 for Cases | and 2, respectively. The corresponding pressure contours with
velocity vector plots are given in Figs. 40-43. The strong influence of the Prandtl number can be
observed in these data presentations. For Case 1, at Pr=0.1, the maximum computed longitudinal
velocity, along the common axial center line of the horizontal and vertical mid-planes, was 3,17, afler
being scaled by (Ra 'r/ An)'A to reflect the reference velocity used by Mallinson and de Vah! Davis.
AL Pr 100 in Case 2, the corresponding masimum longitudinal velocity was 0.67 in the -v, direction.

Particle tracks were caleulated for Case 3 using the starting points specified by Mallinson and
de Vahl Davis (1977), (0.5, 0.49, 0.9) for the forward flow and (0.3, 0.65, 0.2) for the reverse flow
as shown in Figs. 44 and 45, Temperature and pressure contours for this case are presented in
Figs. 46-49. The more complex nature of the low at this higher Rayleigh number is apparent in these
figures.
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view from cold wall
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Figure 38. View of vertical mid-plane Ra=10* Pr=(0.1
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Figure 39. View of vertical mid-plane Ra=10* Pr=100

temperature 0(0.1)1,
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view from above
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Figure 40. Horizontal mid-plane Ra=10‘ Pr=0.1: pressure
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Figure 41. Horizontal mid-plane Ra=10* Pr=100: pressure
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view from cold wall
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The inertial end effect has been studied by Pao (1970) (as cited by Mallinson and de Vahl
Davis, 1977) using a rotating cylinder with a stationary end-wall. For the case of a low Rayleigh
number single vortex roll, the rotating cylinder approximation is fairly representative of the end effect.
Based on the results of Pao’s analysis, Mallinson and de Vahl Davis postulated that the intensity of
the axial flow would be inversely proportional to the Prandt! number.

The thermal end effect, manifested by small axial temperature gradients near the end-walls,
is due to reduced convective heat transport in the vicinity of the end walls. The reduction in
convection in this region is the result of the additional viscous drag on the fluid by the proximity of
the noslip boundary condition at the end-wall. Mallinson and de Vahl Davis assert that, at least for
0.2 < Pr < 100, the thermal effect is independent of Pr. Since the axial flow due to the inertial effect
decreases with increasing Pr, they argue that at Pr=100 any 3-dimensional flow structure is due to the
thermal effect alone. “The total longitudinal motion at any Pr is thus the sum of a constant thermal
effect and a Pr-dependent inertial effect. The magnitude of the constant thermal effect can be deduced
from a high Prandtl number solution, for which the inertial effect should be negligible.”

At Raylecigh numbers less than 6x10%, the axial flow proceeds from the center of both
end-walls in a spiraling motion towards the central symmetry plane, Figs. 34-35. The return path for
the reverse flow is along the vertical and horizontal sidewalls. As was the case with the 2-dimensional
double glazing problem, the flow structure becomes more complicated at Rayleigh numbers above
10* due the presence of secondary motion. For Ra=1.5x10* and Pr=0.71, Mallinson and de Vahl Davis
observed two secondary vortex rolls in the cross-sectional flow far from the end-walls. Strong axial
flows occurred near the end-walls, with each secondary roll forming its own spiral center for the
inward moving flow. At these higher Rayleigh numbers, the axial flows are confined to the vicinity
of the cnd-walls, Figs. 44-49.

7.5 STEP-WALL DIFFUSER

Flow separation, a subject of fundamental importance in fluid mechanics, has been the focus
of intensive study for many years. To aid in experimental and computational investigations of this
phenomenon, a set of simple geometric configurations has been developed as representative test beds
including (a) flow in a pipe with a sudden expansion, (b) flow in a pipe with an obstruction such as
an orifice, (¢) flow over an obstruction (either a step or a thin fence) in a channel, and (d) flow ina
channel with a sudden expansion (step-wall diffuser or backward facing step), as depicted in Fig. 50.
Within each base configuration, variations in boundary conditions and the addition of heat and/or
mass transfer serve to further broaden the problem class. Among these four basic configurations, the
step-wall diffuser, Fig. 50d, has become a very popular benchmarking and validation test problem for
CFD codes due to its simple geometry and the availability of quality experimental data.



(a) sudden expansion in a pipe
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Figure 50, Test bed configurations for flow separation.

Flow separation can be defined as a region of recirculating flow adjacent to a solid boundary.
The positions for detachment and reattachment of the “separation bubble™ are delimited by sign
changes in the vorticity of the flow field at the boundary. Within the separation bubble, the flow is
characterized by recirculating vortices and flow reversals. A necessary but not sufficient condition
for the onset of flow separation in both boundary layer and fully-viscous flows is the presence of an
adverse pressure gradient in the flow field near the outer boundary of the separation bubble (Tritton,
1988), where “adverse™ refers to an increasing pressure in the direction of the main flow stream.

Much cf the early experimental data on flow separation was developed for boundary layer
flows in studies of the “stall” phenomenon of external aecrodynamics. A common test geometry for
these studies is depicted in Figs. S0¢ and d in which the upper boundary is a free surface. The
separation-reattachment process in boundary layer flows is a complex interaction between the
separated shear-layer and the adjacent flow. Test conditions can be grouped into three distinct regimes
reflecting the character of the flow at the point of detachment and reattachment: (1) laminar-laminar,
(2) laminar-turbulent, and (3) turbulent-turbulent.

Abbott and Kline (1962) studied turbulent-turbulent flows over double and single backward
facing steps using an open-surface water table. Three-dimensional flow structures were observed in
the form of one or more vortices rotating about an axis normal to the vertical step and parallel to the
floor of the test section. This 3-dimensionality is confined in space to the region immediately
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downstream of the step; however, the vortices changed in size over time. Adjacent vortices were
counter-rotating and varied in number depending on the step geometry and water depth. With the
advent of laser-Doppler anemometry, experimental studies of turbulent boundary layer separation
have continued to produce data of increasing quality (cf. Etheridge and Kemp, 1978; Kim etal., 1980,
Eaton and Johnston, 1981; and Isomoto and Honami, 1989). Studies of laminar-laminar boundary
layer separation (c.g., Goldstein etal., 1970) indicate that the characteristics of the separation regimes
are dependent on both geometry and Reynolds number; however, for turbulent-turbulent regimes, the
flow structures are dependent primarily on the step geometry and are relatively insensitive to
Reynolds number.

As noted by Tritton (1988), the phenomenon of separation is not confined to boundary layer
flows. When the upper boundary in Figs. 50c and d is an impermeable wall, these two configurations
join Figs. 50a and b in a class of flows for which an inviscid flow regime or distinct shear layer does
not exist. In this class of computational problems, the full Navier-Stokes conservation law must be
simulated throughout the complete flow domain. Axisymmetric flow with a sudden enlargement,
Fig. S0a, has been the subject of computational studies by Donea et al. (1982), Zienkiewicz et al.
(1990), and Fang and Paraschivoiu (1991). Laminar experimental data for this configuration were
obtained by Iribarne et al. (1972). Leone and Gresho (1981) and Carvalho et al. (1987) present
benchmark quality solutions for channel flow over a step, Fig. 50c, and turbulent and laminar
stratified channel flow with a backward-facing step has been studied computationally by Oliver
(1980), Leone (1990), Gartling (1990), and Papanastasiou et al. (1992),

The present study has concentrated on isothermal 3-dimensional flows in a channel with a
sudden expansion, Fig. 51, also known as a step-wall diffuser or a backward-facing step. Because of
the quality of the experimental data available and the simplicity of the geometry, this configuration
has become a standard test problem for validation studies of incompressible Navier-Stokes CFD
algorithms, Two experimental investigations have been used extensively in the validation efforts
quoted in the literature, specifically the laminar data of Denham and Patrick (1974) and the laminar
and turbulent data of Armaly et al. (1983).

7.5.1 Denham and Patrick (1974) Experiments

Denham and Patrick (1974) present experimental data for 2-dimensional, laminar,
recirculating flow in a channel with a backward facing step. A directionally-sensitive laser-Doppler
anemometer and dye-tracer injection were used in their experiments. The test setup consisted of water
flowing from a constant-head tank into a diffuser, through a settling chamber packed with
flow-straightening honeycomb material, and into a 2-dimensional contraction preceding the test
section, From the test section, the flow passed through a bank of flow meters and then irto a lower
constant-head tank. The backward-facing step was formed by inserting a block of Perspex into the
main channel of the test section. The leading edge of the block was beveled to avoid separation
upstream of the step. The ratio of step height to upstream channel height (574 in Fig. 51) was 0.5 and
the spanwise channel width 1o step height ratio (W/S) was 20. The expansion ratio for the step, defined
as the ratio of the downstream to upstream channel heights (H/h), was 1.5, Laminar flow velocity
profiles were measured at several stations upstream and downstream of the step, at four different
Reynolds numbers (Re= 292, 500, 764, and 916, where the Reynolds number is evaluated using twice
the upstream channel height as a reference length and the upstream average flow speed as a reference
velocity). For the Reynolds numbers investigated, Denham and Patrick maintained that the “flow in
the mainstream appeared to be truly two-dimensional over at least the central two-thirds of the width
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Figure 51. Step-wall diffuser geometry.

of the channel.” However, 3-dimensional effects were observed in the region immediately
downstream of the step. Dye-tracer observations indicated the presence of secondary 3-dimensional
flow in the form of counter-rotating vortices in the recirculation region. The vortex axes were parallel
to the vertical face of the step and normal to the floor. Denham and Patrick note that this secondary
flow “caused the dye trace to spiral out from the centre of the duct” rather than inward as reported by
Goldstein et al. (1970) in their free-surface laminar experiments, At the highest Reynolds number
(Re=916), the initiation of transition to turbulence was observed as small periodic fluctuations in the
velocities near the reattachment point, No secondary separation on the upper wall of the test section
was observed.

Computational simulations of the step geometry used by Denham and Patrick have
consistently predicted longer reattachment lengths for the primary separation bubble than were
obtained experimentally (Hackman et al., 1984 and Ghia et al., 1989). This discrepancy has been
attributed to the construction of the test section which included an asymmetric flared device along the
lower wall of the channel upstream of the step. Ghia et al. (1989) observe that, since the resulting inlet
section was relatively short, the velocity profiles obtained by Denham and Patrick just before the step
indicate an asymmetric distortion from the parabolic profiles typically assumed in computational
studies. The severity of this distortion increases with increasing Reynolds number.
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7.5.2 Armaly et al. (1983 Experiments

An open-loop air-driven flow channel was used by Armaly et al. (1983) to measure velocity
distributions and reattachment lengths downstream of a backward-facing step. Results are presented
for laminar, transivional, and turbulent flow of air with a Reynolds number range of 70 < Re < 8000,
The channel height upstream of the step was 5.2 mm, and the downstream channel height was 10.1
mm, giving an expansion ratio 2/7h=1.9423 and a step height S 0f 4.9 mm. The channel width was 180
mm, and B/8=36.735. The channel Noor, roof, and step face were built of aluminum, machined to
close tolerances regarding wall orientation and surface roughness. The two sidewalls were made of
glass, 10 mm thick, sufficiently rigid to support the test section and to facilitate laser-Doppler
measurements using forward-scattered light. Air flow with 2 pm mean dianseter silicone oil scattering
particles was first fed from a large settling chamber through five 6 mm diameter bored tubes into the
first stage of the flow channel, consisting of an expansion section packed with steel wool to smoothen
the flow and to prevent input disturbances from affecting the measurements. Passing through a series
of flow straighteners, the flow entered a smooth contracting nozzle whose outlet was connected to the
entrance of the test section. The test section provided a 200 mm straight channel approach to the
backward-facing step and a 500 mm long channel downstream of the step. Operating in a
forward-scattering mode, the laser-Doppler anemometer was set up to measure only the streamwise
velocity component. The optical system was fixed in space, and the test section was moved in steps
using a 3-dimensional traversing table.

