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FREEZE-OUT AND THE FAILURE OF RICHTMYER'S PRESCRIPTION

Karnig O. Mikaelian
University of California
L.awrence Livermore National Laboratory
Livermore, California 94550

In the standard Richtmyer-Meshkov!'? (RM) instability
perturbations at a shocked interface grow after the passage of a shock.
Freeze-out refers to the phenomenon whereby the perturbations do
not grow, i.e., freeze-out, after the passage of a shock. This is fairly
straightforward, at least theoretically (no experiments have been done
so far) in a doubly shocked system: The first shock induces a growth
which can be completely neutralized by a second shock, provided that
the direction and the strength and timing of the second shock are
properly chosen (see ref. 3). This type of double-shock freeze-out
occurs in compressible as well as incompressible fluids, and is easy to
understand.

Somewhat more subtle is single-shock freeze-out; in our pursuit
of this phenomenon we found that in certain cases Richtmyer's
prescription fails to give the correct growth rate.

Fig. 1 shows the system and our notation: An incident shock
moves at speed W. from fluid A into fluid B having densities p, and pg
and specific heat ratios Ya and Tr respectively. The interface between

A and B has a sinusoidal perturbation of wavelength A and initial
amplitude Mo=Mpefore After the shock strikes the interface the

perturbation m(t) grows linearly in time at a rate given by

n_ _
n Avk = NGR= Acffectivc . (1)
0

where Av is the jump velocity of the interface (Av=u,=u, in Fig. 1),
k=2n/A, and NGR stands for Nermalized Growth rate, a dimensionless
quantity. Eq. (1) is limited to the linear regime, i.e., nk<<l, the regime

considered bv Richtmyer.
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The question is: What is A ? For incompressible fluids

effective”
Pp—P
Acffcctive=Abcforc= pB +pA : @)
B A
Of course AbcforezAafler and MNpefore™ M after for incompressible fluids,

i.e., the Atwood number as well as the amplitude immediately after
the shock are the same as before the shock: There is no compression.

In this case freeze-out becomes completely trivial: the NGR in Eq. (1)
vanishes if and only if PE=Pa> i.e., for identical fluids. The same is true

for the Rayleigh-Taylor instability also.

The situation is not so trivial for compressible fluids: One can

have PA=Pg with Yo*Yg- In fact Richtmyer's prescription for Acffcctivc

is:

— Q 3
“effective Aaf[cr x Compression Factor

P1—P> Av

= o 1 - —
( p1+p2>( Wi ()
which he gave on the basis of three numerical examples.] His
prescription was to use A n instead of A in the

after 'after bcforenbefore

classical incompressible result Ti=Avan0 which he had obtained first

by treating the shock as an instantaneous acceleration. In Eq. (3)

Aa“crz(p]-pz)/(plwhpz) and the compression factor is na“cr/noz
I—Av/Wi.
Therefore, we should expect freeze-out not when Abcforc=0

(incompressible result), but when A =0, according to Richtmyer's

after™
prescription. This is easy to ackieve if fluid A is highly compressible
(following Richtmyer we are considering cases where pA<pB): a highly
compressible low density fluid can be shocked to a density equal to or
greater than the density of a less compressible fluid even though the
latter is initially more dense. Referring to Fig. 1, one can start with
p <Py vet achieve p,=p, (freeze-out) or even p,>p, (Atwood number

reversal) provided that fluid A is much more compressible than B.



An example with yAzl.] and yB=5/3 is shown in Fig. 2 where we
pIOt Aaftcr
initiai Atwood numbers: Abeforc=0.0, 0.25, 0.5, 0.75, and 0.95. Here € is

a measure of shock strength,

and the compression factor as functions of & for various

e=1 -P—Q,
P3
related to the Mach number of the shock via
YA+ 1 £
— 1 + ‘_—
MS 2'YA 1-€

Clearly, for €-+0 the compression factor —»1 and A . — Alefore:

As € increases A o decreases because fluid A compresses more than
fluid B and A ,
after

negative at higher &. The compression factor is always positive, as seen
in Fig. 2b. If we concentrate on the case A =0.5, we see from Fig.

in some cases, passes through zero and is indeed

before
2a that Aaf[crsO for £20.87. Therefore according to Richtmyer's

prescription, Eq. (3), we should have freeze-out (n=0) at £=0.87, and

phase reversa! ( 1n<0) at higher e.

