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I. Introduction

Partial-wave analyses (PWAs) have a long history in the fields of 7rN and NN scatter-
ing. Due to the poor quality of low-energy antiproton beams and the resulting absence
of accurate experimental data, analogous model-independent studies of the much more
complex _p system have in the past always been impossible. In recent years, however,
experimental progress has been very significant, in particular due to the coming in 1983 of
the Low-Energy Antiproton Ring (LEAR) facility at CERN. While in the pre-LEAR era
spin-dependent observables and charge-exchange (_p ---,_n) data were almost nonexistent,
the situation between 400 and 925 MeV/c is now quite good: the LEAR collaborations
PS172, PS173, PS198, and PS199 have measured a variety of observables with impressive
accuracy. High-quality analyzing-power data have been obtained for the elastic [1] and
charge-exchange [2] reactions. Very recently, even charge-exchange depolarization data
have become available [3]. Unfortunately, the practical difficulties involved in construct-
ing a high-quality "cooled" antiproton beam of lower momentum are large. Consequently,
the pp database below about 400 MeV/c is still by far not as good as one would like, in
striking contrast to the pp case where very accurate data exist as low as TL = 0.35 MeV
(PL = 25 MeV/c). It also remains an outstanding experimental challenge to construct a
polarized antiproton beam to further probe the spin structure of the interaction.

During the last 10 years a new method has been developed by the Nijmegen group
to perform PWAs of the abundant and accurate NN (pp and np) scattering data below
TL = 350 MeV [4, 5]. With the now available high-quality data from LEAR and KEK,
we have been able to extend the methods used in these NN PWAs to perform an energy-
dependent PWA of all pp scattering data below PL = 925 MeV/c (TL = 379 MeV). This

work was started in 1987 [6] and has only recently been finished [7]. The same methods of
PWA have also been applied [8] to the strangeness-exchange reaction pp _ AA, for which
the PS185 group at LEAR has obtained beautiful data. In the next section we review the
theoretical ideas behind these Nijmegen PWAs, and in section III we apply these ideas
and methods to the case of pp scattering. In section IV some results of this pp PWA are
presented and discussed.



' After almost a decade of LEAR, it is fair t() say that in this field thcor,,' h_usso,he
(.... " ' the partial-wave amplitudes or the, catching up to do with respect to xi)(llm(nt. Since

I)hase-shift parametrrs are in a sense, the meeting grollnd between theory and experiment,
the results _)f the I)res('nt PWA sholfid be very useful in many ways. They can be used
to improve models [9, !1)] for the ,\-_r interaction. Apart from the fact that this provides
independent and comi)l(:mentary [7] information about the spin- and isospin structure of
the ,N_Vforce, the .,VN interaction is needed a.s input in many other pp subfields. Stlldies
of for instance protonium (the ]_patom) or specific annihilation processes like _p -+ rr+rr-,
K+K - require a realistic treatment of the initial lip interaction. At the same time, this
PWA could be helpfill in planning new experiments at LEAR, the future of which is of
course crucial to this field.

II. Methods of partial-wave analysis

The hallmark of the Nijmegen energy-dependent PWAs is the sophisticated manner in
which the energy dependence of the partial-wave amplitudes is parametrized. At the b_is
of the PWA is the trivial observation that in the low-energy region (long wave lengths)
the long-range interaction is very important. It is this long-range interaction that is
responsible for the rapid variations with energy of the scattering amplitudes. Short-range
interactions lead to nmch slower energy variations of the amplitudes. One usually looks
for a function in the problem that one can parametrize as easily as possible, i.e. one
that does not contain the contributions from these long-range processes. Because these
long-range interactions are at the same time model independent (in the sense that they
are or at least should be the same in all NN and NN models), they can then be taken
into account separately and exactly.