The reattachment lengths of the separation regions were measured by scanning the lower and
upper walls in the streamwise direction at constant and known elevations. To determine the
reattachment length, the position of the zero-mean-velocity line was measured. The points of
detachment and reattachment were taken as the extrapolated zero-velocity line down the wall.

Measurements of the reattachment length for the primary separation bubble, x, in Fig. 52, just
downstream of the step on the lower wall allowed the identification of the laminar (Re < 1200),
transitional ( 1200 < Re < 6600 ), and turbulent ( Re > 6600 ) regimes of the flow, Fig. 53 (Armaly
et al., 1983). The Reynolds number is evaluated with a reference velocity equal to two-thirds of the
maximum velocity measured 10 mm upstream of the step and a reference length equal to twice the
upstream channel height (i.e., the hydraulic diameter of the upstream channel). For the laminar region,
the separation length increases nonlinearly with the Reynolds number. The transitional flow regime
is characterized by a sharp initial decrease in the reattachment length, followed by a continued
gradual, but irregular, decrease to a minimum at a Reynolds number of approximately 5500. Beyond
Re=5500, the reattachment length ceases to be afunction of Reynolds number. An additional
separation bubble was measured along the floor of the channel downstream of the primary separation,
x, and v, in Fig. 52, This secondary floor bubble disappears above a Reynolds number of 2300. A
secondary separation region was also observed along the upper wall downstream of the step, x, and
x, in Fig. 52. It develops in the laminar region ( for Re > 400 ) and remains throughout the transition
regime. The length of this upper separation bubble initially increases with increasing Reynolds
number and then gradually decreases until it disappears above a Reynolds number of approximately
6600,

To determine the 2-dimensionality of the flow, spanwise velocity profiles at various constant
elevations were measured at selected Reynolds numbers. At Reynolds numbers smaller than 400, the
flow was predominantly 2-dimensional. Within the Reynolds number range of 400 < Re < 6600, the
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Figure 52, Separation regions identified by Armaly et al, (1983).
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Figure 53. Location of detachment and reattachment points v. Re, Armaly et al. (1983).
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flow downstream, and in the immediate vicinity of the step, was found to be 3-dimensional. The
experimental data of Armaly et al. (1983) and Denham and Patrick (1974), in terms of the
reattachment length of the primary separation region v. Reynolds number, are plotted in Figs. 54 and
85 for two length scale definitions, the step height § and the hydraulic diameter of the upstream
channel 1), respectively. The two data sets were obtained using test sections with different expansion
ratios, 0= 1.9423 for Armaly et al. and F/h=1.5 for Denham and Patrick. As noted by Armaly et
al. (1983), the two data sets appear to correlate well with the Reynolds number evaluation in Fig, 54,
incorrectly suggesting that the reattachment length is a function of Re alone, The lack of correlation
between the data sets, evident in Fig. 85, demonstrates that the reattachment length may be a function
of several variables including Reynolds number, step geometry, and velocity profile at the step plane,
Accordingly, itis very important that validation studies correctly simulate the geometry and upstream
flow conditions as well as the Reynolds number of the experiment,

7.5.3 Computational Experiments

Two- and 3-dimensional models simulating the step-wall diffuser experiments carried out by
Armaly et al. (1983) were developed for CFDL.PHI3D. The 2-dimensional model, Fig. 56, used an
M=4x | 1x] discretization upstream of the step and A=87x20x1 downstream of the mesh, where all
velocities in z-coordinate direction are set to zero. Exploiting the experimentally verified symmetry
of the flow field, the 3-dimensional model, Fig. 57, employed a central vertical symmetry plane with
a mesh discretization of AMf=4x11x24 upstream and M=87x20x24 downstream of the step plane. The
upstream and downstream channels are approximately 1 and 30 step-heights long, respectively.

The final meshes for the 2- and 3- dimensional models resulted from a mesh refinement study
that investigated the sensitivity of the solutions to: (a) channel lengths upstream and downstream of
the step and (b) the mesh refinement and grading near all walls, the step plane, regions of separation,
and the approach to the outflow plane. Seven stages of mesh refinement were investigated for the
3-dimensional model, starting with approximately 20,000 nodes and progressing to the final mesh of
47,300 nodes. Using an approach length of ten step-heights, the initial 2-dimensional results indicated
that a fully-developed velocity profile was well-established within one step-height from the inlet
plane, allowing the shortening of the approach channel. The 2- and 3-dimensional studies also showed
that adequate mesh grading was necessary both upstream and downstream of the step-plane. Grading
along the upper wall was critical in the 3-dimensional model for resolving the thin secondary
separation region, and the solution became unstable if the mesh was inadequately graded near the
outflow plane.

The velocity boundary conditions for both models included no-slip conditions at all
impermeable walls, prescribed fully-developed laminar velocity profile at the inflow plane, and a zero
traction Neumann condition as described in Chapter 4 for the outflow plane. The pressure and
continuity constraint function @ were both set to zero across the outflow plane. Except for the
symmetry plane, the boundary condition for the constraint function was homogeneous Neumann. To
maintain a free-slip tangency condition for the symmetry plane, a nonhomogeneous Neumann
boundary condition for & is calculated as the solution evolves. The pressure boundary condition was
homogeneous Neumann across the symmetry plane and nonhomogeneous Neumann for the inflow
and no-slip boundaries. For Re=100, the initial conditions for the velocity field were a fully developed
profile filling the upstream and downstream channels, where the downstream channel profile was
scaled from the upstream profile by the cross-sectional area ratio (upstream to downstream) to provide
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a nominal conservation of mass at r=0.0. The initial pressure field was calculated by the pressure
Poisson equation using the initial velocity data. For subsequent higher Re, Reynolds number
continuation was used to obtain initial conditions. For both the 2. and 3-dimensional simulations,
laminar steady-state solutions were obtained for 100 < Re = 800.

Preliminary results for the 3-dimensional model indicated an instability in the computed
velocity distribution at the step plane that did not respond to remeshing. It was postulated that the
source of the instability was due to roundoff error, produced by the significant difference in
magnitude of the three velocity components. The problem was eliminated by rotating the
computational coordinate system, relative to the “laboratory™ reference frame, through two successive
Euler angles. The first transformation was a +45° rotation about the 2-coordinate axis, producing a
(x'. v', 2" coordinate triad, and the second transformation involved a +45° rotation about the
v -coordinate axis to produce (x", v”, 2") where all computations were performed. In the new
reference frame, all three velocity components were of the same order of magnitude as measured by
their respective energy semi-norms, defined by

: 1 dq dq
o i Sihet: AP To 373)
lale » o X [fa o, dx, ] (

where ¢ represents any state-variable and (' is a normalizing constant.

A number of rescarchers have used the experimental data of Armaly et al. (1983) for
computational validation studies. A representative sampling from the literature is presented in
Table 10. The CFD formulations include a range of algorithms, such as the finite-difference MAC,
finite-volume SIMPLE, finite-element penalty, and pseudo-spectral formulations. The Reynolds
numbers cited in the far right column are calculated using a consistent reference velocity and length
scale. As described by Armaly etal. the reference velocity is the average bulk velocity in the upstream
channel (defined as two thirds of the maximum axial velocity measured 10 mm before the step plane),
and the reference length is the hydraulic diameter of the upstream channel (defined as the twice the
upstream channel height).

Present results from the 2-dimensional simulations in the region pear the step are summarized
inFig. 58 for Re = 389, 648, and 800. The Re = 389 solution is close to the experimentally determined
upper bound for approximate 2-dimensional velocity profiles at the central symmetry plane. Beyond
Re = 400, evidence of 3-dimensional flow structures are reported by Armaly et al. in the form of a
variable line of reattachment for the primary separation bubble across the floor of the downstream
channel. Above approximately 400, it has been postulated that the reason the 2-dimensional solutions
cease to agree with the experimental reattachment data is due to the 3-dimensionality of the flow
(Ghia etal., 1989). The onset of the secondary separation along the upper woll of the downstream duct
also occurs near Re=400. The short vertical arrows denote the detachment and reattachment points
reported by Armaly et al., and the computational Jocations are marked with longer vertical arrows,
These computational locations were determined from the intersection ol zero vorticity contours With
the wall boundaries. The contours of negative streamwise velocity inFig. 58 provide a visualization
of the back-flow in the separation regions.
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Primary reattachment lengths, normalized by the step height S, are plotted as a function of the
Reynolds number in Fig. 59. The 2-dimensional computational data reported by various researchers
show good agreement with the experimental values up to Re = 400. Above 400, the computational
results diverge, as expected, from the experiments.

Dispersion error control proved to be vitally important for maintaining solution stability above
Re =~ 400 in both the 2- and 3-dimensional simulations. Interestingly, the influence of dispersion error
manifested itself most significantly in the pressure solution. Comparative pressure solutions are
presented in Figs. 60a and 60b for Re=648. In Fig. 60a, the 2-dimensional simulation has been run
500 time steps with the steady state solution at Re=389 as the initial condition and the TWS
dissipation parameter 3=0. For the same initial condition but B=0.1, the pressure solution in Fig. 60b
was obtained, also after 500 time steps. The presence of a dominant 2-Ax dispersive error mode can
be clearly seen in Fig. 60a. A visual inspection of the corresponding velocity solutions showed no
readily discernible differences; however, attempting to continue to a higher Reynolds number using
the solution in Fig. 60a as the initial condition resulted in a divergence. A converged steady-state
solution at Re=800 was obtained using the solution of Fig. 60b as the initial condition continuing with
B=0.1. The pressure solution, therefore, represents a sensitive diagnostic measure of the presence of
a very subtle, low-level, and potentially destabilizing dispersive-mode error in the velocity solution.

This sensitivity is due to the complex nature of the right-hand-side residual for the pressure
Poisson solution. As discussed in Chapter 4, the residual for the pressure Poisson equation involves
products of the velocity components and their spatial derivatives of the form

DET, EIK, EIM, {U])T[C30KM ] { UT} (374)

A number of areas were investigated to remove the dispersive error shown in Fig. 60a, including
remeshing, using different iterative and direct linear algebra solvers, and modifying Eq. (374) to a
simpler form

DET, EIK_ EIM, UJ [C2KM]{UI} (375)

None of these attempts were successful. Only the annihilation of the dispersive error in the velocity
distribution through the TWS formulation provided the necessary smoothness in the pressure residual.

