
_i_oo_j__lUlu

°ollllt-Illll ulll

Distribution Category:
Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL-93/26
Revision 1

Programming in Fortran M

by

Ian Foster, Robert Olson, and Steven Tuccke

Mathematics and Computer Science Division

October 1993

This work was supported by tile Omce of Scientific Computing, U.S. Department of Energy, under Con-
tract W-31-109-Eng-38, and the Natioual Scieace Foundation's Center for Research in Parallel Compu-

tation, tinder Contract CCR-8809615. ___ _[
,d. /_'J

Preface

FortranM isa jointdevelopmentofArgonneNationalLaboratoryand theCali-
forniaInstituteofTechnology(Caltech).Mani Chandy and hiscolleaguesatCaltech

have contributedinnumerous ways.We aregratefultothemany FortranM users
who have providedvaluablefeedbackon earlierversionsofthissoftware,notably

Donald Dabdub, RajitManohar, Bema Massingill,SharifRahman, John Thayer,
and Ming Xu, and to Andrew Laveryforhiscontributionsto the developmentof

theFortranM compiler.

,io

III

Contents

Abstract viii

I Tutorial 1

1 Introduction 1
1.1 About Fortran M 1

1.2 About the Fortran M Compiler 1
1.3 About the Fortran M Project 2
1.4 Caveat 2

2 A First Example 2
2.1 A Simple Program 3
2.2 Compiling and Linking a Program 4
2.3 Running a Program 4

3 The Fortran 1V[Language 5
3.1 Processes and Ports 5

3.2 Creating Channels and Processes 7
3.2.1 The CHANNELStatement 7
3.2.2 The Process Block 7

3.2.3 The Process Do-Loop 8
3.3 Determinism 9
3.4 Communication 9

3.4.1 SENDand ENDCRANNEL...................... 9
3.4.2 RECEIVE 10

3.5 Variable-Sized Messages 11

3.6 Communication Examples 11

3.7 Dynamic Channel Structures 12
3.8 Argument Passing 15
3.9 Nondeterministic Computations 16

3.9.1 The I_ERGERStatement 16
3.9.2 The PROBEStatement 17

3.10 Mapping 20
3.10.1 Virtual Computers 20
3.10.2 Process Placement 21
3.10.3 Submachines 22

4 Compiling, Running, and Debugging 23
4.1 Compiling and Linking Programs 23

4.1.1 C Preprocessor 24
4.1.2 Fortran M Compiler and Linker 25
4.1.3 Syntax Errors 26

4.2 Running Programs 26

4.3 Debugging Programs 27
4.3.1 Attaching a Debugger 27
4.3.2 Fatal Errors 27
4.3.3 Pause Points 28

5 Further Reading 28

II Advanced Topics 30

6 Makefile 30

7 Tuning Fortran M Programs 31

8 Network Specifics 31
8.1 Using rsh 32
8.2 Specifying Nodes on the Command Line 32
8.3 Using a Startup File 33
8.4 Ending a Computation 34
8.5 Arguments to Network Version 34
8.6 Limitations of Network Version 34

III Appendices 36

A IOSTAT values 36

B Obtaining the Fortran M Compiler 37

C Supported Machines 38

D Reserved Words 39

E Deficiencies 40

F Futures Plans 42

G Fortran M Language Definition 43
G.1 Syntax 43

G.1.1 Process, Process Block, Process Do-loop 43
G.1.2 New Declarations 43 E
G,1.3 New Executable Statements 44

G.1.4 Mapping 46
G.1.5 Restrictions 46

G.2 Concurrency 46
G.3 Channels 46
G.4 Nondeterminism 47

vi
m

G.5 Mapping 48

Index 49

vii

Programming in Fortran M

Inn Foster, Robert Olson, and Steven Tuecke

Abstract

FortranM isa smallsetofextensionsto Fortranthatsupportsa modularap-

proachtotheconstructionofsequentiMand parMlelprograms.FortranM programs
use channelstoplugtogetherprocesseswhichmay be writteninFortranM or For-
tran77. Processescommunicateby sendingand receivingmessageson channels,

Channelsand processescan be createddynamically,butprogramsremaindetermin-
isticunlessspecializednondeterministicconstructsareused.FortranM programs

can executeon a rangeofsequential,parallel,and networkedcomputers.This re-

portincorporatesboth a tutorialintroductionto FortranM and a usersguidefor
the FortranM compilerdevelopedat Argonne NationalLaboratory.

The FortranM compiler,supportingsoftware,and documentationaremade

availablefreeofchargeby Argonne NationalLaboratory,but areprotectedby a

copyrightwhich placescertainrestrictionson how theymay be redistributed.See
thesoftwarefordetails.The latestversionofboththecompilerand thismanual can

be obtainedby anonymous ftpfrom Argonne NationalLaboratoryinthedirectory
publfortran-matinfo.mcs.anl.gov.

viii

Part I

Tutorial

1 introduction

This report provides a tutoriM introduction to Fortran M and describes how to
compile and run programs using Version 1.0 of the Fortran M compiler. We assume
familiarity with Fortran 77.

The report is divided into three parts. The first comprises § 1-5, and provides
a tutorial introduction to both the language and compiler. The second comprises

§ 6-8 and provides reference material on such topics as building makefiles, tuning

programs, and running programs on networks. Finally, the Appendices provide a
language definition and list keywords, supported machines, known deficiencies, and

fllture plans.

1.1 About Fortran M

Fortran M is a small set of extensions to Fortran that supports a modular approach

to parallel programming, permits the writing of provably deterministic parallel pro-

grams, allows the specification of dynamic process and communication structures,
provides for the integration of task and data parallelism, and enables compiler op-
timizations aimed at communication as well as computation. Fortran M provides

constructs for creating tasks and channels, for sending messages on channels, for

mapping ta.s! _and data to processors, and so on.
Because Fortran M extends Fortran 77, any valid Fortran program is also a valid

Fortran M program. (There is one exception to this rule: the keyword C01OIONmust
be renamed to PROCESS COMMON.However, this requirement can be overridden by a

compiler argument; see §4.1.) The extensions themselves have a Fortran "look and

feel" and are intended to be easy to use: they can be mastered in a few hours.
The basic paradigm underlying Fortran M is task-parallelism: the parallel exe-

cution of (possibly dissimilar) ta._ks. Hence, Fortran M complemerlts data-parallel

languages such as Fortran D and High Performance Fortran (HPF). In particular,
Fortran M can be used to coordinate multiple data-parallel computations. Our goal

is to integrate HPF with Fortran M, thus combining the data-parallel and task-

parallel programming paradigms in a single system.

Current application efforts include coupled climate models, multidisciplinary de-
sign, air quality modeling, particle-in-cell codes, and computational biology.

1.2 About the Fortran M Compiler

This report describes Version 1.0 of the Fortran M compiler. This is a preprocessor

that translates Fortran M programs into Fortran 77 plus calls to a run-time commu-
nication and process management library. The Fortran 77 generated by the prepro-

cessor is compiled with a conventional Fortran 77 compiler. Version 1.0 is a complete

implementation of Fortran M, except where noted otherwise in Appendix E. See

Appendix C for information on supported machines.
The communication code generated by the Fortran M compiler has yet to be

optimized. However, performance studies show that it already compares favorably

with p4 and PVM, two popular message-pan, sing libraries. A deficiency of Version 1.0

is that process creation and process switching are bot, h relatively expensive oper-
ations. This has an impact on the classes of algorithms that can be implemented
efficiently in Fortran M. We expect both communication and process management

performance to improve significantly in subsequent releases.

1.3 About the Fortran M Project

The Fortran M project is a joint activity of Argonne National Laboratory and the
California Institute of Technology; the Fortran M compiler was developed at Ar-

gonne National Laboratory. We are continuing to develop and refine the Fortran M
language and compiler. We outline some of our plans in Appendix F. We welcome
comments on both the current software and development priorities.

The Fortran M mailing list is used to announce new compiler releases. Send

electronic mail to fortran-m_mcs.aul.gov if you wish to be added to this list.
Please send inquiries, comments, and bug reports to the same address.

1.4 Caveat

The Fortran M compiler should be considered unsupported research software. (We

provide support on a best-efforts basis but make no guarantees.) The prospective

user is urged to study _he list of deficiencies provided in Appendix E of this manual
before writing programs.

2 A First Example

We use a simple example to introduce both Fortran M and the Fortran M compiler,
We assume that Fortran M is already installed on your computer. (If it is not, read

the documentation provided with the Fortran M software release.)

Before you can use Fortran M, you must tell your environment where to find

the compiler. (Normally, this will be /usr/local/fortran-m, but some systems
may pl_e the compiler in a different location.) If you are using the standard Unix
C-_hell (csh), you add one line to the end of the file . cshrc in your home directory.

If the compiler has been installed in/usr/local/fort, ran-m, this line is

set path - ($path lustlocal/fortran-m/bin)

The environment variable path tells the Unix shell where to find various programs
such as the Fortran M compiler. This shell command adds the directory containing

the compiler to your shell's search l)ath. You may have to log out and log in again
for this to take effect.

2.1 A Simple Program

The example1, fm program creates two ta_ks, producer and consumer, and connects

them with a channel. The channel is used to communicate a stream of integer values

1,...,5 from producer to consumer.

[,x. pi.i
program examplel

inport (integer) pi
outport (integer) po
channel(in-pi, out-po)

processes

processcall producer(5, po)

processcall consumer (pi)

endprocesses
end

process producer(nummsgs, po)

intent (in) nttmmsgs, po

outport (integer) po

integer nummsgs, i

do i - 1, nummsgs

send(po) i
enddo

endchannel (po)
end

process consumer (pi)

intent (in) pi

inport (integer) pi

integer message, ioval
receive(port=pi, iostat=ioval) message

do while(ioval .eq. O)

print *, 'consumer received ', message

receive(port-pi, iostat-ioval) message
enddo

end

The program comprises a main program and two process definitions, The main

program declares two port variables pi and po. These can be used to receive (INPORT)

and send (OUTPORT) integer messages, respectively. The CHANNELstatement creates

a communication channel a_ld initializes pi and po to be references to this channel.

The process block (PROCESSES/ENDPROCESSES) creates two concurrent processes,

passing the port variables as arguments.

The process definitions are distinguished by the PROCESSkeyword. Tile producer
process uses the SEND statement to add a sequence of messages to the message
queue associated with the channel referenced by po. The ENDCHANNELstatement

terminates this sequence. Tile consumer process uses the RECEIVEstatement to
remove messages frorn this message queue until termination is detectod.

2.2 Compiling and Linking a Program

The Fortran M compiler, fro, is used to compile a Fortran M s()urce file. The For-
tran M compiler is used ill a similar manner to other Unix-based Fortran compilers.

Because our program is contained in a file examplel, fro, we type

fm -c examplel.fm

This produces examplel,o, which contains the object code for this Fortran M source
file.

Next we must link the examplel.o object file with the Fortran M run-time

system and the system libraries. This is accomplished by running

fm-o examplel examplel.o

As with most Fortran compilers, tile -o flag specifies that the name of the executable

produced by the linker is to be named examplel.

For more information on compiling and linking Fortran M programs, see §4.1.

2.3 Running a Program

A Fortran M program is executed in the same way as other programs. For examl)le,
to run exazaplel, you would type tim following, where 7, is the Unix shell prompt:

ezamplel
consumer received 1
consumer received 2
consumer received 3
consumer received 4
consumer received 5

In this and sttbsequent examples of running programs, text typed by the user is
written in italic, program output in roman, and the shell prompt is Y..

The Fortran M run-time system has a number of run-time configurable param-

eters that can be controlled by command line arguments. In order to keep these

run-time system arguments from interfering with the program's arguments, all ar-
guments up to but not including the first -fro argument are p_ssed to tile l)rogram.

All arguments after the -fra argument are passed to the run-time system. For ex-

ample, suppose you run a Fortran M program as follows:

my_program my-argl my.arg2 -fm -nodes dalek

This causes my.argl and my_arg2 to be passed to the Fortran M program, and
-nodes and dalek to the run-time system.

Run-time system parameters are discussed in more detail in §4.2. In mldition, a
complete list of these run-time system parameters, and a brief description of their
meaning, can be obtained by using the -h argument, for example:

my.program -fro -h

3 The Fortran M Language

We now proceed to a more complete description of the Fortran M extensions to
Fortran 77, summarized in Figure 1.