It is, of course, not a good idea to try to parametrize the partial-wave S matrix
itself, since it does contain all of these long-range effects. As a function of complex
energy, the S matrix has a (kinematical) right-hand unitarity cut, other right-hand cuts
due to the coupling to inelastic channels, and (dynamical) left-hand cuts due to partMe
exchanges. The left-hand cuts that are the closest to the origin TL = 0 correspond to
the longest-range processes. The left-hand cuts that start far away from the origin are
due to the short-range interactions. For instance, the infinite-range Coulomb potential
(V _ 1/r) produces an essential singularity and a branch point at TL = 0, vacmml
polarization (V ,,_ exp(-2m_r)/r 'V2) produces a cut at TL = -0.6 keV, and one-pion
exchange (V ,,_ exp(-m_r)/r) leads to a cut starting at TL = -9.7 MeV. One sees that
the crux is to find a quantity in which the cuts nearest to the origin are not present. This
quantity then allows an analytical parametrization in energy or k 2 in an enlarged domain
up to the next left- or right-hand cut I)resent.

A familiar example of such a quantity with improved analyticity properties is the
modified effective-range function [4, 11]. The Coulomb-modified effective-range function
for the pp IS o state was originally derived (in a rather intuitive way) by Landau and
Smorodinsky [12]. When only the Coulomb potential is present the boundary condition
for the radial wave function q)(0) = 0 is of course satisfied by F, the regular Coulomb
wave function (for _' = 0). Suppose that there is an additional short-range interaction.
When the wave length is very large (very low energy), one can take the limit in which
the range of this additional (strong) interaction goes to zero. Then its presence is only
revealed by a modified boundary condition at r = 0, which is now satisfied by a linear
combination of F and G, the irregular Coulomb wave fimction

(I)(r) = F(r)cot60 + G(r) , (1)

where (Sois the nuclear phase shift in the presence of the Coulomb interaction (ti(IS0) =
60 + a0), as can be seen from the asymptotic behavior of (I). An equation for cot 60 can
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. then I)(, ()l)taine(l I)v (,valllating ttle logarithmic (lerivativ+' of the waw+ function, which
. we call P(k, r), for/c _ O. Ill the 7_pcase this qllant, ity P(k,O)= kcotb0 at)l)roaches a

constant"

(++IP(/,:,_--)= --/q, -+ -- (2_
(/1" r=e- (l /

In the pp ca.se, the evalltation has to be done at. ," = s because of a term In e that appears
due to the sing, tlar behavior of G. This term one absorbes in the constant -l/a, along
with so,he fllrther constant terms. Then one lets _c---. 0 and immediately obtains the

'ctCoulomt_-,nodified ("zero-range +'')_+ff_.....ive-range fimetion. It, can be shown that after
these maniI)ttlations the resulting left-hand side of Eqn. (2) is an analytical (actually
meromorphie) function of the energy, so that the right-hand side can be written ms a
power series in k2 (this means dropping the zero-range approxi,nation).

The analytical expansion of the Coulo,nb-,nodified effective-range function breaks
down already at TL = -9.7 MeV, where the one-pion-exehange cut starts. It is pos-
sible to derive a new "pion-modified" effective-range flmetion from which also this cut
has been removed [4]. Let the regular and irregular wave fimctions for the ease where
only the Coulomb and pion-exehange potentials are present be called F,_ and G+. (For
the purpose of the present discussion, we ignore vacuum polarization.) The wave function
can then be written as

_(r) = F,(r)cottS0 +G,_(r) , (3)

where tS0is now the phase shift due to the short-range remainder of the strong interaction
(t_(1S0) _. t_0 -t- 71"0 + frO, where % is the one-pion--exehange phase shift in the presence of
the Coulomb potential). However, proceeding in similar fashion as above, one encounters
an i,nportant problem here. The evaluation of P(k, s) has to be done numerically, since
F, and G, are not known in analytical form. Due to the singular behavior of G, when
e ---*0, it is very hard to maintain sufficient numerical aceurary, especially for higher
orbital angular momenta.