Velocity vector distributions on the symmetry plane of the 3-dimensional solution are shown
in Fig. 61 for (a) Re=389, (b) Re=648, and (c) Re=800. In Fig. 62, the reattachment lengths of the
primary separation region for this same symmetry plane are compared to the experimental data of
Armaly et al. (1983) and the 3-dimensional computational results of Ku et al. (1989). The present
3-dimensional results show good agreement with the primary reattachment data of Armaly et al.
above the Reynolds number at which the 2-dimensional solutions began to diverge. The resolution
of the very thin secondary separation region on the upper wall of the channel is in general
qualitatively good; however, the present mesh may not be sufficiently refined to recover the same
level of detail obtained for the primary region.
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Table 10. Computational Studies of Step-Wall Diffuser.

Researchers Source Method/Code Mesh Re);loolds
Arm‘;‘gyg;‘ al, J. Fluid Mech. | SIMPLE/TEACH | 45x45(2D) <1250
Kim and Moin, . . Chorin’s

1985 J. Comp. Physics projection method 101x101(2D) 100-800

Guj and Stella, Int. J. Numer. . .

1088 Meth. Fluids vorticity- velocity 101x40(2D) 80-800
Int. J. Numer.
Sohn, 1988 Meth. Fluids penalty/FIDAP 61x33(2D) 100-800
pseudospectral 297x33(2D)

Ku et al., 1989 J. Comp. Physics matrix element 42x36x48(3D) 75-450

(PSME)
. Int. J. Numer. vorticity-

Ghia et al., 1989 Meth. Fluids streamfunction 195x33(2D) | 300-1200
Thangam and Comp. Fluids SIMPLE 120x61(2D) | 33.3-600
Knight, 1990 ' '

. Int. J. Numer. penalty/NACHOS
Gartling, 1990 Moth Fluids 1 & FIDAP 800x40(2D) 800
Ikohagi and
Shin, Comp. Fluids SMAC 70x21(2D) 100-800
1691
Ikohagi et al., . 75x35x31
1992 Comp. Fluids SMAC (3D) 1000
preconditioned
Cab‘]‘gge; al., ALAA J. pseudo- 121x212D) | 100-600

compressibility
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As a demonstration of the 2- and 3-dimensional character of the flow below and above
Re=400, respectively, Armaly et al. reported spanwise velocity profiles for Re=397 and Re=648. For
Re=397, the spanwise scans were taken at an elevation 7.5 mm above the floor of the downstream
channel, Fig. 63. The data from three x-stations, Figs. 64a-c, confirm that the flow is essentially
2-dimensional.

At x/5§=6.22, which is upstream of the measured primary reattachment point, the
2-dimensional character of the flow field is captured by the present results; however, the magnitude
of the computed axial velocity exceeds the experimental value by approximately a factor of 5. The
low level of the experimental velocity is predicted to occur 2 mm above the 7.5 mm as graphed in in
Fig. 64a. These experimental data
appear to be inconsistent with the magnitude of the axial velocities measured downstream of the
primary reattachment point. By the conservation of mass, one would expect at least the average axial
velocities at x/5=6.2 to be higher than those at x/S=14.3 and 18.9, due to the reduced axial-flow cross
sectional area available where the primary recirculation region exists.

The computational results are in good agreement with the experimental axial profile at
¥/8=14.3, downstream of the reattachment of the primary separation. Further downstream at x/5=18.8,
the experimental profile shows a significant increase in average velocity, and the computational
profile indicates a slight decrease. If the flow has re-established an approximate fully-developed
profile at x/S=14.3, as suggested by the agreement shown in Fig. 64b, then there appears to be a
substantial error in the experimental results. The conservation of mass does not allow an increase in
velocity unless additional (and undetected in both experiment and CFD simulations) separation
regions were encountered in the channel. At all x-stations plotted, the 3-dimensional nature of the
flow near the sidewall can be seen in the present results, which is apparently beyond the detection
range of the experiment. As will be shown, the 3-dimensional structures near the sidewall are CFD-
predicted to have a significant influence on the central flow field at higher Reynolds numbers.

For Re=648, experimental spanwise scans were taken at four x-stations and for two elevations,
Fig. 65. The data of these scans are graphed and interpolated in Fig. 66, for y = 7.5 mm, and Fig. 67
for y =2.35 mm. Armaly et al. report that, at this Reynolds number, the flow is 3-dimensional as
confirmed by the variation in velocity across the lateral span of the flow field. In general, good
agreement between CFD simulation and the experimental data at all x-stations and at both elevations
is verified. However, calculated profiles present a much richer indication of the complex
3-dimensionality than is evident experimentally. The spanwise CFD mesh resolution provides a clear
picture of smooth wave-like undulations in the axial velocity profile, only hinted at in the
experimental data, In fact, the persistent flow reversals near the sidewall, missed in the experiments
due to their limited range, are an indication of significant flow separation all along the duct sidewall.

Contours of negatively-directed axial velocity are presented in Figs. 68-71 to aid in visual
interpretation of the primary and secondary separation regional extents on the lower “floor”, upper
“roof”, and sidewall regions of the channel. The floor, roof, and sidewall data are those on the first
interior plane of nodes, adjacent to the corresponding no-slip boundaries. In these figures, the roof
has been rotated about the duct centroidal x-axis. At Re=389, Fig. 68, the flow is confirmed nominally
2-dimensional only over approximately the central two-thirds of the channel span. No secondary
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Figure 63. Locations of transverse planes for spanwise axial velocity profiles,
Re=397.
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Figure 65. Locations of transverse planes for spanwise experimental velocity profile
measurements, Re=648.
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region has yet developed on the roof near the symmetry plane; however, a significant 3-dimensional
separation region exists along the sidewall axial corners, extending well downstream of the
reattachment line for the primary separation region. The secondary region on the roof has appeared
by Re=500, Fig. 69, but, this case was not run to a steady-state condition. During transients under Re
continuation, the upper separation bubble selectively extends across the full span of the channel.
However, at all steady-state solutions achieved, the upper separation region did not communicate
across to the sidewall. At Re=648 and 800, Figs. 70 and 71, the primary separation bubble continues
to grow, as does the penetration of the sidewall corner separation regions out into the main flow field.
The separation bubble on the roof near the symmetry plane is very thin, approximately | mm, and
does not connect with the sidewall separation region for Re < 800.

As was the case with the 2-dimensional simulations, CFD dispersion error control was
essential for obtaining stable solutions above Rex400. Two comparative pressure solutions are
presented in Fig. 72 for Re=648 to illustrate this key issue. In Fig. 72a, the dissipation parameter [3
was set to 0, resulting in significant 2-Ax waves in the pressure solution occurring for a fully steady-
state velocity prediction visually devoid of a dispersive error mode. Setting 3=0.1 produced the
smooth pressure distribution given, for the nominally (visually) identical velocity field, in Fig. 72b.
Polluted pressure solutions from Fig. 72a are confirmed to prevent the attainment of stable steady-
state solutions at Reynolds numbers above 400.

Another enhancement to improved visualization the flow field is via computation of
“oil-flow™ streaklines, as calculated from the projection of the velocity field onto horizontal planes
near the floor and the roof. For Re=800, the solid lines with arrows, Fig. 73, are such streaklines
demonstrating the significant 3-dimensional flow character around and within the primary and
secondary separation regions. The solid lines without arrows are contours of negative streamwise
velocity, corresponding to the contours presented in Fig. 71. The pronounced vertical-axis vortex in
the flow near the roof, Fig. 73a, is very shallow (as will be examined further using a Lagrangian
particle track in this region).

Flow field enlargements near the sidewall at Re=800 are projected in Fig. 74 onto transverse
planes, located at x,/S=7.72 and 18.37 step-heights from the step. These transverse projections clearly
show the strong 3-dimensionality of the flow involving a wall jet at the step and complex vortex
structures that extend well beyond the region of reverse flow, in the upper and lower corners of the
channel, and into the central flow field. (The perspective graphs are included to enhance the location
sense.)

Lagrangian particle tracks were calculated from steady-state velocity vector solutions using
amodified Euler integration scheme suggested by Mallinson and de Vahl Davis (1973). For a particle
release point of (5,5.1,89), the tracks for Re=389, 648, and 800 are shown in Figs. 75, 76, and 77,
respectively. The diameter of the particle symbol (the*bubble™) is a function of ~levation above the
channel floor, and the distance between each bubble represents a constant elapsed-time interval. In
Fig. 78, the particle release point is near the vertical-axis vortex shown in Fig. 73b. Note that the
bubble diameter is generally uniform, confirming the shallowness of the vortex structure at this
location.
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Figure 69, Separation region “footprints®, Re=500.
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Figure 70. Separation region “footprints”, Re=648.
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Figure 71. Separation region “footprints”, Re=800,
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Figure 72. Pressure contours for Re=643.
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Figure 73, Oil-flow streaklines at Re=800 on horizontal planes.
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(2) view from symmetry plane

(b) view from above
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(#) view from symmetry plane

(b} view from sidewall
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Ghia et al. (1989) have suggested two possible mechanisms for what they termed an “abrupt
change” in flow structure from 2- to 3-dimensional flow when the secondary separation bubble first
appears on the uf per wall at Re=400. They note that 2-dimensional boundary layer flows, subject to
a locally destabilizing concave curvature of the boundary, are susceptible to a Taylor-Gortler vortex
instability. Spanwise-periodic counter-rotating pairs of vortices with axes aligned with the main flow
direction are formed as a result of this instability. It has been suggested that such a vortex instability
could be a common phenomenon near 2-dimensional separation points. Ghia et al. postulate that the
appearance of the secondary separation bubble on the upper wall provides the necessary conditions
for the formation of Taylor-Gdrtler vortices, and they propose “that the additional mixing which
would accompany a developing Taylor-Gértler instability would tend to delay the upper wall
separation; thus causing the secondary separation point, x, , to occur farther downstream than would
be predicted on the basis of a strictly two-dimensional analysis.” The delay of the detachment of the
secondary separation decreases its blocking effect and allows the development of a longer
reattachment length for the primary separation bubble than would be predicted in the absence of this
3-dimensional disturbance.

The alternative mechanism suggested by Ghia et al. involves the growth and interaction of
the boundary layers on the sidewalls of the test section. They rejected this mechanism based upon
their assumption that the effect would tend to decrease with increasing Reynolds number due to a
thinning of the sidewall boundary layers.

The present results support the contention that the formation and structure of the upper
separation region is a critical element in explaining the divergence of 2-dimensional simulations from
the experimentally observed primary reattachment lengths. Comparison of the 2- and 3-dimensional
results in Figs. 58 and 61, respectively, shows that a much thicker separation bubble is formed in the
2-dimensional simulation which, once established, produces a relatively stationary blockage of the
channel. This blocking effect serves to prevent the growth of the primary reattachment length with
increasing Reynolds number.

Armaly et al. present the spanwise velocity profiles shown inFigs. 64, 66, and 67 as evidence
for their contention that the flow is 2-dimensional for Re <400 and 3-dimensional for Re > 400.
There is generally good agreement between the present results and their experiments for Re = 397 and
excellent agreement for Re = 648. The present computational results, however, reveal details of *hie
flow structure, unavailable to Armaly et al., which suggest a third mechanism for the development
of strongly 3-dimensional flow with increasing Reynolds number.