3.1 Processes and Ports

As illustrated in the program examplel .fro (§2), a task is implemented it, Fortran M
as a process. A process, like a Fortran program, can define common data (labeled
PROCESS COMMONto emphasize that it is local to the process) and subroutines that

operate on that data. It also defiues the interface by which it communicates with
its environment. A process has the same syntax as a subroutine, except that the
keyword PROCESSis used in place of SUBROUTINE.

A process's dummy arguments (formal parameters) are a set of typed port vari-
ables. These define the process's interface to its environment. (For convenience,

conventional argument passing is also permitted between a process said its parent.
This feature is discussed in Section 3.8.) A port variable declaration has the general
form

port.type (data.type_list) name.list

The port.type is 0UTPORTor INPORTand specifies whether the port is to be used
to send or receive data, respectively. The data.type.list is a comma-separated list of

type declarations said specifies the format of tim messages that will be sent on the

port, much as a subroutine's dummy argument declarations defines the arguments
that will be passed to the subroutine.

In the program examplel, fm (§2), both pi and po are to be used to comnmnicate
messages comprising single integers. More complex message formats can be defined.

For example, the following declarations define iuports able to (1) receive messages
comprising single integers, (2) arrays of msgsize reals (p2), and (3) a single iIlteger

and a real array with size specified by the integer, respectively. In the second and
third declaration, the names m and x have scope local to the port declaration.

inport (integer) pl
inport (real x(msgsize)) p2
inport (integer m, real x(m)) p3

Process: PROCESS
PROCESS COMMON
PROCESSCALL

Interface: INPORT

OUTPORT

Control: PROCESSES/ENDPROCESSES

PROCESSDO/ENDPROCESSD0

Communication: CHANNEL
MERGER

SEND
RECEIVE
ENDCHANNEL

MOVEPORT
PROBE

Argument Copying:INTENT

VirtualComputer: PROCESSORS
SUBMACHINE

ProcessPlacement:LOCATION

FigureI:FortranM Extensions

The value of a port variable is initially a distinguished value NULL.It can be
defined to be a reference to a channel by means of the CHANNEL,MERGER,MOVEPORT,
or RECEIVEstatements, to be defined below.

A port cannot appear in an assignment statement. The MOVEPORTstatement is
used to assign the value of one port to another. For example:

inport (integer) pl, p2
moveport(from-pl,to-p2)

Thismoves theportreferencefrompl top2,and theninvalidatestheFROM-port

(pl)by settingittoNULL so thatitcanr_olongerbe usedby SEND,RECEIVE,etc.

3.2 Creating Channels and Processes

A FortranM programisconstructedby usingprocessblocksand processdo-loopsto

createconcurrentlyexecutingprocesses,which arethenpluggedtogetherby using
channelsto connectinport/outportpairs.A channelisa first-in/first-outmessage

queue with a singlesenderand a singlereceiver.In thisway,processeswithmore
complexbehaviorsaredefined.These can themselvesbe composed withotherpro-
cesses,ina hierarchicalfashion.

3.2.1 The CHANNELStatement

A program createsa channelby executingthe CHANNEL statement.This has the

followinggeneralform.

channel (inffiinport, outfoutport)

This both creates a new channel and defines inport and outport to be references to
this channel, with inport able to receive messages and outport able to send messages.
The two ports must be of the same type. Optional IOSTATffiand ERRffispecifiers can
be used as in Fortran file input/output statements to detect error conditions. See
Appendix A for a list of valid IOSTATvalues.

3.2.2 The Process Block

A process call has the same form as a subroutine call, except that the special syntax

PROCESSCALLis used in place of CALL. Process calls axe placed in process blocks
and process do-loops (defined below) to create concurrently executing processes. A
process block has the general form

processes
statement_l
• o •

statement_n

endprocesses

where n _>0, and the statements axe process calls, process do-loops, and/or at most
one subroutine call. Statements in a process block execute concurrently. A process
block terminates, allowing execution to proceed to the next executable statement,
when all of its constituent statements terminate.

One of the statements in a process block may be a subroutine call. This is
denoted by the use of CALLinstead of PR0CESSCALLin the process block. The call is
executed concurrently with the other processes in the block, but is executed in the
current process.

If a process block includes only a single process call, then the PROCESSESand
ENDPROCESSESstatements can be omitted. Note, however, that since the parent pro-
cess suspends until the new process completes execution, no additional concurrency
is introduced.

3.2.3 The Process Do-Loop

A process do-loop creates multiple instances of the same process. It is identical
in form to the do-loop, except that the keyword PROCESSD0is used in place of DO
the body can include only a process do-loop or a process call, and the keyword
ENDPROCESSDOis used in place of ENDDO.For example:

processdo i - 1, n
processcall myprocess

endprocessdo

Process do-loops can be nested inside both process do-loops and process blocks.
However, process blocks cannot be nested inside process do-loops.

We illustrate the use of the process do-loop in the ring1, fm program below. A
total of nodes channels and processes are created, with the channels connecting the
processes in a unidirectional ring.

[ringl.fmI

program ringl

parameter (nodes=4)
inport (integer) pi (nodes)
outport (integer) po(nodes)
do i = 1, nodes

channel(in=pi(i),outfpo(mod(i,nodes)+1))
enddo

processdo i = 1, nodes
processcall ringnode(i, pi(i), po(i))

endprocessdo
end

3.3 Determinism

Process calls in a process block or process do-loop ca_l be passed both ports and
ordinary variables as arguments. It is illegal to pass the same port to two or more
processes, as this would compromise determinism by allowing multiple processes to
send or receive on the same channel.

Variables named as process arguments in a process block or do-loop are passed
by value: that is, they are copied. In the case of arrays, the number of values copied
is determined by the declaration in the called process. Values _2e also copied back
upon te,'mination of the process block or do-loop, in textual order. These copy
operations ensure deterministic execution, even when concurrent processes update
overlappinu sections of arrays. Intent declarations (described in Section 3.8) can be
used to prevent some of these copy operations from occurring.

The MOVEPORTstatement invalidates (i.e., sets to NULL)the FROM"port when
copying it to the T0= port. This prevents multiple ports from send or receiving on
the same channel, again preserving determinism.

3.4 Communication

Each Fortran M process has its own address space. Tile only mechanism by which
it can iLLeract with its environment is via the ports pansed to it as arguments. A
process uses tile SEND,ENDCHANNEL,and RECEIVEstatements to send mid receive
messages on these ports. These statements are similar in syntax and semantics to
Fortran's WRITE,ENDFILE, and READstatements, respectively, and can include END",

EKRffi,and IOSTAT= specifiers to indicate how to recover from various exceptional
conditions.

3.4.1 SENDand ENDCHANNEL

A process sends a message by applying tile SEND statement to an outport; the out-
port declaration specifies the message format. A process can also call ENDCHANNEL
to send an end-of-channel (EOC) message. ENDCHANNELalso sets the value of the

port variable to NULL,preventing further messages from being sent on that port.
The SENDand ENDCHANNELstatements are nonblocking (asynchronous): they com-

plete immediately. When a SENDstatement completes, you are guaranteed that the

variables that were sent are no longer needed by the send, so they may be modified.

For example, in the program examplel.fm (§2), the outport po is defined to
allow the communication of single integers. The producer process makes repeated

calls to SENDstatement to send a sequence of integer messages, and then signals

end-of-channel by a call to ENDCHANNEL.
Channels can also be used to communicate more complex messages. For example,

in the following code fragment the SENDstatement sends a message consisting of the

integer i followed by the first 10 elements of the real array a.

outport (integer, real x(10)) po
integer i

integer a(lO)
e e •

send(p,) i, a

An array element name can be given as an argument to a SENDstatement. If the
corresponding message component is an array, then this is interpreted as a starting
address, from which the required number of elements, as specified in the outport
declaration, are taken in array element0 order. Hence, the following statement sends
the ith row of the array b.

outport (integer, real x(lO)) p,
integer i

integer b(lO, 10)
e • •

send(po) i, b(1,i)

As in Fortran I/O statements, ERR- and IOSTAT=specifiers can be included to

indicate how to recover from exceptional conditions. These have the same meaning as
the equivalent Fortran I/O specifiers, with end-of-channel treated as end-of-file, mid

mi operation on an undefined port, treated as erroneous. Hence, an ERR.labelspecifier
in a SENDor ENDCHANNELstatement causes execution to continue at the statement

with the specified label if the statement is an undefined port. An IOSThT'-intval
specifier causes the integer variable intval to be set to 0 upon successfill execution

and to an error value otherwise. See Appendix A for a complete list of valid IOSTAT
values.

3,4.2 RECEIVE

A process receives a value by _.pplying the RECEIVEstatement to an inport. For
example, the consumer process in examplel.fm (§2) makes repeated calls to the
RECEIVEstatement so as to receive a sequence of integer messages, detecting end-of-

channel by using the IOSTATspecifier, described in the preceding section. A RECEIVE

stater.mnt is blocking (synchronous): it does not complete until data is available.
Hence, the consumer process cannot "run ahead" of the producer.

Receive statements for more compiex channel types must specify one variable
for each value listed in the channel type. For example, the following is a receive

statement corresponding to the send statement given as an example in the preceding
section.

inport (integer, real x(lO)) pi
integer i
real a(lO)
e e •

receive(pi) i, a

An array element name can be given as an argument to a RECEIVE statement.
If the corresponding message component is an array, then this is interpreted as

10

a starting address and the required number of elements are stored in contiguous
elements in array element order. Hence the following statement receives the ith row
of the array b.

inport (integer, real x(lO)) pi

integer i, j
real b(lO, 10)
e Q •

receive(pi) j, b(1,i)

As in Fortran I/O statements, ENDr, ERR,,, and ZOSTAT=specifiers can be included

t_ indicate how to recover from erroneous conditions. These have the same meaning
as the equivalent Fortran I/O specifiers, with end-of-channel treated as end-of-file
and an operation on an undefined port treated as erroneous. Hence, an END.label

specifier causes execution to continue at the statement with the specified label upon
receipt of a EOC message. See Appendix A for a list of the valid IOSTATvalues.

3.5 Variable-Sized Messages

Array dimensions in a port declaration can include variables declared in the port
declaration (as long as they appear to the left of the array declaration), parameters,
and arguments to the process or subroutine in which the declaration occurs. (How-
ever, the aymbol "*" cannot be used to specify an assumed size.) Variables declared
within a port declaration have scope local to that declaration.

If an array dimension in a port declaration includes variables declared in the port
declaration, then that port can be used to communicate arrays of different sizes. For
exmnple, the following code fragment sends a message comprising the integer num
followed by num real values.

outport (integer n, real x(n)) p•
integer num
real a (maxsize)

send(p•) num, a

The following code fragment receives both the value num and num real values.

inport (integer n, real x(n)) pi
integer num
real b (maxsize)
e i i

receive(pi) hum, b

3.6 Communication Examples

We further illustrate the use of Fortran M communication a_.atements with the pro-
gram ring2, fro. This program implements a "ring pipeli,le", in which NP processes

11

are connected via a unidirectionM ring. A_er NP-1 send-receive-compute cycles,
eachprocesshasaccumulatedthevalue_P inthevariablesum.

program ring2

parameter (np=4)
inport (integer) ins(rip)
outport (integer) oute(np)
do i = 1, np

channel(in-ins(i),out-oute(mod(i,np)+l))
enddo

processdo i = 1, np
proceescall ringnode(i, np, ins(i), outs(i))

endprocessdo
end

process ringnods(me, np, in, out)
intent (in) me, np, in, out

integer ms, np
inport (integer) in
outport (integer) out
buff - me
sum = buff

do i _ 1, np-I
send(out) buff
receive(in) buff
sum = sum + buff

enddo
endchannel(out)
receive(in) buff

print *, 'node ', me, ' has sum m ,, sum
end

3.7 Dynamic Channel Structures

The values of ports can be incorporated in messages, hence transferring the ability
to send or receive on a channel from one process to another. A port that is to be
used to communicate port values must have an appropriate type. For example, the
following declaration specifies that inport pi will be used to receive integer outports.

inport (outport (integer))pi

A receive statement applied to this port must take an integer outport as an
argument. For example:

12

inport (outport (integer))pi
outport (integer) to
o * o

receive(pi) to

We illustrate this language feature by sketching an implementation of worker
and manager processes. (The techniques used to connect the manager and multiple
workers used in this example are described in §3.9.1.) The worker process takes
two outports as arguments. It uses the first to request tasks from a manager and
the second to report the best result. When requesting a task from the mmlager, it

creates a new channel, sends the outport, and waits for the new task to arrive on

the inport. It closes the channel to the manager and terminates upon receipt of the
task descriptor 0. The manager process is assumed to be responsible for handing
out numtasks integer ta_k descriptors. It repeatedly receives an outport from a
worker and uses this to send a task descriptor. Once numtaska descriptors h,,ve

beeh handed out, it responds to subF _quent requests by sendil, g "0". It terminates
when the requests channel is closed, indicating that all workers have terminated.

