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DENSITY ESTIMATION BY MAXIMUM QUANTUM ENTROPY

R. N. Silver, T. Wallstrom, H. F. Martz
MS B262

Los Alamos National Laboratory

Los Alamos, NM 87545

ABSTRACT. A new Bayesian method for non-parametric density estimation is proposed, based
on a mathematical analogy to quantum statistical physics. The mathematical procedure is related
to maximum entropy methods for inverse problems and image reconstruction. The information
divergence enforces global smoothing toward default models, convexity, positivity, extensivity and
normalization. The novel feature is the replacement of classical entropy by quantum entropy, so
that local smoothing is enforced by constraints on differential operators. The linear response of
the estimate is proportional to the covariance. The hyperparameters are estimated by type-II
maximum likelihood (evidence). The method is demonstrated on textbook data sets.

1. Introduction

Non-parametric density estimation has been studied extensively by statisticians. If a set of
N, observations, {z;}, is identically and independently drawn from a probability density
function f(z), the problem is to estimate f when no parametric form is known. A variety
of non-Bayesian methods, such as histograms and kernel density estimators, have been
developed and applied to density estimation [for reviews, see Silverman, 1986; Izenman,
1991]. There has been comparatively little work on maximum penalized likelihood methods
[see, e.g., Good and Gaskins, 1980], despite their potential advantages such as a Bayesian
interpretation, the ability to combine explicit prior knowledge with the data, the ability
to combine data from different sources, etc. The situation in density estimation contrasts
sharply with that of inverse problems and image reconstruction where maximum penalized
likelihood methods are dominant [see, e.g., Titterington, 1985; Demoment, 1989)].

In a maximum penalized likelihood (MPL) framework, the density estimate is deter-
mined from the maximum of

Q(f)

il

S In(f(2) - al(f; £.6) M

as a functional of f. The first term in (1) is the log-likelihood function and the second
term is the penalty function (alternative terms are regularization functional, or information
divergence). Here f, is a default model in the absence of data, I(f; f,, 8) is zero when f = f,
and monotonically increases as f diverges from f,, a is a global smoothing hyperparameter
(or statistical regularization parameter), and 8 is a local smoothing hyperparameter.
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We propose a Mazimum Quantum Entropy (MQE) method for density estimation,
which corresponds to a choice for the penalty function, I,. The mathematical structures
we use originated in quantum statistical mechanics; hence, an alternative name is Quantum
Statistical Inference - QSI [Silver, 1993]. MQE is a variation upon the maximum entropy
(ME) methods [Skilling and Gull, 1989] that have been applied extensively to inverse prob-
lems and image reconstruction. The penalty functions used in ME are various modifications
of the Shannon entropy of information theory, which in fact originated in the 19th century
development of classical statistical physics. The penalty function for MQE is the more
general concept of relative quantum entropy, which was developed [von Neumann, 1927| for
applications to quantum statistical physics.

Both ME and MQE enforce desirable properties of density estimators such as global
smoothing toward a default model, positivity, normalization, extensivity, and convex opti-
mization. But, in addition, MQE enforces local smoothing by constraining the expectation
values of differential operators. The maximum local smoothing limit of MQE is traditional
penalized likelihood [Good and Gaskins, 1980] which does not enforce extensivity. The
zero local smoothing limit of MQE is classic ME. MQE was applied previously to inverse
problems [Silver, 1993], where it was shown to improve upon ME wherever local smoothing
is important. MQE may be compared to an alternative proposal [Skilling and Gull, 1989;
Robinson, 1991] to smooth ME using ‘inivinsic correlation functions’ and ‘hidden images’,
which does not incorporate local smoothing in the penalty function.

The purpose of the present paper is adapt MQE to density estimation. The theory
will be developed within a Bayesian framework refering to [Silver and Martz, 1993] for
mathematical details. The method is illustrated using textbook data sets [Scott, 1993].

2. MQE Density Functions

In MQE, the density function, the constraints and the entropy are all expressed in terms
of a new concept in statistics, the density matriz. D(z,z') is an oo x oo matrix which is
real symmetric and positive semidefinite. The density function f is equal to the diagonal

elements of D,
f(z) = D(z,z) . (2)

D will be determined uniquely by the combination of constraints on f and a maximum
entropy principle. Without loss of generality, we assume 0 < z < 1 and impose appropriate
boundary conditions.