A wall jet, attached to the sidewall as shown in Fig. 74, forms at the step plane and grows in
strength with increasing Reynolds number. Observed at the lowest Reynolds number simulated
(Re=100), this wall jet, interacting with separation regions along the upper and lower corners of the
sidewall, is the source of 3-dimensional vortices in the vicinity of the sidewall which penetrate the
central flow stream within the primary separation region. The particle tracks in Figs. 75-77 reveal a
fascinating picture of very complex 3-dimensional flow structures. Even at Re = 389, the tracking
particle, released at the source of the wall jet in Fig. 78, shows a spiralling 3-dimensional path from
the sidewall to the central symmetry plane. Nearing the symmetry plane, the particle joins the
essentially 2-dimensional primary separation region. As the Reynolds number increases, the wall jet
strengthens, and the point at which the tracking particle is caught up by the central separation region
moves closer to the symmetry plane, Figs. 76 and 77. Rather than thinning, the separation region
along the sidewall continues to develop with increasing Reynolds number. Complex 3-dimensional
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vortices can be observed along the sidewall, Fig. 73, and roof, Fig. 78. In summary, the present results show
that the transition from 2- to 3-dimensional flow is not an “abrupt change” but rather a continuous
penetration of 3-dimensional flow, fed by a wall jet, from the sidewall to the central symmetry plane.

7.6 FULL-SCALE ROOM AIR EXPERIMENT

In the Ph.D. dissertation of Spitler (1990), see also Spitler et al. (1991) and Cantillo (1990), flow
field and temperature data were taken for several settings of the University of Illinois Dept. of Mechanical
Engineering full-scale room ventilation test facility. Figure 79 illustrates the basic supply/exhaust
configuration for the test facility which is 15 ft long, 9 ft high, and 9 ft wide. The walls have individually
controllable heating panels, and the ceiling and floor of the room are insulated. Two supply discharge
locations are available, in the east side-wall, flush with the north wall, and in the center of the ceiling, In
the selected experiment, only the east side-wall supply and west side-wall exhaust are active.

A ventilation system is available to supply cool air to the room through one of the supply discharges
at flow rates ranging between 2 and 100 air changes per hour (ACH). Additional details on the room
experimental facility and the available control systems can be found in the cited references.

CEILING SUPPLY
}— 9'
I 15
9' \

EXHAUST EAST SIDE
NALL SUPPLY

Figure 79. Schematic of U. lllinois room ventilation test facility.
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Two data sets were selected from Spitler (1990) for comparison to the developed CFD simulation,
These are: (a) buoyancy-dominated flow rate of 15 ACH and Archimedes number (Ar) =4.3 and (b) a flow
rate of 30 ACH and Ar=0.82. Other data at selectively larger ACH are also reported, but these specifications
arc well beyond nominal HVAC comfort performance specifications. The data presentations are mainly grey-
scale graphs of measured room air speed on select planes, Fig. 80, and as room-averaged thermal
stratification maps at select locations, Fig. 81. Somewhat more detailed velocity (speed) and temperature data
are presented in Cantillo (1990), Fig. 82 and Fig. 83, but the air flow rate of 50 ACH well exceeds the
nominal comfort range for HVAC systems. Cantillo (1990) did not report Archimedes numbers.

For the test conditions studied, the supply outlet was an unobstructed opening (no vanes). The mass-
average inflow speed for 15 ACH was ~80 fpm at 69°F, while, for the 30 ACH test, the supply flow average
speed was ~160 fpm, also at 69°F. The experiment Reynolds numbers, based on the molecular viscosity of
air and the supply duct hydraulic diameter and bulk velocity, are Re,=15,000 and Re,,=30,000, respectively,
where the subscript denotes ACH. The reported Archimedes numbers (Spitler, 1990) are Ar,=4.3 and
Ar,,=0.82, based on bulk velocity in the supply duct, as the velocity scale, and the longest possible “throw”
of the supply jet (15 f) as a reference length scale. Finally, the AT, used in the Ar definition is the
difference between the supply and exhaust air temperatures.

The selection of an appropriate and consistent set of U, L,,» and AT, to compute the Ar and Re
is somewhat arbitrary. Spitler (1990) discusses various combinations used by different researchers to
correlate room ventilation experimental data. The primary application for the Archimedes number is in the
development of empirical correlations for predicting the trajectory of the supply jet. Such correlations are
typically independent of viscous effects, ie, they do not include the Reynolds number. To the
experimentalist, it is, therefore, not necessary that both the Ar and the Re be defined in terms of the same
characteristic length and velocity scales.

For CFD applications, however, the Ar and Re both appear as scaling parameters in the momentum
equations, so they must be defined consistently. For these CFD experiments, the length scale was taken to
be the height of the room, 9 f, and the velocity scale was the bulk velocity in the supply duct. The AT,
is defined as the difference between the prescribed wall boundary temperature and the supply temperature,
~13°F for 15 ACH and ~10°F for 30 ACH. This definition for AT, , was selected since both temperatures
are known a priori the CFD experiment, while the exhaust air temperature is to be computed.

7.6.1 CFD Experiments

A series of CFD experiments have been conducted to simulate two test conditions for the
University of lllinois ME full scale experimental facility. The /NGRID mesh generator (Stillman
and Hallquist, 1985) was used to build the computational mesh depicted in Fig. 84. This non-
uniform 3-dimensional distribution contains 19,926 nodes for 17,712 trilinear hexahedra (8-node)
finite elements. One-foot-long extensions into the supply and exhaust ducts were necessary to
facilitate boundary condition specifications that did not compromise local flow field accuracy.
(Note: The typical CFD experimental procedure reported in the ASHRAE literature does not
explore such extensions, such that local first-order accurate (upwind) discretizations are necessary
for stability.)
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Both the supply and exhaust ducts are 3 ft tall by 1.3 ft wide, and one side wall of each
duct is flush with its corresponding room wall. The full scale room enclosure is 9 fi tall, 9 ft wide,
and 15 ft long. The “young graduate student™ in Fig. 84c gives an approximate sense of scale.

The supply duct velocity condition is assumed a slug flow profile at uniform temperature,
A continuative Neumann boundary condition is specified at the outflow duct exhaust plane for
velocity and temperature. Along all room surfaces, a drag boundary condition is used to simulate
a turbulent boundary layer coupled with flow tangency. The assumed functional form for shear
stress, 1, . at the slip plane near the wall is
. M"*c((/' ') (376)

T slip

thp

where a.h.c, and o are dimensional constants, ¢! is the CFD-computed tangential velocity, and
(1, is u prescribed wall tangential velocity. The mesh is assumed to be offset some small distance
A (on the order of an inch) from the solid wall; therefore, to calculate a shear stress at y*=A one
differentiates /! with respect to 3* | evalunting the derivative at y*=A,

r"l’ (31
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Following Murakami ¢t al. (1988), the 1/ 7th power-law profile for turbulent low over a flat plate
was selected, henee
{
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where v* is o normal distance from the wall, and 8 is a length scale representative of a typical
turbulent boundary layer thickness. Carrying out the differentiation of Eq. (378), one obtains
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In Eg. (379), pis the dynamic viscosity, and g, is a conversion constant to insure that t,,,. has the
dimensions of force per unit length squared. From Lig. (379),  applying the 1/7th power law
amounts to setting  a=¢=0, m=1/7, and

(379)
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As stated, throughflow  boundary conditions for the encrgy equation are a uniform
temperature at the supply duct and vanishing normal derivative at the exhaust plane. Both the
ceiling und floor are assumed adiabatic. A heat flus is prescribed using Newton's law of cooling
for all vertical walls. This genersl flux boundary condition has the functional form
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q"=a +bT +c(T- TW,,)" (381)
where a.b,¢, and « are dimensional constants, and 7, is a wall fixed temperature. Newton's law

of cooling is the specification

q"= h(T-T,,) (382)

with 4 the heat transfer coefficient for forced convection. Based upon Spitler's (1990) heat transfer
data, the averuge value h=5 Btwh-f.°F was selected for the CFD simulations. Comparing
Eqgs. (381) and (382), ¢=0, b=h, a= -hT,,, , and d =1 yields the desired enforcement,

For the continuity constraint Poisson equation, the boundary condition ®=0 is required on
the exhaust plane. All other boundaries require a homogeneous Neumann constraint. The pressure
Poisson equation boundary conditions include a prescribed uniform pressure on the exhaust plane,
and non-homogencous turbulent Reynolds number dependent Neumann boundary conditions on all
walls and the supply plane.

The supply flow is modestly turbulent, and the room flow would be low turbulent. A
significant unknown in these CFD experiments is the turbulence intensity of the supply air. Hence,
as an approximation, the turbulent Reynolds number Re’ was set uniformly at 14 and 29,
respectively, for the initial tests at Re,=15,000 and Re,,=30,000. The sensitivity of this decision
was tested by running a parametric study varying Re' .

Two test cases were selected from Spitler (1990), both using the cast-side, mid-wall supply
configuration, These cases differed primarily in their air low rate and side-wall temperature.

7.6.1.1 Problem 1: 18 ACH and T~ 83°F

For Problem 1, the total air flow to the room is 1§ air changes per hour (ACH) with an
inflow air temperature of 69.8°F, The term “air changes per hour™ are the units of volumetric flow
rate, where, for the experimental room, a complete air change involves a volume of 9x9x15R or
1215 A" Through the room's heater control system, the side walls are maintained at 83°F. The
bulk velocity of the air in the inlet duct (1.3 fV/s) was selected as the reference velocity, U, . The
Ar number reported by Spitler (1990) for this case is 4.3. The local Re in the inlet duct can be
computed using the hydraulic diameter of a 1.3 ft x 3 R rectangular cross section as the reference
length. This Re is approximately 15,000, The level of turbulence in the air flow entering the room
can be estimated by prescribing a value for Re', defined as the ratio of the eddy viscosity v/ to the
molecular kinematic viscosity v, The base case for this problem assumed an Re' of 14, producing
an effective diffusion coefficient Re* of 1000, where Re'sRe/(1+Re'). To explore the sensitivity
of the steady-state solution to this critical assumption, two additional cases were run with Re'
values of 29 (Re'=500) and 149 (Re'=100).

Figures 85-92 present different views of the steady-state solutions for Problem | at the
three values for Re'. The east-side wall supply diffuser abuts the north wall. In Fig. 85, the velocity
vectors plotted are for the first plane of nodes off the north wall, the east and west walls, and the
floor and ceiling. Notice in Fig. 85a that the low level of turbulence (hence low turbulent mixing)
coupled with the large buoyancy forces cause the significant jet of cold air towards the
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Figure 87. Transverse plane for 15 ACH.
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floor. This region where the cold air jet hits the floor is appropriately termed a “splat”™  Increasing
the level of turbulent transport and mixing by increasing Re', the intensity of this “splat” decreases.