13

i l,,ork.fl
process worker(tasks, score)

outport (outport (integer)) tasks

outport (real) score

inport (integer) ti

outport (integer) to

real val, best

integer task
best m 0.0

channel (in=t i, out=to)

send(tasks) to

receive (ti) task

do while (task .gt. O)

val m compute(task)

if(val .gt. best) best - val
channel (in-ti, out=to)

send(tasks) to

receive(ti) task

enddo

endchannel (tasks)

send(score) best

endchannel (s core)

end

process manager (pi)

integer numtasks

parameter (numtasks = 5)

inport (outport (integer)) pi

outport (integer) request
do i = 1, numtasks

receive (pi) request

send(request) i

endchanne 1 (reqaest)
enddo

end
!

A SEND operationt,h_Ltcon.nunic_testhe valueof a portwu'ial,lealso izlvalidates

thatport,by settingtheftw_rbd,leto NULL.This _rt,ion isne('ess_ryfordet,erminism:

it,ensure_:thatthe abilityto send or rereiveon the a._sociatedrh_umel i_transferred

fi'omone processto _mother,rat,her t,hallreplicated.Henre, in the followingro,le

fragment, the second send statement, is erroneous and would be flagged _ surh eit, h,,r

at rompile time or run time.

outport (outport (integer)) po

14

outport (integer) to
e e o

send(po) to
send(to) m_g

3.8 Argument Passing

As noted in §3.3, variables passed as arguments in a process block or do-loop are,
by default, copied when the process is called and again upon process termination,
Copy operations can be avoided by declaring process arguments INTENT(IN) (copy
in at call, but do not copy out) or INTDIT(0UT) (copy out at termination, but do
not copy in). The default behavior can be specified explicitly as INTDtT(INOIff).
(See §E for the INTDIT behavior of ports in this release.)

The program intent 1. fm below demonstrates the use of INTENT.

progr_ intentl
integer n
a=10

'main before: n = * nprint e,
vrocesscall p(n)

'main after: n = 'print *, , n
end

process p(n)
integer n
print e, p before: n = ', n
n=20

' nprint *, p after: a = ',
end

Running this program will yield:

intent1
main before: n = 10

p before: n = 10
p after: n = 20
main after: n = 20

Y,

Addixlg the statement intent (in) n to process p gives:

15

ml[[_: _ i:i: : _ i :Elf: I r, I Ii : _ _ :............. : _ -- i

Y, intent1
main before: n - 10

p before: n - 10
p after: n - 20
main after: n = 10

,_ - _ Ill -- ,l,olli m, r, ":..... , T _ T _..... _

Changing this statement to intent (out) n yields:
i ; , t_: 1 JLU t I" -- ".... t' -- " , /_

intentl
main before: n - 10

p before: n = 0
p after: n = 20
main after: n m 20

3.9 Nondetermlnlstle Computations

Fortran M provides two statements that can be used to implement nondeterministic
computations: HF..ROERand PROBE,A program that does not use these statements is
guaranteed to be deterministic,

$,9.1 The XF.RODtStatement

A XFJIOERstatement defines a first-in/first-out message queue, just like CHANNEL,
However, it allows multiple outports to reference this queue and hence defines a
many-to-one communication structure, Messages sent on any outport are appended
to the queue, with the order of messages sent on each outport being preserved and
any message sent on an outport eventually appearing in the queue,

The HF.JtOERstatement has the following general form,

merger (Ln=inport, out=outport.specifier)

This creates a new merger, defines inport to be able to receive messages from this
merger, and defines the outports specified by the outport.specilier to be able to send
messages on this merger, An outport.specifier can be a single outport, a comma-

' 1separated list of outports, or an trap led do-loop, The inport and the outports in tile
outport.specilier must be of the same type, Optional IOSTAT=and IF.R_=sp_ifiers

can be used as in Fortran file input/output statetnents to detect error conditions,
See Appendix A for a list of valid IOSTATvalues,

The following mergert,fm example uses HF..ROF.Rto create a manager/worker
structure with a single maalager and multiple workers, The manager and worker

16

components have been previously defined ill the vork_nan.fm program in §3.7. In
this example, two mergers are used: one to connect numvork workers with the man-
ager, and one to connect the workers with an outmonttor process.

program merger1
integer nu=vork, i
parameter (n_vork = 10)
inport (real) scores.in
outport (real) score|.out(ntmvork)
inport (outport (integer)) reqs.in
outport (outport (integer)) reqs.out(ntunvork)

mezger(in=reqs.in, out'(reqs.out (i), :_=1,nu_vork))
merger(in'|tcores.in, our'(scores.out (i), i=! ,nu=vork))

processe|
pro.:eascall manager(reqs.in)
procendo i - l, nmavork

processcall vorkerCreqs.out(i), scores.out(i))
endprocendo
processca,i outmonitor(scores_in)

endprocesses
end

3.9.2 The PROBE Statement

A process can apply tile PROBEstatement to an inport to determine whether messages

are pending on the ass,)ciatcd chanllel. A PROBEstatement has the general form

probe (iuport, empty'logical)

A logical wrialfie specified in the D_PTY'variable specifier is set to false if there
is a message ready for receipt on tile chaJmel or if ttle channel ha_ been closed (i.e.,
re_hed end-,)f-channel), and to true otherwise. In other w,)rds, ttle YJ,IPTY'variable

specifier is set to true if a RZCEIVZon this iuport would block, and to false if it would
not.

In addition, 10S'fAT" and ERR,,specifiers can be included in its control list; these
arc as in the Fortran INQUIREstatement. Heuce, applying a PROBEstatement to an

undefined port causes an integer value specified in an IOSThT spc(:ifler to be set to
a nonzero value and cau,(;, the execution t,) branch to a label provided in an ERR=

specifier. See Appendix A fnr a list ,)f valid IOSTATvalues.

Knowh, dge about sends is l),'esumed to take a nonzero but finite time to t)(;conle
known to a process probing an inport. Hence, a probe of m_ inp()rt that references

!7

a nonempty channel may signal true if tile channel values were only recently com.
municated. However, if applied repeatedly without intervening receives, PI_0B_.will
eventually signal false, and will then continue to do so until values are received.

The Plt0BE statement is useful when a process wishes to interr,pt local computa-
tion to handle communications that arrive at some unpredictable rate. The process
alternates between performing computation and probing for pending messages, and
switchs to handling messages when PI_0BEreturns false. For example, this is the
behavior that is required when implementing a one-process-per-processor version of
a branch.and-bound search algorithm. Each process alternates between advancing
the local search and responding to requests for work from other processes:

do while (.true.)
tail advance.local.search
probe (requests, EHPTY,.empty)
if(.not, empty) call hand.out.york

enddo

_ ; -_ _ _ _ : " _ , II , I ,,,, _ lll,llll f I _ __ _- _ __

The PROBEstatement can also be used to receive data that arrives in a nondeter-

ministic fashion from several sources. For example, the following program handles
messages of types T1 and T2, received on two ports, pl and p2, respectively.

process handlo.mqs(pl ,p2)
inport (T1) pl
inport (T2) p2

do vhilo(.true.)

probe (pl, BHPTY=eI)
if(,not, el) then

receive(pl) vail
call handle.megl (vail)

endif

probe (p2, F_PTY=e2)
:L_(.not. e2) then

receive(p2) val2

call handle.meg2 (val2)
endi!

enddo

A disadvantage of this program is that if no messages are pending, it consumes
resources by repeatedly probing the two channels. This "busy waiting" strategy is
acceptable if no other computation can be performed on the processor on which this
process is executing. In general, however, it is preferable to use a non-busy-waiting

18

technique. If T1 = T2, we can introduce a merger to combine the two message

streams, The haadle.msgs2 process then performs receive operations on its single
inport, blocking until data is available.

merger (in=pi, (out=po (i), i=t ,2))
processes

processcall sourcel (poC1))
processcall source2(po(2))
processcall handle.ffisgs2 (pi)

endprocesses

If TI _ T2, we can use the following technique. Each source process is augmented
with an additional outport of type integer, on which it sends a distinctive message
each time it sends a message. The integer outports are connected by a merger with
an inport which is passed to the haudle.msgs process, This process performs receive

operations on the inport to determine which source process has pendiltg messages,

merger (in-ni, (out=no(i) ,i=1,2))
channel (in=pl i, out=pl o)
channel (in=p2i, out=p2o)
processes

processcall sourcel(1,plo,no(1))
processcall source2(2,p2o,no(2))

processcall handle.msgs (pli ,p2i ,ni)
endprocesses

process handle.msgs (pl ,p2,pp)
inport (T1) pl
inport (T2) p2
inpor_ (integer) pp
i o •

do while(,true.)

receive(pp) id
if(id .eq. 1) then

receive(pl) val
else

receive(p2) val
endif

call handle_mesg(val)
enddo

,, ____ -- ___ -- _ -- __ _ -_- ,,,,,, ,, ,,,__ -- __. -- __ ,, , ,,,,, , ,,,,,,L -- _ -- _

19

3.10 Mapping

Process blocks and process do-loops define concurrent processes; channels and merg-
ers define how these processes communicate and synchronize. A parallel program
defined in terms of these constructs can be executed on both uniprocessor and mul-
tiprocessor computers. In the latter case, a complete program must also specify how
processes are mapped to processors.

Fortran M incorporates specialized constructs designed specifically to support
mapping. The PROCESSORSdeclaration specifies the shape and dimension of a virtual
processor array in which a program is assumed to execute, the LOCATIONannotation
maps processes to specified elements of this array, and the SUBMACHINEannotation
specifies that a process should execute in a subset of the array. An important aspect
of these constructs is that they influence performance but not correctness. Hence, we
can develop a program on a uniprocessor and then tune performance on a parallel
computer by changing mapping constructs.

3.10.1 Virtual Computers

Fortran M's process placement constructs are based on the concept of a virtual

computer, a collection of virtual processors, which may or may not have the same
topology as the physical computer on which a program executes. For consistency
with Fortran concepts, a Fortran M virtual computer is an N-dimensional array, and
the constructs that control the placement of processes within this array are modeled

on Fortran's array manipulation constructs.
The PROCESSORSdeclaration is used to specify the shape and size of the (implicit)

processor array on which a process executes. This is similar in form and function to
the array DIMENSION statement. It has the general form PROCESSORS(II,... ,In)
where n > 1 and the lj have the same form as the arguments to a DIt4ENSION
statement. For example, the following declarations all describe a virtual computer
with 256 processors.

processors (256)
processors (16.16)
processors (16,4,4)

The PROCESSORSdeclaration in the main program specifies the shape and size
of the virtual processor array on which that program is to execute. The mapping

of these virtual processors is specified at load time. This mapping may be achieved
in different ways on different computers. Usually, there is a one-to-one mapping of
virtual processors to physical processors. Sometimes, however, it can be useful to

have more virtual processors than physical processors, for example, if developing a

multicomputer program on one processor.
A PROCESSORSdeclaration in a process specifies the shape and size of the virtual

processor array on which that particular process is to execute. As with a regular
array passed as an argument, this processor array cannot be larger than that declared
in its parent, but can be smaller or of a different shape.

2O

3.10.2 Process Placement

The LOCATIONannotation specifies the processor on which the annotated process
is to execute. It is similar in form and function to an array reference. It has the

general form LOCATION(II, ... ,In), where n > 1 and the I i have the same form
as the indices in an array reference. The indices must not reference a processor
array element that is outside the bounds specified by the PROCESSORSdeclaration
provided in the process or subroutine in which the annotation occurs.

The following code fragment shows how the program ring1 .fro (§3.2.3) might
be extended to specify process placement. The PROCESSORSdeclaration indicates
that this program is to execute in a virtual computer with 4 processors, while the
LOCATIONannotation placed on the process call specifies that each ringnode process
is to execute on a separate virtual processor.

program ringl_with_mapping
parameter (nodes=4)
processors(nodes)
e o •

processdo i = 1, nodes
processcall ringnode(i, pi(i), po(i)) location(i)

endprocessdo
end

The program tree.fro shows the a more complex use of mapping constructs.