The density matrix, D, can be diagonalized by a unitary transformation,

p

D(z,2) = Y bule)wnbu(e)) . (3)

n=0

The %,, are orthonormal and complete forming a Hilbert space. The wetghts satisfy w, > 0.
Hence,

f@) =Y wai(e) 20 (4)

and
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(For practical calculations, we will show below that the 1, may be obtained as eigenfunc-

tions of a linear differential operator, and the w, are related to the eigenvalues.)
Linear Lagrange constraints on f may be written in terms of D. Data constraints are

U(e)f(a)dz = E(U) = Tr{UD} , (6)

J4
where (U)e,r = U(z)6(2 — '). For example, if the constraints consist of a set of E(O;) =
jo i(z)f(z)dz, then U(z) = Y, A,0,(z) for Lagrange multipliers \,. The normalization
constraint on f is

E(1)=Tr{D}=1 . (7)

The key constraint is local smoothing, which is defined by the choice of an Hermitian
differential operator L whose expectation value is the local smoothing constraint,

.
B(L)=THLD} = 3w, / ba(e)Lp(c)dz . (8)
n=0 J0

We have used quadratic, L, = —8%/8z*, and quartic, L, = 8*/8z*, differential operators.
(We note that there are many other possible choices including z-dependent forms.) This
explicit constraint applied to D is an implicit local smoothing constraint on f. In ME f will
have the same singularity structure as U, whereas in MQE f will have smoother singularities
than U depending on the choice of L. The singularity structure of U is determined by the
nature of the data analysis problem. For example, for inverse problems U consists of a
sum of Lagrange multipliers times point spread functions which are most often already
locally smooth. However, we shall see that for density estimation U consists of a sum of
6-functions. Then, ME produces an f with é-function singularities, a MQE constraint on
L; requires f to be continuous, and a MQE constraint on L, requires f to have continuous
first derivatives. For a more comprehensive discussion see [Wallstrom, 1993).

These constraints are still not sufficient to uniquely specify D, so now we invoke a
maximum entropy principle. The quantum entropy of a density matrix is

Sq = -Tr{DIn(D Z [wn ln(w,)] . (9)

n=0

S is invariant to unitary transformations of the Hilbert space. It is not a relative entropy,
so that in the absence of constraints all eigenfunctions are equally likely. One can prove
that Sg is a concave function of D [Wehrl, 1978]. The maximum entropy principle is to
maximize ¢ subject to the constraints of the problem. Using the method of Lagrange
multipliers, maximize

Q(D) = 8¢ - BE(L) - E(U) + (k +1)E(1) , (10)

where the Lagrange multipliers are chosen so that the constraints are satisfied. The local
smoothing constraint on E(L) has Lagrange multiplier 8, the data constraint has Lagrange
multiplier U, and the normalization constraint has Lagrange multiplier u + 1.
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The maximum of (10) is found at
D =exp(-H +pl) , (11)

where
H=pL+U . (12)

This constitutes an exponential family of density matrices parameterized by U, 8, and
p. Within this family, there is a one-to-one correspondence between a choice of density
function, f, and a corresponding density matrix, D.

Diagonalizing D, we find that the v, in (3) are eigentunctions of H, i.e.

Hy(z) = eatn(z) - (13)
The weights are
W, = exp(~en +11) (14)
For example, for L, (12) reads
62 n
“ﬁ-—%ﬁ + U(T)wn(w) = end)n(m) ) (15)

which is analogous to the time-independent Schrodinger equation. Such eigenvalue equa-
tions may alternatively be derived from variational principles as developed in Sturm-
Liouville theory.

The local smoothness of f is adjusted by tuning . For reasonable choices of L (such
as the quadratic and quartic), the ¢, increase monotonically with n and with 8. The
number of nodes in ¥, (z) also increase monotonically with n, so that small n corresponds
to smoother 92(z). For § = 0 (ME) there is no local smoothing. As g is increased fewer
eigenfunctions contribute to (4) resulting in smoother f.