Figures 85-87 also demonstrate that the velocity distributions within this simple room
geometry are a quite complex 3-dimensional flow field. The cold air sweeping along the Hoor feeds
buoyancy-induced 3-dimensional vortex rolls along each of the walls, including the supply plane
wall for smallest Re'. In Fig, 92, isotherms are plotted for the three values of Re' In Fig. 92a. at
the lowest level of turbulent mixing, large temperature stratification near the floor can be observed
as well as the temperature gradients associated with the falling inflow jet and floor “splat™. As the
Re' is increased in Figs. 92b and 92c. the higher turbulent mixing progressively smoothens out the
temperature gradients. Figures 88 and 89 show contours for the static and total pressure,
respectively, In the stagnation region associated with the “splat™ on the floor, a high static pressure
region is produced, lessening as the effect of the “splat” as Re' increases. Contours of constant
speed (isovels) in the units of ft/s are shown in Fig. 90. The distribution of the divergence error
in the solution as measured by the energy norm of the continuity constraint function ¢ can be
depicted by plotting contours of constant iItb“ , . Nodal values for [ &, are calculated by taking
the average of the associated eclement-based [ @, normalized by the clement volume and
projecting cach element contribution onto the node. The resulting distribution is a measure of the
kinetic energy per unit volume of the divergence error in the velocity solution.

The variation in the distribution and magnitude of the divergence error for the three Re!
levels, depicted by the ||<b|| , contour plots in Figs. 9la-c, gives an excellent quantitative
description of the influence of dispersion error (in the absence of any dispersion error control, 3= 0)
on solution quality. At the lowest Re' (=14, Fig. 91a), numerical dissipation is minimal, and the
divergence error is significant (|| ®],210?) and broadly distributed. Increasing Re', implying more
turbulent mixing, increases physical diffusion, and the divergence error is significantly lowered
(|®[l,=10%), becoming localized near geometric singularities such as the sharp comers of the
supply and exhaust ducts.

7.6.1.2 Problem 2: 30 ACH and T,,,= 80°F

In the second problem, the flow rate is increased to 30 ACH. and the set point tor the wall
temperature s decreased to 80 °F. This produces a reference velocity of 2.6 fUs and a A7, of 10
°F. The local Re in the supply duct is approximately 30,000, and the reported Ar for the room is
0.83. For this Archimedes number, the convective forces are relatively more dominant than
buoyancy forces, the reverse of the condition in problem 1. Figures 93-95 present views of steady-
state velocity solutions for three values of Re'. As evidenced by Fig. 93, the supply jet follows o
much straighter path (due to the reduced importance of the buoyancy body foree) into the room,
However, the flow is still strongly 3-dimensional as in problem 1. The isotherms shown in Fig. 96
present the variation in temperature stratification as influenced by the differing levels of turbulent
mixing, yielding Re’ = 1000, 500, and 100 for Re' = 29, 59, and 299, respectively. Contours of
constant static and total pressure are given in Figs. 97 and 98, and contours of constant speed and
|, in Figs. 99 and 100. Compared to problem 1, good control of the divergence error, as shown
in Fig. 100, did not vary significany over the range of Re’ tested.

In problem 1, the 3-dimensional character of the flow is dominated by the descending
supply jet and the “sweep™ of cold air along the floor. The resulting buoyaney-driven vortex rolly
are thereby evident along each of the room walls. Conversely, in problem 2, the center of the room
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Figure 92. Isotherms for 15 ACH,
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contains the most interesting fully Y-dimensional flow characteristics. Viewing Figs. 94 and 95, the
assumption for Re' is again confirmed to be critical in determining the robustness of the 3.
dimensional character of the flow. Specifically, the distinetive 8 shape produced by the isovel
contours in Fig. 99¢a) is lost as the simulation turbulence level, Re's increases, Fig. 99(c).

7.6.2 Comparison Between CFD and Physical Fxperiments

In his dissertation, Spitler (1990) reports measured  room air speed distributions on the
vertical plane, parallel to the room north wall and oftset therefrom by 0.127m, which coincides
with the centerplane of the air supply duct. For the two selected room flowrates, 15 and 10 air
changes per hour (ACHD. these data were collected using 16 TS1 8470 omnidirectional air velocity
transducers mounted on a trolley, which could be moved throughout the room. This instrumentation
measured How speed only (not components of the velocity vector), and the reported measurement
aceuracy was H12/23% (410414 fpm). In addition, temperature measurements were made in
horizontal planes using 16 type T thermocouples mounted on the same trolley. Bach temperature
data point, as reproduced in Fig. 81, “represents the average of 112 temperature measurements in
a horizontal plane,” which presumably extended throughout the entire room.

Figures R0a and 101 present (on approximately the sume seale) the experimental and CHD
computed distributions of room air speed for the 15 ACH, Ar- 4.3 case, with the latter for the three
selected turbulent Reynolds number (Re') settings, A very good gqualitative comparison oceurs for
the smallest Re' Jevel, fur which the supply jet is predicted to literally “crash™ downwards, due to
huoyaney etfects, vielding a pronounced loor jet. This CED prediction yields an extremum speed
(143 fpmy that agrees very well with the (apparent) 150 tpm mensured  maximum. The more
diftusive (Re' 29 and Re'- 149) CFD solutions do not predict the significant measured oor jet, and
the associsted predicted extremum speed is reduced to the order 100 fpm or lower. Clearly, then,
the Spitler data appears to correspond to a low turbulence level room air experiment, for which the
smallest Re! CFD experimental speed  prediction is qualitatively  and quantitatively in good
agreement.

In distinction, this comparison hetween the CED experiments and data, for the 30 ACH,
Ar-0.82 case, indicates neither qualitative nor quantitative agreement, Figs, 80b and 102, Spitler
measured large regions with air speeds of the order 200 250 fpm, while the CED predicted
estremum is 165 fpm. The CFD simulation predicts these planar fow field speed distributions as
rather insensitive to Re', as are the underlying velocity distributions, Fig. 93, (Recall however, that
the CED velocity distributions are very sensitive 1o Re’ elsewhere in the room, Fig. 94.) Bused on
the good comparison achieved for the 15 ACH test, one might conclude that a significant scaling
error may exist in the 30 ACH test specification, as reported.

Consistent with experimental procedure, reported by Spitler (1990) for planar-averaged
temperature stratification, the CFD data summary shown for Figs. 103 and 104 averages the
caleulated temperatures over every horizontal plane in the computational mesh For the 15 ACH
case, Fig. 103 confirms a much stronger room-averaged temperature stratification exists in the
experimental data than for the CFD results. The exception lies in the first 0.5m above the floor,
for the lowest turbulence level (Re' 14) test, which shows quite good level and slope agreement
with the experiment. This flow region is dominated by the cold floor jet, which apparently has been
quite accurately predicted (in these norms). At all higher elevations in the room, the CFD results
predict a much more isothermal state than was measured experimentally on the uverage.
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Figure 93. Velocity solutions for 30 ACH.
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Figure 98, Transverse plane for 30 ACH,




221

Figure 96. Iatherms for 30 ACH,




Figure 97, Isobars for 30 ACH,
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(c) Re' = 299
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Figure 98. Total pressure for 30 ACH.
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Figure 99, Isovels for 30 ACH.
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At the 30 ACH flowrate, the temperature stratification for the lowest two turbulence level
simulations, as measured by vertical gradient, shows quite good agreement with the experimental
data, Fig. 104, The fact that the CFD data produce a much colder overall room air temperature
level confirms the expressed suspicion regarding a scaling error in this experiment definition.

7.7 NATURAL CONVECTION IN A TWO-CELL ENCLOSURE WITH
A “DOOR”

Engineering interest in natural convection in complex enclosures with restricted
communication has been stimulated by applications involving energy-efficient passive-solar
buildings, cryogenic storage equipment, natural convection cooling of electronic equipment, solar
energy collectors, and room heating and ventilation. A basic configuration for the study of room
ventilation involves the “association of two enclosures which communicate laterally through an
opening in the same manner as two rooms connected through a doorway, window, corridor, or over
an incomplete dividing wall” (Lin and Bejan, 1983). The experimental program carried out by
researchers at Colorado State University (cf. Neymark, 1988; Neymark et al., 1989; and Boardman
et al., 1989) has provided heat transfer and flow visualization data, obtained from partially-divided
air- and water-filled enclosures, Fig. 105, that can be used for CFD validation studies.

Fig. 105. Geometry for a partially-divided enclosure.
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L:arly work on natural convection in partitioned enclosures by Brown and Solvason (1962)
examined convective heat transfer through an aperture resulting from a zone-to-zone bulk density
difference across the aperture. Nansteel and Greif (1981) investigated the effect of 2-dimensional
conducting and nonconducting centrally-located partitions of various lengths extending vertically
downward from the ceiling of a water-filled rectangular enclosure. Flow visualization and vertical
temperature profiles were reported along with correlations for the overall cross-cavity heat transfer,
Bajorek and Lloyd (1982) described a series of experiments with air and CO, in a square enclosure
with two partial dividers, one attached to the top wall and the other to the bottom, amounting to
two chambers communicating through a mid-height window. Comparing heat transfer data taken
in the partitioned enclosure with the corresponding measurements in the unpartitioned single
enclosure, they found that the partitions reduce the heat transfer rate appreciably.

Other investigators (¢f. Lin and Bejan, 1983: and Nansteel and Greif, 1984) have used
small-scale water-filled enclosures to correlate cross-cavity heat transfer with the enclosure wall
temperatures. Nusselt-Rayleigh number data for a water-filled partially-divided enclosure were
correlated by Lin and Bejan (1983) for Rayleigh numbers between 10" and 10", where the
Rayleigh number was evaluated using the enclosure height as the reference length and the
hot-to-cold wall temperature difference. High Rayleigh number natural convection heat transfer
measurements were reported by Nansteel and Greif (1984) for water-filled enclosures with both
2- and 3-dimensional vertical partitions and 10°< Ra <10". In both of these studies, the flow field
was found to be laminar along the heated and cooled walls.

Numerical investigations of partially- and fully-partitioned enclosures have almost
exclusively been 2-dimensional (¢f. Kelkhar and Patankar, 1986: Winters, 1988; Nishimura et al.,
1988; Fu et al., 1989; Ciofalo and Karayiannis, 1991; Ghosh et al., 1992; and Karayiannis ct al.,
1992). Using the SIMPLER algorithm with an M=26x52 mesh, Kelkar and Patankar (1986)
reported results for laminar flow in a square enclosure for two partition geometries, a single
partition located vertically at the center of the enclosure and two identical partitions located at the
top and bottom walls, Calculations were made for a range of Rayleigh numbers, partition heights,
and partition conductivities. Nishimura et al. (1988) performed both an experimental and numerical
investigation with water-filled enclosures having multiple vertical partitions for [0" < Ra < 10" The
problem of transient heating in an enclosure with an off-centered partition was studied numerically
by Fu et al. (1989). Ciafalo and Karayiannis (1991) and Karayiannis et al. (1992) applied the
SIMPLEC algorithm to study fully- and partially-partitioned 2-dimensional enclosures. They found
that the characterization of the thermal boundary conditions at the upper and lower end walls can
have significant effects on local and mean heat transfer rates across the enclosure. Adiabatic and
linear temperature profiles (LTP) were investigated, and the L.TP boundary condition provided a
better comparison with experimental data. Ghosh et al. (1992) studied the effect of shifting the
position of a full partition on flow structure and heat transfer.