The process tree creates a set of 2n - 1 (n a power of 2) processes connected in a
binary tree. The mapping construct ensures that processes at the same depth in the

tree execute on different processors, if n < P, where P is the number of processors.

21

' Itree.fm]

process tree(locn, n, toparent)

intent (in) locn, n, toparent

inport (integer) li, ri

outport (integer) lo, ro, toparent

processors(16)

if(n .gt. I) then

channel(in-li, out-lo)

channel(in-ri, out-ro)

processes

processcall tree(locn,n/2,1o)

processcall tree(locn+n/2,n/2,ro) location(locn+n/2)

processcall reduce(li,ri,toparent)

endprocesses
else

call leaf (toparent)
endif

end

3.10.3 Submachines

A SUBMACHINEannotation is similar in form and function to an array reference passed

as an argument to a subroutine. It has the general form SUBMACHINE(I1,... ,I,),

where n >_ 0 and the Ij have the same form as the indices in an array reference. It
specifies that the annotated process is to execute in a virtual computer comprising

the processors taken from the current virtual computer, starting with the speci-

fied processor and proceeding in array element order. The size and shape of the

new virtual computer are as specified by the PROCESSORS declaration in the process
definition.

The SUBMACHINEannotation can be used to create several disjoint virtual com-

puters, each comprising a subset of available processors. For example, in a coupled

system comprising an ocean model and an atmosphere model, it may be desirable

to execute the two models in parallel, on different parts of the same computer.

This organization is illustrated in Figure 2(A) and can be specified as follows.

We assume that the ocean and atmosphere models both incorporate a declaration

PROCESSORS(np, np) ; hence, the atmosphere model is executed in one half of a vir-

tual computer of size np × 2 × np, and the ocean model in the other half.

22

,..In

(a) (B)
Figure 2: Alternative Mapping Strategies

parameter (np-4)
processors(np,2*np)
#oo

processes
processcall atmosphere(set_in, uv_out) submachine(I,1)
processcall ocean(sst.out0 uv_in) submachine(i,np+l)

sndprocesses

Alternatively, it may be more efficient to map both models to the same set

of processors, as illustrated in Figure 2(B). This can be achieved by changing the
PROCESSORSdeclaration to PROCESSORS(np,np) and omitting the SUBMACHINEan-
notations. No change to the component programs is required.

4 Compiling, Running, and Debugging

The following sections provide a detailed description of the Fortran M compiler and

how to use it when writing and debugging Fortran M programs.

4.1 Compiling and Linking Programs

The Fortran M compiler, fro, is a preprocessor rather than a true compiler. However,

it is capable of compiling and linking Fortran M files (.fro suffix), Fortran M files

with C prep,'ocessor (CPP) directives (.FM suffix), Fortran files (.f suffix), Fortran
files with CPP directives (.F stlffix), and C files (.c suffix).

Every effort was made to make the Fortran M compiler conform to conventions
used by most other compilers. Exceptions and additions are described in the follow-

ing sections.

23

4.1.1 C Preprocessor

The C preprocessor (CPP) is applied to files with . FMand .F suffixes as the first
stage of compilation, (For a detailed description of CPP, see any good C pro-
gramming manual.) These files can contain CPP directives that specify conditional
compilation, macro expansion, and constants. The following program, cpp.ex.Dt,
uses CPP directives for all of these purposes.

lcpp:o ' HI....
Oifndeff N.NODES
#define N.NODEg 1
#endif
#ifndef PRODUCF.£.OFFSET
#define PRODUCER.OFFSET0
#endif

#define N.PRODUCERS(N.NODES - PRODUCER.OFFSET)

program cpp.ex
processors(N.NODES)
integer n.producers
parameter (n.producers- N.PRODUCERS)
inport (integer, integer) pi

outport (integer, integer) po(n.producere)
merger(in-p#, out-(po(i),i-l,n.producers))
processes

#ifdef USE.CONSUMF_I

processcall consumerl(pi) location(I)
#else

processcall constuner2(pi) location(l)
#endif

processdo i - 1, n.producers
procssscall producer(i, po(i))

x location(i+P_ODUCER.OFFSET)

erdprocessdo
endprocesse8
end

This program creates a single consumer process and one or more producer pro-
cesses and connects the producers to the consumer by a merger, By default, all
processes run on a single processor, and consumer2 is used as the consumer process,
Various aspects of this behavior can be modified at compile time through the use of
-D compiler arguments. For example:

• Adding -DUSE.CONSUMER1causes consumert to be used in place of consumer2.
This sort of conditional compilation is useful when you wish to supply different

24

versions of part of a program that will be used in different situations, such as
for different m_hines.

• Adding -DN.NODES=5causes tile program to create 5 producer processes and
to distribute these over 5 processors, 15. The single consumer process runs
on processor 1.

• Adding -DN.NODES-5 and -DPRODUCER.DFFSET=Icauses the program to create
4 producer processes and to distribute these over processors 2o4, so that the
consumer process runs on a separate processor.

The result of running CPP on a .FM or .F file is a . fm or . f file, respectively,
which will be passed onto ttm following compiler stages.

To ensure consistency across different m_hines, the Fortran M compiler inch,des
its own version of CPP which it applies to files with .FMand .F suffixes. This CPP is
used even if a target computer has its own CPP or if its Fortran compiler supports
CPP directives. It has been our experience that different versions of CPP can

differ in subtle ways, particularly when applied to Fortran programs. Please see

Appendix E for information oll deficiencies of the inch,ted CPP,
The behavior of CPP can t)e modified with the following compiler arguments:

• -Ipath: Add path to the list c)f paths that will be searched by CPP for files
that are included through the use of #include.

• -Dde.f: Add de f as a definition during CPP.

• -Ude.f: Remove defas a definition during CPP.

4.1.2 Fortran M Compiler and Linker

The Fortran M preprocessor converts a Fortran M file (.fm) into Fortran 77 (,f)
and C (...c) files, Fortran M statements are replaced by calls to the Fortran M

libraries or to C procedures generated by the Fortran M preprocessor and located
in the ._. ¢ file. You should need to refer to these generated .f mid _. ¢ files only
when debugging, as described in §4.1.3 and §4.3.

The .f and .., c files are compiled and comlfined into a single object (. o), file.

Object files produced by the Fortran M COml)iler can be linked with other object
files, with the Fortran M libraries, alld with system libraries to produce an executable

program that can be run as described in §4.2.
In addition to normal compiler arguments such as -c, -o, -1, and -L which

behave as in most other compilers, and the CPP arguments described previously
(,_4.1.1), the behavior ()f the Fortran M compiler and linker can be modified with

the folh)wing arguments:

• -allow.common:q_'eateachCOMMON a._ifitwere a PROCESS COMMON.(By de-

fault, Fortral, M progranm do not alh)w COMMON data, but instead r,;quire the
use of PROCESS COMMON data.)

25

• -rangscheck: Compile the . f file with range checking turned on (if the target
computer's Fortran 77 compiler supports range checking),

• -g: Compile and link the source files with debugging and consistency checks
enabled,

• -safe: Compile and link the source files with consistency checks enabled.

• -pg: Compile and link the source files with profiling enabled.

• -f_flag flag: Pass flag to the Fortran compiler when compiling .f files.

• -c_lag flag: Pass flag to the C compiler when compiling , c files.

, -C: Stop after compiling the . fm file to a . f and a ... c file,

• -static: Link the executable using statically linked rather than dynamically
linked libraries.

A complete list of Fortran M compiler arguments, and a brief description of their
meaning, can be obtained by running fm -h.

4.1.3 Syntax Errors

Because the Fortran M compiler uses tile C preprocessor and is itself a preprocessor,
syntax errors can be detected at three stages in the compila,:ion process:

1. The C preprocessor may detect errors in CPP directives in .FH or .F files.
Line numbers in these error ntessages refer to the CPP (.FH or .4_) file.

2. The Fortran M preprocessor may detect errors in the Fortran M code. Line
numbers in these error messages refer to the Fortran M (,fro) file.

3. The Fortran compiler may detect errors in the .f file generated by the For-
tran M preprocessor. Line numbers in these error messages refer to the Fortran
(, f) file, The mapping from . f file errors to ,fm or . FH file errors is generally
fairly obvious from looking at the , ! file.

4,2 Running Programs

The basics of running Fortran M programs are explained in §2,3. Fortran M pro-
grams are run like other programs, except that all argtlments following the initial
-fro are passed to the run-time system instead of to the user program.

Various arguments control aspects of the run-time system. Those arguments
that relate to the network version of Fortran M are described in §8.5. Those that
relate to debugging are described in §4.3. Another argument to the run-time system
is the following:

26

s -maptype type: A PROCESSO_ statement, may declare more virtual processors
than there are physical processors. The type specifies how the virtual pro-
cessors are mapped to physical processors. If type is cyclic (the default),
then virtual processors are mapped cyclically to physical processors. If type is
block, then virtual processors are mapped biockwise to physical processors.

A complete list of the run-time system arguments, and a brief description of
their meaning, can be obtained by using the -h argument, for example:

my.program -fro -h

4.3 Debugging Programs

Each Fortran M process is a separate Unix process, so Unix debuggers such as dbx
and gdb (GNU debugger) can be used to debug Fortran M processes. Various tech-
niques have been implemented in the Fortran M run-time system to allow debuggers
to be att_hed to Fortran M processes in a reasonable meamer.

4.8.1 Attaching a Debugger

In order to debug a Fortran M program using a debugger, that debugger must
support the ability to att_h to a running processes, given the process id of that
process. We describe how to determine process ida below.

One such debugger is tile gdb (GNU debugger), The attach command is used to
att_h gdb to a process. For example, if you wish to attach to process 4242, which
is an instance of the examplet program, you would run:

Y, gdb ezampiel
ore

(gdb) attach _94_

Some versions of dbx also support the ability to att_'h to a running process, For
example, the SunOS 4.1,3 version of dbx can be att_hed to examplet, process 4242
with the comnmnd:

dbx examplel 4242

Consult the documentation for your debugger for more information on att_hing
it to a process,

4.3.2 Fatal Errors

A fatal error in a Fortran M program can be caused by an unexpected signal or a
failed assertion (consistency check) in the run-time system. Normally, a fatal error
will cause a message to be printed and then cause the progra_n to be terminated.

However, the -pause_on_fatal run-time system flag allows you to attach to a

program at the point of a fatal error. When this flag is added as a run-time system

27

argument (after the -fro argument), a fAtAl error causes the printing of a message
containing the process id of the process that has encountered the fatal error. The

process then pauses instead of terminating. At this point a debugger can be attarhed
to the process so that a postmortum analysis of the process can be conducted.

4.8.S Pause Points

It is often useful to att_h A debugger to a Fortrtul M process before a fAtAl error
occurs. This can be _complished through tile use of pause points. A pause point
is a location in a Fortran M program where a process can be paused, so that A

debugger can be att_hed to that process.
A pause point can be added to a Fortr_l M program hy adding the call

call fm.pause(id, message)

where id is an integer that identifies this pause poiut, and message is a string that
will be printed at the pause point.

By default, fro.pause does nothing. However, adding a -show.paustpolnts run-
time system flag will cause etu:h fro.pause to print a message such as

jayson:6036: Pausspoint 1: the message

This message says that the progrant hM re,u:hed a panes poiut with An td of 1,

on the m_hine nanted Jayson, in the process with proee,, id 6036.

The -pause run-time system flag will cause _ process to pause At a ptu'ticuhu'
pause point. For example, rutlning

my.program-fm-pause 1

will cause a process t.u pause at any fro.pause call with art id of 1. When ,rich A

pause point is encountered, the process will print a nu,ssAge such as

jayson:6283: Pausing at pausepolnt 1: the message

and will then pause. At this poiut a debugger cast be Attached to the process, u,iug

process id 6283 in this case, And debugging cats coumwuce. The debugger can be
used to examiue process variables, etc., and Also to continue execution of the paused

process.

5 Further Reading

1. I. Foster and K, M, Clmndy, Fortran M: A language for rood.
ular parallel programming, Preprint MCS-P237-0992, MAthemAtics And

Computer Science Division, Argonne NAtional LaborAtory, Argonne, Ill.,

1902. This report provides the original description of the Fortrau l_, hut-
guAge.

28

2, K, M. Chandy a_ld 1. Foster, A deterministic notation for cooper.
sting p_esses, Preprint lvlCS-P346-0193, Mathematics and Complltcr

Science Division, Argonne National Laboratory, Argonne, I11.,1093. This
paper provides a more theoretical treatment of the Fortrml M extensions
to Fortran.