The normalization of f is maintained by choosing

p=-In <§:e“‘") . (16)

n=0

We are now ready to identify the penalty function, Iy, in (1). The penalty function is
a relative quantum entropy,

I =Tr{DIn(D) - DIn(D,)} , (17)

where D, is the density matrix corresponding to the default model f,. This may be regarded
as a straightforward generalization of the Kullback-Liebler entropy used in ME methods
from density functions to density matrices. In the limit of no local smoothing, 8 — 0, MQE
reduces to ME, Alternatively, let @,(D) be the entropy variational functional similar to
(10) whose maximum is at D,. Then

Ig = (Do)~ Qu(D) . (18)
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It follows that Iy > 0. We summarize the mathematical properties satisfied by I; which
are critical to its relevance to statistics.
The concavity property of S means that G defined by

850 = - / Gz, 2')6 f(2)6 (') dzda’ (19)

is positive semidefinite (no negative eigenvalues). The consequence is that one can prove
duality properties between Iy and its Legendre transform,

ColU3 U, B) = Ig(f; fur ) + / f(2)U(z)de (20)

which is a cumulant generating functional. First order variations may be shown to be

6C, = /f(:n)éU(z)dm 61, = /[-U(z)+ U.(2)]6f(z)dz . (21)
Second order variations are

61, = %/G(m,z’)éf(m)&f(z')dzdz' 5:C, = m;. /G"'(m,z’)&U(:c)c?U(m')dmdz'

(22)
Notice the dual symmetry between f and U in these relations, which is analogous to the
dual symmetry between observables and Lagrange multipliers in traditional ME methods.
Legendre transform dual mathematical structures in statistics of this form may be
given a differential geometry interpretation [Amari, 1985]. From (17) I5(f,; f,,8) = 0, and
from (21) dIy(f; fo,B8)/df =0 at f = f,. Hence, I is an information divergence, and G
is a Riemann metric in the manifold of f.
The concavity property ensures a dual (one-to-one) relation between conjugate vari-
ables, f and U,

6f(z) = -/G“(w,w')5U(m')d:n' . (23)

Because of this relation, G~! may be termed a linear response function. For typical choices
of local smoothing operator, L, (including the quadratic and quartic) one can demonstrate
that G~!(z,z') peaks at ¢ —z' = 0 and falls off faster than a power law as | z —z' | increases,
a property we term locality. The characteristic width of G~'(z, z') is termed the correlation
length, 4. For Ly, v «x (B8)'/*. For Ly, v « (B8)!/*. For example, let G7' be the linear
response function for no data constraints and a flat default model, i.e. U = 0. Then for
L,, one can prove G;!(z,2') «x (L —erf(|z — ' | /v))/7. Figure 1 illustrates the behavior
of G;! for quadratic and quartic local smoothing. Note that for quadratic smoothing G !
is strictly positive, whereas for higher order smoothing G~! can have negative components
at large | ¢ — ¢’ |. The non-linearity of MQE guarantees that f > 0 regardless of the choice
of local smoothing.

Readers familiar with density estiniation may be tempted to identify G~! with the
kernel in a kernel density estimation procedure. Readers familiar with ME may be tempted
to identify G™! with the intrinsic correlation function used in the [Skilling and Gull, 1989)
proposal to correct ME for local smoothing using hidden ME tmages. However, there
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Fig. 1. Linear Response Functions - G;! for local smoothing constraints of the form
Ly = 8V /8z", no data constraints, and a flat default model, i.c. U = 0. 8 is the Lagrange
multiplier for the local smoothing constraint on the density matrix. Results are shown for
quadratic (dashed) and quartic (solid) local smoothing.

are significant differences. For example, in both these methods no structure in f can be
narrower than the width of the kernel or intrinsic correlation functions, whereas in MQE
the non-linearity permits structure in f which is much narrower than the width of G-'.

ME (8 = 0) satisfies local eztensivity, which means that the penalty function is an
additive function of the f(z) at each point. However, we often have prior knowledge or
evidence in the data that f is locally smooth, which violates the local extensivity property.
MQE relaxes this condition to non-local extensivity, defined as follows. Let 61& be a change
in Iy corresponding to a change § f' in f. Let the §f' have compact and disjoint supports
separated by much more than 7. Then non-local extensivity means 6y ~ 3 6 (‘;, for
6f = >,6f'. This may be shown by combining the locality properties of G~ with (22).
In comparison the MPL method of [Good and Gaskins, 1980] does not obey any form of
extensivity, because it is equivalent to ¥ — oco.

These convezity and non-local eztensivity properties of I satisfy important desiderata
for both image reconstruction and density estimation. In the latter case non-local exten-
sivity is compromised only by the added constraint on the normalization of f. Many other

mathematical properties of I have been established in physics contexts [for reviews, see
Wehrl, 1978; Balian, 1991].