The author has found only one 3-dimensional computational study of natural convection
in a partially-partitioned enclosure. Fusegi et al. (1992) present the results of a 3-dimensional
simulation of air in a cubical enclosure with a solid partition, as shown in Fig. 105 with
H = L = W, The centrally located rectangular opening in the partition is of height # and width w,
and the thickness of the partition wall is much smaller than the size of the enclosure (/L = 0.03).
Two partition geometries were examined: Case A used w/W = 0.4 with Ra = 10, and Case B used
w/W = 1.0 with Ra = 5x10”. The area aspect ratio 4,, defined as A =(hxw)/(HxW), for the partition
was 0.2 for Case A and 0.5 for Case B.

r
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In Case A, the SIMPLE algorithm with the QUICK scheme for dispersion error control was
used to calculate laminar flow field and temperature distributions on an M=82x62x62 nonuniform
mesh. A free-full reference velocity resulted in an Archimedes number of 1.0. Boundary conditions
included fixed hot and cold wall temperatures, and all side, floor, and ceiling walls were assumed
adiabatic. Conduction heat transfer was allowed through the solid partition (soffit), and
all solid boundaries were treated as no-slip for the momentum equations. Perspective views of
isotherm and isovorticity surfaces revealed prominent 3-dimensional flow structures.

Near the hot sidewall as the heated fluid moves upward, the flow is blocked by the partition
in the upper portion of the hot chamber, resulting in a near-stagnant region in the upper-level
compartment between the partition and the heated sidewall. Away from the boundary layers,
developing near the sidewalls and partition, the vertical temperature stratification can be
characterized by a two-zone structure. The strongly buoyant flow generated near the heated vertical
sidewall descends the hot-zone side of the internal partition and is discharged into the cold zone
by turning sharply under the top of the doorway. At this point near and including the vettical
symmetry plane passing the through the center of the doorway, the flow behaves like a free jet
directed toward the upper corer of the cold zone.

For Case B with Ra=5x10" and an M=112x102x62 mesh, the flow exhibited steady
periodic oscillations * hich were assumed to be indicative of a transition to turbulent flow. The
entire flow ficld is thermally stratified, and very thin thermal and hydrodynamic boundary layers
were seen to develop near the heated and cooled walls. The boundary layer on the heated sidewall
penetrates up to only the mid-height of the enclosure, above which the flow was in a stratified and
stagnant state. At this level, the boundary layer separates from the heated surface and moves
horizontally toward the door. Reaching the doorway, the flow turns under the top of the door and
moves up the cold-zone side of the partition. The flow path follows the inner vertical and
horizontal walls. No jet-like flow was observed in the cold zone.

7.7.1 Colorado State Water-Filled Enclosure Experiments

Researchers at Colorado State University have investigated natural convection in
partially-divided enclosures using a full-scale air test cell, built at Colorado State, and a small-scale
water cell at the Solar Energy Research Institute (SERI). The objectives of the research were to
determine under what conditions an enclosure will develop large zone-to-zone temperature
differences (and the resulting effect on cross-cavity Nusselt numbers) and to compare the behavior
of small-scale water models with full-scale air enclosures (Neymark et al., 1989). The small-scale
water mode! has been selected for CFD simulation because the flow was experimentally determined
to be laminar within the boundary layers along the walls.

The water test cell, Fig. 106, was equipped with a constant heat flux hot wall, a constant
temperature cold wall, and an insulating partition with an aperture (doorway) of constant height
(h = H/2) and varying width w. The details relating to the original construction of the water cell
are reported by Scott et al. (1988), and the modifications made for the Colorado State experiments
are given by Neymark (1988). Flow visualization experiments using dye injection were performed
for two aperture wicths, w/W=0.01 and w/W=0.2, at a flux Rayleigh number of 2x10". The flux
Rayleigh number is defined as
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Ra* » EPH! (383)
(kva)

where ¢ is the uniform heat flux at the hot wall, g is the acceleration of gravity, and B, &, v, and
a are the coefficient of volume expansion, thermal conductivity, kinematic viscosity, and thermal
diffusivity of water, respectively. The thermal properties of water were evaluated at the average
of the cold wall temperature 7,. and the midpoint temperature of the hot wall 7},

symmetry plane

H=58.4 cm
h=29.2cm
w=11.44cm
TH ——— b"2.54cm
W/2=28.6cm
L=56.5cm

X

Figure 106. Geometry of small-scale water model.

The primary flow loop at the symmetry plane of the test cell for w/#W=0.01 is shown in
Fig. 107. The laminar upward boundary-layer flow along the hot wall separated from the wall at
H/4 <y < HI2. The detached flow moved horizontally toward the top of the door, accelerating as
it passes through the doorway, and exiting into the cold zone as a turbulent jet directed toward the
cold wall at approximately a 45° angle. The turbulent fluctuations of the jet were visible without
the assistance of the injected dye and were measured by a thermocouple traverse. Along the cold
wall, the downward flow was wavy laminar with small vortices along the edge of the boundary
layer.

For w/W=0.2, the flow up the hot wall was characterized by a wavy laminar boundary
layer, Fig. 108. Separation occurred at (3/8)H < y < (5/8)H with a resulting horizontal flow moving
toward the top of the door. Entering the cold chamber, the flow rose as a laminar plume upward
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Figure 107. Flow visualization in the water cell, w/W=0.01 (Neymark, 1988).
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Figure 108. Flow visualization in the water cell, w/W=0.2 (Neymark, 1988)
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along the partition with a small component of entrained fluid moving horizontatly toward the cold
wall. The plume rose to the top of the cold chamber where it tumed and thickened as it approached
the constant temperature cold wall. Descending the cold wall, the boundary layer started out as
wavy laminar near v = /1 and grew more turbulent as it approached v = 172, Below /2, the cold
wall boundary layer turbulence subsided into wavy laminar flow.

7.7.0.1 CFD Experiments

The small-scale water experiment with w/l’ = 0.2 (4, = 0.1 ) was selected for simulation by
CEDL.PHIID. Since the experimental flow visualization data showed the flow was symmetric about
o vertical longitudinal plane passing through the middle of the door, a half-model was constructed
with an M=82+«42+26 mesh, Fig. 109, containing $7.000 nodes. The mesh shown in Fig. 109 is the
final result of a meshing study which began with a relatively uniform 24,000 node discretization.
Mesh refinement and adaptation, based upon visual inspection of solutions at Ra= 10", proceeded
through a sequence of discretizations that focused mainly on attainment of solution stability in the
region of the doorway and the hot zone with its dominant vertical buoyant plume. Previous
benchmark experience verified the requirement for active dispersion error control, {3 ~ 0, hence [0, 1-
0.2 was used in this meshing study.

Boundary conditions for the momentum equations were no-slip on all surfaces of the dividing
partition and doorway and a tangency condition with an applied drag on all other boundaries except
for the symmetry plane. The decision to apply a no-slip boundary condition on surfaces near the
doorway and internal partition was based upon computational experience and the expectation that
solution stability, hence accuracy, would be critically dependent upon the resolution of the momentum
and thermal boundary layers in this critical region. Drag and tangency boundary conditions can
certainly be applied on surtaces farther away from the door, resulting in a significant savings in
computational costs. The far wall drag boundary condition was calculated by integrating Blasius's
solution for a developing boundary layer over a flat plate of length / (White, 1974), yielding

o[ 1a8) pu [ 1.3zsp\J y ]U.,,
e 28 2k N H (384)

t, » 0008487 U'? [dynes/em? |

The final integrated shear stress at the wall, 1, in Eq. (384), was evaluated in cgs units using the water
property data in Table 11. Boundary conditions for the energy equation included a fixed uniform
temperature, 7, for the cold wall and a constant heat flux, ¢, applied uniformly across the hot wall,
All other surfaces, including the floor, ceiling, symmetry plane, and internal partition, were adiabatic.
The experiment was run at a flux Rayleigh number (Ra*) of 2x10 ", corre  anding to a uniform heat
flux across the hot wall of 0.0641 W/em®. Correlating the water-filled heat transfer data for this
geometry, Neymark (1988) presents the Nusselt number (Nu) as a function of Ra*, as,

Nu = 0.297 (Ra*)0! (38%)
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where
No - 4 (A6
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and 4 as the cold wall temperature, 7, 1 the hot wall mid-point temperature, & v the thermal
conductivity of water evaluated at 7, c 207 V20 and 1 s the height of the enclosure For
Ra* 22000 Nu o270, ., 220, 1oy 100C b, 22Coand 10 17°C The
corresponding wall-to-wall Rayvleigh and Grashol numbers for these conditions are
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Ra

ye(t, - i
‘”R( “ ) = 3210 | Gr = T’? - 4810

va

Ra

For Ar = 10,000, the reference velocity is 0.09 cm/s, and the Reynolds and Peclet numbers are
.
Re - l% < 6928 . Pe « RelPr - 4642

Table 11, Water Properties at 22°C , Neymark (1988).

density, p 1.0 wem'

kinematic viscosity, v 0.00954 ¢m'/s
thermal diffusivity, « 0.00143 em'is

coefl. of volume expansion, f} 0.000224 K

thermal conductivity, & 0.006 W/em-K
Prandtl number, Pr 6.7

Rayleigh number continuation was used to work up to the target test conditions beginning st
Ra = 10" The initial velocity distribution was assumed zero, and an initial horizontal temperature
distribution was interpolated linearly between the hot and cold walls. The approximate steady-state
solution at each intermediate Rayleigh number was used as the initial condition for the next higher
Rayleigh number, incrementing Ra by an order of magnitude for each step.

The solution at Ra = 10° represents a geometrically-important case for future benchmarking
considerations. The thermal boundary conditions were simplified by using a constant uniform
temperature for the hot wall rather than a uniform heat Qux. The user-selected velocity scale directly
impacts solution stability through the scaling of the body-force (Ar), diffusion (Re and Pe), and
advection terms in the momentum and energy equations, This flexibility, resulting from the scaling
rules chosen for nondimensionalization, is especially critical for natural convection in water, where
Pre6. Since Pe=Re Pr, a velocity scale, selected to produce o stable value for Re, may still result in
an adversely high Peclet number. thus exposing the energy solution to a potentially destabilizing
dispersion error mode,  For Ra = 10° Ar = 100, and Pr & 6, the Reynolds number was 41.2 and
Pe = 242,9. These low Reynolds and Peclet numbers provided sufficient natural diffusion in the
problem to cusily establish a benchmark-candidate case for further Rayleigh number continuation.

The computed velocity and temperature distributions on the symmetry plane at Ra = 10 are
given in Fig. 110, The temperature boundary conditions are a uniform cold wall temperature of 17°C
and a uniform hot wall temperature of 27°C. At this low Rayleigh number, the buoyant plume rising
up the cold zone partition above the door is well established. However, the boundary layer separation
in the hot zone, observed in the dye injection experiments at Ra=3.2x10", does not form. Lateral and
spanwise temperature distributions on cutting planes inthe middle of the cold and hot zone quadrants,
Fig. 111, indicate the extent of thermal boundary layers along the heated and cooled walls.
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(a) velocity distribution projected onto the symmetry
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(b) temperature distrtbution on symmetry plane
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Figure 110. Symmetry plane velocity and temperature distributions at Ra = 10°,
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(a) temperature distribution on lateral cutting planes
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Figure 111, Temperature distributions on lateral and spanwise cutting planes,
Ra=10",
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Lagrangian particle tracks for three release points in the doorway are shown in Figs. 112-114,
presented from view points in the hot and cold rooms, respectively. The release point (28.25.28,0.5)
for the first particle, Fig. 112, is near the top of the door jam and offset 0.5 em from the symmetry
plane, Caught in the buoyant plume, the particle rises to the ceiling of the cold zone and then descends
to the floor through a winding path. Once entrained by the main flow along the floor and near the
symmetry plane, the particle rapidly moves into the hot zone where it closely follows the boundary
lavers along the walls. The direction of motion is indicated along the track, and the time interval
between particle symbols (“bubbles™) is again a uniform constant. Therefore, local relative particle
speed is discernible by bubble separation distances.