3. K. M. Chandy, I. Foster, C. Koelbel, K. Kennedy, and C.-W.

Tseng, integrated support for task and data parallelism, Intl. J. Su_r.
e,omputer Applications (to appear).

29

Part II

Advanced Topics

6 Makeflle

This section provides a_l ex_.'nple makeflle for use with Fortran M programs.
:vluml _ I ,r I I I-,rl,I, : :_--- :_ : : ,: _ :.....

lq4= fm

FI4FLAOS" "g
D&F8 "

PKOGS - exmple! ¢pp.ex ring2 intentl
OTHER.OBJ$- mergerl.o rinsl.o tree.o vork.m_n.o

all: l (P&O(]S)

other.objs: $(OTXU.OBJS)

example1 : example1, o
$(FM) 8(FNFLA(t$) $(DI_S) -o ex,_plel exuplel.o

cpp.ex: cpp.ex, o
$(FN) I(FNFLAOS) 8(DEF$) -o cpp.ex cpp.ox.o

cpp.ex, o : cpp.ex. FM
$(FM) $(FMFLAQS) 8(O&FS) -c cpp.ex,FM

ring2: ring2, o
I(FH) I(FNFLAOS) I(D_S) -o ring2 ring2,o

intent I : intent 1. o

$(FM) $(FNFLAQS) $(DL_S) -o intentl intentl.o

clean:

rm -f ," ,.o ,.f ,...c cpp.ex.fm $.llnk.c $(PROGS)

. SUFFIXES:
•SUFFIXES: . fm . o

,fro,o:

8(FM) $(FMFLAOS) I(DEFS) -c S*.f=

3O

T Tuning Fortran M Programs

When writi.g Fortr_ul M programs, you .hmdd be _ware that Versio. I.{) of the
compiler implements tile folh)wi.g la.g,mge fcat,ures efttcie.tly:

• Computation: Seque.tiai code is .or modified by tile Fortr_. M preprocessor
.aid is compiled with co.ve.tio.al Fortran compilers.

• Commu.ication: Prelimi.ary experime.ts show that itlterprocessor COlllllllllli-
catt(m rates are competitive with those n_hieved by mes_age-pMsitlg libraries
,.ch as P4 at.1 PVM,

I. contrast, the follc)wi.g f_attlre, a1,(_lint illq_It,melltc,d elllcielltly i. Versio. 1,0 (but
will bv i. l'11tllrereleases):

• Process 6're_!tion; The cost of creati.g a SlOWFc_rtra. M process is relatiw, ly
)high: over 100 rest,(,o. a Stm SI _cst,atto.,

• Port Migratio.: The ('()st,c)f .t_.(ti.g tt Imrt fr()m ()lw l)ro(.(;ssto .star,her is
relativ,.ly high: over l(X) ms_;('(m Stm Slmrc'statio.,

• hstraproceA._orComm..icrdio.: hltrapr_wessor (two pr.res.(,, o. the same pro.
c(_#l_or) ('l)ll|llltlllj('fttj()ll])crforll|l.|cc J. ('-ml)J_rJd)lt_to ilit('xl)r()('essor ('Olllllltt-

.j('_ti(m l)_,rl'c)rllmnc'i_, .. m..t ma('him_., (0. th(, Sl.-'('Statio., it _q)l)car. t,(J
b(_,m('h less cflic'b_.t ff)r ,,'.,,_tg_, ow_r4k I)yt_,,.)

8 Network Specifics

The .c,twork vcrsim_of Fortrltl| M .s_,. B_rk_,lcy.tr_am i.tcri)rores. ('(_n|ll|tu|i('_ttjoll
(TCP so('k_ts) t. _'_mm.mir_tt_,I-,twe_..odes. A ._.h: ('a. rt._ _m a.y ..whi._
that ,.lq).rt. TCP. !i_.._'_,, _ .i.gh_ F'.rtr_._ M ('()t.l)_t, ati(_. ('_m r_m ().._,v(.ral
w()rkst_tio...f a l)artir_d_r type, ,,,w_r_d workst_ti(m, of (liffi'ri.g tyl)e., .cw_,ral
pr(_cess.rs of a m.ltil)r._'_,ss-r, .r _ mix .f w.rkstati_ms a_.l m.ltil_r(.'_,ss.r ..des,
Ct|rre.t rcstri_'ti.|t. _tr_'listed i. §8,6,

Usi.g lwtwork F.rtrltll M i. tll_ s_m.; _u__tsi.g F.rtr_. M (). ot.l._r l)l_ttfi)rm.
ex('ept tlmt tlw t_.,_t'mt_.t .p,,('ify .. whi_,h m_whi.(._ F.rtr,.j M .od,,. ar_. t. ru.

is to I.._fi.m(I a.d tlw ('()llllllftll(Jfim.(.,,ss_tryft.' rllllllJllg F()l'trttll M II()dl!H (Ill l,Jll! gJVCll

Thor(, ,.'_, .,_,v,:r,t!(titf,,r,_,.tw,ty..f .t;trt, i.g ,wtw**rk F.rtr;m M, ,_t('l, ,q)i)r.l,ri,tt,,._
ft.' diff,_r,,.t ty!.,. ,)fm, tw.rk, W,, .h,dl ,'()..i,t,,r ,,_.'h of t,l.,.e i,_ tin'., .t,**rt,i.g with
tlw **,asi,,at.First, wc pr.vid,: ..m,, t._'kgr...d i.f.r._,_ti..., ti-, U.ix r,_,mot,_,.I.;1!
('()ll|ll|/tl|(I rllh, whi_'h i. t_._,(lt() st,itrt, I|_,tw()rk _'_)l'trttll M I|O(l(:s.

31

8.1 Using rsh

The Unix remote shell comnland rsh is a mechanism by which a prc_cess on one
m_hine (e,g., hostl) can start a process on another machine (e.g., host2), A
remote shell command can proceed only if host i h_ been given permission to start
processes on host2, There are two ways ill which this permission can be granted.

• The file/stclhosts, squiv exists ell host2 and contains an entry for heart.
This file must be created by the system _iministrator,

• The file ,rhojts exists in the home directory of the user running the remote
shell on host2 and contains a line oi' the form

host I ussrnams

where usornamo is the name of the user login on hostS. This file is created
by the user.

Some sites disallow the use of ,thesis files for security reasons. If .rhosts
usage is disallowed and the host m_hine is not in/ere/hosts, squiv, remote shells
cannot be used to create remote processes,

The full syntax of the rsh command is as follows:

rsh hostn_ns -1 ussrn_ns comand arguments

The ussrnams here is the login to be used oil the remote m_hine. If ussrnams is not
specified, it defaults to the login name of the user on the local machixm. Furthermore,
if the login name used on the local m_lnne is different from the login name on the

i remote m_hine, the . rhosts file for the _count on tile remote machism mu_'t have
an entry allowing _cess for that accomlt on the host machine,

8,2 Specifying Nodes on the Command Line

The simplest way to start Fortraa M on a network of m_hines is to use the
-nodes <nodelist> command line argument, where nodelist is a colon.separated
list of m_hine nantes on which Fortr_l M nodes are to run. For ex_nple,

myprogram -fm -nodes pelican:raven:plover

will run myprograat on four nodes, with one aode on the machine from which this
command is run and one node on e_h of the machines named in the nodelist:

pelican, raven, a_ld plover.
This startup method works only if

1. rsh (§8,1} works from the host to e_h machine ill nodelist, and

2. e_h of the nodes shares a commoa fllesystem with the host. The reason for

this is that tl_e initial node runs each additioaal node in the directory in which

myprogram is invoked, If the initial node and an additional node have different

filesystems, the rsh used to start up that additional aode is likely to fail.

If any of these conditioas does not hold, then smtwork Fortran M inust be stm'ted

by using oae of the alternative methods described below.

32

8.3 Using a Startup File

The second network Fortran M startup method that we consider can be used if nodes
do not share a common file system. However, it still requires that rsh work from
the initial node to the additional nodes.

This method ,ses a startup file to define the locations of remote Fortran M node
processes. Lines in this file identify the n, achines on which nodes axe to be started.

Startup File Syntax. A line of the form

command ./m SARG$$

causes command to be executed, command is the command that invokes Fortran M

on the appropriate m_hine. The inltiM process replaces SARGS$ at run time with
the necessary arguments to Fortran M to cause it to start the node process,

Blank lines in startup files and lines starting with whitespace, g, or # are ignored.

Examples of Startup Files, A startup file containing the lines

rsh iulmar myprogram -fm $ARGS$
rsh plover myprogram-fm SAR(]S$

starts one node oil the machine named fulmar, and one node on the m_chine named

plover, using the Fortran M executable called myprogram, resulting in a Fortran M
progra_i running on three machines.

A startup file containing the line

rsh fulmar -I bob myprogram -fm $ARGS$

starts one node using the program called myprogram on host fulmar using the For-
tran M executable myprogram _nd the account for username bob. If we assume the
initial node is being run by user olson on host host-machine, then the .rhosts
file in the home directory of user bob on fulmar must contain the entry

host-machine olson

A st_rtupfilecont_ningtheline

rsh fulmar "cd /home/olson/fm; ./myprogram-fm SARGS$"

runsone node on fulmaroftheFortranM executablemyprogramafterchangingto
thedirectory/home/olson/_m.

A start.pfilecontainingtheline

sh -c 'echo "cd /home/oleon/fm; ./myprogram-fm $ARGS$
< /dev/null > node.ou_ 2>_I _"

[rsh fulmar /bin/sh'

33

is a more complex example that starts up one node on fulmar. This example has the
desirable side effect that the rsh process exits after starting the Fortran M node,

whereas in the other examples the rsh will not complete until the node process
completes. Also, stdout and stderr from that node will go into the node. out file.

Using a Startup File. We execute network Fortran M with a startup file fm-startup
by using the -s run-time system command line argument:

myprogram -fm -s fm-startup

8.4 Ending a Computation

Normally all nodes of a network Fortran M computation will exit upon completion
of the computation or upon abnormal termination of any of the Fortran M processes.

If for some reason this is not the case, you must log on to each machine that was
executing a network Fortran M node and manually kill the Fortran M process.

8.5 Arguments to Network Version

The network version of Fortran M supports several run-time arguments to control
its behavior:

• -nodes nodel:node2:...: Start Fortran M nodes on node1, node2, etc.

• -s startup-file: Use the commands in the startup-file to s_art the Fortran M
nodes.

• -nostaxt: When used in conjunction with -nodes or -s, node startup com-

mands will be printed instead of executed. This allows nodes to be started by
hand in order to, for example, be run under the control of a debugger.

• -save.2ds n: Reserve n file descriptors for use by the user program. By
default, 10 file descriptors are saved.

• -lazy_recv: By default, the network run-time system will receive as much data

from network buffers as possible whenever a SENDor RECEIVE is done. This

flag causes it to be less eager about receiving, only doing it when absolutely
necessary.

8.6 Limitations of Network Version

Limits on Number of Processes. Fortran M processes are implemented as Unix
processes. Hence, Unix system limits on the number of processes apply. Typically,

this is in the 10-100 range per processor. However, you will likely not wish to have

more than a few simultaneously active Fortran M processes on a single processor,
or you (and other users on the same computer) may experience adverse effects on

performance due to context switching, paging, etc.

34

Limits on Process Connectivity. Unix sockets are used to implement inter-

process communication, with a separate socket used for each pair of processes that
must communicate. Hence, Unix system limits on the number of sockets and file
descriptors apply. This limit may be anywhere in the range of 50-5000 connections
per process, depending on your specific version and configuration of Unix. This
network version supports file descriptor caching, so the system file descriptor limit
should not be a hard limit on the number of Fortran M processes. However, you
might experience adverse performance effects if there are significantly more actively
communicating processes than there are file descriptors. Also, the -save_ds run-
time system argument (§8.5) can be used to reserve file descriptors for user program
use.

Heterogeneous Networks. Currently, no support exists for executing Fortran M
between machines with different byte orders and/or different floating-point repre-
sentations. Fortran M does execute correctly between different machines if they use
the same byte-ordering and floating point representation (we have run Fortran M
successfully between Sun 4 and NeXT computers).