At this point one has to realize that this numerical problem of the modified effective-
range function is really an artificial problem' it crops up due to the singular behavior of
the irregular function of the long-ran.qe potential near the origin. However, it is precisely
this short-range interaction that one wants to parametrize, since it is essentially unknown,
very complicated, and leads to only slow energy variations of the scattering amplitudes.
Looking at Eqn. (3), one observes that it is valid for any r, so why not evaluate P(k, r)
at a finite value r = b, instead of at r = e?

This is essentially what is done in the Nij,negen PWAs. The wave flmctions are ob-
tained by solving the (relativistic) SehrSdinger equation. Suppose one starts at a point r_
where only the Coulomb potential is present. Integrating inwards, one picks up sequen-
tially the contributions (varying rapidly with energy) from the electromagnetic potentials,
one-I)ion exchange, and contributions (varying slower with energy) from other meson ex-
changes. One then stops at a point r = b. If there are no additional interactions for
r< b, the boundary condition P(k,b)at r = b is obviously satisfied by the regular waw'.
function corresponding to precisely this potential tail. For small enough b the model used
for r > b will of course not be correct, and the boundary condition has to be modified,
as in the above examples. In practice, it works the other way: one starts integrating
at r = b and P(k, b) is parametrized as a function of energy. Also the best value for b
is determined by fitting the data. In general multichannel problems P(k,b) becomes a
matrix. This P matrix has the required i,nproved analytieity properties. When there
are no nearby right-hand cuts, it is an analytical (again' actually meromorphic) function
of k 2 in a domairl bounded by the nearest left-hand cut not removed by including (or
including incorrectly) the corresponding exchange in the potential tail for r > b. It can
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" happen, c_fcourse,, that short-rant,;_, (lynan'ics gives rise to a rapid energy variati_n of tim
, amplitudes, ms ir_ the case of a resc_nancc. This would have to be taken into account in

the P real rix, for instance by in,:luding a pole in the parametrization. It is seen that the
formalism use(l in the Nijmcgen PWAs is similar to the boundary-condition approach to
the atrong interactions that goes back to the work of Feshbach and Lomon [13]and earlier.
The philosophy, however, is vet', ¢tifferent. The term P matrix (for "pole" matrix) was
introduced by .laffe and Low [14] in the framework of the bag model.

III. An antiproton-proton partial-wave analysis

Let us now be more specific and apply the foregoing ideas to the case of pp scattering. In
all the Nijmegen PWAs, the two-body scattering process is described with the relativis-
tic SchrSdinger equation [15, 16], which is essentially a coordinate-space version of the
Blankenbecler-Sugar equation. It reads the same as the ordinary SchrSdinger equation

(.x+k - = 0. (4/
except that the proper relativistic relation between energy and momentum is used. It is
well known how to derive the potentials for use in this equation [15, 16]. In this relativistic
framework, there is no known quantum-mechanical interpretation for the "wave function"
_'.,(r). It is perhaps best to regard it as just a tool that allows one to compute the correct
relativistic scattering amplitude (e.g. the poles are the correct bound states). We solve
Eqn. (4) for the coupled pp and 7i'n channels. The mass difference between proton and
neutron is included in order to account for the iTn threshold at PL = 99 MeV/c.

The interaction in the region r > b is described by a theoretically well-founded A--_,V
potential. This potential is given by

t" = t_ + t;_M + t"U , (5)

where Vc and I/:UMare the relativistic Coulomb and magnetic-moment interaction re-
spectiw?ly. VN is the NN meson-exchange potential. It consists of one-pion exchange and
the (charge-conjugated) heavy-meson and pomeron exchanges from the 1978 Nijmegen
NN potential [17]. As argued in the previous section, the rapid energy variations of the
amplitudes due to the long-range electromagnetic interactions and one-pion exchange are
now included exactly.