The second particle, Fig, 113, is released slightly below the mid-height of the doorway,
halfway between the symmetry plane and the door jam, at (28.25,10,2.5). Initially moving into the
hot zone. the particle is engaged by the complex 3-dimensional flow within the central core of the hot
rone. 1t eventually proceeds horizontally toward the top of the door, reenters the cold zone, and is
entrained by the dominant buoyant plume. Descending to its release point, the particle enters the hot
sone a second time.

Released 2 em above the floor near the door jam, the third particle, Fig. 114, tollows an initial
path that is somewhat similar to the second particle, briefly entering the hot zone and then moving
horizontally toward the door and the cold zone. The buoyant plume again captures the particle where
it follows a path in the cold zone eventually passing back into the hot zone near its original release
point. Note that particles 2 and 3 manifest a horizontal flow across the midplane of the hot zone that
is not, however, associated with a boundary layer separation as described in the experiments.

The steady-state solution obtained for Ra=10° was used as the initial condition for the water-
cell experiment case of Ra=3.2x10" (Ra*=2x10"*). To better simulate the experiment, the hot wall
boundary condition was changed from a constant uniform temperature to a constant uniform heat flus
of 0.0641 W/em?. Figures 115-124 present the results of the solution after 3000 time-steps (~ 9000
outer iterations), where the time-step was ~ 0.016 sec., giving an clapsed time of ~ 48.0 see. This
solution is not at a steady-state condition; however, it has progressed far enough from the Ra= 10"
solution to observe distinet differences. Figures 115 and 116 indicate the development of strong
boundary laver flows, and the buoyant plume just above doorway along the interior wall continues
to dominate the flow field. The horizontal streamlines shown in Fig. 117 demonstrate the definite
3-dimensionality of the flow. An oblique shear layer, intersecting the doorway at mid-height, is a
distinctive feature of the flow through the aperture. The structure of the thermal boundary layers can
be seen in Figs, 118-120.

Lagrangian particle tracks for various release points are presented in Figs. 121-124. The
elapsed time for each track in these figures is 600 sec. In Fig. 121, the release point is near the top of
the doorway where the particle immediately follows the buoyant plume up to the top of the cold zone.
Moving slowly back to the partition, it descends briefly until caught by a rising current and transferred
over 1o the cold wall boundary layer. Rapidly descending the cold wall, the particle rises towards the
doorway where it is captured by the lower stream of the shear layer and swept into the hot zone.
Released at approximately the mid-height of the door, the particle in Fig. 122 is also captured by the
lower stream of the shear layer and, thereby, drawn into the hot zone. Moving along the floor of the
hot zone, it follows two loops that are a part of a large vortex roll driven by the boundary layer flow
along the hot wall. Eventually the particle is caught up by the upper stream of the doorway shear
layer, where it proceeds through the door and enters the buoyant plume. The third particle, shown in
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(a) view of cold zone
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Figure 112, Lagrangian particle track, Ra=10°, release point=(28.25,28,0.5).
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(a) view of cold zone

(b) side view of hot and cold zones

Figure 113. Lagrangian particle track, Ra=10°, release point=(28.25,10,2.5).
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(a) side view of hot and cold zone

-
XX
s

t
==
——

IR S

i A
e el
T it A
M i
it e
L S S

Wy g g

HE
==

! W SBISITY INM"'-..:
WSS HHITIES 11
7 5 [IHHS R R 1
/

Figure 114. Lagrangian particle track, Ra=10", release point=(28.25,2,5).
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(a) symmetry plane

SRS e

(b) quarter planes

(c) front walls

mlines projected
=3.2x 10"

Strea

onto vertical planes - Ra

Figure 116.




245

(a) just below top of door
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Figure 117. Streamlines projected onto
horizontal planes - Ra=3.2x 10",
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Figure 118. Isotherms on selected vertical planes -
Ra=3.2x10",
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Figure 119. Isotherms on selected horizontal
planes - Ra=3.2x 10",
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(1) temperature distribution on Iateral cutting planes
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Figure 120, Isotherms on lateral and spanwise cutting planes, Ra=3.2x 10",
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(n) view of cold zone

elapsed time= 600 sec

(b) side view of hot and cold zones
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Figure 121. Lagrangian particle track, Ra=3.2x 10", release point=(28.25,28,0.5).
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(n) view of cold zone
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Figure 122. Lagrangian particle track, Ra=3.2% 10", release point=(28.25,10,2.5).
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() view of cold zone
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Figure 123. Lagrangian particle track, Ra=3.2x 10", release point=(28.25,2,5).
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(a) release point=(3.2,22.8,20)

(b) release point=(22.2,49,20)

Figure 124. Lagrangian particle tracks in hot zone, Ra=3.2x10",
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Fig. 123, is released near the corner of the door, just abovethe floor. Moving briefly into the hot zone,
the particle follows the upper stream of the shear layer into the coldzone where it tracks one loop of
a large. slow vortex roll in the middle of the zone before being captured by the buoyant plume and
driven to the ceiling. Following the boundary layer flow along the cold wall, the particle moves back
into the hot zone. Two release points, located in the interior of the hot zone. are shown in Fig. 124.
These particle tracks demonstrate some of the structure of the slowly moving vortex rolls that
dominate the Now field outside of the strong boundary layer flows along the walls. The solution has
not progressed far enough toward its steady-state condition to show the experimentally observed
separation of the hot wall boundary layer; however, even after 48 sec. into the transient, there is
sighificant horizontal flow near the top of the door in the hot zone. When separation oceurs, the
stagnant region in the upper portion of the hot zone should increase in temperature, The boundary
laver flows are well-established and should continue to strengthen. Future work will develop the
solution onto a steady-state condition where a direct comparison can be made with the experimental
data,




8. CONCLUSIONS AND RECOMMENDATIONS

A new primitive-variable finite-element CFD algorithm, the Continuity Constraint Method
(CCM), has been developed to produce approximate time-accurate and/or steady-state solutions for
the unsteady, incompressible Navier-Stokes conservation law system in three dimensions.
Recognition of the dual role of pressure, as a consequence of the constraint of continuity and as a
force in the mechanical balance law for conservation of momentum, has been the fundamental
principle guiding the CCM development.

An implicit time integration scheme, with quasi-Newton iterative cycling within the time step,
allows the two roles for pressure to be completely separated computationally. Specifically, a
mass-conserving potential function is used to enforce the continuity constraint, and the resulting
dominant “2 A-x" dispersive error mode is prevented from polluting the velocity vector distribution
by replacing the accumulated “pseudo-pressure™ with the genuine pressure computation at the end
of the time step, as required. Induced by a solenoidal velocity vector field, the genuine pressure is
calculated with well-posed boundary conditions by the pressure Poisson equation. This separation of
tasks produces a theoretically appealing and computationally clear view of the individual and totally
distinct boundary conditions required for the continuity constraint function and the genuine pressure.

As implemented in the computer program CFDL.PHI3D, the CCM employs a 6-implicit
time-integration scheme, a consistent mass matrix, an optional (as required) Taylor Weak Statement
(TWS) formulation for dispersion error control, and equal-order interpolation of all state-variables.
Isoparametric 8-node hexahedra with trilinear basis functions are used to support the semi-discrete
approximation on the computational domain. The CFDL.PHI3D code was developed for a UNIX
platform, taking advantage of the recent expansion of computing capacity with the emergence of
engineering workstations as the primary compute engines for modern computational analysis.

As original contributions to the field of incompressible CFD, this dissertation has presented:

(a) a derivation of an accurate expression for the unsteady evolution of the divergence error, thus
providing a firm and exact theore.ical foundation for the CCM,

(b) an investigation of the separate roles of the non-smooth continuity-constraint function ¢”,
dominated by a 2 Ax" dispersion error, and the smooth physically-motivated genuine
pressure P,

(¢) an investigation of the Galerkin weak statement for the Reynolds-averaged pressure Poisson
equation, thus minimizing the required order of the Sobolev functional space required for a
turbulent flow simulation,

(d) an investigation and resolution of physically and numerically well-posed boundary conditions for
all state-variables including the mass-conserving potential function,

(¢) an implementation of the CCM using a finite element semi-discretization of a Galerkin weak
statement with an optional Taylor Weak Statement extension for Q in R %,

() an efficient solution strategy for work-station-based computing,

(g) an investigation of sparse iterative solvers and sparse data structures for solving the terminal
matrix lincar algebra statements required by the CCM, and

(h) a verification, benchmarking, and validation study of the CCM for isothermal and nonisothermal
flows in challenging 3-dimensional flow geometries.
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It has become clear, during the present research, that a paucity of quality detailed
3-dimensional test cases exist in the literature for support of verification, benchmarking, and
validation of incompressible CFD algorithms. The cases presented in this dissertation provide a
starting point for future development of benchmark-quality solutions and validation-quality
experimental data for 3-dimensional flows. The present investigation of the step-wall diffuser is the
first published study to quantitatively explore the rich detail of 3-dimensional flow structures
produced by this basic geometry. Additionally, buoyancy-driven flows in nonpartitioned and
partitioned enclosures provide suitable 3-dimensional test configurations, incorporating a range of
simple geometries and easily applied boundary conditions. The development of 3-dimensional
turbulent test cases is another area for future research.

Additional research into the CCM should include a study of adaptive time-step control, an
extended examination of the Taylor Weak Statement incorporating the influence of all of the terms
identified by Baker and Kim (1987), a continued investigation into advanced numerical linear algebra
techniques, the implementation of suitable turbulence models to explore the implications of the
pressure Poisson equation for Reynolds-averaged state variables derived in the present study, and an
exploration of parallel implementations for this (and other) segregated forms of the CCM.

Finally, the long-term viability of 3-dimensional CFD is in part dependent upon the
development of effective methods of presenting the large amounts of data produced by simulations
of steady and transient flows. The present study has investigated a number of available methods for
solution display and flow visualization, including 2- and 3-dimensional contour plots of relevant
state-variables, vector and contour plots on selected cutting planes, and Lagrangian particle tracking
displayed on 3-dimensional perspective views of the flow domain. Methods of visualization of
3-dimensional data represent a new and productive field of research for all arcas of computational

mechanics.
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APPENDIX A
COMPACT NOTATION

A fortn of compact notation is used throughout this dissertation to describe matris-vector
operations that form element-based contributions to the global lincar algebra matrix statement This
notation was first presented by Baker (1983) (ef. Baker and Pepper, 1991) and has proved tobe a ven
effective and accurate tool for the translation of general statements of algorithmic theors into a
computer programming language such as Fortran, The following discussion describes the notation
with the aid of detailed examples taken from the text.