35

Part III

Appendices

A IOSTAT values

Many of the Fortran M calls allow the use of IOSTATin order to detect error condi-
tions. The following table lists all of the IOSTATvalues that could be returned. Not
all values apply to all Fortran M calls.

IOSTAT Description

-1End-of-file (EOF)
0 Success
1 Error

2 Inport unconnected

3 Outport unconnected
4 Inport already connected
5 Outport already connected

6 Channel already closed

36

B Obtaining the Fortran M Compiler

The Fortran M software is available by anonymous ftp from Argonne National Labo-
ratory, in the pub/fortran-m directory on info. mcs. an1, gov. The latest version of
this document is also available at the same location. The following session illustrates
how to obtain the software in this way.

% ftp info.mcs.anl.gov

Connected to anagram.mcs,anl.gov.
220 anagram.mcs.anl,gov FTP server (Version 5.60+UA) ready.
Name (inlo,mcs.anl.gov:XXX): anonymous
331 Guest login ok, send your e-mail address as password.

Password: /* Type your e.rnail address here */
230- Guest login ok, access restrictions apply,
Argonne National Laboratory Mathematics & Computer Science Division
All transactions with this server, info.mcs.anl.gov, are logged.
230 Local time is Fri Aug 6 12:59:56 1993
ftp> cd pub//ortran.m
250 CWDcomma.ridsuccessful,

ftp> Is
200 POKTcommand successful,

150 Opening ASCII mode data connection for file list.
fm.vl .O.tar.Z
README

fm.prog.vl.O.ps.Z

fm_prog_vl.C.tar.Z
226 Transfer complete.
78 bytes received in 1.3e-05 seconds (5,9e+03 Kbytes/s)
ftp> binary

200 Type set to I.
ftp> get/m.vl.0.tar.Z
200 PORT command successful.

150 Opening BINARY mode data connection for fm.vl.O.tar.Z (XXX bytes).
226 Transfer complete.
local: fm.v1.0.tar.Zremote: fm.v1.0.tar.Z

XXX bytes received in YY seconds (ZZ Kbytes/s)
ftp> quit

221 Goodbye.

37

C Supported Machines

Fortran M is currently available on the following computers:

• Networks of Sun SPARCstations running SunOS version 4.1,x

• Networks of IBM RS/6000 workstations running AIX version 3,2

• Networks of SGI workstations running IKIX 4.0.5F

• Networks of NeXT workstations running NEXTSTEP 3.x

• IBM 9076ScalablePOWERparMlel 1 (SP-I)

The compilercomprisesa portablepreprocessorand a run-timelibraryimple-

mented usingstandardUnix facilities.Hence,itshouldnotprovedifficulttoportit
toothercomputersthatsupportTCP/IP networking.

See §B forinstructionson obtainingFortranM.

38

D Reserved Words

The following words may not be used as variable names or procedure names in
Fortran M programs.

conn.t
fm*
fmu.*
..U..*

yoke.*
.y.*

39

E Deficiencies

We are aware of the following deficiencies in Version 1,0 of the Argonne Fortran M
compiler. We expect these to be remedied ill subsequent releases.

in addition, see §8,6 regarding limitations in the network version of Fortran M.

1. Fortran Syntaz. Tile following legal Fortran 77 statements are not processed
correctly by the Fortran M compiler:

(a) Variable declarations cannot contain expressions. (But parameters can).

(b) The last signiflcaJlt (i.e, non-blank or comment) line of an INCLUDEfile
is dropped.

(c) Inline comments (using i) are not supported.

(d) Continuation lines must haw,. a space in cohmm 7.

(e) A contitmation line following a comment is considered part of the com-
ment, not as part of the line heft,re the comment.

(f) BLOCKDATA sttbprograms are not handled I,y the FM compiler. Any
required BLOCKDATAsubprograms can be pbwed in a . ! file of their own
and compiled with the FM compiler.

2. Error Messages. The Fortran M compiler does not always generate nmtmingfitl

error messages when applied to crron,,ous programs. If you encounter sttclt a
message, please e-mail a short example of the code that caused this error

message arm the message itself to "h, rtran.m_mcs.tml,gov".

3. Fortran M executable statements (SEND,RECEIVE,ENDCHANNEL,CHANNEL,/4EROEIt,
MOVEPORT,PROBE)cannot have line numbers.

4. Fortran M st,atenmnts cannot be included in a logical IF statement.

5. In this version of Fortran M ports can only be INTENT(IN), and are such by
default. Ports cannot be declared INTENT(OUT)or INTENT(INOUT).

6. Process dummy arg_mwnts that are spc'cified as INTENT(OUT)should be ini-

tialized to 0. In the current iml,lcmentation they are not.

7. Coml)lex xmmbers cannot I,e sent over ports, or t,e Incased to processes as
&rgulrxlclltS.

8. The use of a label in a PROCESSDOis not supported.

9. PROCESSORSdeclarations cannot contain expr,;ssions.

10. Port variables cannot be dimensioned using 0 :n syntax.

11. Dummy array arguments to processes must be dimensioned using either con-
stants or parameters. The dimensions ctumot be other dummy arguments.

4O

12, Long file and process names call lead to truncation of Fortran M generated

procedure names, in general, you should be safe if you limit process names
and file base names (no path and z,o su_x) to less than 25 characters.

13, Procedure names cannot be passed over ports or in process calls,

14, Port variables cannot be declared to contain types with length specifiers (e.g.
REAL*8).

15. IARGC() and QETAR(]()will return the -fro and following arguments as well as

the user-supplied arguments.

16, Closing channels. You should close all outports and receive on all inports imtil
you re_h end-of-channel. Failing to do so could cause spurious error messages.
For example, if a process fails to close an outport before terminating, some

operations on tile associated inport may cause run-time errors to be signaled.

17. PROCESS CO_ON definitions, You must include any common blocks that in-
clude port variables in the process definition. (It is not sufficient to include
them only in the routines that use them.) This is because the compiler uses
the common block port definition to generate code to initialize any port vari-
ables in the common block, Hence, common block port defi,dtious that are

not defined in the PROCESS definition will not be properly initialized.

18. C preprocessor. The C preprocessor (CPP) can get confused in Fortran com-
ments, because it does not recognize them as comments. For example, if the
Fortran co,nment contains an unmatched single quote (i.e., the comment con-

tains the word "it's"), CPP will take this single quote to be the begtnutng
of a constant and proceed to take everything !itcrally until the next single
quote that it finds. All text in between those single quotes will not have CPP
directive applied to them.

19, Receiving variable length messages. RECEIVEis intended to support the ability
to receive messages into tile middle of an array, where tile specific location in
which to receive is part of the message. For example, the following statement
should receive 10 real values into tile ith row of the array b, where i is defined

upon receipt of the message.

inport (integer, real x(lO)) pi

integer i
real a(I0,10)
e e e

receive(pi) i, a(t,i)

This does not currently work. The value of i that will be used in the a(l, i)
is that value of i immediately before the RECEIVE,not the va'tm of i received

ill the message.

41

F Futures Plans

This section li_ts new features that we c,xpect to incorlmrate in future releases of
the FortraJl M compiler. We welcome fecdb_k from users regarding priorities,

I, More Robust Parser. A more robust pars_:rwill provide full F_rt,ran 77 support.

2. Optimized Compzler. An improved c_mqfiler will both remove current llmita-
tions on t|m mtmber of processes and channels and improve performance, Our
goal is to provi_le performance superior to what elm be _hieved conwmiently
using convcntlonal message.passing libraries.

3, Ports, The compiler will be ported to additional parallel and distributed com-
puter systems. Current priorities are the Intel Paragon, Thinking M_hines
CM-5, HP and DEC workstations, heterogeneous networks, and PCs running
Windows NT,

4, Support Tools, We expect these tc_inclueh: support for replay of nondctermiu.
istic computations and a parallel profiler,

5, Heterogeneous Applicatious. An improved linker will permit differ_,nt processes
to execute different cxecutablcs. This awJids tim ne(_d to gel|crate a single

executable containing all c'.d_ that may be executed by a program,

O. Fortrau 90 Featu_s, F_rtran 90 features such Im array sections will b[_ intro-
duced in an increm_ntal f_hion.

7, Data Distribution Statemeuts. Data distributi_m statc, mcnts similar to those

defined in High Performance Fortran will bc supp.rtc,d, allowing Fortran M

programs to both define and access distrilmtcd data structures.

8, Interfaces to Other Systems. Intcrfacc,s will be defined to allow Fortran M

programs to COmlmSe nmdulcs imph,mented using message-passing libraries
(e.g., the MPI message passing interface standard) and data.paralh_.l languages
(e.g,, High Pt,xformance Fortran).

O, Template Libraries, Libraries providing ilnl_lcmcntati(ms of commmfiy used
parallel prograzn strtlcturcs will be d,_velopcd and distributed with the, com-
pih:r.

42

G Fortran iV[Language Definition

This apl.'z.lix is alm_ avai)ab)c a_ Argoim, ter.}mh'a| report ANL-93/28, "F.rtran M
Litilgtiitg(; De'fliliti(lii," by iall F-sti_,ratld lvlltiii Chluldy.

G,1 Syntax

Biwkus-Nitur f, rln (BNF) is used t, llrcsi,Jit new syntax, with nollternllnal symbols
ill slanted fllllt;, terlllilltti liyliltlll]tt ill TYPE:WRITER,fl)il|,, alld #yinlllllM di;ltlled lit Al)"
liellilil Y lit' tile F(irtrltii 77 I_tluidarll I lllliiTJddiill, Tile tlylitlil [tll#mbol] t. lilled to
retlrr;SCllt lero or lllrlro, r_Olllilia-_i_t)arato;dori, lirrP.11reiloi'/il/nlbol; [sl/mbol] (i) rcl)rc-
Itl+lltl4 lilit! lit niorc liCl, llrPl_lil'itll,

G.I.1 Process, Process Block, Process Do-loop

A p_ess liP.it Lira lttilil_' tlylitliX i a sulir(iiitilii;, exciqlt that till! keyword PROCI_$$
ill llultttt,il,iitl,d for SUBliOUTINI,INTENT Ilt;i_htrlil,iiliis Citli tic llrovidt.,ii f(ir diilnniy
Itrliiliient,#, tuiil it lli'oceHsCiilllild+ tiikc viii lilt#iiliit_(| NiICilrray Im it dilmlliy ttrlilllie, lit,

A prrtci_#tlt_lll l'aii iw(,ilr liliyW|i_i'e t,litit ti tliibrolitiil_ (_'allCall ilrrllr,]L |it t!ie
Mltllie Ilylii,iiX Tillit liil|ll'iiiit, i!i(_ cidl, exl'l;ltt thltt l,lil_ kcywltrd PROCZ$SCALLis sullsti-

tili, ell t'¢ir CALL, in lidditi.n, lll'(i!'clti4 Ciiil_l ('till llri'ilr ill lll'Oi'elt_t tlhlckH allt| lirOcllilll

dli-I(tlllIN, Itlld i'l,_ctiriilvl; l)r(ir(_i_Mi'illltt itrl_ llt,,riiiitl, cll, A process bloc/ ilt ti !let of
tttitti_lllelit,il lll',_l't_(ll,d tly a PROCESSES_itltt,Ciilillit itild f.ll.wed hy a INDPItOCIS1
xtiit(.,lliOliL, A lllol'k ilil'hldt_,tl lt!rli lit (liT(!ttilliriiiil, ilil_ i'_!tllN,ltl!r(i lit lliOl't! llro(,i;lii i'ttlltt,
&Till zero Ill' lii(irll lil'iWtlxN tllt-liD_lttM, A lirlll'l;lltt d(i-I(mll hilt, iii; Nillllll tiyiltltx tlill it

tlft-llilill, I_Xr,qlt thlit tho PIIOCE$$DOkl,ywllril i_ lll_l,,(Ihi llllwi_, itt' DO,t|lil lllilly lit' tll(_
lhi-i(lltll fail I'(liitilili (lilly li |irii('i,tltl d.-I..i I or ll |il, iil.l_xll('Till, alilt the ENDPIOCI$$D0
k,;yw.rd i_ iim,d ill llltwt, .f EIDDO,

A lt(il't, vilrill|lle (iT' lt(trt, illTay ClCliiCliL i, iili lit, liliSiit,d ivl till ItrliilliClit LiTOlily it

lilillc ltr(w,;s iii ii lll'ti('t,i_ll lthl('k ur llrlti'!q_x illl, l¢t_tlt, allil then rilllllOt lie tt('i'eltill,il hi

it llilllrliilt, ilii,_ citlli'd ili thiit lihl('k,

G.I.2 New Declarations

Fly,, liCWdi,,(+llirlitiilli _t,iiti;lliOliLli liT'i:dcfliii:d: INPORT,OUTPORT,INTENT,PROCZS$ORS,
tiliil PROCESStOIl'ION.