3. Application to Density Estimation

We apply these properties of I to the MPL problem defined by (1). From (21), the first
order variation of @(f) requires that the MPL estimate satisfies

N, 6(.’1} -z )
———+ a(U(z) - Us(z)) =0 . 24
;m) (U(z) - Uo(a) (24)
From (22) the second order variation (Hessian matrix) is positive semi-definite, so that
solution of (24) is a problem for convex non-linear optimization methods [Skilling;, 1993].
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A variety of interpretations of MPL methods exist including ways to estimate hyperpa-
rameters and quantify error estimates for any choice of penalty function [Thompson, 1991].
We specialize to the Bayesian interpretation of MQE. Bayes theorem is

P(f [{z.}; for, B x P[{z.}; fo, e, 8] = P[{z.} | f] x P(f; fo,0, 8] . (25)
The likelihood function is

N,
P{{zi} | f1 =[] f(=1) - (26)
i=]
The prior probability for f is taken to be

P(f; foya,B] x exp[~aly(f; f.,8)] . (27)

Then P[f | {@i}; fo» @, B] is the posterior probability for f, and P[{z.};f,,a,0] is the
marginal likelihood, or evidence. We take the best estimate, f, from the maximum of the
posterior probability which is equivalent to maximizing (1). Thus, the MPL estimate is
equivalent to a Maximum A Posteriori (MAP) estimate in the Bayesian interpretation.
The hyperparameters a and § are estimated from the maximum of the evidence. This
method is termed type-II mazimum likelihood (ML-II) in the statistics literature [Good,
1983; Berger, 1985], and the evidence procedure in the ME literature. The marginal likeli-
hood is obtained by integrating Bayes theorem (25) over f. A metric must be used in this
integration over f in order to enforce invariance to coordinate transformations. The ap-
propriate choice is the Jeffrey’s prior y/det(aG), which is equivalent to a Riemann volume
factor for the f-manifold in differential geometry. We evaluate the integral in a Gaussian
approximation to the expansion of Q(f) in In(f/f) about Q(f). The resulting marginal
likelihood is .
P[{mi};foya)ﬁ]oc W-XGXPQ(f) ) (28)
det (1 + M)

(87

where the N, x N, matrix M is

M, = S22

f(z)f(z))

The first term on the r.h.s. of (28) favors the simpler f of large a and g, so that it may be

termed an Ockham factor. The second term, exp Q(f), favors the more complicated f of

small a and 8, and it is termed the data factor. The balance between the Ockham factor

and data factor determines the optimal hyperparameters, & and 8. We find empirically

that the ML-II optimization of hyperparameters is convex for all data sets studied so far.
The covariance of the MAP estimate can be calculated using the same Gaussian ap-

proximations employed in the calculation of the marginal likelihood. The result is

n_ G\z,e) <& G l(ze) (, L M\ G(z),3)
Cottteh Jal= & i.JZ=l af(z,) (l+d)|’j fz))a (29)
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We interpret

Ni=a / Corlfle). [zl (30)

as the number of degrees of freedom in f. One can prove N; > 0. In the absence of data,
the prior N, = Tr{G'} is proportional to 1/4. This provides a simple interpretation of
the local smoothing hyperparameter 3, hecause it determines the correlation length scale v
which is inversely proportional to Nj. ME (8 = 0) corresponds to an infinite N, which is
why ME has infinite error bars on individual points of the MAP estimate, f. MQE (8 # 0)
has a finite N, and finite error bars on individual points.

Convergence of density estimation can be monitored using N,, because the effect of
the data is to reduce it toward zero. Let f, be the true density function. As N, becomes
large one may use the property

N,
E(kaw):mjoumwwz, (31)

to approximate the integral in (30). The result is

i

L f(z) - ,

In analogy with developments in ME [Skilling and Gull, 1989}, we define
N, =Tr{M(al+M)'} | (33)

as the number of good measurements. Manifestly, N, > N, > 0. Then, to the extent that
f has converged to f, (32) and (33) imply that N, — aN,/N, < a.