Let us next turn to the parametrization of the short-range interactions for r < b by
way of the P-matrix boundary condition at r = b = 1.3 fm. Due to the coupling to the
annihilation channels, the S matrix has a right-hand cut starting already to the left, of
Tt, = O. (In the pp case this cut starts only at the pp ---, pprr° threshold at TL = 280
MeV.) As these annihilation processes are of short range (and so give rise to slow energy
variations of the amplitudes), this right-hand cut hmsto be present in the P matrix, which
we therefore take to be complex. (Similarly, the effective-range parameters for the _¥
case are complex.) The choice of the value for b is rather critical, more so than in the NN
case (where it was taken to be b = 1.4 fro). The best results are obtained for b = 1.3 fm.
Since for r > b we use only a real potential, the coupling to the annihilation channels is
completely represented by the boundary condition. We conclude therefore that the range
of the annihilation process is in fact about 1.3 fin [7].

The electromagnetic interactions that we use are adapted from the improved Coulomb
potential [16]. This potential, designed specifically for use in the relativistic Schr6dinger
equation, contains relativistic corrections to the static Coulomb potential and (in its off-
shell behavior) the main contributions from the two-photon-exchange diagrams. All these
effects are included in the Nijmegen pp PWA [4, 5], a,s well as the vacuum-polarization



• l)otontial. In r_llrca.,s_,it sllit-ices to lt.s._,the folh)wing N_in-deI)c,ndent one-photon exchango
. potentials

" = ---r + 4,_I_,_ ,.:--iSl2 + 4:_I_,_ ra L. S for 7;P---' ?Sp , (6)

and
,)

ll,_ o

I;(r) - 4.l/;_ra 5h_ for iTn,---. )Tn. (7)

The magnetic moments of the proton and neutron arc ,t/,p "-- 1 + _p -" 2.793 and ll,, =
_,',,= -1.913, respectively. The use of a' in the central potential for pp _/ip takes care of
the main relativistic corrections to the Coulonab potential, It is given by a'/r_ = 2k/Mvl.
where vL is the velocity of the antiproton in the laboratory system. At 600 MeV/e one
has for instance _'L = 0.54 and t_'/a = 1.135, a correction of 13.5% to the static Coulon:b
potential. The spin-orbit potential comes from the interaction of the magnetic moment
of one particle with the. Coulomb field of the other particle (and is consequently absent in
gn _ i7n). It includes a relativistic correction due to the Thomas precession. The tensor
potential comes fi'om the interaction of the two magnetic moments. Vacuum polarization
and two-photon-exchange effects are negligible in our case. The proper treatment of
these electromaanetic effects in the eva]nation of the scattering amplitudes is a nontrivial
matter [7]. The following simple one-pion--exchange potential without a fi)rm factor is
llsed

l_[nt" I_:[ 2 lll2eItl2[[3 ( (mr)3 ( I I//" ) 23 )] e -mrr
--- , (8)

V,(r) = IIN,v .. 'o'2 + S,2 1+ +

where m is the mass of the pion and fi_N_ "- 0.0745 is the rationalized pion-nucleon
coupling constant [18]. The mass difference between the rc° and 7r+ is included.

Let us finish this section with some Inore general remarks about PWAs. Ew'n for
the pp case, where the database is of high quality and the observables are very well
mapped out, a PWA is impossible without a substantial amount of theoretical input or
constraints. For the np and pp PWAs, this is true a fortiori. For instance, one has to
make some assumptions about the validity of symmetries like charge independence or (as
in our case) charge conjugation. Obviously, one has t,) careful here: sometimes general
physical principles are inspired by local renormalizable field theories and not strictly valid
for extended objects like hadrons. A good example can be found in _N PWAs, where one
usually implements full Mandelstam analyticity [19]. The amplitudes are assumed to 1)e
analytic functions of the two complex variables s and t except for singularities from the
mass sI)ectrum and unitarity. These aml)litudes then exhibit crossing symmetry. It is not
clear at all to what extent low-energy hadron dynamics actually satisfies this symmetry.