Inport.dr'r'lrir(lttolt :: INPOR,T ([drita.QIl)e]) [lirlltieJ] (IT

olitl_lrt-drx'bii_ltioli :', OUTPOP.T([d¢lta.ll//Ir']) [lirillir] (1)
in/rii/.l/r<_lrirritloit :', INTENT(IN) [ii(lnit.']ll) I

INTENT(OUT) [n(line](i i I
INTENT(INOUT) [n,mie](il

plx)r'essors.de,cl(lrrition:: PROCESSORS(boulids)

,l,im. :: wriib!i-nims I .nlml.

I l l,,ngrallll!lln,q /_aiitqiiayl, ili_rlrtlli, AIIti'I'IC&II Nttti_tllnl Sttuidlird X3,0-1971t, AlilPli¢ltli NIttiiinld
Slitlidliid_ hillil, iitt,, !07tt,

43

datrLtype :: fortr_an.datrLtypr I
fr,rtrnn.dcitrLtyl: ..m," l
INPORT ([dr,tnoO/l.']) I
OUTPORT([datn.tylw])

Ill the PROCESSORSsLtttenlellt, bounds him th,, srtllle sylltitx !u_the ;u'gml,.llts t.q)all

!rrty_-dec!trt)gr. Tlic_product .f tho dilllOllsiollS fllllSt IlO II(lll?,lq'(I. Ally |)rogralll,

process, subroutine, or rilllt, tiOll ii|rh,lilig a LOCATIONt,r SUBHACHINEal|notttti(m
must, include a PROCI,:SSORSde('larld;itm.

The sylnbol lortvan.data.tylm dPltot.es tho six sttut{hLrd F{;rtran data tyl,.s. TI,.

dilnellsimis in a.li trrt_.dl¢!!rtt, r in a port ¢lq.rlaratitm ran il,'llldlr wu'iablo {h.-
flared in tl,. port derlnrati(m, Imrtul,.tt, rs. _u.I argun,,||ts t. t.lw pruress .r subrc,i-

titie in which the declnrati.n lir('urs. 'rht. synlb,d "*" Callllilt t)t,_tlS,.d t. Sl.,rify all
It/il4tlllle(I 14iZe, V_Lrinl)les(to('larod wit, hill a |)ort, derlarati.n havo st'ttl)O I.('RI t. thld,

de('h_rltt:ion.

A PROCESS CO_0N s|Jiti, lllPllt ht_ t,ht' S,,lli{, _yllttLx IDI tL COMMONsttttlrlll(rllt.

G,I.8 New Executable Statements

Thcro _.r_,s_,wm new ex_wlltM)lt, stlLti,lllt,lll+S: CHANNEL,HEROZR,HOVEPORT,SEND,
RECZIVE,ENDCHANNEL,mid PROBE,Etu'h .f thti,sotttkt,s I_ tl,rgttillOl|ts i_list .f ('ontr(d
Sl.._('ifler_.t,,rln,:d a c, nt,'ol inf, r,mtion hst. TII,. SEND8ut,I RECEIVEstlttiqlll.litS ldso

take. othor hl'g!lllll+lltll. A ¢,ntr_d illflll'llltld.i{tll list (._ui illi'lllcle at IlltlSt 111|O Ill etwh

Sl..'('ifl_'r, t_x('ellt those tlud ill|lilt, i)m'ts. Tho Iiinllb_+r {if Idlow_ddf, port si.,rith.r,
VKl'ii_l_ fl'{)lll ()Ilk' i_|at{!llll'llt Lit m,_th,,l'. Tit,, Ill'st throo ,)f th,,s,, l_tlttOIili_lltS ttl'l_ l_l

fidlows,

chunneLstatement :: CHANNEL([channeLront_d] 11))

rne_c.strttr, mr'nt :: HER(IER([mr_gr ro,t_d] (I))
mo_,eport.shttement :: HOVEPORT([mol_elmrt.cont_d] 11_)

channcl.rontrol :: outport._mmr, i OUT=outtmrt-nnmr' I
ini,,'t.namr, I IN=lnport.nttmr I

ZOSTAT=ston+!lr.h,'+aion l ERR=_

mer!tc.conh_d :: outport.slWriJier I OUT=outport.slmCiJier l
inport.n_me I IN=inport.,am_. I

IOSTkT=stor(_!F.h,.ation l ERR=],A|Zlj
mo_,eW,'t.cont_d :: port.nnmr I FROH=port.n_me I

port._mtr I Te=port.name!

IOSTAT=stor_tle.h.'ation l gRR=_

outport.sprciji_r :: outport.nam,, I data-xmp!__ed_o_-iJ_
ol_tport.name :: port.nmnr

inport.name :: port.nt_me

port.,ame :: variable.name l a_r_rayrelem2nt._ame

44

A CHANNE:LNt,ILli.ll|elit,llill_l, i.,'hi,h, t,w_,i..I..l.,_'ifi,,r., iu.i tli,,M,,luu.t, ._uu,, _ul
.l|tpnrt. I_1i(i Ikll tilport, of the Mt_IIi!! |,ylll,, |f |,hi, N|,I'ilI_I4 OUT- tkll¢| IN = Ikl'l_ ,,ll|it, t,,,,I,

t,h,,.e .l.,rith,r. tiiu.l. ,.','lu' _u_t.h,,th'Mt,tul,I m,c,Jtl_lii,r/o|tll,'tit_, r,'.i.,('liv,,ly,
A H_O_ 14t,lt,l,i'llleli|, llltl_lt, i1.'111,1,,_t I,'_u_t, t,W,_ l)(,l'l .l,,,(.ili,,r., tUl(I t,h('.(' Iiltl.t

Illl, llll' lkll illl)¢,rt, lllid ,ill(, or lll(.'i, iilli(lill' iilltl)itr|,M, MI ,,r !Ill' _tt,llll, type, It" tj|l, .l, riliK.

OUTI tl.liil iN., tkrl' Olilit.l,l'll, l,ht' (lllt, llnl't .l.'¢'iit,q'. IlillH|, pr,,,',.(h, LII(' illiliti*t. Ml.'eittiq',

wiiil'h llltll_|,I)l't'e,'d(' tl,lly ot.lll'r .I.,rilii,r.,
Ill I_ MOVI£PORT _|Jt,|('llliqlt,. t,l|t' I)oI'L .t-,('itt,,r. lilt|Pit Ititlllt' t,WII illl)Ol*|,PI nr t,Wn

t.lt, i)ori.Pl, I)i)t, II hi" till, Mtt,llll_ t.Yl)l,, |1' t,lli_ .t,l'illK_ FROM= It,lilt TO" t_rt, tllnit.t,(,(l, t,hl,14t.

.l.,('iltt, r. iIIIIPI|, ¢)('('iir tblst,ll(, ttI'.L ,uI(I _ii,l'lDllll lkr_lil!li'll|,N, r('.i.'d, ivi'ly, Th(, ltrxt. Lh(.ll

i.,('it|t,. t,hl "i'rlltll" |)()rl. i_ll(I Lht, .,,ellll(I t,lll, %n" I)Ot,l,,
TIll, i:tJii.r fullr x{,it|A_llii_ll|l_ tkl°l_ flal f,_ll,:w..

sr.4.sttitrmr.t :: S£ND([sr_ltLco.t_l] (I)) [rlr,l;l_;t,'./]
ITcril_r.lit_ltrfllrtlt :: R_C£1V£([--'rt'H't!J'r_tit_)l] (i)) [l_af'i(thlr]

e_14cho_l.rL_it,itrmr.t:: ENDCHANNEL([_,,,_,,Lr'..tn_i] (I))

l;r._.._,t.tr_.,,.t :: PROBE([I;r._,'-,'..In_I] (11)

%OSTAT=sh._l,V,_.l.,',_t"-¢ I ZRR=_

IOSTAT._h,r.!FJ.,',*h..I ERR=_IkI_Jj,I END',_
l._t".r."t_'.l :: H'I"'/J_m_' I PORT=_'I""'I-"'"" I

If t_I..i, .I.'('it|,,r do(,. tl.f il.,lu(h, t,h,,oldie|ohM,'h_u't_('t,,,r.PORT=,it, tuu.t, I),_t,ht_
t|I'Mt, it, fill ill t,lii, ('nllt, rol illt'()l'lll;ltit)ll li.t,, A _t._,g,'.lc.'_t_o..i.,('ith,(I ill till IOSTAT=

or r.HPTY= .t.,riti,'r ililii_t,htwt, ilitl,Kl,/' I.i(I h)_i('M t,Yl.', l't_'"llel't,ively,

G.I.4 Mapping

Tile mapping annotations LOCATIONand SUBMACHINEare appended to process calls:

p_ess.call LOCATION(indices)
process.call SUBMACHINE(indices)

where indices has the same syntax as tile arguments to an _raY.element_ame,

G.I,5 Restrictions

Port variables cannot be named in EQUIVALENCEstatements. Programs cannot in-
clude COI_ONdata; PROCESSCOI_40Nmust be used insten_t.

G,2 Concurrency

With two exceptions, a process executes sequentially, ill the same manner as a
For|rim program. That is, e_h statement terminates execution before the next is
executed. The two exceptions are the process block and the process do-loop, in which
statements execute concurrently. That is, the processes created to execute these
statements may execute hl ally order or in parallel, subject to the constraint that
any process that is not blocked (because of a RECEIVEapplied to an empty channel)
must eventu_dly execute, A process block or process do-loop terminates, allowing
execution to proceed to tile next statement, when all its process and subroutine calls
tt_rlnhlate.

A process can _'cess its own process common data but not that of other pro-
c_,_sses. By default, process arguments are passed by value and copied back to the
pm'ent proc,ess, in textual and do-loop iteration order, upon termination of the pro-
cess block or process do-loop in which the process is calh:d, or ttpon termination of
the process, if the process does not occur in a process block or do-loop. A dummy ar-
gument declared INTENT(INOUT)is treated in tile same way. If a dummy argument
it_ dechtrcd INTENT(IN), then the (_orresponding parent argument is not updated
upon terminati_m. If a dummy argument is declared INTENT(OUT), the wlue of tile
v_riable is defined to a default wthle upon entry to the process.

G.3 Channels

Processes con lmunicate and sync!lronize by sending and receiving wdues on typed
communication strt_,_mls(,_dled chaunel._. A chanael is created by a CHANNELstate-

meet, which also defines tim suplflic'd |aport and outlmrt to be references to the
xmw chemic, l. A chamml is a first-in/first-out message queue. An element is ap-

pended to this queue by aPlflyiag the, SENDst_ttcmellt to tile outpox't that references
the cl.mnel, This statenwnt is asynchroaous: it rctttrns immediatc, ly, An _flemeat

is renmved from the qlmuc_ by _q_plying the RECEIVEst_ttc,mellt to the inport that
references the chamml, This statement is syac'hr.aous: it blocks uatil a value is
avai!ablc. The ENDCHANNELstat_,mc.t appends an end-of-channel (EOC) message

46

to the queue, The bl0VEPORTstatement copies a clmnm,l rcfi.rence from ore; port
wriable to another,

These statements all take as arguments a control iufln'mation list (ci/iMt), TIw

optional IOSTAT', END=,and ERR=Sl)ecificrs have tim same. meaning as tim equiwdc_nt

Fortran I/O specifiers, with etld-of-('lmmicl treated as end-of-file, and an operation
on an mldeflncd port trvated as erroneous. An implementation should also provide,
as a debugging aid, the option of signaling an error if a SEND,ENDCHANNEL,or RECEIVE
statement is applied to a port that is tim only ref,;rence to a chamml.

SEND(cilist) El,... ,E, Add the values El, E,, (the sources) to tile chamml ref.

ercnced by the outport named in cilist (the target). Tile source wdues must

match tile data types sp[,cific_d in th(: port declaration, in number and type.

RECEIVE(cilist) Vi,...,V. Block until the chamlcl n;fi;rcnced by the inlmrt named

ill cilist (the targ_,t) is noncmpt.y. If tim next value in thechannel is not EOC,
mow: values fl'om tim chamml into tim variables Vl, ..., V,, (the destinations).