Direct numerical simulations, however, do not confirm this
behaviour. In Figs. 3 and 4 we show the cases £=0.87 and £=0.95
respectively. Clearly, there is no freeze-out in Fig.3 nor phase reversal
in Fig. 4. The time scale, microseconds, in these figures follow from
setting P0=P atmosphere and Po=Paimosphere’ while the dimensions,

centimeters, follow those of the CalTech shock-tube.* We should point
out, however, that such strong shocks cannot be generated at the
CalTech shock-tube.

These and other examples given in ref. 5 show that Richtmyer's
prescription fails in certain cases. The cause of this failure is not clear,
and we emphasize that it is not the strength of the shock. In fact the
examples which Richtmyer considered were strong shock problems,
and they all agree with his prescription, which we also verified. An
example of a weak shock, €=0.4, which does not agree with Richtmyer's
prescription is given in ref. 5. For weak shocks his prescription can be
written explicitly as



—_ ] 2 p
A ttective=Bpetore T EF/Y, + terms of order e” +.. .. (4)

where
R(R-y? ] ]
F=2[1-R+2—€—l—zy(R+1)](R+l) Ly+)!, (5)

with the definitions R=py/p, and y=(Rvg/v,)"".

In contrast, we found that an analysis of the RM problem given

by Fraley6 agreed with our simulations. Richtmyer's prescription and

Fraley's analysis both give the correct limit, Aeffective"")Abcforc as €0,

i.e., they both reproduce the expected leading term Abcfore in the

expansion given in Eq. (4). The next term, however, is different;
Fraley's expression for F, after correcting a misprint, is®
2, .2
_ 2 Ri+y -1 -1
F—[(y—l) H R -2R-2y] (R+1)" (y+1) (6)
to be compared with Eq. (5).

Two cases naturally come to mind in comparing Eq. (5) with Eq.
(6): When YA=Yp Eq. (5) gives

F(y,=v5)=2(VR - 1)/(R+1) (7a)
while Eq. (6) gives
F(y,=vg)=-(VR - D)/(R+1) , (7b)

i.e., half of Eq. (72). One must remember, however, that F is the
coefficient of the E/YA term in Eq. (4) for small € and therefore can be

easily masked if the leading term Abcforc is large.
The second case is Abcforc=0, i.e., R=1, for which Eq. (5) gives

1
F(p,=p,) = -1+ 8
PA B y (8a)
while Eq. (6) gives
PR (PR 7
F(p,=py) = (1 + (1 - ). (85)

Note that for y=2 Eq. (8a) gives -0.5 while Eq. (8b) gives 0. Since the

leading term A, . =0, we conclude that A ” is negative
before cffective

according to Richtmyer's prescription while it is zero according to
Fraley's analysis. Examples of ¢his type are reported in ref. 5 where

we did find freeze-out (n=0) for a case with Ab =0 but A #0.
cfore

after



In summary, we found a case of freeze-out which, according to

Richtmyer's prescription, should not have been there: =0 while
A re?0- Conversely, freeze-out cases expected from Richtmyer's

prescription, i.e., Aa“cr=0, did not exhibit freeze-out, an example of

which is Fig. 3. Nor did the case of Atwood number reversal, Fig. 4,
exhibit phase reversal. This lack of correlation between the sign of

A and the sign of m is, we believe, definite proof that Richtmyer's

after
prescription fails in certain cases. We should add that Fral:y's analysis
passed these tests, correctly showing where freeze-out should occur
and where it should not. Equally if not more important is the fact that
Richtmyer's prescription gives an accurate result in many cases, in
particular for previous experiments, physical or numerical, starting of
course with Richtmyer's own numerical experiments. There are 4 free
variables in the RM problem: pA/pB,e, Ya and T - Unfortunately we
have no simple recipe for finding where in this 4-dimensional space
Richtmyer's prescription is guaranteed to work. The combination of
high Atwood numbcrs, weak shocks and high y's appears to be a safe
bet.
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