Using strong and mostly model-independent theoretical constraints it has turned out to
be possible to perform an energy.dependent or multienergy PWA of the pp data. However,
it is quite a different ballgame to perform energy.independent or single-energy _p PV_%s.
In a single-energy 7]/)PWA one has to determine in principle 20 phase-shift parameters for

each J # 0 (8 for J = 0), which is four times as many as in a single-energy np PWA [7]!
Ahnost certainly the present pp databa.se does not allow satisfactory energy-independent
PWAs. One has to realize, however, that even in the NN field the usefiflness of energy-
independent PWAs is more limited than is perhaps generally thought. When one has a
9ood energy-dependent PWA, the best value for a phase shift (or the pion-nueleon coupling
constant!) is definitely the one determined in the energy-dependent PWA, and not the
one from an energy-independent PWA. One reason is that an energy-independent PWA
contains no information about the energy dependence of the amplitudes. This makes it for



• instance less stabh, than an etit'rgy-(h'p_'n(l('tit PWA with respect to the a_hlition ()f n_'w
data tot lw ¢lata])ase. Also, a set of eliergy-in(tepen(lent P\VAs is llsually overparamotrize_t
compare¢l to a goo(l _'nergy-deI)ml(h,nt P\VA in the same energy region. It thus almost
certainly c(_ntains noise. For an extensive {liscllssi<mof this inlportant point, see l_,,f. [5].

IV. Some results of the analysis

\Vhile in 3,LVP\_:ks there is essentially agreement on the correct database (especially for
pp), we ha(1 to spend a lot of time and effort into collecting, scrutinizing, and cleaning
up the world set of pp scattering (lata, which contains a lot of flaws and contratlictory
data. Exactly the same statistical arguments were used in this process as were _sed in the

set-up of the Nijmegen ,_\_'Vdatal)ase [4, 5]. This means for instance that data with a very
improbable high or low \" are rejected on statistical grounds. The resulting Nijmegen
1993 pp database in the momentllm interval 119-923 MeV/c is uniqlle in the world and
consists of N,j_,t_,= 3646 pp data. It is extensively discussed in Ref. [7]. In the final fit

.-1

to this database we reach \_ = 3801.0 or \"/Nd_,t_, = 1.04. The mlml)er of boundary-
condition parameters needed is 30, which is a reasonable number, in view of the fact that

21 parameters were needed in the Nijnwgen pp PWA and an additional 18 in the np PWA.
The total mmaber of degrees of freedom is A';tr -- 3503, which means that _\2/Ndr = 1.09.

If the database is a correct statistical ensemble and if the theoretical model is correct,

one exI)ects ttmt (\_} = Ndf = 3503 with an error of _ = 84. This means that in
our PWA we are 298 or only 3.5 stan(lar(l deviations away fl'om the expectation value for
\2. We conclude that although there is still room for improvement, our eneryy-dependent
solution is essentially co_'rect statistically. As a consequence, the values for the I)hase-
shift paranmters (and also for the l)ion-nu('leon coupling constant) and the statistical
errors (()btaine(l in the standard manner from the error matrix) are essentially correct.

In our 1991 preliminary PWA [6] we were able to determine the charged-l)ion- mteleon
coupling constant f_a _ fp,,,+f,,:-/2 from the data on the charge-exchange reaction
p-p -, ,7,, in which only isovector mesons can t)e ex('hanged. The result foun(l was
f_a = 0.0751(17), at the pion pole. The error is purely statistical. In our final analysis, w(,
have rt'l)eate(t the (h,termination of f:2., but this time from the coml)lete 1993 Nijmegen