Tim destimtt.ion wu'iabh;s mu_t match tim data types speciflf,d in the port
declaration, ill number anti t.ype.

ENDCHhNNEL(cilist) Alqmnd an EOC mq,ssagc to tile channel rob, fenced by tile out.

port named in cilist.

MOVEPORT(cilist)Copy the value of the. port Slweiflcd "fl'onl" in cilist (the som'cc)
to tim port Slmcifled "to" (tim target), aml set the source port to tmdefltmd.

A port is initially undefined. An undeflm'd port becomes defined if it is in(,lud_:d
in a CHANNEL(or MERQER:se(: bch,w) statc_uwl,t, if it occurs im a destination in a

RECEIVE,or if it, is llttlll(:d t1,8 |,h(_ t,a,rget of a bIOVEPORT8tfttClll(,,nt, whose 8ollr('e i8 It

defiu(,d lml't. Any other statetl|elit inwflving an ul|(|(:flnc,(l port is errollCOUS.

Application of the ENDCHANNELstatement to an outport causes that port to
become un(leflnq_'d. Tile corresl)On(liug inlmrt remains deflnecl until the EOC message

is r[_ceivecl by a RECEIVEstatement, and tiwn becomes undefint, d. Both inports and

out p()rts I)c_('.m_ und[,tim:d if tlwy are aamed as tile source of a SE_lVor MOVEPORT
operation.

Storage allocated fi_r a chamwl is reclaimc.,d when lmth (a) either the outlmrt him

bec,n closed, or the outport go_s out .f scope or is redeflm, d, and (b) either EOC is
re('eivcd (m the iup[,rt,, or tlw inlmrt g[,,s out ,f scope or is redefined.

G.4 Nondeterminism

The MERGERan,l PROBEstatvments are 11s,;clto specify nondctcrministic COmlmta-
ti(nls. NER(]ERis i(leati('al to CHAN,EL, _.'XCel)tthat it, can deflm_,multil)le outports to

|)e l'(;fi.*l'l'll('C_bltO its lll(_SSltg(: (]II(!II(L Message,s ar(, added to tim qtl[nle lm they ;tl'e St;lit

on (mtl)orts, with the ord[_r (ff messages fi'om each outport t)eing |)reserved and all

messages ew,.ntually ap|)earing in the Cl_WUe.An EOC value is added to the (lU[_u(_,
only after it lure been sent on all o_t.lmrts.

47

The PROBEstatement statement is used to obtain status information for a chan-

nel. It can be applied only to an inport. The IOSTAT= and ERR= specifiers in its
control list are as in the Fortran INQUIREstatement. A logical variable named in an

EMPTY,,specifier is assigned the value true if the channel is known to be empty, and

false otherwise. Knowledge about sends is presumed to take a non-zero but finite

time to become known to a process probing an inport. Hence, a PROBEof an inport
that references a nonempty channel may signal true if the channel values were only

recently communicated. However, if applied repeatedly without intervening receives,
PROBEwill eventually signal false, and will then continue to do so.

G.5 Mapping

The PROCESSORSdeclaration and the LOCATIONand SUBMACHINEannotations have

no semantic content, but determine performance by specifying how processes are to

be mapped within an N-dimensional array of processors (N > 1).
The PROCESSORSdeclaration is analogous to a DIMENSIONstatement: it declares

the shape and dimensions of the processor array that is to apply in the program,
process, or subroutine in which it appears. As we descend a call tree, the shape of

this array can change, but its size can only become smaller, not larger.
A LOCATIONannotation is analogous to an array reference. It specifies the virtual

processor on which the annotated process is to execute. The specified location
cannot be outside the bounds of the processor array specified by the PROCESSORS
declaration.

The SUBMACHINEannotation is analogous to an array reference in a subroutine

call. It specifies that the annotated process is to execute in a virtual computer
with its first processor specified by the annotation, and with additional processors

selected in array element order. These processors cannot be outside the bounds of

the processor array specified by the PROCESSORSdeclaration.

48

Index

-C,26 torun-timesystem,26
-D,24,25 assertion,27

-I,25 assumedsizearray,43

-L,25 attachingtoa process,27
-U, 25

-allow_common,25 BLOCK DATA, 40
-c,25 blockwisemapping,27

-c_flag, 26 bugs

-f_flag, 26 where to report them, 2

-fm, 4, 26 C preprocessor, 23-26
-g, 26 deficiencies, 41

-h, 26, 27 California Institute of Technology, 2
-1, 25 CALL, 7, 8, 43
-lazy.xecv, 34 CHANNEL, 3, 6-7, 16, 40, 44-47

-maptype, 27 channel, 7, 9
-nodes, 5, 32, 34 determinism, 9

-nostart, 34 reclamation of storage, 47
-o, 25 channels, 46-47

-pause_on._fatal, 27 command line arguments, 4
-pg, 26 COMMON, 1, 25, 44, 46, see-allow_common
-rangecheck, 26 common, see process common
-s, see startup file, 34 communication, 5, 9

-safe, 26 many-to-one, 16

-save_fds, 34 compiler, 4, 23, 25-26
-static, 26 compiler errors, 26

.F, 23 complex numbers

.FM, 23 deficiencies, 40

.c, 23
concurrency, 46

.f, 23, 25 conditional compilation, 24

.fm, 23 consistency check, 27

.o, 25 constants using CPP, 24
#include, 25 continuation lines

_.c, 25 deficiences, 40
Fortran M preprocessor, 25, 26

CPP, see C preprocessor

access to Fortran M software, 37 cpp_ex.FM, 24

applications of Fortran M, 1 cyclic mapping, 27

Argonne National Laboratory, 2 data-parallel, 1
arguments dbx, 27

to compiler, 25-26 debugging, 27-28, see -g
to CPP, 24, 25 deficiencies, see limitations

to process, see dummy arguments determinism, 1, 9, 14, 16, 18, 47-48

49

DIMENSION, 20 Fortran D, 1

DO, 8, 43 ftp, 37

dummy arguments, 5, 43 functions
deficiencies, 40 reserved names, 39

to processes, 15 further reading, 28

EMPTY, 17, 45, 48 gdb, 27

END, 9, 11, 47 GETARG, 41
end-of-channel, 9-11, 41, 47

with PROBE, 17 High Performance Fortran, see HPF

ENDCHANNEL, 4, 6, 9-10, 40, 44-47 HPF, 1

ENDDO, 8, 43 IARGC, 41

ENDFILE, 9 implied do-loop, 16
ENDPROCESSDO, 6, 8, 43, see PRO- INCLUDE

CESSDO deficiencies, 40
ENDPROCESSES, 3, 6, 8, 43, see PRO- inline comments

CESSES deficiences, 40
endprocesses, see process block INPORT, 3, 5, 6, 10, 43, 44

EOC, see end-of-channel with RECEIVE, 10-11

EQUIVALENCE, 46 INQUIRE, 17, 48
ERR, 7, 9-11, 16, 17, 47, 48 installation of Fortran M, 2

examplel.fm, 3 INTENT, 6, 9, 15, 43

examples INTENT(IN), 15, 40, 43, 46
communication, 11 INTENT(INOUT), 15, 40, 43, 46

cpp_ex.FM, 24 INTENT(OUT), 15, 40, 43, 46
examplel.fm, 3 intentl.fm, 15

intentl.fm, 15 IOSTAT, 7, 9--11, 16, 17, 36, 45, 47-48
makefile, 30

mergerl.fm, 17 limitations

producer-consumer, 3 deficiencies, 40-41

ringl.fm, 8 heterogeneous networks, 35
ring2.fm, 12 in network version, 34

tree.fm, 22 on number of processes, 34

work_man.fm, 14 on process connectivity, 35
expressions linker, 4, 25---26

deficiencies, 40 LOCATION, 6, 20-22, 44, 46, 48

fatal error, 27 logical IF, 40

file descriptors, 34 macro expansion, 24

fm, see compiler makefile example, 30
fm_pause, 28 many-to-one communication, 16

formal parameters, see dummy argu- mapping, 20, 46, 48

ments -maptype, 27
Fortran 77, 1, 5, 25, 26, 40, 42, 43 blockwise, 27

ANSI standard, 43 cyclic, 27

5O

MERGER, 6-7, 16-17, 40, 44, 45, 47 process arguments, 46
determinism, 47 process block, 3, 7-8, 43, see PRO-

mergerl.fm, 17 CESSES
message format, 5 determinism, 9

message queue, 4, 7, see channel process call, 43
modular programming, 1 PROCESS COMMON, 1, 5, 6, 25, 41,
MOVEPORT, 6, 7, 9, 40, 44, 45, 47 43, 44, 46

determinism, 9 deficiencies, 41
process common, 46

network process definition, 3, 4, 43
-nodes, 32 process do-loop, 7-8, 43, see PROCESSDO
heterogeneous, 35 determinism, 9

limitations, 34, 35 in a process block, 8
limits on number of processes, 34 PROCESSCALL, 6-8, 43

limits on process connectivity, 35 PROCESSDO, 6, 8, 40, 43, see process

startup file example, 33 do-loop, see ENDPROCESSDO
startup file method, 33 deficiencies, 40

network specifics, 31-35 PROCESSES, 3, 6-8, 43, see process
nondeterminism, see determinism block, see ENDPROCESSES

nondeterminismistic computations, 16 processes, see process block

object files, 25 PROCESSORS, 6, 20-23, 27, 40, 43,
obtaining Fortran M software, 37 44, 48

deficiencies, 40
OUTPORT, 3, 5, 6, 43, 44 producer-consumer example, 3

with SEND, 9-10 profiling, see -pg

parallelism, see concurrency queue, see channel
pause points, 28
performance, 31 range checking, 26, see -rangecheck
PORT=, 45 READ, 9

ports, 3, 5-7 RECEIVE, 4, 6, 7, 9-11, 17, 34, 40,
deficiences, 41 41, 44--47

deficiencies, 40 complex messages, 10

determinism, 9 deficiencies, 41

in CHANNEL statement, 7 ports over ports, 12
in MERGER statement, 16 variable-sized messages, 10, 11

inport, see inport receive
INTENT(INOUT) deficiences, 40 determinism, 9

INTENT(OUT) deficiences, 40 references, 28

outport, see outport reserved words, 39
transferring ports, 12 ringl.fm, 8

preprocessor, see C preprocessor ring2.fm, 12
PROBE, 6, 16-19, 40, 44, 45, 47, 48 rsh, 32

determinism, 47 run-time system

PROCESS, 4-6, 43 debugging version, see -g

process, 5-7 safe version, see -safe

51

run-time system arguments, 4, 26
running a program, 4, 26

scope
in port declarations, 5

SEND, 4, 6, 7, 9-10, 14, 34, 40, 44-47

complex messages, 9
determinism, 14

ports over ports, 12
variable-sized messages, 10, 11

send

determinism, 9

startup file, see -s, 34
SUBMACHINE, 6, 20, 22-23, 44, 46,

48
SUBROUTINE, 5, 43
subroutine call, 43

in a process block, 8
subroutines

reserved names, 39

syatax errors, 26

task, see process

task-parallel, 1
tree,fin, 22

tuning, 31

variable-sized messages, 11
variables

reserved words, 39

virtual computers, 20
virtual processor, 20

-maptype, 27

work.man.fro, 14

WRITE, 9

52

Distribution for ANL-93/26, Rev. 1

Internal:

J. N. Beuer (160)
I. T. Fos_er
F. Y. Fradin

R. D, Olson

G. W. Pieper
R. L. Stevens
S. J. Tuecke (400)
C. L. Wilkinson

TIS File

External:

DOE-OSTI, for distribution per UC-406 (54)

ANL-E Library (2)

ANL-V Library

Manager, Chicago Operations Office, DOE

Mathematics and Computer Science Division Review Committee:
W. W. Bledsoe, The University of Texas, Austin

B. L. Buzbee, Hational Center for Atmospheric Research
J. G. Glimm, Sta_e University of Hew York at Stony Brook
H. T. Heath, University of Illinois, Urbana

E. F. Infante, University of Minnesota

D. O'Leary, University of Maryland

R. E. O'Malley, Rensselaer Polytechnic Institute

M. H. Schultz, Yale University

J. Cavallini, Department of Energy - Office of Scientific Computing

F. Hoves, Department of Energy - Office of Scientific Computing

53