One can also derive a fundamental relation between the linear response of the MQE
MAP estimate to perturbations and the covariance matrix,

6i(z) = -a [ Corlf(a), S=N6U,(e Vo' . (34)

Here 6U, is an infinitesimal perturbation in U which may b: due to changes in the default
model, changes in the data, changes in other constraints, et:. For example, an infinitesimal
change in the default model corresponds to éU,(z) = - [ G, (z,z')é6f,(z')dz’. Putting
(34) in words, the covariance matrix also describes the sensitivity of the MAP estimate to
changes in prior knowledge or data. Large errors on the MAP estimate correspond to high
sensitivity to input information, and small errors correspond to low sensitivity.

4. Examples

We apply MQE to three textbook examples of density estimation problems: the duration
of eruptions of the Old Faithful Geyser; the amount of annual snowfall in Buffalo; and the
Lawrence Radiation Lab (LRL) particle physics data. For each data set, we urge readers to
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Fig. 2. Old Faithful Eruptions - 107 measurements of the duration of geyser eruptions are
displayed as a histogram with 100 bins. The solid line is the optimal MQE estimate obuained
with quartic local smoothing, L. The dashed lines indicate 3 one standard deviation errors
on the MQE point estimate.

examine the corresponding sections of [Scott, 1993] to compare the performance of MQE
with other approaches to density estimation.

To obtain the numerical results presented in this paper, we used Newton-Raphson for
the non-linear optimization and matrix diagonalization of a discrete approximation to MQE
to calculate f from knowledge of U. The number of pixels (bins) used is indicated directly
on the figures for each Jdata set. In other words, the raw data were histogrammed prior to
applying MQE. We chose pixels widths which were much narrower than any structure in f,
so the discretization should not significantly affect the estimate. All the MQE calculations
used a flat default model, f,, normalized to unit integral over the range of . The values
for the hyperparameters, a and 3, are quoted for data scaled to the range 0 < = < 1.
The term, optimal estimate, means that the hyperparameters were chosen to maximize the
marginal likelihood.

Figures 2-4 show results for the duration of eruptions of the Old Faithful Geyser. The
raw data from 107 eruptions are displayed as a histogram using 100 bins. Note that this
histogram is not an optimal histogram estimate of f, which would use a much smaller
number of bins. Rather, this histogram is simply a convenient way to display the raw data.
In Fig. 2 the solid line is the optimal MQE estimate obtained for a = 3.02 and 8!/* = 0.09
with quartic local smoothing. The dashed curve shows t one standard deviation point
estimates of errors on the MQE estimate, which are calculated from (29) according to
o(z) = \/Cov[f(z), f(z)]. These provide only a partial representation of the full covariance
matrix for the MQE estimate. The reader can be the judge of whether the optimal MQE
estimate and errors are credible.

Figure 3 shows the effect of a different choice for the local smoothing constraint. The
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Fig. 3. Old Faithful Eruptions - Comparison of optimal MQE estimates for quadratic (solid)
and quartic (dashed) local smoothing. The marginal likelihoods (ML) and correlation lengths
are nearly ideutical. The quadratic estimate is unsatisfactory because it shows bumps at the
positions of the data. The bumps are smaller than the error bars in Fig. 2 and not statistically
significant, Nevertheless, the higher order smoothing of the quartic estimate is preferred.
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Fig. 4. Old Faithful Eruptions - Comparison of optimal MQE (dashed) with quartic smooth-
ing and maximum entropy (solid) which has no local smoothing. Dots are the data histogram.

The ratio of marginal likelihoods (ML) favoring MQE over ME is 110.
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optimal MQE estimate obtained with quartic smoothing (dashed) is compared to the op-
timal MQE estimate obtained with quadratic smoothing (solid). The quadratic estimate
appears to have bumps at the positions of the data, where the quartic estimate appears
to be smooth. Therefore, the quadratic estimate is much less credible than the quartic,
because the true density function should not depend on how the data were measured. How-
ever, one may argue that the apparent differences between quadratic and quartic are not
significant. The MQE error bars are larger than the bumps. The derivative of the quartic
estimate would also show bumps at the positions of the data. And the correlation lengths,
7, for the two estimates are nearly identical. (Let 7y be defined as the half-width-half-
maximum of G~!. Then from Fig. 1 and the values of 8 in Fig. 3 we find v, = .105 and
vy = .099.) Indeed, there does not appear to be any Bayesian preference for the type of
local smoothing, and the marginal likelihoods for the quadratic and quartic estimates are
nearly identical. Nevertheless, we prefer, and we will use, quartic local smoothing for the
rest of the figures in this paper. In Bayesian language, a strong hyperprior favors higher
order smoothing.