databa,se. The coupling constants of the neutral pion were kel)t at the value of f;_v,o'2_-
f_n _0= 0.0745 [18]. We now fin(t f_ = 0.0732(11), at the pion pole. This result sut)erse(tes
our previous wdue from Ref. [6]. Again, the error is of statistical origin only. In view ()f the
enonn()us amount of work involved, it is very hard to estimate possible systemati(" errors
on this result. We have checked that tlwre are no systematic errors due to form-fact()r
effects or due to uncertainties in p_:(770) exchange. In the Nijmegen pp PV'A systematic
errors could be more thoroughly investigated and they were f(mnd to be small [18]. In
our case the systematic errors are probably larger than for the pp ca,so, but it is w,ry
encouraging that the result for f_a is in go()(l agreement with recent; determinations f,? =

0.0735(15) from rr+p [20] scattering and fi_v,_°= 0.074a(6) and/_2 = 0.0748(3) from
scattering [18]. Very probably the new LEAR experiment PS206 on/ip --, _n will further
constrain the charged,.pion- mmleon coupling constant.

In Fig. 1 the differential cross .((s,'tion at 693 _leV/c and the analyzing l)ower at.
875 MeV/c are shown for/il) ---, u,n. The data are from PS199 [2]. One can see the truly
remarkable ace',luac)"' of the cross-section data and the analyzing-power data in the forwar(l
region. The "dit)-bump" structure in da/dfl at forwar(l angles is due to the interh'rence
of one-I)ion exchange and a smooth I)ackground.

The fact that the available charge-exchange data already pin down the charged-t)ion
coupling constant with a remarkable small statistical error is only one example of how at
present quantitative information can t)e extracted from the 7)Psystem. We can mention
some subtle effects that are also visil)le in the data, The use of (_' instead of c_, i.e, the
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Figure 1' Differential cross section at 693 MeV/c and analyzing power at 875 MeV/c E)r
the charge-exchange reaction _p _ It-:n. The data are from PS199 [2]. The curves are
from the Nijmegen PWA [7].

main relativistic correction to the static Cotllomb potential, gives a drop of A42 = 30, or
5.5 standard deviations. The inclusion of the magnetic-moment interaction gives a drop
of A\:2 = 14, or 3.7 standard deviations. Even the use of the correct pion masses instead
of an average mass of 138 MeV is a 3 standard-deviation effect.

Since the present _p PWA is the first of its kind, we have also proposed a convention
for extracting phase-shift and inelasticity parameters from the S matrix. In the presence
of coupling to annilfilation channels the S matrix describing N'N scattering is only a
sial)matrix of the much larger multichannel S matrix. It is therefore still symmetric, b_tt
no longer unitary. This doubles the number of parameters needed. For the partial wave._
with g = ,1, s = 0, 1 one obviously writes S = rlexp(2i6). For the states with g = ,/5= 1,
s = 1, coupled by the tensor force, six parameters are needed to parametrize the 2 × '2
S matrix. In this case it is not so easy to think of a convenient parametrization which
satisfies all constraints from unitarity, is completely general, and free frozn nontrivial

ambiguities. We have used a generalization [21] of the "bar-phase" convention commonly
used in NN scattering. One writes (with the notation _tj for the phase shift)

oeJ = exp(i6) isingj cos?'j isingj cosgj

where _ = diag(_j-ij,_j+lj) and gj is the mixing parameter. H J is a three-parameter
real and symmetric matrix representing inelasticity. It can be diagonalized in Blatt-
Biedenharn fashion

(cos_zj-sinwj) (,/j_tj 0 )( cos_v3 sinwj) (10)HJ = sinCj coswj 0 r_d+l,j --sin_J coswj '

where the diagonal matrix contains the "eigeninele, sticities" 7U--Ij and r/j+t,j, and _j is
again a mixing parmneter. We are presently in the process of doing a careful evaluation of
these pllase-shift and inelasticity parameters and their errors. Unfortunately, this involves
a large amount of work. These and other issues will be the subject of fllture publications.
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