A.1 BASIS FUNCTIONS AND METRIC DATA

The inertial term in the residual for the momentum equations requires the following element-
level integral and subsequent matrix-vector inner product to be evaluated.

fu [N)IN}T det(J] dQ (LULI™! - (U™, (A1)

where the column-vectors {1}, contain the discrete approximations for the «, velocity components
at the eight nodes of the element; discrete time stations are denoted by the superseripts “n™ and “n +
1" superscript “7"* denotes the transpose operator, and (N} is a column-vector holding the trilinear
basis functions that span the 8-node hexahedron, defined by

(L-n)U -n)(-n,)
(L)) -0 -ny)
(Len)+ny)(1-ny)
4(l-~n,)(l*n,)(l~n,)} (A2)
(1-n,)0 -ny)(1 +ny)
(Len)(d-ny)(l+my)
(Len))(1en(1+my)
(1-n))+ny)(l+ny)

(N(n I} =

QC | o

As shown in Fig. 5 in Chapter 4, the 1, are generalized coordinates in transform space ( =12 n,+ ¢
for i = 1.2,3 ). The outer product {N}{N}’ produces an 8x8 matrix of polynomial functions ot n,.

The Jacobian J of the coordinate transformation or mapping, from transform space ( n, ) to
Euclidean space ( x,) is defined by
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9
on,
ox 3 1 12 Y13
J » (Ju](h.l)" [‘5‘:‘1] = "é;;'{xpxpxg} = "2! J22 "23 (A3)
‘ *
3= k)| 32 Y133
an,

The term “det [/]" is the determinant of the transformation Jacobian with the closed-form solution
det [J]= J,\(Upy Jyy- Inadny) = I3y Iy Iy Iig) + J3(Jgy Jap= Jay J)
i sk i ),
dn,(on, dny Anydn, ) Omy| dn,On;  An, On, (A4)
i iy o)
on,(on, dny,  In, on,

For general hexahedra, det [J] depends on its position within the element.

I'he actual evaluation of Eq. (A1) in CFDL.PHI3D involves a simplifying approximation that
produces an element-independent master matrix, so that

fo IN)IN)T det[J] dQ ({U1}"' - (UT}") =
‘ (AS)
DET, ([, NHNITda | qun-qu,

where the notation DET, signifies that det [J] has been approximated by its value at the centroid of
the element, n, = (0,0,0), thus allowing the only element-dependent term in the integrand to be

brought outside the integral.

Spatial derivatives occur in terms like the expression for the viscous flux vector,

t) o d T
atf (“Re ] T 9INL “m AN yerr ) da (U1 (A6)
g,0 Re ox, dn, Ox; on,

where repeated latin indices imply summation over the dimension of the domain Q,. The metric data

" ?J" are elements of the inverse of the transformation Jacobian [J, ],

i
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(JzzJas“ J32J23)’ (113‘132' le":n)’ (le‘,zz_ '113']22)
1
det[ ] (Jsl']za' J21J33)’ (Jyy I35 JIBJBI)’ ("21"13" Jza-’n) (A7)
(szJaz’ J31J22)= (le-lsl" I di) (Jngz" '112"21)

an;

ox;

[J,17" =

and, as with det [J], the metric data are functions of position within the element. As a simplifying
approximation, the metric data can be evaluated at the centroid of the element, designated by

d
EJKCE_T.II

%j

(A8)

n, =(0,0,0)

The contribution of the viscous flux vector term to the residual for #; can, therefore, be approximated
by

Atfn(nke‘] e 3N} 9w ANV 4ot gy 4 (uT) =

Re ox, 0 dx, 0
AR (A9)
T
L arper, e ([ 2N AN 4o | oy
where the “effective Reynolds number”, ReF, is
1 = 1 +Re! (A10)
Re® Re 1) -0,00

A.2 MASTER MATRICES

In the above examples, the simplifying approximations have resulted in an
element-independent integral that can be evaluated once and for all, producing a master matrix that
is dependent only upon the choice of basis functions. A special notation is used to describe these
master matrices with the general form [Mabcd], where

M prefix denoting the dimensionality of the element master matrix,
M = A for 1D, B for 2D, and C for 3D

a: an integer indicating how many bases occur in the integral

bc.d: integers 1,2, or 3, denoting the n~direction of the derivatives in the matrix,
or 0 for no derivative
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In the first example, the element master matrix is

[C200] = [ (N} (N)TdQ = [ [ [ (N)(N}Tdn dn,dn,  (AID)
‘ -1 -1 -1

where C signifies that 3-dimensional basis functions are being used, and two bases occur in the
integrand with no derivative operations. The master matrix associated with the viscous flux vector is

41+ 41

_r 8IN} N i 3N} oINYT (A12)
[C2KM] —foe———“ank -——-—-—anm dQ :{ !; !; an, on. dn,dn,dn,

In Eq. (A12), the 3-dimensional master matrix has two bases and each is differentiated. When
combined with the metric data, the summation convention is applied to give the expanded expression

EJK EIM( N} éﬂﬂfdﬂ)=EJKEJM [C2KM] =
a, dn, O,
[C211]1(E11 E1l + E21 E21 + E31 E31) +
[C222](E12E12 + E22 E22 + E32 E32) +
[C233](EI3E13 + E23E23 + E33E33) +
[C212](E11 E12 + E21 E22 + E31 E32) + (A13)
[C2211(E11E12 + E21 E22 + E31 E32) +
[C213](E11 E13 +E21 E23 + E31 E33) +
[C231](EI1 E13 + E21 E23 + E31 E33) +
[C223](E12E13 + E22 E23 + E32 E33) +
{C232](E12E13 + E22 E23 + E32 E33)
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All of the required master matrices can be calculated and stored as a pre-processing step. The
were computed using a Sth-order gaussian quadrature rule.

following examples

1
c200] - L
[ ] 7
[c202] = L

18

1
ca1) - L
[ ] T
[c213] = L

12

[CRS T N U SO ey
- N A NN B o b
[ S B N S - - SN )
SN~ N 0O A NS
I N N S T S

- RN = N A AN
N o= = N AN NS

N A oA~ N AN

S NN AN e
@ BN D RN =N

LR R . TR S I S B

-4 4 2

-4 4 2

-22 4

11224

y [C201] = —

18] -2 21

-2 21

-112

-112

2 -4

1 -2

1 -1

2 1| -2

RE [C203] = 18| -

2 -2

2 -1

4 -2
-1 1
1 -1
2 -2

-2 2 1

v [C212) = —

-2 2 12
2 -2
4 -4
-4 4
-1 -1
11
2 2

-2 -2 1

4l [C223] = T
11
2 2
-2 -2

NN A A = e N
LR I BN S T S RN S

N = N AN - N

- N AN = N AN
LR O S S B O S

AN =~ N AN =N

(A14)

(A15)

(A16)

(A17)
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Expressions involving the interpolation of two state-variables, such as the kinematic flux vector term,
produce a special master matrix called a hypermatrix, e.g.,

3
-arn uny[ (Nt AN gt 17 da (uny -
9~ dox; dn,
Al8
- ar pET, EX, (! | [ ;v L8 w7 aa | o, - (A1%)
Q, m:»
- At DET, EJK, (UJ)][C30K0] (UT},
where the elements of the three [C30K0] hypermatrices are 8x1 column vectors, e.g.,
[ (-18) (-9 (-3} (-6 (-6 (-3\ (-1 (-2]
9| |-18] -6 |-3| |-3| |-6] [-2| |-1
30 ]-6-6][-3] -1 |-2] |-2| |-1
6(|-3|]-3]1-6|{-2]|-1] [-1] |-2
6| |-3||-1]{-2|]-6| |-3] [-1] |-2
3l -6] -2 [-1]{-3] |-6 [-2| |-1
a2 2l -] -] 2] [2] |-
o)1) ) (=2) =2) o) L-1) -2
18) (9\ (3) (6 (6 (3 (1) (2
of 8| |6l |3 (3] (6] [2] |1
3l el 6] 3] [1]]2 |2 {1t
6| |33 ]6 |2/ 1] [1] |2
6| 13/ |1]]21s6]13] [1] |2
3l el |2/ |1]]3 |6 |2 |1
i 120201t 1] |2 2 |1
[C3010] = 1 2 1 1 2) \2 1 1 2 (A19)
280y Gy () () () () ) ()
(i) (5) (2) (8) (v)y (&) () (%)
(3 (5) (2) (5) () (1) (i) (9)
(3 (2) (5) (8) () (1) (i) (%)
() (2) (5) (8) () (1) () ()
S\ -1\ (-1 (-2 (-2 (-1} (-1) (-2
) |2l -2 {-1] -] 2] | -2 | | 1
| |-2| -6 [-3] |-1] |-2| | -6 -3
2l |-1||-3) |-6| |-2| |-1] | -3 || -6
20 |-tf |-1] |-2| |-6] |-3] | -3| ]| -6
) |-2| |-2| {-1] |-3{ |-6| | -6|] -3
-1 |-2| |-6] |-3] |-3] |-6] |-18] | -9
2 {-1) {-3) \-6) \-6) |-3) | -9/ {-18) |
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The premultiplication of [C30KO0] is executed by forming the inner products of {UJ}” with each of
the column-vector elements in the hypermatrix, resulting in a 8x8 scalar matrix.

A.3 SUMMARY

The following is a summary of the compact notation used in this dissertation.

Metric Data

DET, = the determinant of the transformation Jacobian evaluated at the centroid of
the element
El, = the (i,j) element of the inverse of the transformation Jacobian [%—21] evaluated
1

at the centroid of the element

Mass Matrix
+] 41 41

[c2001 = [ [ [ (N}(N)"dn dn,dn,
-1

oINY"

n,

dn,dn,dn,

i
—

.
(c2021 = tc2201” = [ [ [ v 2L gy, an,
I

[

. . a{N|)”
[C203] = [C230]7 fffw} ;

dn,dn,dn,
-1 -1 -1 "\3




Diffusion Matrices
+1 +1 +1

fffgmwdmdﬂzdﬂs

L)

[C211]

- -1 aﬂ] anl
[C222] = f*1 fd fl?-‘-’-*'—’ AN 40 dn, dn
J an2 anz 1 2 3
[c233] = fd fl fl—a—‘—"ﬂ AN . dn,dn,
-1 -1 -1 an3 anj
ot any Ny
[c212] = [C221] = AN} ANV 4y dn,d
f1 j; fl an, om, o
+1 41 ola{N} alN'T
[c213] = (e = [ [ f’g‘“‘ O} dn, dn,dn,
T I m 6“3
oy ANy
(c2231 - (c21" = [ AN} ANV 4 dn,dn,
Jo4 d ony oy

Convection Matrices
NS

+1
[C3010] = ffle}—aé‘—:J (N}T dn dn,dn,
2|

1 -l 1

41 o+l +l

(caoe0y = [ [ [(nEE W7 dn dn,dn,
| N2

Y B2

(cao] = [ | fw;%;"y-'— (N)T dn,dn,dn,
1 T 3
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