Figure 4 compares the optimal MQE estimate (dashed) with the optimal ME estimate
(solid) which has no local smoothing. The ME estimate consists of spikes at the positions
of the data, and it is not credible. In this case there is a strong Bayesian preference; the
marginal likelilhood of the optimal MQE estimate is 110 times larger than the marginal
likelihood of the ME estimate. This observation poses a question: Why does ME often
work extremely well for inverse problems? As discussed earlier, the smoothness of f is
determined by a combination of the smoothness of U and the local smoothing. The U’s for
inverse problems consist of a sum of Lagrange multipliers multiplying point spread functions
(or kernels), whereas the U'’s for density estimation are sums of §-functions. Typical point
spread functions are already locally smooth, so that additional local smoothing is much
less important. However, MQE would still be preferred over ME for most inverse problems
because it provides point estimates of errors on f.

The datain Figure 5 are measurements of the annual snowfall in Buffalo over a period of
63 years. The data are displayed as a histogram with 100 bins. The optimal MQE estimate
(solid) consists of a single bump. This data set has been studied using almost all available
density estimation methods, and the results are displayed in [Scott, 1993]. Almost all
methods, with the exception of a cross validation kernel method, produce density estimates
showing three bumps. Figure 6 shows a non-optimal MQE estimate (dashed) with three
bumps obtained by tuning the local smoothing hyperparameter down from large 3'/* to
B'/* = 0.1. The parameter a is still adjusted to maximize the marginal likelihood. However,
the optimal MQE estimate with one bump is 23 times more likely (judged by the ratio of
marginal likelihoods) than the non-optimal MQE estimate with three bumps. And the
error estimates are as large as the bumps, so they have no statistical significance.

The Buffalo snowfall is the only one of our three examples where optimal MQE agrees
with the penalized likelihood method of Good and Gaskins using quartic smoothing. The
equivalence means that Eq. (4) is dominated by the lowest ¢, eigenfunction. The only
operative constraint is local smoothing and the quantum entropy is almost zero. This
corresponds to a marginal likelihood which has a flat maximum for 0.4 < f < o0. For
our other data sets, we find that this Good and Gaskins limit of MQE is not optimal and
produces oversmoothed estimates. And for simulated f with a lot of sharp structure, the
entropy constraint is dominant and local smoothing is unimportant.
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Fig. 5. Buffalo Snowfall - 63 measurements of the annual snowfall in Buffalo are displayed
as a histogram with 100 bins. The solid line is the optimal MQE estimate obtained with
quartic local smoothing. Dashed lines are the & one standard deviation error bars on the
MQE estimate.
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Fig. 6. Buffalo Snowfall - The solid line with a single bump is the optimal MQE estimate
obtained at large #. The dashed line with three bumps is a non-optimal MQE estimate
obtained by reducing 8'/4 to 0.1. The single bump estimate is 23 times more likely than the
three bump estimate.
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Fig. 7. LRL Particle Physics Data - Data consist of 25752 counts histogrammed into 172
10 MeV wide bins. The solid line is the optimal MQE estimate.
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Fig. 8. LRL Particle Physics Data - Detail of Figure 7. The boundaries of the gray area
are the I one standard deviation errors on the MQE estimate.

Finally, Figs. 7 and 8 show MQE results (solid) for the LRL particle physics data. The
data consist of 25752 counts histogrammed into 172 10 MeV wide bins. The gray area in
Fig. 8 indicates the 1 one standard deviation point errors on the MQE estimates. There
are many counts in each bin, so the likelihood function can be approximately related to a
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x* statistic. We find for the optimal MQE estimate that x* = 146.4 and that N, = 43.3,
where N, is the number of good measurements given by (31). This is in rough agreement
with the relation, x* + N, & Ny, expected from an analysis of the ML-II procedure for
inverse problems [Silver and Martz, 1993]. Note also that the quantum entropy, S, = 1.78,
indicates that approximately six eigenfunctions are dominating the MQE estimate in (4).

We regard these maximum quantum entropy (or quantum statistical inference) results
for density estimation as very encouraging. The introduction of quantum entropy dra-
matically expands the potential applications for maximum entropy methods. Considerable
further testing and development will be needed to realize the full potential of quantum
methods for statistics, inverse problems, and image reconstruction.
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